Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/23877
Titre: Caract´erisation variationnelle des valeurs propres du Laplacien fractionnaire et applications.
Auteur(s): Benseba, Chaima
Mots-clés: les valeurs propres,les vecteurs propres,L2-orthonormalit´e des fonctions propres,le Laplacien fractionnaire −(−Δ)s,les fonctions de la forme u(x) = (1 − |x|2)p + et v(x) = xdu(x).
Date de publication: 20-jui-2024
Editeur: University of tlemcen
Collection/Numéro: 016 Master Maths;
Résumé: Dans ce m´emoire, on donne une caract´erisation variationnelle des valeurs propres et des vecteurs propres du probl`eme suivant : (−Δ)su = λu dans Ω u = 0 dans Rd \ Ω, o`u s ∈]0, 1[ et Ω est un sous-ensemble ouvert, born´e de Rd avec fronti`ere Lipschitzienne. On discute de certaines de leurs propri´et´es telles que la positivit´e de la premi`ere fonction propre, la multiplicit´e des valeurs propres et la L2-orthonormalit´e des fonctions propres. On calcule le Laplacien fractionnaire −(−Δ)s pour les fonctions de la forme u(x) = (1 − |x|2)p + et v(x) = xdu(x). Comme application, on estime les premi`eres valeurs propres du Laplacien fractionnaire dans une boule de Rd.
URI/URL: http://dspace1.univ-tlemcen.dz/handle/112/23877
Collection(s) :Master en Mathématique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Caracterisation_variationnelle_des_valeurs_propres_du_Laplacien_fractionnaire_et_applications..pdf703,29 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.