République Algérienne démocratique et populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abou Bakr Belkaid Faculté de Technologie Département de Génie Civil

Mémoire pour l'obtention du diplôme de Master en Génie Civil

Spécialité : INGENIERIE DES STRUCTURES

Thème:

Etude et conception des ouvrages hospitaliers cas du centre anti cancer Chetouane Tlemcen

Présenté par :

Mr BERRAZEG Imad

MIle OUDJEDI DAMERDJI Farah

Date: 13-12-2015

Devant le Jury composé de :

Mme Z. BENADLA Mr N. HASSAINE Mlle GHEZALI Mr L. MEDJAHED Présidente Examinateur Examinatrice Encadreur

Remerciements

Tout d'abord, on remercie DIEU pour la force et la patience qu'il nous a accordé pour réaliser ce projet.

Nos sincères remerciements s'adressent du fond du cœur à notre encadreur Mr MEDJAHED qui nous a orientés durant toute la préparation de ce projet et qui nous a fourni toutes les informations et conseils nécessaires.

Nous portons avec gratitude de reconnaissance pour l'ensemble des professeurs du département de Génie Civil qui ont contribué à notre formation d'ingénieur en Génie Civil.

Nous ne saurons oublier de remercier les honorables membres du Jury qui nous ont fait l'immense honneur de présider et d'examiner ce modeste travail.

Un remerciement spécial pour Mr BOUTASTA et toute l'équipe du BEREG pour l'aide qu'ils nous ont fourni.

A tous ceux ou celles qui nous ont apportés leur soutien, trouvent ici, l'expression de nos vive et sincères reconnaissances.

Dédicace

Je dédie ce travail en premier lieu à mes chers parents, qui je ne remercierai jamais assez pour tous ce qu'ils ont faits pour moi et sans eux je ne serais pas arrivé là où j'en suis aujourd'hui.

A toutes les personnes qui m'ont aidé à poursuivre mes études.

A mon très cher frère et très chère sœur.

A toute ma famille sans exception.

A tous mes amis, connaissances et tous ceux qui ont partagé ma joie en ce jour ci.

A celle qui a collaboré avec moi dans la réalisation de ce mémoire, à toi Farah.

Enfin à tous ceux qui nous sont très chers.

BERRAZEG Imad

Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce travail à :

Mes très chers parents qui ont sacrifiés leurs vies pour notre bien.

Ma mère qui a été à mes coté et ma soutenu et sacrifié toute sa vie afin de me voir devenir ce que je suis,

Ma chère sœur et sa petite famille

Mes chers grands parents

Mes oncles et mes tantes

Toute ma famille sans exception

Mon ami et mon binôme IMAD

Tous mes amis et les personnes qui m'ont aidé, Leyla, Charazad, Abir, Zokha, Rabab, Karim, Abdelhak, Ahmed, Reda et toute l'équipe de la SARL BTO

Et en dernier, un grand merci à toutes celles et tous ceux qui d'une manière ou d'une autre m'ont aidé et soutenu et qui ont partagé ma joie en ce jour ci.

OUDJEDI DAMERDJI Farah

Résumé

Ce projet traite le cas d'un ouvrage hospitalier en l'occurrence le centre anti cancer de Tlemcen, constitué d'un sous-sol, d'un rez-de-chaussée et de 5 étages, implanté dans la commune de Chetouane. Cette région est classée en zone sismique I selon le RPA99 version 2003.

L'objectif assigné à cette étude est le dimensionnements de la structure sous différentes sollicitations dues aux chargements (charges permanentes, d'exploitations et charges sismiques).

Notre travail a consisté dans un premier temps à faire le pré dimensionnement de la structure ainsi que l'étude des éléments secondaires (Plancher, acrotère, escaliers...)

En second lieu, nous avons établi une étude dynamique de la structure tout en respectant le règlement RPA99V2003.

Et en dernier lieu, nous avons calculé les éléments résistants de la structure (poteaux, poutres, voiles, fondations).

<u>Mots clés</u>: Engineering hospitalier, Béton armé, CAC Tlemcen, Structure, murs voile, auto stable.

Abstract

This project addresses the case of a hospital work in this case the anti-cancer center of Tlemcen, consists of a basement, a ground floor and five floors, located in Chetouane. This area is classified zone I according to the seismic RPA99 2003 version.

The objective set for this study is the sizing of the structure under various stresses due to loads (permanent, exploitation and seismic loads).

Our work consisted initially on making the pre-dimensioning of the structure and the study of secondary elements (floor, parapet, stairs ...)

Secondly, we have established a dynamic study of the structure while respecting the RPA99V2003 regulation.

Lastly, we calculated the resistant structural elements (columns, beams, walls, foundations).

Keywords: Hospital Engineering, Reinforced Concrete, CAC Tlemcen, Structure, sailing walls, steady self.

ملخص

هذا المشروع يقدم دراسة مفصلة لإنجاز مستشفى مكافحة السرطان، يتألف من طابق تحت الأرض + طابق أرضي + 5 طوابق بدائرة شتوان المصنفة ضمن المنطقة الزلزالية رقم 1 حسب المركز الوطني للبحث المطبق في هندسة مقاومة الزلازل.

الهدف المحدد لهذه الدراسة هو تحجيم للهيكل تحت مختلف الضغوط بسبب الأحمال (الدائمة، إستغلال والأحمال الزلزالية).

في البداية عملنا على تحديد أبعاد الهيكل ودراسة العناصر الثانوية (الطابق، المتراس والسلالم).

ثانيا، وضعنا دراسة ديناميكية للهيكل مع احترام تنظيم المركز الوطني للبحث المطبق في هندسة مقاومة الزلازل 1999 تأليف2003.

وأخيرا، حسبنا العناصر الهيكلية المقاومة (الأعمدة، الروافد، الجدران المسلحة والاساسات).

الكلمات المفتاحية:

CAC تلمسان، هندسة المستشفى، الخرسانة المسلحة، هيكل، الجدران المسلحة

Liste des matières

Chapitre I : Présentation et conception de l'ouvrage		
1.1	Introduction	016
1.1.1	Le cancer en Algérie, un constat alarmant	016
1.1.2	L'hôpital, un bâtiment pas comme les autres	016
1.2	Présentation de l'ouvrage	017
1.2.1	Position de l'ouvrage	017
1.2.2	Description de l'ouvrage	018
1.3	Caractéristiques des matériaux	020
1.3.1	Béton	020
1.3.2	Ciment	020
1.3.3	Granulats	020
1.3.4	Sable	021
1.3.5	Eau	021
1.3.6	Aciers	021
1.3.7	Adjuvants	021
1.3.8	Béton armé	022
1.4	Contraintes limites	024
1.4.1	Etat limite Ultime	024
1.4.2	Etat limite de service	024
1.5	Diagramme de contrainte déformation	025
1.6	Module de déformation longitudinale	025
1.7	Diagramme de contrainte déformation de calcul	026
1.8	Contraintes limites	026
1.8.1	E.L.U	026
1.8.2	E.L.S	026
1.9	Hypothèses de calcul	027
1.9.1	E.L.U.R	027
1.9.2	E.L.S	027
1.9.3	Règles des trois pivots	027

Chapitr	Page	
II.1	Introduction	031
11.2	Détermination de l'épaisseur du plancher	031
11.3	Descente des charges	032
II.3.1	Plancher terrasse inaccessible inclinée	032
11.3.2	Plancher terrasse accessible	032
11.3.3	Plancher étage courant	033
11.3.4	Murs	034
11.3.5	L'acrotère	035
11.3.6	Escaliers	036
11.4	Pré dimensionnement des éléments structuraux	037
11.4.1	Introduction	037
11.4.2	Pré dimensionnement des poteaux	037
11.4.3	Pré dimensionnement des poutres	040
11.4.4	Les voiles	042

Chapitr	Page	
III.1	Etude du plancher	045
III.1.1	Introduction	045
III.1.2	Prédimension de la dalle pleine (Plancher)	045
III.1.3	Calcul des Ferraillages	047
III.2	L'acrotère	049
III.2.1	Introduction	049
III.2.2	Le rôle de l'acrotère	049
III.2.3	Etude de L'acrotère Terrasse inaccessible	049
III.2.4	Etude de L'acrotère Terrasse accessible	056
III.3	Etude des escaliers	063
III.3.1	Introduction	063
III.3.2	Terminologie	063
III.3.3	Dimensions des escaliers	063
III.3.4	Evaluation des charges et des surcharges pour	065
	l'escalier	
III.3.5	Le type d'escalier	066
III.3.6	Ferraillage des escaliers	066

Chapit	Page	
IV.1	Introduction	071
IV.2	Objectif de l'étude dynamique	071
IV.3	Modélisation de la structure étudiée	071
IV.4	Méthodes de calculs	072
IV.4.1	Méthode statique équivalente	072
IV.4.2	Méthode d'analyse modale spectrale	072
IV.5	Combinaison d'action	073
IV.6	Choix de la méthode de calcul	073
IV.7	Choix du type de contreventement	073
IV.8	Méthode statique équivalente	075
IV.8.1	Détermination des coefficients	075
IV.8.2	Période et participation massique	079
IV.8.4	Poids total de la structure (W)	080
IV.8.5	Détermination de l'effort tranchant	080
IV.8.6	Détermination de la force sismique de chaque niveau	081
IV.9	Méthode d'analyse modale spectrale	082
IV.9.1	Spectre de réponse	082
IV.10	Résultante des forces sismiques de calcul	083

Chapit	Page	
V.1	Introduction	085
V.2	Les poteaux	085
V.2.1	Combinaisons spécifiques de calcul	085
V.2.2	Vérification spécifique sous sollicitations	085
	normales (coffrage de poteau)	
V.2.3	Calcul du ferraillage longitudinal	086
V.2.4	Calcul du ferraillage transversal (RPA2003)	090
V.3	Les poutres	092
V.3.1	Introduction	093
V.3.2	Recommandation du RPA99	093
V.3.3	Exemple d'étude de la poutre principale	093
V.3.4	Récapitulatif	098
V.4	Les voiles	100
V.4.1	Introduction	100
V.4.2	Conception	100
V.4.3	Calcul des voiles	100
V.4.4	Vérification des contraintes tangentielles	101

V.4.5	Détermination des sollicitations	101
V.4.6	Détermination du ferraillage	102

Chapit	Page	
VI.1	Introduction	
VI.2	Stabilité des fondations	104
VI.3	Le choix du type de fondation	104
VI.4	Etude des semelles filantes	105
VI.4.1	Introduction	105
VI.4.2	Dimensionnement de la semelle filante	106
VI.4.3	Calcul des armatures	108

Conclusion

Références bibliographiques

ANNEXES

Liste des tableaux

Tableau I.1Caractéristiques géométriques01Tableau II.2Descente des charges (terrasse inaccessible inclinée)03Tableau II.3Descente des charges (terrasse accessible inclinée)03Tableau II.3Descente des charges (Plancher étage courant)03Tableau II.4Charge permanente du mur extérieur03Tableau II.5Charge permanente mur intérieur03Tableau II.6Charge permanente du palier03Tableau II.7Charge permanente de la paillasse03Tableau II.8Récapitulatif du pré dimensionnement04Tableau III.1Prédimension de la dalle pleine04Tableau III.2Ferraillage de la dalle04Tableau III.3Charge permanente du palier06Tableau III.4Charge permanente de la paillasse06Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07Tableau IV.2Périodes et pourcentage de participation massique07	2 2 3 4 6 6 0 5 7 5 7 9
Tableau II.2 Tableau II.3 Descente des charges (terrasse accessible inclinée) Descente des charges (Plancher étage courant) Charge permanente du mur extérieur Charge permanente mur intérieur Charge permanente du palier Charge permanente de la paillasse Tableau II.7 Charge permanente de la paillasse Tableau III.1 Tableau III.1 Prédimension de la dalle pleine Tableau III.2 Tableau III.3 Charge permanente du palier Charge permanente du palier Tableau III.3 Tableau III.4 Charge permanente du palier Charge permanente de la paillasse Tableau III.5 Tableau III.5 Tableau III.5 Tableau III.6 Tableau III.6 Tableau IV.1 Pénalité correspondante au critère	2 3 4 4 6 6 0 5 7 5 7 9
Tableau II.3 Tableau II.4 Charge permanente du mur extérieur Tableau II.5 Charge permanente mur intérieur Tableau II.6 Tableau II.7 Charge permanente du palier Tableau II.7 Charge permanente de la paillasse Tableau II.8 Tableau III.1 Tableau III.1 Prédimension de la dalle pleine Tableau III.2 Tableau III.3 Charge permanente du palier Tableau III.5 Tableau III.6 Tableau III.7 Tableau III.6 Tableau III.7 Tableau III.7 Tableau III.8 Tableau III.8 Tableau III.9	3 4 6 6 5 7 5 7 9
Tableau II.4Charge permanente du mur extérieur03Tableau II.5Charge permanente mur intérieur03Tableau II.6Charge permanente du palier03Tableau II.7Charge permanente de la paillasse03Tableau II.8Récapitulatif du pré dimensionnement04Tableau III.1Prédimension de la dalle pleine04Tableau III.2Ferraillage de la dalle04Tableau III.3Charge permanente du palier06Tableau III.4Charge permanente de la paillasse06Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	4 4 6 0 5 7 5 7
Tableau II.5 Tableau II.6 Charge permanente du palier Charge permanente de la paillasse Tableau II.7 Charge permanente de la paillasse Tableau III.8 Récapitulatif du pré dimensionnement Tableau III.1 Prédimension de la dalle pleine Tableau III.2 Ferraillage de la dalle Charge permanente du palier Tableau III.3 Charge permanente de la paillasse Tableau III.4 Charge permanente de la paillasse Tableau III.5 Tableau III.6 Tableau III.6 Tableau IV.1 Pénalité correspondante au critère O3 O3 O3 O3 O3 O4 O4 O4 O4 O4 O5 O6	4 6 0 5 7 5 7 9
Tableau II.6 Tableau II.7 Charge permanente du palier Charge permanente de la paillasse Tableau II.8 Récapitulatif du pré dimensionnement Tableau III.1 Prédimension de la dalle pleine Tableau III.2 Ferraillage de la dalle Tableau III.3 Charge permanente du palier Tableau III.4 Charge permanente de la paillasse Tableau III.5 Tableau III.6 Tableau III.6 Tableau IV.1 Pénalité correspondante au critère O3 O3 O3 O4 O4 O4 O4 O4 O5 O6	6 6 0 5 7 5 5 7
Tableau II.7 Charge permanente de la paillasse Tableau II.8 Récapitulatif du pré dimensionnement Tableau III.1 Prédimension de la dalle pleine Tableau III.2 Ferraillage de la dalle Tableau III.3 Charge permanente du palier Tableau III.4 Charge permanente de la paillasse Tableau III.5 Ferraillage d'escalier Tableau III.6 Tableau récapitulatif du ferraillage d'escalier Tableau IV.1 Pénalité correspondante au critère Oda Oda Oda Oda Oda Oda Oda Od	6 0 5 7 5 5 7
Tableau II.8Récapitulatif du pré dimensionnement04Tableau III.1Prédimension de la dalle pleine04Tableau III.2Ferraillage de la dalle04Tableau III.3Charge permanente du palier06Tableau III.4Charge permanente de la paillasse06Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	0 5 7 5 5 7
Tableau III.1Prédimension de la dalle pleine04Tableau III.2Ferraillage de la dalle04Tableau III.3Charge permanente du palier06Tableau III.4Charge permanente de la paillasse06Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	5 7 5 5 7 9
Tableau III.2Ferraillage de la dalle04Tableau III.3Charge permanente du palier06Tableau III.4Charge permanente de la paillasse06Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	7 5 5 7 9
Tableau III.3Charge permanente du palier06Tableau III.4Charge permanente de la paillasse06Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	5 5 7 9
Tableau III.4Charge permanente de la paillasse06Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	5 7 9
Tableau III.5Ferraillage d'escalier06Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	7 9
Tableau III.6Tableau récapitulatif du ferraillage d'escalier06Tableau IV.1Pénalité correspondante au critère07	9
Tableau IV.1 Pénalité correspondante au critère 07	
· ·	8
Tableau IV 2 Périodes et pourcentage de participation massique 07	_
Tableau IV.2 Felloues et pourcelliage de participation massique 07	9
Tableau IV.3 Poids des différents niveaux 08	0
Tableau IV.4 Les forces sismiques de chaque niveau (pour R=4) 08	1
Tableau IV.5 Comparaison entre l'effort statique et dynamique 08	3
Tableau V.1 Vérification des poteaux sous sollicitations normales 08	6
Tableau V.2 Sollicitation de poteaux suivant le couple (N_{max}, M_{max}) 08	7
Tableau V.3 Sollicitation de poteaux suivant le couple (N _{max} , M _{min}) 08	8
Tableau V.4 Sollicitation de poteaux suivant le couple (N _{min} , M _{max}) 08	9
Tableau V.5 Ferraillage des poteaux 09	0
Tableau V.6 La section des armatures transversales des poteaux 09	1
Tableau V.7 Sollicitation de la poutre principale 09	3
Tableau V.8 L'espacement des armatures transversales 09	7
Tableau V.9 Ferraillage de poutre principale (40x90) 09	8
Tableau V.10 Ferraillage de poutre secondaire (30x50) 09	9
Tableau V.11 Vérification de la contrainte 10	1
Tableau V.12 Sollicitations dans les voiles 10	1
Tableau V.13 Ferraillage des voiles 10	2
Tableau VI.1 Dimensionnement des semelles 10	7
Tableau VI.2 Vérification de la longueur élastique 10	7
Tableau VI.3 Moment sur appuis et travée pour SF1 10	8
Tableau VI.4 Moment sur appuis et travée pour SF2 10	9
Tableau VI.5 Sollicitations de la semelle 11	0
Tableau VI.6 Ferraillage des différentes semelles filantes 11	4

