Optimal results for parabolic problems arising in some physical models with critical growth in the gradient respect to a Hardy potential

Boumediene Abdellaoui, Ireneo Peral, Ana Primo

Abstract :

We deal with the following parabolic problem

 $\begin{cases} u_t - \Delta u = |\nabla u|^p + \lambda \frac{u}{|x|^2} + f, & u > 0 \quad \text{in } \Omega \times (0, T), \\ u(x, t) = 0 \quad \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x), & x \in \Omega, \end{cases}$

where $\Omega \subset RN$, $N \Box 3$, is a bounded regular domain such that $0 \in \Omega$ or $\Omega = RN$, p > 1, $\lambda \Box 0$ and $f \Box 0$, $u_0 \Box 0$ are in a suitable class of functions.

There are deep differences with respect to the heat equation ($\lambda = 0$). The main features in the paper are the following.

- If λ>0, there exists a critical exponent p₊(λ) such that for p □ p₊(λ), there is no nontrivial *local* solution.
- *p*₊(λ) is optimal in the sense that, if *p*<*p*₊(λ) there exists solution for suitable data.
- If we consider the Cauchy problem, i.e., Ω≡RN, we find the same phenomenon about the critical powerp₊(λ) as above. Moreover, there exists a *Fujita type exponentF*(λ) < p₊(λ) in the sense that independently of the initial datum, for 1

Keywords : Quasi-linear heat equations; Existence and nonexistence; Hardy potential; Blow-up; Fujita type exponent.

Journal Title / Revue : Advances in Mathematics, ISSN : 0001-8708, DOI: 10.1016/j.aim.2010.04.028, Issue :6, Volume : 225, pp. 2967–3021, 20 December 2010.