Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/21181
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMahdi, Oumaima-
dc.contributor.authorMaghboune, Fadoua-
dc.date.accessioned2023-12-21T08:44:08Z-
dc.date.available2023-12-21T08:44:08Z-
dc.date.issued2023-06-19-
dc.identifier.urihttp://dspace1.univ-tlemcen.dz/handle/112/21181-
dc.description.abstractMalaria, a serious disease that affects millions of people worldwide, continues to pose a significant global health challenge. remains a major global health challenge. In this context, we present a new method for detecting malaria in images of blood cells using long-term memory (LSTM) networks. Our primary goal is to develop an automated diagnostic system that can assist specialists in accurately identifying infected and uninfected blood cells. We have successfully captured complex sequence relationships within these images, which leads to high-resolution detection results. The achieved performance of our model reached an impressive accuracy of 98%, confirming its effectiveness in detecting malaria.en_US
dc.language.isoenen_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectmalaria, cell images, detection, LSTM.en_US
dc.titleInfection detection: Bridging the gap from pixels to malaria diagnosisen_US
dc.typeThesisen_US
Collection(s) :Master en Génie Biomedical

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Infection_detection_Bridging_the_gap_from_pixels_to_malaria_diagnosis.pdf2,35 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.