Liste des figures

Figure I.1 Figure I.2 Figure I.3 Caractéristiques géométriques du bloc 6 Figure I.4 Diagramme contraintes-déformations du béton Figure I.5 Diagramme contraintes-déformations de l'acier Figure I.5 Diagramme contraintes-déformations de l'acier O25 Figure I.6 Diagramme contraintes-déformations de l'acier O26 Figure I.7 Diagramme des déformations limites de la section O27 Figure II.1 Terrasse inaccessible inclinée Figure II.2 Plancher dalle pleine Figure II.3 Coupe transversale du mur extérieur O34 Figure II.4 Dimension de l'acrotère Type1 O35 Figure II.6 Section du poteau le plus sollicité Figure II.7 Coupe de voile en élévation O42 Figure III.1 Schéma de l'acrotère Type1 O50 Figure III.3 Figure III.3 Schéma de l'acrotère Type1 O50 Figure III.3 Ferraillage de l'acrotère Type 1 O50 Figure III.3 Figure III.4 Coupe Ad de l'acrotère Type 1 Figure III.5 Figure III.5 Dimension de l'acrotère Type 1 Figure III.6 Figure III.7 Ferraillage de l'acrotère Type 1 Figure III.7 Ferraillage de l'acrotère Type 1 Figure III.7 Figure III.7 Ferraillage de l'acrotère Type 1 Figure III.7 Ferraillage de l'acrotère Type 1 Figure III.7 Ferraillage de l'acrotère Type 2 O62 Figure III.7 Ferraillage de l'acrotère Type 1 Figure IV.4 La troisième disposition des voiles Figure IV.5 La courbe de spectre de réponse Figure IV.4 La troisième disposition des voiles Figure V.5 Figure V.1 Figure V.2 Figure V.3 Ferraillage des poutres secondaires (Sous-sol 30x50) O99 Figure V.1 Figure V.2 Figure V.1 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Diagramme des moments en [kN.m] pour SF2 Diagramme des moments en [k			
Figure I.3 Figure I.4 Diagramme contraintes-déformations du béton O25 Figure I.5 Diagramme contraintes-déformations de l'acier Diagramme contraintes-déformations de l'acier O26 Figure I.7 Diagramme des déformations limites de la section O27 Figure II.1 Terrasse inaccessible inclinée Pigure II.2 Plancher dalle pleine Coupe transversale du mur extérieur O34 Figure II.3 Coupe transversale du mur extérieur O35 Figure II.6 Section du poteau le plus sollicité O37 Figure II.7 Coupe de voile en élévation O37 Figure II.7 Coupe de voile en élévation O39 Figure III.1 Schéma de l'acrotère Type1 O49 Figure III.2 Schéma Statique O50 Figure III.3 Figure III.4 Coupe Ad de l'acrotère Type1 O55 Figure III.5 Dimension de l'acrotère Type1 O56 Figure III.6 Section du poteau le plus sollicité O37 Figure III.7 Coupe de voile en élévation O42 Figure III.8 Ferraillage de l'acrotère Type1 O55 Figure III.9 Figure III.9 Figure III.6 Schéma de l'acrotère Type2 O56 Figure III.7 Figure III.7 Figure III.8 Coupe AA de l'acrotère Type2 O56 Figure III.9 Figure III.9 Schéma de l'acrotère Type2 O56 Figure III.9 Figure III.0 Schéma de l'acrotère type 2 O62 Figure III.1 Schéma statique d'escalier O63 Figure III.0 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure O72 Figure IV.2 La première disposition des voiles O74 Figure IV.3 La deuxième disposition des voiles Figure IV.5 Figure IV.5 La courbe de spectre de réponse Figure IV.5 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.1 Figure V.2 Poutre principale (90x40) Figure V.2 Figure V.3 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.1 Disposition des semelles SF1 et SF2 I07 Figure VI.5 Diagramme des moments en [kN.m] pour SF1 I08 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure I.1	Situation géographique du centre anti cancer	017
Figure I.4 Figure I.5 Figure I.5 Diagramme contraintes-déformations du béton Diagramme contraintes-déformations de l'acier Pigure I.7 Diagramme des déformations limites de la section Diagramme des mort retreit page Diagramme des morter de l'acrotère type 1 Diagramme des morter Type 1 Diagramme des déformations du bétor de l'acrotère type 1 Diagramme des de l'acrotère type 2 Diagramme des morter type 2 Diagramme des notreit page 2 Diagramme des morter de réponse Diagramme des potetre de réponse Diagramme des poutres secondaires (Sous-sol 30x50) Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Diagramme des moments en [kN.m]	Figure I.2	_	018
Figure I.5 Figure I.6 Figure I.7 Figure I.7 Diagramme contraintes-déformations de l'acier Diagramme contraintes-déformations de l'acier Diagramme des déformations limites de la section Terrasse inaccessible inclinée Plancher dalle pleine O33 Figure II.3 Coupe transversale du mur extérieur O34 Figure II.5 Dimension de l'acrotère Type1 O35 Figure II.6 Section du poteau le plus sollicité O37 Figure II.7 Coupe de voile en élévation O42 Figure III.1 Schéma de l'acrotère Type1 O50 Figure III.2 Schéma de l'acrotère Type1 O50 Figure III.3 Ferraillage de l'acrotère Type 1 O50 Figure III.4 Coupe AA de l'acrotère Type 1 O55 Figure III.5 Dimension de l'acrotère Type 1 O55 Figure III.6 Schéma de l'acrotère Type 1 O55 Figure III.7 Figure III.8 Coupe AA de l'acrotère Type 2 O56 Figure III.7 Figure III.8 Coupe AA de l'acrotère Type 2 O56 Figure III.7 Figure III.8 Coupe AA de l'acrotère Type 2 O62 Figure III.7 Figure III.9 Schéma de l'acrotère type 2 O62 Figure III.0 Schéma de l'acrotère type 2 O62 Figure III.1 Schéma de l'acrotère type 2 O62 Figure III.1 Schéma de l'acrotère type 2 O62 Figure III.1 Schéma de l'acrotère type 2 O62 Figure III.0 Schéma statique d'escalier O63 Figure III.1 Schéma statique d'escalier O66 Figure IV.1 Modèle 3D de la structure O72 Figure IV.2 La première disposition des voiles O74 Figure IV.5 La courbe de spectre de réponse Figure IV.5 Figure V.1 Figure V.2 Formallage des poteaux de sous-sol (60x60) O92 Figure V.3 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.3 Ferraillage des poutres secondaires (Sous-sol 30x50) O98 Figure V.1 Disposition des semelles SF1 et SF2 Disposition des soments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure I.3	Caractéristiques géométriques du bloc 6	019
Figure I.6 Figure I.7 Figure II.1 Figure II.1 Figure II.2 Figure II.3 Figure II.3 Figure II.4 Figure II.5 Figure II.5 Figure II.5 Figure II.6 Figure II.6 Figure II.7 Figure III.7 Figure III.1 Figure III.1 Figure III.3 Figure III.7 Figure III.7 Figure III.8 Figure III.8 Figure III.9 Figure III.9 Figure III.8 Figure III.9 Figure III.9 Figure III.5 Figure III.5 Figure III.6 Figure III.7 Figure III.7 Figure III.8 Fornaillage de l'acrotère Type 1 Figure III.9 Figure III.7 Figure III.8 Fornaillage de l'acrotère Type 1 Figure III.9 Figure III.7 Figure III.8 Coupe AA de l'acrotère Type 2 Figure III.7 Figure III.8 Coupe AA de l'acrotère Type 2 Figure III.7 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.9 Figure III.9 Fornaillage de l'acrotère type 2 Figure III.9 Figure III.9 Fornaillage de l'acrotère type 2 Figure III.9 Figure III.1 Figure IV.1 Figure IV.1 Figure IV.2 La première disposition des voiles Figure IV.3 Figure IV.4 La troisième disposition des voiles Figure IV.5 Figure V.1 Figure V.2 Figure V.2 Fouther principale (90x40) Figure V.3 Figure V.3 Figure V.3 Figure V.4 Figure V.3 Figure V.4 Figure V.3 Figure V.4 Figure V.5 Figure V.1 Disposition des semelles SI1 et SF2 Figure V.1 Disposition des semelles SI1 et SF2 Figure V.1 Figure V.2 Dimensions des Semelles SF1 et SF2 Figure V.1 Figure V.2 Dimensions des moments en [kN.m] pour SF1 Figure V.1 Figure V.1 Figure V.2 Figure V.3 Figure V.4 Figure V.5 Figure V.5 Figure V.6 Figure V.7 Figure V.7 Figure V.7 Figure V.7 Figure V.7 Figure V.7 Figure V.8 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Figure V.7 Figure V.7 Figure V.8 Ferraillage de la semelle SF1 Figure V.7 Figure V.8 Ferraillage de la semelle SF1 Figure V.8 Ferraillage coupe A-A	Figure I.4	Diagramme contraintes-déformations du béton	025
Figure I.7 Figure II.1 Figure II.1 Figure II.1 Figure II.1 Figure II.2 Figure II.3 Coupe transversale du mur extérieur O34 Figure II.4 Dimension de l'acrotère Type1 O35 Figure II.5 Figure II.5 Dimension de l'acrotère type2 O35 Figure II.6 Figure II.7 Coupe de voile en élévation Figure III.1 Schéma de l'acrotère Type1 O36 Figure III.1 Schéma de l'acrotère Type1 O37 Figure III.2 Figure III.3 Ferraillage de l'acrotère Type1 O50 Figure III.3 Ferraillage de l'acrotère Type 1 Figure III.3 Ferraillage de l'acrotère Type 1 Figure III.5 Figure III.6 Ferraillage de l'acrotère Type 1 Figure III.5 Dimension de l'acrotère Type 1 Figure III.6 Figure III.7 Figure III.7 Ferraillage de l'acrotère Type 2 Figure III.8 Coupe AA de l'acrotère Type 2 Figure III.7 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.9 Schéma de l'acrotère type 2 Figure III.9 Figure III.9 Schéma d'un escalier Figure III.1 Modèle 3D de la structure Figure IV.1 Figure IV.2 La première disposition des voiles Figure IV.4 La deuxième disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.4 La troisième disposition des voiles Figure V.1 Figure V.2 Poutre principale (90x40) Poutre principale (90x40) Poutre principale (90x40) Figure V.3 Ferraillage des poutres secondaires (Sous-sol 30x50) Pigure V.3 Figure V.4 Figure V.2 Dimensions des Semelles SI' et SF2 Disposition des semelles SF3 Figure VI.4 Diagramme des moments en (kN.m) pour SF1 Diagramme des moments en (kN.m) pour SF2 Disposition des semelles SF3 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Figure VI.7 Figure VI.8	Figure I.5	Diagramme contraintes-déformations de l'acier	025
Figure II.1 Figure II.2 Figure II.2 Figure II.3 Figure II.3 Figure II.3 Coupe transversale du mur extérieur O34 Figure II.4 Dimension de l'acrotère Type1 O35 Figure II.5 Dimension de l'acrotère type2 O35 Figure II.6 Section du poteau le plus sollicité O37 Figure II.7 Coupe de voile en élévation Figure III.1 Schéma de l'acrotère Type1 O49 Figure III.2 Schéma Statique O50 Figure III.3 Ferraillage de l'acrotère Type1 O55 Figure III.4 Coupe AA de l'acrotère Type 1 O55 Figure III.5 Dimension de l'acrotère Type 1 O55 Figure III.6 Schéma de l'acrotère Type 1 O55 Figure III.7 Ferraillage de l'acrotère Type 2 O56 Figure III.7 Ferraillage de l'acrotère Type 2 O56 Figure III.7 Ferraillage de l'acrotère type 2 O62 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.9 Schéma de l'acrotère type 2 O62 Figure III.10 Schéma de l'acrotère type 2 O62 Figure III.10 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure O72 Figure IV.2 La première disposition des voiles Figure IV.3 La deuxième disposition des voiles O74 Figure IV.5 La courbe de spectre de réponse Figure IV.5 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.2 Poutre principale (90x40) Figure V.3 Figure V.4 Fierraillage des poutres secondaires (Sous-sol 30x50) O99 Figure V.1 Disposition des semelles SF1 et SF2 Figure V.1 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Diagramme des moments en [kN.m] pour SF2 Figure V.1 Figure V.5 Figure V.1 Figure V.2 Figure V.3 Figure V.3 Figure V.4 Figure V.5 Figure V.1 Figure Fraillage des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Diagramme des moments en [kN.m] pour SF2 Figure V.1 Figure V.1 Figure V.1 Figure V.2 Figure V.3 Figure V.4 Figure V.5 Ferraillage de la semelle SF1 Figure V.8 Ferraillage coupe A-A	Figure I.6	Diagramme contraintes-déformations de l'acier	026
Figure II.2 Plancher dalle pleine 033 Figure II.3 Coupe transversale du mur extérieur 034 Figure II.4 Dimension de l'acrotère Type1 035 Figure II.5 Dimension de l'acrotère type2 035 Figure II.6 Section du poteau le plus sollicité 037 Figure II.7 Coupe de voile en élévation 042 Figure II.7 Schéma de l'acrotère Type1 049 Figure III.1 Schéma de l'acrotère Type1 049 Figure III.2 Schéma Statique 050 Figure III.3 Ferraillage de l'acrotère Type 1 055 Figure III.4 Coupe AA de l'acrotère Type 1 055 Figure III.5 Dimension de l'acrotère type 1 056 Figure III.5 Dimension de l'acrotère 1056 Figure III.6 Schéma de l'acrotère Type2 056 Figure III.7 Ferraillage de l'acrotère type 2 056 Figure III.8 Coupe AA de l'acrotère type 2 062 Figure III.9 Schéma d'un escalier 066 Figure III.10 Schéma statique d'escalier 066 Figure IV.1 Modèle 3D de la structure 072 Figure IV.2 La première disposition des voiles 074 Figure IV.3 La deuxième disposition des voiles 074 Figure IV.4 La troisième disposition des voiles 075 Figure IV.5 La courbe de spectre de réponse 082 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) 092 Figure V.2 Poutre principale (90x40) 093 Figure V.3 Ferraillage des poteaux de sous-sol (60x60) 092 Figure V.4 Ferraillage des poteaux de sous-sol (60x60) 092 Figure V.5 Disposition des semelles SF1 et SF2 107 Figure VI.2 Diagramme des moments en [kN.m] pour SF1 108 Figure VI.3 Diagramme des moments en [kN.m] pour SF2 109 Figure VI.4 Diagramme des moments en [kN.m] pour SF2 109 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.8 Ferraillage coupe A-A	Figure I.7	Diagramme des déformations limites de la section	027
Figure II.3Coupe transversale du mur extérieur034Figure II.4Dimension de l'acrotère Type1035Figure II.5Dimension de l'acrotère type2035Figure II.6Section du poteau le plus sollicité037Figure II.7Coupe de voile en élévation042Figure III.1Schéma de l'acrotère Type1049Figure III.2Schéma Statique050Figure III.3Ferraillage de l'acrotère Type 1055Figure III.4Coupe AA de l'acrotère type 1055Figure III.5Dimension de l'acrotère056Figure III.6Schéma de l'acrotère Type2056Figure III.7Ferraillage de l'acrotère type 2062Figure III.8Coupe AA de l'acrotère type 2062Figure III.9Schéma d'un escalier063Figure III.10Schéma statique d'escalier066Figure IV.1Modèle 3D de la structure072Figure IV.2La première disposition des voiles074Figure IV.3La deuxième disposition des voiles074Figure IV.4La troisième disposition des voiles075Figure IV.5La courbe de spectre de réponse082Figure V.1Ferraillage des poteaux de sous-sol (60x60)092Figure V.2Poutre principale (90x40)092Figure V.3Ferraillage des pottres secondaires (Sous-sol 30x50)099Figure V.1Disposition des semelles SF1 et SF2107Figure VI.3Diagramme des moments en [kN.m] pour SF2109Figur	Figure II.1	Terrasse inaccessible inclinée	032
Figure II.4 Dimension de l'acrotère Type1 035 Figure II.5 Dimension de l'acrotère type2 035 Figure II.6 Section du poteau le plus sollicité 037 Figure III.7 Coupe de voile en élévation 042 Figure III.1 Schéma de l'acrotère Type1 049 Figure III.2 Schéma Statique 050 Figure III.3 Ferraillage de l'acrotère Type 1 055 Figure III.4 Coupe AA de l'acrotère Type 1 055 Figure III.5 Dimension de l'acrotère type 1 056 Figure III.6 Schéma de l'acrotère Type2 056 Figure III.7 Ferraillage de l'acrotère Type2 056 Figure III.7 Ferraillage de l'acrotère type 2 062 Figure III.8 Coupe AA de l'acrotère type 2 062 Figure III.9 Schéma d'un escalier 063 Figure III.10 Schéma statique d'escalier 066 Figure IV.1 Modèle 3D de la structure 072 Figure IV.2 La première disposition des voiles 074 Figure IV.3 La deuxième disposition des voiles 074 Figure IV.4 La troisième disposition des voiles 075 Figure IV.5 La courbe de spectre de réponse 082 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) 092 Figure V.2 Poutre principale (90x40) 092 Figure V.3 Ferraillage des poteaux de sous-sol (60x60) 092 Figure V.1 Disposition des semelles SF1 et SF2 107 Figure V.1 Disposition des Semelles SF1 et SF2 107 Figure V.1 Disposition des semelles SF3 Figure V.1 Ferraillage des moments en [kN.m] pour SF1 108 Figure V.1.5 Disposition des semelles SF3 Figure V.1.7 Ferraillage de la semelle SF1 Figure V.1.8 Ferraillage coupe A-A	Figure II.2	Plancher dalle pleine	033
Figure II.5 Figure II.6 Figure II.7 Coupe de voile en élévation Figure III.1 Schéma de l'acrotère type1 O49 Figure III.2 Figure III.3 Ferraillage de l'acrotère Type1 O50 Figure III.3 Ferraillage de l'acrotère Type 1 O55 Figure III.4 Coupe AA de l'acrotère Type 1 O55 Figure III.5 Dimension de l'acrotère Type 1 O55 Figure III.6 Schéma de l'acrotère Type 2 O56 Figure III.7 Ferraillage de l'acrotère type 2 O62 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.7 Ferraillage de l'acrotère type 2 O62 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.9 Schéma d'un escalier O63 Figure III.10 Schéma statique d'escalier O66 Figure IV.1 Modèle 3D de la structure O72 Figure IV.2 La première disposition des voiles O74 Figure IV.4 La troisième disposition des voiles O75 Figure IV.5 La courbe de spectre de réponse Figure V.1 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.2 Figure V.3 Ferraillage des poutre principale (90x40) Figure V.4 Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) O99 Figure V.1 Disposition des semelles SF1 et SF2 Figure V.2 Dimensions des Semelles SF1 et SF2 Figure V.3 Figure V.4 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Disposition des semelles SF3 Figure V.7 Figure V.8 Ferraillage de la semelle SF1 Figure V.7 Figure V.8 Ferraillage coupe A-A	Figure II.3	Coupe transversale du mur extérieur	034
Figure II.6 Figure II.7 Coupe de voile en élévation O42 Figure III.1 Schéma de l'acrotère Type1 O50 Figure III.2 Figure III.2 Schéma Statique Figure III.3 Ferraillage de l'acrotère Type 1 O55 Figure III.4 Coupe AA de l'acrotère type 1 O55 Figure III.5 Dimension de l'acrotère type 1 O56 Figure III.6 Schéma de l'acrotère type 2 O56 Figure III.7 Ferraillage de l'acrotère type 2 O62 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.9 Schéma de l'acrotère type 2 O62 Figure III.9 Schéma d'un escalier O63 Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles O74 Figure IV.3 La deuxième disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.2 Poutre principale (90x40) Figure V.3 Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) O98 Figure V.1 Disposition des semelles SF1 et SF2 Figure V.1 Disposition des semelles SF1 et SF2 Disposition des semelles SF3 Figure V.7 Figure V.8 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Figure V.7 Figure V.7 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Figure V.7 Figure V.7 Ferraillage de la semelle SF1 Figure V.7 Figure V.7 Ferraillage coupe A-A	Figure II.4	Dimension de l'acrotère Type1	035
Figure II.7 Figure III.1 Schéma de l'acrotère Type 1 Figure III.2 Figure III.2 Schéma Statique Figure III.3 Ferraillage de l'acrotère Type 1 O55 Figure III.4 Coupe AA de l'acrotère Type 1 O55 Figure III.5 Dimension de l'acrotère Type 1 O56 Figure III.6 Schéma de l'acrotère Type 2 Figure III.7 Figure III.7 Ferraillage de l'acrotère type 2 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.9 Schéma d'un escalier Figure III.10 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles Figure IV.3 Figure IV.4 La troisième disposition des voiles Figure IV.5 Figure V.1 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Figure V.2 Poutre principale (90x40) Figure V.3 Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure V.1 Disposition des semelles SF1 et SF2 Dimensions des Semelles SF3 Figure VI.5 Figure VI.5 Disposition des semelles SF3 Figure VI.5 Figure VI.5 Figure VI.5 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage coupe A-A	Figure II.5	Dimension de l'acrotère type2	035
Figure III.1 Schéma de l'acrotère Type 1 Figure III.2 Schéma Statique Figure III.3 Ferraillage de l'acrotère Type 1 O55 Figure III.4 Coupe AA de l'acrotère type 1 O55 Figure III.5 Dimension de l'acrotère Figure III.6 Schéma de l'acrotère Type 2 Figure III.7 Ferraillage de l'acrotère type 2 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.9 Schéma d'un escalier Figure III.10 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles Figure IV.3 La deuxième disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 La courbe de spectre de réponse Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Poutre principale (90x40) Figure V.3 Ferraillage des poteres secondaires (Sous-sol 30x50) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure V.1 Disposition des semelles SF1 et SF2 Figure VI.3 Diagramme des moments en [kN.m] pour SF1 Figure VI.4 Disposition des semelles SF3 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.7 Ferraillage coupe A-A	Figure II.6	Section du poteau le plus sollicité	037
Figure III.2 Figure III.3 Ferraillage de l'acrotère Type 1 O55 Figure III.4 Coupe AA de l'acrotère type 1 O55 Figure III.5 Dimension de l'acrotère Figure III.6 Schéma de l'acrotère Type 2 O56 Figure III.7 Ferraillage de l'acrotère type 2 O62 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.9 Schéma d'un escalier O63 Figure III.10 Schéma statique d'escalier O66 Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles O74 Figure IV.3 La deuxième disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 Figure IV.5 La courbe de spectre de réponse Figure V.1 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.2 Poutre principale (90x40) Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) O99 Figure V.1 Disposition des semelles SF1 et SF2 I07 Figure VI.3 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.7 Figraillage de la semelle SF1 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Figure VI.8 Ferraillage coupe A-A	Figure II.7	Coupe de voile en élévation	042
Figure III.3 Ferraillage de l'acrotère Type 1 Coupe AA de l'acrotère type 1 Dimension de l'acrotère Figure III.5 Dimension de l'acrotère Dimension de l'acrotère Schéma de l'acrotère Type2 O56 Figure III.7 Ferraillage de l'acrotère type 2 O62 Figure III.8 Coupe AA de l'acrotère type 2 O62 Figure III.9 Schéma d'un escalier O63 Figure III.10 Schéma statique d'escalier O66 Figure IV.1 Modèle 3D de la structure O72 Figure IV.2 La première disposition des voiles Figure IV.3 La deuxième disposition des voiles O74 Figure IV.4 La troisième disposition des voiles Figure IV.5 Figure IV.5 La courbe de spectre de réponse Figure V.1 Ferraillage des poteaux de sous-sol (60x60) O92 Figure V.2 Poutre principale (90x40) Figure V.3 Ferraillage poutre principale (90x40) O98 Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) O99 Figure V.1 Disposition des semelles SF1 et SF2 Diagramme des moments en [kN.m] pour SF1 Disposition des semelles SF3 Figure VI.5 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.7 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure III.1	Schéma de l'acrotère Type1	049
Figure III.4 Coupe AA de l'acrotère type 1 Figure III.5 Dimension de l'acrotère Figure III.6 Schéma de l'acrotère Type2 Figure III.7 Ferraillage de l'acrotère type 2 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.9 Schéma d'un escalier Figure III.10 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles Figure IV.3 La deuxième disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 La courbe de spectre de réponse Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Poutre principale (90x40) Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure VI.1 Disposition des semelles SF1 et SF2 Figure VI.2 Dimensions des Semelles SF1 to SF2 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.7 Ferraillage coupe A-A 116	Figure III.2	Schéma Statique	050
Figure III.5 Figure III.6 Figure III.7 Ferraillage de l'acrotère type 2 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.9 Figure III.9 Schéma d'un escalier Figure III.10 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 Figure IV.5 Figure V.1 Figure V.1 Figure V.2 Figure V.1 Figure V.1 Figure V.1 Figure V.1 Figure V.2 Figure V.1 Figure V.2 Figure V.1 Figure V.2 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Figure V.3 Figure V.4 Ferraillage poutre principale (90x40) Figure V.4 Figure V.1 Disposition des semelles Suivant L _V Figure V.1 Dimensions des Semelles SF1 et SF2 Figure VI.3 Figure VI.4 Diagramme des moments en [kN.m] pour SF1 108 Figure VI.5 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.7 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure III.3	Ferraillage de l'acrotère Type 1	055
Figure III.6 Figure III.7 Ferraillage de l'acrotère type 2 Figure III.8 Coupe AA de l'acrotère type 2 Figure III.9 Schéma d'un escalier Figure III.10 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 La courbe de spectre de réponse Figure V.1 Figure V.2 Figure V.2 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poteaux de sous-sol 30x50) Figure V.1 Figure V.2 Figure V.3 Ferraillage des poteaus Ly Figure V.1 Disposition des semelles SF1 et SF2 Figure VI.3 Diagramme des moments en [kN.m] pour SF1 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure III.4	Coupe AA de l'acrotère type 1	055
Figure III.7 Figure III.8 Coupe AA de l'acrotère type 2 Coupe AA de l'acrotère type 2 Figure III.9 Figure III.10 Schéma d'un escalier Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 La courbe de spectre de réponse Figure V.1 Figure V.2 Figure V.2 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure V.1 Figure V.1 Disposition des semelles SF1 Figure VI.5 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.7 Ferraillage coupe A-A	Figure III.5	Dimension de l'acrotère	056
Figure III.8 Figure III.9 Figure III.10 Schéma d'un escalier Figure III.10 Figure IV.1 Figure IV.2 Figure IV.2 Figure IV.3 Figure IV.4 Figure IV.5 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Figure V.3 Figure V.3 Figure V.1 Figure V.1 Figure V.1 Figure V.1 Figure V.1 Figure V.1 Figure V.2 Figure V.1 Figure V.1 Figure V.2 Figure V.1 Figure V.2 Figure V.3 Figure V.1 Figure V.2 Figure V.3 Figure V.3 Figure V.3 Figure V.3 Figure V.4 Figure V.3 Figure V.4 Figure V.4 Figure V.4 Figure V.4 Figure V.4 Figure V.4 Figure V.1 Disposition des semelles Suivant L _Y Figure VI.2 Figure VI.2 Dimensions des Semelles SF1 et SF2 Figure VI.3 Figure VI.4 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.7 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure III.6	Schéma de l'acrotère Type2	056
Figure III.9 Schéma d'un escalier Figure III.10 Schéma statique d'escalier Figure IV.1 Modèle 3D de la structure Figure IV.2 La première disposition des voiles Figure IV.3 La deuxième disposition des voiles Figure IV.4 La troisième disposition des voiles Figure IV.5 La courbe de spectre de réponse Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Poutre principale (90x40) Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure V.1 Disposition des semelles SF1 et SF2 Figure VI.3 Diagramme des moments en [kN.m] pour SF1 Figure VI.4 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage coupe A-A	Figure III.7	Ferraillage de l'acrotère type 2	062
Figure III.10 Figure IV.1 Figure IV.2 Figure IV.2 Figure IV.3 Figure IV.4 Figure IV.5 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.3 Figure V.4 Figure V.3 Figure V.1 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure V.1 Figure V.1 Figure V.1 Figure V.3 Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure V.1 Figure V.1 Disposition des semelles SF1 Figure VI.4 Figure VI.5 Figure VI.6 Figure VI.6 Figure VI.6 Figure VI.7 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Figure VI.8 Ferraillage de la semelle SF1 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Figure VI.8 Ferraillage coupe A-A	Figure III.8	Coupe AA de l'acrotère type 2	062
Figure IV.1 Figure IV.2 Figure IV.2 Figure IV.3 Figure IV.4 Figure IV.5 Figure V.1 Figure V.2 Figure V.2 Figure V.3 Figure V.1 Figure V.3 Figure V.3 Figure V.3 Figure V.3 Figure V.3 Figure V.4 Figure V.4 Figure V.4 Figure V.4 Figure V.4 Figure V.1 Figure V.5 Figure V.5 Figure V.7 Figure V.8 Figure V.8 Figure V.9 Figure V.9 Figure V.1 Figure V.1 Disposition des voiles O75 O82 Figure V.0 Figure V.0 Figure V.0 Figure V.0 Figure V.0 Figure V.1 Disposition des semelles Secondaires (Sous-sol 30x50) Figure V.1 Disposition des semelles SF1 et SF2 Figure VI.4 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure III.9	Schéma d'un escalier	063
Figure IV.2 Figure IV.3 Figure IV.4 Figure IV.5 Figure IV.5 Figure V.1 Figure V.2 Figure V.2 Figure V.3 Figure V.3 Figure V.4 Figure V.4 Figure V.3 Figure V.4 Figure V.4 Figure V.4 Ferraillage des poteaux de sous-sol (60x60) Figure V.3 Figure V.4 Ferraillage des poutre principale (90x40) Figure V.4 Figure V.1 Disposition des semelles SF1 et SF2 Figure VI.3 Figure VI.4 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure III.10	Schéma statique d'escalier	066
Figure IV.3 Figure IV.4 Figure IV.5 Figure V.1 Figure V.2 Figure V.3 Figure V.3 Figure V.3 Figure V.4 Figure V.3 Figure V.4 Figure V.4 Figure V.4 Figure V.5 Figure V.5 Figure V.5 Figure V.6 Figure V.7 Figure V.7 Figure V.8 Ferraillage des poteaux de sous-sol (60x60) Figure V.9 Figure V	Figure IV.1	Modèle 3D de la structure	072
Figure IV.4 Figure IV.5 Figure V.1 Figure V.2 Figure V.3 Ferraillage des poteaux de sous-sol (60x60) Figure V.4 Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure V.1 Disposition des semelles Suivant L _Y Figure VI.2 Figure VI.3 Figure VI.3 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure IV.2	La première disposition des voiles	074
Figure IV.5 Figure V.1 Ferraillage des poteaux de sous-sol (60x60) Figure V.2 Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure VI.1 Disposition des semelles suivant L _Y Figure VI.2 Dimensions des Semelles SF1 et SF2 Figure VI.3 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage coupe A-A	Figure IV.3	La deuxième disposition des voiles	074
Figure V.1 Figure V.2 Figure V.3 Ferraillage des poteaux de sous-sol (60x60) Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure VI.1 Disposition des semelles suivant L _Y Figure VI.2 Dimensions des Semelles SF1 et SF2 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 Figure VI.8 Ferraillage coupe A-A 116	Figure IV.4	La troisième disposition des voiles	075
Figure V.2 Figure V.3 Ferraillage poutre principale (90x40) Figure V.4 Figure V.1 Figure VI.1 Figure VI.2 Figure VI.3 Figure VI.3 Figure VI.3 Figure VI.4 Figure VI.5 Figure VI.5 Figure VI.5 Figure VI.6 Figure VI.7 Figure VI.7 Figure VI.7 Figure VI.8 Figure VI.8 Figure VI.8 Figure VI.8 Figure VI.8 Figure VI.8 Figure VI.7 Figure VI.8	Figure IV.5	La courbe de spectre de réponse	082
Figure V.3 Figure V.4 Ferraillage des poutres secondaires (Sous-sol 30x50) Figure VI.1 Disposition des semelles suivant L _Y Figure VI.2 Dimensions des Semelles SF1 et SF2 Diagramme des moments en [kN.m] pour SF1 Disposition des semelles SF3 Figure VI.5 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Ferraillage coupe A-A 1098 1098 1099 1099 1099 1099 1099 109	Figure V.1	Ferraillage des poteaux de sous-sol (60x60)	092
Figure V.4 Figure VI.1 Disposition des semelles suivant L _Y Figure VI.2 Dimensions des Semelles SF1 et SF2 Diagramme des moments en [kN.m] pour SF1 Disposition des semelles SF3 Figure VI.5 Disposition des moments en [kN.m] pour SF2 Disposition des semelles SF3 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Figure VI.8 Ferraillage coupe A-A 116	Figure V.2	Poutre principale (90x40)	092
Figure VI.1 Disposition des semelles suivant L _Y 106 Figure VI.2 Dimensions des Semelles SF1 et SF2 107 Figure VI.3 Diagramme des moments en [kN.m] pour SF1 108 Figure VI.4 Diagramme des moments en [kN.m] pour SF2 109 Figure VI.5 Disposition des semelles SF3 114 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 115 Figure VI.8 Ferraillage coupe A-A 116	Figure V.3	Ferraillage poutre principale (90x40)	098
Figure VI.2 Figure VI.3 Figure VI.4 Figure VI.5 Figure VI.6 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Disposition des semelles SF3 Tigure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Ferraillage coupe A-A 116	Figure V.4	Ferraillage des poutres secondaires (Sous-sol 30x50)	099
Figure VI.3 Figure VI.4 Figure VI.5 Figure VI.6 Diagramme des moments en [kN.m] pour SF1 Diagramme des moments en [kN.m] pour SF2 Disposition des semelles SF3 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Ferraillage coupe A-A 108 109 119 119 1115 115	Figure VI.1	Disposition des semelles suivant L _Y	106
Figure VI.4 Diagramme des moments en [kN.m] pour SF2 109 Figure VI.5 Disposition des semelles SF3 114 Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 115 Figure VI.8 Ferraillage coupe A-A 116	Figure VI.2	Dimensions des Semelles SF1 et SF2	107
Figure VI.5 Figure VI.6 Disposition des semelles SF3 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Ferraillage de la semelle SF1 Ferraillage coupe A-A 114 115 115 116	Figure VI.3	Diagramme des moments en [kN.m] pour SF1	108
Figure VI.6 Dimensionnement et ferraillage forfaitaire de la semelle SF3 Figure VI.7 Figure VI.8 Dimensionnement et ferraillage forfaitaire de la semelle SF1 115 Ferraillage de la semelle SF1 Ferraillage coupe A-A 116	Figure VI.4	Diagramme des moments en [kN.m] pour SF2	109
semelle SF3 Figure VI.7 Ferraillage de la semelle SF1 115 Figure VI.8 Ferraillage coupe A-A 116	Figure VI.5	Disposition des semelles SF3	114
Figure VI.7 Ferraillage de la semelle SF1 115 Figure VI.8 Ferraillage coupe A-A 116	Figure VI.6	Dimensionnement et ferraillage forfaitaire de la	115
Figure VI.8 Ferraillage coupe A-A 116		semelle SF3	
	Figure VI.7	Ferraillage de la semelle SF1	115
Figure VI.9 Ferraillage coupe B-B 116	Figure VI.8	Ferraillage coupe A-A	116
	Figure VI.9	Ferraillage coupe B-B	116

Liste des notations

- A : Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement.
- A_s: Aire d'une section d'acier.
- A_t: Section d'armatures transversales.
- B : Aire d'une section de béton.
- ø : Diamètre des armatures.
- φ : Angle de frottement.
- C: Cohésion.
- \overline{q} : Capacité portante admissible.
- *Q* : Charge d'exploitation.
- γ s: Coefficient de sécurité dans l'acier.
- γ_b : Coefficient de sécurité dans le béton.
- σ_s : Contrainte de traction de l'acier.
- σ_{bc} : Contrainte de compression du béton.
- $\overline{\sigma}_s$: Contrainte de traction admissible de l'acier.
- $\overline{\sigma_{bc}}$: Contrainte de traction admissible du béton.
- τ_u : Contrainte ultime de cisaillement.
- τ : Contrainte tangentielle.
- β : Coefficient de pondération.
- σ_{sol} : Contrainte du sol.
- *G* : Charge permanente.
- ξ : Déformation relative.
- *V*₀: Effort tranchant a la base.
- E.L.U: Etat limite ultime.
- E.L.S: Etat limite service.
- *N_{ser}*: Effort normal pondéré aux états limites de service.

