Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1900
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBenalili, Mohammed-
dc.date.accessioned2013-05-16T12:23:32Z-
dc.date.available2013-05-16T12:23:32Z-
dc.date.issued2011-01-
dc.identifier.issn0393-0440-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/1900-
dc.descriptionJournal of Geometry and Physics, ISSN : 0393-0440, DOI : 10.1016/j.geomphys.2010.08.009, Issue : 1, Volume : 61, pp. 62–76, January 2011.en_US
dc.description.abstractIn the first part of this paper we give suitable spectral properties of the adjoint operators induced by appropriate perturbations of some hyperbolic linear vector fields. These properties are useful to prove general facts based on the Nash–Moser inverse function theorem. In the second part of this work we study circumstances where a global linearization of a vector field X in a real numerical space is feasible and where some diffeomorphisms which are close to exp(X) can be embedded in a flow.en_US
dc.language.isoenen_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectExponential mapen_US
dc.subjectCategory of tame Fréchet manifoldsen_US
dc.subjectNash–Moser function inverse theoremen_US
dc.titleLinearization of vector fields and embedding of diffeomorphisms in flows via Nash–Moser theoremen_US
dc.typeArticleen_US
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Linearization-of-vector-fields-and-embedding-of-diffeomorphisms.pdf43,92 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.