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Abstract

This paper introduces an approach combining visual-based simultaneous localization and
mapping (V-SLAM) and global positioning system (GPS) correction for accurate multi-sensor
localization of an outdoor mobile robot in geo-referenced maps. The proposed framework
combines two extended Kalman filters (EKF); the first one, referred to as the integration filter,
is dedicated to the improvement of the GPS localization based on data from an inertial
navigation system and wheels’ encoders. The second EKF implements the V-SLAM process.
The linear and angular velocities in the dynamic model of the V-SLAM EKEF filter are given by
the GPS/INS/Encoders integration filter. On the other hand, the output of the V-SLAM EKF
filter is used to update the dynamics estimation in the integration filter and therefore the
geo-referenced localization. This solution increases the accuracy and the robustness of the
positioning during GPS outage and allows SLAM in less featured environments.

Keywords: geo-localization, simultaneous localization and mapping

(Some figures in this article are in colour only in the electronic version)

1. Introduction

To be able to navigate in its environment, a mobile robot
is required to infer its current position in relation to the
outside world using onboard sensory readings. For outdoor
applications, the global positioning system (GPS) could be
used to compute the robot’s position in a geo-referenced map
of the environment. However, it is well known that GPS
systems are subject to several sources of errors, among them,
ionosphere and troposphere delays, signal multi-path, number
of visible satellites, satellite geometry/shading, etc. A typical
GPS receiver, for civil applications, provides 6—12 m accuracy,
depending on the number of available satellites. This accuracy
can be reduced to 1 m when using a differential GPS (DGPS)
system which employs a second receiver at a fixed location to
compute corrections to the GPS satellite measurements.

0957-0233/11/124003+09$33.00

Several solutions have been proposed in the literature to
increase the accuracy of GPS localization by integrating data
from other sensors. In particular, inertial navigation systems
(INS) [1-3] and/or wheel encoders [4, 5] have often been
used. This integration usually makes use of a Kalman filter
(KF). Based on an error model of the different navigation
system parameters, a KF solution may be capable of providing
a reliable estimate of the position, velocity and attitude
components of the moving platform [6]. Such a solution for
the integration of GPS and INS has been successfully used in
practice. However, the accuracy of these systems decreases
drastically during long outage of the GPS receiver.

On the other hand, for local navigation in unknown
outdoor environments, simultaneous localization and mapping
(SLAM) techniques have been developed allowing robots to
build up a map of their environment while at the same time
keeping a track of their current location [8, 11].

© 2011 IOP Publishing Ltd  Printed in the UK & the USA
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Combining GPS and SLAM has also been addressed in
the literature. Lee et al [23] used the GPS and digital road map
information as prior constraints to aid their SLAM algorithm
in data association and loop closure. A similar idea was
introduced in [24], where the authors built a stereo camera-
based topological/metric hierarchical SLAM for vehicle
localization in urban environments. When available, the data
from GPS are fused with the visual estimation using a Kalman
filter. Yang et al [26] developed a SLAM-aided GPS/INS
navigation system. In their algorithm, if the GPS information
is available, the SLAM-aided system works in the way of
INS/GPS, and at the same time, online building and updating
the landmark-based map using INS/GPS solution. If the GPS
data are not available, the generated map is used to constrain
the INS errors. In [26], Asmar introduced the VisSLAM
approach combining vision and INS using an EKF filter.

In this study, we propose a different multi-sensor-
based framework combining visual SLAM and integrated
GPS/INS/Encoders filtering for outdoor robot localization.
The filters are combined in a feedback loop. Compared to
[24-26], the proposed method corrects the GPS measurement
(using the SLAM output and INS and encoders data) before
using it to localize the built map and the SLAM estimation is
helped by the integration filter.

The following sections give a detailed description of the
proposed framework and discuss the obtained results for each
part of the algorithm.