- N_u : Effort normal pondéré aux états limites ultime.
- T_u : Effort tranchant ultime.
- T: Effort tranchant, Période.
- *S_t*: Espacement.
- λ : Elancement.
- e : Epaisseur, Indice des vides.
- *F* : Force concentrée.
- *f* : Flèche.
- \bar{f} : Flèche admissible.
- L: Longueur ou portée.
- L_f : Longueur de flambement.
- *I_p* : Indice de plasticité.
- I_c : Indice de consistance.
- W: Poids total de la structure.
- *d* : Hauteur utile.
- F_e : Limite d'élasticité de l'acier.
- M_u: Moment à l'état limite ultime.
- *M_{ser}*: Moment à l'état limite de service.
- *M_t*: Moment en travée.
- M_a : Moment sur appuis.
- M_0 : Moment en travée d'une poutre reposant sur deux appuis libres.
- /: Moment d'inertie.
- f_i : Flèche due aux charges instantanées.
- f_v : Flèche due aux charges de longue durée.
- *I_{fi}*: Moment d'inertie fictif pour les déformations instantanées.
- *I_{fv}*: Moment d'inertie fictif pour les déformations différées.
- *M* : Moment, Masse.
- E_{ij} : Module d'élasticité instantané.
- E_{vj} : Module d'élasticité différé.
- E_s: Module d'élasticité de l'acier.
- f_{c28} : Résistance caractéristique à la compression du béton à 28 jours d'age.

- f_{t28} : Résistance caractéristique à la traction du béton à 28 jours d'age.
- F_{cj} : Résistance caractéristique à la compression du béton à j jours d'age.
- *K* : Coefficient de raideur de sol.
- Y: Position de l'axe neutre.
- *I*₀: Moment d'inertie de la section totale homogène.

Chapitre 01:
Présentation et
Conception de
l'ouvrage

I.1 Introduction:

Le dimensionnement d'un ouvrage constitue un travail de synthèse des différentes disciplines, telles que la statique, la dynamique, la résistance des matériaux, et le calcul des fondations. La détermination des variantes proposées pour l'ouvrage, doivent être le fruit d'une conception de l'ingénieur, donc de sa réflexion sur le comportement optimal d'un ouvrage prévu (optimisation entre les longueurs des portées et les moments induits, les délais de réalisation, les gabarits du site à franchir et la nature de son sol support et son hydrologie....). A la base de tous ces paramètres, l'ingénieur doit faire recours à une conception visant l'optimisation entre plusieurs paramètres déterminants (l'économie, la sécurité des usagers, l'esthétique de l'ouvrage et les délais de réalisation) en tenant toujours compte des contraintes naturelles et fonctionnelles susmentionnées.

Après la proposition des variantes issues de la réflexion de l'ingénieur, celles-ci doivent être vérifiées d'une façon sommaire, pour déterminer la variante optimisée la plus performante.

Tous d'abord, toute étude d'un ouvrage exige qu'il doit être prédimensionné en effectuant des vérifications sommaires et des calculs partiels de son comportement, à l'aide de méthodes approchées. Cette étape doit être faite pour avoir une connaissance intuitive du comportement de l'ouvrage, pour la détermination de la variante la plus convenable, donc la plus satisfaisante de nos besoins en fonction des moyens disponibles.

I.1.1 Le cancer en Algérie, un constat alarmant :

L'Algérie concède un réel déficit en matière de centres anti-cancer, ce qui allonge anormalement, voir dangereusement, les délais de traitement des patients atteint de cette maladie.

Actuellement, le nombre de cancéreux étant établi en moyenne à 120 pour 100.000 habitants [1], la nécessité de créer de nouveaux centres hospitaliers, spécialisés en oncologie, est devenue incontournable.

I.1.2 L'hôpital, un bâtiment pas comme les autres :

L'hôpital est un bâtiment très spécialisé dans son organisation comme dans sa structure. La connaissance de l'organisation hospitalière, c'est-à-dire le corps médical hospitalier, son administration et les services annexes, est essentielle à l'élaboration de tout projet hospitalier [2]. De plus, un centre hospitalier est classé comme un ouvrage stratégique, du fait qu'il doit rester, totalement opérationnel, en cas d'avènement d'un risque majeur, tel un séisme de grande intensité notamment.

Les techniques médicales font appel à des équipements spécifiques de plus en plus importants et complexes. Les équipements ont, la plupart du temps, une lourde incidence sur le bâtiment, mais seront cependant obsolètes dans les cinq années à venir. Comment concevoir une structure capable de s'adapter aux fluctuations du progrès avec efficacité, harmonie, et au moindre coût ?

I.2 Présentation de l'ouvrage :

I.2.1 Position de l'ouvrage :

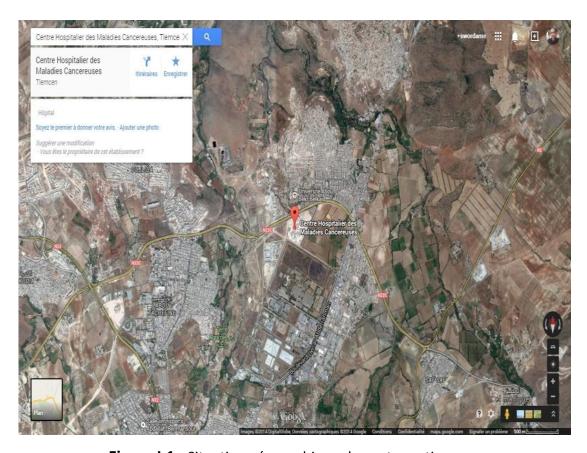


Figure I.1 : Situation géographique du centre anti cancer

L'ouvrage qui constitue l'objet de notre étude a été proposé par la direction de la santé et de la population de la wilaya de Tlemcen. Il se situe dans la commune de Chetouane aux bords de la route national 22C, cette présente étude rentre dans le cadre du projet de réalisation de plusieurs CAC inscrits dans le programme national de lutte contre le cancer.

I.2.2 Description de l'ouvrage :

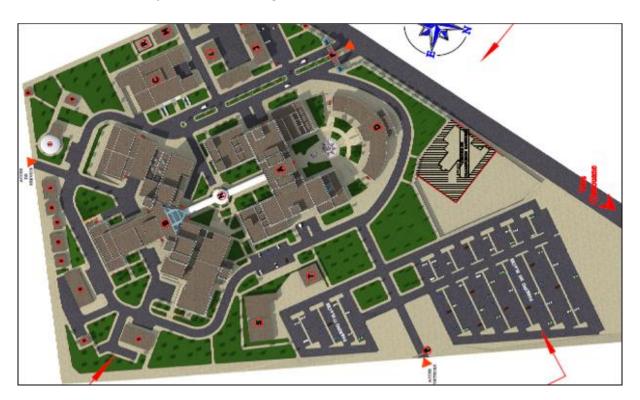


Figure I.2 : Vue aérienne générale

Le projet se compose en deux grandes parties, le bloc A et le bloc B. Le bloc A qui fait l'objet de notre étude comprend :

- Pharmacie
- Centre de transfusion sanguine
- Laboratoires
- Services de biologie clinique
- Service des archives
- Service de chirurgie

Le bloc A se compose quant à lui en 5 blocs dont le principale que nous avons étudiés qui est le bloc 6 qui comprend :

- Administration
- Cafeteria

- Médiathèque
- Salle de séminaire

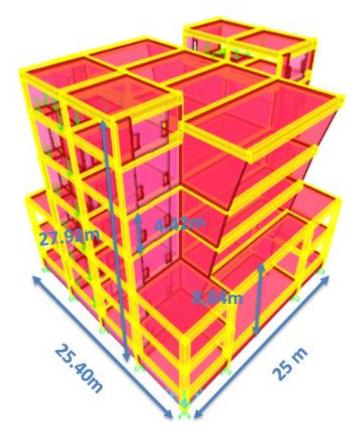


Figure I.3 : Caractéristiques géométriques du bloc 6

Tableau I.1 : Caractéristiques géométriques

Longueur totale du bâtiment	25,01 m
Largeur totale du bâtiment	25,4 m
Hauteur totale du bâtiment	27,92 m
Hauteur du sous-sol	1,94 m
Hauteur du RDC	8,84 m
Hauteur des étages courants	4 ,42m

• Règlement en vigueurs :

La conception et le calcul sont conduits par les règles et les prescriptions relatives au béton armé : B.A.E.L 91, R.P.A.99 version 2003.

I.3 Caractéristiques des matériaux :

I.3.1 Béton :

Le béton est un matériau hétérogène comme tous les matériaux, ce dernier travail très bien à la compression et mal à la traction, le béton armé utilisé dans la construction de cet ouvrage sera conforme aux règles techniques de conception et de calcul des ouvrages en béton armé ainsi qu'à tous les règlements applicables en Algérie.

1.3.2 Ciment:

La teneur en ciment dépend de la résistance souhaitée. Pour les bétons de remplissage, peu sollicités, le dosage est de 150 kg/m3. Pour toutes les pièces constituant la structure des bâtiments, en béton armé ou précontraints, le béton contient généralement 350 kg/m3 de ciment. Pour les mortiers, mélanges de sable, de ciment et d'eau, la teneur atteint en moyenne 450 kg/m3. Enfin, les coulis, utilisés en injection dans des forages ne comprennent que du ciment et de l'eau. Ils servent à boucher les microfailles et les fractures d'un terrain, par exemple autour d'un barrage avant son édification.

I.3.3 Granulats:

Les granulats utilisés sont des graviers issus de carrières, blocs de roche concassés et broyés, ou des granulats roulés, extraits du lit des rivières. La taille des granulats varie en fonction de celle du coffrage, de la densité d'acier pour les éléments en béton armé, et du type de béton recherché. La taille des granulats est indiquée par deux chiffres, la plus grande dimension des éléments les plus petits et celle des éléments les plus grands. Par exemple, un gravier 5/15 est composé de particules dont le diamètre varie entre 5 et 15mm. Pour les bétons employés en bâtiment, les granulats les plus courants sont des graviers 5/15 et 15/25. Pour des travaux de génie civil, les pièces sont plus massives, les graviers sont plus gros, jusqu'à 150 mm de diamètre dans le cas des barrages. Il s'agit alors de béton cyclopéen.

I.3.4 Sable:

Les grains de sable, de même origine que les granulats, ont un diamètre inférieur à 2 mm. Cette roche sédimentaire doit être propre et sans poussières argileuses. Il existe un béton, le mortier de ciment contenant uniquement du sable, du ciment et de l'eau. Il sert principalement en maçonnerie pour lier les briques ou les parpaings et pour dresser les enduits sur les murs.

I.3.5 Eau:

L'eau doit être propre, c'est généralement de l'eau potable. Si elle contient des chlorures, une réaction chimique a lieu et modifie la prise du ciment. Le béton perd alors ses qualités de résistance. La consistance du béton, et donc sa facilité de mise en œuvre dans les coffrages, dépend de la quantité d'eau. Plus un béton est liquide, plus il est facile à travailler. Mais un tel matériau présente une faible résistance une fois sec. Il est donc nécessaire de définir la teneur en eau selon l'usage du béton, et obtenir le juste équilibre pour que le matériau soit résistant et néanmoins maniable. En général, le béton mis en œuvre est plutôt sec, mais il est vibré au coulage pour lui permettre de remplir correctement le coffrage, et pour expulser l'air emprisonné lors du malaxage.

1.3.6 Aciers:

Les aciers utilisés en B.A sont définis dans la circulaire 74.I1I. On a utilisé les armatures des pièces en B.A en FeE240.

Les barres à hautes adhérences sont de FeE400 à FeE500.

I.3.7 Adjuvants:

Lors du malaxage, on ajoute parfois des adjuvants au béton qui permettent de modifier les propriétés du matériau. Il est ainsi possible de rendre des bétons étanches, pour construire des ouvrages souterrains ou des piscines, on peut retarder ou accélérer le temps de prise du ciment dans le béton. Des adjuvants sont également

utilisés à des fins architecturales, par exemple, au cours du malaxage, on peut ajouter des pigments aux bétons ou aux mortiers. Des durcisseurs de surfaces, des particules de quartz sont incorporés pour obtenir des dalles en béton supportant des charges roulantes importantes, en usine par exemple : Le béton peut être rendu poreux et fortement perméable, pour des applications en lit filtrant, ou sous les chaussées de route, pour empêcher l'eau de pluie de stagner sur les voies de circulation. Pour obtenir des massifs de béton lourd, on peut incorporer des particules d'acier. Le béton obtenu peut avoir une densité allant jusqu'à 411m', alors que la masse volumique d'un béton courant non armé est de 2,4 t/m3, selon la nature des composants. Le béton comprenant des particules de plomb contribue à stopper les rayonnements, on l'emploie en milieu nucléaire. Le béton lourd possède également de très bonnes propriétés d'isolation phonique.

I.3.8 Béton armé :

Le béton présente une excellente résistance à la compression, environ 450 bars mais dix fois moindre en traction ou en cisaillement. Dans une pièce en béton supportant une charge, une poutre par exemple, la partie haute travaille en compression et la partie basse exerce des efforts de traction. Des études sur la résistance des matériaux permettent de déterminer dans chaque cas les parties d'une pièce en béton travaillant en compression ou en traction. Pour reprendre les efforts de traction du béton, des barres d'acier sont noyées dans le béton. L'acier, qui possède une résistance égale en traction et en compression, est placé aux endroits où le béton est le plus fragile.

Jadis, les aciers employés étaient des barres rondes de surface lisse, mais ce type d'acier n'offre pas une adhérence suffisante sur le béton. En cas d'effort important, il glisse dans le matériau et les contraintes ne se transmettent plus correctement. Aujourd'hui, ces aciers lisses sont surtout utilisés pour des attentes d'armatures, c'est-à-dire des aciers qui font la liaison entre deux éléments d'une même pièce, mais coulée en deux fois. Par exemple, un mur très long ne peut pas se couler en une seule fois. Des aciers lisses sont coulés dans la première partie, puis ressortis partiellement pour être noyés également dans la deuxième partie à couler. Ainsi, on évite les fissures qui apparaissent à la liaison des deux pièces en béton.

En structure, les barres d'acier mises en œuvre le plus souvent sont torsadées. Elles sont dites à haute adhérence, car leur surface rugueuse permet un lien intime avec le béton, et les contraintes peuvent se transmettre entre les deux composants. Les armatures du béton permettent une grande économie de béton mais nécessitent des précautions particulières de mise en œuvre. Il est ainsi indispensable que l'acier soit correctement enrobé de béton et ne soit pas en contact avec le milieu extérieur. Si l'acier vient à rouiller, au contact de l'air humide ou de l'eau, sa section utile (la section d'acier non rouillé) diminue et la résistance de la structure est réduite. Au contraire, la rouille, en gonflant, peut faire éclater le béton et conduire à la ruine de la pièce.

L'idée d'associer le fer et le béton a trouvé sa première application en 1848, lorsque Joseph Lambot construit une barque en béton armé à Marseille. Puis, à partir de 1852, les premiers immeubles en béton armé sont construits à Paris. Joseph Monier élabore des bacs à fleurs à Versailles, puis fabrique des escaliers, des réservoirs et des poteaux. François Coignet quant à lui est considéré comme un pionnier du béton armé et de la préfabrication.

Résistance mécanique du béton à la compression :

Dans le cas courant, le béton est défini du point de vue mécanique par sa résistance à la compression à 28 jours d'âge (Fc28) dans notre cas le dosage du ciment est de l'ordre de $350Kg/m^3$, Fc28 = 25MPa.

La résistance à la compression caractéristique à l'âge j<28 jours est donnée par la formule :

$$F_{cj} = 0,685$$
. Fc28. log (j + l) MPa.

Résistance mécanique du béton à la traction :

La résistance caractéristique à la traction à (j) jours est définie par la formule :

$$Ftj = 0.6 + 0.06 \cdot Fc28 \text{ (Mpa)}$$

Dans notre étude Ftj = 2,1 Mpa / Fc28 = 25 Mpa

I.4 Contraintes limites:

D'après les règles BAEL 91, on distingue deux états limites :

- Etat limite ultime (E.L.U.R).
- Etat limite de service (E.L.S).

On appelle état limite, un état particulier au-delà duquel une structure cesse de remplir les fonctions pour lesquelles elle a été conçue.

I.4.1 Etat limite ultime:

Correspond à la valeur maximale de la capacité portante de la structure et dont le dépassement entraînerait la ruine, l'ouvrage doit alors justifier :

- La résistance de toute la structure.
- L'équilibre statique (pas de renversement).
- Stabilité de forme (pas de flambement).

Contrainte limite à l'E.L.U:

La contrainte limite du béton en compression est :

$$\sigma_{bc} = 0.85 \frac{F_{c28}}{\gamma_b}$$
 Avec γ_b : Coefficient de sécurité.

 $\gamma_b = 1,50$ cas d'action courante

 $\gamma_b = 1.15$ cas d'action accidentelle

I.4.2 Etat limite de service :

La contrainte limite de service en compression est donnée par la formule :

$$\sigma_{bc} = 0.6$$
. Fc28

$$\sigma_{bc} = 0.6.25 = 15 \text{ MPa}.$$

1.5 Diagramme de contrainte déformation :

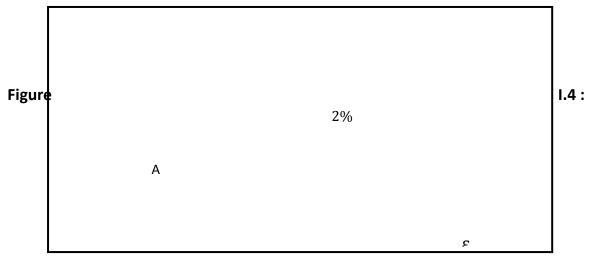


Diagramme contraintes-déformations du béton

 σ_{bc} : Contrainte du béton.

 $arepsilon_{bc}$: Raccourcissement relatif du béton.

I.6 Module de déformation longitudinale :

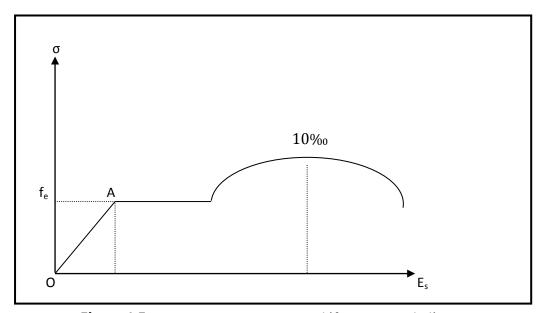


Figure 1.5 : Diagramme contraintes-déformations de l'acier

 $E_{\mathcal{S}}$: Module d'élasticité longitudinale.

 f_e : La limite élastique.

 \mathcal{E}_r : L'allongement

 $\sigma_{\!\scriptscriptstyle S} = E_{\scriptscriptstyle S}\,.\,\varepsilon_r$ D'où le comportement linéaire élastique.

1.7 Diagramme de contrainte déformation de calcul :

On remplace les diagrammes réels par un diagramme conventionnel ou on introduit un coefficient de sécurité.

 $\gamma_S = 1,15$ cas général,

 $\gamma_s = 1,00$ cas des combinaisons accidentelles.

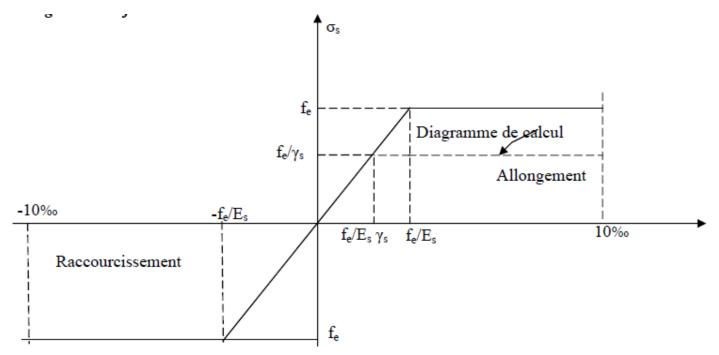


Figure 1.6 : Diagramme contraintes-déformations de l'acier

I.8 Contraintes limites:

I.8.1 E.L.U:

On adopte un diagramme << contre déformation>> de calcul réduit au précédent par une affinité la parallèle à la tangente à l'origine dont le rapport est de 1/fs

I.8.2 E.L.S:

- $\sigma_s = min(\frac{2}{3}F_e\,;\, 110\sqrt{\eta.\,F_{tj}})$: Fissuration préjudiciable.
- $\sigma_s = min(\frac{1}{2}F_e \, ; \, 90\sqrt{\eta.\,F_{tj}})$: Fissuration très préjudiciable.

 η : Coefficient de fissuration = 1 pour les ronds lisses = 1,6 pour les aciers à haute adhérences.

I.9 Hypothèses de calcul :

I.9.1 E.L.U.R:

- Conservation des sections planes avant et après déformation.
- La résistance du béton à la traction est négligeable.
- Pas de glissement relatif entre l'acier et le béton.
- Raccourcissement ultime du béton.

$$\epsilon b_u = 3.5. \, 10^{-3} \text{ en flexion (3.5\%)}.$$
 $\epsilon b_u = 2.0. \, 10^{-3} \text{ en compression (2\%)}.$

- Allongement ultime de l'acier est limite à : 10.10^{-3} ; (10%)).
- Les diagrammes de déformation passent par des pivots A; B; et C.

I.9.2 E.L.S:

- Conservation des sections planes.
- Le béton à une résistance à la traction supposée nulle.
- Pas de glissement relatif béton acier.
- Les contraintes de compression pour le béton et de traction pour l'acier sont supposées proportionnelles à leur déformation élastique (Loi de Hooke).

•
$$(\gamma_b = F_b. \epsilon_b \text{ et } F_S = E_S. \epsilon_S); M = \frac{E_S}{E_b}$$

• Coefficient d'équivalence a pour valeur (n = 15)

1.9.3 Règles des trois pivots : Compression 0.2% 3.5% ε_{bc} 0.259 0.167 0.259 0.259 0.167 0.259 0

Figure 1.7 : Diagramme des déformations limites de la section: règle des trois pivots

Les positions limites que peut prendre le diagramme des déformations sont déterminées à partir des déformations limites du béton et de l'acier.

La déformation est représentée par une droite passant par l'un des points A. B ou C appelés pivots.

Traction pure: toutes les fibres s'allongent de la même quantité, le béton se fissure et donc ne participe pas à l'équilibre des sollicitations, la pièce sera hors service lorsque la déformation de l'acier vaut 10‰ donc toute la section sera allongée de 10‰.

L'acier doit être réparti dans toute la section, la limite correspond sur le diagramme à la verticale passant par A.

- Traction excentrée : à la limite, la fibre la plus tendu aura un allongement de 10‰, la moins tendue εs < 10‰, plus l'excentricité augmente plus la tension minimale tend vers 0 Les droits de déformation pivotent donc autour de A jusqu'à la position AO.
- Flexion (simple ou composée) : On ne peut dépasser la position AB qui correspond à un raccourcissement ε_{bc}=3,5‰ de la fibre de béton la plus comprimée l'état limite ultime est atteint avec εs =10‰ et εbc ≤3,5‰.

La position limite AB correspond à un axe neutre situé à la distance $y=\alpha$.AB.d de la fibre la plus comprimée avec α AB =3,5/(10+3,5)=0,259 ; la flexion simple ou composée avec $0\le\alpha\le0,259$ admet le pivot A.

