Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/1891
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Abdellaoui, B | - |
dc.contributor.author | Bouguima, SM | - |
dc.contributor.author | Peral, I | - |
dc.date.accessioned | 2013-05-15T09:54:52Z | - |
dc.date.available | 2013-05-15T09:54:52Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 1120-6330 | - |
dc.identifier.uri | http://dspace.univ-tlemcen.dz/handle/112/1891 | - |
dc.description | RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI , ISSN : 1120-6330, DOI : 10.4171/RLM/586, Issue : 1, Volume :22, pp. 29-50, 2011. | en_US |
dc.description.abstract | We will consider the following obstacle problemintegral(Omega)del u del T(k)(v -u)dx + integral(Omega)h(u)vertical bar del u vertical bar(q)T(k)(v - u)dx >= integral(Omega)(g(x, u) + f)T(k)(v - u)dx,with the condition that u >= Psi a.e in Omega. Under suitable condition relating g, h and q, we show the existence of a solution for all f is an element of L(1)(Omega).The main feature is, assuming that g(x, s) is asymptotically linear as vertical bar s vertical bar -> +/-infinity and independently of the values oflim(s ->+/-infinity)g(x, s)/s,to obtain a solution for all lambda > 0 and f is an element of L(1) (Omega). In this sense we could say that the first order term break down any resonant effect. | en_US |
dc.language.iso | en | en_US |
dc.subject | Nonlinear obstacle problems | en_US |
dc.subject | existence and nonexistence | en_US |
dc.subject | regularization | en_US |
dc.subject | resonance | en_US |
dc.title | Modelling anisotropic damage and permeability of mortar under dynamic loads | en_US |
dc.type | Article | en_US |
dcterms.publisher | University of Tlemcen | - |
Collection(s) : | Articles internationaux |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
An-obstacle-problem-with-gradient-term-and-asymptotically.pdf | 145,59 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.