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butions, qu’elles soient scientifiques ou non, ont été déterminantes et souvent es-
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Je ne remercierai sans doute jamais assez ma très chère mère, mon rayon de soleil,

pour sa tendresse, ses prières et son amour, merci.

iii
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General Introduction

Artificial Intelligence in medicine

Artificial Intelligence, often introduced into robotics, develops in many fields. One

of these fields, which is probably the most affected by the technological progress,

is medicine.

Indeed, experts in medicine need a robust and powerful diagnostic aid system since

the data they deal with are most of the time complex.

The first appearances of artificial intelligence in medicine are in 1989 when robots,

said ”semi/-active”, accompany the surgeon in the surgery room (see Figure 1).

These robots are called semi-active because they guide an instrument actuated by

the surgeon, provide a very high accuracy on the order of 1/10th of a millimeter,

very useful during the brain operation or the spinal cord requiring such precision.

But the first intelligent software system was Mycin[1], created in 1972, which was

intended for the diagnosis of blood diseases and drugs prescription. Mycin is an

expert system[2] with a real engine and a real rule base. The engine produced a

simple forward chaining while calculating probabilities (Bayesian sense) of each

deduction, making it difficult to explain the logic of its operation and more over

to detect the contradictions. As for the experts, they were obliged to find weights

likelihood for each of their inferences, complex process, unnatural and away from

their way of thinking, at least conscious.

1
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Figure 1: Robotics in medecine

Figure 2: Expert systems

An example of a recent work in the diagnostic aid is the Cytomine project (see

Figure 3), which is a modern internet application using data mining for large-

scale bio-image exploitation in order to help life scientists to better evaluate drug

treatments, understand biological processes, and ease diagnostic. This application

uses fully web-based technologies without the need for the end-user to install

proprietary software to visualize, annotate, and analyze imaging data[3][4][5].
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Figure 3: Cytomine web interface

While most medical decisions are based on individual cases and experience, it

seems increasingly clear that the complex treatment decisions could be made better

through modeling which relies on large databases rather than on only intuition.

The most effective way is to combine artificial intelligence with human clinicians,

”humans do what they do well, and the machines do what they do well”. At

the end, we can maximize the potential of both. The artificial intelligence based

systems could significantly improve both the cost and the quality of health care

through machine learning. But in practice, the difficulty of statistical learning in

predictive medicine lies in the quality of available information more than in the

complexity of the studied phenomena. The labeling of patients used in learning

must be reliable however, a healthy person may also be a patient whose disease

has not been detected yet. Similarly, some influential variables may not be known

or be drowned in a flood of input variables without significant influence, but which
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can disrupt the learning phase of the model. What is the most suitable and most

robust learning algorithm? Should we choose the fastest or the most efficient one?

Should we select the learning data or the prediction models? In this thesis, we

will try to answer these questions by introducing new algorithms that can be

used in any classification program using artificial learning and more particularly

a supporting system for medical diagnosis.

Motivation

Modern medicine needs computer assistance for detection, diagnosis and classifi-

cation of certain diseases in a very short time hence the need for a classification

system. In recent years, several studies have been conducted to develop tools for

the diagnosis and classification of diseases. The use of methods known intelligent

to perform this classification is becoming more frequent. Although the decision

of the doctor is the most critical factor in the diagnosis, medical aided systems

are even considered as essential in many medical disciplines. In practice, there are

already many applications that are the result of an automatic learning and that

allow assisting clinicians in their diagnostic procedures, because they can provide

a more accurate diagnosis and reduce the errors due to fatigue and doubts of the

doctor. The goal of machine learning is to design effective models of a system from

a set of representative examples of a population of data. Among the types of ma-

chine learning, supervised learning is found to deduce rules automatically from a

labeled learning set. This technique consist in predicting the class of new observed

data using models of classification (classifiers) sush as decision trees, Bayesian net-

works, neural networks, k-nearest neighbors, etc...

However, several studies show that a classification model inducing a single hypoth-

esis has dimensionality, bias and variance problems. They proposed to combine

each of the individual weak classifiers to form a single classification system called

ensemble methods [6].
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Rather than trying to optimize the single classifiers, ensemble methods generates

multiple prediction rules and then, aggregate their different responses. The ob-

jective is that the final model will be better than each individual predictor: even

if individual classifiers make mistakes, it is unlikely that they commit the same

mistakes for the same inputs. For that individual predictors should be different

from each other and the majority should not be mistaken for the same instance x.

To make this possible, individual predictors have to be relatively good and must

be different from each other. The first point is necessary because the aggregation

of very bad predictors do not gives a good predictor. The second point is also

natural, the aggregation of similar predictors will gives a predictor that is close to

the aggregated ones and will not improve the predictions.

Ensemble Methods are considered as an effective solution to the problem of dimen-

sionality and can improve the robustness and generalization ability of individual

learners. They solve also the problem of the compromise Bias/Variance since they

combine several classifiers. In this context, we present a classification model that

allows to bring more accuracy compared to existing methods in the state of the

art.

Approaches and contributions

Ensemble methods are one of the most popular and effective multi-classifier ap-

proaches which consists in combining a set of classifiers of the same type (a set of

neural networks, a set of decision trees, or a set of discriminants) to get a single

more efficient model. Nowadays, there are many methods that are automatically

capable of generating sets of classifiers sush as Bagging, Boosting, Random Sub-

spaces, random Forest, Extra-trees...

The random forests method is the most popular among the ensemble methods[7].

This method is a bagging improved to the level of hyper parameters. It is based

on the combination of the elementary classifiers of the decision trees type. Indi-

vidually, these classifiers are not effective, but they have interesting properties to
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operate within an ensemble as they are particularly unstable. The specificity of

the trees used in random forests is that their induction is disturbed by a random

factor, and the purpose is to generate diversity in the ensemble. It is on the basis

of these two elements: use of decision trees as elementary classifiers and introduc-

tion of randomness in their induction that the formalism of random forests was

introduced.

The existing methods in the state of the art try to deal with the randomization.

A good ensemble method should insure the optimal level of randomization which

minimizes the error rate and the variance. However, existing methods still have

this limit. Our first contribution in this thesis is the introduction of a new method

to generate a set of classifiers. This method (we call it Subspaces Random Forest)

combines Bootstrap Sampling, Random Supspaces and random forests to generate

a more efficient set of trees than each method individually. This method has been

tested and has proven its effectiveness vis-a-vis several methods in the literature.

In this thesis, we deal also with the problem of trees aggregation and ensemble

selection in the tree-based ensemble methods.

Classical random forests use a majority voting to aggregate the decision of each

classifier. This technique is not optimal since it gives the same weight to the

decision of each tree even they have not the same performances. In our second

contribution, we propose a weighted voting mechanism to random forests which

gives better results than the classical majority voting.

The third contribution is a tree selection method in a forest in order to keep

only the best trees. This technique belongs to the family of ensemble selection or

pruning methods. All existing dynamic pruning methods in the state of the art use

KNN (K-nearest neighbor) as a neighborhood heuristic. In our dynamic pruning

method called Out of Bag-Based Ensemble Pruning we propose the use a different

neighborhood heuristic which uses the path similarity between the test instance
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and the Out of Bag of this tree. This pruning method is used to select, for each

test instance, a subset of different trees of the forest (the best ones regarding this

instance). The class of that instance is assigned through a majority vote between

the results returned by the trees of the selected subset.

Organization of the manuscript

The remainder of this thesis is divided into two main parts. In the first part, we

summarized the machine learning process (Chapter 1) then we present a synthesis

of the most popular used classification methods (Chapter 2) and then, an overview

of the improvements already brought to the ensemble methods (Chapter 3).

In the second part, tree induction method (Subspaces Random Forest) is proposed

and the obtained results as well (chapter 4). Then, in Chapter 5, our trees selection

algorithm (Out of Bag-Based Ensemble Pruning) and a study of the obtained

results with a comparison to the existing methods are discussed.

At last but not at least, the general conclusion summarizes a synthesis of the

brought contributions as well as the paths defining possible perspectives for future

work.
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Summary

This chapter introduces the field of supervised machine learning. The different

stages of a supervised learning algorithm will be described as well as the associated

vocabulary, notations and standard procedures used to evaluate the results of

applying supervised learning methods to a dataset.

1.1 Automatic learning

Automatic learning is a field whose main interest is the development of algorithms

allowing a machine to learn from a dataset. The original motivation of this domain

was to implement intelligent artificial systems. Algorithms from this field are used

by many other domains, such as computer vision, pattern recognition, information

retrieval, bio-informatics, data mining and many others. There are several types of

automatic learning, which differ mainly in their goal. The three best-known types

are: supervised learning; semi-supervised learning and unsupervised learning. The

name invokes the idea of a ‘supervisor’ that instructs the learning system on the

labels to associate with training examples. Typically these labels are class labels in

classification problems. Supervised learning algorithms induce models from these

training data and these models can be used to classify other unlabeled data[8].

If the database is unlabeled, we talk about unsupervised learning, which includes

clustering and density estimation.

1.1.1 Supervised learning

Learning is said supervised if the different families of labels, or classes, are known

and the assignment of each form to a particular family is made in prior [9].
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For example, considering the bi-dimensional problem of the Figure 1.1 as a medical

classification problem, where, each point of this space may represent a patient

which is described by two variables (M1 and M2) and assume that the goal of

learning is to find a function which separate at best data in two classes (sick or

healthy). Here, the goal of supervised learning is to provide a rule that help a

doctor to predict the class of a new patient.

Figure 1.1: Left, a sample corresponding to a simple classification problem.
Right, the optimal separation of this problem

1.1.2 Unsupervised learning

It is also called learning without a teacher or learning by correlation. This type

of learning is used in cases where we have a learning base whose classes are not

defined in advance. the unsupervised process consists in grouping the different

shapes into classes based on a similarity criterion chosen in prior. This type of

learning allows the automatic construction classes without operator intervention.

However, this approach requires a good estimate of the number of classes [10].

1.1.3 Semi-supervised learning

Semi-supervised learning techniques fall between unsupervised learning and su-

pervised learning using a small labeled data with a large unlabeled data in the

learning step. Many machine-learning researchers have found that unlabeled data,



Chapter 1. Machine learning 11

when used in conjunction with a small amount of labeled data, can produce con-

siderable improvement in learning accuracy [11].

In this thesis we treat the problems of ensemble methods in supervised learning.

For this, we will detail, only, techniques and algorithms used in supervised learning.

1.2 Data sets and notations

In supervised learning, the data are composed by a collection of N objects (input-

variables) described by M features (attributes). These features provide some in-

formation on the label of each object (output-variable or target). When the output

is a real number, the task of machine learning is referred to as regression while if

the output is discrete (binary or categorical) we talk about classification.

A dataset can be defined as a matrix (see Figure 1.2), where we denote by X the

space of input vectors of dimension M . Similarly, Y will denote the output space.

Figure 1.2: Matrix representation of a dataset

1.2.1 Features selection

In machine learning and statistics, feature selection, also known as variable selec-

tion, attribute selection or variable subset selection, is a very important process.
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In supervised learning. We have a number of potential variables, we keep the most

relevant variables to explain and predict the class. Objectives are often multiple:

• We reduce the number of variables to be collected for the deployment of the

system;

• We are improving our knowledge of the causal phenomenon between descrip-

tors and the variable to predict, which is fundamental if we have to interpret

the results;

• Last, but not always, we improve the quality of the prediction

The best approach to select relevant variables is definitely the expert selection.

Only the domain knowledge allows to understand the underlying causalities, dis-

cern true links simple artifacts highlight interactions, etc. Unfortunately, it is not

always possible, especially if the number of candidate variables is high, manual

selection quickly becomes intractable. For that we use automatic feature selection

techniques to reduce databases dimensions.

1.3 The learning step

A learning algorithm can be defined as follows: It is an algorithm that takes as

input a set of data that contains the necessary information to characterize a given

problem and returns a model that represents concepts characterizing these data

(Figure 1.3) and able to predict the label of new objects based on their input

values.

Figure 1.3: Inferring a from a learning set
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1.4 The test step

In classification problems, at the test step, the model should be able to give a

class to a given test instance based on their input values (Figure 1.4) following the

learned rules in the learning step.

Figure 1.4: Prediction the labels of new samples

Generally, to train and test a model, the used databeses are devised in three

parts, the first one for learning, the second for validation and the last one to test.