2. Global algorithm

In this work, the used robot is the ‘ROBUDEM’ robot
(figure 1), equipped with a camera, a GPS, an INS and wheel
encoders. We define a local global coordinate system G
(figure 1) formed from a plane tangent to the Earth’s
surface and fixed to a specific location with known geodetic
coordinates (in our case, it is supposed to be the initial robot
position for a null initialization of the covariance matrix in
the SLAM process, see section 4). The X axis points toward
the east, the Y axis points toward the north and the Z axis
points vertically upward. We also define an inertial coordinate
frame L related to the INS sensor, a coordinate system C for
the camera and a platform (robot) frame R (figure 1). The
axes of these frames are parallel with the XY plane parallel to
the ground and the X axis points toward the robot direction.
The Z axis points vertically upward. For geo-localization, a
conventional coordinate frame called ‘Earth-centered Earth-
fixed (ECEF or ECF)’ is used. This frame has its origin
at the center of the Earth (figure 1). The X axis passes
through the equator at the prime meridian. The Z axis passes
through the North Pole. The Y axis can be determined by
the right-hand rule to be passing through the equator at 90°
longitude. The geodetic coordinates expressed in terms of
latitude @, longitude I and altitude W can be converted into
ECEF coordinates (x, yE, z5) using the following formulas:

xE = 3+ 0) cos(¥) cos(I")
yE = I+ ©) cos(¥) sin(T") (D)
£ = (1 — &%) + ©) sin(V),
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Figure 1. The ROBUDEM robot and coordinate frames.

where J = a//(1 — e?sin2(W)) is the distance from the
surface to the Z axis along the ellipsoid normal. a and
¢ are the semi-major axis and the square of the first
numerical eccentricity of the ellipsoid, respectively (a =
6356752.3142 m and €* = 6.694 379990 14 x 1073).

The conversion of the coordinates of a location
(xE,yE,zf) in the ECEF frame to the coordinates
(x%, y9,2z%) in the local global coordinate G fixed to a
location O with geodetic coordinates (W, I', ®) and the ECEF
coordinates (x5, y5, z5) is computed by

x¢ —s(To) c(To) 0
YO = | —s(Wo)eTo) —s(¥o)s(To) c(¥o)
26 c(Wo)e(Tp)  c(Wo)s(Tp)  s(Wo)
xE —xE
x| yF =5 | 2
F—Z5

where c(-) and s(-) stand for cos(-) and sin(-), respectively.

In our application all measurements and computations are
transformed into the G coordinate system. For simplicity, the
subscript G is omitted in the following.
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The state vector of the robot x, is defined with the 3D
position vector r = (x,, y,, z,) in the world frame coordinates
and the robot’s orientations yaw, roll and pitch (w,, 6,, ¢,):

Xr

Yr
z
x, ="
o,
0,

Pr

The dynamic model or motion model is the relationship
between the robot’s past state, x'~!, and its current state, X',
given a control input u':

XL =f(x7" ', v, 3)

where f is a function representing the mobility, kinematics
and dynamics of the robot (transition function) and v is a
random vector describing the unmodeled aspects of the vehicle
(process noise such as wheel sleep or odometry error).

The system dynamic model of the robot, considering the

control u as identity, is given by
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where v and @ are the linear and the angular velocities,
respectively, and V and Q are the Gaussian distributed
perturbations to the robot’s linear and angular velocity,
respectively.

Figure 2 illustrates the proposed framework for robot
localization, where two extended Kalman filters (EKF) are
combined in a feedback loop. The first EKF, referred to as
integration EKF (EKF-I), is dedicated to the improvement
of the GPS localization based on data from an inertial
navigation system (INS) and wheels’ encoders. The second
EKF implements the V-SLAM process. Both EKFs exchange
motion parameters for better localization.

The built V-SLAM algorithm uses an EKF to represent
a visual feature-based map. The linear v and angular w
velocities in the dynamic model of the V-SLAM algorithm
are given by the GPS/INS/Encoders integration process. On
the other hand, the output of the V-SLAM is used to update
the dynamics estimation in the EKF-I, and therefore the geo-
referenced localization.

The proposed solution will allow increasing accuracy and
robustness of the positioning during GPS outage as well as
using fewer features for the V-SLAM.

3. GPS/INS/Encoders integration

The GPS measurements are called pseudo-ranges (instead of
ranges) since the estimated times of transmission are corrupted

Frames
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Figure 2. The proposed framework for robot localization.

by different biases. The positioning equations for n; satellites
in sight at time instant ¢ can be defined as

= \/(X§ —x) (Y =) (2 b w (5)

fori = 1,...,n,, where rl.’ is the pseudo-range between the
GPS receiver and the ith satellite, [X!, Y/, Z!]” is the position
of the ith satellite, b’ is the GPS receiver clock offset in
meters, wf is the measurement error and [x,, y,] is the vehicle
position to be estimated (the vehicle altitude is z, = 0 in our
application).

The GPS clock offset dynamic model is defined by

b =d" +v}, d' =, (6)

where v, and v/, are the noise on GPS measurements.

