Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/1935
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Abdellaoui, Boumediene | - |
dc.contributor.author | Peral, Ireneo | - |
dc.contributor.author | Primo, Ana | - |
dc.date.accessioned | 2013-06-05T09:07:26Z | - |
dc.date.available | 2013-06-05T09:07:26Z | - |
dc.date.issued | 2010-12-20 | - |
dc.identifier.issn | 0001-8708 | - |
dc.identifier.uri | http://dspace.univ-tlemcen.dz/handle/112/1935 | - |
dc.description | Advances in Mathematics, ISSN : 0001-8708, DOI: 10.1016/j.aim.2010.04.028, Issue :6, Volume : 225, pp. 2967–3021, 20 December 2010. | en_US |
dc.description.abstract | We deal with the following parabolic problem{u(t) - Delta u = vertical bar del u vertical bar(p) + lambda u/vertical bar x vertical bar(2) + f, u > 0 in Omega x (0, T), u(x,t) = 0 on partial derivative Omega x (0, T), u(x,0) = u(0)(x), x is an element of Omega,where Omega subset of R-N, N >= 3, is a bounded regular domain such that 0 is an element of Omega OR Omega = R-N, p > 1, lambda >= 0 and f >= 0, u(0) >= 0 are in a suitable class of functions.There are deep differences with respect to the heat equation (lambda = 0). The main features in the paper are the following.If lambda > 0, there exists a critical exponent p(+)(lambda) such that for p >= p(+)(lambda), there is no nontrivial local solution.p(+)(lambda) is optimal in the sense that, if p < p(+)(lambda) there exists solution for suitable data.If we consider the Cauchy problem, i.e., Omega equivalent to R-N, we find the same phenomenon about the critical power p(+)(lambda) as above. Moreover, there exists a Fujita type exponent F(lambda) < p(+)(lambda) in the sense that independently of the initial datum, for 1 < p < F(lambda), any solution blows up in a finite time respect to an integral norm. This is a major difference with respect to the heat equation (lambda = 0). | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Tlemcen | en_US |
dc.subject | Quasi-linear heat equations | en_US |
dc.subject | Existence and nonexistence | en_US |
dc.subject | Hardy potential | en_US |
dc.subject | Blow-up | en_US |
dc.subject | Fujita type exponent | en_US |
dc.title | Optimal results for parabolic problems arising in some physical models with critical growth in the gradient respect to a Hardy potential | en_US |
dc.type | Article | en_US |
Collection(s) : | Articles internationaux |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Optimal-results-for-parabolic-problems.pdf | 119,32 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.