However, we can also use the whole database for learning and testing phases. This

technique is called cross validation.

Cross-validation (K-cross validation) [127 , 128] is a method used for the evaluation

of the reliability of the results obtained by a given classifier. This method is based

on a sampling mechanism. For example, in aided-diagnosis system, this technique

measures the error rate of a classification model using all available data (entire

database), both in learning and test. The K-cross validation method is useful when

the number of data is not really important (small datasets). Its operating principle

is summarized in the following points:

• The available data are divided into K disjoint blocks (see Figure 1.6)

• The classification model is trained using data of K − 1 blocks.

• The test is done by using the remaining block of data.

• Training and testing are repeated K times (K experiments) since all blocks

can serve as a training and test samples.



Chapter 1. Machine learning 14

• The final error rate of the system is an average of errors committed in all K

experiments.

Figure 1.5: Example of a 5-cross validation

1.5 Classifier evaluation methods

Performance evaluation of a classification model is a very important step since it

shows how good is the classifier. In the scientific literature, we find that the most

criteria used by researchers to evaluate the classifiers is the good classification

rate (examples correctly classified in the test phase) or the error rate. However,

the sole use of this parameter for the evaluation is very insufficient. In the following

section, we will present an overview of different evaluation criteria used in our thesis

(scalar measures and graphic measures such as ROC curve (Receiver Operating

Characteristic)).

1.5.1 Generalization error

The generalization Error Rate (ER) or Classification Rate (CR) ( ER = 100−CR)

is the most used technique to evaluate classifiers’ performances in which classes

gives by the classifier are compared to the real labels of the test set (see Figure

1.6). CR is a simple parameter which is calculated as follows:
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CR = Numberofexampleswellclassed/Totalnumberofexamples

CR is relatively a significant parameter for the evaluation of a classifier since it

does not take into account the distribution of classes.

Noting that the distribution of classes in different Medical databases may balance.

If we consider for example a database with 1000 patients of which 10 are sick,

and that our classifier decides that all 1000 patients were normal during the test

phase, the value CR is equal to 99%. For a classifier applied to a standard theme

that error rates may mean that the system is perform while in practice it is far

be the case for the example above. This means that the CR is not sufficient to

evaluate our system. Thus, we are obliged to add other parameters for evaluation

the proposed algorithms.

Figure 1.6: Evaluation of the generalization error
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1.5.2 Variance

The variance is a parameter that has been developed by Ronald Fisher in 1918

[129]. It combines all the values in a database to obtain a dispersion measure. It

is symbolized by (S2). The variance and the standard deviation (the square root

of the variance) are measures of dispersion most commonly used.

V ar = S2 = pi = 1ni.(Xi− x)2n

1.5.3 Confusion matrix

The confusion matrix relates the decisions of the classifier and samples’ labels. It

is a tool for measuring the quality of a classification system. As shown in Figure

1.7, on the diagonal of the confusion matrix we find the well classified examples,

the rest are misclassified. The matrix is an evaluation parameter that take care

about the well classification and the distribution of different classes.

Figure 1.7: Confusion matrix

Knowing that, for example, in medical diagnosis problem:

• TP: represent the number of sick individuals classified sick.
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• FP: represent the number of healthy individuals classified sick.

• FN: represent the number of sick individuals classified as healthy patients.

• TN: represent the number of healthy individuals classified healthy.

Confusion matrices are designed to give more details about the classification of

samples of a given class. From a confusion matrix we can calculate some statistical

measures such as Sensitivity and Specificity.

Sensitivity

The sensitivity (also called the true positive rate) of a diagnostic test quantifies

its ability to correctly identify subjects with the disease condition (e.g. the per-

centage of sick people who are correctly identified as having the condition). It is

the proportion of true positives that are correctly identified by the test, given by:

Sensitivity(Se) =
Truepositives(TP )

Truepositives(TP ) + Falsenegatives(FN)

Specificity

The specificity (sometimes called the true negative rate) is the ability of a test to

correctly identify subjects without the condition (e.g. the percentage of healthy

people who are correctly identified as not having the condition). It is the proportion

of true negatives that are correctly identified by the test:

Specificity(Sp) =
Truenegatives(TN)

Falsepositives(FP ) + Truenegatives(TN)

A perfect predictor would be described as 100% sensitive (i.e. predicting all people

from the sick group as sick) and 100% specific (i.e. not predicting anyone from the

healthy group as sick); however, theoretically any predictor will commit a minimum

error.
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1.5.4 ROC curves

ROC (Receiver Operating Characteristic) is a graphical representation method

that measures the performance of a binary classifier on one side, and to measure the

relevance of its different descriptors on the other side. This evaluation method was

invented during the second world war to determine a threshold separation between

the radar signal and noise. Since several years, its use has become indispensable as

evaluation method of the decision support systems [12][13]. For the representation

of the ROC curve, several ways (choice of axes of the curve) based on the confusion

matrix are possible:

• The rate of True Positives (TP) (Sensitivity) on the ordinate and the rate

of False Positives (FP) (1− Specificity) on the abscissa [14].

• The rate of True Negatives (TN) on the ordinate and the rate of True Posi-

tives (TP) on the abscissa [15].

• The rate of False Positives (FP) on the ordinate and False Negative (FN) on

the abscissa [16].

In order to determine the validity of a test, the calculation of the area under

the curve (Area Under the Curve (AUC)) is required. The AUC value is used to

evaluate the classifier. Figure 1.8 represents an example of the ROC space where:

• point a at (0,0) represents the cutoff 1, in other words all the predictions are

negative.

• point b at (0,1) represents the ideal situation where the true positive rate is

maximal and the false positive rate is minimal.

• point c at (1,1) represents the cutoff 0, all the predictions are positive.

• the dashed line represents a ROC curve for random predictions, the area

under that curve is equal to 0, 5.
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• the red line represents an example of ROC curve.

• the green shaded area represents the area under the ROC curve (AUC).

Figure 1.8: Example of the ROC curve and the corresponding AUC

1.6 Conclusion

In this chapter, we presented the concept of machine learning, different kinds of

machine learning and the associated vocabulary, notations and standard proce-

dures used to evaluate the results of classifiers.
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Summary

In this chapter, we will present the commonly used classification algorithms in the

literature. After that, we will process to a presentation of bias/variance problem

in supervised learning. finally, we present an overview of the most used ensemble

methods.

2.1 Base-level Algorithms

In this thesis, we will mainly consider the problem of supervised classification. In

what follows, the main algorithms of supervised classification that are proposed

in the literature will be presented. This is not an exhaustive presentation of all

methods but only to identify the most conventional methods that can be used in

our work according to their specific properties.

2.1.1 k-Nearest Neighbors

In pattern recognition, the k-Nearest Neighbors algorithm (or k-NN for short) is

a non-parametric method used for supervised classification and regression[17]. In

both cases, the input consists of the k closest training examples in the feature space.

k-NN is a type of instance-based learning, or lazy learning, where the function is

only approximated locally and all computation is deferred until classification. The

k-NN algorithm is among the simplest of all machine learning algorithms.

The principle of the k-NN algorithm is that the closest objects are more likely to

belong to the same category. Thus, with the KNN, the forecasts are based on a set

of sample prototypes, which are used to predict new data, based on the majority

vote of K closest prototypes. The standard algorithm can be summarized in two

steps:

1. Determine (Nk(x)) the set of k nearest neighbors of x
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2. Select the class of x using a majority vote in (Nk(x))

Figure 2.1: k-Nearest Neighbors

The training examples are vectors in a multidimensional feature space, each with a

class label. The training phase of the algorithm consists only of storing the feature

vectors and class labels of the training samples. In the classification phase, k is a

user-defined constant, and an unlabeled vector (a query or test point) is classified

by assigning the label which is most frequent among the k training samples nearest

to that query point. A commonly used distance metric for continuous variables is

Euclidean distance. For discrete variables, such as for text classification, another

metric can be used, such as the overlap metric (or Hamming distance). Often, the

classification accuracy of k-NN can be improved significantly if the distance metric

is learned with specialized algorithms such as Large Margin Nearest Neighbor or

Neighborhood components analysis. Choosing a proper K value is important to

the performance of K-Nearest Neighbor classifier. If K value is too large, as shown

in the Figure 2.2, the nearest neighbor classifier may misclassify the test instance

because its list of nearest neighbors may include data points that are located far

away from its neighborhood. On the other hand, if K value is too small, then the

nearest neighbor classifier may be susceptible to over-fitting because of the noise

in the training data set.
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Figure 2.2: Choice of the Neighborhood

2.1.2 Decision trees

A decision tree is a tree-like structure (see Figure 2.3) in which each internal node

represents a test on an attribute, each branch represents outcome of test and each

leaf node is labeled with a class (decision taken after computing all attributes). A

path from root to leaf represents classification rules.

Figure 2.3: Decision trees
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In decision analysis a decision tree, and the closely related influence diagram, is

used as a visual and analytical decision support tool, where the expected values

(or expected utility) of competing alternatives are calculated. A decision tree is

a method you can use to help make good choices, especially decisions that in-

volve high costs and risks. Decision trees use a graphical approach to compare

competing alternatives and assign values to those alternatives by combining un-

certainties, costs, and payoffs into specific numerical values. Decision trees find use

in a wide range of disparate applications. They are used in many different disci-

plines including medical diagnosis, cognitive science, artificial intelligence, game

theory, engineering, and data mining. Despite this trend surprisingly few good,

clear introductions to basic decision tree concepts are available.

Decision tree learning is one of the most successful techniques for supervised clas-

sification learning. For this section, assume that all of the features have finite

discrete domains, and there is a single target feature called the classification. Each

element of the domain of the classification is called a class. A decision tree or a

classification tree is a tree in which each internal (non-leaf) node is labeled with

an input feature. The arcs coming from a node labeled with a feature are labeled

with each of the possible values of the feature. Each leaf of the tree is labeled with

a class or a probability distribution over the classes.

A tree can be learned by splitting the source set into subsets based on an attribute

value test. This process is repeated on each derived subset in a recursive manner

called recursive partitioning. The recursion is completed when the subsets at each

node has all the same value of the target variable, or when splitting no longer

adds value to the predictions. This process of top-down induction of decision trees

(TDIDT)[18] is an example of a greedy algorithm, and it is by far the most common

strategy for learning decision trees from data.
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Figure 2.4: Exemple of a decision tree.

Figure 2.4 provides an example of a decision tree for a prediction task. In this case

the test nodes are decorated with questions about weather, while the leaves are as-

sociated with information about the output target variable playing Football (here

a simple “yes/no” label). This graphical representation is often easy to understand

and interpret by human experts.

Decision trees used in data mining are of two main types:

• Classification tree: is when the predicted outcome is the class to which

the data belongs.

• Regression tree: is when the predicted outcome can be considered as a real

number (e.g. the price of a house, or a patient’s length of stay in a hospital).

Classification And Regression Tree (CART) was introduced by Breiman et al[19]

in 1984, trees used for regression and trees used for classification have some simi-

larities but also some differences, such as the procedure used to determine where

to split.

There are many specific decision-tree algorithms, the most famous are: ID3 (Iter-

ative Dichotomiser 3)[18], C4.5 (successor of ID3)[20], CART (Classification And
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Regression Tree)[19]. Algorithms for constructing decision trees usually work top-

down, by choosing a variable at each step that best splits the set of items [21].

This choice depend on the metrics (logarithmic or Shannon entropy, Gini impurity,

variance in regression,...) used for measuring ”best” attribute score.

The score measures we will use in our methods are based on the Gini impurity.

Used by the CART algorithm, Gini impurity is a measure of how often a randomly

chosen element from the set would be incorrectly labeled if it was randomly labeled

according to the distribution of labels in the subset. Gini impurity can be computed

by summing the probability of each item being chosen times the probability of a

mistake in categorizing that item. It reaches its minimum (zero) when all cases

in the node fall into a single target category. Pruning should reduce the size of a

learning tree without reducing predictive accuracy as measured by a test set or

using cross-validation. There are many techniques for tree pruning that differ in

the measurement that is used to optimize performance.

Gini = 1−
k∑

i=1

P 2
i (i)

Where Pi is the relative frequency of class i at the node. A node with one class (a

pure node) has the Gini index zero, otherwise the Gini index is positive.

