Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1816
Titre: A constrained finite strip method for prismatic members with branches and/or closed parts
Auteur(s): Djafour, N
Djafour, M
Megnounif, A
Matallah, M
Zendagui, D
Mots-clés: Modal analysis
Constrained optimization
Finite band method
Thin wall
Localized mode
Transverse shear
Transverse load
Plane strain
Cylindrical bending
Mode coupling
Axial stress
Buckling
Date de publication: oct-2012
Résumé: The decomposition of buckling modes of thin-walled members subjected to axial stresses is a topic of great practical interest which can be achieved using the generalised beam theory (GBT) or the constrained finite strip method (cFSM). However, the latter is not general enough to study prismatic members with arbitrary cross-sections and the objective of this paper is to extend the cFSM to allow the buckling modes decomposition for prismatic members with branches and/or closed parts. To define the combined GD buckling mode, two assumptions are used: (i) cylindrical plate bending and (ii) negligible in-plane transverse/shear strains. The corresponding constraint matrix, RGD, is derived in a simple and general way. The methodology used to separate the global and distortional modes is similar to that used in the original cFSM while the derivation of the constraint matrix for local modes remains identical. Some examples are considered and the pure buckling curves are compared to the conventional FSM results. The conclusion is that the new cFSM has successfully computed the GD and the L modes of these sections.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/1816
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
A-constrained-finite-strip-method.pdf83,66 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.