Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/12216
Titre: Produit de deux variétés munies de quelques structures.
Auteur(s): BELDJILALI, Gherici
Mots-clés: Riemannian product , almost contact metric structures, almost Hermitian structures.
Date de publication: 8-jui-2017
Editeur: 09-01-2018
Référence bibliographique: Salle des thèses
Résumé: The product of Riemannian manifolds is one way to exhibit new Riemannian manifolds. To study manifolds with negative curvature, Bishop and O’Neill introduced the notion of warped product as a generalization of Riemannian product. By means of a natural change of the product metric, one can widely construct remarkable structures from the structures of the two factors. Our goal is to construct some structures on the product of two Riemannian manifolds by providing both factors with some essential structures. The metric called D-homothetic bi-warping that we introduced on the product of a Riemannian manifold with an almost contact metric manifold as a generalization of warped product and D-homothetic warping allows us to construct: - A family of Kählerian structures starting from a Sasakian manifold. - A 1-parameter family of conformal Kähler structures with a cosymplectic or Kenmotsu structure. - A 1-parameter family of Kenmotsu structures from a single Sasakian manifold. - A quaternionic structure using a Sasakian 3-structure. - New generalized Kähler manifolds starting from both classical almost contact metric and almost Kählerian manifolds. On the other hand, we construct an almost contact metric 3-structure and an almost quaternionic metric structure starting from an almost contact manifold almost hermitian structure. Next, we construct an almost quaternionic metric structures on the product of two almost contact manifold almost hermitian structure.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/12216
Collection(s) :Doctorat Lmd en Mathématique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Produit-de-deux-variets.pdfCD1,6 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.