Le cas particulier où ϵ s =10% et ϵ bc = 2% correspond à α =2/(10+2) $^{\text{2}}$ α = 0,167

Pour augmenter la zone comprimée on ne peut plus augmenter ϵ bc au-delà de 3,5 ‰, il faut donc diminuer σ s la droite de déformation pivote alors autour de B jusqu'à ce que : ϵ s = 0 ; α = Y/d varie de 0,259 à 1

La flexion simple ou composée avec armature tendues avec $0,259 \le \alpha \le 1$ admet le pivot B.

Si on fait tourner la droite autour de B la petite partie de section située au-dessous des armatures pourra travailler en partie de traction (pas de contrainte et les aciers seront comprimées, c'est de la flexion composée : la flexion composée avec aciers comprimés Section de béton partiellement comprimée avec $1 \le \alpha \le h/d$ admet le pivot B.

 Compression: si toute la section du béton est comprimée en compression simple, la déformation du béton ne peut pas dépasser εbc = 2‰

La compression simple on composée admet le pivot C.

2 ‰ ≤ εbc ≤ 3,5 ‰ sur la fibre la plus comprimée

εbc ≤ 2 ‰ sur la fibre la plus moins comprimée.

En résumé:

- Pivot A: traction simple ou composée, flexion avec état limite ultime atteint dans l'acier.
- **Pivot B** : flexion avec état limite ultime atteint dans béton.
- **Pivot C** : compression simple ou composée.

Chapitre 02: Descente de charges et prédimensionnement

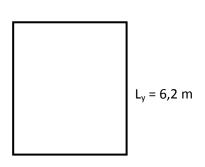
II.1 Introduction:

Le pré dimensionnement a pour but d'évaluer approximativement les dimensions de coffrage des différents éléments résistants suivant les règlements RPA99/ version2003 et C.B.A 93

Cette étape représente le point de départ de la justification technique en vigueur de la résistance, la stabilité et la durabilité de l'ouvrage aux sollicitations suivantes :

- Actions verticales : Elles résultent des charges permanentes et des surcharges variables (d'exploitation, neige, température)
- Actions horizontales : Elles sont généralement d'origine sismique et climatique (vent) et sont reprise par les éléments de contreventement constitués par des portiques ou des voiles.

II.2 Détermination de l'épaisseur du plancher :


Dans notre structure, les planchers sont en dalles pleines, Une dalle pleine est une plaque porteuse en béton armé coulé sur place qui repose sur des appuis, l'épaisseur varie de 10 à 20 cm ou plus. L'épaisseur des dalles dépend le plus souvent des conditions d'utilisation et de résistance.

A partir du tableau 4.14 (Annexe) : Rapports de base portée/hauteur utile pour les éléments de béton armé sans effort normal de compression on a:

• Dalle portant dans 2 Sens :

$$\frac{\text{port\'ee}}{\text{hauteur}} = 35 \implies \frac{620}{\text{hauteur}} = 35$$

⇒ $h_{min} = 17,71 \text{ cm}$.

 $L_x = 6 \text{ m} < L_y = 6,20 \text{ m}$

On prend h = 18 cm.

II.3 Descente des charges :

II.3.1 Plancher terrasse inaccessible inclinée :

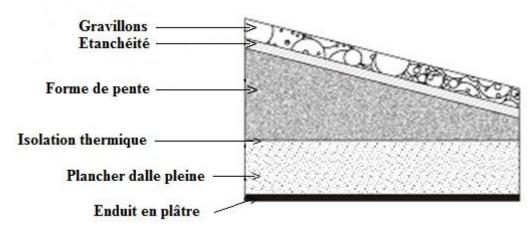


Figure II.1: Terrasse inaccessible inclinée

Tableau II.1: Descente des charges (terrasse inaccessible inclinée)

N°	Désignation	Ep. (m)	Masse volumique KG/m ³	Poids (KG/m²)
1	Protection gravillon	0.05	1700	85
2	Etanchéité multicouche	0.02	600	12
3	Forme de pente	0.1	2200	220
4	Isolation thermique en liège	0,04	400	16
5	Dalle pleine	0.18	2500	450
6	Enduit en plâtre	0.02	1000	20
	G	803 KG/m ²		
	Q	100 kg/m2		

II.3.2 Plancher terrasse accessible:

Tableau II.2 : Descente des charges (terrasse accessible inclinée)

N°	Désignation	Ep. (m)	Masse volumique KG/m3	Poids (KG/m²)
1	Carrelage+ Mortier de pose	0.06	2200	44+36+40=120
2	Forme de pente	0.01	2200	220
3	Etanchéité multicouche	0,02	600	12
4	Dalle pleine	0.18	2500	450
5	Enduit en plâtre	0.02	1000	20
	G	822 KG/m ²		
	Q	150 kg/m2		

II.3.3 Plancher étage courant :

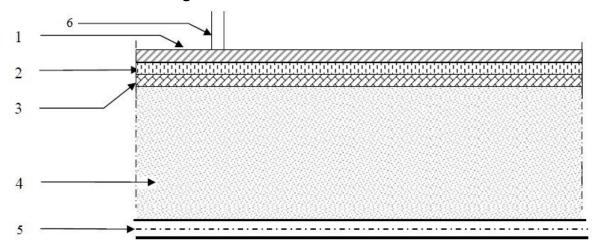


Figure II.2: Plancher dalle pleine

Tableau II.3: Descente des charges (Plancher étage courant)

N°	Désignation	Ep. (m)	Masse volumique KG/m3	Poids (KG/m²
1	Carrelage+ Mortier de pose	0,06	2200	44+40+36=120
2	Plancher dalle pleine	0,18	2500	450
3	Enduit en plâtre	0,02	1000	20
4	Cloisons de séparation	0,1	1000	100
	G	690 kg/m ²		
	Q _{HALLS}	400 kg/m ²		
	QCIRCULATIONS GENERALES	400 kg/m ²		
	Q _{AMPHITHÉ} ÂTRES	350 kg/m ²		
	Q _{BIBLIOTHEQUES}	400 kg/m ²		
	Q _{BUREAU}	250 kg/m ²		

II.3.4 Murs:

Murs extérieurs :

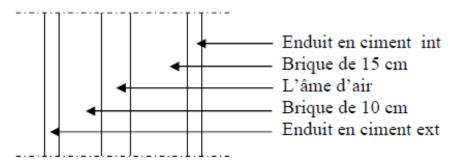


Figure II.3 : Coupe transversale du mur extérieur

Tableau II.4: Charge permanente du mur extérieur

N°	Désignation	Ep. (m)	Masse volumique KG/m3	Poids (KG/m²
1	Enduit extérieur	0,02	1800	36
2	Brique creuse	0,15	900	130
3	Brique creuse	0,1	900	90
4	Enduit intérieur	0,02	1800	36
	G	292 kg/m ²		

• Murs intérieurs (simple parois) :

Tableau II.5: Charge permanente mur intérieur

N°	Désignation	Ep. (m)	Masse volumique KG/m3	Poids (KG/m²
1	Enduit extérieur	0,02	1800	36
2	Brique creuse	0,1	900	90
3	Enduit intérieur	0,02	1800	36
	G	162 kg/m²		

Remarque:

Les murs peuvent être avec ou sans ouvertures donc il est nécessaire d'opter pour des coefficients selon le pourcentage d'ouvertures :

- Murs avec portes (90%G)
- Murs avec fenêtres (80%G)
- Murs avec portes et fenêtres (70%G). .

II.3.5 L'acrotère:

■ Type 1 (60 cm):

$$S = \frac{0.05 \times 0.1}{2} + (0.05 \times 0.1) + (0.1 \times 0.6) = 0.0675 \text{ m}^2/\text{l}.$$

 $G = 0.0675 \times 2500 = 168.75 \text{ Kg/ml}.$

La charge horizontale :

$$Fp = 4 \times A \times Cp \times Wp$$

A= 0,1 coefficient d'accélération de la zone.

Wp = 168,75 Kg/ml poids de l'acrotère.

Cp = 0,8 KN facteur de la force horizontale.

$$Fp = 4 \times 0.1 \times 0.8 \times 168,75 = 54 \text{ Kg/ml}.$$

$$\Rightarrow$$
 Q = 54 Kg/ml.



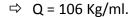
Figure II.4: Dimension de l'acrotère Type1

■ Type 2 (1,25m):

$$S = \frac{0,05 \times 0,1}{2} + (0,05 \times 0,1) + (0,1 \times 1,25) = 0,1325 \text{ m}^2/\text{l}.$$

 $G = 0.1325 \times 2500 = 331.25 \text{ Kg/ml}.$

La charge horizontale :


$$Fp = 4 \times A \times Cp \times Wp$$

A= 0,1 coefficient d'accélération de la zone.

Wp = 331,25 Kg/ml poids de l'acrotère.

Cp = 0,8 KN facteur de la force horizontale.

$$F_p = 4 \times 0.1 \times 0.8 \times 331.25 = 106 \text{ Kg/ml}.$$

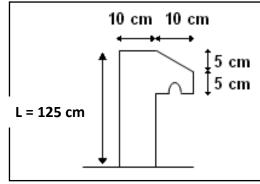


Figure II.5: Dimension de l'acrotère type2

II.3.6 Escaliers:

Palier:

Tableau II.6: Charge permanente du palier

N°	Désignation	Ep. (m)	Masse Volumique KG/m3	Poids (KG/m²
1	Carrelage	0,02	2200	44
2	Mortier de pose	0,02	2200	44
3	Couche de sable	0,02	1900	38
4	Poids propre du palier	0,18	2500	450
6	Enduit en ciment	0,2	1200	24
	G	600 kg/m ²		
	Q	250 kg/m ²		

■ Volée (paillasse) :

Tableau II.7: Charge permanente de la paillasse

N°	Désignation	Ep. (m)	Masse Volumique KG/m3	Poids (KG/m²		
1	Carrelage	0,02	2200	44		
2	Mortier horizontal	0,02	$2000 \times \frac{0.3}{0.17}$	70.58		
3	Carrelage contre marche	0,02	$2000 \times \frac{0.17}{0.3}$	22.66		
4	Mortier vertical	0,02	$2000 \times \frac{0.17}{0.3}$	22.67		
5	Paillasse en B.A	0.18	2500	450		
6	Enduit en ciment	0,02	1000	20		
7	Contremarche		$2000 \times \frac{0.17}{2}$	212.5		
	G	885.83 kg/m²				
	Q	250 kg/m²				

II.4 Pré dimensionnement des éléments structuraux :

II.4.1 Introduction:

Pour assurer une meilleure stabilité de l'ouvrage, il faut que tous les éléments de la structure (Poteaux, Poutres) soient pré dimensionnés de telles manières à reprendre les sollicitations suivantes :

- Sollicitations verticales concernant les charges permanentes et les surcharges.
- Sollicitations horizontales concernant le séisme.

Le pré dimensionnements de la structure est calculé conformément aux règles B.A.E.L91 et RPA99 version 2003.

II.4.2 Pré dimensionnement des poteaux :

le poteau le plus sollicité (poteau centrale)

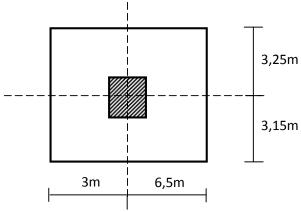


Figure II.6: Section du poteau le plus sollicité

Le Poteau le plus sollicité de cet ouvrage, est celui qui supporte des charges réparties sur une surface S égale : $S = 60.8 \text{ m}^2$.

Avec:

S : surface supporté par le poteau le plus défavorable.

On suppose une charge moyenne de : $Pu = 1.3 \text{ t/m}^2$

 $Nu = Pu \times S \times n$

Avec:

Nu : étant la charge verticale a l'ELU.

Pu: charge du plancher

 $Pu = 1,3 t/m^2$

S : surface supporté par le poteau le plus sollicité

$$S = (6.5 + 3)X(3.15 + 3.25) = 60.8 \text{ m}^2$$

n : nombre d'étage.

 $Nu = 1.3 \times 60.8 \times 6 = 474.24 t.$

Nu = 4,7424 MN.

Section réduite :

$$B_{r} \ge \frac{\beta \times N_{u}}{\frac{f_{bc}}{0.9} + \frac{0.85 \times f_{e}}{100 \times \gamma_{s}}}$$

 β : Coefficient de correction dépendant de l'élancement mécanique λ des poteaux qui prend les valeurs :

$$\begin{cases} \beta = 1 + 0.2 \left(\frac{\lambda}{35}\right)^2 & \text{si } \lambda \le 50 \\ \beta = 0.85 \left(\frac{\lambda^2}{1500}\right) & \text{si } 50 < \lambda < 70 \end{cases}$$

On se fixe sur un élancement mécanique λ =35 pour rester toujours dans le domaine de la compression centrée d'où : β = 1.2

$$f_e = 400 \text{ Mpa}$$

$$\gamma_s = 1.15$$
 (cas générale)

$$f_{bc} = \frac{0.85 \times fc_{28}}{\theta \times \gamma_b} f_{bc} = 14.17 \text{ Mpa}$$

Avec :
$$fc_{28} = 25 \text{ Mpa}$$

$$\gamma_b = 1,5$$
 (cas générale)

$$\theta = 1 \text{ (charge > 24h)}$$

$$B_r \ge \frac{1,2 \times 4,7424}{\frac{14,17}{0.9} + \frac{0,85 \times 400}{100 \times 1.15}} \to B_r \ge 0,3043 \text{m}^2$$

On a:

$$B_{r} \ge (a - 0.02)^{2}$$

$$\Rightarrow a \ge \sqrt{B_{r}} + 0.02$$

$$\Rightarrow a \ge \sqrt{0.3043} + 0.02$$

$$\Rightarrow a \ge 0.572 \text{ m}$$

Donc on prend

$$a = b = 60 \text{ cm} \rightarrow \text{Un poteau de } (60 \times 60) \text{cm}^2$$

- Vérification des conditions du R.P.A 99(version 2003):
- $min(a,b) \ge 25 cm \rightarrow V\acute{e}rifi\acute{e}e$.
- $min(a,b) \ge \frac{h_e}{20} = \frac{884}{20} = 44.2 \ cm \rightarrow V \acute{e}rifi\acute{e}e$.
- $\frac{1}{4} < \frac{a}{b} < 4 \rightarrow \frac{1}{4} < 1 < 4 \rightarrow V\acute{e}rifi\acute{e}e$.
 - Vérification du poteau au flambement

On vérifie le poteau du rez-de-chaussée

• Calcul de moment d'inertie

$$I_x = I_y = \frac{a \times b^3}{12} = \frac{60 \times 60^3}{12} = 1080000cm^4$$

• Rayon de giration i_x , i_y

$$i_x = i_y = \sqrt{\frac{I_x}{a \times b}} = \sqrt{\frac{1080000}{3600}} = 17,32 \text{ cm}$$

• Elancements mécanique $\lambda(x, y)$

$$\lambda_x = \lambda_y = \frac{L_f}{i_x}$$

$$L_f = K \times H_0$$

Avec:

- L_f : longueur de flambement.
- $H_0 = 8,84 \text{ m}$ (La hauteur sur le plafond).
- K = 0,7 Pour le poteau d'un bâtiment à étage multiple.

$$L_f = 0.7 \times 8.84 = 6.188 \, m$$

$$\lambda_x = \lambda_y = \frac{618.8}{17.32} = 35.73$$

$$\lambda_x = \lambda_y = 35.73 < 50 \, \rightarrow \textit{V\'erifi\'ee}.$$

Poteaux N étages S (m²) Nu (MN) A=b (m) Λ Condition L₀ (m) sous-sol 1 60,8 4,7424 0,60 1,94 7,84 C.V RDC 2 60,8 3,952 0,60 8,84 35,73 C.V 1^{er} étage 3 C.V 60,8 3,1616 0,55 4,42 19,48 2^{éme} étage 4 60,8 2,3712 0,45 4.42 23,81 C.V 3^{éme} étage 5 60,8 1,5808 0,40 4.42 26,79 C.V 4^{éme} étage 6 60,8 0,7904 0,30 5.01 40,49 C.V

Tableau II.8 : Récapitulatif du pré dimensionnement

II.4.3 Pré dimensionnement des poutres :

■ Définition :

D'une manière générale en peut définir les poutres comme étant des éléments porteurs horizontaux.

On a deux types de poutres :

• Les poutres principales:

Elles reçoivent les charges transmise par les solives (Poutrelles) et les répartie aux poteaux sur lesquels ces poutres reposent.

- ⇒ Elles relient les poteaux.
- ⇒ Elles Supportent la dalle.

• Les poutres secondaires (Chaînages):

Elles relient les portiques entre eux pour ne pas basculer.

Pré dimensionnement :

D'après les règles du B.A.E.L 91 on a :

$$\frac{L}{15} \le h \le \frac{L}{10}$$

Avec:

⇒ L : distance entre les axes des poteaux et on choisit la plus grande portée.

⇒ h : hauteur de la poutre.

• Les poutres principales : L = 13 m

$$\begin{cases} \frac{1300}{15} \le h \le \frac{1300}{10} \\ 86,66 \le h \le 130 \end{cases} \to \text{On prend}: h = 90 \text{ cm}$$

$$\begin{cases} \frac{90}{5} \le b \le \frac{90}{2} \\ 18 \le b \le 45 \end{cases}$$
 \rightarrow On prend: $b = 40$ cm

D'après le R.P.A 99 (version 2003) :

$$\Rightarrow b \ge 20 \ cm \rightarrow 40 \ cm > 20 \ cm \rightarrow V \acute{e}rifi\acute{e}e$$
.

$$\Rightarrow h \ge 20 \ cm \rightarrow 90 \ cm > 20 \ cm \rightarrow V \acute{e}rifi\acute{e}e$$
.

$$\Rightarrow \frac{h}{b} < 4 \rightarrow \frac{90}{40} < 4 \rightarrow V\acute{e}rifi\acute{e}.$$

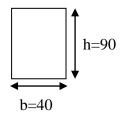
- L = 13 m \rightarrow P1 (40 x 90) cm²
- L = 6 m \rightarrow P2 (40 x 50) cm²

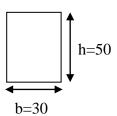
• Les poutres secondaires : L = 6,50 m

$$\begin{cases} \frac{650}{15} \le h \le \frac{650}{10} \\ 43,33 \le h \le 65 \end{cases} \to \text{On prend} : h = 50 \text{ cm}$$

$$\begin{cases} \frac{50}{5} \le b \le \frac{50}{2} \\ 10 \le b \le 25 \end{cases}$$
 \rightarrow On prend le min de R. P. A : b = 30 cm

D'après le R.P.A 99(version 2003):


$$\Rightarrow b \ge 20 \ cm \rightarrow 30 \ cm > 20 \ cm \rightarrow V \'{e}rifi\'{e}e.$$


$$\Rightarrow h \ge 20 \ cm \rightarrow 50 \ cm > 20 \ cm \rightarrow V \'erifi\'ee.$$

$$\Rightarrow \frac{h}{b} < 4 \rightarrow \frac{50}{30} < 4 \rightarrow V \acute{e}rifi\acute{e}e.$$

Les poutres principales

Les poutres secondaires

II.4.4 Les voiles :

Les voiles sont des éléments qui résistent aux charges horizontales, dues au vent et au séisme.

Zone I:
$$\begin{cases} nombre\ d'\'etages \ge 4 \\ la\ hauteur \ge 17\ m \end{cases}$$

Dans le cas contraire, ces éléments sont considérés comme des éléments linéaires.

L'épaisseur minimale est de 15cm. De plus, l'épaisseur doit être déterminée en fonction de la hauteur d'étage h_e et des conditions de rigidité aux extrémités comme suit :

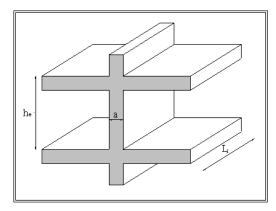


Figure II.7: Coupe de voile en élévation

Le R.P.A 99(version 2003) considère comme voiles de contreventement les voiles satisfaisant les conditions suivantes :

$$\begin{cases} L \ge 4a \\ a \ge \frac{he}{20} \end{cases}$$

Avec:

⇒ L: longueur du voile

⇒ a : épaisseur des voiles (a min =15 cm)

 \Rightarrow h_e: hauteur libre d'étage.

On
$$a: he = 4,42 m \rightarrow a \ge \frac{4,42}{20} = 0.221$$

Donc on adopte:

a = 25cm pour tous les étages.

Chapitre 03: Étude des éléments secondaires

III.1 Etude du plancher:

III.1.1 Introduction:

Les planchers sont des éléments horizontaux de la structure capables de reprendre les charges verticales.

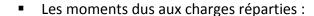
Une dalle pleine est une plaque porteuse en béton armé coulé sur place, d'épaisseur de 10 à 20 cm ou plus qui repose sur des appuis : murs ou poutres.

III.1.2 Prédimension de la dalle pleine : (Plancher)

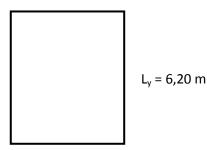
Tableau III.1 Prédimension de la dalle pleine

N°	Désignation	Ep. (m)	Masse Volumique kg/m³	Poids (kg/m²)
1	Carrelage	0,02	2200	44
2	Mortier de pose	0,02	2000	40
3	Lit de sable	0,02	1800	36
4	Plancher dalle pleine	0,18	2500	450
5	Enduit en plâtre	0,02	1000	20
6	Cloisons intérieures	0,1	1000	100
	G	690 kg/m ²		
	Q	250 kg/m ²		

• Dalle portant dans 2 Sens :


$$0.4 < \frac{l_x}{l_y} < 1 \implies 0.4 < \frac{6}{6.20} < 1$$

■ Conditions de flèches :


$$h \ge \frac{l_x}{40} \Rightarrow h \ge \frac{6}{40} = 0.15 \text{ m}$$

Avec
$$h_{min} = 15$$
 cm.

On prend h = 18 cm.

$$M_x = \mu_x . p . l_x^2; \qquad \mu_x = 0.0392$$

$$P_{E,L,U} = 1.35 \times 6.9 + 1.5 \times 2.5 = P_{E,L,U} = 13.065 \, kn/m^2$$

$$\Rightarrow M_X = 0.0392 \times 13.065 \times 6^2$$

$$\Rightarrow M_X = 18,437 \ kN.m$$

$$M_v = \mu_v . M_x; \quad \mu_v = 0.9322$$

$$M_v = 0.9322 \times 18,437$$

$$M_v = 17,187 \, kN.m$$

• E.L.S:

$$M_x = \mu_x . p . l_x^2$$
 ; $\mu_x = 0.0465$

$$P_{E,L,S} = 9.4 \, kN/m^2$$

$$\Rightarrow$$
 M_x = 15,736 kN. m

$$M_v = \mu_v \,.\, M_x$$
 ; $\mu_v = 0.9543$

$$M_y = 15,017 \, kN.m$$

- Le moment total appliqué sur la dalle :
 - ❖ Pour M_x:
 - E.L.U:

$$M_t = 0.8 M_x$$
 avec $M_x = 18,437 \text{ kN. m}$

$$\Rightarrow$$
 M_t = 14,75 kN.m

$$M_a = 0.3 M_x \Rightarrow M_a = 5.531 \text{ kN. m}$$

Condition de B.A.E.L:

$$M_d = 0.5 M_x = 9.22 kN.m$$

$$M_G = 0.3 M_x = 5.531 \text{ kN. m}$$

$$M_t + \frac{M_G + M_d}{2} = 22,1255 \text{ kN. m} < 1,25 . M_x = 23,046 \text{ kN. m} \rightarrow \textit{Non v\'erifi\'ee}.$$

$$\Rightarrow$$
 M_t = 0,85 M_x = 15,671 kN. m

$$M_t + \frac{M_G + M_d}{2} = 23,046 \text{ kN. m} = 1,25 . M_x = 23,046 \text{ kN. m} \rightarrow \textit{Non v\'erifi\'ee}.$$

$$\Rightarrow$$
 M_t = 0.9 M_x = 16.59 kN. m

$$M_t + \frac{M_G + M_d}{2} = 23,97 \text{ kN. m} > 1,25 . M_x = 23,046 \text{ kN. m} \rightarrow V\acute{e}rifi\acute{e}.$$

• E.L.S:

$$M_t = 0.8 M_x$$
 avec $M_x = 15,736$ kN.m

$$\Rightarrow M_t = 12,59 \, kN.m$$

$$M_a = 0.3 M_x \implies M_a = 4.72 \text{ kN. m}$$

Condition de B.A.E.L:

$$M_d = 0.5 M_x = 7.87 kN.m$$

$$M_G = 0.3 M_x = 4.72 kN.m$$

$$M_t + \frac{M_G + M_d}{2} = 18,89 \text{ kN. m} < 1,25 . M_x = 19,67 \text{ kN. m} \rightarrow \textit{Non v\'erifi\'ee}.$$

$$\Rightarrow$$
 M_t = 0,85 M_x = 13,37 $kN.m$

$$M_t + \frac{M_G + M_d}{2} = 19,67 \text{ kN. m} = 1,25 \text{ .} M_x = 19,67 \text{ kN. m} \rightarrow \textit{Non v\'erifi\'ee}.$$

$$\Rightarrow$$
 M_t = 0.9 M_x = 14.16 kN. m

$$M_t + \frac{M_G + M_d}{2} = 20,46 \text{ kN. m} > 1,25 . M_x = 19,67 \text{ kN. m} \rightarrow V\acute{e}rifi\acute{e}.$$

III.1.3 Calcul des Ferraillages :

On adoptera le même ferraillage suivant les deux directions

$$M_{trav\acute{e}e} = 16,59 \text{ kN. m}$$
, $M_{appui} = 5,531 \text{ kN. m}$

$$A_S=rac{M_U}{Z imes\sigma_{ST}}$$
 , avec $Z=d(1-0.4lpha)$, $lpha=1.25ig(1-\sqrt{1-2\mu}ig)$ et $\mu=rac{M_U}{b imes d^2 imes f_{bc}}$

$$A_{min} = \frac{0.23 \times b \times d \times f_{t28}}{f_e} = \frac{0.23 \times 100 \times 18 \times 2.1}{400} \rightarrow A_{min} = 2.1735 \ cm^2/ml$$

Tableau III.2 : Ferraillage de la dalle

Section	M _u (kN.m)	μ	α	Z (m)	A _{s min}	A _s (cm ² /ml)	A adopté/ml
Travée	16,59	0,045	0,057	0,16	2,1735	3,01	6T12=6,79
Appuis	5,531	0,015	0,019	0,16	2,1735	0,99	4T12=4.52

■ Vérification à L'E.L.S :

On doit vérifier la condition suivante :

$$\alpha \leq \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$
, $Avec: \gamma = \frac{M_u}{M_s}$

• En travée

$$M_u = 16,59 \text{ kN. m}$$

$$M_s = 14,16 \text{ kN. m}$$

$$\gamma = \frac{M_u}{M_s} \Longrightarrow \gamma = 1,17$$

$$\alpha_{trav\acute{e}e} \leq \frac{1,17-1}{2} + \frac{25}{100} \rightarrow \alpha_{trav\acute{e}e} = \ 0,335 < 0,415 \ \rightarrow \ \textit{V\'erifi\'ee}.$$

• En appui

$$M_u = 5,531 \text{ kN. m}$$

$$M_s = 4,72 \text{ kN. m}$$

$$\gamma = \frac{M_u}{M_s} \Longrightarrow \gamma = 1,17$$

$$\alpha_{trav\acute{e}e} \leq \frac{1,17-1}{2} + \frac{25}{100} \rightarrow \ \alpha_{trav\acute{e}e} = \ 0,335 < 0,415 \ \rightarrow \ \emph{V\'erifi\'ee}.$$

III.2 L'acrotère:

III.2.1 Introduction:

L'acrotère est un élément de protection qui se trouve au niveau supérieur du bâtiment, il est assimilé à une console encastrée dans le plancher chargé par son poids et surcharge due à la main courante. Il sera donc calculé comme une console encastrée à la base, il sera soumis à la main courante prise pour assurer la sécurité des ouvriers, et vérifiée la condition du **RPA99 V2003**.

