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Chapter 1

Introduction

The work presented here belongs to a project titled ”Modelling of the larval
stage of the anchovy of the bay of Biscay. Estimation of the rate of recruit-
ment in the juvenile stage”. This project has mainly for goal modelling the
growth and survival of larvae in an environment made up of both physical
and biological traits; the model considered is a system of three partial of
differential equations; one for the larvae, one for the weight of larvae and
one for the phytoplankton assumed to be the main food for early larvae (
before maturity i.e. until they acquire vertical movement activity by their
own) The equation for the larvae describes the variation of concentrations
due to physical process only. The equation for the phytoplankton focuses
on the variation entailed by physical and biological processes. Coupling of
larvae and phytoplankton is accounted for, in the third equation. This model
was theoretically developed and studied in the simplest case where the co-
efficients of diffusion were neglected and so first order hyperbolic system is
obtained. However in practice; the lack of data for the phytoplankton, no-
tably on the production of food concentrations made the model consisting
of system of three PDE’s impracticable. So the first model was revised and
the system has been reduced to a single equation encompassing both the
physical influence on the variation of larval concentrations and temperature
dependent growth laws. Because of the lack of data about phytoplankton
the growth is described as function of the temperature, we deal in this thesis
with the latter model. In the next paragraph we present the work done for
collecting data. Biological data were extracted from egg surveys, the sam-
pling protocol consists in taking samples of the tiny particles in suspension
in the water, one sample for each cell 315 squared nautical miles of a grid
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covering the bay of Biscay. This was done in 2D, considering the whole mixed
layer as a vertically homogeneous medium; calculating the average velocity
in the mixed layer which required as preliminary, estimating the thermo-
cline, averaging throughout the thermocline has the effect of cancelling the
vertical term. Because concentration of eggs and biotic material are roughly
constant throughout a station, horizontal diffusion was discarded. For egg
data 78 stations were selected, they were divided into five groups; each group
corresponding to all the stations sampled within a time interval less than 24
hours. Two options were considered; the first one assumes that what has
been collected a given day at a given cell reflects the situation for this day
only and can not be taken as a value of the egg production at this cell for
the other days; the second one on the contrary assumes that what has been
found one day at one place is what would be found any day at this place.
Assuming that the maximum life span of eggs is three days initial cohort are
built as follows : In the case of option 1 : On day 0 take the eggs aged 0 days
from sample 1, on day 1 add the eggs aged 1 days from sample 2, on day 2
add to the above the eggs aged 2 days from sample 3. In the case of option
9 . Use the values for eggs aged 0 days found in each station as an estimate
of the daily production of eggs in this section, this way is at day 0 it is made
up of the distribution of eggs aged 0 days throughout the 78 stations. On of
the most practical conclusions deduced from this is that the currents can act
in such a way as to mix eggs ‘of different stations within a small time.

P. Lazure and A-M Jegou see [32] are somewhat limited westward : some
of the material is lost for westward migration outside the domain of the
model; 2) the growth laws available are mostly restricted to the earliest
Jarval stages. So, while the program set up could in principle simulate the
dynamics for as long as the whole passive larval stage, its actual range is
limited a little beneath its pptential one by some limitations in the data.
We also want to mention in ﬂhis introduction some other works, old and new,
related to ours. The account is not intended to be exhaustive : our intention
when quoting such works is mainly to convince the reader, after we have
convinced ourselves that, in spite of its absolute scarcity in the literature,
the sort of domain we have undertaken has been considered of interest by
several researchers and has gven been attempted by some. Amongst the first
model , one can quote one by W. J. Vlymen [51] who modelled the growth
of the larvae at the beginning of exogenous nutritior from around 5mm of
length to the one set of schooling for various levels of contagion of food
organisms. Vlymen shows in particular that, with directed swimming, larvae




could greatly enhance their growth rates by feeding in micropatchs of prey.
This model is indeed complementary to burs, both by the period of the larva’s
life modelled, and also by the issue addrejssed , since the author focused on the
relationship between a larva and its food, and did not consider the movement
of the larvae within the sea. Closer to the approach followed in this thesis is
a model of the drift of northern anchovy‘ larvae in the California current by J.
Power [39]. The paper [39] explores the role of the horizontal advection and
diffusion on the movement of anchovy larvae. Two differences with our model
are : 1) that the main emphasis is placed in horizontal effects of the physical
environment, while our study stresses the role of vertical displacement; 2) |
no demographic processes are accounted for. The work which parallels our
own’s the most and was in fact a source of inspiration for our model is
the work by J. S. Wroblewski, and subsequent work by Wroblewski and
coworkers [52]. In his (1984) paper, Wroblewski investigates, by means of
a simple model, the role of oceanographic conditions on the growth and
mortality of anchovy larvae. The model considers on one hand, the prey,
the phytoplankton , which being passive, is the most sensitive to the action
of currents and turbulence both assumed to be essentially vertical, and on
the other hand, the anchovy larvae biomass whose growth is supposed to
vary as a function of the abundance of the prey. Assuming that the larvae
are evenly distributed throughout the mixed layer, the growth and survival
of anchovy will be affected by the distribution of the phytoplankton (in the
mixed layer), and thus the environment impact indirectly on the anchovy
recruitment. Later work by Wroblewski and his coworkers pursue the same
line of thought with some merely technical improvements with respect to the
early paper. Also relevant to this presentation is the work by P. Franks,
alone or with coworkers: the main argument of the research undertaken
by these authors is the strong link between the physical process and the
growth and survival of planktonic species, counting possibly fish larvae in
this category [22]. These authors combine the dynamics of water circulation
and those of species growth in numerical simulations which for most of them,
are organized as follows: the program solve in sequences the equations for the
water circulation, assuming the demographic processes be suspended, then
in the next time step, demographic processes (food uptake, birth, death, and
possibly other such events) take a place in the absence of any movement.
For the anchovy of the bay of Biscay, very few models seem to have been
done along the lines we just explained. In fact, the only other model we
know of is one by M. Gonzalez et-al [27] where the main emphasis has been
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put in setting up a model of circulation in the bay of Biscay and using it to
simulate the transport of a patch of eggs from the spawning areas located
offshore of the Gironde estuary. While a comparison between the two oceanic
models, the one by Gonzalez et al, and the one by Lazure and Jegou [32], is
yet to be done, there are clear differences, as far as the population dynamics
is concerned, since the model considered here accounts for heterogeneity in
larval maturation due to the temperature-dependent maturation rates.

After introducing the work of modelization done upstream, the principal
part of this work deals with solving and making qualitative study of problems
born from modelization (by qualitative study we mean existence, positivity
and uniqueness of solution); to this end we will use classical and less classical
methods. The problem treated is

oL o(fl) , . ool
{ +——8 + div (V1) haz)—l—ul—o,

ot C az(
I(t,1,7,y,2) = B(t, P),

with Newmann or Dirichlet conditions.

The main characteristic of this equation is that it has mixed parabolic-
hyperbolic type, due to directional separation of the diffusion and convection
effects: while a matter is convected along the y axis, it is simultaneously
diffused along all orthogonal directions. Some authors call this equation ul-
traparabolic equation that is parabolic in many directions. Our goal is to
prove existence, uniqueness and positivity to such problem. Firstly we will
treat the case where the horizontal velocities V3, Vs, and the growth function
f do not depend in the vertical direction z. Under this assumption, it was
possible to uncouple the vertical and the horizontal components in the fol-
lowing sense: the study was restricted to each of the horizontal streamlines
and real line: the restriction to such a line reduces the functions of time
horizontal components to functions of time so that the full model reduces
on such a line to a diffusion equation in the vertical variable coupled with a
first order growth equation, i.e. (one dimensional non autonomous parabolic
equation coupled with a first hyperbolic equation). Time dependence is dealt
with using results on time-dependent evolution equations by Acquistapace
[1, 2, 3] and several other authors (Lunardi [34], Tanabe [45]). The main
result of this case, ensures that, under some conditions on the coefficients of
the equation, the Cauchy problem associated with the equation has a unique
classical solution, which moreover is nonnegative if the initial value is non
negative.



Secondly we will treat the general case where the horizontal current de-
pends of all variables. In this situation we can not uncouple the vertical and
the horizontal components. The principal difficulty is the lack of coercivity
to our elliptic operator, i.e. equation with degenerated elliptic operator. The
idea we exploit here is to perturb our equation by adding a vanishing artifi-
cial viscosity, in other terms a|diffusion, in the missing directions (along the
(x,y)-axis). The monotone operator theory can be applied see [30](p 316)
which gives us existence, and| uniqueness of the solution to the perturbed
problem, after that we will establish the positivity of our solution. Passing
to the limit in a suitable way, we get existence and positivity of a solution of
the main model. Since the main operator is not coercive we obtain some ex-
tract regularity of the solution|in the direction of z3. After that we will treat
the same model in the general case by another technique called multilayer
methods, The idea is to approximate the model by one in which the above
mentioned restriction is assumed to hold piecewise : this has been done by
dividing the water column into thin layers in each of which it is reasonable to
assume that the coefficients are constant throughout the vertical direction.
The mathematical analysis of the problem leads to two main issues : 1) each
approximating equation sets up a system of equations of parabolic type with
time dependent coefficients and rather unusual boundary conditions. 2) The
approximating solution converge in suitable way to a solution of the main
equation, we will show existence and positivity of solution with such method.
The advantage of this method is the fact that it give the practical approx-
imate of the coefficients and this make numerical analysis of such equation
casier, indeed we treat the parabolic and hyperbolic equation separately and
then the convergence theorems remain the correct.

Finally we treat the following non linear model

o .. =3 O ol B
5 +div (V1) = > .2 B (hz 3:@) + u(l)l =0,

1(0, P) = lo(P).

with homogeneous Dirichlet condition.

If we want to treat the above non linear model with neglecting the hor-
izontal diffusion which is our future problem, among of the method is the
same what treated in the section 3, that is perturbed the original problem
to obtained a non linear parabolic equation. So the goal of this section is to
show that the perturbed associated problem such above equation has a pos-
itive solution. In our knowledge the problem with neglecting the horizontal
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diffusion remain an open problem. In chapter 4 we make a numerical analysis
to such equation at least in the simple case where the horizontal diffusions do
not depends of the vertical variable. As already mentioned, in this case we
can uncouple our equation to first hyperbolic equation and one dimensional
parabolic equation. The method treated here is to solve the system of ordi-
nary equation by Runge-Kutta method and we injected the found solution in
the parabolic equation. The main method treated here for parabolic equa-
tion is finite elements and finite volumes. We study the convergence for this
last two methods. after we treat some example of ultraparabolic equation.
Finally we will give in appendix a large description of a work due to Escobedo,
Vazquez and Zuazua [21], because it is -in our sense- the most important work
done till now, for solving ultraparabolic problems with constant coefficients,
we also believe that it can be generalized to some problems with non con-
stant coefficients and this is the scope and the starting point of our future
researches.



Chapter 2

Description of the model

2.1 Larval growth

The growth of larvae was described as a result of larvae eating phytoplankton.
As already mentioned, the scarcity of data on the phytoplankton has rendered
necessary to proceed differently. Inspired by the work of S.Regner [40] on the
anchovy of the Adriatic Sea as well as the one by N. Lo [33] for Engraulix
mordax, we considered data determined in the laboratory. Specific values for
Engraulis encrasicolus of the bay of Biscay were obtained by L. Motos [35] in
his thesis and are used here. We now explain the principle of determination
of these data. In typical experiments, samples of anchovy in a primitive
stage are thrown in basins raised at a given temperature and fed ad libitum.
One then determines the number of days or hours that are necessary for the
larvae to progress between to well identified stage. This yields duration of a
certain stage as a function of temperature, for example : '

D = A(l + exp(B — CT))

with 4 = 1.012896, B = 4.914322, C = 0.257451 and T is a temperature.
The egg stage, from fertilization to hatching, is divided into eleven stages
whose total duration is any time between 35 and 130 hours dependent upon
the temperature. Empirically, the mean age average in the 1** stage is given
by a function of the type

yir = ai®exp(bT + ci).
A specific formula is given by S.Regner [40]
yip = 16.07i" ™ exp(—0.1145T + 0.00984).

7
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In his doctoral thesis, L. Motos [35] has determined a set of parameters for
the bay of Biscay anchovy which differ slightly from those found by S. Regner,
so a = 15.45, b = —0.115, ¢ = —0.147 and « = 2.071. It is convenient to
extend to notion of stage so as to make the stage a continuous variable which
will be further on denoted s. The above formulae give the age at stage: one
can invert this formulae to determine the stage at age. Since this information
_ has to be incorporated in a continuous time and space equation, it will be
convenient to express it in terms of the instantaneous variation of stage as
a function of age and temperature. Taking for the time being, the general
formula, we obtain
dy = (cy + a%)ds

which yields

dy s

ds  csy+ay
This equation has a singularity at the origin (s = y = 0), which explains that
all the solutions go through this point. FEach particular solution is associated
to one the value of the temperature. Since we are going to follow trajectories

of larvae in the ocean through possibly various values of the temperature, it is
convenient to write the equation in a way which shows the role of temperature

dy _ exp(—bT)
ds  aexp(cs)(cs® + as®7t)

where T = T'(y) is allowed. Hatch occur at the end of the eleventh stage,
which dependent upon the temperatures crossed by the egg throughout its
development, will occur more or less rapidly. The period which goes from
hatching to the resorption of the yolk-sac is counted as a twelfth stage. The
duration of this stage is given by a function of the type

D, =ET,

where, as for the previous stages, the parameters E, F and D, are determined
in laboratory, at constant temperatures. Once again, this information is to
be converted into instantaneous variation of stage. let us more generally
show how to do this. Suppose we know the duration of a certain stage, say
the it stage, as a function of temperature

D; = Dy(T).
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Let us introduce the variable m;, the maturity in the ¢** stage, with m; = 0
at the beginning of the ith stage and m; = 1 at the end. Assuming that there
is a function f; = fi(T) of the progression of the maturity and this function
is constant as long as the temperature is constant, it is natural to suggest

1 1
fi(T) = D, = DiT)

If now T depends on ¢, we obtain

el H(T(@) = DD

from which we deduce the expression of maturity in stage 1 at time ¢

|
mi(t):/ti md&

the completion of the stage corresponding to the time ¢ for which m;(t) = 1.
Tt is this formula that is used to describe the progression in the yolk-sac stage,
with the function D, taken from the PhD work by L. Motos [35]. The formula
obtained by L. Motos however is not specific of the yolk-sac stage: it covers
the whole passive stage, from egg fertilization to the end of the yolk-sac stage,
or in other words, the endogenous feeding period. In the absence of a specific
model for the yolk-sac stage this was considered a possible choice. This choice
is of course disputable : the parameters computed in this manner account for
the whole growth process from fertilization to the end of the yolk-sac stage,
wherein the specificity of the yolk-sac stage is likely to be dampened out. The
values of the parameters determined by L.Motos [35] are stated as follows
E = ezp(10.376) and F = 2.1749. During the part of the larval development
which goes from the yolk-sac resorption to the beginning of the swim-bladder
use, growth is modelled by means of the length of the larva. S.Regner [40]
mentions two laws , corresponding to two temperatures. Generally, it is
assumed that the length is given in terms of a Gompertz model

A(t) = Gezp(—Hezp(—1I1)),

in which the parameters G, H and I are functions of the temperature, A(t)
is the length at time t. As long as the temperature is constant, one gets, by
taking the time derivative on both sides of the above identity

dr _
dt

IO (In(G) — In(A®)))-
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We assume the same formula holds in the case when the temperature changes
with time. The only problem is that, as already mentioned, we only have
value for two temperatures. on the other hand, field data in the bay of Biscay
in 1997 and 1998 have provided values of length as a function of age. Age has
been evaluated by analysis of the otolith. There are some distinctive features
between the two years: generally, the data for 1997 do not exceed 17 days of
age while, in 1998, data on both place go over 20 days, with larvae beyond
95 days of age found in the place called 'Fer a Cheval’. Although a linear
formula of the weight as a function of age, for the post larval stage, has been
proposed from these data, namely,

y = 4.9+ 0.35z, Ry = 0.7.

The data demonstrate the heterogeneity of growth rate, with some samples
growing faster and surviving more than others. So, clearly, environmental
conditions should be incorporated in the formula of size at age. In the absence
of further knowledge, we will use a model for linear growth of the length,

AA) _

= E — K1),
for the part of change in length between the end of yolk-sac and the begin-
ning of the swim bladder period, assuming once again that the parameters
E and K are constants as long as the temperature is constant and are, oth-
erwise, functions of the temperature. the above equation is derived from von
Bertalanffy’s principle (see the following further remarks). In contrast to the
equation used in the pre-larval stage which depend on three parameters, the
above equation depends only on two parameters: in principle, we should be
able to compute them as soon as we know the length at the beginning of the
post-yolk-sac period and the length at the onset of swim bladder.

2.1.1 Synopsis of the growth and maturity processes
from birth to the beginning of the swim bladder
period |

The period going from birth to the beginning of active vertical movement

has been subdivided into three main phases: the first one comprises the

eleven stages going from the moment of egg release(or, rather, fertilization)
onwards to the moment when the larva hatches out; the second one covers
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the time when larva feeds on the yolk-sac (endogenous feeding), and the
third one goes from the beginning of exogenous feeding until the time when
the larva uses actively its swim-bladder. Corresponding to each phase, there
is a temperature-dependent differential equation, governing the instant pro-
gression within the phase, measured differently according to the phase: for
the first phase, it is the actual stage the egg is in (anywhere between 1 and
11), for the second one, it is the maturity, converted for convenience to a
value between 11 and 12; finally, the progression through the third phase is
described in terms of the length. In the absence of the data for this third
phase, the simulations have been limited to the first two ones.

2.1.2 Further remarks about the modelling of the growth
rate

As explained above, the original model equation, in which growth rate was
modelled as a result of larva eating phytoplankton, has been abandoned. The
first Teason for this is the lack of data for the phytoplankton of the bay of
Biscay, and the lack of a model of growth and proliferation for the phyto-
plankton. Another reason which should be mentioned is the fact that no
satisfactory model of the interactions of the larvae with the phytoplankton
had been described. The model proposed was just using a contact rate prin-
ciple, based on the simultaneous presence of phytoplankton and larvae. In
fact, a model of the process of attack of the prey by the larva should be added
since, in the very first days of larva’s life, it is probably an important factor
of the success or failure of feeding. The modelling chosen here is even more
questionable since it indirectly assumes that temperature is a faithful indica-
tor of larva’s growth schedule, thus, indirectly, an indicator of a presence of
the prey. One should however point out that the segment of larva’s life that
has been considered here corresponds to the period of endogenous feeding.
To put it in a necessarily less systematic wording, this is a period when the
larva does not depends for its survival on food availability, although it has
been frequently noted in the literature that larva, start to eat phytoplankton
very soon, even before hatching. So, the environment reflected by tempera-
ture does not impact, during that period of larva’s life, so much to better or
on the contrary worsen food accessibility, as it does directly by establishing a
thermal environment more or less suited to the larva metabolism. Assuming
that the temperature is indeed the dominant growth parameter, the model
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itself is also questionable. Let us briefly repeat some of the points of a de-
tailed discussion made nearly 50 years ago by Beverton and Holt who, in
their famous treatise ’On the dynamics of exploited fish populations’ [10],
devoted a whole chapter (section 9 of their book) to growth and feeding.
Their preference goes to the von Bertalanffy approach(section 3-4 in [10]) of
growth on the ground that it is based on physiological principles, as opposed
to other approaches which are based on empirical arguments. The model
used in our work for the first part of the development, from- fertilization to
the end yolk-sac stage, is subject to the criticism made by Beverton and
Holt [10], that is it is essentially built up as a best fit to data collected in
laboratory, which no energy budget consideration.

