Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/839
Titre: | The Use of Artificial Neural Network to Detect the Premature Ventricular Contraction (PVC) Beats |
Auteur(s): | Chikh, MA Belgacem, N Chikh, AZ Bereksi Reguig, F |
Mots-clés: | ECG signal linear prediction coding principal component analysis Fourier transform neural networks premature ventricular contraction MIT-BIH arrhythmia database |
Date de publication: | 27-sep-2003 |
Editeur: | University of Tlemcen |
Résumé: | Premature ventricular contraction (PVC) is a cardiac arrhythmia that can result in sudden death. Understanding and treatment of this disorder would be improved if patterns of electrical activation could be accurately identified and studied during its occurrence. In this paper, we shall review three feature extractions algorithms of the electrocardiogram (ECG) signal, fourier transform, linear prediction coding (LPC) technique and principal component analysis (PCA) method, with aim of generating the most appropriate input vector for a neural classifier. The performance measures of the classifier rate, sensitivity and specificity of these algorithms will also be presented using as training and testing data sets from the MIT-BIH database. |
Description: | Conférence Internationale sur les Systèmes de Télécommunication , d’Electronique Médicale et d’Automatique, CISTEMA’2003 |
URI/URL: | http://dspace.univ-tlemcen.dz/handle/112/839 |
Collection(s) : | Articles internationaux |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
The-Use-of-Artificial-Neural-Network-to-Detect-the-Premature-Ventricular-Contraction-PVC-Beats.pdf | 153,62 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.