Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1771
Titre: Asymptotic behavior for a class of the renewal nonlinear equation with diffusion
Auteur(s): MICHEL, Philippe
TOUAOULA, Tarik Mohamed
Mots-clés: McKendrick–Von Foerster model
iterative method
asymptotic analysis
Date de publication: fév-2013
Résumé: In this paper, we consider nonlinear age-structured equation with diffusion under nonlocal boundary condition and non-negative initial data. More precisely, we prove that under some assumptions on the nonlinear term in a model of McKendrickVon Foerster with diffusion in age, solutions exist and converge (long-time convergence) towards a stationary solution. In the first part, we use classical analysis tools to prove the existence, uniqueness, and the positivity of the solution. In the second part, using comparison principle, we prove the convergence of this solution towards the stationary solution. Copyright (c) 2012 John Wiley & Sons, Ltd.
Description: Mathematical Methods in the Applied Sciences, DOI : 10.1002/mma.2591,Issue : 3, Volume :36, pp. 323–335, February 2013.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/1771
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Asymptotic-behavior-for-a-class-of-the-renewal-nonlinear-equation-with-diffusion.pdf22,84 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.