The inertial navigation system (INS) is a self-contained
navigation technique in which measurements provided by
accelerometers and gyroscopes are used to track the position
and orientation of the robot relative to a known starting
point, orientation and velocity. INS typically contains
three orthogonal rate-gyroscopes and three orthogonal
accelerometers, measuring angular velocity and linear
acceleration, respectively.

Usually, INS can only provide an accurate solution for a
short period of time. As the acceleration is integrated twice to
obtain the position, any error in the acceleration measurement
will also be integrated and will cause a bias on the estimated
velocity and a continuous drift on the position estimate by the
INS.

The accelerometers deliver a  nongravitational
acceleration (also referred to as the specific force fF)
and the gyrometers measure the rotation rate of the sensor
cluster XY in order to keep track of the vehicle orientation.
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The differential equations relating the measured quantities
to the dynamics are defined as follows:

i]EG — RRGfR +gG _ (QEG +ZQLE)UE _ (QLE)ZPG, (7)

where RRC is the rotation matrix from the R frame to the local
geographic frame W, QLF is the rotation rate from the L frame
to the E frame, QEC is the rotation rate from the E frame to
the G frame, vF is the velocity relative to the E frame and g©
is the gravitational acceleration.

The location p© of the vehicle in the G frame is given by

1

. — 0
, W, R
P’ = <r ) = 1 ; ®)
r O -
Ry cos(W)

where W, and I, are the latitude and longitude of the vehicle,
Ry is the Earth’s radius of curvature in the meridian and R
is the transverse radius.

The state model describing the INS error dynamics can be
obtained by linearizing equations (7) and (8) around the INS
estimation (see [22] for more details):

§pY = S(QEC) A 8pC + 80EC
SVEC = S(8p) A fR — S(QEC +2QLE) A s0EC

+88°% — S(8QEY +2QLE) A vEC
§p = —8QLE — S(QE9) A Sp + RROSQLE, 9)
where S(-) is the skew-symmetric matrix and A denotes the
cross product.

The linear speed v and the yaw rate (angular velocity) @

of the vehicle at time ¢ can be computed based on the wheel
encoders as follows:

b= /R, +aR;
2

OlﬁRr +0[;R1
B Lrl

(10)

)

where o/ and o] are the angular velocities of the right and left
rear wheels, respectively, and R, and R; their corresponding
radii. L,; is the distance between rear wheels.

The EKF-I filter prediction is done using equation (9) to
estimate the state vector composed of the vehicle position x,,
the linear and angular velocities, and the GPS bias term

G . - T
XgkF-1 = [Xr, p, v, w,b,d]" .

For the update of the filter, the linear and angular velocities
are estimated as an average between the sensor measurements
and the V-SLAM estimations (as described in the following
section).

4. Visual SLAM for localization

4.1. Visual SLAM formulation

The SLAM problem is tackled as a stochastic problem and
it has been addressed with approaches based on Bayesian
filtering. The most well-known Bayesian filters for treating the
SLAM problem are (i) the extended Kalman filter (EKF) [7-9]
where the belief is represented by a Gaussian distribution, and

Figure 3. Features detected in a scene with moving objects.

(ii) the particle filters [ 10, 11] where the beliefis represented by
multiple values (particles). Whenever a landmark is observed
by the robot’s on-board sensors, the system determines
whether it has been already registered and updates the filter.

Usually the features used in vision-based localization
algorithms are salient and distinctive objects are detected
from images. Typical features might include regions, edges,
object contours, corners, etc. In our work, the map features
are obtained using the SIFT feature detector [12]. These
features are invariant to image scale, rotation and change in
illumination [13].

To deal with the problem of SLAM in dynamic scenes
with a moving object, we use a previously developed motion
segmentation algorithm [14] to remove outlier features which
are associated with moving objects. In other words, the
detected features which correspond to the moving parts in
the scene are not considered in the built map. The approach in
[14] uses a Gaussian mixture model background subtraction
approach to detect the moving objects’ mask and a Markov
random field framework to optimize the detected masks based
on the space and time dependences that moving objects impose
on a frame pixel. The algorithm starts by estimating and
compensating the camera motion. In another paper, we will
show how we exploit the estimated 3D motion in the SLAM
process for the 2D camera motion compensation. For more
details, the reader is referred to [14].

To deal with the reliability of the detected and tracked
features, we use a bounding box around the moving objects
(figure 3), and the newly detected features should be
detected and matched in at least j consecutive frames
(in our application, j = 5) before being added to the
features’” map.