III.2.2 Le rôle de l'acrotère :

- Protection des personnes.
- Empêche l'écoulement de l'eau.
- A un aspect esthétique.

Le calcul se fait pour une bande de 1 ml.

III.2.3 Etude de L'acrotère Terrasse inaccessible :

Poids propre de l'acrotère :

$$S = \frac{0.05 \times 0.1}{2} + (0.05 \times 0.1) + (0.1 \times 0.6) = 0.0675 \text{ m}^2/\text{l}.$$

$$G = 0.0675 \times 2500 = 168.75 \text{ Kg/ml}.$$

La charge horizontale :

$$F_p = 4 \times A \times C_p \times W_p$$

A= 0,1 coefficient d'accélération de la zone.

W_p = 168,75 Kg/ml poids de l'acrotère.

C_p = 0,8 KN facteur de la force horizontale

$$F_p = 4 \times 0.1 \times 0.8 \times 168,75 = 54 \text{ Kg/ml}.$$

$$\Rightarrow$$
 Q = 54 Kg/ml.

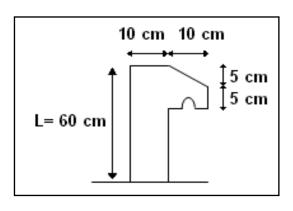
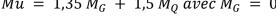


Figure III.1: Schéma de l'acrotère Type1

$$G = 1,6875 \, KN/ml.$$


$$Q = 0.54 \, KN/ml$$

Combinaisons d'action :

Le calcul se fait par rapport à l'encastrement :

<u>E.L.U:</u>

$$Mu = 1.35 M_G + 1.5 M_O avec M_G = 0$$



Figure III.2: Schéma Statique

Type1

$$Mu = 1.5 x (Q \times L) \rightarrow Mu = 1.5 \times 0.54 \times 0.6 = 0.486 KN.m$$

$$Nu = 1,35 G \rightarrow Nu = 1,35 \times 1,6875$$

$$N_U = 2,2781 \, KN.$$

E.L.S:

$$M_S = M_G + M_O \ avec \ M_G = 0$$

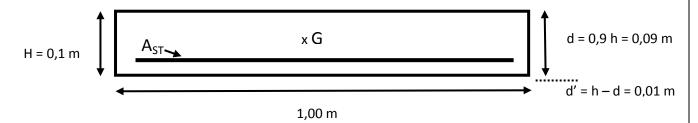
$$M_S = (Q \times L) \rightarrow M_S = 0.54 \times 0.6 = 0.324 \, KN. \, m$$

$$N_S = G \rightarrow N_S = 1,6875 \, KN.$$

■ Calcul de l'excentricité :

C'est la distance entre le centre de pression et le centre de gravité d'une section.

$$e = \frac{M_u}{N_u} \rightarrow e = \frac{0,486}{2,2781} \rightarrow e = 0,2133 \text{ m}$$


$$\frac{h}{6} = \frac{10}{6} = 1,67 \text{ cm}$$

e > 1,67
$$\rightarrow$$
 c'est vérifie

La section est partiellement comprimée, parceque le centre de pression est appliqué à l'extérieur du noyau central.

Détermination du ferraillage :

E.L.U:

⇒ d : La distance séparant la fibre la plus comprimée et les armatures inférieures.

$$o d = 0.9 h \rightarrow d = 0.09 m.$$

⇒ d' : La distance entre les armatures inférieures et la fibre la plus tendue.

$$o d' = 0.1 - 0.09 \rightarrow d' = 0.01 m.$$

Si la section est partiellement comprimée :

$$f_{bc} = \frac{0.85 \times fc_{28}}{\gamma_b} \rightarrow f_{bc} = 14.17 \, Mpa$$

■ Moment de flexion fictif (Ma) :

$$M_a = M_u + N_u \times (d - \frac{h}{2})$$

$$M_a = 0.486 + 2.2781 \times (0.09 - \frac{0.1}{2})$$

$$M_a = 57,71.10^{-5}MN.m$$

■ Moment réduit :

$$\mu = \frac{M_a}{b. d^2. f_{bc}} \rightarrow \mu = \frac{57,71.10^{-5}}{1x(0,09)^2 \times 14,17}$$
$$\rightarrow \mu = 0,005$$

On a $\mu < \mu_r$.

Donc il n'est pas nécessaire de prévoir des armatures comprimées c'est-à-dire A_{sc} = 0

Alors :
$$A_{st} = \frac{1}{\sigma_{st}} \left(\frac{M_a}{Z} - N_u \right)$$

$$Z = d(1 - 0.4\alpha) \ avec \ \alpha = 1.25(1 - \sqrt{1 - 2\mu})$$

$$\alpha = 6,26.10^{-3} \rightarrow Z = 0,0898 \, m.$$

$$\sigma_{\rm st} = \frac{f_{\rm e}}{\gamma_{\rm s}} = 347,83 \text{ Mpa}.$$

Alors :
$$A_{st} = \frac{1}{347,83} \left(\frac{57,71.10^{-5}}{0,0898} - 227,81.10^{-5} \right)$$

$$A_{st} = 0.11926 \, cm^2$$
.

$$A_{st\ min} \ge 0.23b.\ d\frac{ft_{28}}{f_e} = 1.087\ cm^2.$$

Donc on prend : $A_{st} > 1,087 cm^2$

$$Ast = 4 T 8 = 2.01 cm^2$$

E.L.S:

■ <u>Vérification des contraintes :</u>

Le type et le nombre d'armatures choisies seront acceptables si les conditions suivantes sont vérifiées :

$$\sigma_{bc} < \overline{\sigma_{bc}}$$

$$\sigma_{st} < \overline{\sigma_{st}}$$

Aves $\overline{\sigma_{bc}} = 0.6 \text{ fc}_{28} = 15 \textit{Mpa}.$

$$\sigma_{bc} = \frac{N_s \cdot y}{S}$$

$$\sigma_{st} = \eta - \frac{N_s (d-y)}{s}$$

$$\sigma_{sc} = \eta . \frac{N_s (d-d\prime)}{s}$$

 η = 15 : c'est le coefficient d'équivalence acier – béton.

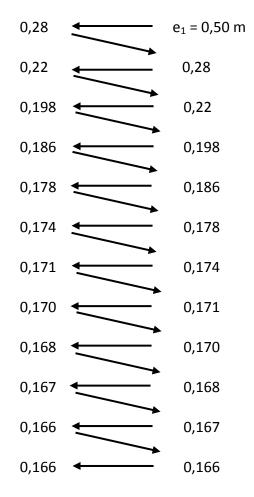
$$M_S = 0.324 \, KN. \, m ; N_S = 1.6875 \, KN.$$

$$e = \frac{M_s}{N_s} \rightarrow e = \frac{0,324}{1,6875} \rightarrow e = 0,192 \text{ m}.$$

$$p = -3\left(\frac{h}{2} - e\right)^2 + \frac{6\eta A_{st}}{b}\left(d - \frac{h}{2} + e\right).$$

$$p = -0,05629 m^2$$

$$q = -2\left(\frac{h}{2} - e\right)^2 - \frac{6\eta A_{st}}{b}\left(d - \frac{h}{2} + e\right)^2$$


$$q = 0,0047 m^3$$

Méthode des itérations successives :

On a:

$$e_1 = \frac{e_1 - q}{p} \dots \dots \dots (1)$$
 où $e_1 = \sqrt[3]{-pe_1 - q} \dots \dots (2)$

On prend une valeur quelconque de e_1 : e_1 = 0,5 m

On prend la valeur de : e_1 = 16,6 cm

$$X = \frac{h}{2} + e_1 - e$$

$$X = \frac{h}{2} + 0.166 - 0.192 \rightarrow X = 2.4 \text{ cm}$$

$$S = \frac{b X^2}{2} - n \times A_{st}(d - X)$$

$$S = \frac{1 \times 0,024^2}{2} - 15 \times 2,01 \times (0,09 - 0,024)$$

 $S = 0,000089 \text{ m}^3$.

Calcul des contraintes :

Béton:

$$\sigma_{bc} = \frac{N_s \times X}{S}$$

$$\sigma_{bc} = \frac{168,75 \, \times \, 10^{-5} \, \times \, 0,024}{89 \, x \, 10^{-6}} \, \rightarrow \, \sigma_{bc} = \textbf{0,45 Mpa}$$

Acier:

$$\sigma_{st} = n \frac{N_s(d-X)}{S}$$

$$\sigma_{st} = 15 \frac{168,75 \times 10^{-5} (0,09-0,024)}{89 \ 10^{-6}} \ \rightarrow \ \pmb{\sigma_{st}} = \pmb{18,77 \ Mpa}.$$

Calcul des contraintes admissibles :

Béton:

$$\overline{\sigma_{bc}} = 0.6 \times fc_{28} = 0.6 \times 25$$

$$\overline{\sigma_{bc}} = 15 \text{ Mpa}$$

Acier:

L'acrotère est exposé aux intempéries et peut être alternativement immergé ou noyée dans l'eau de pluie donc la fissuration est préjudiciable ce qui veut dire :

$$\overline{\sigma_{st}} = min\left(\frac{2}{3}f_e; 110\sqrt{\eta \times ft_{28}}\right)$$
 Fissuration préjudiciable, avec : $\eta = 1.6$

 $\overline{\sigma_{st}} = 201,63 \text{ Mpa}$

Vérification :

$$\sigma_{bc} = 0.45 \text{ Mpa} < \overline{\sigma_{bc}} = 15 \text{Mpa}$$
 C. V

$$\sigma_{\rm st} = 18,17~{\rm Mpa}~< \overline{\sigma_{\rm bc}} = 201,63~{\rm Mpa}$$
 C. V

Donc la section et le nombre d'armature choisie sont acceptables.

Pour les armatures de répartition :

$$A_r = \frac{A_{st}}{4} = 0,502 \ cm^2.$$

On prend : $A_r=4\ \emptyset\ 6=1$, $13\ cm^2$

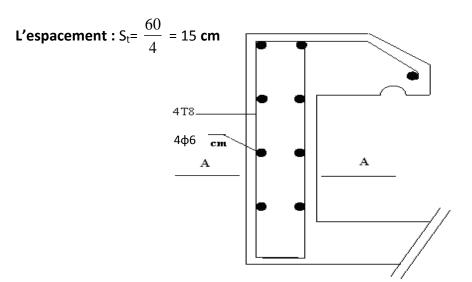


Figure III.3 : Ferraillage de l'acrotère Type 1

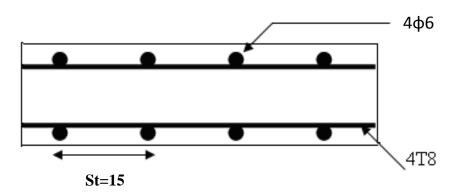
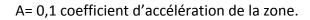


Figure III.4 : Coupe AA de l'acrotère type 1

III.2.4 Etude de L'acrotère Terrasse accessible :


- Poids propre de l'acrotère :
 - Type 2 (1,25m):

$$S = \frac{0.05 \times 0.1}{2} + (0.05 \times 0.1) + (0.1 \times 1.25) = 0.1325 \text{ m}^2/\text{L}$$

$$G = 0.1325 \times 2500 = 331.25 \text{ kg/ml}.$$

La charge horizontale :

$$Fp = 4 \times A \times Cp \times Wp$$
.

 $W_p = 331,25 \text{ Kg/ml poids de l'acrotère.}$

 $C_p = 0.8$ KN facteur de la force horizontale.

$$Fp = 4 \times 0.1 \times 0.8 \times 331.25 = 106 \, Kg/ml$$

$$\Rightarrow Q = 106 \, Kg/ml.$$

$$G = 3{,}3125 \, KN/ml.$$

 $Q = 1,06 \, KN/ml$.

Combinaisons d'action :

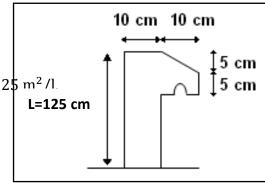


Figure III.5: Dimension de l'acrotère

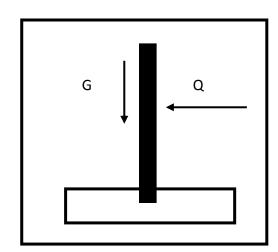


Figure III.6: Schéma de l'acrotère Type2

Le calcul se fait par rapport à l'encastrement :

<u>E.L.U:</u>

$$Mu = 1.35 \, M_G + 1.5 \, M_Q \, avec \, M_G = 0$$

$$Mu = 1.5 \times (Q \times L) \rightarrow Mu = 1.5 \times 1.06 \times 1.25 = 1.9875 \, KN. \, m$$

$$Nu = 1,35 G \rightarrow Nu = 1,35 \times 3,3125$$

 $Nu = 4,4718 \, KN.$

E.L.S:

$$M_S = M_G + M_Q \ avec \ M_G = 0$$

$$M_S = (Q \times L) \rightarrow M_S = 1,06 \times 1,25 = 1,325 \, KN. \, m$$

$$N_S = G \rightarrow N_S = 3{,}3125 \, KN.$$

Calcul de l'excentricité :

C'est la distance entre le centre de pression et le centre de gravité d'une section.

$$e = \frac{M_u}{N_u} \rightarrow e = \frac{1,9875}{4,4718} \rightarrow e = 0,4445 \text{ m}$$

$$\frac{h}{6} = \frac{10}{6} = 1,67 \text{ cm}$$

e > 1,67
$$\rightarrow$$
 c'est vérifie

La section est partiellement comprimée, par ce que le centre de pression est appliqué à l'extérieur de noyau central.

■ Détermination du ferraillage :

E.L.U:

$$A_{ST}$$
 $d = 0.9 \text{ h} = 0.09 \text{ m}$ $d' = \text{h} - \text{d} = 0.01 \text{ m}$

⇒ d : La distance séparant la fibre la plus comprimée et les armatures inférieures.

$$o d = 0.9 h \rightarrow d = 0.09 m.$$

⇒ d': La distance entre les armatures inférieures et la fibre la plus tendue.

$$o d' = 0.1 - 0.09 \rightarrow d' = 0.01 m.$$

Si la section est partiellement comprimée : $f_{bc} = \frac{0.85 \, x \, fc_{28}}{\gamma_b} \rightarrow f_{bc} = 14,17 \, Mpa$

■ Moment de flexion fictif (Ma) :

$$M_a = M_u + N_u \times (d - \frac{h}{2})$$

$$M_a = 1,9875 + 4,4718 \times (0,09 - \frac{0,1}{2})$$

$$M_a = 21,66.10^{-4}MN.m$$

■ Moment réduit :

$$\mu = \frac{M_a}{b. d^2. f_{bc}} \rightarrow \mu = \frac{21,66.10^{-4}}{1 \times (0,09)^2 \times 14,17}$$

$$\rightarrow \mu = 0,01887$$

On a $\mu < \mu_r$.

0,01887 < 0,186

Donc il n'est pas nécessaire de prévoir des armatures comprimées c'est-à-dire A_{sc} = 0

Alors:
$$A_{st} = \frac{1}{\sigma_{st}} \left(\frac{M_a}{Z} - N_u \right)$$

$$Z = d(1 - 0.4\alpha)$$
 avec $\alpha = 1.25(1 - \sqrt{1 - 2\mu})$

$$\alpha = 0.0238 \rightarrow Z = 0.089 \, m.$$

$$\sigma_{st} = \frac{f_e}{\gamma_s} = 347,83 \text{ Mpa}.$$

Alors :
$$A_{st} = \frac{1}{347,83} \left(\frac{21,66.10^{-4}}{0,0898} - 447,18.10^{-5} \right)$$

$$A_{st} = 0.57 cm^2.$$

$$A_{st \ min} \ge 0.23b. \ d \frac{ft_{28}}{f_e} = 1.08 \ cm^2.$$

Donc on prend :
$$A_{st} > 1,08 cm^2$$

$$Ast = 4 T 8 = 2.012 cm^2$$

E.L.S:

Vérification des contraintes :

Le type et le nombre d'armatures choisies seront acceptables si les conditions suivantes sont vérifiées :

$$\sigma_{bc} < \overline{\sigma_{bc}}$$

$$\sigma_{\rm st} < \overline{\sigma_{\rm st}}$$

Aves $\overline{\sigma_{bc}} = 0.6 \text{ fc}_{28} = 15 \textit{Mpa}.$

$$\sigma_{bc} = \frac{N_s \cdot y}{s}$$

$$\sigma_{st} = \eta - \frac{N_s \, (d-y)}{S}$$

$$\sigma_{sc} = \eta. \frac{N_s \, (d-d\prime)}{S}$$

 η = 15 : c'est le coefficient d'équivalence acier – béton.

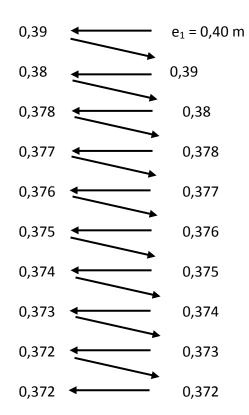
$$M_S = 1,325 \, KN. \, m \, ; N_S = 3,3125 \, KN.$$

$$e = \frac{M_s}{N_s} \rightarrow e = \frac{1,325}{3,3125} \rightarrow e = 0.4 \text{ m}.$$

$$p = -3\left(\frac{h}{2} - e\right)^2 + \frac{6\eta A_{st}}{b}\left(d - \frac{h}{2} + e\right).$$

$$p = -0,3595 m^2$$

$$q = -2\left(\frac{h}{2} - e\right)^2 - \frac{6\eta A_{st}}{b}\left(d - \frac{h}{2} + e\right)^2$$


$$q = 0.08224 m^3$$

Méthode des itérations successives :

On a:

$$e_1 = \frac{e_1 - q}{p} \dots \dots \dots (1)$$
 où $e_1 = \sqrt[3]{(-pe_1 - q) \dots \dots (2)}$

On prend une valeur quelconque de e_1 : e_1 = 0,4 m

On prend la valeur de : e₁ = 37,2 cm

$$X = \frac{h}{2} + e_1 - e$$

$$X = \frac{h}{2} + 0.166 - 0.192 \rightarrow X = 2.2 \text{ cm}$$

$$S = \frac{b X^2}{2} - n \times A_{st}(d - X)$$

$$S = \frac{1 \times 0.022^2}{2} - 15 \times 2.012 \times (0.09 - 0.022)$$

S = 0,000037 m³.

Calcul des contraintes :

Béton:

$$\sigma_{bc} = \frac{N_s \times X}{S}$$

$$\sigma_{bc} = \frac{331,25 \times 10^{-5} \times 0,022}{0,000037} \, \rightarrow \, \sigma_{bc} = \text{1,96 Mpa}$$

Acier:

$$\sigma_{st} = n \frac{N_s(d-X)}{S}$$

$$\sigma_{st} = 15 \frac{331,25 \times 10^{-5} (0,09-0,022)}{37.\,10^{-6}} \, \rightarrow \, \sigma_{st} = \textbf{91,317 Mpa}.$$

Calcul des contraintes admissibles :

Béton:

$$\overline{\sigma_{bc}} = 0.6 \times fc_{28} = 0.6 \times 25$$

$$\overline{\sigma_{bc}} = 15 \text{ Mpa}$$

Acier:

L'acrotère est exposé aux intempéries et peut être alternativement immergé ou noyée dans l'eau de pluie donc la fissuration est préjudiciable ce qui veut dire :

C. V

$$\overline{\sigma_{st}} = min\left(\frac{2}{3}f_e; 110\sqrt{\eta \times ft_{28}}\right)$$
 Fissuration préjudiciable, avec : $\eta = 1.6$

$$\overline{\sigma_{\rm st}} = 201,63~{\rm Mpa}$$

■ Vérification :

$$\sigma_{\rm bc} = 1,96 \, \mathrm{Mpa} \, < \overline{\sigma_{\rm bc}} = 15 \mathrm{Mpa}$$

$$\sigma_{st} = 91{,}317 \text{ Mpa} < \overline{\sigma_{bc}} = 201{,}63 \text{ Mpa}$$
 C. V

Donc la section et le nombre d'armature choisie sont acceptables.

Pour les armatures de répartition :

$$A_r = \frac{A_{st}}{4} = 0,503 \ cm^2.$$

On prend : $A_r = 4 \emptyset 6 = 1$, $13 cm^2$

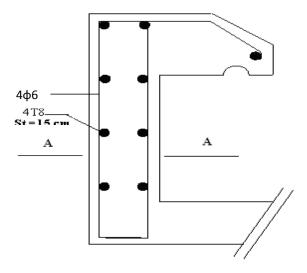


Figure III.7 : Ferraillage de l'acrotère type 2

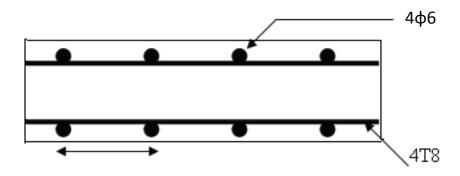


Figure III.8 : Coupe AA de l'acrotère type 2

IIII.3 Étude des escaliers :

III.3.1 Introduction:

Les escaliers sont des éléments constitués d'une succession de gradins permettant le passage à pied entre les différents niveaux d'un immeuble, il constitue aussi une issue de secours importante en cas d'incendie.

III.3.2 Terminologie:

Un escalier se compose d'un nombre de marche, on appelle emmarchement la longueur de ces marches, la largeur d'une marche "g" s'appelle le giron, et la hauteur d'une marche "h".

La dalle qui monte sous les marches s'appelle la paillasse, la partie verticale d'une marche s'appelle la contre marche, la cage est le volume ou se situe l'escalier, les marches peuvent prendre appui sur une poutre droite ou courbe qu'on appelle le limon. La projection horizontale d'un escalier laisse au milieu un espace appelé jour.

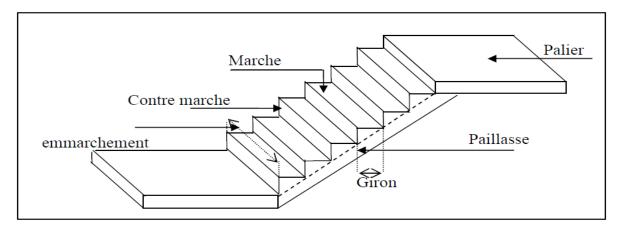


Figure III.9: Schéma d'un escalier

III.3.3 Dimensions des escaliers

Pour les dimensions des marches "g" et contre marches "h", on utilise généralement la formule de BLONDEL :

$$59 \le 2h + g \le 66cm$$

Avec:

h : hauteur de la marche (contre marche).

g: largeur de la marche.

$$H = n \times h \to h = \frac{H}{n}.$$

$$L = (n-1). g \rightarrow g = \frac{L}{(n-1)}.$$

H : hauteur entre les faces supérieures des deux paliers successifs d'étage.

n: nombre de contre marches.

L : projection horizontale de la longueur totale de la volée.

On trouve:

- h = 17 cm
- g = 30 cm
- n = 9 marches

Vérification de BLONDEL:

$$59 \le 2h + g \le 66$$

$$59 \le 34 + 30 \le 66$$

 $59 \le 64 \le 66 \rightarrow Condition \ v\'erifi\'ee$.