One of the questions that arises in a decision tree algorithm is the optimal size

of the final tree. A small tree might not capture important structural informa-

tion about the sample space. A tree that is too large risks overfitting the training

data and poorly generalizing to new samples. Overfitting is a significant practical

difficulty for decision tree models and many other predictive models. Overfitting

happens when the learning algorithm continues to develop hypotheses that reduce

training set error at the cost of an increased test set error. There are several ap-

proaches to avoiding overfitting in building decision trees:

Pre-pruning that stop growing the tree earlier, before it perfectly classifies the

training set.
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Post-pruning that allows the tree to perfectly classify the training set, and then

post prune the tree.

Practically, the second approach of post-pruning overfit trees is more successful

because it is not easy to precisely estimate when to stop growing the tree. The

important step of tree pruning is to define a criterion be used to determine the

correct final tree size using one of the following methods:

• Use a validation set to evaluate the effect of post-pruning nodes from the

tree.

• Build the tree by using the training set, then apply a statistical test, such

as Error Estimation or Significance Testing (e.g., Chi-square test), to esti-

mate whether pruning or expanding a particular node is likely to produce

an improvement beyond the training set.

• Minimum Description Length principle : Use an explicit measure of the com-

plexity for encoding the training set and the decision tree, stopping growth of

the tree when this encoding size (size(tree)+size(misclassifications(tree)))

is minimized.

The first method is the most common approach. In this approach, the available

data are separated into two sets of examples: a training set, which is used to build

the decision tree, and a validation set, which is used to evaluate the impact of

pruning the tree.

2.1.3 Neural networks

An artificial neural network is a computation model whose design is schematically

inspired by the functioning of biological neurons. Neural networks are generally

optimized by learning probabilistic methods, They are placed in the family of sta-

tistical methods on one hand, and on the other hand in the family of artificial
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intelligence methods as they provide a perceptual mechanism of the of program-

mer’s own ideas.

As such, the ANN contain interconnected ”nodes” (neurons) that are able to pro-

cess and transmit information from one node to another[22]. The most basic ANNs

described by McCulloch and Pitts in 1943[23] (see 2.7), transmit by anticipation

the information in a single direction. The properties of the network and the trans-

mission of the information within the network are governed by the architecture

and how these interconnections are modeled[24].

Figure 2.5: Perceptron

The back propagation is a technique based on supervised learning. It is used for the

learning of artificial neural networks. This technique was described by P.Werbos

in 1974 [25], and developed later by Rumelhart et al. 1986 [26]. The principle of

the process of back propagation is a set of samples of iterative training, and to

compare the predictions of the network for each sample with the label of the real

known classes. To minimize the mean square error between the network prediction

and the class itself, the weights are modified for each learning sample [27].
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Figure 2.6: Multi layer perceptron

Algorithm 1 Learning a MLP by back-propagation gradient

Input: The Training set L.

Process:

Random Random initialization of the network weights

repeat

for each sample of the learning base do

Spread the sample in the network

Calculating the error on the output layer

Error propagation on the lower layers

Weight adjustment

end for

Update the total error

until Stopping criterion

Although the error is locally minimized, the technique can converge to a mini-

mum and gives good practical results. In most cases, few problems due to local

minima are encountered. However, there are still two problems that may be faced

in a real application which are on one hand the slow convergence if the ”learning

rate” is not well chosen and on the other hand, the possible risk of converging to
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a local minimum rather than the global error surface. For this, several researchers

have tried to optimize the ANN by combining them with other techniques such

as genetic algorithms or particulate swarming [28][29] [30]. Furthermore, neural

networks are considered as systems of ”black box” type since they are not inter-

pretable. Several studies have tried to address this problem by using methods such

as fuzzy logic[31] from where the neuro-fuzzy models[32][30].

2.1.4 Support vector machines

Support vector machines (SVM) were introduced in 1995 by Cortes and Vapnik[33],[34].

They are used in many learning problems: pattern recognition, text categorization,

or even medical diagnosis. The SVM rely on two concepts: the maximum margin

and the kernel function. They solve problems of nonlinear discrimination. The mar-

gin is the distance between the boundary of separation and the closest samples

called support vectors.

Figure 2.7: Support vector machines

In a linearly separable problem, the SVM find a splitter that maximizes the margin.

In the case of a nonlinear problem a kernel function is used to project the data

into a high-dimensional space where they are linearly separable (2.8)
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Figure 2.8: Different separation problems

More formally, a support vector machine constructs a hyperplane or set of hyper-

planes in a high-dimensional space, which can be used for classification. Intuitively,

a good separation is achieved by the hyperplane that has the largest distance to

the nearest training data point of any class (so-called functional margin), since

in general the larger the margin the lower the generalization error of the classi-

fier. SVM, are a supervised classification method particularly suitable for treating

high-dimensional data. Regarding the classical learning techniques, SVM does not

depend on the dimension of the space of data representation. By the use of a ker-

nel function, they allow a non-linear classification. The disadvantage of SVM is

the empirical choice of an appropriate kernel function for the problem. A second

drawback is the computational time that increases in a cubic way according to

the number of data to be treated[35]. In short, the SVM is a learning technique

developing for over 20 years but far from having reached its limits.

2.2 Bias and variance in supervised learning

Considering the same bi-dimensional problem of the Figure 1.1 and let us assume

that we want to classify samples in two classes with a linear decision boundary.
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Noting that with a linear model, it is impossible to separate perfectly the two

classes which means that the chosen function is not flexible enough to model our

classification problem (see Figure 2.9:left). This phenomenon responsible for the

error in this case is called the Bias [36].

Let us assume now that we use a more complex function which realize a perfect

separation between classes in our sample (see Figure 2.9:right). Here, the sepa-

rator classify perfectly all samples but it still not appropriate since the learning

algorithm over-fits data (it learns too much information from our data). It is very

likely that, if we use the same learning algorithm on an other learning sample for

the same problem (an other group of patients), the model will be very different

from this one. So, each hypothesis is very variable from one learning sample to

another. In this case, we say that the learning algorithm suffers from Variance [36].

Figure 2.9: Left, a too simple model. Right, a too complex one

When we want to classify a new example with a model, both bias and variance are

sources of error and hence they should be minimized by finding a tradeoff between

them. There are mainly two ways to handle this tradeoff.

The first one is to control the complexity of the hypothesis space and then adapt

this complexity to our problem. this approach is not plainly satisfactory since it

supposes to sacrifice some bias to reduce the variance.

The second one allows the reduction of the variance without increasing the bias

with aggregating the predictions given by several models, which are built for the
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same sample, thru a simply majority vote. This approaches are called Ensemble

methods.

2.3 Ensemble methods

The idea of ensemble methods is to combine several classifiers to build best mod-

els. There are many methods that automatically generate ensembles of classifiers,

today. Some of them manipulate instances (like in Bootstrapping), some others

randomize the choice of the attributes (Random Subspaces Method) and others

randomize both examples and attributes (Random Forests). Below, the most used

algorithms in the literature are presented.

2.3.1 Boosting

Boosting is an approach based on the idea of creating a good predictor by combin-

ing many “weak” learners. A weak learner for binary classification problems is one

for which the weighted empirical error is guaranteed to be smaller than 1/2 − y

with y sup 0, for any distribution on the data [37]. Schapire [38] developed the first

boosting algorithm and showed that a weak algorithm can still improve its perfor-

mance being driven on three well-chosen learning samples. We are concerned here

only by binary classification problems; The idea is to use any learning algorithm

(decision tree, Bayesian classification rule, a decision depending on hyperplane,

etc..) on three subsets of learning samples.

1. The first hypothesis h1 is first obtained on a learning sub-sample S1 of the

size m1 < m (m being the size of the S, the available learning sample).

2. Then, a second hypothesis h2 is learned on a sample S2 of size m2 chosen in

S − S1 in which half of the examples are misclassified by h1.
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3. Finally, a third hypothesis h3 on m3 examples pulled in S − S1 − S2 where

h1 and h2 disagree, is taught.

4. The final hypothesis is obtained by a majority vote of the three learned

hypotheses: H = majorityvote(h1, h2, h3)

Figure 2.10: The Trees-Boosting algorithm.

The Theorem of Schapire on the ”strength of weak learning” proves that H has

a superior performance to that of the hypothesis that would have been learned

directly on the sample S. The Adaboost (for Adaptive Boosting) presented by

Yoav Freund and Robert Schapire in 1995 [39] is a meta-algorithm that uses the

boosting principle to improve the performance of classifiers. The idea is to assign a

weight to each example of the learning set. At first, they all have the same weight

but with each iteration, the weights of misclassified elements will be increased while

those of the well classified ones will be decremented (see Figure 2.11). Thus, the

following classifier will be forced to concentrate on the hard cases of the learning

ensemble. Consequently, the classifiers will be complementary([39],[40]).
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Figure 2.11: Description of Adaboost

For more details on the AdaBoost algorithm, see [39] and [40].
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2.3.2 Bagging

Bagging is a method of constructing a set of classifiers from different re-sampling

of the same set of training data. This method was introduced by Breiman in 1996

[41]). It applies the principle of “Bootstrapping” at the building of classifiers, hence

its name Bagging for Bootstrap Aggregating. The ”bootstrapping” is a method

of re-sampling with replacement [42], it is to randomly drawn examples of the

learning sample L to create new sets. These samples are named ”bootstrap sam-

ples”. As these samples are constructed with replacement, examples of learning

may appear in multiple copies. After generating L bootstrap samples, a set of

classifiers H will be built. Each basic classifier hi of H, will be learned on a sample

so that they are all trained on different learning sets. All the classifiers of H, can

then be combined by a majority vote or any other fusion method. Figure 2.12 out-

lines the operation of the Bagging algorithm where D is a dataset with N samples.

Figure 2.12: Bagging algorithm applied to trees.
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Further study showed that, generally, Bagging helps improve the performance

of unstable classifiers. The instability of a classification algorithm reflects the fact

that a slight modification of the training data leads to significant differences in the

estimated decision boundaries [43]. Bagging can reduce the instability of classifiers

such as decision trees and neural networks to improve their performance, however,

on a k-NN classifier, which is a stable classifier, its effect is minimal.

2.3.3 Random Sub-spaces method

The Random Subspaces Method (RSM) has been proposed by Ho [44]. The basic

idea is to train each individual classifier on a random subspace of the feature

space selected randomly. Each random subspace has the same dimension P , with

P < M , where M is the dimension of the original area description. In [44], Ho

showed, for the parameter P , that the best results are generally obtained by P ≈

M/2 characteristics. Ho also showed that the RSM procedure is applicable to any

elementary classifier.

Figure 2.13: RSM algorithm applied to trees.
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2.3.4 Random Forest

Random forests was introduced by Breiman in 2001[7]. He proposed to use the

Bagging, but for each data set generated, the growth of the tree is processed with

a random selection among the variables at each node. He uses the approaches

developed by [41] and Amit and Geman [45] to generate a set of trees doubly

disrupted using a randomization operating both on the training sample and at

internal partitions. Each tree is thus generated at first from a sub-sample (a boot-

strap sample) of the complete training set, similar to the techniques of bagging.

Then, the tree is constructed using the CART methodology with the difference

that at each node the selection of the best split based on the Gini index is per-

formed not on the complete set of attributes M but on a randomly selected subset

of it. The size F of this subset is established prior to the execution of the proce-

dure (1 ≤ F ≤ M)[46]. The tree is then developed to its maximum size without

pruning. During the prediction phase, the individual to be classified is propagated

in every tree of the forest and labeled according to the CART rules. The whole

forest prediction is provided by a simple majority vote of the class assignments of

individual trees (see Algorithm 7 and Figure2.14).
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Figure 2.14: The Random Forests algorithm.

Algorithm 2 Pseudo code of the Random Forest algorithm

Input: The Training set T , Number of Random Trees L.

Output: TreesEnsemble E

Process: E = ∅

for i = 1→ L do

T i ← BootstrapSample(T )

Ci ← ConstructTree(T i) where at each node:

• Random selection of K =
√
M Variables from the whole attribute space

of dimension M

• Select the most informative variable from K using Gini index

• Create children nodes using this variable

E ← E ∪ {Ci}

end for

Return E
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In addition to building a predictor, the algorithm of Random Forests-RI calculates

an estimate of its generalization error: the Out-Of-Bag error (OOB). This error

was already calculated by the Bagging algorithm; hence, the presence of ”Bag”.