Features are represented in the system state vector by their
3D location in the local world coordinate system G:

m; = (my;, my;,ms;) .
The observation model of the EKF-SLLAM is given by
2 = [z, 2] =hm') +w', (11)

where z' is the observation vector at time ¢ and h is the
observation model. The vector z§ is an observation at instant ¢
of the ith landmark location m§ relative to the robot’s location



Meas. Sci. Technol. 22 (2011) 124003

S A Berrabah et al

x'. Using a perspective projection, the observation model in
the robot coordinate system is obtained as follows:
R
mi;
ox+ f—%
r_ h( z) _ ms
7. = m) = Cr |
oy + f i
y t R
ms

12)

where o, and o, are the image center coordinates and f is the

focal length of the camera.

T .
mf = (mf,,m%, . m%,)" are the coordinates of the
feature i in the robot coordinate frame R. They are related

to m; by

cos(w,) —sin(w,) O\ [m}; —x,
m{ = [ sin(w,) cos(w,) O)|mbh;,—y |,  (13)
0 0 1) \m5; —h

where £ is the height of the camera.

In EKF-based SLAM approaches, the environment is
represented by a stochastic map 91 = (x, P), where x is the
estimated state vector, consisting of the n, states representing
the robot, x!, and the n states describing the observed
landmarks, m!,i = 1, ..., n, and Pis the estimated covariance
matrix, where all the correlations between the elements of the
state vector are defined:

m !
t
X = ™
'
_Plt‘r Pil e Pin
Pt]r Ptll e Pt]n
Pr=1. D (14)
_P.izr P;:l e Pim

The sub-matrices P!, P!, and P, are, respectively, the robot to
robot, robot to feature, and feature to feature covariances. The
sub-matrices Pj; are the feature to feature cross-correlations.
x and P will change in dimension as features are added or
deleted from the map.

The extended Kalman filter consists of two steps:

(a) The prediction step (equations (15)), which estimates the
system state according to the state transition function
f (equation (4)) and the covariance matrix P to reflect
the increase in uncertainty in the state due to noise
Q (unmodeled aspects of the system). The linear
v and the angular @ velocities are estimated by the
GPS/INS/Encoder integration KEF filter:

fx " u=0)

_ t—1[1—1
Xl‘|t 1 — rn1

Pt\t—l — FPt—l|t—1FT +Ql—l (15)
where F = g—)f(|x/—1|z—1 = diag(aa—;y|xzr—l\/—l, I) is the Jacobian
of f with respect to the state vector x and Q is the process
noise covariance.

Considering a constant velocity model for the smooth
camera motion:

of

0X, X

(16)

(b) The update step uses the current measurement to
improve the estimated state, and therefore the uncertainty
represented by P is reduced:

X!l = x!lt=1 4 Wigt

P!t = prir-1 _ WzSthT a7
where
Wt — Pt\t—lHT(St)—l
S' =HP'""'H+ U (18)
e =17 —hx").
Q and U are block-diagonal matrices (obtained

empirically) defining the error covariance matrices
characterizing the noise in the model and the observations,
respectively. H is the Jacobian of the measurement model
h with respect to the state vector. A measurement of
feature m; is not related to the measurement of any other

feature so
oh; [ dh; oh; 0
ax | 9x, om; ’

where h; is the measurement model for the ith feature.

4.2. Initialization

Several approaches have been proposed for the estimation of
the initial state of the EKF-SLAM. Deans [15] combined
Kalman filter and bundle adjustment in filter initialization,
obtaining accurate results at the expense of increasing filter
complexity. In [8], Davison uses an A4 piece of paper as a
landmark to recover the metric information of the scene. Then,
whenever a scene feature is observed, a set of depth hypotheses
are made along its direction. In subsequent steps, the same
feature is seen from different positions reducing the number of
hypotheses and leading to accurate landmark pose estimation.
Sola et al [16] proposed a 3D bearing-only SLAM algorithm
based on EKEF filters, in which each feature is represented by
a sum of Gaussians.

In our application, to estimate the 3D position of the
detected features, we use an approach based on epipolar
geometry. This geometry represents the geometric relationship
between multiple viewpoints of a rigid body and it depends
on the internal parameters and relative positions of the
camera. The essence of the epipolar geometry is illustrated in
figure 4 [24].