2.2 Dynamics of the larvae

The survival of young fishes and larvas is completely related and dependent
of the physical surroundings and current movement, so this relationship be-
tween renew of sea species and their surrounding is an evident fact but also a
challenge to mathematical and numerical analysis of equations. A mathemat-
ical model of population dynamics considering the effects of current transport
and vertical restlessness was developed, and studying anchovy larvae in bay
of Biscay. The biological part of this model was in great part concentrated.
on weight and height growth of fishes, assuming that the growth is a function
depending on the environment wealth which was represented by the temper-
ature. The state variable for the dynamics of the larvae is the density of
larvae. For the part of larval cycle which goes from fertilization to the end
of stage 12, the density I = I(¢, s, P), where s denotes the location within
the stages, and P = (z, v, z) represents a generic point in the physical space.
The region of observation is assimilated to the product of a horizontal plane
and the vertical line. The origin is a point of the surface in the sea, the z
axis is oriented westward, the y axis is oriented northward and the z axis
is oriented downward. Of course, ¢ is the chronological time. [ is a density
with respect to the stage and the position, numbers of individual are deduced
from integration of [ over products of the type Y x §, where ¥ is a subset
of positive measure of the real line (corresponds to a subset of values of s)
and € is a subset of positive measure of the physical space(corresponds to a
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subset of the ocean):
/ I(t, s, P)dsdP
LxQ

is the number of larvae which, at time t, have age in the stage in the set %
and are at a point P of the set . In order to describe the equation verified
by 1, we first introduce some functions and parameters: Physical parameters
include the current velocity V (¢, P). We will occasionally denote Vi, Vs, V3
the components of the currents on the « axis, respectively the y and the
» axis. The other important physical parameter is the mixing coefficient,
supposed to be essentially vertical, b = h(t, P). Incompressibility condition
is assumed to hold, that is,

div(V) = 0.
The main biological parameter is the function f = f(T,s) which gives the
instantaneous rate of progression within the stages from egg fertilization to
the end of the yolk-sac period.
Now suppose w is any sub-volume of Q). Suppose do(P) is a small surface
clement in € with unit normal n. The number of individuals in the part
[s1,52] X w between time ¢ and ¢ 4+ At

82
/ /(Z(t © At,s, P)— I(t, 5, P))dPds.

In [s1, 82] X w there are exiting and entering new individuals in such ways:
1/ There will be new individuals after a time ¢ included in stage [s1,52]
and there will be others excluded because they will be to old for s, this
phenomenon is modelled by

/l(t,s:[,P)deS]_"‘/l(t,SQ,P)deSQ,

w
or

/ I(t, 51, P) f(s1)dPdt — / I(t, 55, P)f (s,)dPdt,

—/ /?—(ﬂldesdt.
o Juw 08

2/ If we are in stage [s1, 5] but near the boundary of w ”0w”, the exist
(excluding) individuals is given by:

—/ /Z(t,s,P)V.nda(P)dsdt
s1 Ow

which equal to
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which equal by applying the divergence theorem

82
- / / div(V1)dPdsds.
81 w

The flow of density is measured by the ”larval flux field” g. g.ndo(P) is a
quantity of larvae crossing do(P) per unit time, per unit stage at time ¢,

stage s. Then
/ qg.ndS
Aw

is the quantity of larvae leaving w per unit time,per unit stage at time ¢,
stage s. Applying the divergence theorem to the above integral, we obtain,

/ gndS = /div(q)dP.
dw w

Now, the larval flux field should be related to the larval density by

qg= —h'a_;)

where A is the mixing coefficient. For the larvae mortality

— / / w(s)ldPdsdt.
$1 w

Assembling all these equations we obtain the growth of larvae equation

o o O (0N
5% T s + div (V1) P (haz)+ul—0. (2.1)

This model takes into account both the physical and biological effects. For
the physical part, the model considered here stresses two main factors: 1)
Transport entailed by the currents: the currents are computed using Navier-
Stokes equations and are introduced in the equations of the larvae as func-
tions of space and time with sufficient regularity to allow existence and
uniqueness of stream lines. 2) Vertical diffusion induced by vertical mix-
- ing in the upper part of the water column. For the biological part the main
parameters are a function which gives the instantaneous rate of progression
within the stages from the egg fertilization to the end of the yolk-sac period.
The model is expressed in a generality which encompasses a large variety
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of situations. The motivation at the origin of this work is the study of the
dynamics of the bay of Biscay anchovy [6], that is to say, a region of the At-
lantic ocean close to the French coast, bordered eastward by the continental
shelf. The bay of Biscay goes from the Northern Spanish coast up to about
46° in “latitude”. In this region at the end of May , a thermocline establishes
itself: the top of the thermocline is roughly at the same distance Ziperm from
the surface. The thermocline divides the water column into three regions:
the upper part, from the surface to Zirerm deep, the so called mixed layer.
This is where the larvae grow. Below is the thermocline, a rather thin layer
where the temperature loses rapidly a few degrees and the vertical mixing
coefficient is negligibly small. Below the thermocline is another well mixed
layer where the temperature is only slowly changing with depth. This region
is of no concern to us for the rest of the study. We will be confined to the
mathematical issues related to the above model, and we study only the up-
per layer, the mixed layer of the water column; see Figure 2.1. The domain
under consideration is @ = D x (0, z*), where D is an open subset of the
surface, that is D is a portion of the plane z* is the distance from the surface
to a region in the seabed. We denote by @ the product space {1 X (0,T)
and ¥ :=I' x (0, T) the boundary of @. The state variable for the dynamics
of the larvae is the density of larvae. For the part of the larval cycle which
goes from fertilization to the end of stage, the density | = I(Z, s, P), where s
denotes the position within the stages, which we take specifically of the bay
of Biscay anchovy in [1,12) [6] and P = (z,y, z) represents a generic point in
the physical space. The region of observation is assimilated to the product of
the horizontal plane and a vertical line. The origin is a point of the surface
in the sea, the z axis is oriented westward, the y axis is oriented northward,
and the z axis is oriented downward. Of course t is the chronological time.
| is a density with respect to the stage and the position. The larvae are
characterized by their density, that is to say, at each time t € [0, T, where T'
is the maximal time of observation, (¢, s, P) can be thought of as the larvae
biomass per unit of volume eivaluated at the point P, at that time.
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water surface

mixed layer
Ztherm{ yer

where larvae grow

another mixed layer

Figure 2.1: Water column divided into three regions

The full model is as follows

(ol o(fl) | . 0 ol _
5 5, + div (V) az(haz) +ul =0,
I(t,1,P) = B(t, P),
{ ol (2:2)

h— =0, z=0,

i

h— =0 z=2% |
( Oz }

We can replace the Newmann conditions by the following homogeneous Dirich-
let conditions [ = 0, that is there is no larvae in the boundary. We now discuss
in detail the parameters and functions of the model.

The velocity. The velocity vector V(t, P) = (Vi(t, P), Va(t, P), Va(t, P))
describes the sea current which is supposed to be known. We assume that
the sea water is incompressible, which yields:

div(V) =0, (2.3)

with

Va(t, z,y,0) = Va(t,2,9,2") = 0. (2.4)
The mixing coefficient. The mixing coeflicient h = h(t, P) gives the
diffusion rate, supposed to be essentially vertical.
The growth function. The main biological parameters are functions f(t, s),
which gives the instantaneous rate of progression within the stages from the
egg fertilization to the end of the yolk-sac period. For the principle of deter-
mination see [35, 6].
The mortality of larvae. The mortality is modelled by the expression
p= pt,s, P )-
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Demographic boundary conditions. Demographic boundary conditions
are given at s = 1, at any time during the spawning period, the variable s
takes its values in the interval [1,12), where s =1 corresponds to the newly
fertilized eggs, and s = 12, to the end of the yolk sac period.

Horizontal boundary conditions. Model (2.2) does not show any lateral
boundary conditions. Choosing the right boundary in the z and y directions
is a difficult issue that we mainly avoid here by assuming that the initial
value has a compact support contained in the interior of the domain and we
consider the solution within a time interval [0, T] during which the horizontal
projection of the support is contained in the interior of the domain D.
Vertical boundary conditions. Vertical boundary conditions are imposed
at the surface and at z*, here we are assuming a no flux conditions.

Initial conditions Initial conditions are given at t = 0 (beginning of the
year). The standing assumption is that there is no larva alive at this period
of the year, so that [(0, s, z,y,2) = 0.

Remark 2.2.1 What we call an initial value in the present context is not the
value of the solution at a given time or rather, the only relevant information
would be that at ¢ = 0 (that is 1°® January) there is no larva in the sea.
What we consider as an initial value is the distribution of newly fertilized
eggs, that is the larvae at stage s = 1 all over the reproduction season.
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Chapter 3

Mathematical issues

This chapter is devoted to a theoretical study of the main model either with
Newmann or Dirichlet condition. We show that under some hypotheses we
can obtain the existence, uniqueness and positivity of the solution.

The main characteristic of this equation is that it has mixed parabolic-
hyperbolic type, due to the directional separation of the diffusion and con-
vection effects. Such problem is called also non autonomous ultraparabolic
equations, that is parabolic in m}any directions. So principal difficulty is
the lack of coercivity to our elliptic operator, or equation with degenerated
elliptic operator. |

3.1 The uncoupled case

The purpose of this work is to perform a, mathematical analysis of the model,
notably, show existence, uniqueness and positivity of solutions. In a previ-
ous work coauthored by Boushaba, Boussouar; and Arino [13], a simplified
version of the model of the phytoplankton had been investigated. It was
assumed that the diffusion rate and the vertical current does not depend on
time and the horizontal current is uniform throughout the water column that
is Vi(t, z,v,2) = Vi(t, 2, 9), Va(t, z,y, 2) = Va(t,z,y). Under this assumption,
it was possible to uncouple the vertical and the horizontal components in the
following sense: the study was restricted to each of the horizontal stream-
lines: the restriction to such a line reduces the functions of time horizontal
components to functions of time so that the full model reduces on such a
line to a diffusion equation in the vertical variable coupled with a first or-

19
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der growth equation. Our purpose in this work is to extend this method to
the more realistic situation where the diffusion rate and the vertical current
depends also on time and the horizontal current is uniform throughout the
water column. The idea we exploit here is the same in the first time, that is
to uncouple the vertical and the horizontal components but the restriction on
such a line gives equations of parabolic type with time dependent coefficients.
The study of such equations takes up the main part in this work. Time de-
pendence is dealt with using results on time-dependent evolution equations
by Acquistapace [1, 2, 3] and several other authors (Lunardi [34], Tanabe
[45]). A valuable source of information of this work was a monograph by
Tanabe [45]. The main result of this part, stated in Theorem 3.2.6, ensures
that, under some conditions on the coefficients of the equation, the Cauchy
problem associated with the equation has a unique classical solution, which
moreover is nonnegative if the initial value is non negative.

3.2 Notation and preliminary results

Let Y be a Banach space and [a, ] a finite interval of the real line, then we
define the space

Cla,0;Y) ={f : [a,b] = Y : fis continuous}.
Note that C([a,b];Y) is a Banach space with the norm

I flloemyy = sup [1f(s)ly-
s€[a,b]

We also consider the space C([a, b]; Y) consisting of functions f € C([a,b];Y)
such that f is strongly differentiable in [a,b] and f' e C(la,b);Y), with the
norm

1£llerapyy) = 1 ey + 1 leapm-
Let 6 €]0, 1] then we define the following Holder type Sp?ces
£(s) = f®ly

[t = s[°

C%([a,8);Y) = {f € C[a, 8]; Y) : [floo(apr) = supi
t,s € [a,b],t # s} < o0},
which is equipped with the norm

I flloo oy = 1 f lloqassyy + [flesqay) -




39 NOTATION AND PRELIMINARY RESULT. S 21

Also let

\

CH¥([a,0);Y) = {f € C'((a,0:Y) : £ € C*([a, 1Y)},
with norm
£ lloro oy = I letanyy + 17 leo qapivy-
We consider the problem
ws(t, ) — alt, T)uge(t, @) — b(t, 2)ug(t, x) — c(t, x)u(t, z) =0,

(t,z) € [0,T] x [0,1]
ao(t)u(t, 0) ~ () o(£,0) = an (Du(t, 1) + i (ua(t, 1) =0, € [0,T],
(0 z) = ‘1’(56), € [0,1],

(3.1)
under the following assumptions:
a,b,c e C([0,T] x [0,1]),
al.,z),b(,,z),c(,,x) € ¢ (10, T); IR) (3.2)

with norms indpendent of z € [0, 1], for some ¢ €]0, 1],
a>0,c<0 inl0,7]x[0,1],

To recall some propositions, we set B = C([0,1]), |lullz = suPsep,y lu(z)l,
and define for each t € (0,7),

D(A®)) = {u € C2([0,1]) : ao(t)u(0) — Bo(t)a'(0) = cu(t)u(l) + Ar(H)w'(1) =0, }

A@)u = a(t, Ju" +b(t, . )u' +c(, Ju.
(3.3)

Proposition 3.2.1 ([2]) Let a,b,c be as in (3.1), (3.2), and suppose that
u € C?([0,1]) is a solution of

M — alt, Ju" — bt Ju' — c(t, Ju = f e C([0,1)),
Ofo(t)’d(()) - ,Bo(t) ( ) =2y € C (34)
ar (tu(l) + f1 (W' (1) = 21 €C,

where t € [0,T] is fized and A is a complex number lying in the sector
Y ={z€C:Rez>0tU{zeC:|Imz|> K|Rez|} (K >0)

Then there exists M > 0, depending on K, a,b,c, but independent of t such
that

(L+ AN ulle+ (L) L2+ {w"]ls < M(IlfHE+(1+|>‘|1/2)(‘z0|+|z(1l)))
3.5
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As a consequence of the above proposition we have the following result.

Proposition 3.2.2 ([2]) Let a,b,c be as in (3.1), (3.2); let {A(t) }sep,m) be
defined by (8.8). Then we have:

(i) [0,00[C p(A(t)) for allt € [0, T7; where p(A(t)) is the resolvent set of
A(t) and R(\, A() = (A — A)h

(ii) Sx C p(A(t)) and for each K >0 there exists M(K) > 0 (depending
also on a,b,c) such that

IR, A ey < V) € Tk, Vt € [0, 7],

where Yk 18 defined above.
Definition 3.2.3 ([45]) A classical solution of (3.1) is a function
u € C([0,T), E)nC((0,T], D(A({¥))) N C*((0,T), E),
such that w(0) = =, v'(t) — A(t)u(t) =0 in (0,T1.
Let us assume the following hypotheses:

(AT1) For each t € [0,T], A(t) : D(A(t)) € E — E is a closed linear operator
and there exists M > 0 and 6 € (5, 7) such that

p(A) 2 Sg={reC:A#0,] arg \| < 0} U {0},

1RO, AW < T%A—I VA € SpU {0}, ¥t € [0,T),

(AT2) There exist B > 0 and 8y, ..., 0k, V1, Vi With 0 < vy < 6 < 2 such
that

”A(t)R()\, A(t))((A(S))—l _ (A(t))—l)H < BZ lt . 8|6i|>\|ui—1,

forall e Sg— {0}, 0<s<t<T.

Tt is obvious that Yy and Sy are the same sets.
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Theorem 3.2.4 ([45]) Assume that (AT1) and (AT2) hold. Then, if x €
D(A(0)), problem (3.1) has a unique classical solution.

Remark 3.2.5 In general the function c in the problem (3.1)is not negative.
Moreover by setting u = ve** with w € IR, the function v is solution of

Hence existence, uniqueness and positivity of solutions of problem (3.6) is
equivalent to the same properties of problem (3.1).

3.2.1 Existence, uniqueness and positivity of the solu-
tion of the Cauchy problem

The aim of this section is to show that model (2.2) possesses a positive, unique
solution. For this we use an approach by the method of characteristics to
build a one dimensional time dependent parabolic equation whose solution
will yield the solution of equation (2.2). We assume that

(H1) V4, Vs are functions in C*((0,T) x D) and f € CH{(0,T) x (1,5%)).

We introduce the flow generated by the horizontal current and the size
growth, that is

¢ = ¢(7-7 tO; 1) Zo, yO)a

and for each initial value ¢ = (t, 1, %0, %0), ¢(T, C~) is the solution of the
equation

dt ds dz dy
& 2 ) = (1, ft .
R R CORACERIRICERY) B
satisfying ¢(0) = to, s(0) = 1, z(0) = o, y(0) = Yo, since the theory of
ordinary differential equations guarantees that a unique characteristic curve
passes through each point ¢. We denote I(1,2) = l(1,(,2) = l(¢(7, (), 2) the
restriction of [ along the characteristic line. The equation verified by | reads

olr,2) | g, 0Un2) - 0 GOy | sir )=,

or 3 02 Oz (h
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where V3 := Va(1,(, 2), h == h(r, ¢, 2), 7 := (7, ¢, 2) are the restrictions of
Vs, h, B, <y respectively along the characteristic line and v is equation of
order 0. So to each ¢, we have associated the following problem
(ol -6l 8,00

0 7. oL

-— + 382 éz(h(—a;)+’yl:0,

[0,2) = Bl2),
R(r, 0) 2 (7, 0) = 0,
()2

]
, 2

Q

= ~~
@
Y loNgl ]

(r,2*) =0,

]

{ 0z

where B(z) is the restriction of B along the characteristic line. We consider
the operator A(7) : D(A(7)) € C([0,2"]) — C([0, 2*]) defined by

Alr)yu = Va(r, Ju' — (R{r, ) + (7, ),
D(A(r) = {u € C*([0,2"]), h(r,0)u/(0) = h(r,2")u'(z") = O}
We now state the assumptions of this sgction.

(H2) h e CH(0,T] x 9), Vs € C([0,T) x Q), 7 € C(0,T] x [L,5] x Q).

X
(H3) b, 2V, € CH(0, T); (), and y € CH(0, T} C([L, 7] x ).

(H4) h > ¢ in [0,T] X Q where ¢y > 0.

Theorem 3.2.6 Assume (H2)-(H{) hold. If the positive function B is in
C([0, 2*]), then problem (3.8) has a unique non-negative classical solution.

Proof. Without loss of generality we can assume that v = 0, otherwise
we can replace v by v+ w > 0 see Remark 3.2.5. The main idea is to use
theorem 3.2.4. The first assertion (AT1) follows from the proposition 3.2.2.
Concerning the second assertion (AT?2), for f € C([0,2*]), t,s € Gy, where
G, is some neighborhood of 7 =0, A € Sp — {0}, we set v = (A(s))™"f and
u=R(\, At) (A — A(s))v, then we have to estimate the C([0, z*])-norm of

w—v = (AR, A®)A®R) ™ — (A(s) 7S
Now u — v € C?([0,2*]) and u and v solve

AU — A(t, )u =\ — f,
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e A(s, Jo=f
s, Jv=1f, _
{ h(s,0)v'(0) = h(s,2*)v'(¢*) =0, (3.10)
respectively. This shows that
AMu —v) — AL, Yu—v) = (A(t,.) — Als, v,
A(t,0)(u' — v')(0) = ((s,0) — A(t,0))v'(0), (3.11)
Rt %) (' —v')(2*) = (h(s,2%) — h(t, z*))v'(2*)
Applying Proposition 3.2.1 to (3.10) with A =0, we have
lvlle < dl flle- (3.12)
Using again the proposition 3.2.1 to (3.11), we get
Ml = vlle < M(I(A(s, ) = A, Dwlle + L+ M)
% ((R(s, 0) = A(t,0))v'(0)] + |(A(s, 2*) = h(t, 2))v'(2")]))
Using hypothesis (H3) and by virtue of (3.12),
lu— vlls & e(ft — sl = P [ = sIAT) e
Hence the hypothesis (AT2) holds. Since D(A(0)) is dense in C([0, z*]) see
[2], then according to Theorem 3.2.4, for B € C([0, 2*]) we have existence
and uniqueness of a classical solution of problem (3.8). It remain to see that
itive which can be proved by the standard argument. If

the solution is pos

u is solution of problem (3.8), we set u = u™ — u~ where u™ and u” are
respectively the posmve and negative part of u, so multiplying the equation

(3.8) by u~, and i 11}

m3 = sup IVg,(’T z)],

tegrating over (0, z*) we have

Ou Ou~
]’L(T, Z) —a—z— -52:—

o
+V3(T,z)—£

u” A+ (T, 2)uu")dz = 0,

*®

/ Pz,
0

myg = inf |3(7, 2)|.
T2

T2
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Since g ~ g
u” U~ 1
T dz < = 2o 2w 1H)d Yp >0,
0 wrdeg [ (oG ) Ve
it follows that

B ou~ (1)
‘—;“U (T)Hiz(o,z*) + (co — msP)HTHQH(o,w)

m3 -
+ (mq — r + w)lu (T)||2L2(o,z*)
< wllu™ ()l Z2(0,+):
choosing p and w such that

m
co—mzp >0 and m4——;§+w>0,

SO
1d

ga—;Hu’(T)HQLZ(o,z*) < wllu™ (M2,
then

™ (M50, < ™ (Ol 220,09 6™
which gives u~(r) = 0 provided B > 0, then the solution is positive. ®
Recall that for z € [0, 2*] the system

t”—_T(T,to,.’Eo,yo), SZS(T,to,xo,yo),
CU:X(T:to,CUo,yo), y:Y(T7t0,$o,y0),

is a solution of the characteristic system (3.7) emanating from the point C.
We have also

tO - T(Oyt())anyO)a 1= S(O7t0)w0)y0)a
Ty = X(O,to,.’l]o,yo), Yo = Y(O)t07x07y0) .

