Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/11018
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | BELAIDI, Asma | - |
dc.contributor.author | BASSAIDi, Imane | - |
dc.date.accessioned | 2017-10-30T13:16:56Z | - |
dc.date.available | 2017-10-30T13:16:56Z | - |
dc.date.issued | 2015-05-28 | - |
dc.identifier.uri | http://dspace.univ-tlemcen.dz/handle/112/11018 | - |
dc.description.abstract | Les systèmes d’aide au diagnostic ont su des expansions très frappant ainsi ils ont mobilisé durant ces dernières années une large communauté de chercheurs, leurs but principal est de concevoir un système intelligent informatique qui permet la précaution ou l’identification des maladies d’une manière automatique. Le système conçu dans ce travail vise à aider les médecins dans leurs routines cliniques plus exactement dans le diagnostic de l’hypothyroïdie, nous avons choisi cette pathologie parce que c’est une maladie très fréquente touche surtout les femmes et elle propage rapidement dans l’environnement, ses effets sont durable comme elle peut causer des complications assez grave. L’approche proposée dans ce mémoire est basée sur le test de quatre différentes techniques de classification indépendamment sur la base de données d’hypothyroïdie a savoir les réseaux de neurones artificiel (RNA), les machines à vecteurs de supports (SVM), et les K-plus proches voisins (KNN) et les arbres de décision (ADD) par la suite effectuant une combinaison homogène et hétérogène de ces classifieurs par la méthode de Dempster-Shafer (DST)cette dernière elle base sur un fondement théorique solide destiner pour combiner toutes source d’information afin d’obtenir une décision plus précise. Les résultats obtenus sont satisfaisants et prometteurs, ils montrent que l’approche de combinaison donne des réponses plus fiable ainsi ils montrent la cohérence et la robustesse de notre système proposé. | en_US |
dc.language.iso | fr | en_US |
dc.subject | Hypothyroïdie, classification, RNA, SVM, KNN, ADD. | en_US |
dc.subject | Sélection, Relief, Rank, Vote majoritaire, DST. | en_US |
dc.title | CLASSIFICATION DE L’HYPOTHYROIDIE PAR APPROCHE, MONO CLASSIFIEUR ET MULTI CLASSIFIEURS. | en_US |
dc.type | Thesis | en_US |
Collection(s) : | Master en Génie Biomedical |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Ms.EBM.Belaidi+Bassaid.pdf | 1,65 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.