The calculation procedure of this error is as follows: From a training set A of N

examples , bootstraps samples are generated by drawing N samples with replace-

ment from A. In average, for each bootstrap sample 63.2% are unique examples of

A, the rest being duplicates. So for each sub base, about 1/3 samples of A are not

selected and are called OOB samples. They will be used in internal evaluation of

the forest (estimated classification generalization error of forest) or as a measure

to calculate the variable of importance to use it in variable selection.

A variable v is important if the change of its value for an individual leads to its

misclassification. From the constructed trees, we can deduce a hierarchy of vari-

ables and hence a possibility of selection of variables. The method calculates the

increase in the OOB error rate when the values of the response variable (fi in the

Figure 2.15) are randomly permuted over the OOB data, keeping the other factors

unchanged.

Figure 2.15: Variable selection process

In practice, it is very useful to have information on the data variables that we

study. Which variables are really needed to explain the output? Which variables

can we remove? This information can be of great help in interpreting the data.

They can also be used to build better predictors: a predictor built using only the
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useful variables can be more powerful than a predictor built with additional noise

variables.

2.4 Conclusion

In this chapter, we introduced he basic classification models like Decision Trees,

Neural Networks, Support Vector Machines and k-Nearest Neighbors. After that,

we presented Ensemble methods as powerful models which try to improve the per-

formance of week learners by combining them.

In the next chapter, we will discuss the the most cited improvement of tree-based

ensemble methods in the stat of art, and present our proposed method for trees

induction called SubSpaces Random Forests.
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Summary

In this chapter, we will present some related works to the improvement of random

forest according to the spliting techniques and voting mechanisms. After that we

will provide some experiments of different improvements.

3.1 Related works

Until today, several studies have focused on random forests, more particularly to

the improvement of the CART algorithm in the segmentation criterion, and in

the stage of classifiers aggregation for a better final classifier. The state of the art

improvements of random forests and our contribution in this area are presented in

this chapter.

The construction of a decision tree go through several steps, the first one is to

choose a variable of segmentation which maximizes a given criterion. The works

that enhance this step using other splitting criteria are listed in the following

section.

3.1.1 Choice of the variable

In this section we summarize the various works done in the state of art for the

classification by the ensemble methods.

Robnik-Sikonja in [47] studied some possibilities to increase or decrease the strength

of correlation of the trees in the forest. The random selection of attributes rather

makes the individual trees weak. The first objective was to strengthen the trees

individually without sacrificing the variety between them, and to increase the vari-

ance without sacrificing strength.

As evaluation measure, the author proposed the Gini index [48] and other seg-

mentation criteria as Gain ratio [20], ReliefF [49], MDL (Minimum Description
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Length) [50], Myopic Relief [51] as attribute selectors to reduce the correlation of

the trees in the forest. The experimental study of the author was based on two

random forests, in which the first is a classical method using Gini while the second

forest is improved by using the following five criteria: (Gini gain ration [20], MDL

[50], RelieF [49] and Myopic Relief [51]). These experiments were performed on 16

databases of the UCI [52]. For each method he presents the results of classifica-

tion rates and AUC (Air Under the ROC Curve). Robnik-Sikonja shows that this

procedure decreases the correlation between the trees and retains their strength

which results in slight increase of the method’s performance. The improvement is

especially visible on data sets with highly dependent attributes and the reason for

this is the use of ReliefF algorithm.

The works of Joaquin Abellan and Andrés R. Masegosa [53] are experimental

studies using different decision trees as classifiers by the Bagging method [41].

The aim of these studies is to determine the best splitting criterion among four

criteria (Info-gain [54] Info-gain ratio [20], the Gini index, and imprecise Info Gain

[55]). They used 25 databases (classification problems) from the UCI Machine

Learning repository [52] with 100 trees. They have proven that the best Bagging

tree is the one that uses the imprecise criterion Info-Gain (IIG).

Another experimental study was made by Andres Cano et al. in 2009 [56]. The

authors used two approaches to construct decision trees, Bayesian approach with

K = 1 splitting nodes (K is the number of characteristics to select randomly at

each node), and a classical random forest where the number K is variable. For

both approaches, four groups of different trees were evaluated: 10, 50, 100 and

200. Authors used 23 databases from the UCI machine learning repository [52]

for experiments. By means of a bias-variance decomposition of error, the authors

confirmed that the number K affects directly the performance of the random for-

est. Indeed, for a decrease in the value K, the variance is reduced while the Bias

is increased [57] and vice versa. This trend was broken with the introduction of

more randomness in the division criterion.
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Evanthia et al. [58] use three types of random forests: classical random forests

(using Gini), two other random forests improved, one with ReliefF for segmenta-

tion, and the other RF with several evaluation criterion. The motivation behind

these methods of forest induction is to support simultaneously the increase of in-

dividual performances of trees and the increase of diversity. For their experiments,

they modeled the Al’zhamer databases that were pretreated with FMRI (Func-

tional Magnetic Resonance Imaging) [59, 60]. This database is divided into three

databases’ sub-ensembles, one sub-ensemble for each classification (two, three and

four classes, respectively).

For the second and the third classes, 108 instances were used whereas for the four

classes, 164 instances were used. By dividing at each iteration of the procedure

the databases in two parts, one for learning and the other for the test.

In each case cited, a number of iterations are carried out with different values of

the number of trees and number of attributes. These parameters affect the per-

formance of the classification step. Various combinations of these parameters are

used to determine the ones that give the best results. Regarding the comparison of

the three methods together, the results are difficult to interpret. They seem very

close to each other.

3.1.2 The voting mechanism

Building a collection of predictors is not sufficient for good classification; another

step is very interesting to build a random forest is the aggregation of the ensemble

predictors. The aim is that this final predictor is better than each of the individual

predictors. In the following subsection, works that enhance this step are presented.

In Random Forest, basically, the aggregation is represented by a majority vote of

the predictions of the individual classifiers. More works are achieved to improve the

stage of aggregation and replace the majority vote by another voting mechanism.
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Robnik-Sikonja proposed in [47] to study an improved system of classical majority

voting of random forests, in order to obtain more effective final classifiers. His idea

is to base the selection of decision trees, that participate in the final vote, on their

individual performances on similar data.

For each instance of the test set, he determines from the learning data, those that

look like them the most. He decided then to trust only decision trees that best

classify these so-called ”similar” data. For this, it relies on the procedure used by

Breiman in [7] to measure the similarity.

After calculating margins of trees, it is possible initially to get the final vote for

the class of individuals for which we want to predict the class. Decision trees for

which the average margin is strictly negative are eliminated, then average margins

of the remaining trees are used as weights in the final vote.

Author makes a number of experiments in order to study the evolution of the

performances of random forests when he use or not the weighted vote. These ex-

periments have been performed on 17 databases from the UCI machine learning

repository [52] following the same experimental protocol used by Breiman [7] using

the Wilcoxon statistical test [61] to evaluate the performance differences between

random forests using a classical majority voting, and those using a weighted vote.

To analyze these performances, Robnik-Sikonja provides a summarizing table of

recognition rates on each tested base, and their areas under the ROC curve. Author

shows that the weighted vote provides most of the time a significant improvement

of recognition rates (in 11 cases of 17) and of areas under the ROC curve [62].

In their paper [58] Evanthia et al., also present improvements of ordinary vote.

They are offering six diversities of weighted voting algorithm. The first algorithm

[47] is the same as the one used by Breiman in [7], this principle is based on

the individual performances of trees to similar databases. The second algorithm

[63], the third [64] and the fifth algorithm [65] are based on the metrics between

databases. The fourth [66] and the sixth [67] the use the weighting of trees accord-

ing to their classification rate. The authors performed a number of experiments

on the Al’zhamer databases to study the evolution of random forest performances
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when implementing the weighted vote or the classical majority vote.

3.2 Some experiments

In this section, we will present our implementation and results of two different

tree-based ensemble methods. The first is a conditional inference forest which is

an ensemble of conditional inference trees. The second one is an improvement of

Random Forests using the deviance metric for choosing the best variable of division

and the weighted vote for the trees aggregation.

3.2.1 Conditional inference forest

While classical random forest is an implementation of the bagging ensemble algo-

rithms utilizing CART trees as base learners, Conditional Inference Forest (CIF)

use conditional inference trees (CIT). In CIF, the aggregation scheme works by

averaging class probabilities extracted from each tree and not by averaging pre-

dictions directly as in random Forest. See Hothorn et al. [68] for a description.

3.2.1.1 Conditional Inference Tree

Traditionally classification trees [19] have been used to determine variable of im-

portance in most empirical studies. Decision trees are tree-shaped structures rep-

resenting sets of decision which self-generate (as opposed of being dictated) rules

for the classification of a dataset (as opposed to a sample), in a hierarchical order,

using algorithms such as ID3 and its improvements C4.5 and C5.0, as well as

CART and CHAID [18][20]. No assumptions are made about the distribution of

data. [69]
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Conventional classification and regression trees have always been used to select

variables of importance. According to Strob et al. [70], CART trees have a variable

selection bias towards variables which are continuous or with higher number of

categories. The most common splitting criterion in the CART tree is the Gini

Index to find a favorable split. The Gini Index checks for the purity of the resulting

“daughter” nodes in the tree [69].

According to Breiman et al. [19], a search is made for the most favorable split,

one that reduces the node or equivalently tree impurity. Since the criteria looks

for a favorable split, the chances to find a good split increases if the variable is

continuous or has more categories. Therefore even if the variable is not informative,

it could sit higher up on the tree’s hierarchical structure. Hence, in this study

conditional inference trees (CIT for short) [71] have been used, where the node

split is selected based on how good the association is. The resulting node should

have a higher association with the observed value of the dependent variable. The

conditional inference tree uses a chi-square statistic test to evaluate the association.

Therefore, it not only removes the bias due to categories but also chooses those

variables which are informative [72].

The CIT algorithm works as follows:

1. Test the global null hypothesis of independence between any of the input

variables and the response (which may be multivariate as well).

2. Stop if this hypothesis cannot be rejected.

3. Otherwise select the input variable with strongest association to the re-

sponse. This association is measured by a p-value corresponding to a test for

the partial null hypothesis of a single input variable and the response.

4. Implement a binary split in the selected input variable.

5. Recursively repeat steps 1 to 4.
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Conditional inference trees present several advantages (Hothorn et al. [71]):

• They are unbiased,

• They do not suffer from over-fitting (Step 2 prevents overfitting by automat-

ically pruning the tree),

• The prediction accuracy of conditional inference trees is equivalent to the

prediction accuracy of optimally pruned trees.

The key to this recent algorithm is the separation of variable selection and splitting

procedure. The separation of variable selection and splitting procedure is essen-

tial for the development of trees with no tendency towards covariates with many

possible splits. For more details of the algorithm the readers are directed to the

paper by Hothorn et al. [71].

3.2.1.2 Conditional Inference Forest

Conditional inference tree is a new tree-based method, which estimates a regres-

sion relationship by binary recursive partitioning for continuous, censored, ordered,

nominal and multivariate response variables in a conditional inference framework.

A statistically motivated stopping criterion is used. Partitions obtained from con-

ditional inference trees have been reported to be generally closer to the true data

partition compared to partitions obtained from an exhaustive search procedure

with pruning (Hothorn et al, [71]).

Forests which are a collection of multiple tree classifiers can be used for variable

selection. A decision tree, with all its simplicity and handling of missing values, can

be very unstable. In other words, small changes in the input variables might result

in large changes in the output. In this regard, forests are more robust variable se-

lection tool. Random Forests’ algorithm was developed by Breiman [7] which works
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in the framework of the classification and regression trees, but instead of having

one tree, they have multiple trees. The forests are most important in calculating

the variable importance measure. Recent works in experiments by Abdel-Aty et

al. [73] and Harb et al. [74] used the random forests algorithm to determine the

variables of importance. However Strobl et al. [70] showed that the bootstrap-

ping method (sampling with replacement) and the use of Gini index results in the

biased selection of variables of importance.

The Gini index shows a strong preference for variables with many categories or

for the ones which are continuous. Variables with more potential cut off points are

more likely to produce a good criterion value by chance. This variable selection bias

which occurs in each individual tree also has an effect on the variable importance

measure [70]. In the previous sub section, it was mentioned that the algorithm for

recursive binary partitioning uses the association tests like Chi-square test to select

informative variables. Therefore bootstrap sampling with replacement induces bias

because the cell counts in the contingency table are affected by observations that

are either not included or are multiplied in the bootstrap sample. For that the

forests that we have used in this study is composed of the trees that have been

developed in the conditional inference framework.