If
or or or oT

or ot Oz Iyo
55 o8 98 9
.| O o 7] o
Jac(T, S, X,Y) == |s5x ox % ox # 0,
or Ot oz o
by oY oF o
or 8ty Bzo  Oyo |r=0

then the Jacobian does not vanish in a neighborhood of the initial curve.
Therefore, the local inversion theorem guarantees that we can solve for
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(1, %0, Zo,Yo) as function of (¢, s,, y) near the initial curve; that is, there
exists a neighborhood G of (0, to, %o, %) and a neighborhood G of (¢,s,2,%)

such that
(T,-S,X,Y) . Gl -G

is a diffeomorphism. Then

T:%bl(i,&x,y), t():’l/)Q(t,S,x,y),
Ty — ¢3(t737x7y)1 Yo = 1/)4@,3,37,:(/),

and for initial data

0 =t (to, 1,20, %), to = ta(to, 1,0, Y0),
zo = P3(to, 1, Z0,¥0), Yo = Palto, 1, Zo, Yo)-

Once problem (3.8) is solved, we have

l(t7 $,T,Y, Z) = l_(wla ’(p?) 1/)3, ¢4, Z),
in a neighborhood of G. Indeed, by differentiation we obtain that

oL _oloys Ol owy 0L 0vs Ol Oy
gt or ot Oty 9t Oz Ot | Oyo Ot
oL _ 0oy Ol oy Ol 0y Ol 0

P55 =5 as ¥ 508 " By 05 T By 85 )
ﬂ_v(é_[% QEGW ol 8¢3+_8£%)
19z~ ""\or oz | Oty Oz = Oz Oz Oyp Oz
8l ol oy, Ol Oy Ol Ovs Ol Oy
v v, =
25, = "5 5y Bt By | Gwe By | Bwe By )
Thus
a .o ol ol ol 6¢1 R Y A
5t s Vg T ey = o (e s TV +Veg)
ol 3% 3¢2 s Os
+3t( + 15 +V1(9 "I‘V:zay)
03 ¢ O3 O3
+a (8t+f83 Vla +Vag)
5?/14 3¢4 31/)4 Oy
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Then

o ol ol .ol ol 0Top  0Sd% X0y  0Y 9
O i Vi +Vig, = 57 (or o T Bty 95 * 00 B0 T B0 Oy
O 0ok, 050 OX oy , OV Dby
Oty \OT Ot Oty 8s  Oxg Oz Oyo oy
L OTovs  0Si | 0X i OV diay
Oxg \Or Ot Oty 8s  Ozo Oz Oy Oy
91 0, 05 0b X ou OV Oy
Jyo \Or Ot Oty 9s  Omg 0z Oyo 9y '
For Z = (T,5,X,Y)" and ¢ = (1, a3, a)”, we have (Z o9)(t, S, T,Y) =
(t,s,z,y) which implies

Jac(Z). Jac(yp) = 1d 4. (W)

By identification in (3.13), we find

OT oy, 0SOb | DX O OV O

or Ot Otg 0s Oz, Oz Oyo Oy

BT oY, | 0SBy DX Oy OV s _

or ot 8t0 0s 81170 oz 83,/0 8:1/ N
o3 ~ ,0Us 013 Oy
o T TVig, TV, =0

OT oy, , 05 Oy | OX O _ 0¥ 00

or 0t Oty 0s  Oxg Ox dyo Oy

Therefore,
ol ol ol oL ol

—8—t+f—a—§+‘/1—a;+%—a—:g—= 5;
In addition, ~
ol ol

9z 0z’
for the initial data
l(ta 1,x,y,z) = Z_(P‘pl t: 1,x,y),¢2(t, 1) T, y)7¢3(t> 1) xay)awll(tv 1: z, y)7 Z):
0

axayvz)a

T ——
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Then [ is a unique solution of (2.2). So the solution [ of (2.2) can be deter-
mined in terms of the solution I of (3.8).

3.3 Perturbation method

In the present work, we investigate the same model which we had treated
above in a general case namely, all a coefficients depends of all a variables.
For convenience treatment we replace (z,y, z) by (21,72, x3) in our problem,

SO
[ 0 ol

g% =+ %fg)‘ + d’L’U(Vl) — ;9;; (h—a—x—?") +ul =0, (314)
where h, V and u depends of all variables. As mentioned above the principal
difficulty is the lack of coercivity to our elliptic operator.
The lack of the coercivity can be handled by using a convenient perturba-
tion argument or by other terms adding a vanishing artificial viscosity. The
monotone operator theory can be applied see [30](p 316) which gives us exis-
tence, and uniqueness of the solution to the perturbed problem, after that we
will establish the positivity of our solution. Passing to the limit in a suitable
way, we get existence and positivity of a solution of the main model. Since
the main operator is not coercive we obtain some extract regularity of the
solution in the direction of z3. Uniqueness of solution seems to be a more
difficult problem, see remark in the end of the chapter, and appendix.
For the boundary conditions we assume that there is no larvae in our bound-

ary that is w = 0 in 2.

3.3.1 Notation and preliminary results

We recall here some definitions and results that we will use in this paper.
Let X be a separable and reflexive Sobolev space with norm ||.]| and its dual
X' with norm ||.||ls. We denote by <,> the duality bracket of X’ x X. We
define the norm of L?(0,T; X) by

T 1/2
</ ||v||2dt> |
0
for each v € L*(0,T; X).

We denote by D(0,T; X) the space of infinitely differentiable functions with
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compact support in (0,T) with values in X, and D'(0,T; X) the space of
distributions on (0,T) with values in X. Consider W (0, T; X, X" :={v,ve

L*0,T; X), g—;j e L20,T; X")}.

Definition 3.3.1 We say that an operator A from X to X' is monotone, if
< Alw) — A),u—v> >0 Yu,veX. (3.15)

The operator A is strictly monotone if we have a strict positivity in (3.15)
for all u,v e X andu #v.

Remark 3.3.2 If A is a linear operator, then the monotonicity is equivalent

to
< Au,u> >0 V ue D(A).

Definition 3.3.3 Let A be a monotone operator from X to X'. We say that
A s a mazimal monotone operator if its graph is a mazimal subset of X X X'
with respect to set inclusion.

Lemma 3.3.4 [30]
Let L be o unbounded linear operator from X into X' with a dense domain
D(L) in X. Then L is mazimal monotone if and only if L is a closed operator

and such that
<ILv,u> >0 V ve D(L)

and
<L'vv> >0 Y ve D).

where L* is the adjoint operator of L.

Theorem 3.3.5 [30/
Assume that X is a reflexive Banach space. Let L be a linear operator of
dense domain D(L) C X and take its values in X'. Assume that L is mazimal
monotone and suppose that A is a monotone, coercive operator from X to
X', ie
< A(v),v >
]l

" Then, for all f € X', there ezists u € D(L) such that

— 00 if ||v|| = oo.

Lu+ A(u) = f.
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Remark 3.3.6 If we assume in addition that the operator A is strictly mono-
tone then there exists a unique solution w € D(L) such that

Lu+ A(u) = f.

Remark 3.3.7 One can casily see that in the case of a linear operator A,
the coercivity implies strictly monotonicity.

Remark 3.3.8 Let u be a solution to the following problem

ou
{ 5 TA= S (3.16)
u(0) = uo,

where A is a linear operator. We set u = ve¥®, k€ IR, then v is a solution

of problem
V' (t) + (A +EkI)v(t) = f1,
{ v(0) = uo. (3.17)
Hence, proving existence, uniqueness and positivity of solutions of problem
(8.17) is equivalent to prove the same properties to problem (8.16). Through-
out this paper we will deal with problem (8.17), where k is a real constant
that we will choose later.

Remark 3.3.9 We consider two Hilbert spaces V, H with V. — H, the
continuous injection — having dense image in H. Then we can identify H
with its dual H', and therefore

Ve H= V.
From Remark 3.3.8 and Remark 3.3.9 we obtain the following Lemma.

Lemma 3.3.10 /18]
For ug € H there ezists v in W(0, T}V, V"), such that v = ug in H. Thus
w = u — v, solves the following problem

ow
{ 5t__|_(A+kI)w=fz, (3.18)

where w is solution of problem (3.17). So, we will consider the case where
Uy = 0.
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3.3.2 Existence, uniqueness and positivity of solution
of the perturbed problem

The objective of this section is to study existence, uniqueness and positivity
of solution of the associated perturbed problem (3.21). For this, we start
by using the method of characteristic to reduce the number of variable. We

assume that
(H1) f € CH(0,T) x (1,5%)).
We introduce the flow generated by the size growth, that is
¢ = ¢(1,%,1),
and for each initial value ¢ = (to, 1), ¢(, {) is the solution of the equation

dt ds
—,—) = (1, f(t 3.19
(&,2) =, £(t9) (319)
satisfying ¢(0) = to, s(0) = 1, since the theory of ordinary differential equa-
tions guarantees that a unique characteristic curve passes through each point
(. Let

t:T(T,to), SZS(T')tO)a

be a solution of the characteristic system (3.19) emanating from the point ¢,
We assume that a9

— - 0

o I #

at 7 = 0. Without loss of generality we can assume that tp = 0, otherwise we
replace V, h and [ by those restriction along the characteristic line.

Then for each ¢, we have associated the following problem see for instance

[25]

O, ginviy — 2= <h—al—> b4 R) =0,
=0, in %, :

l(O7P) = lO<P)a

where p may be other function of order zero, and k is a real constant that we
will chose later. We will use a perturbation method to get a time dependent
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parabolic equation whose resolution will yield to the solution of equation
(2.2). Namely we consider the following perturbed problem

0 ol
ol Fdiv(VD) =S o <af——> + (p+ k)l =0,
[=0,in %, '
10, P) = lo(P),
where
. _Jeifi=1,2
a;(t, P) = { h(t,P) +eif i =3.
Let
Ou, .
Lu, = 5 + div(Vue) + (k + 1)Ue,
with !
D(L) = fv € (0, T WA (@); 20 € L2(0, Ts WH4(), (0) = 0},
and ,
d ([ .Oug
Aug =~ ; ox; (ai 8x1> ’
defined by

: Oue OV
Aug,v>=3 [ aft——dPdt,
< At > izl/Qaz@xi 0x;

for each v € L2(0,T; Wy*(§2)). We state now the main assumptions of this
section.

(H2) he CHQ), Vi € C([0,T] %), i=1,2,3and p € c([0,T) x [1,12] x ).
(H3) h>c¢o > 0in [0,T] x .

The main result in this section is the following theorem that gives conditions
under which problem (3.21) has a unique positive solution.

Theorem 3.3.11 Assume (HZ)—(Hé’) hold. Let ly € L*(Q), be such that
lp > 0. Then problem (3.21) has a unigue non negative solution u, € D(L).
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Proof. The main idea is to use Theorem 3.3.5. In the first step we will see
that L is a closed operator with a dense domain ; indeed, let u, in D(L) be
such that u, — w in L2(0,T; W ?(€)) and Lu, — y in L2(0, T; W—2(Q)),

hence
Uy, — win D'(0,T; W ()

and
Lu, — y in D'(0,T; W™2(RQ)).

It follows that
Lu, — Lu in D'(0, T; W™(Q)).

Therefore we get y = Lu and u € D(L). Hence L is a closed operator. It is
not difficult to see that D(0, T; Wy 2(Q2)) is included in D(L), then we deduce
that D(L) is dense in L*(0, T W*(Q)). Concerning the monotonicity of L,
we have for v € D(L),

T .
< Luu> = / < %q;,u > dt + / (div(Vu)u + (k + p)u?)dPdt
0 Q

T
= l/ i||u(ﬁ)||zdt+/(v,n)u2da—/(V, Vu)udPdt

+ / (k + p)u*dPdt
Q
1 1

= Loy -1 / (V, Vi) dPdi + / (k + pyudPdt,
2 2Jo 0

with 7 is exterior normal, and (,) is the scalar product. Hence integrating
by parts we obtain that

1 1
< Lu,u> = 5|]u(T)Hf + / (k+ idiv(V) + p)u*dPdt,
Q@

choosing k large enough such that
1

it follows that L is monotone for all u € D(L). In addition for u € D(L),

T 9
< Lu,v >= / < —a%,v > dt + / (div(Vu)v + (k + p)uv)dPdt
0 Q@

Il

T 0
/ <=L dor <ulT),oT) > + / (—(V, Vo) + (k + p)v)udPdt,
0 Q
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thus, the associated adjoint operator is given by

ov

L*v = 5 (V, Vo) + (k + p)v,
with
D(L¥) = {v € L*(0,T; W5 *(Q); %% e I2(0, T, W2(Q)), v(T) = 0}.

The proof of monotonicity of L* is similar to the one of L. Then L is a
maximal monotone operator. It remain to see that A is coercive, indeed for
w € L(0,T; Wy*(9)) and applying the hypothesis on A, it holds

3
. Ou
< uus=3 [ atlgr Papa 2 Mmooy
1=1 ¢

According to Theorem 3.3.5 and Remark 3.3.6, we get the existence of a
unique solution u, € D(L) to problem (3.21). Hence for allv € L*(0,T; Wi (),

we have
"

+§:/a€auf M ipdt =0
—~ Jq ¢ 9, Oz o

We prove now the positivity of the solution. We set u = ut — u~, where u™
and u~ are respectively the positive and negative part of u. Using u_ as a
test function in (3.22) and integrating on (0,1), we get

T Oue ,
/ < > dt + / (div(Vue) + (1 + k)ue)vdPdt
0 9 (3.22)

t a - t .
R [ @iv(vas) + (us ks apa
0 ot 0o Ja

3 t _
0
- E / /aﬂ Ve |2dPdt = 0.
=1 0 Q 63:7’

Then we conclude that

L, _ 2
~ sl @12

t 1 3 t au..
= ~div(V k) (u7)? | =2
[ [ Gaintv) +s )(ua)det+;/0 | 1= apa,
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hence,
1, _
—lluz Ol 2 0.

Then u (t) = 0 for all t € (0,T). Hence we conclude m

3.3.3 The exact solution

In this section we show that the perturbed solution defined in (3.22) tends
to the desired solution of problem (3.20) in L*(Q) as € tends to 0. Our main
result is the following Theorem.

Theorem 3.3.12 Let lp € L*(Q) and consider u. the solution to problem
(8.21), then u. converges weakly to w in L2(Q) where u is a distributional

solution to problem (3.20). In addition we have X e L*(Q) and u satisfies

81173
T 54 du 8¢
_/Q/O u—ﬁ_t—dxdt+/¢2(_(v’v¢)+(M+k)¢>Udet+/Qh—8—:c—3—5£det
- /Q 1o(P)$(0, P)dP,
(3.23)
for all ¢ € K where
K = (9. POTWE@): 2 € 120, T W @)L (Q) with (T) = 0}
(3.24)

Proof. Using u. as a test function in (3.22), we obtain that

T b .
/ < —%,us > dt + / (div(Vue) + (1 + k)ue)uedPdt
0 Q

3 5 (3.25)
€17 2120 Pdt =
+;/Qa’laxi‘ dt = 0,
integrating by parts and using the definition of u,, we deduce

1 ) 1. . & Oue |
NueDN2+ [ (6 + sdiv(V) + p)uidPdt + Z/ a; dPdt
2 Q 2 =1 Q 333@

) =
= —||ll]%.

o]

(3.26)
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Since div(V) and u are bounded functions we conclude that l[uelZ2egy < ©
and then there exists a subsequence called also u. such that u, — u weakly
in L2(Q). Notice that, in the same way, we obtain that

3 ou
Z/ | =—=|?dPdt < Ci.
—1 Q 3:62

By letting € — 0, we get

limsup/ h\aue ?dPdt < Ch.
Q

e—0

We claim that u is a solution of (3.20) in the sense of distribution. To proof
the claim we consider ¢ € C(€ x (0,T)), then using ¢ as a test function in
(3.21) we obtain that

—/ /T U d Pdt + / (—=(V, V) + (p+ k)p)u.dPdi

+Z/u5 < 8%) det:/Qlo(P)cj)(O,P)dP.

Since Vh € (L*(Q))? and u, — u weakly in L*(Q), then passing to the limit
in the above equality we obtain that

— /Q /0 TuqﬁthdtJr / (=(V, Vo) + (u+ k)p)udPdt
+ / 0 (h?-(ﬁ> dPdt = /Q Io(P)$(0, P)dP.

8%’3 T3

Hence v is a distributional solution to problem (3.20) and the claim follows.
To get a more regularity on u we set

U, (t,z3) :/ hugdzdy,

where u, is the solution of (3.21). Using the hypothesis on and V and by the
classical result on the theory of regularity we obtain that u. € C*([0,T]x Q).
Thus

/ hau6 + us )dxdy,

8963 0z3
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by integrating on (0,T) x (0,2") we get

//8\11

Since U, is bounded in L*((0, T) % (0, 2*)), which can be proved easily, we con-
clude that U, is bounded in L*(0, T} . W,*(0, 2*)), hence up to a subsequence,
called also W, we obtain that ¥, converges weakly in L2(0,T; Wy*(0,2%)) to

¥ where

3dt</h2| |2det+C/ |ue|2dPdt < Cs.

\Il:/ hudzdy.
D

Notice that the last identification follows by the fact that ue — u in weak
topology of L?(Q) and by the uniqueness of the weak limit. We claim that

ou € L*(Q). To get the claim we will prove that ou, e (I*(Q)) = L*(Q).

Oxs 0x3
Notice that —aa—;— is well defined as a distribution. Let ¢ € C§°(Q), then we
have ?
/ O apdt = - / 99 apdt
Q (91133 Q 81173
= —lim ?——uEdet—hm/
ou 3
< : €12 2
< 25%(/62%%[ det /Q\qsl det)
Then .

2

l/——¢>det|<C /\¢|2de1&

for all ¢ € C°(Q). Hence by density we conclude that {? e (L*(Q)) =
T3
L2(Q) and then the claim follows. Therefore we conclude that

Ou, OV / ou Ov
Q

h —dPdt — h—a—————det

8%3 I3 I3 8903

for all v € L2(0, T; WE?(0,2%)). Let ¢ € C°(Q), using a density result,
see for example [43], [11], there result that {n(t, T1,29) X ¥(t,z3)} is a total
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family in C$°(Q). Hence using the above computation we get

/ h e 9% apar - / hn 2% 9% apas.
Q Q

O3 0x3 O0z3 03

Therefore by the density result obtained in [43] and in [11] we get the same
conclusion for all ¢ € C§°(Q), hence
Ou, 0¢ ou 0¢

h————dPdt h——dPdt.
g 03013 - /Q O0x3 O3

Since ¢ € C(Q) is dense in L*(0, T} W, *(D x (0,2%))) and by the fact that

5 € L%(Q) we get that (3.23) holds for all ¢ ‘e L2(0,T; Wy (D x (0, 2*))).
3
Moreover by letting ¢ — 0 in (3.22), we obtain

¢ Oou 0¢
- —(V.V k P = 7
/uatdxdt—i—/( (V, V) + (u+ k)p)udPdt + h Z 3det

_ / 1b(P)$(0, P)dP,

for all ¢ € K, where K is defined in (3.24). Hence we conclude. m

Remark 3.3.13 We give a remark on the uniqueness of solution. In the pa-
per by M. Escobedo, J. L. Vazquez and E. Zuazua, [21], the authors consider
the following Cauchy problem

up — Dgu=8,(f(w), z€ R, ye R, t>0, (3.27)

then using the vanishing viscosity argument and the notion of Entropy so-
lution, they obtain ezistence and uniqueness of solution to problem (3.27).
The argument used depends strongly on the presence of the linear operator
A,, and on the estimates obtained in [26], see appendiz for the proof of the
ezistence and uniqueness of the problem (3.27). The extension of the above
uniqueness result to a non autonomous problem seems to be a more difficult
technical problem. ’

3.4 Multilayer method

In this section we treat the main model in the general situation, that is in
the case where the horizontal current is not uniform throughout the water
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column, and then we can depends of all variables. In this situation we show
existence, and positivity of solutions. The idea we exploit here is to approxi-
mate the model by one in which the above mentioned restriction is assumed
to hold piecewise : this has been done by dividing the water column into
thin layers in each of which it is reasonable to assume that the coeflicients
are constant throughout the vertical direction. The mathematical analysis of
the problem leads to two main issues : 1) each approximating equation sets
up a system of equations of parabolic type with time dependent coefficients
and rather unusual boundary conditions. The study of such systems takes
up the main part in this work.

