Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/22631
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBELFILALI, Hafida-
dc.date.accessioned2024-06-02T10:22:55Z-
dc.date.available2024-06-02T10:22:55Z-
dc.date.issued2023-09-25-
dc.identifier.urihttp://dspace1.univ-tlemcen.dz/handle/112/22631-
dc.description.abstractCardiovasculardiseasesarepathologiesthataffecttheheartandbloodvessels.According to theworldhealthorganization,theyaretheleadingcauseofmortalityworldwide. Early diagnosisofcardiacfunctiondisordersiscrucialinreducingthemortalityrate. The LeftVentricle(LV)isavitalcomponentofthecardiovascularsystemandplaysa significantroleinbloodcirculation.Severalclinicalparameterscanbeestimatedfrom the LVstructureduringcardiovascularexamstoensurereliablediagnoses,includingleft ventricularvolumesandejectionfraction. Variouscardiacimagingmodalitiesallowvisualizationoftheleftventricularcavity. Echocardiographyisthemostwidelyusedtechniquebycardiologistsinroutineclinical practice duetoitsmanyadvantages.Theprimarymethodforestimatingclinicalpa- rameters isLVsurfacesegmentationfrom2Dechocardiographicimagesequences.The accurate evaluationoftheLVchamber’sfunctionreliesonthequalityofthesegmentation results. However,LVmanualdelineationbycardiologistsisdifficult,time-consuming,and imprecise duetothelowqualityofechocardiographicimages.Therefore,thereisaneed to automaticallysegmenttheLVfromechocardiographicimagesequencestoovercome these challenges. In thisthesis,ourobjectiveistodevelopafullyautomaticsegmentationframework based ondeeplearningtechniquestoassessLVperformanceusingechocardiographicim- ages. Wetestedtheeffectivenessoftheproposedapproachesbycomparingtheobtained results withgroundtruthdataandexistingstate-of-the-artmethodsinthisfield.The results aresatisfactory,underliningthesignificantpotentialofautomatedtechniquesfor echocardiographicimageanalysistohelpcardiologistsintheirdailyclinicalpractice.en_US
dc.language.isofren_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectLeft ventricle;Echocardiography;Segmentation;Echocardiographicimage analysis; Deeplearning;U-Netarchitecture;Attentionmechanism;Transferlearningen_US
dc.titleAnalysis of echocardiographic image sequences to study left ventricular performanceen_US
dc.typeThesisen_US
Collection(s) :Doctorat en GBM

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Analysis_of_echocardiographic_image_sequences_to_study_left_ventricular_performance.pdf12,35 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.