The fundamental matrix F (a 3 x 3 matrix of
rank 2) encapsulates this intrinsic geometry. It describes the
relationship between matching points: if a landmark M is
imaged as m in the first view, and m’ in the second, then
the image points satisfy the relation m’ Fm’ = 0 called the
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point in space

image plane 2

———————————— o'

o
focal point / “focal point

Figure 4. Illustration of the epipolar geometry.

epipolar constraint. m lies on the epipolar line Fm’ and so the
two rays back-projected from image points m and m’ lie in a
common epipolar plane. Since they lie in the same plane, they
will intersect at one point. This point is the reconstructed 3D
scene point M.

Analytically, the depth of the 3D point corresponding to

x and x’ can be calculated by the following equation:
/
_ (e x m)(m x m') (19)
' mxm'|?
where e is the epipole at the first view satisfying the relation
Fe = 0.

The fundamental matrix F is independent of scene
structure and can be computed from correspondences of
imaged scene points, without requiring knowledge of the
cameras’ internal parameters or relative pose. Given a set
of n pairs of image correspondences (m;, m’;), j =1,...,n,
we compute the rotation matrix R between the two views and
translation vector t such that the epipolar error (equation (20))
is minimized. For the minimization, we use the random sample
Cconsensus (RANSAC) algorithm [21]:

i " .Fm;. 2
mlFmij m; (20)

j=1

4.3. Feature matching

At step ¢, the onboard sensor obtains a set of measurements
2 (i = 1,...,k) of k environment features. Feature
matching corresponds to data association, also known as the
correspondence problem, which consists in determining the
origin of each measurement, in terms of the map features m;,
j =1,...,n. Inour implementation, the measurement Zf’ can
be considered corresponding to the feature j if the following
equation is satisfied:

) 2 2
D _Dij+DdeSC+D

opi < th

2y

where Dizj is the Mahalanobis distance between the new

detected feature i and the map features j, Dﬁesc is the Euclidean
distance between the descriptor vectors of the features i and j,
and Djpi is the distance of the feature i from the epipolar line
induced by the feature j.

Figure 5 illustrates the effectiveness and accuracy of the
proposed approach for feature matching given by equation (21)

(figure 5(¢)), compared to other techniques using matching

Figure 5. SIFT feature matching. (@) Feature matching based on the
Mahalanobis distance with consistency hypothesis. (b) Feature
matching based on the Euclidean distance between feature
descriptors. (c¢) Feature matching based on equation (21).

based on Mahalanobis distance with consistency hypothesis
(figure 5(a)) and matching based on Euclidean distance
between feature descriptors (figure 5(b)).

4.4. SLAM in large-scale areas

One of the problems of the current state-of-the-art SLAM
approaches and particularly vision-based approaches is
mapping large-scale areas. Relevant shortcomings of this
problem are, on the one hand, the computational burden,
which limits the applicability of the EKF-based SLAM in
large-scale real time applications and, on the other hand, the
use of linearized solutions which compromises the consistency
of the estimation process. The computational complexity
of the EKF stems from the fact that the covariance matrix
P represents every pairwise correlation between the state
variables. Incorporating an observation of a single feature
will necessarily have an effect on every other state variable.
This makes the EKF computationally infeasible for SLAM in
large environment.

Methods like network coupled feature maps [17],
sequential map joining [18] and the constrained local submap
filter (CRSF) [19] have been proposed to solve the problem
of SLAM in large spaces by breaking the global map into
submaps. This leads to a sparser description of the correlations
between map elements. When the robot moves out of one
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submap, it either creates a new submap or relocates itself in a
previously defined submap. By limiting the size of the local
map, this operation is constant time per step. Local maps are
joined periodically into a global absolute map in an O(N?)
step. Each approach reduces the computational requirement
of incorporating an observation to constant time. However,
these computational gains come at the cost of slowing down
the overall rate of convergence.

The constrained relative submap filter [19] proposes to
maintain the local map structure. Each map contains links to
other neighboring maps, forming a tree structure (where loops
cannot be represented). The method converges by revisiting
the local maps and updating the links through correlations. On
the other side, in the hierarchical SLAM [20], the links between
local maps form an adjacency graph. This method allows us
to reduce the computational time and memory requirements
and to obtain accurate metric maps of large environments in
real time.

To solve the problem of SLAM in large spaces, in our
study, we propose a procedure to break the global map
into submaps by building a global representation of the
environment based on several size-limited local maps built
using the previously described approach. The global map is
a set of robot positions where new local maps started (i.e. the
base references of the local maps). The base frame for the
global map is the robot position at instant #,.