Time dependence is dealt with using results on time-dependent evolution
equations by P. Acquistapace [1],[3],[2], [34] and several other authors (A.
Lunardi, H. Tanabe). A valuable source of information of this work was a
monograph by H. Tanabe [45].

The main result of this part, stated in Theorem 3.4.1, ensures that, under
some conditions on the coefficients of the equation, the Cauchy problem
associated with the equation has a unique classical solution, which moreover
is nonnegative if the initial value is non negative.

Approximate solutions converge in some sense to a solution of the full equa-
tion.

3.4.1 The multilayer model

The multilayer approach consists in dividing the water column into thin
horizontal layers, assuming that the horizontal current is independent on z,
in each sub layer and the temperature and the mixing coeflicient are constants
in z on each sub layer. In order to satisfy the incompressibility condition, it
is assumed that the vertical current depends linearly on z in each sub layer.

We divide the water column into n layers

= OD X (2i-1, %),

=1
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for 1 < ¢ < n we denote respectively by :

25

. . 1
Vi = V,j(t,x,y):-————/Vk(t,P)dz, k=1,2
2y — Zj—1
zi—1
. . Va(t, z,y,2;) — Va(t, 2, Y, 2i—
Vo= ey = 2o Wb ohEa) () e,
1 11—
R = Btz y):—i——/ﬁ(t,P)dz,
7 2 — Zi—1
Zi—-1
. 2;
. . 1
fz = ]”(t,S,.’L’,y):———-——/f(t,S,P)dZ,
2 — Zi—1
Zi-1

the averaged horizontal velocity of the sea currents, the affine approximation
of the vertical velocity in the sea currents, the averaged mixing function and
growth rate respectively in the layer D x (zi_1,%). Note that V' gives an
approximation of the velocity of the sea currents and satisfies the incom-
pressibility property in the layer D X (zi-1,2i), we have

Zi 2

A% +6V2+8V3 B 1 / oy N Vs ot 1 / 8V3(t’P)dz,
ox oy 2 — Zi-1 0z

Zi—1 2Zi—1

or Oy 0z 2 — Zi-1

from the incompressibility property (2.3), we conclude that :
div (V*) = 0.

We denote by I = {|i;,_, ), the restriction of  to [7-1, ;). In each sub layer,
for P € D x [2_1,2), 1 <1< n, equation (2.2) can be written as follows :

ol a(f'r) i i (O i _
8t+ 5 + div (V") h<8z2 + pl* =0,

or ,
r .
ot

with v

, ofi(t, s, z,
ity 0y) = LD 4 ),

O i i (O iyi
fé;+d1V(Vl)—h <6z2>—|—7l =0,



42 CHAPTER 3. MATHEMATICAL ISSUES

The s -boundary condition
I{(t,1, P) = B'(t, P).

The spatial boundary conditions
1

ol
hléz(t,s,x,y,O) = 0,

n

na * -
h&—(t,s,x,y,z) = 0,

and the continuity of thi solution and the flux at the interface of any two
contiguous gives rise to the following supplementary boundary conditions

lz(t7 87‘7’" y? ZZ) = l7'+1(t7 87x7y’ Zl))
alz ) ali-l—l
hl-g(t, s,x,y,2) = AT 5
for 1 < 5 < n. Using the incompressibility property, the full multilayer model
can be written in the form
S . . : , .
ol* Ol Ol Ol Ol [0
e i7" i Vi Vi R
ot sV ias T ey T e Qﬂ
I*(t, 1, P) = B'(t, P),

li(t;é’,x;%zi) - li—*—l(ta Saxayazi)>
4 h‘ali hz’+1 i+1
b t: 20y Yy 24) —
a,lzl(ww)

0
h’l_;(ta 37$>ya0) = O:

(ta 5%,Y, Zi)a

>+¢ﬁ:0,1§¢§m

Oz (t757x7yazi)) 1§7;_<_7’L-—1,

n

1) l *) —
L h Ez(t,s,x,y,z )=0.

(3.28)

3.4.2 Existence, uniqueness and positivity of the so-

lution of the Cauchy problem for the multilayer
model.

The aim of this section is to show that the multilayer model (3.28) possesses
a positive, unique solution. For this we use an approach by the method of
characteristics to build a one dimensional time dependent parabolic equation
whose resolution will yield the solution of equation (3.28).

We now state the assumptions of this section.
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H1) f,Vi,Vs are functions in C*(I"), where I' = (0,T) x (1,s") x D.

(H1)

(H2) he CY(]0,T] x ), Vs € C([0,T] x ), v € C([0,T] x [1, 5] x Q).

(H3) A(.,P),Vs(, P) and 7(, s, P) € C**([0, T}; IR).

(H4)
)

H4) h > ¢q in [0,T] x § where co > 0.

(H5) S5, Vicos(n,z;) > 0 in X, where 7 is the exterior normal.

We introduce the flow generated by the horizontal current and the size
growth the 1™ layer, that is

¢i = ¢i(7-7 tO) 17 Zo, yO))

and for each initial value ¢ = (to, 1, %o, %0), ¢'(T, () is the solution of the
equation

dtt dst dz* d

<d7. dT dT d:‘i) — (1, fz(tz, 81, 117%, yz)’ Vf(tz, xz, yz), V;(tz, mz, yz)) ’
(3.29)

satisfying ¢(0) = to, s(0) = 1, z(0) = zo, y(0) = yo, since the theory of

ordinary differential equations guarantees that a unique characteristic curve

passes through each point C 5

We denote I'(r, 2) = I'(r,{, 2) = li(¢*(7,¢), 2) the restriction of I* along the

characteristic line. The equation verified by I* reads

ol (r, z) 8[7'(T z) 7y 0% (T, 2) i B
or Vi, 0z —h 022 + 7' 2) =0,

where Vi = V3(r, ¢, 2), B = hi(r,{), 7 := 3(r, () are the restrictions of
Vi, ht, B', 7" respectively along the characterlstlc line.

A natural condition to be satisfied at the common boundary z = z; of the
it and the (i + 1)%" layers is

l_i+1(7’, 5’ Zz) — l—i(,r, d’i(—ﬂ ¢i+1(7, 5)),&);
together with

Firl . | )
agz (r,¢,2) = hi(r )m (7, ¢ (=7, 671(r, O)), 21)-

R (T)
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These compatibility conditions are completed by a boundary condition at z = 0,
and z = 2%,
i

ol

7100 5o
h ?Z(T,C,O 0,
_naln Ok .

h 5;(7',{,2) = 0.

The compatibility conditions determined above would render very difficult
the treatment of the approximate equation. One can observe that these
conditions are non local, that is, relate the value of the solution at one point
of the surface z = z; to its value at a different point. Noticing that

¢i("7—a ¢i+1 (Ta 6)) — 57 (330)

as the number of layers becomes large and their maximum thickness becomes
small, we will consider the following compatibility conditions

l_i-H (T’ 5) ZZ) = F(Ta 67 zi)’
together with

_y ortt . _ o
hH—l (T)_a;_(Ta C) zl) = h' (T) _a—Z—(T’ C) Zz)

Indeed; let the following problem
dti ds? dx? dy’ T N N R I
ar as ax” QY N _ (1 pi g g o) VI ol ) VI, 5y
(dT’dT’dT,dT) (7f( 78,$’y)"/1( 7x7y)’ 2( 7x’y))7
(3.31)
satisfying t/(0) = to, s7(0) = 1, 2%(0) = @0, ¥/(0) = yo, for j = 1,..,n.
subtracting the vector (3.31) for j = ¢ from the one for j =4+ 1, thus

dtttt i
| dr ET—I =0,
| dr - ‘%‘] = |f2+1(t2+1’ 31+1,x1+1,yz+1) _ fz(tz7 Sz7mz7yz)|, (3.32)
dzt*t  do

B = S = R s e ) - 2,
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|d7§+1 3 %J_Zl _ 1V2i-|-1(ti—|-1)8i+1’$i+1,yi+1) SV, 8,2, ).
T T
First of all, we show that

lim fi(t,s,a:,y,z) = f(t,$,%,9,2)-

Nn—00

In fact, for (t,s,2,y,2) € I' x [0, 2*] there exists 4 = i(n) € {0,...,n—1} such
that z € [2,zi+1) and

|zip1 — 2] = 0 asn — 0o, (3.33)

1 Zig-1
im f* = lim ——— ¢ Nd7'. 3.34
lim it s,0,) = Jim ——— [ f(t:5,5,0,2)ds (3.34)

25

Using the hypothesis over the sequences {z11} and {z} we obtain that
{241}, {2} converge to z as n — oo. Hence we conclude that

lim fi(t, s, ©,y,2) = f(t,5,2,9,2). (3.35)

n—o0
Set now . ' . . _ .
. R:I$z+1_szl+‘xz+1_le_i_lyz-i-l_yz!_
Remarking that f is globally lipschitzienne, then by the equation (3.32) we
obtain

dstl  ds' , o
—— <R (S AT LR S PR ATE
S < R (= ()
As shown above, the sequence {f"} is convergent, then
dsitl  dst
——| < MR+e.
| dr dr < te

In the similar way, we obtain

I dv'li—i-l B d‘/lz
dr dr

v av;
<M )
| dr d’rl_ R+e

Summing this last three equation, we have

dR
— < MyR +¢,
dr

| < MR +e¢,
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therefore

Hence we conclude.
So to each ¢, we have associated the following system of equations

ek or . O o
—— ht ~% [ < y
AL o) (55) + YR =0, 1gizn
'(0,2) = B'(2),
(T, 2;) = I'(7, %), ~
R (1 )81 (n,2) Bi(T)—al g—z, zi), 1<i<n—1, (3.36)
— Ol (1,0)
1 V) _
h o, 2 "
n e _
\ h 0z -

where Bi(z) := Bi((, z) is the restriction of B’ along the characteristic line.
We will first use a change of variables to transform problem (3.36) into a
system of partial differential equations over a single interval.

We set for z € [z;_1, 2]

the conditions yield :

for z € [z, zi41) , -
77, 0) = MY(r, 2),

SO
(1, ) = U7, 2) & 97 (7,0) = 9(7, 1),

in addition

1 8vi(r,¢)  Ol(r,z)

zi—2z OC 8z
then
. oIt (r,z) .,  OU(T,2) RHL(T) 09t (T, 0) Ri(T) 8% (T, 1)
i+1 ~e — 7 )y ~1 3 — )
) 0z P 0z < Zigl — % o¢ 2 — 21 0C
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hence, the model becomes

(97 Ri(r)  O°T o (7,¢) Ot i/ s .
o' _ o2t | ob(1.0) OV | Sipygi=0, 1< @S,
or  (m—zo1) 0C AT A ¢ Ak
7(0,¢) = B'({): 0<C<l

gt (r,0) = oM, 1),
Tit1 il i i
Rit(r) 0V (T,O): hi(T) 0Ov ('r,l), L<i<n—1,

W zig1 — % 0 2 — 21 OC
_, 00!
h —8—5(7',0) :0,
—naﬁn —

L h —8—5(7’, 1) = U.

(3.37)
We consider the operator A(t) : D(A(1) € c([o, z*]) — C([0, z*]) defined by

Ay = (A (1)) u")ier, where

DA®) = {ue (0 1]; R™),
RiHL(t) dut™(0) Ri(t) dut(1)
zig1 — 2 4G zi— 21 dC

where u = (u’, ey um)’

Therefore we obtain

Theorem 3.4.1 Assume (H2)-(H4) hold. If the positive function B is in
C([0, z*]), then problem (8.86) has a unique non-negative classical solution.

Proof. Without loss of generality we can assume that v > 0, otherwise
we can replace v by v+ w 2 0 see Remark 3.2.5. The main idea is to
use theorem 3.2.4. The first assertion (AT1) follows from the proposition
39.9. Concerning the second assertion (AT2), for f € c([0,2*]), t,t1 = 0,
M€ Sy — {0}, we set v = (A(t,))"'f and u = R(), A())(A — A(t1))v, then
we have to estimate the C([0, z*])-norm of

w—v = (A(R) RO AD)AW®) ™ - (A(t)) DS
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Now u — v € C2(]0, 2*]; IR") and u and v solve respectively

du*(0) _ du™(1)

)

(Mt — Al(t, )ub = Mt — f,

1<¢<n,

¢ ac
w1 (0) = u*(1),
RL(E) du+(0)

a

( Ai(tl, .)’Ui = f,
dvt(0)  dv™1) _
d¢ Tode

vH(0) = v*(1),
Bi+l(t1) d,l)'i-l-l(o) B
dg

7

R (1)

Zi —

dut(1)
d¢

1<i<n,

7

\ Zip1l T 24 Zi—1

Y

-

Ri(t) dvi(1)
d¢

3

\ Ziv1l — % 2y — %1

this shows that
[ A(ut =) — A(¢, ) (u
dlu —v)(0) _ dlu" —v)(1) _
d¢ d¢ ’
(7._1,1.4-1 _ U2+1)(0) — (uz _ ’Uz)(l),
hz—!—l(t) d(uz—l—l . Uz—l—l)(o) B

7

v

Ri(t)  d(ui —v

) = (A, ) - A, )

1<i<n-—1,

(3.39)

(3.40)

1<i<n-1,

1 <1< n,

Hm _

Zit1 — 24 2 — Zi—1 L/

i L d¢
(A (ty) = B (1) ™ (0)

(A(t1) — R*(2)) dv'(1)

1<i<n-—1,

\ Zi1 = Zi d¢ 2 — Zi-1

We can write the previous problem as

)

g
(3.41)

Mu—v) — Alt, ) (u—v) = (A(t, ) — A(t, ),

Ag(u —v)(0) — Bo(u —v)(1) =0,

4 2e=20 g

d¢ d¢

d(u —v)(1)

(3.42)
=C (t) ”

where Ay, By, A1(t), B1(t), Cy(t) are the appropriate matrices. Applying Propo-

sition 3.2.1 to (3.40) with A = 0, we have

lvlle < el fll=

Using again the Proposition 3.2.1 to (3.41), we ge

Mllw = ollz < M(I(A(, ) — Altr, ))olls + (

(3.43)

[l

L+ A2 < [Ci(@)])
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Using hypothesis (H3) and by virtue of (3.43),
= wlls < et = Bl IATHE = P 1= AT

Hence the hypothesis (AT2) holds. Since D(A(0)) is dense in C([0, z*]) see
[2], then according to Theorem 3.2.4, for B € C([0,2*]) we have existence
and uniqueness of a classical solution of problem (3.36). It remain to see that
the solution is positive which can be proved by the standard argument. We
set w = uT — u~ where ut and u~ are respectively the positive and negative
part of u, so multiplying the equation (3.36) by 7, and integrating over
(0, 2*) we have

2 out . -, Ou o o o' - i, i
/O (OTU +h(T)8z 5 (T,z)gz—u + & (r)u'u )dz =0,

for 1 <14 < n, hence

*

1d | o0 = o, / o / s
R 1 i > d . 7 d K2
L gy 2 o [ T Pemms [ e dsg | P

ms = sup .‘7}?(7—7 Z)‘) My = 117]:f ‘;}77’(7—)'

T2

= ooutT - / au
ut dz <
/0 Oz “Jo (

it follows that

|u *)dz, Vp>0,

Ou’ (1) 1o

1d, .
5&;““ (T)Hiz(o,z*)+(00—mzﬂ)|| 5% 1 72(0,2)

m3 i
+ (ma = ==+ w)u (IZ20,20

< wllu’” (M2,

choosing p and w such that
co—map>0 and m4—Tp§+w>0,

S0
2d¢” ut (7 )H%ﬂ(o,z*) < W”Ur (T)”%z(o,z*p
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then

™ () 120,00y < '™ (Ol Z20,00€™

which gives u' (7) = 0 provided B > 0, then the solution is positive. ®
For each z € [zi_1, 2]
‘ t :Ti(TathanyO)a
s = S*(7, 0, o, Yo),
T = Xi(T) to, o, yO);
Y= Yi(T7 tO; Zo, yO))

(3.44)

is solution of characteristic system (3.29) emanating from the point C. We
have '
to = T*(0, %0, o, Yo),
1= SZ(Oa th Lo, yO)a
Zo = XZ(O: th Zo, y0)7
Yo = Y*(0, o, o, Yo),

(3.45)

if
oT*  oTé  oT¢  oTt
or Otg, Ozq Ay
osi  8st ast o5
i Qi % AN 7] ot 7] 9
JCLC(T 75 7X aY ) e 6)?1’ axoi B;Oz 6%0'; 7é 0, (346)
o Bto. Oxqg Byo
ovi oy: oyl oy
or 8ty Ozo  Byo

then we can solve for (7, %o, Zo, Yo) as function of (¢,s,,y), so

T = wi(ta 3,$;y);
tO :/lp%(t)Sax)y)a

: 3.47
Ty = ¢§(t>3>$ay), ( )
Yo = wi(t’sazmy)a

and for initial data .
0 = ¢ (%, 1, %0, %),
tO = 77/)%(7507 1; Zo, yO)a
. 3.48
Zo :'d);’,(tO)l)manO)a ( )
Yo = Yi(to, 1,0, %0).