L'inclinaison de la paillasse :

$$H = n \times h = 9 \times 0, 17 = 1,53 m$$

$$L = (n-1)$$
. $g = 8 \times 0.3 = 2.4 m$

$$tg\alpha = \frac{1,53}{2,4} \rightarrow tg\alpha = 0,6375 \rightarrow \alpha = 32,52^{\circ} \rightarrow cos\alpha = 0,843$$

III.3.4 Evaluation des charges et des surcharges pour l'escalier :

Palier

Tableau III.3: Charge permanente du palier

N°	Désignation	Ep. (m)	Masse Volumique kg/m ³	Poids (kg/m²)		
1	Carrelage	0,02	2200	44		
2	Mortier de pose	0,02	2000	40		
3	Couche de sable	0,02	1900	38		
4	Poids propre du palier	0,17	2500	425		
6	Enduit en plâtre	0,2	1000	20		
	G	571 kg/m²		•		
	Q	250 kg/m²				

■ Volée (paillasse) :

Tableau III.4: Charge permanente de la paillasse

N°	Désignation	Ep. (m)	Masse Volumique kg/m3	Poids (kg/m²)		
1	Carrelage	0,02	2200	44		
2	Mortier de pose	0,02	2000	40		
3	Couche de sable	0,02	1900	38		
5	Paillasse en B.A	0,17	2500/cos 32,52	528,84		
6	Poids propre des marches	0,085	2200	187		
6	Enduit en ciment	0,02	1000/cos 32,52	24,89		
	G	862,73 kg/m²				
	Q	250 kg/m ²				

III.3.5 Le type d'escalier :

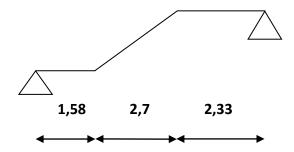
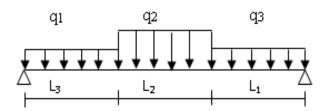



Figure III.10 : Schéma statique d'escalier

III.3.6- Ferraillage des escaliers :

L'escalier est un élément qui n'est pas exposé aux intempéries, donc les fissurations sont considérées comme peu nuisibles ; La section est soumise à la flexion simple

Calcul ELU :

$$q_u = 1.35G + 1.5Q \rightarrow pour (1ml)$$

Palier:
$$q1 = q3 = 1,35 \times 5,71 + 1,5 \times 2,5 = 11,46 \, kn/ml$$

$$Paillasse: q2 = 1,35 \times 8,63 + 1,5 \times 2,5 = 15,40 \ kn/ml$$

on
$$a : L1 = 2,33 m; L2 = 2,7 m; L3 = 1,58 m$$

$$q_{eq} = \frac{q_1 \times L_1 + q_2 \times L_2 + q_3 \times L_3}{L_1 + L_2 + L_3}$$

Alors:
$$q_{eq} = 13,07 \ kn/ml$$

$$L = 6,61 m$$

Moment isostatique :
$$M_0 = \frac{q_{eq} \times l^2}{8} = 71,38 \text{ kn.m}$$

$$Moment\ en\ trav\'ee:\ M_t=\ 0.85\times\ M_0=60.675\ kn.\ m$$

Moment sur appui:
$$M_a = 0.30 \times M_0 = 21.414 \text{ kn.m}$$

> Armature longitudinale :

o En travée :

$$A_S = \frac{M_U}{Z \times \sigma_{ST}} \text{ , avec } Z = d(1-0.4\alpha), \alpha = 1.25 \left(1-\sqrt{1-2\mu}\right) \text{ et } \mu = \frac{M_U}{b \times d^2 \times f_{bc}}$$

$$A_{min} = \frac{(0.23 \times b \times d \times f_{t28})}{f_e} = \frac{(0.23 \times 100 \times 15.3 \times 2.1)}{400} \rightarrow A_{min} = 1.84 \text{ cm}^2$$

Tableau III.5: Ferraillage d'escalier

Section	M _u (KN.m)	μ	α	Z (cm)	A _s min	A _s (cm ² /ml)	A _{adopté/ml}
Travée	60,675	0,183	0,255	0,14	1,84	12,69	9T14=13,85
Appuis	21,414	0,065	0,084	0,15	1,84	4,16	4T12 = 4,52

> Armature de répartition :

o En travée:

$$A_{r\acute{e}partition} = \frac{A_{adopt\acute{e}}}{4} = \frac{13,85}{4} = 3,46cm^2 \; ; \; on \; adopte : 5T10 = 3,93cm^2$$

o En appui:

$$A_{r\acute{e}partition} = \frac{A_{adopt\acute{e}}}{4} = \frac{4,52}{4} = 1,13cm^2 \; ; \; on \; adopte : 3T8 = 1,51cm^2$$

Calcul à ELS

$$q_{ser} = G + Q \rightarrow \text{pour (1ml)}$$

Palier:
$$q1 = q3 = 5.71 + 2.5 = 8.21 \, kn/ml$$

$$Paillasse: q2 = 8,63 + 2,5 = 11,13 \ kn/ml$$

on a : L1 = 2,33 m; L2 = 2,7 m; L3 = 1,58 m

$$q_{eq} = \frac{q_1 \times L_1 + q_2 \times L_2 + q_3 \times L_3}{L_1 + L_2 + L_3}$$

Alors: $q_{eq} = 9,40 \ kn/ml$

$$L = 6.61 \, m$$

Moment isostatique : $M_0 = \frac{q_{eq} \times l^2}{8} = 51,34 \text{ kn. m}$

Moment en travée: $M_t = 0.85 \times M_0 = 43.63 \text{ kn.m}$

Moment sur appui: $M_a = 0.30 \times M_0 = 15.40 \text{ kn.m}$

Ce type d'escalier se situe dans un local couvert, donc il est soumis à des fissurations peu préjudiciables. Dans ces conditions, la vérification des contraintes se simplifie comme suit :

$$\alpha \leq \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$
; avec $\gamma = \frac{M_U}{M_S}$

o En travée

$$M_U = 60,675 \, kn. \, m$$

$$M_S = 43,63 \ kn. m$$

$$\gamma = \frac{M_U}{M_S} \to \gamma = 1.39$$

$$\alpha_{trav\acute{e}e} \leq \frac{1,39-1}{2} + \frac{25}{100} \rightarrow \alpha_{trav\acute{e}e} = 0,255 < 0,445 \rightarrow C.V$$

o En appui

$$M_U = 21,414 \ kn. m$$

$$M_S = 15,40 \ kn.m$$

$$\gamma = \frac{M_U}{M_S} \to \gamma = 1.39$$

$$\alpha_{trav\acute{e}e} \leq \frac{1,39-1}{2} + \frac{25}{100} \rightarrow \alpha_{trav\acute{e}e} = 0,084 < 0,445 \rightarrow C.V$$

Vérification au cisaillement

$$\overline{\tau_u} = \min\left(\frac{0.20 \times f_{c28}}{\gamma_b}; 5Mpa\right) = 3.33 \ mPa$$

$$V_u = \frac{q_1 \times L_1 + q_2 \times L_2 + q_3 \times L_3}{2} = 43,19 \ kn$$

$$\tau_u = \frac{V_u}{b \times d} = 0.282 \ mPa \ \rightarrow \ \tau_u = 0.282 \ mPa < 3.33 \ mPa \ \rightarrow \ C.V$$

Tableau III.6: Tableau récapitulatif du ferraillage d'escalier

	Armature longitudinale		Armature de répartition		
	Calculée (cm²) Choisie (cm²)		Calculée (cm²)	Choisie (cm²)	
En travée	12,69	9T14=13,85	3,46	5T10 = 3,93	
En appui	4,16 4T12=4,52		1,13	3T8 = 1,51	

Chapitre 04: Etude dynamique

IV.1 Introduction:

Le séisme est une secousse du sol résultant de la libération brusque d'énergie accumulée par les contraintes exercées sur les roches (tectonique des plaques), le long d'une faille généralement préexistante. Lorsque les contraintes dépassent un certain seuil, une rupture d'équilibre se produit et donne naissance aux ondes sismiques qui se propagent dans toutes les directions et atteignent la surface du sol.

Ces mouvements du sol excitent les ouvrages par déplacement de leurs appuis et sont plus ou moins amplifiés dans la structure. Le niveau d'amplification dépend essentiellement de la période de la structure et de la nature du sol.

Ceci implique de faire une étude parasismique pour essayer de mettre en exergue le comportement dynamique de l'ouvrage.

IV.2 Objectif de l'étude dynamique :

L'objectif initial de l'étude dynamique d'une structure est la détermination des caractéristiques dynamiques propres de cette dernière lors des vibrations. Une telle étude pour notre structure telle qu'elle se présente, est souvent très complexe c'est pourquoi on fait souvent appel à des modélisations qui permettent de simplifier suffisamment les problèmes pour permettre l'analyse.

IV.3 Modélisation de la structure étudiée :

La modélisation des éléments structuraux est effectuée comme suit :

- Les éléments en portique (poutres- poteaux) ont été modélisés par des éléments finis de type poutre « frame » à deux nœuds ayant six degrés de liberté (d.d.l) par nœud.
- Les voiles ont été modélisés par des éléments plaques « Shell » à quatre nœuds.
- Les planchers sont simulés par des diaphragmes rigides et le sens des poutrelles peut être automatiquement introduit.
- Les dalles sont modélisées par des éléments dalles qui négligent les efforts membranaires.

<u>Chapitre 04</u> <u>Etude dynamique</u>

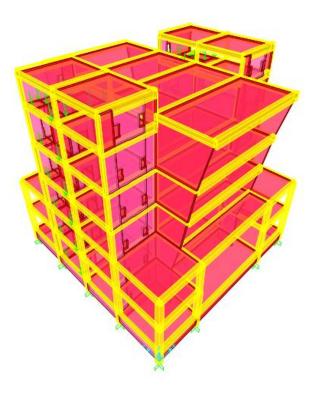


Figure IV.1 : Modèle 3D de la structure

IV.4 Méthodes de calculs :

Selon le RPA 99 le calcul des forces sismiques peut être mené suivant trois méthodes :

- Méthode statique équivalente.
- Méthode d'analyse modale spectrale.
- Méthode d'analyse dynamique par accelérogrammes.

IV.4.1 Méthode statique équivalente

Dans cette méthode le RPA propose de remplacer les forces réelles dynamique engendrées par un séisme, par un système de forces statiques fictives dont les effets seront identiques et considérées appliquées séparément suivant les deux directions définies par les axes principaux de la structure.

IV.4.2 Méthode d'analyse modale spectrale

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de

réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

IV.5 Combinaison d'action:

Pour le calcul, on utilise les combinaisons d'actions aux états limites suivantes : Ultime, service, accidentel.

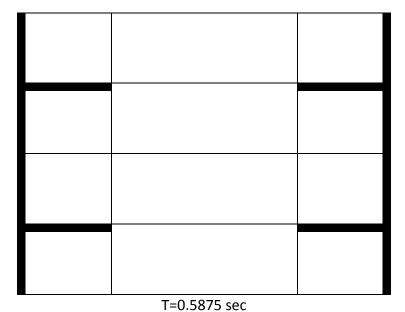
- ELU: 1,35G + 1,5Q
- ELS: G+Q
- $G + Q \pm 1.2 E$
- $G+Q\pm E$
- 0.8G + E

IV.6 Choix de la méthode de calcul:

Pour le choix de la méthode à utiliser, on doit vérifier certaines conditions relatives aux règles parasismiques en vigueur en Algérie (RPA99 version 2003), et qui ont le rapport avec les régularités en plan et en élévation du bâtiment.

On va utiliser les deux méthodes, la méthode statique équivalente et modales spectrales car toutes les conditions sont vérifiées, et on compare entre eux.

IV.7 Choix du type de contreventement :


Notre structure est contreventée par une ossature mixte portique -voile. Le choix de la position des voiles doit satisfaire un certain nombre de condition :

- Satisfaire les conditions d'architectures.
- Le nombre doit être suffisamment important pour assurer une rigidité suffisante.
- La position de ces voiles doit éviter des efforts de torsion préjudiciables pour la structure.

Plusieurs variantes ont été étudiées, parmi ces variantes on présente les 3 cas ou le changement est important.

Le cas retenu est pour la période la plus faible (0.39sec).

Figure IV.2 : La première disposition des voiles

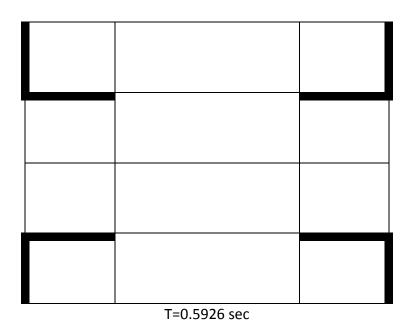


Figure IV.3 : La deuxième disposition des voiles

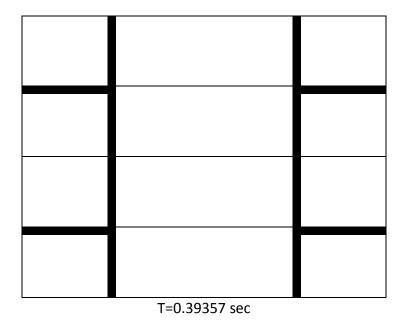


Figure IV.4 : La troisième disposition des voiles

IV.8 Méthode statique équivalente :

IV.8.1 Détermination des coefficients :

La formule de la force sismique totale à la base est donnée par le RPA99 :

$$V = \frac{A \times D \times Q}{R} \times W$$

Avec:

• A : coefficient d'accélération de zone.

• D : facteur d'amplification dynamique moyen.

• Q : facteur de qualité.

• R : coefficient de comportement.

• W : poids total de la structure (W =G+β Q)

 β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation, et il est donné par le tableau 4-5 du RPA99, dans notre cas β =0.3

Coefficient d'accélération de zone (A) :

$${\begin{array}{c}
\text{Groupe d'usage (1A)} \\
\text{Zone I}
\end{array}} \Rightarrow A = 0.15 \qquad \text{(Tableau (4-1) RPA99)}$$

Coefficient de comportement (R) :

La valeur de R est donnée par (Tableau (4-1) RPA99V2003) en fonction du système de contreventement

Notre structure a un système de contreventement en portique avec des murs voiles, ce qui implique selon le R.P.A 99/V.2003 que le coefficient de comportement sera : R=4

■ Facteur d'amplification dynamique moyen (D) :

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5\eta \left(\frac{T_2}{3}\right)^{\frac{2}{3}} \left(\frac{3}{T}\right)^{\frac{5}{3}} & T \ge 3.0s \end{cases}$$

Avec:

- η: Facteur de correction d'amortissement
- T : Période fondamentale
- T₂: Période caractéristique, associée à la catégorie du site

$$\eta = \sqrt{\frac{7}{2+\xi}} = \sqrt{\frac{7}{2+7}} = 0.8819$$

 \Rightarrow Site 3 (site meuble): T2 = 0.5 S

Estimation empirique de la période fondamentale

Dans notre cas, la période fondamentale correspond à la plus Petite valeur obtenue par les formules 4-6 et 4-7 du RPA99V2003

T : période fondamentale de la structure donnée par la formule suivante :

$$T = min \left\{ C_T h_N^{\frac{3}{4}} \quad , \quad \frac{0,09h_N}{\sqrt{D}} \right\}$$

Avec:

• h_N : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau (N).

- C_T : Coefficient, fonction du système de contreventement, du type de remplissage est donné par le tableau 4-6 du RPA99/version2003.
- *D* : la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

⇒ Dans le sens X :

$$h_N = 27,3m$$

$$D = 25 \, m$$

$$C_T = 0.05$$

$$T = min(0.636 s; 0.491 s)$$

$$T_X = 0.491 sec$$

On a:
$$T_2(S_3) = 0.5s$$

$$0 \le T \le T_2$$

$$D = 2.5\eta$$

$$Dx = 2.204$$

⇒ Dans le sens Y :

$$h_N = 27,3m$$

$$D = 25,4 m$$

$$C_T = 0.05$$

$$T = min(0.636 s; 0.488 s)$$

$$T_{v} = 0.488 sec$$

On a:
$$T_2(S_3) = 0.5s$$

$$0 \le T \le T_2$$

$$D = 2.5\eta$$

$$D_V = 2.204$$

■ Facteur qualité (Q) :

$$Q = 1 + \sum_{1}^{6} P_q$$

 P_{q} : valeur de pénalité.

Tableau IV.1 : Pénalité correspondante au critère

	Q	
	SENS X	SENS Y
Condition minimale des files porteuses	0,05	0,05
Redondance en plan	0	0
Régularité en plan	0	0
Régularité en élévation	0.05	0,05
Contrôle de la qualité des matériaux	0	0
Contrôle de la qualité d'exécution	0	0

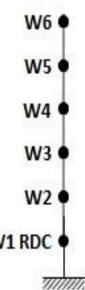
Vu que notre structure se situe dans le groupe d'usage 1A (Ouvrages d'importance vitale), On suppose que les matériaux utilisée sont contrôlé, et il est très probable qu'il doit y avoir un contrôle de la qualité de l'exécution des travaux.

$$\Rightarrow Qx = 1 + (0.05 \times 2) = 1.1$$

$$\Rightarrow Qy = 1 + (0.05 \times 2) = 1.1$$

IV.8.2 Période et participation massique :

Tableau IV.2: Périodes et pourcentage de participation massique


MODE	PERIODE	Ux	Uy	$\sum U_X$	$\sum U_Y$	ТҮРЕ
1	0.393573	62,247 %	0%	62,247%	0%	Translation
2	0.293443	0.069 %	0.002152%	62,316%	0.002188%	Rotation
3	0.226121	0%	63,892%	62,316%	63,894%	Translation
4	0.107766	15,874%	0%	78,19%	63,895%	/
5	0.084879	0.156%	0.008523%	78,347%	63,903%	/
6	0.076292	0.055%	0.453%	78,401%	64,356%	/
7	0.072507	0.044%	0.585%	78,446%	64,94%	/
8	0.06891	0%	15.881%	78,446%	80,822%	/
9	0.064999	0.012%	1.021%	78,458%	81,843%	/
10	0.059828	0.018%	0.019%	78,476%	81,862%	/
11	0.055078	0.039%	0.148%	78,514%	82,01%	/
12	0.051464	2.417%	0.03%	80,931%	82,04%	/
124	0.020269	0%	1.376%	84,928%	90,018%	/
162	0.016959	0.425%	0.134%	85,571%	92,116%	/
163	0.016901	4.588%	0.247%	90,159%	92,363%	/

IV.8.4 Poids total de la structure (W):

Pour le calcul des poids des différents niveaux de la structure on a le tableau suivant qui est donné par le logiciel SAP2000 :

Tableau IV.3: Poids des différents niveaux

Niveaux	Poids	Masse [T]
6	1863.04895307	189.913247
5	6164.26138575	628.365075
4	5812.02062199	592.458779
3	5596.25964876	570.464796
2	7515.11616147	766.066887
1	4441.2091965	452.722650
RDC	7889.56290009	804.236789

Le poids total de la structure : $W=\Sigma Wi=$ **39281.47886763** tonne.

IV.8.5 Détermination de l'effort tranchant :

$$V_X = \frac{0.15 \times 2.204 \times 1.1}{4} \times 39281.47886763$$
 $\rightarrow V_X = 3571.276 \ KN$

$$V_Y = \frac{0.15 \times 2.204 \times 1.1}{4} \times 39281.47886763$$
 $\rightarrow V_Y = 3571.276 \ KN$

<u>Chapitre 04</u> <u>Etude dynamique</u>

IV.8.6 Détermination de la force sismique de chaque niveau :

Les forces sismiques de chaque niveau sont données par la formule (4-11 du RPA99V2003) :

$$F_i = \frac{(V - F_t) \times W \times h_i}{\sum_{1}^{n} W_j \times h_j}$$

Avec F_t est la force concentrée au sommet de la structure, $\ F_t = 0.07 \times V \times T$

Tableau IV.4: Les forces sismiques de chaque niveau (pour R=4)

Niveaux	F _x [KN]	F _y [KN]
RDC	10.663	10.663
1	19.676	19.676
2	56.437	56.437
3	59.257	59.257
4	79.445	79.445
5	103.242	103.242
6	35.435	35.435

<u>Chapitre 04</u> <u>Etude dynamique</u>

IV.9 Méthode d'analyse modale spectrale :

IV.9.1 Spectre de réponse :

L'action sismique est représentée par le spectre de calcul suivant (RPA99V2003) :

$$(S_a/g) = \begin{cases} 1,25A \left[1 + (T/T1) \left(2,5\eta \left(Q/R\right) - 1\right)\right] & 0 \le T \le T1 \\ 2,5\eta \left(1,25A\right) \left(Q/R\right) & T1 \le T \le T2 \\ 2,5\eta \left(1,25A\right) \left(Q/R\right) \left(T2/T\right) 2/3 & T2 \le T \le 3,0 s \\ 2,5\eta \left(1,25A\right) \left(T2/3\right) 2/3 (3/T) 5/3 (Q/R) & T \ge 3,0 s \end{cases}$$

Avec:

• T : Période fondamentale de la structure

• T1, T2 : Périodes caractéristiques associés à la catégorie de site (S3)

• Sa : Accélération spectrale

• g : Accélération de la pesanteur = 9,81m /s²

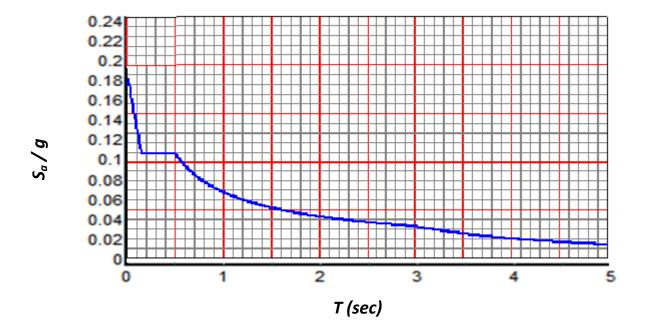


Figure IV.5 : La courbe du spectre de réponse

IV.10 Résultante des forces sismiques de calcul :

D'après le RPA 99 V2003 (article 4.3.6), la résultante des forces sismiques à la base V_t obtenue par la combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si V_t < 80% V_s , il faudra augmenter tous les paramètres de la réponse (forces, déplacements, moments,...) dans le rapport 0,8 V_s /Vt.

Après analyse, on obtient les résultats suivants :

Tableau IV.5: Comparaison entre l'effort statique et dynamique

	V statique (KN)	V dynamique (KN)		
L'effort tranchant à la base	Vx	Vy	Vx	Vy	
2 chart transmitted to buse	3571.276	3571.276	3280.956	3433.265	

Selon X:

V dynamique = 3280.956 KN > 80% V statique = $0.8 \times 3571.276 = 2857.0208$ KN Selon Y :

V dynamique = $2866.809 \text{ KN} > 80\% \text{ V statique} = 0.8 \times 3571.276 = 2857.0208 \text{ KN}$

D'après les résultats précédents on remarque que la condition :

« V dynamique > 80% V statique » est vérifié.

Chapitre 05: Etude des éléments structuraux

V.1 Introduction:

La structure est un ensemble tridimensionnel, des poteaux, poutres et voiles, liés rigidement et capables de reprendre la totalité des forces verticales et horizontales (ossature auto stable).

Pour pouvoir ferrailler les éléments de la structure, on a utilisé l'outil informatique à travers le logiciel d'analyse des structures (SAP2000), qui permet la détermination des différentes sollicitations pour chaque section des éléments sous les différentes combinaisons de calcul.

V.2 Les poteaux :

Il est recommandé de calculer le ferraillage de trois types de poteaux, considérés comme les plus sollicités et de généraliser le ferraillage trouvé pour ceux d'angle et de rive. L'étude se fera manuellement sur le poteau central pour les cas suivant :

- Le poteau soumis à l'effort normal maximum et le moment maximum (N_{max}, M_{max}).
- Le poteau soumis à l'effort normal maximum et le moment minimum (N_{max}, M_{min}).
- Le poteau soumis à l'effort normal minimum et le moment maximum (N_{min}, M_{max}).

V.2.1 Combinaisons spécifiques de calcul :

Combinaison fondamentale (CBA93/EUROCODE2)
$$\rightarrow$$
 1,35G + 1,5Q
Combinaisons rare (CBA93/EUROCODE2) \rightarrow G + Q
Combinaison accidentelle (RPA 99V2003) \rightarrow
$$\begin{cases} G + Q \pm 1,2E \\ 0,8G \pm E \end{cases}$$

V.2.2 Vérification spécifique sous sollicitations normales (coffrage de poteau) :

Avant de calculer le ferraillage il faut d'abord faire la vérification prescrite par le RPA 99, dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme, l'effort normal de compression est limité par la condition suivante :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.3 \rightarrow \text{RPA 99V2003, P64, §7. 4. 3. 1}$$

Avec:

- N_d: L'effort normal de calcul s'exerçant sur une section de béton.
- B_c: Section du poteau.
- F_{c28}: La résistance caractéristique du béton à 28 jours.

La Vérification des poteaux sous sollicitations normales pour une combinaison sismique (G+Q+ 1.2Ex) est représenté dans le tableau suivant :

Tableau V.1: Vérification des poteaux sous sollicitations normales

Poteaux	N _d [kN]	B _c [cm ²]	F _{c28} [mPa]	$\nu \leq 0,3$	Observation
P1 (S-S)	1900,502	60x60	25	0,21	C.V
P2 (RDC)	1403,908	60x60	25	0,156	C.V
P3 (1 ^{er})	713,358	55x55	25	0,094	C.V
P4 (2 ^{eme})	502,937	45x45	25	0,099	C.V
P5 (3 ^{eme})	372,599	40x40	25	0,093	C.V
P6 (4 ^{eme})	192,626	30x30	25	0,086	C.V

V.2.3 Calcul du ferraillage longitudinal:

D'après le RPA 99 (article 7.5.2.1) :

- Les armatures longitudinales doivent être à haute adhérence droites et sans crochets
- Leur pourcentage minimale sera de 0.7 % (zone I).
- Leur pourcentage maximal sera de 4% en zone courante et de 6% en zone de recouvrement.
- Le diamètre minimum est de 12 mm.
- La longueur minimale de recouvrement est de 40 Φ (zone I)
- La distance entre les barres verticales dans une surface du poteau ne doit pas dépasser 25 cm (zone I).
- Le moment max suivant la combinaison : G+Q+1.2E.

