Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/22631
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | BELFILALI, Hafida | - |
dc.date.accessioned | 2024-06-02T10:22:55Z | - |
dc.date.available | 2024-06-02T10:22:55Z | - |
dc.date.issued | 2023-09-25 | - |
dc.identifier.uri | http://dspace1.univ-tlemcen.dz/handle/112/22631 | - |
dc.description.abstract | Cardiovasculardiseasesarepathologiesthataffecttheheartandbloodvessels.According to theworldhealthorganization,theyaretheleadingcauseofmortalityworldwide. Early diagnosisofcardiacfunctiondisordersiscrucialinreducingthemortalityrate. The LeftVentricle(LV)isavitalcomponentofthecardiovascularsystemandplaysa significantroleinbloodcirculation.Severalclinicalparameterscanbeestimatedfrom the LVstructureduringcardiovascularexamstoensurereliablediagnoses,includingleft ventricularvolumesandejectionfraction. Variouscardiacimagingmodalitiesallowvisualizationoftheleftventricularcavity. Echocardiographyisthemostwidelyusedtechniquebycardiologistsinroutineclinical practice duetoitsmanyadvantages.Theprimarymethodforestimatingclinicalpa- rameters isLVsurfacesegmentationfrom2Dechocardiographicimagesequences.The accurate evaluationoftheLVchamber’sfunctionreliesonthequalityofthesegmentation results. However,LVmanualdelineationbycardiologistsisdifficult,time-consuming,and imprecise duetothelowqualityofechocardiographicimages.Therefore,thereisaneed to automaticallysegmenttheLVfromechocardiographicimagesequencestoovercome these challenges. In thisthesis,ourobjectiveistodevelopafullyautomaticsegmentationframework based ondeeplearningtechniquestoassessLVperformanceusingechocardiographicim- ages. Wetestedtheeffectivenessoftheproposedapproachesbycomparingtheobtained results withgroundtruthdataandexistingstate-of-the-artmethodsinthisfield.The results aresatisfactory,underliningthesignificantpotentialofautomatedtechniquesfor echocardiographicimageanalysistohelpcardiologistsintheirdailyclinicalpractice. | en_US |
dc.language.iso | fr | en_US |
dc.publisher | University of Tlemcen | en_US |
dc.subject | Left ventricle;Echocardiography;Segmentation;Echocardiographicimage analysis; Deeplearning;U-Netarchitecture;Attentionmechanism;Transferlearning | en_US |
dc.title | Analysis of echocardiographic image sequences to study left ventricular performance | en_US |
dc.type | Thesis | en_US |
Collection(s) : | Doctorat en GBM |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Analysis_of_echocardiographic_image_sequences_to_study_left_ventricular_performance.pdf | 12,35 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.