Once problem (3.36) is solved, we have

I(t,s,2,y,2) = P, @b s, 0k 2), 1<i<n. 3.49
1 2 3 4



3.4. MULTILAYER METHOD 51

Indeed, by differentiation we obtain that

_aﬁ in%+_a_[i%+ or aw:i +— 8¢4
ot or 8t 3t0 at 3:1:0 at 8y0 Bt

o (e a5 %
o - w(E S5 5% %)
thus
%ngfi%ngVf—g—lijLVJ%—lyi = gf_(a;f: flac,;p;Jer—é%JrV{%—yi)
- 3;“0@;3 f’a% 8¢3+v2§/j>
then

or + 0l Ql.z_ V'ali — QE(_@I_Z_% ?_‘Sﬁ%_l__a_{(_i%_}_g}fi%
0s L ox Yy or: or 0Ot oty 0s  Oxy 0% Oyo Oy
_8_.[%_(_8_11% 4 05" 81/)2 + %ﬁ% + Q_}Z%)
Oty O Ot Oto ds = Ozy Oz Oyo Oy
ol (8Ti ot L9 05" 8W N Q{(j% N ?X_“%
83:0 or Ot Oty 9s  Oxg Oz Oyo Oy
O T oy 0500, OX0U; , OV'0U

0 G ot Tt 05 | 0w D5 Ow 5y )

Moreover for
7 = (T, 5%, X', V"), and W= (W, o, 9, v

we have

(Z'L ° sz)(t7 S? x’ y) = (t’ 8’ x’ y)7
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which implies :
Jac(ZY).Jac(y?) = Idy, (3.50)

by identification in (3.50), we find

( aiﬂa¢§4_asia¢i axia¢i+_ayia¢§__1
or 0t Oty 0s Oz Oz dyo Oy
BT oyl OS' O axwa¢24_aY%aw2__0

) or Ot Oty 0s Oz 6g Oyy Oy ’
Oy 2aw3 O} Wy
5 T tVi5 ot Ve 5 =0,

OT" 9t asza¢4 axwa¢44_aywa¢l )
| Br Bt ' Ot 95 Oz Oz Oyo Oy

Thus ' . _
or ol z812 6lZ or
E*f5+%a Vi =5
In addition ‘ _
or _ oF
dz 0z’

and
hi—}-l

8”—'-1 (t7 $T,Y, 0) _

hiali(t>8)xay70)'

0z

0z

For the initial data

it 1,a,0), Wit 1,2, y), ¥i(E 1,3, 0), 95 (6 1,3, 1), 2),
£, P)

B( ’P)7
Bi

= Bt

Ft,1,P) = I'(y
0

t
(TZ(O? t: T, y)7 XZ(Oa t) z, y)) YZ(Oa ta z, y)7 Z),
(t, P),

then I* is solution of the problem (3.28). So the solution {*of problem (3.28)
can be determined in terms of the solution I* of problem (3.36).
We define the following functions

"(t,s, P) le (¢, 8, P)X{zi_1,2) (3.51)
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where(l*)7_, is solution of problem (3.28), and x; the characteristic function
for set I. We define the following problem

Co o) ol ol Al & (.0
st o e T e a—z'(H az>+“l 0
(t,l,P) B"(t, P),

(t,s,2,9,0) =0,

()
| () 5,30, 2) =

(3.52)
where
H"(t, P)i[zi—l,zi) = hi_(t) ,Y), VSn(t> P)I[zi—l,zi) = V?f@) P),
fn(t7 S, P)I[zi_l,zi) = fz.(ta Sy T, y)) an(t7 P)l[zi-bzi) = sz(ta Z, y)a k= 17 27
B(t, P)|jpirey = B'(t,P), 1<i<n.
Theorem 3.4.2 Let L™ be defined by (8.51). Then L™ is a solution of prob-
lem (8.52) .
Proof. For each (t,s,z,y) € T, L"(t,s,%,y,.) € L*(0,2*), indeed

/ L*(t, 5, P)Pdz = / |I(t, s, P)|" dz < oo, (3.53)
0 'L':lz‘_1

since for each (t,s,2,y) € T, I(t,8,3,y,.) € L*(2i-1,%). In addition, for any
@ € D(0, z*)

[rspEa = 3 [ e
z':lzi_1

= 3 [t s, PYe(a))

i=1

A_Z/BlltsP z)dz,
:_Z/athSP )dz,
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so, the fact that li(t, s,2,y,.) € H*(2i-1,2), and by the Cauchy inequality
we have

*

/ L™t s, P) dfi(;) dz

0
then L"(t,s,z,y,.) € H'(0,2*). Moreover since H™t,z,y,.) € L*(0,2"),

then H"%L? e L*(0, 2*). In addition
T 8Lrdyp Ol dyp
/H 8zdzd Z/hazd
0

oIt 2 n : 274
S e
Zi—1 i:lzi

< Cnlelraem) > (3.54)

from the compatibility conditions,

T oIrdp nof 0%
/H o= Z/h 5790 (3.55)
0 (2

and we have

o] dz, (3.56)

OL™ dy = .
n-" < %
/H 0z dzd ; / h

the fact that li(t, s, %,y,.) € H%(2-1,%) and the Cauchy inequality entail
that

2

L OL™ do
/H azddz

0

< C I(p|L2(Oz (357)

then

7 e HY(0,2"). (3.58)
We know that
ol Ol Ik Ol ol 021t y

+ 7' =0,

St Vi Vs, +Vig; ~ M\

1<i<m,
(3.59)
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so for any regular function ¢

JL, Y| LY. | RN | L o L B
/Z/( + g+ Vigs +V2a +Vi5s h(az2>+vl>wdzd0—0,

where

do = dtdsdzdy,
this shows that

oL" | o(f"L" oLr _ 8Lr __dL” OL™ dyp
//( fs ) ynd | yn 0L 5y TV, tul) e H )ddo~o

Oz 0z 0z 0z

(3.60)
hence L™ is solution of problem (3.52). The positivity of L™ follows readily
from the positivity of {I'}1,. m

3.4.3 The exact solution

In this section we show that the approximate solution defined in each layer
tends to the desired weak solution of problem (2.2) as the number of layers
n tends to infinity.

Theorem 3.4.3 Let B € L*(T'x (0, 2*)) then there exists | € L* (I x (0, 2*))
such that L™ solution of (3.52)

L —1, (3.61)
weakly in L? (T' x (0, 2*)). Finally 1 is a distributional solution of (2.2).
Proof. Let B"™ such that
B -+ B as n—+00 (3.62)
in L? (I’ x (0, 2*)).
Choosing ¢ = L™ in (3.60), it yields

OL" (L") yuOL” 1 OL" 0L "
/ / N v P O v O iy 2 pazao =,

oz oy Oz
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integrating by parts, we obtain

%//an(T, s,P)|2dsdP+%/[f“lL“P]g*det

Q Q

1
1 n|2 | ng{’iZ l_a_ﬁ n|2 -
e e R Rl
by r o

applying the hypothesis (H5) and the fact that f™ is uniformly bounded,

yields

<c (3.63)

2
1L 2 exo,emy < ©

T eI
HTL o 2 <
// |8z|dzda_c,
T 0

Therefore, since V; € C([0,T] x ),i = 1,3 then V;" is uniformly bounded in
n, using the Lebesgue dominated theorem, we may conclude that

and

Vi =V
strongly in L2(T x (0, 2*)). therefore
V"L = Vil,
weakly in L2 (T x (0,2")) . Analogously we have
frL = fl,

and
uL™ — ul
weakly in L2 (I x (0,2%)).
Let n tend to oo in (3.60), we find a distributional solution of problem
(2.2). m

Conclusion 3.4.4 our intent in this work was to prove the existence and
positivity of a solution to the problem of larval distribution. We studied an
approzimate layered problem and proved there exist unique positive solutions
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which converge to the original problem’s solution. The technique developed
here should prove useful in the analysis of similar problems where turbulence
is a factor, such as the distribution of semi-passive organisms in stream flow
and the distribution of organisms in atmosphere flows. The technique may
also prove useful in the study of sound in stratified media with background
flow. The original equations model the dynamics of fish larvae. Our work
shows that one technique for numerical solving the problem would be to solve
the approzimate layered problem thus reducing the dimension of the system
from three to several coupled two dimensional problems. Due to the manner
the data is collected with data points taken at fized depths, more is known
about the change in the vertical component of the current and thus approzi-
mating the horizontal component as constant 1s reasonable.

3.5 Non linear model

Our purpose in this work is to prove existence and positivity of solution
to the situation where the mortality functions depends on the population
density but without neglect the horizontal diffusion. The last problem is
more difficult and in our knowledge is open problem. Our idea if we want
to resolve this problem i.e. (with neglecting the horizontal diffusion), then
among possible methods is to approximate this problem in the one with
complete diffusion i.e.(without neglecting the horizontal diffusion) and we
try to passe at the limit in the suitable ways. So in this section we treat the
approximate problem namely the model with complete diffusion only, that is
a non linear non autonomous parabolic equation.

Choosing the space L2(0,T; Wy*(R2)) rather than L?(0, T; W, P (), provided
92 < p < 6, by this hypothesis we have the continuous injection between
W*(Q) and LP(£2). So one can treated in this case our problem by assuming
a certain restricted hypothesis to the mortality function, namely the inequal-
ity in (Hs) is satisfied for 2 < p < 6. It is possible to generalize this inequality,
namely for all p > 2, if we choose the space L?(0, T, W, (), rather than
L%(0,T; W,*(2)). The main difficulty in our problem is the lack of the ¢oer-
civity of the operator in the space L*(0,T; Wy*(£)), which will be handled
by using a convenient perturbation argument. An existence result of Lions
see [30](p 316) give us existence to the perturbed problem. Passing to the
limit in a suitable way, we obtain the existence and positivity of a solution
to the main model. The model which we will treated in this section is given
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o s 0 [, 0l -
O, (v - T2 o (g ) + 0 =0
[=0,  for(t,P)€S

(0, P) = lo(P).

(3.64)

3.5.1 Notation and preliminary results

We recall here some definitions and results that we will use in this section.
Let X be a separable and reflexive Sobolev space with norm ||.]| and it dual
X' with norm |[|.||s. We denote by <,> the duality bracket of X' x X. We
define the norm of LP(0,T; X) by

([ ipar) ”

for each v € LP(0,T; X), p € [1,+00.)
We denote by D(0,T; X) the space of infinitely differentiable functions which
have compact support in (0,T) and with values in X, and D'(0,T;X) the

space of distribution on (0, T) with values in X. We set also W(0,T; X, X') =

{v,v € L?(0, T} X),% € L7 (0,T; X")}. We consider a family {A(t,.),t €
[0, 7]} of operators from X to X', we define A : LP(0,T; X) — L7 (0,T; X")

by
Vu € LP(0,T; X), A(u)(t) = A(t,u(t)) a.e on [0, 7.
p' stands for the conjugate exponent of p.
Definition 3.5.1 The operator A from X to X' is said to be hemicontinuous
if its satisfied the following property :

V u,v,w € X, the function
A=< A(u+ ), w > (3.65)
is continuous from IR — IR,

Definition 3.5.2 The operator A from X to X' is said to be a variational
calculus if it is bounded and if it can be to show as A(v) = A(v,v), where
u,v — A(u,v) from X x X to X' has the following properties :

(3.66)

V u€ X,v— A(u,v), hemicontinuous,
and < A(u,u) — A(u,v),u—v> 20,
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vV ve X, u— A(u,v) is bounded and hemicontinuous, (3.67)

if up — u in X weakly and if < A(un,un) — Atg, u), Unp, —u >— 0,
then A(ug,v) = A(u,v) in X’ weakly,
(3.68)

{ if un — u in X weakly and if A(un,v) = in X’ weakly (5.69)

then < A(Un,),Un >—<P,u>.

Definition 3.5.3 The operator A from X to X' is said to be pseudo-monotone
if

(i) A is bounded

(i) As up, — u weakly in X and limsup < A(un),tn —u ><0 then
liminf < A(up),un —v> > < Au),u—v> Y€ X.
The next proposition gives a relationship between the pseudo-monotonicity
and calculus variational,(see [30] for a complete proof).
Proposition 3.5.4 We have the following implication :

A is variational calculus = A is pseudo-monotone.

Definition 3.5.5 Let L be a monotone operator from X to X'. We say that
L is a mazimal monotone operator if its graph is a mazimal subset of X X X'
with respect to set inclusion.

We will use the following results, where the proof can be found in [30].

Lemma 3.5.6 Let L be a unbounded linear operator, with a dense domain
D(L) in X and take its values in X'. Then L is mazimal monotone if and
only if L is a closed operator and such that

<Lv—ILuv—u> >0 V v,u€ D(L),

and
<L*v—L'uv—u> >0 V v,u€ D(L").

where L* is the adjoint operator of L.
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Theorem 3.5.7 Let X be a reflexive Banach space. Let L be a linear op-
erator of dense domain D(L) C X and take its values in X'. Assume that
I, is mazimal monotone and consider A, an operator from X to X', pseudo-
monotone, coercive, namely

< A(v),v >
o]l

Then, for all f € X', there ezists u € D(L) such that

— 00 if ||v]| = oo.

Lu+ A(u) = f.

Remark 3.5.8 Let H be o Hilbert space with X — H, the continuous in-
jection —having its image dense in H. Then we can identify H with its dual

H', and therefore
X H— X

The following Lemma give the compact injection in the general case, for the
proof see for instance [30].

Lemma 3.5.9 Let By, B, By be the Banach spaces such that

By — B — By,

with By, By reflexive and the injection By — By is compact. We define

W= o0 € (0,13 B), % € I7(0,T; B1)}

where 1 < p; < 00,1 =0,1. With the following norm
dv
[wllzeo7:80) + Il |z 0.3,

W is a Banach space and then the injection of W to LF° (0,T; By) is compact.

3.5.2 Existence and positivity of solution of the per-
turbed problem

‘ The objective of this section is to study existence and positivity of solution
of the associate perturbed problem (3.71).
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Using the imcopressibility hypothesis, the model (3.64) can be written in the
form:

ol o O s O (O B
ot + Zi:l ‘/’L@xz - Zi:l 5}; <hz'5'$—‘7") + ,Lb(l)l = 0,

[=0,in%,
1(0, P) = lo(P),

(3.70)

We will use a perturbation method to get a time dependent non linear
parabolic equation whose resolution will yield to the solution of equation
(3.70). We consider for p > 2 and € > 0 the following perturbed problem

Ol o O o 0 () O ey O (12 O
+Z¢=1Vzaxi D im1 Bi; <h’13xi>+”(l)l € 2iim ox; (iﬁmzl oz; =

ot
[=0,in %,
1(0, P) = lo(P).

(3.71)
Let \
ou ou
Lu _8—7? + Z:ZI ‘/;5;;—2,
with
d
D(L) = {v € L*(0,T; Wy *()); -d% € L2(0,T; W1*(Q)),v(0) = 0},

and

3 3
0 ou 0 ou ou
Au }: Ox; (hzaa:i) +uwu 6; Oz (I&'z:ZI 83:) ’
defined by

3 3
ou Ov ou ou Ov
— . p—2
< Au,v >= ;Zl /th 52, o, det—i—/Q p(u)uvdPdi+e ;:1 /Q | 3 xi| 5o D dPdt,

for each v € L2(0,T; W,*()). The main result of this section is the following
Theorem that gives conditions under which problem (3.71) has a positive
solution.

We now state the assumptions of this section.



62 CHAPTER 3. MATHEMATICAL ISSUES

(Hl) {h}i:173 S LOO((O,T) X Q) and {W}izl,g S Loo((O,T) X Q)
(Hy) S 12> e+ G+ ), >0, V(ER, aein.

(Hs) the function p is continuous from IR to IR" and satisfied p(s) <
M|sP~2, for all s € IR, and p > 2.

Theorem 3.5.10 Assume (Hy) — —(Ha) hold. If the positive function lo 1s
in L2((0,T) x ), then problem (8.71) have a non negative solution u € D(L).

Proof. We set F(s) = su(s), for all s € R. In the first step we will see that
L is a closed operator with a dense domain ; indeed, let u, in D(L) be such

that

Up = U,
in L2(0,T; W, *($)), and
Lu, = v,
in L*(0,T; W~1?(Q)), hence
Up — U,
in D'(0,T; W-4#(Q)), and
Lup, — vy,

in D'(0,T; W=1#(1Q)), it follows that

Lu, — Lu,
in D'(0,T; W+#(R)), therefore y = Lu and u € D(L), so L is closed. More-
over it is clear that D(0,T; W, *(Q)) is included in D(L), we deduce that
D(L) is dense in L%(0,T; Wy*(Q)). Concerning the monotonicity of L, we
have for v € D(L),

T bu = ou
L = —_— .
< Lu,u > /o < at,u>dt+i§:1/QV;axiudet,
- l/Tfi—Hu(t)n?dHl/(v yud —l/d' (V)u?, dPdi
= 3] @ 2 2 ), mudo = 5 o i (V)u?, :

with 7 is exterior normal, and (,) is the scalar product. Using the incom-
pressibility hypothesis we obtain that,

1
< Lu,u> = §HU(T)||§,
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it follows that I is monotone for all w € D(L). In addition for u € D(L),
T i=3
<Luv> = / <%y dt+2/ V2L yapa,
0 ot P Q 8371

T ov
= / <u,——— > dt+ < u(T),v(T) >
0

ot
=3
-3 / Vi 2V apt,
=1 Q 8£Ui
s0, the associated adjoint operator is given by
. B o= v
with
d
DY) = {v € (0, Ty Wo (Q)); 7 € L0, T; W), o(T) = 0}.

The proof of monotonicity of L* is similar to the one of L. Then L is a max-
imal monotone operator. For the coercivity of A : for u € L*(0, T} W, 7 ()
and applying the hypothesis on (Hz), it holds

3
< Au,u> = Z/hz\
i=1 Q

3
ou v
*e Zl/ce | 55,74 2 ellellzao @)

because 4 is positive. It remain to see that A is pseudo-monotone, for this it
suffice to prove that A is variational calculus and according to Proposition
3.5.4, and Theorem 3.5.7, we get the existence of a solution ue € D(L) of the
problem (3.71). Indeed we set

Ou \ZdetJr/ p(w)udPdt

B & hav aded 2 v\, o OV ade
awow) =3 | hige gy P el | 15n " or 0, P
=1 1 Oy i—1 i 1 Odg

and
ag(u,w)-——/y(u)udedt,
Q
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the form w — a1 (u, v, w) + az(u, w) is continuous in W, (Q), so
= ay(u, v, w) + az(u, w) = a(u, v, w) =< Au,v),w >

with A(u,v) € WHP(Q). As easily seen A(u,u) = A(u). We will have the
desired result if we verified (3.66),(3.67),(3.68),(3.69).

Verification of (3.66) :
the application v — A(u,v) is bounded and hemicontinuous, indeed

a(u, v + Avg, w) = a(u, v, w)

as A — 0 and u vi,w € WyP(Q). Moreover, taking into account that the

ou
operator S o —— 3 (le P2 x) is monotone, see for instance ([28], [30]),
7 2
we have
< Alu,u) — Ay, v),u—v> = a1(U,u,u— v) + ag(u,u — v)

(
- a1(u,v,u —v) — ag(u, v —v),
= ay(u,u,u —v) — a1 (u,v,u —v),

=3
. Ou —v) o
= 2; / Ryl e |*dPdt

=1 Q
ou ou v O(u —v)
P2 p-2 Pdt
+ 6;/(‘8x1| 0x; l i xz) 0x; dPd
> 0
Verification of (3.67) :
a(ur + Mg, v,w) = a1(u,v,w) + ag(us + Aug, w),

we have

ag(ul + )\’Ll:g, w) = / /,L(’Lbl + )\Ug) (’U;l + )\'Ll,g)'w
Q

according to (Hs), F' is continuous from LP(§2) to L¥(Q) see for instance [28],

then
a(uy + Aug, v, w) = alu, v, W)
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as A — 0, and ui, v, w € WyP(Q).
Verification of (3.68):
Let be u, — u weakly in Wy?(€) and

1=3
< AUn, Un) — AlUn, u), Up — U > = Z/M |det

3u
n \p— 2
e Z / axz I xi
_ 8u ou )a(un -
0x; 0x; ox;

P

65

)det — 0,

so u, — u strongly in LP(£2), since F' is continuous from LP(Q) to L ()

then F(u,) — F(u) strongly in L7 ().
Verification of (3.69) :

Let be u, — u weakly in Wy?(€2) and A(uy,v) — ¢ weakly in w1

since
Uy = U,

weakly in W,*(Q2), and

3

}—;laxz - Zaxi e ¥ (),

we obtain
a1 (tn, U, Un) — a1 (U, U, W),

Qg (Up, Un — U) = /Qu(un)un( u)dPdt,

SO

a2(un>un - ’U,) < (/ ‘/’l’(un)unlpl)l/pl(/ I’U,n - ulp)l/p)
Q Q

< M /Q ) -2 /Q (1 — w)P) 17,

50 ag(Un, Un, — u) — 0 as n — oo. In addition

(U, u) =< AU, v),u > —ay(u, v,u),

'(Q), so
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thus
g (tn, u) =< P, u > —a1(u, v, u),

we have also
02 (Un, Un) = Go(Un, tn — ) + a2(Un, u),

then
o (Un, Un) =< P, u > —a1(u,v,u),

hence
< A, ), Uy >—=>< P, u > .