60

60

On va prendre un seul type de poteau et on fait le calcul en flexion composée et les autres sont calculés par le SAP 2000.

- ⇒ Soit le poteau de Sous-Sol (60 x 60) :
- 1^{er} cas: Le poteau soumis à l'effort normal maximum et le moment maximum (N_{max} , M_{max}).

Tableau V.2: Sollicitation de poteaux suivant le couple (N_{max}, M_{max})

Poteau	N (kN)	M (kN.m)
60 x 60	2516,148	53,2201

N = 2516,148 KN.

M = 53,528 KN.m

$$b = 0.60 \text{ m}$$
 ; $d = 0.9.h = 0.54 \text{ m}$; $d' = 0.1.h = 0.06 \text{ m}$.

$$e = \frac{M}{N} = \frac{53,528 \times 10^{-3}}{2516,148 \times 10^{-3}} \implies e = 0,0213 \text{ m}.$$

$$e_a = e + \frac{h}{2} - d' = 2,13 + 30 - 6 \implies e_a = 26,13 \text{ cm}.$$

• Moment fictif (M_a):

$$M_a = N \times e_a = 2516,148 \times 10^{-3} \times 0,2613 \implies M_a = 0,657 \text{ mN.m}$$

$$\begin{cases} Nu \ (d - d') - Ma = 0,551 \\ \left(0,337 - 0,81 \frac{d'}{d}\right) \text{b.} \ d^2. \ f_{bc} = 0,612 \end{cases} \rightarrow 0,551 < 0,612$$

$$ightharpoonup$$
 N (d – d') – M_a \leq $\left(0.337-0.81\frac{\mathrm{d'}}{\mathrm{h}}\right)$ b. d². f_{bc} \rightarrow C'est vérifié.

Donc la section est partiellement comprimée. $A_{sc} = 0$.

Moment réduit μ :

$$\mu = \frac{M}{b \times d^2 \times f_{bc}} = \frac{0.657}{0.6 \times 0.54^2 \times 14.17} = 0.265$$

$$\Rightarrow \mu = 0,265 < 0,392 \qquad \Rightarrow \text{S.S.A}$$

$$\alpha = 0,39 \quad ; \quad Z = 0,46 \text{ m.}$$

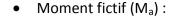
$$A_{st} = \frac{1}{\sigma_{st}} \left[\frac{M_a}{Z} - N \right] \quad \text{d'où} \quad \sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1} = 400 \text{ mPa}$$

$$A_{st} = \frac{1}{400} \left[\frac{0,657}{0.46} - 2516,148.10^{-3} \right] = -27,197 \text{ cm}^2.$$

• 2^{eme} cas : Le poteau soumis à l'effort normal maximum et le moment minimum (N_{max} , M_{min}).

Tableau V.3: Sollicitation de poteaux suivant le couple (N_{max}, M_{min})

Poteau	N (kN)	M (kN.m)
60 x 60	1165,005	0,1153


N = 1165,005 KN.

M = 0,1153 KN.m

$$b = 0.60 \text{ m}$$
 ; $d = 0.9.h = 0.54 \text{ m}$; $d' = 0.1.h = 0.06 \text{ m}$.

$$e = \frac{M}{N} = \frac{0,1153 \times 10^{-3}}{1165,005 \times 10^{-3}} \Longrightarrow e = 0,0000989 \text{ m}.$$

$$e_a = e + \frac{h}{2} - d' = 0,00989 + 30 - 6 \implies e_a = 24,00989 \text{ cm.}$$

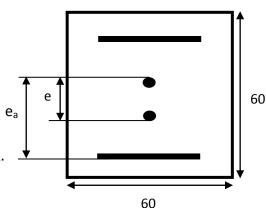
$$M_a = N \times e_a = 1165,005 \times 10^{-3} \times 0,2401 \implies M_a = 0,279 \text{ mN.m}$$

$$\begin{cases} Nu \ (d - d') - Ma = 0,280 \\ \left(0,337 - 0,81 \frac{d'}{d}\right) \text{b.} \ d^2. \ f_{bc} = 0,612 \end{cases} \rightarrow 0,280 < 0,612$$

$$ightharpoonup$$
 N (d – d') – M_a \leq $\left(0.337-0.81\frac{d'}{h}\right)$ b. d^2 . $f_{bc} \rightarrow$ C'est vérifié.

Donc la section est partiellement comprimée. A_{sc} = 0.

Moment réduit μ :


$$\mu = \frac{M}{b \times d^2 \times f_{bc}} = \frac{0.279}{0.6 \times 0.54^2 \times 14.17} = 0.113$$

$$\Rightarrow \mu = 0.113 < 0.392$$

$$\alpha = 0.15$$
 ; $Z = 0.51$ m.

$$A_{\rm st} = \frac{1}{\sigma_{\rm st}} \left[\frac{M_a}{Z} - N \right] \, d'ou \, \sigma_{\rm st} = \frac{f_e}{\gamma_{\rm s}} = \frac{400}{1} = 400 \, {\rm mPa}$$
 (Cas accidentel).

$$A_{st} = \frac{1}{400} \left[\frac{0,279}{0,51} - 1165,005.10^{-3} \right] = -15,489 \ cm^2.$$

60

60

• 3^{eme} cas: Le poteau soumis à l'effort normal minimum et le moment maximum (N_{min} , M_{max}).

Tableau V.4: Sollicitation de poteaux suivant le couple (N_{min}, M_{max})

Poteau	N (kN)	M (kN.m)
60 x 60	1900,502	36,2147


N = 1900,502 KN.

M = 36,2147 KN.m

$$b = 0.60 \text{ m}$$
; $d = 0.9.h = 0.54 \text{ m}$; $d' = 0.1.h = 0.06 \text{ m}$.

$$e = \frac{M}{N} = \frac{36,2147 \times 10^{-3}}{1900,502 \times 10^{-3}} \implies e = 0,0190553 \text{ m}.$$

$$e_a = e + \frac{h}{2} - d' = 1,90553 + 30 - 6 \implies e_a = 25,90553 \text{ cm}.$$

$$M_a = N \times e_a = 1900,502 \times 10^{-3} \times 0,259 \implies M_a = 0,492 \text{ mN.m}$$

$$\begin{cases} Nu (d - d') - Ma = 0,604 \\ \left(0,337 - 0,81 \frac{d'}{d}\right) \text{b.} d^2. f_{bc} = 0,612 \end{cases} \rightarrow 0,604 < 0,612$$

$$ightharpoonup$$
 N (d – d') – M_a \leq $\left(0.337-0.81\frac{\mathrm{d'}}{\mathrm{h}}\right)$ b. d². f_{bc} \rightarrow C'est vérifié.

Donc la section est partiellement comprimée. $A_{sc} = 0$.

Moment réduit μ :

$$\mu = \frac{M}{b \times d^2 \times f_{bc}} = \frac{0.492}{0.6 \times 0.54^2 \times 14.17} = 0.198$$

$$\Rightarrow \mu = 0.198 < 0.392$$

$$\alpha = 0.279$$
 ; $Z = 0.48$ m.

$$A_{st} = \frac{1}{400} \left[\frac{0,492}{0,48} - 1900,502.10^{-3} \right] = -21,8875 cm^2.$$

Le béton seul a la possibilité de résister sans ferraillage.

Donc on va ferrailler avec A_{min} (RPA 99 V2003).

Les résultats du ferraillage longitudinal sont regroupés dans le tableau suivant :

Tableau V.5: Ferraillage des poteaux

Etage	Section	A _{min} RPA	A _{cal} (cm²)	Ferraillage longitudinal		Ferraillage transversal		
	(cm²)	(cm²)	SAP	Section (cm²)	choix	t (cm²)	t' (cm²)	choix
Sous-Sol	(60x60)	25,2	10,80	25,13	8T20	10	15	Ф8
RDC	(60x60)	25,2	10,80	25,13	8T20	10	15	Ф8
1 ^{er} étage	(55x55)	21,175	9,075	25.13	8T20	10	15	Ф8
2 ^{éme} étages	(45x45)	14,175	15,519	16,08	8T16	10	15	Ф8
3 ^{éme} étages	(40x40)	11,2	20,653	25.13	8T20	10	15	Ф8
4 ^{éme} étages	(30x30)	6,3	15,676	16,08	8T16	10	15	Ф8

V.2.4 Calcul du ferraillage transversale :(RPA2003)

Les armatures transversales des poteaux sont calculées à l'aide de la formule :

$$\frac{A_t}{t} = \frac{\rho_a \times V_u}{h_1 \times f_e}$$

- Vu : effort tranchant de calcul
- h₁: hauteur total de la section brute.
- $ullet f_e$: contrainte limite élastique de l'acier d'armature transversale.
- ρ_a:coefficient correcteur (tient compte de la rupture.)

$$\begin{cases} \rho_a=\text{2,5 si l'\'elancement g\'eom\'etrique }\lambda_g\geq 5\\ \\ \rho_a=\text{3,75 si l'\'elancement g\'eom\'etrique }\lambda_g<5 \end{cases}$$

• $f_e=400$ mPa.

Les armatures transversales des poteaux sont calculées à l'aide de la formule suivante :

$$\emptyset_t \leq min\left(\frac{h}{35}, \frac{b}{10}, \emptyset_l\right) \rightarrow CBA 93$$

Avec

- \emptyset_l : le diamètre minimal des armatures longitudinales du poteau.
- t : espacement des armatures transversales : (Zone I)

$$\begin{cases} t \leq \min(10\emptyset, 15cm) \ en \ zone \ nodale. \\ t' \leq 15\emptyset \ en \ zone \ courante \end{cases}$$

Donc:

$$\begin{cases} t \leq Min(12; 15cm) \\ t' \leq 18cm \end{cases} \Rightarrow \begin{cases} t = 10 \text{ cm} \\ t' = 15 \text{ cm} \end{cases}$$

La longueur minimale de recouvrement est de 40 Φ (zone I) \rightarrow **RPA99**

$$\Phi$$
 = 2,0 cm \rightarrow L_r = 2,0 x 40 = 80 cm ,alors on adopte: L_r = 80cm.
 Φ = 1,6 cm \rightarrow L_r = 1,6 x 40 = 64 cm ,alors on adopte: L_r = 65cm.

Les résultats du ferraillage transversal sont regroupés dans le tableau suivant :

Tableau V.6: La section des armatures transversal des poteaux

Etage	h (cm)	V _{u (} kN)	$\lambda_{ m g}$	ρ a	f _{e (} mPa)	t (cm)	t' (cm)	A _{tcalculer} (cm ²)
Sous-Sol	60	118,824	2,263	3,75	235	10	15	0,316
RDC	60	6,503	5,15	2,5	235	10	15	0,115
1 ^{ier} étage	55	23,117	5,63	2,5	235	10	15	0,447
2 ^{éme} étages	45	33,150	6,87	2,5	235	10	15	0.783
3 ^{éme} étages	40	22,498	7,735	2,5	235	10	15	0,598
4 éme étages	30	7,247	12,65	2,5	235	10	15	0,256

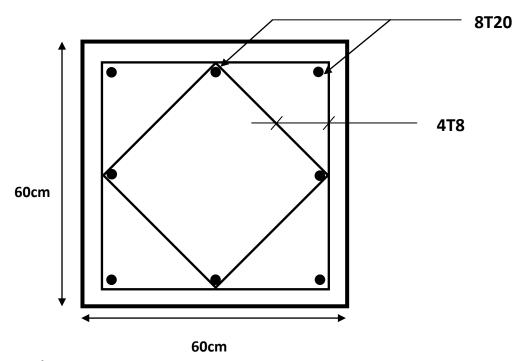


Figure V.1: Ferraillage des poteaux de sous-sol (60x60)

V.3 Les poutres :

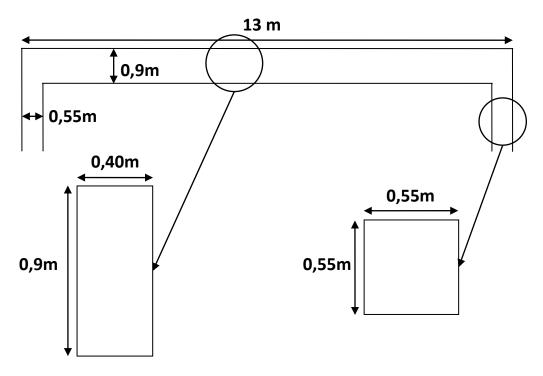


Figure V.2: Poutre principale (90x40)

V.3.1 Introduction:

Les poutres sont des éléments horizontaux qui ont pour rôle de transmettre les charges apportées par les dalles aux poteaux.

Le calcul se fera en flexion simple d'après les règlements du CBA93, on se rapportera aussi au RPA 99 modifie 2003 pour la vérification.

Les travées et les appuis des poutres sont sollicitées défavorablement par :

• selon CBA93 \rightarrow E.L.U: 1,35 G +1,5 Q

• selon le R.P.A 99 \rightarrow E.L.A: G+Q ±E; 0.8G ±E

V.3.2 Recommandation du RPA99:

- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0,5% en toute section.
- Le pourcentage total maximum des aciers longitudinaux est de :

{ 4% en zone courante 6% en zone de recouvrement

- Les poutres supportant de faibles charges verticales et sollicitées principalement par les forces latérales sismiques doivent avoir des armatures symétriques avec une section en travée au moins égale à la moitié de la section sur appui.
- La longueur minimale de recouvrement est de : 40ϕ en zone I.

V.3.3 Exemple d'étude de la poutre principale :

On va prendre comme exemple de calcul la poutre principale intermédiaire situé au plancher haut du RDC.

Calcul des armatures longitudinales :

Section [cm ²]	ELU		ELS		
	M _t [kN.m]	M _a [kN.m]	M _{st} [kN.m]	M _{sa} [kN.m]	
40x90	542,298	-835,79	380,385	-586,59	

Tableau V.7 : Sollicitations de la poutre principale

1- Ferraillage en travée

- ELU

$$\mu_u = \frac{M_u}{b \times d^2 \times f_{bc}} = \frac{542,298 \times 10^{-3}}{0.4 \times 0,81^2 \times 14.17}$$

$$\rightarrow \mu_u = 0.145$$

 $\rightarrow \mu_u < 0.392 \rightarrow S.S.A$: les armatures de compression ne sont pas nécessaires.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 1,25(1 - \sqrt{1 - 2 \times 0.145})$$

 $\rightarrow \alpha = 0,196$

$$Z = d(1 - 0.4\alpha) = 0.81(1 - 0.4 \times 0.196)$$

 $\rightarrow Z = 0.746$

$$A_{st} = \frac{M_U}{Z \times \sigma_{ST}} = \frac{542,298 \times 10^{-3}}{0,746 \times 348}$$

$$\to A_{st} = 20,88cm^2$$

⇒ Condition de non fragilité

$$A_{st} \ge \max\left(\frac{b \times h}{1000}; 0,23 \times b \times d \times \frac{f_{t28}}{f_e}\right) cm^2 \to A_{st} \ge \max\left(3,6cm^2; 3,9123cm^2\right)$$

 $\to A_{st} = 20,88cm^2 \ge 3,9123cm^2 \to V\acute{e}rifi\acute{e}e.$

- ELS:

Le moment maximum en travée M_{t max} = 380,385 kN.m

Il faut vérifier que :
$$\alpha = \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$

Avec:

$$\gamma = \frac{M_u}{M_s} \to \gamma = \frac{542,298}{380,385} = 1,42$$

$$\to \frac{1,42 - 1}{2} + \frac{25}{100} = 0,46$$

$$\to \alpha = 0.196 \le 0.46 \to V\acute{e}rifi\acute{e}e.$$

Donc il n'est pas nécessaire de vérifier la contrainte du béton $\Rightarrow \sigma_{bc} < \sigma_{bc}$

L'armature calculée à l'ELU convient pour l'ELS.

a- Armatures minimales

→
$$A_{min} = 0.5\%(b \times h)$$
 → **RPA99 V2003**; page **66**

$$\rightarrow A_{min} = 0.005(40 \times 90) = 18 \ cm^2$$

b- Armatures maximales:

Selon RPA99 V2003, page 62:

$$\begin{cases} A_{max} = 4\%(b \times h) \rightarrow zone \ courante \\ A_{max} = 6\%(b \times h) \rightarrow zone \ de \ recouvrement \end{cases}$$

$$\rightarrow A_{max} = 4\%(40 \times 90) = 144cm^2$$
 (zone courante)

$$\rightarrow A_{max} = 6\%(40 \times 90) = 216cm^2$$
 (zone de recouvrement)

c- Choix des Armatures :

Le choix des armatures en travée : $A_{st} \Rightarrow$ 7T20 de section 21,99 cm².

2- Ferraillage en appui:

- ELU:

$$\mu_u = \frac{M_u}{b \times d^2 \times f_{bc}} = \frac{835,79 \times 10^{-3}}{0.4 \times 0.81^2 \times 14.17}$$

$$\rightarrow \mu_u = 0.224$$

 $\rightarrow \mu_u < 0.392 \rightarrow S.S.A$: les armatures de compression ne sont pas nécessaires.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 1,25(1 - \sqrt{1 - 2 \times 0.224})$$
 $\rightarrow \alpha = 0,321$

$$Z = d(1 - 0.4\alpha) = 0.81(1 - 0.4 \times 0.321)$$

 $\rightarrow Z = 0.706$

$$A_{st} = \frac{M_U}{Z \times \sigma_{ST}} = \frac{542,298 \times 10^{-3}}{0,706 \times 348}$$

$$\to A_{st} = 22,07cm^2$$

⇒ Condition de non fragilité :

$$A_{st} \ge \max\left(\frac{b \times h}{1000}; 0,23 \times b \times d \times \frac{f_{t28}}{f_e}\right) cm^2 \to A_{st} \ge \max\left(3,6cm^2; 3,9123cm^2\right)$$

 $\to A_{st} = 22,07cm^2 \ge 3,9123cm^2 \to V\acute{e}rifi\acute{e}e.$

- ELS:

Le moment maximum en travée M_{tmax} = 586,59 kN.m

Il faut vérifier que :
$$\alpha = \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$

Avec:

$$\gamma = \frac{M_u}{M_s} \to \gamma = \frac{835,79}{586,59} = 1,42$$

$$\to \frac{1,42 - 1}{2} + \frac{25}{100} = 0,46$$

$$\to \alpha = 0,321 \le 0,46 \to V\acute{e}rifi\acute{e}e.$$

Donc il n'est pas nécessaire de vérifier la contrainte du béton $\to \sigma_{bc} < \overline{\sigma}_{bc}$ L'armature calculée à l'**ELU** convient pour l'**ELS**.

a- Armatures minimales :

→
$$A_{min} = 0.5\%(b \times h)$$
 → **RPA99 V2003**; page **66**

$$\rightarrow A_{min} = 0.005(40 \times 90) = 18 \ cm^2$$

b- Choix des armatures :

Le choix des armatures en appui : $A_{st} \Rightarrow$ **5T25** de section 24,54 cm².

c- L'espacement des armatures transversales

D'après le RPA 99 :

$$\begin{cases} S_t \leq \min\left(\frac{h}{4}, 12\emptyset l \ min, 30cm\right) \rightarrow Zone \ nodale \\ \\ S_t \leq \frac{h}{2} \rightarrow Zone \ courante \end{cases}$$

Ø: Le diamètre minimal des armatures longitudinales de la poutre considérée.

Tableau V.8: L'espacement des armatures transversales

Poutre	s _t ≤ calculé	≤ calculé s _t choisie s		s _t choisie	
principale	(zone nodale)	(zone nodale)	(zone courante)	(zone courante)	
(40x90)	22,5	20	45	40	
(40x50)	12,5	10	25	20	

d-Diamètre des armatures transversales :

$$\phi_t \le \min \left(\frac{h}{35}, \frac{b}{10}, \phi \min\right)$$

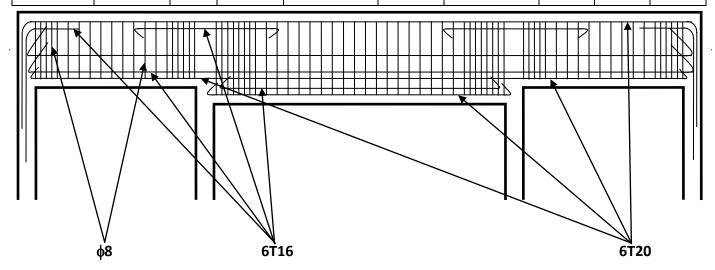
on prend $\phi_t = \phi 8$

Recouvrement:

La longueur minimale de recouvrement est de 40 Φ (zone I) → RPA.99

$$\Phi = 2.5 \text{ cm} \rightarrow \text{Lr} = 2.5 \text{ x} 40 = 100 \text{ cm}$$
, alors on adopte : $\text{Lr} = 100 \text{cm}$.

$$\Phi = 1.4 \text{ cm} \rightarrow \text{Lr} = 2 \times 40 = 80 \text{ cm}$$
, alors on adopte : $\text{Lr} = 80 \text{cm}$.


La jonction par recouvrement doit être faite si possible, à l'extérieure des zones nodales (zones critiques).

Les longueurs à prendre en considération pour chaque barre sont :

V.3.4 Récapitulatif :

Tableau V.9 : Ferraillage de poutre principale (40x90)

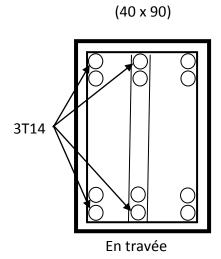

poutres	niveau	Ferraillage longitudinal					Ferraillage transversal		
		A _{min} cm ²	Travée		Appui		ф mm	S _t (ZN)	S _t (ZC)
			A _{cal} cm ²	choix	A _{cal} cm ²	Choix	Ψιιιιι	-(()	3[(20)
	Sous-Sol	18	25,423	6T16+6T20	28,569	6T16+6T20	8	20	40
Poutre Principale (40x90)	RDC	18	15,56	6T12+6T16	14,059	6T12+6T16	8	20	40
	1 ^{er} étage	18	26,122	6T16+6T20	27,455	6T16+6T20	8	20	40
	2 ^{éme} étages	18	26,085	6T16+6T20	27,616	6T16+6T20	8	20	40
	3 ^{éme} étages	18	26,144	6T16+6T20	27,072	6T16+6T20	8	20	40
	4 ^{éme} étages	18	14,981	5T20	19,264	6T20	8	20	40
	5 ^{éme} étages	18	15,82	6T12+6T16	15,03	6T12+6T16	8	20	40



Figure V.3 : Ferraillage poutre principale (90x40)

Tableau V.10 : Ferraillage de poutre secondaire (30x50)

	niveau	Ferraillage longitudinal					Ferraillage transversal		
poutres		A _{min}	Travée		Appui		ф mm	S _t (ZN)	S _t (ZC)
			A _{cal} cm ²	choix	A _{cal} cm ²	Choix	Ψ	-((=,	
	Sous-Sol	7,5	3,32	3T12+3T14	2,43	3T12+3T14	8	10	20
	RDC	7,5	6,78	3T12+3T14	10,27	3T14+3T16	8	10	20
Poutre	1 ^{er} étage	7,5	5,50	3T12+3T14	11,17	3T16+2T20	8	10	20
secondaire (30x50)	2 éme étages	7,5	4,91	3T12+3T14	10,20	3T14+3T16	8	10	20
(SUNSO)	3 éme étages	7,5	3,97	3T12+3T14	9,48	3T14+3T16	8	10	20
	4 éme étages	7,5	3,59	3T12+3T14	8.08	3T14+3T16	8	10	20
	5 éme étages	7,5	1,74	3T12+3T14	3,25	3T12+3T14	8	10	20

(30 x 50)

Figure V.4: Ferraillage des poutres secondaires (Sous-sol 30x50)

V.4 Les voiles :

V.4.1 Introduction:

Le voile est un élément structural de contreventement qui doit reprendre les forces horizontales dues au vent "action climatique" ou aux séismes "action géologique", soumis à des forces verticales et horizontales. Le ferraillage des voiles consiste à déterminer les armatures en flexion composée sous l'action des sollicitations verticales dues aux charges permanentes (G) et aux surcharges d'exploitation (Q), ainsi que sous l'action des sollicitations dues aux séismes.

V.4.2 Conception:

Il faut que les voiles soient placés de telle sorte que l'excentricité soit minimum (TORSION). Les voiles ne doivent pas être trop éloignés (flexibilité du plancher)

L'emplacement des voiles ne doit pas déséquilibrer la structure (il faut que les rigidités dans les deux directions soient très proches).

V.4.3 Calcul des voiles :

Pour le ferraillage des voiles, il faut satisfaire certaines conditions imposées par le R.P.A.99V2003 :

- Pourcentage minimum d'armatures verticales et horizontales :
 - ⇒ Globalement dans la section du voile 0,15%.
 - ⇒ En zone courante 0,10%.
- L'espacement des barres horizontales et verticales : S < min (15 a ; 30 cm).
- Les longueurs des recouvrements doivent être égales :
 - \Rightarrow 40Ø \rightarrow pour les barres situées dans les zones où le recouvrement du signe des efforts est possible.
 - ⇒ 20Ø → pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons d'actions.

V.4.4 Vérification des contraintes tangentielles :

Le calcul se fait en flexion composé d'une bande de section (0,2x1ml).

Il faut vérifier la condition suivante :

$$\tau_u \leq \overline{\tau_u} = 0.2 \text{ fc28 } \rightarrow \text{l'article 7.7.2 RPA 99}$$

Avec:

$$\tau_u = \frac{V_u}{b_0 d}$$

On vérifie avec l'effort tranchant maximum calculé avec l'ELU et L'ELA

Tableau V.11 Vérification de la contrainte

	V _{max} (mN/ml)	τ _u (mPa)	_ τ _u (mPa)	observation
Voile 25 cm	0,251844	1,119307	5	cv

V.4.5 Détermination des sollicitations :

Les voiles seront calculés dans les deux directions horizontale et verticale, à la flexion composée sous un effort normal de compression (F) et un moment de flexion (M), tirés à partir des fichiers résultats du Sap2000.

