Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/2460
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBerrabah, Sid Ahmed-
dc.contributor.authorSahli, Hichem-
dc.contributor.authorBaudoin, Yvan-
dc.date.accessioned2013-06-24T13:57:17Z-
dc.date.available2013-06-24T13:57:17Z-
dc.date.issued2011-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/2460-
dc.description.abstractThis paper introduces an approach combining visual-based simultaneous localization and mapping (V-SLAM) and global positioning system (GPS) correction for accurate multi-sensor localization of an outdoor mobile robot in geo-referenced maps. The proposed framework combines two extended Kalman filters (EKF); the first one, referred to as the integration filter, is dedicated to the improvement of the GPS localization based on data from an inertial navigation system and wheels’ encoders. The second EKF implements the V-SLAM process. The linear and angular velocities in the dynamic model of the V-SLAM EKF filter are given by the GPS/INS/Encoders integration filter. On the other hand, the output of the V-SLAM EKF filter is used to update the dynamics estimation in the integration filter and therefore the geo-referenced localization. This solution increases the accuracy and the robustness of the positioning during GPS outage and allows SLAM in less featured environments.en_US
dc.language.isoenen_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectgeo-localizationen_US
dc.subjectsimultaneous localizationen_US
dc.subjectmappingen_US
dc.titleVisual-based simultaneous localization and mapping and global positioning system correction for geo-localization of a mobile roboten_US
dc.typeArticleen_US
Collection(s) :Articles internationaux



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.