Then the operator A is variational calculus. Hence for allv € L*(0, T} W,y P (),
we have

T 8u5 BuE 8u5 ov
/0 = v>dt + Z / vdetJrZ / B (%Zdet

ou Oue OV
Du.vdP E\p—2- 7€ 77 —
+ /Qu(u JuvdPdt + € .E_ /Q(Iﬁxil 9, 8mzdet 0,

We prove now that the positivity of the solution. We set u, = ul —u_, where
uF and u; are respectively the positive and negative part of u. Mult1ply1ng
the equation (3.70) by u. and integrating on (0,1), we get

—/t<§“—5u—>dt—2//v u; dPdt
0 at T 8372
- Z/ /hi|@6—l2det
=1 Y0 JQ Oz,
t
- / / w(ug)|us [PdPdt
_ 6Z// au‘

integrating by parts and applying the incompressibility hypothesis, we obtain

_EH —(t)H2 _ 23: t/h aue— dedt
g llte * __/0 z|—xfl

+ // (ue)|ug IQdetJrsZ//

P
dPdt =0,

u, |”
axi

dPdt,
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S0,
Sl @l 20,

then u_(t) = 0 for all ¢ € (0,T). Therefore u. is a positive solution to
problem (3.71), which complete the proof. m

3.5.3 The exact solution

In this section we show that the perturbed solution deﬁned in (3.71) tends
to the desired solution of problem (3.70) in L2(0,T; Wy*(R)) as € tends to
0. Our main result is the following Theorem.

Theorem 3.5.11 Let Iy € L*®(Q) and consider u. the solution to problem
(8.71), then u. converges weakly to u in L2(0,T; Wy*(Q)). Moreover u sat-
isfies the equation

/O ,¢>>dt+2/

for all ¢ € L2(0, T; Wy* ().

Bu 8¢>

detJr/Q w(w)ug =0,

Proof. Multiplying the equation (3.71) by u. and integrating by parts, by
applying the incompressibility hypothesis, i.e. div(V) = 0, we get

2
O Oue |*

3 3
1 2
—§||’U,E(T)H*+;/th B det_i_giz:l:/Q 0;

Since {h;}i=13 are bounded functions we conclude that

1
dPdt = §||lo||z

HU’EHLZ 0TW01 2( ) S Ca
and as a consequence there exists a subsequence which we denote also by

u., weakly convergent to some function u € L?(0,T; Wy (Q)). We have also
du
1=

||L (o.w-1e(q)) < ¢, thus by the Lemma 3.5.9 we have

Ug —+ U
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strongly in L?(Q) and almost everywhere (exactly we extract a subsequence
which it converge almost everywhere). As a consequence

Ou ou

weakly in L?(Q).
Multlplymg the other time the equation (3.71) by the test function w :=

for a large constant o and integer k. We remark that w belong to

1+ kug‘
L*(Q). We set © the primitive of w that is

s 1421
@(s):/o 81 ds'

1+ —8'@
+k8

then we get

T du, 8u5 8u6 00'(u
/0 50O (ue) > dt + Z/ det+Z/ T L apas

+ / (e )u0' (ue)dPdt
Q

|
J
+ EE / auelp 20Ue 00 (Ue) g pyy —

0x; ox; !xz

integrating by parts the second element of the first member and applying the
incompressibility hypothesis, we get

ou aud
O(ue (1))« - dPdt
10 (u + Z/ 3% 1+ Lyo)2
k
ou |’ au g L
+ EZ/ ol dPdt +
+ kuo‘)

+ [ uluued(u)dPdt = | (u(0)-
Q



3.5. NON LINEAR MODEL 69

Since {h;}i=13 are bounded functions, the initial condition /o belong to L>(Q)
and u,. is positive we have

>

As % tends to oo and by Fatou lemma we obtain

>[5

aal

aug

—~&——dPdt < C.
8%

1+)

a“€ aut~1dPdt < C,

and then

atl 12
Oue *

dPdt < C,

x)

by Poincarre inequality

/ |ue|*TH dPdt < C,
o |

then w, is bounded in LP(Q) for all p > 2. According to (Hs) we have F'(u.)
is bounded in LP(Q) for all p > 2, then F(u.) converge weakly in LP(Q) and
as

U — U a.e in Q

this conclude that
Flue) = F(u)

in L?(Q). So when ¢ tends to 0 in (3.71) we obtain that

/0 ,¢ > dt+§: / V——qﬁdet—l—Z / Ou ‘9¢ o APt /Q u(u)ug = 0,

for all ¢ € L2(0, T; W, *(Q)). m
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Chapter 4

Numerical analysis

In this chapter, we present the construction of the numerical program which
has been used in the simulations of the main model in the particular case
where V4, V, are independent of the vertical variable. Let the following prob-

lem
ol d(fil) , 0 ol
i _ 2= =
T oy TAVD - g By ) kRIS, (4.1)
I(t,1,2,y,2) = B(t, P),
with f1 = fi(t,8), Vi = Vi(t,z,y) and Vo = Va(t, 2, 7). We solve the problem
along the characteristic line, so that
dt ds dx dy :

S22 2N = (1, A t .

(dT’dT’dT)dT) ( ) fl( 75),‘/1(,35,9),%(75,33,9)), (4 2)
satisfying t(0) = to, s(0) = 1, z(0) = o, y(0) = yo, since the theory of
ordinary differential equations guarantees that a unique characteristic curve
passes through each point {. Among the most popular explicit one step
methods we will use the Runge-Kutta method of order four; its algorithm is
defined as follows

ot
Upy1 = U, + — 6 (Kl + 2K+ 2K3 + K4) (43)
where )
= F(tn, U, )
K
= F(t, + U + 6t—) |
4 3 2, (4.4)
= F(t,+ =, Un+ 5t7)
\ :F(t +(5t U, + 0tK3)

71
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The restriction of the solution in the characteristic line solve the following
problem

ol ol 8 -0l -
5 T Vg, ~ 50, T (T HRIE= 1, (4.5)
1(0,2) = B(2).

Throughout this chapter we replace the coefficients h, Vi, 7, and f by h, Vs,
p, and f for simplification. So every problem similar to the one given by (4.1)
can be treated in the following way : first we solve the system of equations by
numerical methods for instance Runge-Kutta methods, second we inject the
obtained result in the original model and then we obtain a purely parabolic
equations which can be treated by one of the well known numerical methods,
namely finite element and finite volume, it is the goal of the next sections.

4.1 Finite element

We present in this section, for second order parabolic differential equations,
semi and fully-discrete finite element methods. The construction as well
as the theoretical analysis of these scheme are discussed. We consider the
parabolic differential equation (4.5) together with the Newmann conditions

ol ol
haz(t 0) = ¢(t) and h(¢,1

5 (t,1) = g1(t) where the coefficients are sufficiently
z

smooth functions.

4.1.1 Construction of the Galerkin finite element scheme

Let us discretize the interval Q = (0,1) into a set of points (or nodes). For
the construction of approximation us, of u, we will choose a subspace of
H'() consisting of affine functions continuous by intervals. For this let I

1
be an integer constant and 6z = T+1 We associated the following points

z = 16z for 0 < i < I + 1 which subdivide the interval Qin I + 1 intervals
K; = [zi,2i41], 0 < @ < I of length 5z. One choose then for a subspace of
finite dimension of H'(Q2) the space

={v e C(Q),v|x € P,0 <i < T}, (4.6)

where P; is the set of all the polynomials of degrees less than or equal to 1.
So by (4.6) and Newmann condition it is clear that the dimension of Vj, is
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(I + 2). The function v; € Vj,, 0 <1 < I+ 1 defined by v;(2;) = 6;; where
d;; is Kronecker functions constitute the basis of Vj,. Such a functions are
given explicitly by ‘

|Z—Z¢|

UZ(Z) — { 1-— _(52,’ lf z € [zi-—-l)zi—l-l] (47)
0 otherwise

for 1 <:<1Tand

z
1—— if z€]0,62
vo(2) = 6z 4.8
0( ) { 0 otherwise ( )
. |1 — Z,LI . _
vr1(z) = { ! 6z i zell-oa1] (4.9)
0 otherwise.

We will determine the function us, € Vj, by its coordinate in the base
(v;)o<i<r+1, that is the number

u; = Ug,(2;) (4.10)

for 0 <3 < I+ 1. Then any ug, € V3, has the following expression

I+1

Usy = Zui(t)vi(z). (4.11)

4.1.2 Semi-discrete finite element scheme

We assume that

du

2
5, T (p+ k)u*)dz

9
altyu,w) = fo(blzo?+ Vs
(4.12)

> ofjulff, Vue WH(Q).

The variational problem related to (4.5) is : Find u = u(.,t) € Wh*(Q),
0 <t < T such that

ug, v) + a(t, u,v) = L(t,v)
{ EL(OaZ)) = 'LEO(Z), ) z E(Q, (4.13)
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where (.,.) denotes the inner product of L%(Q), u; = %Qgi and
Ou Ov ou
a(t,u,v) = /Q(h&% + VBEZU + (1 + k)uv)dz. (4.14)
L(t,v) = (f(8),v) + g1()v(1) = g(£)v(0).
We have
|a(t,u,v)| < MHu”lHUHh (4’15)
and
|L(¢,v)| < Mivlly, (4.16)

for all u, v belonging to W12(Q). The solution of (4.13) is called the general-
ized solution of (4.5). Then the semi-discrete finite element scheme for (4.5)
is : Find us, = ug,(t,.) € V5, (0 <t <T) such that

(uéz,h 'U(Sz) + a(ta Uszy U(5z) = L(t, 'U6z)
{ ’U,(;Z(O, z) = uogz(z), z €, (4.17)

where w5, is an approximation of uy on Vs,. Another way is to replace the
above equality for the initial condition by

(u52(0) -)>U5z) = (UO>U6z)7 V'U(Sz € V(Sz

(4.17) can be expressed as : Find a solution of the form

Usy = Zuz(t)vz(z)

such that its coefficients u(t), ua(t), ...ur41(t) satisfy

{ ZHl[duj(t) (vj,v:) + u;(t)alt, v, vs)] = L(t,v;), t>0, 1=0,..,I+1,

=00 dt
uj(O) = Qy, j=0,..,1+1,
(4.18)
where «;’s are the coeflicients in ugs, = ;__Jfé a;v;. Let us introduce the

following matrix and vector notations :
M = [my] = [(vs,vs)], K(8) = [kij] = [a(t, v), vi)]

u=[ug (&), .o, urp1 (07, F(t) = [L(t,v1), e, Lt vr1)]7,
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o= [ala "'7aI+l]T'

Then we can rewrite (4.18) as

u(OC)ltz a (419

d
{ ME L K(t)u = F)
Let us introduce an elliptic projection operator
Ps, : W*2(Q) = Vi,
defined by the following finite element scheme :

a(t, Ps,u, vs,) = a(t, u,vsz), Yvs, € Vo, t>0. (4.20)

By (4.12) and (4.15) we see that Py, is uniquely defined by (4.20) for any
u e WH2(Q). We call Pj,u the elliptic projection of u. We have the following
estimate :

Lemma 4.1.1 Let P;, be the elliptic projection of u defined by (4.20), then
llu — Ps,ully < C(62)]ul. (4.21)

The proof of this Lemma can be found in [42].

L2-error estimate

Theorem 4.1.2 Let u and us, be the solutions to the problem (4.18) and
(4.17), respectively. Then we have

lu = ugsllo < C{lluo — uoszllo + (62)[lluollz + f5 (llullz + llurll2)dr]}-
(4.22)

Proof. Write
p=1u~— Pgu, e=PFgu— s, (4.23)

where Py, is the elliptic projection operator. Then we have

U—Us; =p e (4.24)
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It follows from (4.21) that

Iplle < C(82)|ullz = C(62)||uo + Jy urdr|

< C(62){luoll2 + fy llurlladr].

(4.25)

We turn to estimate e. Since u and s, satisfy (4.13) and (4.17) respectively,

we have

(ug — Uszt, Vsz) + (T, U — Usz, Vs;) = 0, Vs, € Vs, t>0.

This together with (4.20) gives
(etavéz) + a(t, 6,1)52) = _(pt: Udz)a Vus, € Vs,

Choosing v, = e and using the coercivity of the operator, yield

1d
= 2Nl < loullelo,
SO d
% lefo < ol

Integrating it with respect to ¢, then we have

llello < Jle(0)]lo + /Ot llorllodr.

By virtue of Lemma (4.1.1) we have

lle(0)llo < || Pszuo — uollo + v — uo:llo

< C(82)||uoll2 + [lu — uo,szllo;
On the other hand remarking that
a(ta (Pézu)t - Ptizutv 'UJZ) = B(t; uU— P5ZU> 'U6z) v'Ui)'z € %z;

where
ou Ov ou

B Nl gu
(t,u,v) /Q (oS + (Va)ow o o).

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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Since
|B(t, u,v)| < M|lull1]|v]l1,

then set vs, = (Ps,u)s — Ps,uq in (4.30), applying the coercivity of the bilinear
form a, and the continuity of B, we obtain

“(P(Szu)t - szutnl S M/H'U/ - sz“l

< OM'(52) ul. (431)
So it follows that
lorllo = llur = (Pozu)rllo
S HuT - P(SZUTHO + HPJzu’r - (Pﬁzu)TIIO
(4.32)

< C(82)|Jurllz + C1(62)|Jull2

< C'(82) (lurlla + [lull2)-

A combination of (4.25) and (4.28)-(4.32) leads to (4.22). This complete the
proof. m

4.2 TFully-discrete finite element schemes

4.2.1 Fully-discrete schemes

In the last section the semi-discrete schemes are obtained by discretizing the
variable space. In order to finally get numerical solutions we need to further
discretize the time variable to obtain fully-discrete schemes. To this end
we use the implicit Euler’s scheme. Let 6t denote the time step size, and
tn = ndt, (n=0,1,...), uf, = Us,(tn). At time t = i, if we use the backward

difference quotient

~ ul, — gt

St = oz dz

t dt
to approximate the differential quotient wus,, then we obtain the discrete
scheme : Find u?, € V3, (n = 1,2,...) such that

ul, = Ugsy- (4.33)
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Or we can write it as

{ (ugz) 052> + &a(tm u?z: 053) = (u?z_l + &f(tn)a 'Uziz); Vs, € Vs,

4.34
’U/gz = Up§z- ( )

This scheme is referred to as a backward Euler finite element scheme. Re-
marking that

1
Atn, ufy, u3,) + = (UG, uf,) 2 allug i, Yug, € Vi,

ot
This guarantees the existence and uniqueness of the solution u}, to (4.33) for
a given uf; .

4.2.2 Error estimate for backward Euler finite element
schemes

Theorem 4.2.1 Let u and u}, be the solutions to the parabolic equation (5-
1-8) and the backward Euler finite element scheme(5-2-1), respectively. Then

[u(tn) — u.llo
< C{lluo — uoszllo + (82)[[luoll2 + fo" (ullz + llwll2)dt] (4.35)

+0t [ lugllodt}, n=1,2,....
Proof. Set
P = u(ts) = Pu(ta), €= Pru(ta) — uf,

then
u(t,) — uy, = p" + €.

It follows from (4.21) that

10"l < C(62)lultn)llz < C(62)]|luoll2 + /0 " el o] (4.36)

Set t = t,, in (5-1-3), and subtract it from (4.33), then we have

(up(ty) — Opul, vs,) + altn, o + €%, v5,) =0, Yog, € Vi, (4.37)
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By virtue of (4.20) we have
(étena 'Uéz) =+ a’(tm eny Uéz) = (afpézu(tn) - ut(tn); Uﬁz)a V’ng € %z (438)
Write .
" = 0, Ps,u(tn) — u(tn),
set vs, = €", then we have
(Oie™, e™) < (1", e").
So
le™§ < ("7, ") +6t(r™, "),
™5 < (lle" o + tlir™llo)lle™[lo-

Eliminating ||e”||o and using the above recursion relation, we have

le™o < lie®llo + 6t [1r . (4.39)

i=1
Write 77 = r{ + 73, where

o _ 1 [
T{ = 3tP5zu(tj) - 3tu(tj) = gf;/ ((sz'l,t)t - Ut)dt,

ti—1

tj

o 1
= dulty) — ulty) = 5 /t (£t )usnds.
J

-1

Then by (4.21) and (4.31)

tj—1

- 1
S lirille < 5 > =1 Y (|(Pssu)e — Pssugllo + || Psotie — uello)d?

< C(02) iy i (llulla + [luillz)de

J=1Jt1

C ) o
= 2(62) ;" .
(4.40)
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Similarly
S lrdllo < 50 i) Nluellodt = Jo™ Nustllodt. (4.41)
Again by (4.21) ‘
€%l < [Pzt — uollo + llto — wosz{lo- (4.42)
Substituting (4.40)-(4.42) into (4.39) yields
fe"llo < Cflluo = uosallo + (@) fuoll
(4.43)
+f |lut]|2dt] +(5tf ||uet||odt }-
Finally (4.35) follows from (4.36) and (4.43). This complete the proof. m

4.3 The algorithm

By using the implicit Euler scheme,

1 8un+1 a 8un+l

E(U”J’l(z) — u™(2)) + Va(tnt1, Z)-—az— - &h(tnﬂa z)—gé—
(4.44)

+(/"'(tn+1; Z) + k)un+1 = f(tn-l-l') Z)Cxp(—ktn+1),

Multiplying the equation (4.44) by the test function v and integrating over
Q=(0,1)

un-i—l — oy 6 n+1 aun+1 ov
fQ -Tvdz +fQ V},(tn+1, +fQ n+1> oz azd

+fn n+1, +k) n+1'l)dz
= [ ftni1, 2)exp(—ktni1)vdz

+91 (tni1)exp(—ktni1)v(1) — g(tny1)exp(—ktnr1)v(0)
(4.45)
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for all v € H'(Q).
We obtain by replacing u™ by its formula (4.11) and the test function v

by v;

U™ 8’07;
SO f e ——+V3( s )_8;7)7'
8'Ui 0v;
+h(tnt1, z)b—z—gzl + (pltnr1, 2) + k)viv;)dz

(4.46)

= fQ f(tn—l—h )exp( ktn+1)vjd2 -+ ZI+1 fQ U, —gt—dz

+91(tn1)exp(—ktni1)v; — 9(tnsr)exp(—ktnt1)vs,
for all 0 < j < I+ 1. We denote by

1

Zitl
AI() = / h(tas1, 2)dz,

. ‘ 3 2541
po () = (62)3 / (2i+1 — 2)*u(tns1, 2)dz

nl(g 6 - 21 — 2)(2 — % 2)dz
) = g [ (e = 2o = 2l 2

Zi+1
) = o [ (= A s, e

Zi1
’Ug‘l'l(z') = ((5z)2 / (ZH—I — z)v(tn+1,z)dz

2541
o) = W / (2 — 2)v(tns1, 2)d2
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) 2 i1
$74() = Faern(—kinss) / (ist — 2)f (b, 2)d2

Zit1
() = 2 emp(—ktny) / (2 — 2) f (bus, 2)d2.

