Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/20870
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBENYELLES, Fatima Zohra-
dc.contributor.authorSEKKAL, Amel-
dc.date.accessioned2023-11-02T09:23:21Z-
dc.date.available2023-11-02T09:23:21Z-
dc.date.issued2020-
dc.identifier.urihttp://dspace1.univ-tlemcen.dz/handle/112/20870-
dc.description.abstractCOVID-19 is a recently discovered infectious disease caused by the coronavirus known to cause respiratory infections in humans. This pandemic is spreading rapidly around the world, causing multiple damages in different areas. In this graduation project, we are interested in the recognition of this disease using med- ical images. For this purpose, we present an application dedicated to epidemiol- ogists for the investigation of the Patient 0 infected and establish the propagation path in different areas of the country. A Content Based Medical Image Retrieval (CBMIR) system based on stacked-encoder networks is proposed, our model is dedicated to search for target COVID Chest X-Ray images using similarity mea- surements learned through an image database of different pathologies as SARS and other viral or bacterial species of pneumonia diseases.en_US
dc.language.isoenen_US
dc.publisheruniversity of Tlemcenen_US
dc.subjectContent based image retrieval, Stacked autoencoders, COVID-19, investigation, recognition, X-rays medical images, Features extraction.en_US
dc.titleMedical Image Retrieval using Stacked Autoencoders : COVID-19 Applicationen_US
dc.typeThesisen_US
Collection(s) :Master en Génie Biomedical

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Medical_Image_Retrieval_using_Stacked_Autoencoders__COVID-19_Application.pdf2,4 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.