Combinaisons:

$$\begin{cases}
1,35 G + 1,5 Q \\
G + Q \pm 1,2Ex \\
G + O + 1.2Ev
\end{cases}$$

Tableau V.12: Sollicitations dans les voiles

combinaisons	F11 (kN)	M11 (kN.m)	F22 (kN)	M22 (kN.m)
1,35 G +1,5 Q	1385,599	1,094	1822,001	9,801
G+Q±1, 2Ex	970,310	0,716	1356,608	6,7476
G+Q±1, 2Ey	1047,028	0,7359	1324,032	6,8488

V.4.6 Détermination du ferraillage :

Le ferraillage se calcul de la même manière que les poteaux en flexion composé d'une bande de section de 0,25x1ml. Il est fait par le logiciel « SOCOTEC »

Espacement

```
Ferraillage vertical \rightarrow S_t \leq min(1.5a; 30cm)
Ferraillage horizontal \rightarrow St \leq min (15e; 30)
```

Tableau V.13: Ferraillage des voiles

Ferraillage		Min RPA		A _{st} calculé (cm²/ml)	A _{st} choisi (cm²/ml)		St (cm)
VOILE	Vertical(Av)	0,007(b.h)	17,5 cm²/ml	19.77	20.11	10T16	15
25cm	Horizontal(Ah)	A _V /4	4,375 cm²/ml	11.01	11.31	10T12	20

Chapitre 06:

Etude de l'infrastructure

VI.1 Introduction:

Les fondations d'un ouvrage assurent la transmission et la répartition des charges (poids propre, surcharges climatiques et d'utilisation) de cet ouvrage sur le sol. Le mode de fondation sera établi suivant la capacité portante du sol. Soit le sol en place a des qualités suffisantes pour qu'on puisse y fonder l'ouvrage, soit ses qualités sont médiocres et il faut alors le renforcer.

VI.2 Stabilité des fondations :

Les massifs de fondations doivent être en équilibre sous l'action :

- Des sollicitations dues à la superstructure qui sont : des forces verticales ascendantes ou descendantes, des forces obliques, des forces horizontales et des moments de flexion ou de torsion.
- Des sollicitations dues au sol qui sont : des sollicitations verticales ascendantes ou descendantes et des forces obliques (adhérence, remblais...).

Les massifs de fondation doivent être stables ; c'est-à-dire qu'ils ne doivent pas donner lieu à des tassements que si ces derniers permettent la tenue de l'ouvrage. Des tassements uniformes sont admissibles sous certaines limites mais des tassements différentiels sont rarement compatibles avec la tenue de l'ouvrage.

Il est donc nécessaire d'adapter le type de fondation et la structure à la nature du sol qui va supporter l'ouvrage. L'étude géologique, et géotechnique a pour but de préciser le type, le nombre et la dimension des fondations nécessaires pour fonder un ouvrage donné sur un sol donné.

VI.3 Le choix du type de fondation :

Le choix de type de fondation dépend du :

- Type d'ouvrage à construire.
- La nature et l'homogénéité du bon sol.
- La capacité portante du terrain de fondation.
- La charge totale transmise au sol.
- La raison économique.
- La facilité de réalisation.

Suivant le rapport géotechnique, le LTPO recommande :

- Passer par des fondations superficielles sur semelles filantes, afin d'éviter les tassements différentiels.
- Les faire descendre à une profondeur d'ancrage de 1,50m
- Adopter un taux de travail de 1,70 bar.

VI.4 Etude des semelles filantes :

VI.4.1 Introduction:

Le recours à des semelles filantes se fait quand les poteaux, et par conséquent les semelles dans une direction donnée sont proches les unes des autres, de façon à ce que la somme des contraintes des deux semelles au niveau du point d'interface dépasse la contrainte du sol.

On peut dire que la semelle continue sous poteaux travaille sous des contraintes linéaires réparties, pour cela elle doit être suffisamment rigide pour ne pas se comporter comme une poutre sur un sol élastique, on doit donc vérifier la longueur élastique « L_e » telle que :

$$L_e = \left(\frac{4EI}{K_s B}\right)^{\frac{1}{4}}$$

Avec:

- E: module d'élasticité du béton = 21000 mPa
- K_s : coefficient de raideur du sol = 34,6 mN/m3
- I : moment d'inertie de la semelle
- B: largeur de la semelle
- a : le coté du poteau
- h_t : hauteur de la semelle, d'après le BAEL91 $\rightarrow \frac{L}{9} \le h_t \le \frac{L}{6}$
- l: longueur maximale entre axe des poteaux

$$\rightarrow$$
 Si $L_{max} \leq \frac{\pi}{2} L_e$:

Le calcul se fera avec une répartition linéaire et il n'y a pas lieu de faire un calcul relatif à la poutre sur un sol élastique.

$$\rightarrow$$
 Si $L_{max} > \frac{\pi}{2} L_e$:

La répartition des contraintes n'est pas linéaire et le calcul se fera relativement à la théorie de la poutre sur un sol élastique.

VI.4.2 Dimensionnement de la semelle filante :

La largeur B de la semelle continue doit vérifier la condition suivante :

$$B \ge \frac{N_T}{L \times \overline{\sigma}_{sol}}$$

Avec:

- N_T : effort transmis par l'ensemble des poteaux liés par la semelle.
- L: longueur entre axes
- $\overline{\sigma}_{sol}$: La contrainte admissible du sol à court terme ($\overline{\sigma}_{sol}=1.7~bars$)
- La hauteur de la semelle : $d \ge \frac{B-b}{4}$; $h_t = d + 5$ cm

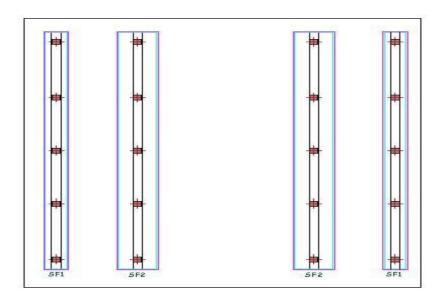


Figure VI.1: Disposition des semelles suivant Ly

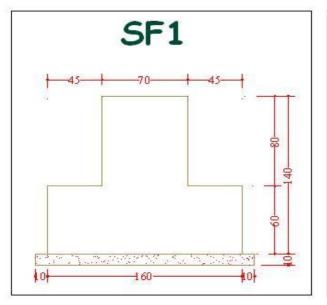

Les résultats du dimensionnement des semelles continues et la vérification de la longueur élastique sont représentés dans les deux tableaux suivants :

Tableau VI.1: Dimensionnement des semelles

Semelle	NT [kN]	L [m]	B _{calc} [m]	B[m]	h _t [cm]
SF1	5129,44	27	1,11	1,60	1,40
SF2	12322,34	27	2,68	2,80	1,50

Tableau VI.2 : Vérification de la longueur élastique

Semelle	I [m4]	L _e [m]	$rac{\pi}{2}L_e$ [m]	L _{max} [m]	Réaction linéaire
SF1	0,232	4,33	6,80	6,5	Oui
SF2	0,3507	4,18	6,57	6,5	

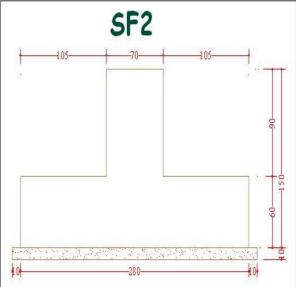
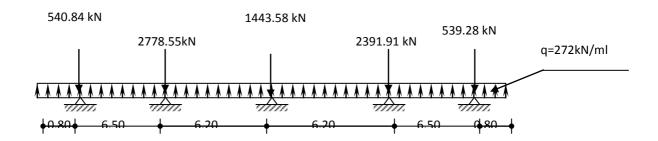



Figure VI.2: Dimensions des Semelles SF1 et SF2

VI.4.3 Calcul des armatures :

• Semelle filante SF1: On a une semelle filante sous cinq (05) poteaux.

Les résultats donnés par le SAP 2000

Tableau VI.3: Moment sur appuis et travée pour SF1

Travée	Longueur fictive [m]	Appuis	M _a [kN.m]	Travée	M _t [kN.m]
A – B	6,50	А	101,09	A – B	1007,73
B – C	6,20	В	1324,85	B – C	427,26
C – D	6,20	С	873,21	C – D	427,26
D – E	6,50	D	1324,85	D – E	1007,73
		E	101,09		

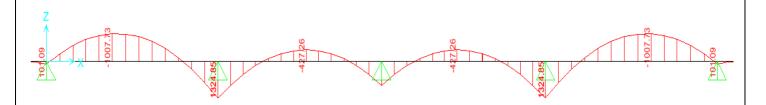
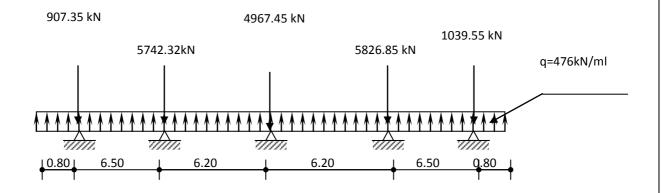



Figure VI.3: Diagramme des moments en [kN.m] pour SF1

■ Semelle filante SF2:

Les résultats donnés par le SAP 2000

Tableau VI.4: Moment sur appuis et travée pour SF2

Travée	Longueur fictive [m]	Appuis	M _a [kN.m]	Travée	M _t [kN.m]
A – B	6,50	А	180,68	A – B	1807,06
B – C	6,20	В	2352,84	B – C	763,38
C – D	6,20	С	1574,34	C – D	763,38
D – E	6,50	D	2352,84	D – E	1807,06
		E	180,68		

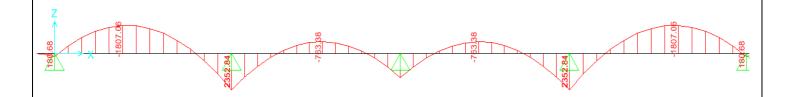


Figure VI.4: Diagramme des moments en [kN.m] pour SF2

Semelle	h [m]	B [m]	M _{t max} [kN.m]		M _{a max} [kN.m]		T _{max} [kN]
SF1	1,40	1,60	ELU	ELS	ELU	ELS	1214,946
			1007,73	746,47	1324,85	981,37	
SF2	1,50	2,80	ELU	ELS	ELU	ELS	2169,25
			1807,06	1338,56	2352,84	1742,84	

Tableau VI.5 : Sollicitations de la semelle

1- Ferraillage en travée :

• ELU:

 $M_{ut\,max} = 1007,73kN.\,m = 1007,73.\,10^{-3}\,mN.\,m$

Le moment equilibré par la table $\rightarrow M_{ut} = b \times h_0 \times f_{bc} \left(d - \frac{h_0}{2} \right)$

$$M_{ut} = 1.6 \times 0.6 \times 14.17 \left(1.26 - \frac{0.6}{2} \right)$$

 $M_{ut} = 13,06 \, mN. \, m$

On $a: M_t > M_{ut max}$

Donc: L'axe neutre est dans la table, et le calcul se fait en flexion simple avec une section en « T » (b_0xh).

$$\mu = \frac{M_{ut}}{b \times d^2 \times f_{bc}} = \frac{1007,73 \times 10^{-3}}{1,6 \times 1,26^2 \times 14,17} = 0,028$$

$$\rightarrow \mu = 0.028$$

 $\rightarrow \mu < 0.392 \rightarrow S.S.A$: les armatures de compression ne sont pas nécessaires.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 1,25(1 - \sqrt{1 - 2 \times 0,028})$$

$$\rightarrow \alpha = 0.04$$

$$Z = d(1 - 0.4\alpha) = 1.26(1 - 0.4 \times 0.04)$$

$$\rightarrow Z = 1,24$$

$$A_{st} = \frac{M_U}{Z \times \sigma_{ST}} = \frac{1007,73 \times 10^{-3}}{1,24 \times 348}$$

$$\rightarrow A_{st} = 23,35 \text{ cm}^2$$

ELS:

$$M_{st max} = 746,47 \ kN.m = 746,47.10^{-3} \ mN.m$$

Le moment equilibré par la table $\rightarrow M_{st} = b \times h_0 \times f_{bc} \left(d - \frac{h_0}{2} \right)$

$$M_{st} = 1.6 \times 0.6 \times 14.17 \left(1.26 - \frac{0.6}{2} \right)$$

$$M_{st} = 13,06 \, mN. \, m$$

On
$$a: M_t > M_{st max}$$

Donc: L'axe neutre est dans la table, et le calcul se fait en flexion simple avec une section en « T » (b_0xh).

$$Z = 0.93h = 0.93 \times 1.4$$

$$→$$
 Z = 1,3

 $\sigma_s = min(\frac{2}{3}F_e\,;\, 110\sqrt{\eta.\,F_{tj}})$: Fissuration préjudiciable.

$$\rightarrow \sigma_s = 201,63$$

$$A_{st} = \frac{M_U}{Z \times \sigma_{ST}} = \frac{746,47 \times 10^{-3}}{1,3 \times 201,63}$$

$$\rightarrow A_{st} = 28,47~cm^2$$

⇒ Condition de non fragilité :

$$A_{st} \geq \max \left(\frac{b \times h}{1000}; 0,23 \times b \times d \times \frac{f_{t28}}{f_e} \right) cm^2 \to A_{st} \geq \max \left(15,2cm^2; 10,65 \ cm^2 \right)$$

$$\rightarrow A_{st} = 28,47~cm^2 \ge 15,2~cm^2 \rightarrow V\acute{e}rifi\acute{e}e$$
.

Donc on choisit 15T16 de section 30,16 cm²

2- Ferraillage en appuis :

• ELU:

$$M_{ut\,max} = 1324,85 \, kN. \, m = 1324,85. \, 10^{-3} \, mN. \, m$$

Le moment equilibré par la table $\rightarrow M_{ut} = b \times h_0 \times f_{bc} \left(d - \frac{h_0}{2} \right)$

$$M_{ua} = b \times h_0 \times f_{bc} \left(d - \frac{h_0}{2} \right)$$

$$M_{ua} = 1.6 \times 0.6 \times 14.17 \left(1.26 - \frac{0.6}{2} \right)$$

 $M_{ut} = 13,06 \, mN. \, m$

On à: $M_a > M_{ua max}$

Donc: L'axe neutre est dans la table, et le calcul se fait en flexion simple avec une section en « T » (b_0xh).

$$\mu = \frac{M_{ut}}{b \times d^2 \times f_{hc}} = \frac{1324,85 \times 10^{-3}}{1,6 \times 1,26^2 \times 14,17} = 0,037$$

$$\rightarrow \mu = 0.037$$

 $\rightarrow \mu < 0.392 \rightarrow S.S.A$: les armatures de compression ne sont pas nécessaires.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 1,25(1 - \sqrt{1 - 2 \times 0,037})$$

$$\rightarrow \alpha = 0.047$$

$$Z = d(1 - 0.4\alpha) = 1.26(1 - 0.4 \times 0.047)$$

$$\rightarrow Z = 1.24$$

$$A_{st} = \frac{M_U}{Z \times \sigma_{ST}} = \frac{1324,85 \times 10^{-3}}{1,24 \times 348}$$

$$\rightarrow A_{st} = 30,70 \ cm^2$$

■ ELS:

 $M_{st max} = 981,37 \ kN.m = 981,37.10^{-3} \ mN.m$

Le moment equilibré par la table $\rightarrow M_{st} = b \times h_0 \times f_{bc} \left(d - \frac{h_0}{2} \right)$

$$M_{st} = 1.6 \times 0.6 \times 14.17 \left(1.26 - \frac{0.6}{2} \right) \rightarrow M_{st} = 13.06 \text{ mN.m}$$

On $a: M_t > M_{st max}$

Donc: L'axe neutre est dans la table, et le calcul se fait en flexion simple avec une section en « T » (b_0xh).

$$Z = 0.93h = 0.93 \times 1.4$$

$$\rightarrow Z = 1.3$$

 $\sigma_s = min(\frac{2}{3}F_e\,;\,110\sqrt{\eta.\,F_{tj}})$: Fissuration préjudiciable.

$$\rightarrow \sigma_s = 201,63$$

$$A_{st} = \frac{M_U}{Z \times \sigma_{ST}} = \frac{981,37 \times 10^{-3}}{1,3 \times 201,63}$$

$$\rightarrow A_{st} = 37,43 \ cm^2$$

⇒ Condition de non fragilité :

$$A_{st} \ge \max\left(\frac{b \times h}{1000}; 0,23 \times b \times d \times \frac{f_{t28}}{f_e}\right) cm^2 \to A_{st} \ge \max\left(15,2cm^2; 10,65 \ cm^2\right)$$

$$\rightarrow A_{st} = 37,43 \ cm^2 \ge 15,2 \ cm^2 \rightarrow V \acute{e}rifi\acute{e}e$$
.

Donc on choisit 12T20 de section 37,70 cm²

3- Armature de répartition :

$$A_r = \frac{A_{st}}{4} = \frac{28,14}{4} = 9,42 \text{ cm}^2$$

On choisit: 5T16 de section 10,05 cm²/ml.

4- Vérification au cisaillement :

D'après BAEL 91, on a :

$$\tau_u = \frac{T_{Umax}}{B \times H} = \frac{1214,946.10^{-3}}{1.6 \times 1.4} = 0,54 \, mPa$$

Pour des fissurations préjudiciable :

$$\overline{\tau_u} = \min\left(\frac{0.15f_{c28}}{\gamma_b}; 4 \, mPa\right) = 2.50 \, mPa$$

Donc: $\tau_u < \overline{\tau_u} \rightarrow V\acute{e}rifi\acute{e}e$.

5- Récapitulatif:

Tableau VI.6 : Ferraillage des différentes semelles filantes

Types	M [KN	u .m]	A _{st} calculé [cm ²]		A _{St} choisi [cm ²]		Tu	τ _u	Obs
M _{sa}	M _{sa}	M _{St}	Appuis	Travée	Appuis	Travée	[kN]	[mP]	
SF1	981,37	746,47	37,43	28,47	12T20	15T16	1214,95	0,54	CV
SF2	1742,84	1338,56	61,74	47,41	13T25	15T20	2169,25	0,52	CV

Semelle filante SF3 :

Au vue de l'importance de l'ouvrage ainsi que la grande portée entre poteaux qui atteint 13m, l'ajout de nouvelles semelles isolée sous poteaux en mi travée est devenue indispensable afin de minimisé la portée et diminuer la valeur de la flèche, cela suivant la figure ci-dessous :

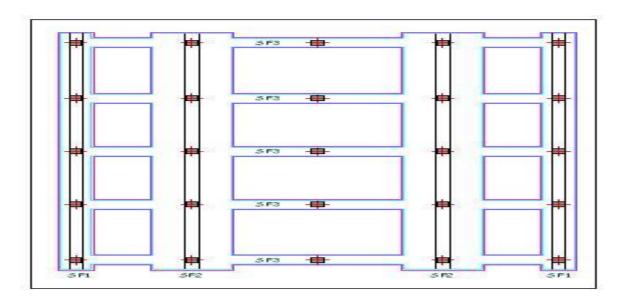
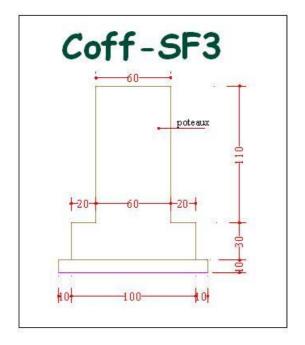
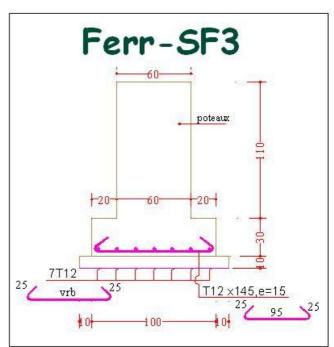




Figure VI.5: Disposition des semelles SF3

_Figure VI.6 : Dimensionnement et ferraillage forfaitaire de la semelle SF3

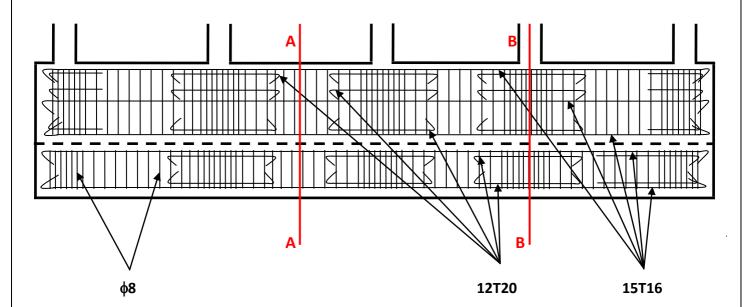


Figure VI.7: Ferraillage de la semelle SF1

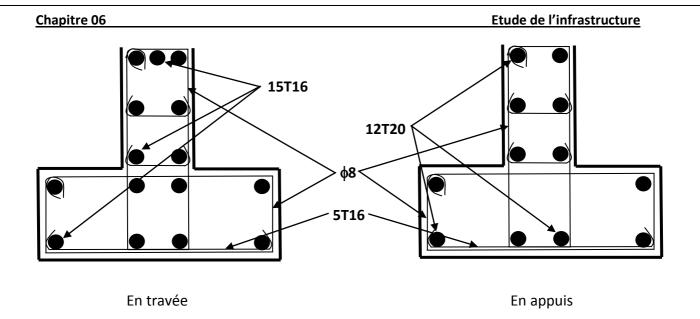


Figure VI.8 : Ferraillage coupe A-A

Figure VI.9: Ferraillage coupe B-B

Conclusion

Ce projet de fin d'étude, nous a permis de mettre en pratique toutes nos connaissances acquises durant notre cycle de formation d'ingénieur, d'approfondir nos connaissances en se basant sur les documents techniques et réglementaires, de mettre en application les méthodes de calcul récentes, et de mettre en évidence les principes de base qui doivent être prises dans la conception des structures.

Les récents développements de l'analyse numérique, dus aux grandes possibilités offerte par l'outil informatique, ont influencé profondément les méthodes de calcul, en effet on peut dire que l'emploi de logiciels de calcul est en train de bouleverser les méthodes forfaitaires qui n'étaient qu'approximatives.

Sous l'action sismique, les voiles reprennent dans un premier temps, grâce à leur rigidité, la presque totalité des charges latéral. Les déformations de la structure restent faibles. Après l'apparition de zones plastiques dans le voile ; une plus grande part de charge se reporte sur les portiques dont la ductilité autorise une importante dissipation d'énergie.

L'analyse sismique constitue une étape déterminante dans la conception parasismique des structures. En effet des modifications potentielles peuvent être apportées sur le système de contreventement lors de cette étape. Rappelons que dans notre cas, c'est une structure auto-stable qui a été pré dimensionné. Le renforcement de cette dernière (lors de l'étude sismique) nous a amené vers un bâtiment à contreventement mixte (voile + portique).

Les systèmes mixtes en portique et voiles sont donc caractérisés à la fois par une résistance élevée assurée par les voiles et par une bonne capacité à dissiper l'énergie due à la présence des portiques. Celle-ci n'entre en jeu d'une façon significative qu'après le dépassement de la limite d'élasticité des voiles. Toutefois, le système n'atteint le maximum de son efficacité que si la répartition des voiles est symétrique et uniforme et si les liaisons entre les voiles et les portiques ont une bonne ductilité.

Le but de cette étude et de chercher une meilleur configuration de la structure en matière de disposition des voiles en minimisant le nombre de ces derniers à travers les cas étudiés dans ce mémoire, qui ont fournie des résultats cohérents et significatifs pour confirmer ainsi les indications énoncées dans la littérature , en outre il convient de souligner que pour la conception parasismique, il est très important que l'ingénieur civil et l'architecte travaillent en étroite collaboration dès le début du projet pour minimiser toutes les contraintes, et arriver à une sécurité parasismique réaliser sans surcoût important (aspect économique).

Enfin, l'objectif principal de l'ingénieur concepteur est de réduire le risque sismique à un niveau minimal et de facilité l'exécution de l'ouvrage en adoptant une conception optimale qui satisfait les exigences architecturales et les exigences sécuritaires.

Références bibliographiques :

- [1] Pierre, MICHEL (1992) Architecture des hôpitaux. Paris : Techniques de l'Ingénieur. C 4 095. 23p.
- [2] Hammouda, D.; Aït-Hamadouche, N.; Afiane, M.; Bouhadef, A. Enquête nationale sur l'incidence et la prévalence des cancers , 2002. 74p
- [BAEL, 91] Béton Armé aux Etats Limites 91modifié 99, DTU associés, par Jean pierre mougin, deuxième Edition Eyrolles 2000.
- [DTR2.2,88] Charges Permanentes et Charges d'Exploitation, DTR B.C. 2.2, CGS 1988.
- [RPA,03] Règles parasismique Algérienne RPA99 version 2003 ; (Document technique réglementaire D.T.R-B.C.2.48), CGS, 2004.
- [Cours pratique de mécanique des sols], par jean COSTET, Guy SANGLERAT ; tome2.

Annexe:

(5) l Tableau 4.14 : Rapports de base portée/hauteur utile pour les éléments de béton armé sans effort normal de compression

Dans le cas de sections rectangulaires ou en Té, le respect des limites données dans le tableau suivant conduit à des coffrages satisfaisant le plus souvent les limites de déformation à respecter.

	Système	Système Isostatique structural F f		Continue F f		Porte à fau F	
Portée sur hauteur	Poutre	7	10	13	20	3	5
	Poutrelle	13	20	18	25	7	10
	Dalle 1 direction	20	30	25	35	10	15
	Dalle 2 directions	25	40	35	50	1	1
	Plancher-dalle	18	25	20	30	8	12

F : Forte contrainte $\rho > 1,5 \%$ f : Contraintes faibles $\rho < 0,5 \%$