Each local map is built as follows: at a given instant #,
a new map is initialized using the current vehicle location,
x’, as the base reference By = x¥, k = 0,1,... being
the local map order. Then, the vehicle performs a limited
motion acquiring sensor information about the L; neighboring
environment features.

The kth local map is defined by

My = Xk, Pr),

where x; is the state vector in the base reference By, of the L;
detected features and Py is their covariance matrix estimated
in B k-

The decision to start building a new local map at an instant
1 is based on two criteria: the number of features in the current
local map and the scene cut detection result. The instant #;
is called a key instant. In our application, we defined two
thresholds for the number of features in the local maps: alower
Th~ and a higher Th* threshold. A key instant is selected if
the number of features n* in the current local map k is bigger
than the lower threshold and a scene cut has been detected or
the number of features has reached the higher threshold. This
allows keeping reasonable dimensions of the local maps and
avoiding building too small maps.

Formally, the global map is defined as

Mme = (x0, %), %,...),

) Ay

where X’r‘ are the robot coordinates in By, where it decides to
build the local map 9, at instant #;:

%k xk
(1)=7(7)

fo=0and X = %" = (0,0, 0).

(22)

Figure 6. Closing the loop.

The transformation matrix 7;_, is obtained by successive
transformations:

7%—>0 = 7-1—>0-/T2—>l oo 77c—>k—l’ (23)

where 7;,;,_; = (R|t) is the transformation matrix
corresponding to the rotation R and translation t between B;
and B;_1:

cos () —sin(wf) 0 x!
T — sin (%) cos(wf) O yf (24)
0 0 1
0 0 0 1

For feature matching at instant #, the robot uses the local map
with the closest base frame to its current location:

argmin (X} — x1), (25)

1
where X! is the robot position at instant 7 in By.

The local maps are considered as nodes in a topological
representation. Based on its current position, the robot selects
the local map on which the feature matching will be done. If
a matching is detected the two local maps are fused in one
local map. Since the relative reference frames of both maps
are known, the main goal of the algorithm is to transform one
of the maps and its features into the reference system of the
other one:

m,’”‘ = (Xi+j, Pi+j), (26)

where x;.; and P;,; represent the state vector and the
covariance resultant of the fusion of the maps 91; and 90;
in the reference frame of the map 9;.

5. Experimental results

Figure 6 shows an example for the detection of loops using
the SLAM process. In this example, the robot wanders twice
across a defined path (real path drawn in red in the figure).
At the first round, the position error exceeds 5 m and the
uncertainty around the robot position reaches 6.2 m (cyan
ellipses in the figure). After loop detection, the uncertainty is
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Figure 7. Robot position errors and the corresponding 2o variance
bounds.
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Figure 8. Robot localization in the case of GPS outage.

reduced. During the second round, the position error is limited
to a maximum of 1 m and the uncertainty to a maximum of
2 m (magenta ellipses in the figure) before the detection of the
closure of the loop.

Figure 7 represents the robot position error and its
corresponding 20 variance bounds obtained by the proposed
algorithm. Position errors are plotted as x and y distances of
the robot location.

The proposed framework has been tested in real
environments. Different GPS outages were simulated and
analyzed. Figure 8 illustrates an example where the GPS
signal was lost for 30 s. The black curve shows that the GPS
localization error is 3.6 m. The dashed blue curve shows
that even if the integration of GPS, INS and wheels encoders
data reduces the error on the robot position to less than 1 m,
it is not reliable during the GPS outage where the error
grows continuously, while the proposed framework combining
GPS/INS/Encoders localization and visual SLAM localization
remains stable even during the GPS outage (red curve).

Figure 9 shows an example of the robot localization in a
real environment. The blue/light curve represents the obtained
robot path using the proposed algorithm, and the red/dark
curve is the GPS data. The initial GPS position is the mean of
the GPS measurements during a few minutes of initialization.
Figure 9(b) represents the built local maps. Each local map
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Figure 9. Robot localization in a real environment. (a) Robot path
superimposed on a geo referenced map. (b) The built local maps.

is represented by a different color. In this experiment, the
maximum number of features in the local maps is fixed to 60
features.

6. Conclusion

In this paper, we presented an algorithm for robot localization
in georeferenced images. The proposed algorithm combines
two localization techniques, one based on a GPS/INS/Wheel
encoders integration approach and the other based on a visual
SLAM approach.

The obtained results are interesting and for a future work
we want to constrain the feature matching for the closure of
the loop based on global positioning and study the influence
of the GPS outage on the closing of the loop.
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