Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/2289
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBENALI, Radhwane-
dc.date.accessioned2013-06-16T12:58:38Z-
dc.date.available2013-06-16T12:58:38Z-
dc.date.issued2013-04-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/2289-
dc.description.abstractThe electrocardiogram (ECG) signal is widely employed as one of the most important tools in clinical practice in order to assess the cardiac status of patients. It represents the variations of the electrical activity of the heart as function of time. The classification of the ECG beats into different pathologic disease categories is a complex pattern recognition task. In this thesis, we propose a method for ECG heartbeat pattern recognition using wavelet neural network. An algorithm based on wavelet for QRS detection is first implemented, and then a wavelet neural network Classifier is developed. The experimental results obtained by testing the proposed approach on ECG data from the MIT-BIH arrhythmia database demonstrate the efficiency of such an approach when compared with other methods existing in the literatureen_US
dc.language.isoenen_US
dc.subjectECGen_US
dc.subjectFeature extractionen_US
dc.subjectQRSen_US
dc.subjectWaveleten_US
dc.subjectClassificationen_US
dc.subjectWavelet Networken_US
dc.subjectCardiac arrhythmiaen_US
dc.titleAnalyse du signal ECG par réseau adaptif d’ondelettes en vue de la reconnaissance de pathologies cardiaquesen_US
dc.typeThesisen_US
Collection(s) :Doctorat Classique GEE

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
BENALI-Radhwane.pdf3,98 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.