Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/15233
Titre: Prévision d’un processus autorégressif fonctionnel via les sous espaces clos.
Auteur(s): Kada Kloucha Ep. Billami, Meryem
Mots-clés: Functional Autoregressive Processes - Best Linear Predictor – Measurable-linear transformations - Covariance operator - Simulation.
Processus autorégressif fonctionnel - Prédicteur BLP -Transformations linéaires mesurables - Opérateur de covariance - Simulation.
Date de publication: 5-jui-2019
Editeur: 07-01-2020
Référence bibliographique: salle des thèses
Collection/Numéro: BFST2542;
Résumé: We consider the Best Linear Predictor (BLP) of Functional Autoregressive Processes built with orthogonal projection on linearly closed subspaces introduced by R. Fortet (1995). This approach directly focuses on the prediction of this class of processes and we show almost sure convergence and exponential bounds for the predictors BLP. Then we improve the existing results in the literature. We give the almost sure convergence of the predictors BLP for C[0;1]-valued autoregressive process when it ruled by a bounded linear operator. Our conditions essentially carry on the decay rate of the eigenvalues of the covariance operator of the process. We illustrate the finite sample performance of the BLP predictors by a simulation study and through real examples from climatology and consumption of electrical energy. We compare with others prediction methods existing in the literature and enlighten on the link between the convergence rates of BLP predictors and the presence of the first eigenvalues of the covariance operator.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/15233
Collection(s) :Doctorat Classique en Mathématique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Prevision-dun-processus-autoregressif-fonctionnel.pdfCD1,18 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.