3.2.1.3 Related Works

In this work we are particularly interested in the ability of classification and vari-

able selection in conditional inference forest. Few studies exist in literature that

implements this approach, we present them below:

Das et al. [72] proposed in their paper a methodology based on conditional infer-

ence forest for identifying the variables of interest in the Roadway Characteristics

and Inventory (RCI) database. The authors obtain good results compared to classi-

cal random forest where they were able to identify roadway locations where severe

crashes tend to occur.
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Auret and Aldrich presents in [75] a variable importance measures associated with

random forests, conditional inference forests and boosted trees, and employed a

number of simulated data sets to compare these methods. Results show that vari-

able importance indicators based on bagged conditional inference forests appear to

strike a good balance between identification of significant variables and avoiding

unnecessary flagging of correlated variables.

Strobl et al in [76] employ conditional inference forest as an alternative implemen-

tation of random forest, which provide unbiased variable selection in the individual

classification tree.

Nagy et al. [77] use logic regression, CART and conditional inference trees to pre-

dict risk factors of stereotypic behavior in horses. Both tree based methods report

the same predicting accuracy but they reach better quantity compared with the

number of risk factors selected by the logic regression method.

Nicodemus and Malley [78] used three algorithms: random forest (RF), conditional

inference forest (CIF) and Monte Carlo logic regression (MCLR) with permutation-

based variable importance measure (VIMs) which is a powerful method for high-

throughput large datasets. They showed that the distributions of RF permutation

VIMs were sensitive to correlation structure, whereas CIF and MCLR VIMs were

observed to be both unbiased and less influenced by correlation.

3.2.1.4 Experiments

1. Used databases in all the experiments

In the whole thesis, the results obtained with each proposed method will be

discussed and compared to some algorithms of the literature. To test our
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algorithms, ten databases from the UCI Machine Learning Repository [52]

were used. Databases which have been used in our experiments are described

in the following table:

Table 3.1: Used databases

Databases Inst Features Cl

Breast 699 9 2

Ecoli 366 7 8

Habermann 306 3 2

Isolet 7797 617 26

Liver 345 6 2

Pendigits 10992 16 10

Pima 768 8 2

Segmentation 2310 19 7

Vehicle 846 18 4

Yeast 1484 8 10

2. Choice of the number of trees

For the choice of the ensemble size, several random forests with different

numbers of trees: 10, 50, 100, 200, 500 and 1000 were constructed. Figure

3.1 presents the obtained error rates with each forest on each database. Re-

sults show that for more than 100 trees, the error rate remains more or less

stable for all databases which means that, with only 100 trees, Random For-

est gives good performances.
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Figure 3.1: Error rate of RF using different ensemble sizes

For this reason, in what follows, 100 trees for each method will be used.

3. On the Classification

We have used ten databases from the UCI Machine Learning Repository

[52] to test the Conditional Inference Forest. Performances of conditional

inference forest were evaluated and compared with: a single Decision Tree

(DT), a single Conditional Inference Tree (CIT) and Random Forest (RF).

Results are summarized in Table 4.1.

Results show that CIF give better results (in 7/10 of cases) than DT, CIT,

and RF. DT and CIT have the worst performances since they use only one

tree. RF give better results (but not with significant improvement) than CIF

in 3 databases (Isolet, Pendigits and Vehicle). Figure 3.2 presents an example

of a tree created by the CIF model applied on the Pima dataset.

Four variables were selected in this tree: Plasma Glucose concentration (Glu),

Age, Insulin and skin. The first node represents the first variable chosen by
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Table 3.2: Error rates of diffrent methods

Databases DT CIT RF CIF

Breast 0,0631 0,0547 0,04 0,04
Ecoli 0,2432 0,2387 0,1672 0,16

Haberman 0,3007 0,3189 0,2551 0,2423
Isolet 0,1982 0,1083 0,0899 0,0908
Liver 0,4118 0,3333 0,2812 0,2603

Pendigits 0,2012 0,1708 0,123 0,1265
Pima 0,3319 0,2853 0,2387 0,1904

Segmentation 0,1114 0,1262 0,0273 0,0261
Vehicle 0,3321 0,3725 0,2519 0,2544
Yeast 0,4327 0,4221 0,3949 0,3803

Figure 3.2: Conditional Inference Tree for Diabetes

the algorithm.

All the nodes in Figure 3.2 are shown in white oval shape, whereas all the

terminal nodes (leaves) are shown in the rectangular boxes. The small square

boxes with numbers on both the ovals and rectangles denote a unique numer-

ical representation of the node or leaf. In the white oval shapes the variables

mentioned is the split variable and the p value denotes the significance level

at which the split has taken place. As can be observed the leaf contains the
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information about the number of cases in the particular leaf, denoted by n

(weights).

The path taken from the original parent node to the particular leaf gives us

the conditions that lead to higher severity. The variables on the path, on

which the splits have been done, reflect which variables are associated.

4. On the Importance Variable Selection

In the second part of this study, we study the ability of variables selection in

conditional inference forests, then, a forest bases on only the most important

variables is generated.

Importance Variable is a standard and conditional variable selected follow-

ing the permutation principle of the mean decrease in accuracy importance

in random Forest.

Besides the standard version, a conditional version, that adjusts correlations

between predictor variables, is available. If conditional is true, the impor-

tance of each variable is computed by permuting within a grid defined by

the co-variates that are associated (with (1 - p-value) greater than threshold)

to the variable of interest. The resulting variable importance score is condi-

tional in the sense of beta coefficients in regression models, but represents

the effect of a variable in both main effects and interactions. See Strobl et

al. [76] for details.

In this part we focus on conditional inference forest for variable selection.

They are very simple to implement when selecting a subset of explanatory

variables (magnitudes) from a large set of variables and they generally allow
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to:

• Reduce significantly the computation time specially in very large dataset.

• Obtain a greater variety of models.

• The aggregation of predicted values or classes (majority vote) generated

by all models should then give a classifier more robust and accurate.

It should be noted here that the conditional inference forest, which were

used to calculate the score variables of importance, does not accept missing

values. Unlike random bits by classical decision trees, in this approach the

data set should not contain missing values. Hence the introduction of ran-

dom parameters to account for missing data, as is done by Milton et al. [79],

is not necessary in this study.

To prove the efficiency of our method, we have compared the important vari-

ables selected by the CIF model on three medical datasets (Breast Cancer,

Liver and Pima) with variables selected by experts.

Figure 3.3: Variable importance by conditional inference forest for Pima
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Figure 3.3 presents the diagram of variables importance for diabetes data

selected by the CIF. Results show that variables Glucose, Age and BMI are

respectively the most important variables.

Figure 3.4: Variable importance by conditional inference forest for Breast
Cancer database

Figure 3.4 presents the diagram of variables importance for breast cancer

data. Results show that Bare Nuclei, Uniformity of Cell Size, Uniformity of

Cell are respectively the most important variables.

The variables selected by the CIF in Figure 3.5 from the Liver dataset ac-

cording to their importance are gammagt, Sgpt and drinks.

Medical experts in the CHU of Tlemcen - Algeria have confirmed that the

selected variables by our proposed method CIF for each database are the

most important to achieve to a correct diagnosis.

Another useful option with this method is to train a forest with only the

best variables for each database. The new obtained results show that the use

of selected variables improves the accuracy of the model.
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Figure 3.5: Variable importance by conditional inference forest for Liver
databse

Table 3.3: Classification performance by conditional inference forest with vari-
able importance

Database Variable Importance Error rate

Base Nuclei,

Breast Cancer Unif. of Cell Size, 0.0315

Unif. of Cell Shape

Liver Sgpt,gammagt, Drinks 0.249

Pima Glu, Age, BMI 0.1711

Experimental results in Table 3.3 have shown that variable selection with

conditional inference forest method is simple and effective to show the in-

terpretability and transparency of the classifier while reducing the variables

with greater accuracy [80].
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3.2.2 Weighted voting in Random Forest

In this work, we propose to replace the classical ordinary vote in Random Forests

by the weighted one with the local performance of each tree, this choice is justified

by the fact that the classical vote gives equal weight to each decision of each tree

and depends on the choice of a majority of classifiers that give the same class for

databases, while the trees do not have the same performance. A second modifi-

cation in the choice of division variable level is proposed as well. The idea is to

replace the Gini index by its diversity namely Towing and Deviance.

3.2.2.1 The Twoing metric

Noting that the Gini index is not effective when the number of classes is high,

Breiman proposed in [81] the Twoing rule that works for the binary trees where

the number of the nodes equals to two and the T partition is divided into two

nodes, tG et tD.

Designed for multiclass problems, this approach prefers the separation between the

classes rather than the diversity of the node. Each division multiclass is treated

as a binary problem. The divisions that hold the ensembles of related classes are

preferred. The approach has the advantage of revealing similarities between classes

and can be applied to ordered classes as well.

Twoing = p(tG)p(tD)(
k∑

i=1

|pi(tG)− pi(tD)|)

The Towing rule is not a measure of a node’s purity, but a different measure to

decide how to divide a node. pi(tG) denotes the fraction of members of the i class

in the left son node after the division, and pi(tD) denotes the fraction of members

of the i in class the son node just after the division. Where p(tG) and p(tD) are

fractions of observations which are divided to the left and right respectively.



Chapter 3. Improvement of Random Forests 60

3.2.2.2 The Deviance metric

Also called the cross-entropy or the measure of deviance impurity, used to calculate

the impurity node. A pure node of a zero deviance, otherwise deviance is positive,

defined by:

Deviance = −p(tG)
k∑

i=1

pi(tG)logpi(tG)− p(tD)
k∑

i=1

pi(tD)logpi(tD)

3.2.2.3 Results and Interpretation

Table 3.4 contains the results of different forests (six different random forests are

compared). We notice that the weighted vote gives better results compared to the

classical majority vote and the Deviance criterion provides most of the time better

results compared to the Gini index (Gdi) and Twoing.

Table 3.4: The performance of random forests using Gini and its two variants

Majority Vote Weighted Vote

GDI Twoing Deviance GDI Twoing Deviance
Breast 4 4,2584 3,8292 3,486 3,8584 3,4292
Ecoli 16,699 16,0889 14,45 15,3759 14,83 13,5955

Habermann 27,1594 28,0833 27,451 27,451 27,451 26,479
Isolet 8, 99 9, 2485 8, 749 8, 89 10, 181 9, 205
Liver 29,2782 30,2679 28,5652 27,8261 28,6957 27,8261

Pendigits 12, 225 12, 9818 12, 885 13, 141 13, 77 12, 99
Pima 18,9454 18,0883 17,9687 17,9687 18,3594 17,7

Segment 2, 7289 3, 4488 2, 645 2, 99 3, 118 2, 89
Vehicle 25, 1885 26, 286 25, 25 25, 646 27, 043 24, 674
Yeast 38,3 37,543 36,587 37,85 36,94 35,385

To better evaluate the performances, we have compared two different random

forests; the first is a classical random forest with the Gini index (Gdi) and the

majority vote to aggregate 100 classifiers. The second forest is improved with

replacing Gini by Deviance and a weighted vote for aggregation. The program is

executed 50 times for each forest in order to compare the classification rates of the

two methods on ten databases.
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Table 3.5: Error rates of used methods

One tree Classical RF Improved RF

Breast 6, 31± 2, 56 4± 1, 41 3, 43± 1, 19
Ecoli 24, 1± 5, 8 16, 7± 2, 01 13, 6± 1, 15

Habermann 30, 1± 6, 54 27, 16± 2, 15 27, 48± 1, 91
Isolet 19, 8± 2, 84 8, 99± 1, 77 8, 21± 1, 6
Liver 42, 11± 5, 87 29, 28± 1, 65 27, 83± 1, 12

Pendigits 20, 124± 3, 2 12, 23± 1, 34 11, 99± 1, 24
Pima 26, 6± 4, 82 18, 95, 52± 2, 93 17, 7± 2, 71

Segment 11, 1± 2, 32 2, 73± 0, 51 2, 19± 0, 58
Vehicle 33, 2± 7, 28 25, 19± 3, 1 24, 68± 2, 28
Yeast 43, 2± 4, 4 38, 3± 2, 12 35, 4± 1, 6
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Figure 3.6: Error rates of different methods

Table 3.5 summarizes the results obtained by One CART Tree and the two random

forests (Classical RF and Improved RF) tested on ten different databases. Both

forests give error rates values, these results show that the forests have made a

good learning experience. Our immediate observation, comparing the obtained

results is that the Random forest provides always better results than the single

CART tree which is natural since using an ensemble of trees gives generally best

performances than a single tree. For the comparison of the two random forests,

classical and improved ones, we found that the second method gives mostly better

results compared to the classical forest. By comparing the results of the two forests,

for each used database, we take notice that, for the Breast Cancer dataset, because

the nature of this database, the results are very close. Note that the works using

neural networks have achieved 100% of correct classification of this base. It may

be observed that the best improvements are obtained in the experiment applied

on the Ecoli, Liver and Yeast datasets. This is natural since the Improved RF uses

the Deviance metric which is better then the Gini Index in the case of multiclass

problems.