The numerical scheme for the approximation of problem (4.1) with Newmann
conditions is therefore

for i =0,
6z, 1 n o 1. o
P+ ki) + 5zh #(0) - 2V 0
(5z 1 1. o
B R 0) = )+ 5V O
02 ,n, 6z 0z
=y 0+1(O)+§5%u0+65t T — g(tns1)exp(—ktns1)
for1<i<I
0z ,1 n I | I "
(= (5t+k+/f'+1( 1))“3;h+1(Z—1)“§V1+1('L_1))“ij11
(5z 1 (i — ey
+ (3(&+k+ (4 1))—l~5zh (i — 1)
0z, 1 1
+ 51/1”“(@ D)+ g5tk o™ (@)) + gh"“(z’) - %V&“(i))ugﬂ
0z, 1 n n n o
+ (G5 TR0 - 5 () + Vo“())uiff
02y, el 6z o, 26z n . 02 o
= 2(1 =1+ fo ())"‘6&%—1"' 35tui+3—5£u¢+1
fori=1+1
0z ,1 1

1
(g + E+u D) = 5 D) = SV D)

oz, 1 n 1 Lo n
HG (s + b+ p ) + D + SV (D

n 0z 0z
= f )+ 65tu1+35t uPyy + g1(tns1)ezp(— Ktpt1).
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If we apply the numerical integration, for instance the trapezoid rule, it yields

i 1
RMEH(E) = §(h(tn+1, Ziy1) + B(tns1s 2i))

i 3
MQH(ZP = §M(tn+1, z;)

u“'“ ('L) =0
n+l¢, 3
2 ('L) = §M(tn+1,zz’+1)
3+1(i> = emp(—ktn+1)f(tn+l> ;)
) = exp(—ktns1) f (tnt1, Zit1)
VIt (a) = Va(tnrs %)

V1n+1(i) = VB(th; Zi+1)

so the algorithm is written as
i=0

oz, 1 3 1 1
ago = —3—(5% +k+ §u(tn+1, Zp)) + '%;(h(tn—l—la 21) + h(tas1, 20)) — '2“/3(tn+1, Z0)

6z 1 1 1
ao1 = E(?ﬁ +k)— é‘gg(h’(tn—l-hzl) + h{tns1,20)) + §V3(tn+1> Z0)

0z 0z n 0z n
by = —Q—exp(—kthrl)f(thrl, %) + 35l T gsrtt T 9(tn+1)exp(—ktni1)

for1<i< [

b6z, 1 1 1
Gii—1 = —6‘(“& + k) — %(h(tnﬂ, 2) + h(tni1, 2i-1)) — §V3(tn+1, 24)
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6z .1 3 1
ai; = 3(:52 +k+ “2“N'(tn+17 ) + %(h(tn-l—la 2) + h(tn1, zi-1))

1 o0z, 1 3
-+ §V(tn+1, zz) -+ -3-(51—; +k+ §/J,(tn+1, Zz))
1

1
+ m(h(tnﬂ, Zig1) + P(tn1, 7)) — §V3(tn+1, %)

0z . 1 1 1
Qi1 = _6—(—5—2? +k)— g(s—z(h(tnﬂ, ziy1) + B(tns1, 2)) + ‘2‘%(tn+1> z;)

6z 20z , 0z
b; = 0zexp(—ktn41) f (tns1, 2i) + 657 Vi1 gt T gap it

fori=1+1

6z 1 1

1
G141, = _6_(;55 + k) — %;(h(tn—i—l; 2r01) + h(tny1, 21)) — '2“/},(tn+1, Z14+1)

0z, 1 3 1
Qrfni+l = ?(EE +k+ §M(tn+1, zr41)) + 2—5—Z(h(tn+1, zr41) + hltns1, 21))

1
+ §V3(tn+1, Z141)

0z 0z 0z
bre1 = —Z—f(tn+1, z11)exp(—ktni1) + 657“? + '?)_(S_tu?—l—l + g1 (tns1)exp(—ktnt1)

4.4 Finite volume

This section is devoted to study the parabolic differential equation (4.5)
together with the Dirichlet conditions / (,0) = g(¢) and I(t,1) = g1(¢) by the
finite volume method. This one is a discretization method for conservation
Jaws. As suggested by its name, a conservation law expresses the conservation
of some matter g(u), where ¢ is a given function of the unknown u and states
that the variation in time of the quantity of ¢(u) in any bounded domain D
of IRY is equal to the overall outward flux of matter denoted by ®(u) through
the boundary of the domain which is considered. Hence a conservation law
can be written as

( / o) (¢, 2)da)s + / 0(u)(t2)do(s) = O,
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where (.); denotes the time partial derivative of the entity within the paren-
theses. The local expression of a conservation law (which is obtained by
considering an infinitesimal domain) is of the form :

(q(w))i(t, @) + div(F(w))(t, 2) =0,

where F' is a given vector functional of the function v, such that

/6 Fluwyn(t 7)o = / B(t, 2)do,

oD
n(t,z) is the outward normal to the boundary 0D.

Definition 4.4.1 (Admissible one dimensional mesh) An admissible mesh
of (0,L), denoted by T, is given by o family (Ki)i=1,.n, N € IN*, such that
K; = (7_1,%,1) and a family (2:)i=0,..N+1 Such that

?:z;ﬂ:0<z1<z%<...<zi_%<zi<zi+%<...<zN<zN+%=zN+1:

in order to simplify the notations, we shall choose a constant space, time
step, so we denote 6z = m(K;) = Ziy 1 — %1 i =1,..,N and 6t € (0,T).
Let Ns € IN* such that

Nj; = maz{n € IN,nét < T}

and we shall denote t, = ndt forn € {0, ..., Ns+1}. The discrete unknown are
denoted by u? for 1 <4 < N, and are expected to be some approximation of
u in the cell K; (the discrete unknown u; can be viewed as an approximation
of the mean value of u over K;, or of the value of u(tn, T;), or of other value
of u in the control volume K;...). In order to obtain the numerical scheme,
let us integrate the equation (4.5) over each control volume K; of 7, and time
interval (tn,tnt1) forn € {0, ..., N5 }. Then

" o, Ou
S, (@t —uydz = ;7 [ (- (hgm))dzdt

tn (8(V3’U,)) tn 8‘/3
T i le sz‘it t Jtnn fKi(/“L + Bz + k)udzdt

(4.47)

= fKifexp(—kt)dzdt,

- tn+l
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Recall that, as usual, the stability condition for an explicit discretization of
a parabolic equation require the time step to be limited by a power two of
the space step, which is generally too strong a condition in terms of com-
putational cost. Hence the choice of an implicit formulation in (4.47) which
yields
1
ot

ou ou
[ (42,2 = s Dz — (00 b, 70 + (h ) s 1)

+(‘/3U‘) (tn+17 ZH—%) - (VE),U) (tn—i—l; Zz—%)

OVs(tpi1, 2
+ [, (B, 2) —3(—851—2 + B)u(tns, 2)d2

— [, F (b1, 2)emp(—htns)dz.
(4.48)

There now remains to replace in equation (4.48) each term by its approxima-
tion with respect to the discrete unknowns. The convective term (Vau) (tns1, Ziy L )
is approximated by V3(tns1, 2y 1 Jutt ("upstream”) if Va(tni1,2;,1) = 0 and
is approximated by Va(tn+1, 24 L Juptl if Va(tni, 2oy 1 ) < 0. A reasonable

o ou . .
choice for the approximation of 52—(tn+1zi 1 ) seems to be the differential

n+1 n+1
uotient —+L "% This approximation is consistent in the sense that, if
q > )

u(t,.) € C*([0,1]), then
U(tny1, Ziv1) = Ultna, %)
0z
where |0(62)| < Céz, C € IR only depending on u.
Remark 4.4.2 Assume that z; is the center of K. Let urt! denotes the
mean value over K; of the ezact solution u to problem (4.5). One may then
remark that

= Uy (tnt1, zH_%) +O(éz)

|t — w(tpar, )| < Cé2%,

with some C only depending on u; it follows that

'ﬂ—'_d_z—_z-— = uz(t’n+17 Zz—l——%) + 0(62)7
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also holds, for i = 1,..., N — 1. Hence the approzimation of the fluz is also
consistent if the discrete unknowns u;, i =1, ..., Nare viewed as approzima-
tions of the mean value of u in the control volumes.

The term
V-
[ (e, = G2 w2, + Bl s
K; Z

is approximated by

v+
Sz(uftt — 8; + E)ultt,
with N
n+1 g
T = — t d
My (SZ /z,_l ,LL( n+l>z) Z,
i-g
and

a*vg;-l—l 1 21 3V3
5 SZ/z _a;'(tn—l-laz)dz'

i-%

The numerical scheme for the approximation of problem (4.1) with Dirichlet
conditions is therefore

5
Tt — )+ O - G+ FLY - FY 4 HIT =0 [ (4.49)

for i = 0,...N with

Grtl — %(tn+17 zi+%)u?+1 if %(tn+17 ZH_%) >0 (4 50)
e %<t”+1’zi+%)u?:11 if %(tn+1,zi+%) <0 '
and
n+1 u?jll - u?"'l
FY = At ) =5 (4.51)
fori=1,..,N
oVt
HIE = S2(up ™ = —— + k)™ (4.52)
with |
ultt = g(tni1) (4.53)

ut = g1(tas1) (4-54)
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and
1
o= [ttt 2, (4.55)
0z Jg,
for the initial condition
ug = uo(2) (4.56)
or
1
= g;(/;iuo(z)dz (4.57)

4.4.1 Error estimate

Theorem 4.4.3 Let T > 0 and u € C*(IRT x [0,1]). Let up € C*([0,1]) be
defined by ug = u(.,0), let f € C(IR x[0,1]) and g,g, € C(IR"), let T be an
admissible mesh. Then there ezists a unique vector (u?“)izl,m]\r satisfying

(4.49)-(4.57). There exists c only depending on ug, T, f such that
sup{|u?|,i € {1,..N},n € {0,..,Nss +1}} < c. (4.58)

Furthermore, let € = u(ty, z;) —u?, fori € {1,..N} andn € {0, ..., Ns+1}.
Then there exists C € IRY such that

(O 6z(ef)?)r < C(67 + 6t). (4.59)

Proof. For simplicity let us assume that z; is the center of K.

(i) Existence, uniqueness and L* estimate :

Without loss of generality we assume that V3 > 0. For a givenn € {0, ..., N5t },
set f = 0 and u? = 0 in (4.49) and g(tns1) = g1(tn41) = 0. Multiplying
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(4.49) by ul"" and summing for i = 1,..N yields
21111(G?:%1 - G?j;)u?“ = Zi’vzl(vi’»(tn-i-h ZH%)U?H — V3(tn+1, Zi—%)u?jll)ul‘z“
= Z£1(%(tn+la Zi—|—%)(u?+1)2
N V t . 1 n+1 . n+1\2
+ 30 Vet 2 ) (G (8™ — wiy)
—3(uf ) = ()
N
= 5 2ie1 Va4, Zi—é)(u?ﬂ —u)?

) *)?

+% Zi]\il(%(tn-l-la Zi+%) - Vé(tnq-l, Zi_

+%V3(tn+1>'zN+%)u?v - %VB(tha Z%)Ug

(4.60)
1 1
N (pntl _ gl n+1 N h(t u?jl - U’?—i— n+1
Zi:l( itd i—1 Ju; = Zi:l (tn+1s Z¢+%)——"——“52 U;
un—l—l - un+1
+Zi]\i1 h(tns1, Zi_%)-———————z 5 1L gt
(4.61)
after straightforward calculus we obtain
N N (un-!—ll . un—l—l)Z
Z¢=1(FZ:%1 - Fﬁ?)“?“ =D in1 h(tn+1)zi+%) = > :
uphh — “T&Jj
—h(tng1, ZN+%)——+—(§——U’X,+1 (4.62)
uvlz+1 _ u7g+1
+h(tn+1, Z%)TU?+1
N N
STHPTET =Y S (uf ), (4.63)
with "
ovy

0z
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(4.60),(4.62),(4.63) yields for uf™ = ujty = 0, so uf*' = 0 for all i €
{1,...N}. This gives existence and uniqueness of U = ( nrl L uthE solu-
tion to (4.49)-(4.57) for given u?, i, 4 € {1,...N}. Let us prove the est1mate
(4.58). Set m; = min{f(t, 2),t € (0,2T),z € (0,1)}, my = min{g(t),t
(0,2T)}, and m,, = min{g1(t),t € (0,2T)}, let n € {0, ... N5} we claim that
min{u?™ i € {1,..N}} > min{min{u?,i € {1,..N} + dms},0,my, mg, }.
Indeed, if mm{u?“ i€ {1,..N}} < min{0,my,my, }, let 4o € {1,...N} such
that

uptt = min{u™,i=1,..N},

writing (4.49) with 1 = 4, leads to

62 8V”+1 o .
S )+ 52 = P ) Vit 2 057
(4.64)

: +1 n+1
since Va(tni1, 21 )ui™y > Va(tnyr, 2, ) ul™ thus
2 0~ 0

Uiy

n+1 n n+1
—ug > 0tf

then
utt > min{u},i € {1,...N}} + dtmy,

which yields by induction that

min{ul,i € {1,..N}} > min{{min{ug, i € {1,..N}},0,my, mg, } + nétmy,
similarly

maz{u?,i € {1,..N}} < maz{{maz{uf,i € {1,...N}},0, My, My, }+ndtMy,

with M; = maz{f(t,2),t € (0, 2T), € (0,1)}, M, = maz{= g(t),t €
(0,27)}, and My, = maz{g:(t),t € (0,2T), }. Then

sup{|u?|,i € 1,..N,n e {0,..,Ng}} <c

with ¢ = [Juo|leo + [lglleo + [|g1llco + 2T1[ flleo-

(i) Error estimate:

One uses the regularity of the solution to write an equation for the error
e = u(ty,2) — u? defined for i € {1,...,N} and n € {1,..., N + 1}. Note
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that €0 = 0 for 5 € {1,..,N}. Let n € {1,.. ., Ns:}. Integration (in space) of
equation (4.49) over each control volume K; of 7 at time ¢ = t,41 gives
ou ou
S, ue(t,2)dz - = (A=) (tars Zigy) + (g ) (tnrs, 71

+(V},u) (tn+1s ZH-%) - (V?»u) (tn+1, Zz—%)
(4.65)

oVa(tnt1,2
+ fKi(M(th; z) — ‘j‘(—a—:‘l——) + E)u(tni1, z)dz

= fK toa1, 2)€xp(—ktptr)dz.

So that, for all z € K, i € {1,..., N}, a Taylor expansion yields, thanks to
the regularity of u

teltss, 2) = %(u(tmb %) = ultn, ) + S7(2) (4.66)

with
|57 (2)| < e1(0z + 6t).

Therefore defining
Sr+t = / ¥ (2)d, (4.67)
one has
|SPH| < 162(d2 + 6t)
subtracting (4.49) to (4.65) yields

0z,
— (€ i —e}) +Szn+1 + Va(tnt1, Zi+%)(u(tn+1, zi+%) - U?H)

ot
~Va(tn+1, 2i-1) (Utns, 71) = ui )
ou ultl — Pt
—h’(tn-l-l; Zz‘—]—%)(gg(tn-l-l) zz—|—%) - _’i1_57}__) (468)
n+l _— , nt+l

3u ui uz
+h(tnt1, Zi-—%)('—a’;(tn_i_l, Zi1) = __&__1_)
+(5zb?+1(e?+1 ST =0
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with

TP+ < cdz.
In addition

u(tntis Zipl) = U(tny1, %) + TI?:;

with
T < doz,
and
Ou U(tns1, Zig1) = U(Enr1, ) +1
ég(tm—l,zw%) = 52 =+ T"?-q-%’
with

T <
2

This yields

5_z(en+1 -

Z (et - ) ST Vit 2 )+ T

[ 2
~Va(tn+1,23-1) (e + Tl?jél)

n+1
(e 2 e =G e (4.69)
( n+17zz+%)( (5Z + i+l)

el _ gntl

—1
S T
2

hltass, 7o) (C g

+5Zb?+1(6?+1 + Tin+1) =0.



4.4. FINITE VOLUME 93

Multiplying (4.69) by e and summing over Kj, 1 € {1,..., N} and reorder-
ing the terms, yields

0z n n n
Ezi\_’—:l(ei-'—l)? +35 Zz— ‘/3( n+1s 2 z——)(e - z+11)

( n+l 67ja+1 2

[
—I—ZN 1h( n+1azi+%) Lt 5zz )

02 L b ()
N 0z EN n+l_n _ Z V( )Tm—|~1 n+1
= 57 it el ey i=1 V3(bn+1, 2311 H_%)ei

+ o0 Valtnrn, 2 ) T )™

i-3

+ Y00 Bltnsr, 2 ) T o)l

_Zz— h’( n-+1» z—-—)T”ZH—%l) ;H—l

—5z ZN bn+1Tn-|—1 n—l—l

=1 "1

— SN Sptleptt
(4.70)
with

1oVt
_— 4 k

bn_z-i-l _ ,ntl -
% ILLZ 2 82
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One sets N - .
L= =i Valtnwn, 2 g )T/H?) et

+ Y Valtngn, 5 )T el

= ZiN—_-O Va(tnt1, Zi+%)T’?:%l)(e?-:r11 - B?H)

we apply the Cauchy Schwartz inequality
52V h 1
1] < (T, SR ITTH PR, S (e et)?)?

using the Young’s inequality

L <sy (W?’ R+ Lo B oy

+1 i

=2 9 =1 52

h
< loa + 3 N, (e -t

= S b, 5 )T = D Bt 2 ) Tl

reordering the terms it yields
+1 1
Zz L Mt 2 it i )T”n ( T~ i),

We apply again the Young’s inequality

(en-i—l _ n+1)2

il T 6

N
L] < c1]b2]* + § Doims h(tn+1azi+%) 5

N
|I3| — |(5Z Zi:l b?+1ﬂn+16?+1|

1
< cldz]*+ = vazl S2bl e 2

I n-+1 n-|-1
I4 - Zz 151

< 162(62 + 6t) S ler .

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)
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Thus we obtain

4 n
S et 4 L U - T e
(4.79)
0z
< Galoa? + Cabz(dz + 8) il e ] -+ 5 Lol Il
remarking that
1
byt — 5b;.““l >0 (4.80)

then

N N N
3 bzfel P < Codt|dz|+Csdt(32+61) S szleptt+) belertler| (481)

i=1 i=1 1=1
by Young’s the inequality (4.81) yields

SV Szler T2 < 2C56t[02)* + 2056t (02 + §t) SO 8zlel ™ + SV, Szlen?

< Zfil §zler|? + Cy(0t|62|* + 6t(62 + 0t) sz\il §z|ertL).
| (4.82)
Remarking that for € > 0 the following inequality holds

Cu6t(0z + 68) N, 62|ertY| < eI, 6z|ef TP + % SV 8203|6t2[62 + Otf?
(4.83)

taking

e 5t
TS+ 1

(4.82) yields -
SN Salep P < (14 6t) Yooy S2lep P + Cu(l + 5)5¢(62)2 + C3(1 + 6t)26t(8z + 6t)°.

(4.84)
Then if

N
Z §z]e?|? < ¢, (0t + 82)° (4.85)

=1
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with ¢, € IR, one deduce from (4.84), using 0t < 6t + 6z and 5t < T, that
SN 82|el T2 < e (6t 4 02)? (4.86)
with
Cn+1 = (1 + 5t)0n + 056t (487)

where
Cy = Co(1+T)+CEH1+T)%

Choosing ¢o = 0 since e} = 0,1 € {i =1, ..., N}. The relation between ¢,
and cn41 yields (by induction)
e, < Cge?™, (4.88)

Estimate (4.59) follows with C2 = Cge*”. m

Remark 4.4.4 The error estimate given in Theorem 4.4.3 may be general-
ized to the case of discontinuous coefficients. The admissibility of the mesh
redefined so that the data and the solution are piecewise reqular on the control
volumes.