The results plotted in the Figure 3.6 show that the Improved RF significantly

outperforms the single CART tree and the Classical RF in terms of accuracy and
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variance. This can be explained by the fact that, unlike Classical RF, the Improved

RF trees are different since they use the Deviance metric and the Weighted Vote,

and, unlike the single Cart tree, they ensure a good compromise of Bias/Variance

which leads to a good classification rate with a low variance.

3.3 Conclusion

In this chapter, we presented, first, the stat of art relatively to the improvement

of random forests in terms of variables selection and voting mechanism.

As second part, we conducted experiments of the conditional inference forest,

which is a set of conditional inference trees, exploiting their ability of variable

selection. The obtained results using this method are very much competitive as

compared to those in the state of art.

Finally, the classical RF algorithm was re-implemented using the Gini index and

the majority vote, and then the development of several variables of the same

classifier has been preceded using the Deviance metric and the Twoing rule for

the choice of the variable dividing nodes of the level of the trees. After that, the

weighted vote was used as a method of aggregation of the ensemble of trees and

ten databases from the UCI machine learning repository was used to test our ap-

proach. The classification rate obtained with our suggested method is among the

best results existing in the state of the art obtained for the classification of these

databases.
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Summary

In this chapter, we will introduce a new tree induction technique called Sub RF (for

Subspaces Random Forest) in which we use bootstrapping and random subspaces

methods to generate training sets and random forest to generate trees.

Single decision trees typically suffer from high variance, which makes them not

competitive in terms of accuracy. A very efficient and simple way to address

this flaw is to use them in the context of randomization-based ensemble meth-

ods. Specifically, the core principle is to introduce random perturbations into the

learning procedure in order to produce several different decision trees from a sin-

gle learning set. Since their appearance, tree-based ensemble methods have been

subject to several improvements in terms of randomization. In the next section we

present some existing models and our proposed method.

4.1 Related works on the improvement of tree-

based ensemble methods

4.1.1 Perfect Random Tree

In 2001, Cutler and Zhao propose PERT (Perfect Random Tree Ensembles) [82]

which randomizes the test-selection for continuous-valued features to achieve higher

randomization. In this algorithm, to split each non-terminal node, two examples

are first randomly selected from different classes in the local learning sample. Then,

a random attribute is selected and the cut-point is randomly and uniformly drawn

between the values of this attribute for the two random examples. A leaf is formed

if two examples of different classes cannot be found after ten trials. PERT perfor-

mances are surprisingly pretty good (see [82]). PERT is not better than Random

Forests-RI, but it is comparable. It should also be noted that the computational

complexity is much less than for PERT Random Forests-RI. Indeed, in PERT
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nothing is optimized: to build a tree we just draw random variables and we never

compare two cuts between them.

4.1.2 Extremely Randomized Trees

Extremely Randomized Trees [83] (ET or Extra-trees for short) consists in an en-

semble of binary decision trees. The Extra-Trees algorithm builds an ensemble of

unpruned decision or regression trees according to the classical top-down proce-

dure. Its two main differences with other tree-based ensemble methods are that

it splits nodes by choosing cut-points fully at random and that it uses the whole

learning sample (rather than a bootstrap replica) to grow the trees. Figure 4.1

shows an example of tree-based classifiers generated with ET.

Figure 4.1: The Extra-trees algorithm.

The predictions of the trees are aggregated to yield the final prediction, by majority

vote in classification problems and arithmetic average in regression problems. As

compared to PERT, Extra-Trees requires an additional data-scan at every node of
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a tree to find the maximum and minimum values, which can be a disadvantage in

terms of computational complexity. In [83] authors proved that the performances

of their proposed method ET are very competitive to the existing techniques in

the state of the art with a significant gain in computing time.

4.1.3 SubBag

The SubBag is a combined method introduced by Panov and Dzeroski in 2007

[84]. Algorithm 3 allows creating random bags using Bagging and Random Sub-

spaces Method (RSM). The idea is to select random samples with replacement

from the original set (like in Bagging) and for each sample we select randomly

only 75% of the attributes (RSM). Thus, a very randomized sub-bases compared

with bootstrapping can be achieved.

Algorithm 3 Pseudo code of the SubBag algorithm

Input: The Training set L, Number of Random Trees N, SubSpace size S.
Output: TreesEnsemble
Process:
for i = 1→ N do
T i ← BootstrapSample(T )
T i ← SelectRandomSubSpaces(T i, S)
Ci ← ConstructClassifier(T i)
E ← E ∪ {Ci}

end for
ReturnE

In their paper [84], the authors have empirically proved that this approach has a

comparable performance to that of random forests, with the added advantage of

being applicable to any base-level algorithm without the need to randomize the

latter.

4.1.4 Random Patches

In [85] authors propose a wrapper ensemble method for supervised learning in the

context of very strong memory constraints or, equivalently, very large datasets
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called Ensemble on Random Patches. The Random Patches algorithm (further

referred to as RP) is described in Figure 4.2.

Figure 4.2: The Random Patches Algorithm

As shown in the Figure, RP method builds each individual model of the ensemble

(a tree in our case) from a random patch of the dataset obtained by drawing ran-

dom subsets of both samples (like in the Pasting technique proposed by Breiman

in 1999 [86]) and features (like in RSM [44] from the whole dataset.

Let R(ps, pf , D) be the set of all random patches of size psNs × pfNf than can

be drawn from the dataset D, where Ns (resp. Nf ) is the number of samples

in D (resp. the number of features in D) and where ps ∈ [0; 1] (resp. pf ) is an
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hyper-parameter that controls the number of samples in a patch (resp. the number

of features). That is, R(ps, pf , D) is the set of all possible subsets containing psNs

samples (among Ns) with pfNf features (among Nf ). The method then works as

follows:

1. Draw a patch r ∼ U(R(ps, pf , D)) uniformly at random.

2. Build an estimator on the selected patch r.

3. Repeat 1-2 for a preassigned number T of estimators.

4. Aggregate the predictions by voting (in case of classifiers) or averaging (in

case of regression) the predictions of the T estimators.

In RP, at the tree induction step, unlike RF and ET, features are drawn glob-

ally. Louppe and Geurts have proved in their paper [85], that ensembles built on

Random Patches are usually as good as the other methods (RF and ET) with a

significant improvement in terms of memory consumption and training time.

Conclusion

The existing methods in the state of the art try to deal with the randomization.

A good ensemble method should insure the optimal level of randomization which

minimizes the error rate and the variance. In this work we propose a method

that uses the same principle of SubBag with the use of Random forest algorithm

to generate classifiers (add another level of randomization to SubBag) and gives

better results.

4.2 Proposed Algorithm Subspaces Random Forests

The proposed method allows creation of a set of classifiers using the method Sub-

Bag [84] for the generation of training samples. The classifiers are decision trees
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generated by using the Forest-RI algorithm [7]. This method of trees ensemble

creation was named Sub RF (for Subspaces Random Forest). The pseudo-code in

Algorithm 4 and the Figure 4.3 illustrate our algorithm:

Algorithm 4 Pseudo code of the Sub RF algorithm

Input: The Training set L, Number of Random Trees N, SubSpace size S, Pa-

rameter of random forests K. Output: TreesEnsemble

Process:

for i = 1→ N do

T i ← BootstrapSample(T )

T i ← SelectRandomSubSpaces(T i, S)

Ci ← ConstructRF tree(T i)

E ← E ∪ {Ci}

end for

ReturnE
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Figure 4.3: The Sub RF Algorithm

Our algorithm select random samples with replacement from the original set using

the principle of Bootstrapping (step (1) in Figure 4.3) and for each sample, only

75% of the attributes are randomly selected using the RSM like in the SubBag

method (step (2) in Figure 4.3).

This algorithm adds another level of randomization to the SubBag method given by

the function ConstructRF tree() which allows to create trees using the principle

of random forests. During the process of the creation of trees, at each node, the

selection of the best split based on the Gini index is performed not on the complete

set of attributes M but on a randomly selected subset of it (step (3) and (4) in
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the Figure 1). At the end, the error rate is calculated with the focus on a majority

voting of the individuals’ decisions of each classifier (step (5) in the Figure 1).

4.3 Results and interpretations

4.3.1 Protocols

In our experiments, seven different algorithms are implemented: a single CART

tree, Bagging (CART trees), PERT, RSM, classical RF, SubBag and our proposed

method Sub RF. The goal is to visualize and study the evolution of the error rate

of each method.

First, each database has been divided into two sub-data sets, one for learning and

the other for test (using 5-fold cross validation). The separation of the data was

carried out by random draw.

As it has been already explained, our method uses bootstrapping to generate the

bag so we will have in average, for each bootstrap sample 63.2% of unique examples

from the original set, the rest being duplicates (first randomization).

To make a fair comparison, the same experimental parameters in [44][84] were

adopted by the Sub RF approach, i.e. the use of 75% of the attributes space

(using random subspaces method RSM) for each bag (second randomization).

For the parameter K of the Random Forest algorithm, several works in the liter-

ature bulk have shown that a number of attributes equals to
√
M (M is the size

of the whole attributes space) is a good compromise to produce an efficient forest

[7] [87]..



Chapter 4. Subspaces Random Forest 73

4.3.2 Choice of the number of trees

As said in the Chapter 3, 100 trees for each method were used for a comparison

between a single CART tree, Bagging (CART trees), PERT, RSM, classical RF,

SubBag and our proposed method Sub RF to evaluate the performance of this

new technique for generating tree-based classifiers.

4.3.3 Discussion

All used databases are classification problems and the algorithms are run 50 times

on each dataset. At every run, each dataset is first randomly divided into a learn-

ing and test sample (4/5 of the data for learning and 1/5 for testing). Then all

algorithms are run on the learning sample and their errors are estimated on the

test sample. We report and analyze the average and the variance of the error rates

of each method obtained in this way on each dataset. These results are summarized

in the following table and graphically on Figure 3.

Table 4.1: Error rates of used algorithms

ONE TREE BAGGING PERT RSM RF SubBag Sub-RF

Breast 0,6311 0,0383 0,0303 0,0348 0,04 0,03 0,0403

Ecoli 0,2432 0,1876 0,2555 0,1589 0,1672 0,1551 0,1499

Habermann 0,3007 0,3012 0,2644 0,2603 0,2551 0,2582 0,2411

Isolet 0,1982 0,111 0,1709 0,0890 0,0899 0,0808 0,0781

Liver 0,4118 0,2979 0,2816 0,3116 0,2812 0,2603 0,2501

Pendigits 0,2012 0,1306 0,1322 0,1250 0,123 0,1287 0,119

Pima 0,3319 0,2406 0,2541 0,2452 0,2387 0,2311 0,2283

Segment 0,1114 0,0305 0,0465 0,0325 0,0273 0,0254 0,026

Vehicle 0,3321 0,2568 0,2724 0,2596 0,2519 0,2607 0,2528

Yeast 0,4327 0,4003 0,4244 0,4248 0,3873 0,3725 0,3644
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Figure 4.4: Error rate and variances of different algorithms

This study shows that Sub RF significantly outperform the single CART tree,

Bagging (CART trees), PERT, RSM, classical RF, and the SubBag method in

terms of accuracy and variance. The results (see Table 4.1 and Figure 4.4) show

that Sub RF gives better results compared with the other methods, due to its

increased randomization. This can be explained by the fact that, unlike Bagging,

RSM and RF, the Sub-RF trees are very different since they do not use all at-

tributes and, unlike the PERT Trees, they choose the best variable. SubBag gives,

in some cases (2/10 in our experiences), best results than Sub RF, this is due

to their resemblance in the first and second randomization step; Even this, the

performances of Sub RF are still good since they insure a low variance. From this

results, we believe that Sub RF provides overall the best tradeoff in terms of ran-

domization compared to the other methods in the context of trees generation.

4.4 Conclusion

In this chapter, a new trees generation method called Subspaces Random Forest

(Sub RF), which uses Bootstrapping, Random Subspaces and Random Forests,

has been proposed. Our approach has been experimentally tested on ten UCI

databases. This method, in fact, has been effective compared to the classical Ran-

dom Forest, Bagging, one tree, PERT, RSM and SubBag in terms of precision

and variance. Results display that our suggested approach is competitive to the
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existing methods in the state of art.

It remains several open questions and limitations to our approach that are likely

to address in the future. At first, we would like to strengthen these results with

a more theoretical analysis and test it on big data. Some ensemble selection tech-

niques are likely to be tested as well to keep only the best trees of the forest since

trees are very different.

In the next chapter, we will deal with another optimization techniques, where in-

stead of changing the aggregation method, we select only the best trees among the

whole ensemble. This method is called Ensemble Selection or Ensemble Pruning.
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Summary

In this chapter, we propose a new dynamic pruning method called Out of bag-

based Ensemble Pruning after an overview of the existing methods in the stat of

art.

5.1 Ensemble Pruning

Ensemble selection algorithms (also called pruning algorithms) aim at finding the

best subset, among the set of all hypotheses space, which may optimize the com-

putation time (as in static Pruning) and / or improve performances (dynamic

pruning). The main aim of this experimental work is to fundamentally apply en-

semble selection methods for selecting best classifiers from a random forest which

is generated using the method SubBag. There exist several studies in the literature

that we discuss below according to their types (static or dynamic).

5.1.1 Static Pruning:

Static pruning consists in creating a set of classifiers (random forest or other)

and then selecting a part of this set (the best classifiers) that performs as well

as, or better than, the original ensemble. The selected set will be used for the

classification of test instances. Many researchers have shown in their studies on

the tree selection in a random forest, that better subsets of decision trees can be

obtained by using sub-optimal methods of classifier selection [88] [89] [90] [91] [87].

Their results affirm that an induction algorithm of classical random forests is not

the best approach to produce well performing tree-based classifiers.

Among the most recent works, in this regard, we find the article of Zhao et al.

[92] where the authors propose a fast pruning method compared with the existing

methods. Their idea is to create a prediction table where each row of the table
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contains a database instance and each column a classifier. The proposed algorithm

chose the best combination of classifiers that minimizes the error. The authors

compared their results with Bagging [41] Gasen [88], and Forward Selection (FS)

[93]. They have shown that their method gives better results in less time.

Lu et al.[94] in their article, propose a heuristic that respects the compromise

accuracy / diversity for the evaluation of the contribution of each classifier and

thus, choose the best subset. Their results show that the subset chosen by their

algorithm EPIC (for Ensemble pruning via indivdual contribution ordering) out-

performs the original set.

Other studies present classifiers selection as an optimization problem where we

had to look for the best solution in the space. Most of the proposed algorithms

have used optimization algorithms such as greedy search [95],[96], [93], [97], [98]

[99], hill climbing [100] or even genetic algorithms [101].

In Guo et al.[102], the authors have presented an entropy-inspired ordering en-

semble pruning algorithm exploiting an alternative definition of the margin of

ensemble methods. This pruning strategy considers the smallest margin instances

as the most significant in building reliable classifiers. The algorithm combines best

classifiers, which classify correctly smallest margin, for future decisions. Authors

have proved that their method improves over using the whole set.

5.1.2 Dynamic Pruning:

Dynamic pruning (also called dynamic ensemble selection or instance-based en-

semble selection) aims at selecting the best subset of classifiers dynamically (ie:

for each test example) from the original set. The selected classifiers are aggregated

afterwards by a majority vote. The subset should lead to a greater accuracy com-

pared to the whole set. This type of selection is best suited for offline problems

where we privilege accuracy over computation time because there is an additional

cost in the testing phase.
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Woods et al.[103] and Giacinto et al.[104] are said to be among the first authors

who were interested in dynamic selection. Their methods consist in using for each

instance of the test base, the best classifiers of its neighborhood (using KNN).

Authors propose two methods to calculate the performance of classifiers. The first

is OLA (Overall local Accuracy); this metric calculates the rate of correct clas-

sifications of each classifier on instances of the neighborhood. The second metric

is called LCA (Local Class Accuracy), it allows to calculate, for each classifier,

the rate of correct classification of examples in the neighborhood that have the

same given class for the test instance. Best Classifiers are combined to classify this

instance.

Two other approaches, dynamic selection (DS) and dynamic voting (DV) have

been proposed by Puuronen et al.[105]. DS uses the same principle as OLA [103]

but by weighting selected classifiers by their distance. DV does not use KNN but

rather all the classifiers weighted by their local competence. An approach between

DS and DV was introduced by Tsymbal[106] where the author proposed to select

the 50% best classifiers and then combining them using DV.

Among the most recent works, one may find that of Ko et al.[107]. The authors

proposed four different versions of a method called KNORA (K-nearest Oracle).

The proposed algorithms use the KNN to select neighbors of each test instance. In

KNORA-UNION version, the algorithm selects the classifiers that correctly classi-

fied at least one instance of the neighborhood, while in KNORA-ELIMINATE ver-

sion the algorithm keeps only the classifiers that rank well all instances of the neigh-

borhood. If any classifier does not check these conditions, the neighborhood is in-

creased (for KNORA-UNION) or reduced (for KNORA-ELIMINATE). The other

two proposed approaches are KNORA-UNION-W and KNORA-ELIMINATE-W.

They are versions weighted by the Euclidean distance between the classifier and

the instance to classify.

Hernandez-Lobato et al.[108] propose a statistical method for dynamic selection

of classifiers. The idea is to early stop the querying process of each tree if we

reach a number of votes of the majority class > (T-t), where T is the number of
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classifiers and ’t’ is the sum of the second majority class and the rest of non-queried

classifiers. In the case of a binary classification querying stops if the majority class

exceeds 50% of the votes.

Markatopoulou et al.[109] modelled the pruning as a multi-label problem called

IBEP-MLC (Instance-Based Ensemble Pruning via Multi-label Classification). The

idea proposed by the authors is to add, for each instance of the training set, a label

with each classifier. If the instance is well classified, a positive label is given (+),

otherwise it is a negative one (-). The classification of a new instance is made by

taking the classifiers with a positive label in its neighborhood.

In Woloszynski et al.[110] authors developed a probabilistic model method for

calculating the classifier competence. The competences calculated for a validation

set are generalized to an entire feature space by constructing a competence func-

tion based on a potential function model or regression. Three systems based on

a dynamic classifier selection and dynamic ensemble selections (DES) were con-

structed using the method developed. The authors showed that DES based system

had statistically significant higher average rank than the related works.

In their paper, Krysmann and Kurzynski[111] developed different methods of learn-

ing competence function using the concept of randomized reference classifier as a

basis for determining the competence set. Performances of DES systems for differ-

ent learning methods (potential function method, linear regression, neural network,

radial basis neural network, generalized regression neural network and 1-Nearest

Neighbor method) were experimentally investigated. Results have shown, in fact,

that the proposed method is competitive to the similar algorithms.

In Galar et al.[112], they have proposed a dynamic classifier selection strategy for

One-vs-One scheme that tries to avoid the non-competent classifiers when their

output is probably not of interest. This method considers the neighborhood of

each instance to decide which classifier may correctly classify this instance.
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5.2 Proposed Method

It has been noticed that all the works previously cited, in the section dynamic

pruning, are based on KNN for the choice of the neighborhood, which is an addi-

tional parameter to adjust. Noting that this method is not effective if we do not

use all the space of attributes (case of RSM or SubBag). Indeed, two instances

may be far in the complete space and close in a part of it.

As a solution to this problem, a method based on a different notion of neighbor-

hood is suggested. In this work, the nodes of the trees are used as a heuristic

neighborhood. Indeed, two instances are adjacent if they pass through the same

nodes in a given tree. Our algorithm (Algo4) involves three steps:

• The creation of a set of classifiers using the method Sub RF.

• For each tree in the forest, the classification of its OOB elements (with this

tree) is launched and their paths are saved (step (1) in the Algorithm 4).

• To classify a new instance, the score of each tree for this instance should

be calculated and process to a majority vote among the K-best trees. The

score of the tree is calculated based on the correct classification of its OOB

weighted by their distance with this instance (step (2) in the Algorithm 4.).

The pseudo-code Algo5 and the Fig5.1. illustrates our algorithm of dynamic prun-

ing called OEP (for Out of bag-based Ensemble Pruning).
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Algorithm 5 Out of bag-based Ensemble Pruning

Input: The labeled set L, The test set T, Number of Random Trees N, SubSpace

size S, Number of selected classifier M.

Process:

LearnSubRF (L, S,N)

for i = 1→ N do

for j = 1→ size(OOBi) do

Classify(OOBi,j);

NodeOOBi,j = getPathNodes(OOBi,j) (1)

end for

end for

for i = 1→ T do

for j = 1→ N do

Classify(instancei);

Nodei = getPathNodes(instancei)

Score(i, j) =

∑k
size(OOBj)

(WelClass(OOBk)∗Distance(i,OOBk))

Size(OOBj)
(2)

end for

H∗ = SelectBestClassifier(M)

MajorityV ote(H∗, instancei)

end for

For a test instance, the score of a tree, is a value comprised between 0 and 1. A

score equal to ”1” means that the tree is very efficient and will ensure a correct

classification for this test instance. A tree with a score equal to ”0”, has a hundred

percent chance to give a false classification for the instance.

The principle of calculating the score of a tree, for an instance, is very simple. It

is based on a Boolean function (WelClass()) which weights the distance between

the test instance and each OOB of this tree. Welclass() returns ”1” if the element

OOB was well classified by the tree, otherwise ”0”.
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Figure 5.1: Out Of Bag-Based Ensemble Pruning algorithm

A distance between a test instance and an OOB equal to ”1” means they have

gone together through all the nodes of the tree [113]. A distance very close to zero

means that the two elements have gone through different paths. The principle of

distance calculation will be described in detail below.

Two different notions of neighborhood based paths and final nodes of instances

and OOB have been used. The first one (Algo6) is a binary distance that depends

on the leaf of the instance and the OOB. It means that if two element are at the

same leaf, distance is ’1’ otherwise ’0’. This method was put forward by Marée et

al in [3].
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Algorithm 6 Distance 1

Input: Instance i, Out Of Bag j.

Output: Distance between i and j

Process:

if FinalNode(i) = FinalNode(j) then

Distance(i, j) = 1

else

Distance(i, j) = 0

end if

Return Distance

The second one (Algo7)was introduced by Vens and Costa in [114]. It is about

calculating communes nodes between an OOB and a given instance considering

all the paths and not only leafs. The distance of an OOB compared to an instance

is a fraction of the number of nodes traversed together over the maximum depth

between this two paths.

Algorithm 7 Distance 2

Input: Instance i, Out Of Bag j.

Output: Distance between i and OOBj

Process:

Distance(i, j) = size(NodeOOBj ∩Nodei)/MaxLevelTree

Return Distance

5.3 Results and interpretations

To test our algorithm, ten databases from the UCI Machine Learning Repository

[52] were used. Databases which have been used in our experiments are described

in the Table 5.1.

Our experiments are to implement seven different ensembles: Sub RF, Sub RF

with Static Pruning, Sub RF with Dynamic Pruning, Sub RF with OEP, Bagging



Chapter 5. Ensemble Selection 86

with OEP, Randomized trees with OEP and RF with OEP. The goal is to visualize

and study the evolution of the error rate of each method and subsets obtained

during the process of tree selection.

First, each database has been divided into two sub-data sets, one for learning and

the other for test (using 5-fold cross validation). The separation of the data was

carried out by random draw from the whole set.

Table 5.1: Used databases

Databases Inst Features Cl

Breast 699 9 2

Ecoli 366 7 8

Habermann 306 3 2

Isolet 7797 617 26

Liver 345 6 2

Pendigits 10992 16 10

Pima 768 8 2

Segmentation 2310 19 7

Vehicle 846 18 4

Yeast 1484 8 10

As it has been already explained, our method uses bootstrapping to generate the

bag. OOB will be used for selecting classifiers. Several works in the literature bulk

have shown that a number of attributes equal to
√
M is a good compromise to

produce an efficient forest [7] [87]. In what follows, we present the main established

experiments for the test of the proposed methods.

5.3.1 Protocols

Like sayed before, 100 trees for each method were used. Our goal in this work is

to study the evolution of the performance of the forests according to the number

of trees they contain, in addition to the quality of the selected trees.
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5.3.2 Comparison of the distances

As pointed out before, two different notions of neighborhood were proposed for our

experiment. For this purpose, our algorithm has been tested with two heuristics

(Leaf-distance and Path-distance) to choose the best one.
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Figure 5.2: Error rate of different distances

Fig.5.2 show that the distance based on the path systematically gives better re-

sults than the distance based on leaves. Apparently, these results can be explained

by the fact that, using the first distance, a tree will have a null score if no OBB

is in the same leaf with the instance to classify. Hence this tree will be eliminated

although it can be good. In what follows, we will only use the second distance

(Path-based distance).

5.3.3 Effect of the pruning and the level of tree random-

ization

In other experiments, a comparison of our proposed dynamic pruning method

OEP (for Out of bag-based Ensemble Pruning), Static Pruning (SP) and Dynamic
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Prunig (DP) applied on Random Trees (which uses only one random feature),

Random forests (RF), Bagging and Sub RF was establiched. Groups of selections

were organized to which, each time, five trees to the group where added. In the

first experiment, a random tree selection for Sub RF, where trees are selected and

aggregated according to their order of appearance and without condition, was pro-

cessed. For the Static pruning, the OOB database is used like a validation database

and the performance of each tree is calculated based on the correct classification

rate of its OOB. At each stage, the K-best trees are selected for the classification

of the test set. OEP Algorithm is used with all cited methods and compared with

the Dynamic Pruning algorithm based on KNN used with Sub RF (Sub RF+DP

in the figures).

Fig.5.3 show error rates of different combinations as the number of selected trees

increases. It may be observed that our algorithm of dynamic pruning OEP gives

best result between 20 and 50 trees for all databases. The best results are obtained

with the forest generated by the Sub-RF algorithm. This can be explained by the

fact that, unlike Bagging and RF, the Sub-RF trees are very different since they do

not use all attributes and, unlike the Random Trees, they choose the best variable.

Sub RF thus provides overall the best tradeoff in terms of randomization in the

context of our dynamic pruning algorithm. OEP seems to gives better results than

the static pruning and dynamic pruning methods that use KNN: it leads globally

a lower error rate than all methods and it also reaches its optimum for a smaller

set of trees. Therefore, the neighborhood based on tree nodes is more efficient if

we do not use the whole attribute space.
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Figure 5.3: Error rates

5.3.4 Distribution of selected trees

To prove the need of a dynamic selection, a list of TOP 20 trees used for each

database has been provided. Databases have been divided into two sub-datasets,

50% for learning and 50% for testing. For each tree, the number of times it appears

in the TOP 20 trees used for classification of the test set was calculated. From the

obtained results (see Fig.5.4, it can be noted that best trees are used in less than

50% of the test set (except for breast cancer database) which means that there is

not a subset of 20 trees that can give best results on all the test set, hence the

need a of dynamic selection of trees.
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Figure 5.4: Top 20 best trees used

5.4 Conclusion

To put it in a nutshell; in this paper, a new instance-based ensemble pruning

method which uses the neighborhood in the tree has been essentially hypothe-

sized. This method has, in fact, proven effective on trees that do not use all the

attribute space. For this, it sounds quite important to investigate the efficiency

of a method of generating tree which is very similar to SubBag and gives better

results compared to conventional random forests. For that reason, our approach on

ten UCI databases was experimentally tested. Results display that our suggested

approach is almost competitive with pruning methods (static and dynamic) which

are based on KNN.



General Conclusion

Summary

We were interested in this thesis on the classification of biomedical data by ex-

ploiting some existing Ensemble Methods, especially the random forests algorithm

and using a new proposed method called SubSpace Random Forests. The idea of

ensemble methods is to combine several classifiers to build best models. There are

many methods that automatically generate ensembles of classifiers, today. Some

of them manipulate instances (like in Bootstrapping), some others randomize the

choice of the attributes (Random Subspaces Method) and others randomize both

examples and attributes (Random Forests). The random forests are exceptional

figures since they have the particularity to use exclusively elementary classifiers

types of decision trees. The main reason is that these classifiers (Decision Trees)

are particularly suitable for use in Ensemble Methods, and because of their in-

stability. Therefore, methods for generating diversity in these sets are sometimes

specific to the automatic induction of decision trees. The main difficulty posed

by various Ensemble Methods is that their hyperparameters, allowing most of the

time to control the variety in the sets, are often difficult to resolve. Random forests

are no exception to this rule. For example, with regard to the reference algorithm

for induction of random forests Forest-RI [7], two main parameters are used to

create diversity:

94
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• The number of randomly selected features at each node of the tree

• The number of induced trees in the forest

Other methods like Random Sub spaces Method (RSM) [44], Subspaces Bagging

(SubBag) [84] and Random Paches (RP) [85] use another parameter which is

the size of the selected variable subset. The objective of these parameters is to

create diversity in the training set (Bootstrapping, RSM, SubBag, PR ..) and/or

diversity between classifiers in the learning step (Random Forest , Extra-trees, ...).

Another problem of Ensemble Methods is the way to combine the decision of each

elementary classifier in the ensemble. In Random Forest, the whole forest predic-

tion is provided by a simple majority vote of the class assignments of individual

trees. This method is not always optimal since all the trees do not necessarily have

the same performance. The aim of this thesis is to:

• Raise the problem of diversity by developing a new ensemble method based

on Random Forests and Random Sub-Spaces Methods called Sub RF (for

Sub-Spaces Random Forest)

• Replace the traditional majority vote of random forests by a weighted vote

• In addition, a deep study of ensemble pruning methods was achieved which

served as a source of inspiration for developing new and improved Dynamic

pruning method for Tree-based Ensemble Methods.

Initially, we focused the way to get a tree-based ensemble method with the best

randomization level (diversity in training data). As solution we proposed Sub RF

which combine Bootstrapping and RSM to generate bags and Random Forests to

induce trees [115]. Our proposed methods was compared with a single CART tree,

Bagging (CART trees), Perfect Random Trees (PERT), RSM, classical Random

Forests, and the SubBag method in terms of accuracy and variance to show the

interest and the effect of randomization on the classifiers’ performances. Results
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presented in the chapter “Subspaces Random Forests” show that Sub RF gives

better results compared with the other methods, due to its increased randomiza-

tion. This can be explained by the fact that, unlike Bagging, RSM and RF, the

Sub-RF trees are very different since they do not use all attributes and, unlike the

PERT Trees, they choose the best variable.

Our second contribution focused on the influence of the way of combining classifiers

on the generalization error of the final model. On this aspect, two main solutions

was proposed, the first one is to combine all classifiers by weighting the decision of

each classifier by his local performance [116] (local performance of each classifier

is calculated based on the best classification rate of his Out Of Bag (OOB)).

The second solution is to select only the best classifiers to predict classes; this

technique is called Ensemble Selection. Ensemble selection algorithms (also called

pruning algorithms) aim at finding the best subset, among the set of all hypotheses

space, which may optimize the computation time (as in static Pruning) and / or

improve performances (dynamic pruning). Static pruning consists in creating a

set of classifiers (random forest or other) and then selecting a part of this set (the

best classifiers) that performs as well as, or better than, the original ensemble. The

selected set will be used for the classification of test instances. Dynamic pruning

(also called dynamic ensemble selection or instance-based ensemble selection) aims

at selecting the best subset of classifiers dynamically (ie: for each test example)

from the original set. For each test example, the selection is made based on the

performance of classifiers of his neighborhood. All dynamic pruning methods in

the stat of art are based on the K-nearest neighbor (KNN) for the choice of the

neighborhood, which is an additional parameter to adjust. Noting that this method

is not effective if we do not use all the attributes space (case of RSM or SubBag).

Indeed, two instances may be far in the complete space and close in a part of it. As

a solution to this problem, a method based on a different notion of neighborhood is

suggested. In this work, the nodes of the trees are used as a heuristic neighborhood,

where, two instances are adjacent if they pass through the same nodes in a given

tree. In this context, we proposed a new Dynamic Ensemble method based on OOB
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instances called “Out Of Bag- based Ensemble Pruning” [113]. This method has,

in fact, proven effective on trees that do not use all the attribute space compared

with the Static Pruning and the classic Dynamic Pruning.

Outlooks

This works, if they bring some answers to the various questions on ensemble meth-

ods and especially random forests, also open the door to some interesting prospects.

On Computational Time

We want to highlight the fact that the dynamic pruning method proposed as a

solution, is greedy in terms of execution time. For now, it wasn’t a problem since

the goal of this thesis is to introduce new algorithms that can be used in any

classification program using artificial learning and more particularly a supporting

system for medical diagnosis which needs a high precision without caring about

execution time. First, we think it would be interesting to implement Sub RF on

a CPU/GPU architecture since this hybrid model has proven its effectiveness on

algorithm that contain a parallel processing [117] (case Sub RF).

On Big Data

In this thesis, ten datasets for the UCI Machine Learning Repository [52] have

been used to test our algorithms. This datasets hold only small data (the biggest

one “Pendigits” contains 10992 instances). In this context, we find that it would

be interesting to test the behavior of our methods on high-dimensional data.
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Abstract 

 

This thesis concerns the improvement of the performance of ensemble methods using 

new machine learning approaches. The first part introduces a new ensemble method 

for biomedical data classification. For this, we have proposed a model called Sub_RF 

(for Subspaces Random Forest) which uses the RSM (Random Subspaces Method) 

and random forests to generate a set of random trees. The obtained results by this 

approach are very competitive compared with those obtained in the literature. The 

second part of this thesis deals with the dynamic pruning problem in ensemble 

methods. The main objective of this part is to develop a new technique of Dynamic 

Pruning based on a new concept of neighborhood. The results obtained with our 

approach of Dynamic Pruning are very promising. 

 

Résumé 

 

Cette thèse de doctorat concerne l’amélioration des performances des méthodes 

d'ensembles en faisant appel à des nouvelles approches d'apprentissage artificiel. La 

première partie introduit une nouvelle méthode d’ensemble pour la classification des 

données biomédicales. Pour cela nous avons proposé un modèle appelé Sub_RF (pour 

Subspaces Random Forest) qui utilise les RSM (Random Subspaces Method) et les 

Forets aléatoires pour la génération d’un ensemble d’arbres aléatoires. Les résultats 

obtenus par cette approche sont très compétitives comparant avec ceux obtenus dans 

la littérature. La deuxième partie de cette thèse traite le problème de l’élagage 

dynamique dans les méthodes d’ensemble. L’objectif principal de cette partie consiste 

à développer une nouvelle technique du Pruning Dynamique basée sur une nouvelle 

notion de voisinage. Les résultats obtenus avec notre approche du Dynamic Pruning 

sont très prometteurs. 

 

 ملخص

 

جديدة للتعلم الآلي.  تاــخوارزمي باستخدام ''طرق المجموعات''نقوم في هذه الأطروحة بتحسين اداء 

، ‘'ساب اراف'' ، مسمات‘'اتـطرق المجموع''نقترح في الجزء الأول من هذا العمل نموذج جديد من 

 ''الجزئية اءاتـــــــفضال'' و ''الغابات العشوائية''. هذه الطريقة تجمع بين ةالبيو طبيالبيانات  لتصنيف

تنافسية مقارنة مع الطرق الموجودة في الأدب.  دتعتبر جالنتائج المحصل عليها  .''ارـــالأشج''لإنشاء 

، ''اتـــــــلطرق المجموع'' ''كيـــــالتقليم الدينامي''الجزء الثاني من هذه الأطروحة يتعامل مع مشاكل 

تعتمد على مفهوم جديد  ''كيــــللتقليم الدينامي''ة جديدة ــر تقنيـالهدف الرئيسي من هذا الجزء هو تطوي

.المتحصل عليها تعد جد واعدة . النتائج''وارـــللج''  
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