Let the following example

Example 4.4.5 Ifh(t,.) € L*(0,1) such thata < h < b a.e with a,b € IR,
Let 7 = (K;)i=1,..n be an admissible mesh, in the sense of Definition 4.4.1,
such that the discontinuities of h coincide with the interface of the mesh. Let

o ou
us turn to the approzimation HZ.T%I of (h5;>(tn+17zi+§)> let

1
h’?—H = 3; K h(tn+1,Z)dZ,

since h|g, € C1(K;) there exists cp € IR*, only depending on h, such that
| — B(tns1,2)| < cuh

Vz € K;. In order that the scheme be conservative the discretization of the
fluz at Zig1 should have the same value on Kiand K,y1. To this purpose, we

introduce the auziliary unknown U, 1 (approzimation of u at Z;, 1. ) Since on
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K; and K1, h is continuous, the approzimation of (h%)(tm_l, zH_%) may be
performed on each side of Zipl by using the finite difference principle :

n+l un—l—l
. 1 y
Hn+1 _ hr}—i—l i+35 '
+3 ¢ 9z
2
on K;, 1<i1<N
un—l—l _ un+l
4 b
Hn—l—l . hn+1 i+l i+3
i+% il 0z

2
on Kiy1, 0 < i < N—1. Requiring the two above approzimation Of(hg‘%)(tn_{_l, zi+%)
to be equal (conservatively of the fluz) yields the value of u:fll for i =
2
1,.,N—1

n+1l, n+1 n-+1, n+1l
np1 Pipi Uil Ty

S AT
which in turn, allows to give the expression of the approrimation H.’ff of
2

K
(h%)(tn+17 zi-{—%)a

U

’

s = ZHEEI i (4.89)
z'—l—% h;b—l——l-ll + h,?_H 6z
fori=1,..N —L

4.5 Comparison with other discretization tech-
nique

The finite volume method is quite different from the finite difference method
or the finite element method as we saw. On these methods see e.g. Dahlquist
and Bjorck [17], Thome [47], Ciarlet [15], [16], Roberts and Thomas [41].
Roughly speaking, the principle of the finite difference method is, given a
number of discretization points which may be defined by a mesh, to assign
one discrete unknown per discretization point, and to write one equation per
discretization point. At each discretization point, the derivatives of the un-
known are replaced by finite differences through the use of Taylor expansions.
The finite difference method becomes difficult to use when the coefficients
involved in the equation are discontinuous. With the finite volume method,
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discontinuities of the coefficients will not be any problem if the mesh is cho-
sen such that the discontinuities of the coefficients occur on the boundaries
of the control volumes. Note that the finite volume is often called "finite
difference scheme” or ”cell centered difference scheme”. Indeed, in the finite
volume method, the finite difference approach can be used for the approxi-
mation of the fluxes on the boundary of the control volumes. Thus, the finite
volume schemes differ from the finite difference scheme in that the finite dif-
ference approximation is used for the flux rather than for the operator itself.
The finite element method is based in the variational formulation, which is
written for both the continuous and the discrete problems. The variational
formulation is obtained by multiplying the original equation by a test func-
tion. The continuous unknown is then approximated by a linear combination
of shape functions; these shape functions are the test functions for the dis-
crete variational formulation (this is the so called Galerkin expansion); the
resulting equation is integrated over the domain. The finite volume method
is sometimes called a discontinuous finite element method, since the original
equation is multiplied by the characteristic function of each grid cell, and
the discrete unknown may be considered as a linear combination of shape
functions.However, the techniques used to prove the convergence of finite el-
ement methods do not generally apply for this choice of test functions. From
the industrial point of view, the finite volume method is known as a robust
and cheap method for the discretization of conservation laws (by robust, we
mean a scheme which behaves well even for particulary difficult equations,
such as non linear systems of hyperbolic equations and which can easily be
extended to more realistic and physical contexts than the classical academic
problems). The finite volume method is cheap thanks of short and reliable
computational coding for complex problems. It may be more adequate than
the finite difference method which in particular requires a simple geometry.
However, in some cases, it is difficult to design schemes which give enough
precision. Indeed, the finite element method can be much more precise than
the finite volume method when using higher order polynomials, but it re-
quires an adequate functional framework which is not always available in
industrial problems.
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Figure 4.1: Comparison betwee
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n the numerical solution R-K-F-E method

Let us consider the same example by replacing the Newmann conditions



4.6. EXAMPLES 101

T - T N T
numerical solution +

- exact solution ~---=--
-{1”"‘3«‘ £Fo,
oo =
R oo
+ * r &
- *; :’F L9
6 L + 3 i
; \ 4 \
i + ! +
; Y 4 !
o B ! ’*‘
; ¥ \
A+ * / *
i i 4 i
5.5 b 4 \L * -
” i / 1
5 4 T | +
= + ! * H
3 \ 1 }
@ 4 { + i
L \ |
5 k- “’" ?’l ”‘\( ?
4 + \ + '
+ i + !
\ + } +
3 i /
& ; Y i
oo vt
| o+ ) A
45 | Loy Yoo 4
*tHj;?" Ar‘l:\;.;o—f"
4 .
o 2 P 6 8 10 12 14

vertical component z

Figure 4.2: Comparison between the numerical solution R-K-F-V method
and the exact solution.

In the following example we compare the R-K-E-F and R-K-F-V methods.
We set
Vi=z,Vo=y,Va=t+z+Yy+2
1

h= =t
i+ +p+2 "

and

fo= 2t+202+ 27 +22(t+T+y+2)
2(1 4% + 2% +y° — 2°)

LHE 42?4+ ),
(1+1#2+22+y2 +2%)° (+a" 4y +2)

with the Newmann conditions

ou
(h—a—z)(t7 z,Y, 0) - Oa
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and ou 20

— 10) = :
(h 3 )(t6:2,9:10) = T T 7 1 100
For the final time ¢t = 1, the time step size 6t = 0.01, and the space step size

0z = 1—1(?—0, we obtain the following figure,
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Figure 4.3: Comparison between the numerical solution R-K-F-E method
and R-K-F-V method.

Remark During the simulation we remark that the quadratic error issue
of the R-K-F-E method is less than the quadratic error issue of the R-K-F-
V method. So as already mentioned in the last section, the finite element
method can be much more precise than the finite volume, but the first method
requires an adequate functional framework which is not always available in
industrial problems and the second is cheap method.



Chapter 5

'General conclusion and
perspectives

Throughout this thesis we made a mathematical analysis of a model repre-
senting the growth of larvae; which 18 itself‘described as a consequence of
larvae eating phytoplankton, but the scarcity of data leads us to proceed
differently. The model focuses on the passive|stage, a relatively short period
after the egg has been released. During this| period, the animal, first in its
yolk-sac, then in the early larval stage is unable to move by itself and is
subject to movements of advection and convéction of the water. This period
which, in the literature, is both recognized ‘and at the same time not very
well defined, is also considered to be jcruciai for the survival of the larvae.
Since at this point the larvae are not able to‘ move themselves, their feeding
regime is ensured by the food present in their vicinity. The food in this first
stage is mainly made up of phytoplankton, t erefore it is also carried by the
current. The model will be completing by a model describing the other stages
of the life history : active larvae, juveniles a;md adults. A renewal equation
will then be deduce, which should give a way of evaluating the recruitment
rate. ' |

Concerning the mathematical issue, the found model equation was a lin-
ear partial differential equation, but even of ;its linear aspect, it was not easy
to handle. So we started by considering the uncoupled model where the hor-
izontal current and the growth function are assumed to be independent of
the vertical component. In this case we could prove existence, uniqueness
and positivity of solution. The idea used here is to decompose the study into
two steps. First, the problem was solved in (in the horizontal and growth
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component) along the characteristic lines. On these lines, it reduced to a
one dimensional parabolic equation with respect to the vertical component,
which was solved by means of evolution system theory elaborated by Ac-
quistapace et all. After that we treated the model in the general case, where
the coefficients depends of all of variables. In this situation we could not
uncouple our equation, and this one remain ultraparabolic or equation with
degenerated elliptic operator; for overcoming this degenerated type, we per-
turbed our main equation by adding the missing diffusions (x-y directions);
so we obtained a non autonomous parabolic equations, which we treated by
the monotonicity operator theory; then we passed to the limit in a suitable
ways to obtain the existence of a weak solution of the main problem. The
principal problem encountered by passing to the limit is the loss of the regu-
larity, and this make the proof of uniqueness of solution more difficult. After
we prove the existence and the positivity of the solution by another less clas-
sical method called multilayer methods. This approach consists in dividing
the water column into horizontal layers, assuming that the horizontal current
is independent on z in each sublayer and the temperature is vertically con-
stant on each sublayer. In order to satisfy the incompressibility condition, it
is assumed that the vertical current depends linearly on z in each sublayer,
thus we can treat the approximated problem as we made in the first method
that is uncouple this equation and solve separately the first order hyperbolic
method and the one dimensional parabolic equation. As done before we
passed then to the limit in a suitable way. The advantage of this last method
is in the numerical treatment since by separating the main equation we can
apply for this one, the same convergence theorem namely for parabolic and
ordinary differential equations. We finished this chapter by treating the non
autonomous non linear parabolic equation. As already mentioned our close
perspective is to establish the existence and positivity of non autonomous
non linear ultraparabolic equation. So the first step to prove it, is to ap-
proximate this one by a non linear parabolic equation, and one can prove by
classical arguments the existence of the solution. The uniqueness is a difficult
question and the works presented for this type of equation is scarce. The idea
which we found is to impose extra conditions, so called entropy conditions,
and so we set a new definition to the solution, which we called the entropy
solution, given by Kruzkov [29] for hyperbolic equations and Escobedo et all.
for parabolic equations. For all this it seems to us that it is preferable to give
in appendix a large description of a work of this last authors. Remarking
that if we can establish some regularity of our solution with respect to all
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Appendix

We present a theory of existence and uniqueness for suitable entropy solutions
of a non linear equation which describes the combined effects of diffusion and
convection of matter. It has the form

up — Dgu = 3y(f(u)), zeRVN Y ye R, t>0, (1)

posed in the space JR*, n > 2 denoted by the variable z = (z,y), T €
R y € IR. The main characteristic of this equation is that it has mixed
parabolic hyperbolic type, due to the directional separation of the diffusion
and convection effects : while the matter is convected along the y axis, it
is simultaneously diffused along all orthogonal directions. The existence of
solutions of equation (1) can be obtained by the method of adding a vanishing
artificial viscosity, in other terms a diffusion, in the missing direction (along
the y axis) or as we had seen in chapter 3 for the variable coefficients. The
main interest in this appendix lies in the uniqueness part. It is well known
that the solutions of conservation laws are not characterized in a unique
way unless we impose extra conditions, so called entropy conditions. such
problems arise for equation (1). In dealing with uniqueness the authors will
be inspired in the entropy conditions in the form given by Kruzkov, [29].
However, in view of the presence of the diffusion term Aju in equation (1)
Kruzkov’s entropy criterion has to be modified. This is done by introducing
as entropy test functions all functions of the form |u — ¥(z)| and ¥ smooth,
while Kruzkov’s definition asks for 1 to be constant. This change also implies
the modification of the criterion formula, which now reads for a candidate
solution u(z,y,t) :

ot 5 (2)
< @[lf () — F(x))|sign(u — (@))] + sign(u — ¥ (@) Asth(2),
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which is to be understood in the sense of distributions. The function sign
is defined as sign(s) = 1 for s > 0, —1 for s < 0 and 0 for s = 0. In
this setting uniqueness is established for entropy solutions of the Cauchy
problem with initial data in L' N L*®. Most of the tools we use are in the
theory of viscous or hyperbolic scalar conservation laws. However, equation
(1) presents important new difficulties due to its mixed hyperbolic-parabolic
character depending on directions. Before proceeding with the proofs, let
us make some comments. Equation (1) admits as solutions functions of the

“form u(y, t) as long as they are solutions of the non viscous conservation law

u; = O, f (u). This points out the need for some kind of entropy condition in
equation (1), notwithstanding the fact that a viscosity term is present. On
the other hand, solutions of the form u = u(z,t) coincide with the solutions
of the heat equation u; = Agu, where no such additional condition is needed.
In fact the restriction of condition (2) to such equations holds as a conse-
quence of the regularity of the solutions. The condition we suggest modifies
Kruzkov’s condition to take into account those facts.

0.0.1 Statement of the main results

We will study the existence, uniqueness, and properties of entropy solutions
for the Cauchy problem associated to the diffusion-convection equation of
the reduced type

up — Dgu = 6y(f(u))a (3)

U(:Z?, 0) = ?,Lo(CC, y)7 (4)

with f a locally Lipschitz continuous real function such that f (0) = 0 and
the initial data uo € L*(JR™) N L= (IR™). Let us next consider the space BV

of functions with bounded variation. given a function g € Lj,,(€2), where {2
is an open subset. We define the total variation of g by

TVa(s) = up{ [ gdiveds, ¢ € CYE) ello < 11
In general, we have TVq(g) = +oo. Hence it make sense to introduce the

following definition

Definition 1 4 function g € L},.(Q) is said to have a bounded variation in
Q if TVq(g) < +oo. We set

TVa(g) = {9 € Lipe(Q), TVa(g) < +oo}
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Definition 2 (i) By .a solution of (8) we will understand a function
u € C((0,00) : L'(R") N L*(Q), Q = R" x (0, 00),

which satisfies (3) in the sense of distributions.

(ii) A solution of problem (8)-(4) is a solution of (3) such that u(.,t) — ug
in LY(R™) ast — 0. Thus, u = u(z,y,t) is continuous at t = 0 as a function
][0, 00) = L*(IR™).

(1i1) A solution u(z,y,t) is called entropy solution if the entropy criterion
(2) is satisfied for all smooth function ¥ = (z). As said above, it extends
Kruzkov’s definition by allowing 1) to be nonconstant. This forces to introduce
the extra term

sign(u — 9(x))Astp(z)
on the right hand side, and the term —Agzlu — ¥ (z)| on the left hand side.

The main results are

Theorem 3 For every ug € L'(IR") N L®(IR") there exists an entropy solu-
tion of problems (8)-(4). This solution can be constructed by the vanishing-
viscosity method.

Theorem 4 The entropy solution of problems (8)-(4) is unique. Moreover,
comparison holds :

If uy<wy ae. in IR, then u<v in Q. (5)

Finally the following L*— contraction property is true : if u and v are two
entropy solutions with initial data ug, vy resp., then for every t > 0:

[u(-t) = v(, Ol < [luo — vollr- (6)
Moreover,
[ [ wewi-sepolddes [ [ e =oote)ldys
R J|y|<R R J]y|<R+at
(7)
where
a = maz{|| f'(u)|loo, IIf' (v)lloo}- (8)

The main properties of the solution are summarized as follows :
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Theorem 5 Let u be an entropy solution of (3) with initial data ug €
L'(IR™). Then for every t > 0 we have conservation of mass

/u(x,y,t)dxdy: /uo(x, y)dzdy. (9)

We have also
[l )l < lluollp (10)

for every p € [1,00].

0.0.2 Existence of solutions for smooth data

We establish here the existence part of Theorem 3 in the case where the
initial data are smooth, precisely under the condition

up € L®(R®)NBV (IR*)NL* (R™, 1+|z|+|y|), and Vyuo € ((BV)(R™)"*.
(11)

The construction of the solution uses the vanishing-viscosity method. De-

fine up . = uo * {, where x denotes the convolution in R", (. = ((z,y) =

e"¢(z/e,y/€), ¢ being a smooth cut-off function in D(IR") with the following

properties :

(i) ¢ is nonnegative and its support is contained in the unit ball of IR".

(ii) The integral of ¢ over IR" is 1.

(1) ¢(~=2,—y) = {(z,9).

We consider the regularized parabolic problem

{ ue = Agu + edyu + 9,(f (u)),

w(z,9,0) = ug(z, 7). (12)

For all € > 0 this problem has a unique solution (see for instance [20])

ue € C([0,00) : L'(IR™)) N L*®(Q).
In addition u. € C([0,00) : W2P(IR™)) N C*([0, 00); LP(IR")) for all 1 < p <
co. On the other hand, u, satisfies the properties (5) to (10). Proceeding as

in the proof of Lemma, 3-2, p. 68, of Godlewski and Raviart [26], we deduce
that for every t and € > 0 :

/ug(x,y,t)dxdy: /uo,g(m,y)dxdy, (13)
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[Vus ()]l < Vueo®)]l < TV (uo), (14)
18sue (B)]]1 < C[TV (uo) + TV (Vo)) (15)
On the other hand, multiplying (12) by u|ul[P~2 and integrating gives

|[ellp < lloll, forall 1 <p< oo (16)
This estimates allow us to pass to the limit and to get a solution
u € C([0,00); L' (IR™)) N L*®(Q)

satisfying (10). In order to prove equality (9), i.e. the conservation of mass
for u, we need to prove a uniform estimate for the tails of u.. Taking into
account that ug € L'(JR™; 1+ |z| + |y|) we can prove that uo, is uniformly
bounded in L*(IR™; 1+ |z|+|y|). Then by doing L' —estimates on the equation

that z;u. and yu. satisfy we get that

/ w9, )] (2] + [y])dady < C(2) (17)

for every ¢t and € > 0. This allows to estimate the tails of u. and to obtain the
conservation of mass for u. Finally, since u, satisfies the entropy condition (2)
for all £ > 0, passing to the limit as ¢ — 0 we conclude that u also satisfies
the entropy condition.

0.0.3 Uniqueness of entropy solutions with smooth data
We establish the following results

Theorem 6 We assume that

up € L°(IRMNBV(RMNL' (R, 1+|z|+y|), and Vguo € ((BV)(IR™))".

(18)
Then there is a unique bounded entropy solution of problem (3),(4). More-
over, (5) and (6) hold. ~

Proof. Let denote by u the solution obtained in the subsection above by the
vanishing viscosity method, and let v = v(z, vy, t) be another entropy solution
with the same initial data. We will prove that u = v.

Remark For notational simplicity the expression

8,[(f(w) — f())sign(u — ¥,
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which appears frequently in the calculations is replaced by Ayl f(w) — f()].
This is only true if f is nondecreasing.

(I) We shall take advantage of the fact that u has been constructed by the
vanishing-viscosity method. Indeed, since u. is solution of the regularized
parabolic problem we have

e — e — (Ague) sign(ue — ) — edyluc — | < Byl f(ue) = f(¥)]  (19)

in D'(Q), @ = Rl x R, x IR, for alle > 0 and all ¢ = Y(z) € L°(R").
For fixed z € IR and 7 € IRT we now take 9(z) = v(z, z,7) in (19) to get

ue(z,y,t) — v(z, 2, 7) |t — (Aste(z, 9, t))sign(ue(z,y,t) — v(z, 2,7))
_Easlus(xv yat) - ’U(.’I}, 2, T)I < aylf(ua(xa Y, t)) - f(’U(iI?, Z7T))l
(20)
in D'(Q), with respect to the same variable. On the other hand, since u. is
smooth, we may take 1(z) = uc(z,y,t) in the entropy condition satisfied by
v =v(z, 2 7). We thus get '

"U(.%’, 2 7—) - U’E(xayat)lT - Amlv(x, ZaT) - ’U’E(xa yat)l
< 8, f(v(z,2,7)) = f(te(z, 9, 1))] (21)
+ Az (2, Y, t)sign(v(z, 2,7) — us(@, 9, 1))

in D'(Q), where now Q = R}™" x IR, x IR]. This two inequalities are the .
cornerstone of the proof.
(I1) We now establish the main distribution inequality for differences of

solutions.

Lemma 7 Let u be the entropy solution of (8) constructed by the vanishing-
viscosity method, taking initial data ug = wo(x,y) with the assumptions (18).
Let v = v(z,y,t) be any other uniformly bounded entropy solution of (3).
Then

Blu — v| — Aglu — | — 8| f(w) — f(v)] <0 in D'(Q). (22)
Proof. We follow familiar ground, the textbook [26]. Firstly we take a
cut-off function r = r(y,t) € D'(IR x IR") and set

rs(y,t) = 6 2r(y/5,4/6).

We also take a nonnegative test function, ®(z,(,s) € D'(IR" x (0, 00)), and
define two functions :

y+z t+7T y—z t—1T
¢z,'r(x7y>t):77y,t(x7za7-):(D(xa 9 ) 9 )T5( 9 y 9 )
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(In the sequel the sub indices (z,7) in ¢ and (y,?) in n will be frequently
omitted.) Using ¢ as test function in (20) and 7 in (21) and integrating the
inequalities we get with respect to (y,t) and (z,7) respectively, we obtain,
with v, = ue(z,y,t) and v =v(z, 2,7) |

0< 5 f Jolrlm—  {lue— Ul(”a_t +57)
1)~ FICE+ 2
+elue — v|02¢ + |u, — v|Agn}dzdydzdidr.

Passing to the limit as erightarrow0 we obtain that

0< fooo fooo JeJrJe Alu- v](%% + gg)

i@ - folGg 5 Y
+u — v|Agn}tdzdydzdtdr,

where u = u(z,y,t). We note take into account that

-z t—7

0 0 0, y+z t+7
——? —72— )Tfs(y2 ? 2 )

A il P Gl

and
op on 00, y+z t+7T

@+$‘5ﬂ%2’ 2

Let us introduce the change of variables

y—2z t—T

(=250,

y+z Z:y—z T:t+T S:t-—T

2’ 2’ 2’ 2’

Y =

That maps R?x (R*)2 into Q@ = {(V, Z,T,S) € R*xR* : T+S > 0,T~S >
0}. Setting

G =0G(,Y,2T,>S)

= [u(x,Y+Z,T+S) - v(x,Y— ZaT— S)\%?(m,Y,T)
—|f(u(z,Y + Z,T+8)) - f(v(z,Y — Z,T - S))[g—?(x,Y,T)

+u(z,Y + 2, T+S) —v(z,Y — Z,T - 5)|A:2(2, Y, T),
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we may rewrite (23) as follows :
Js = / / G(z,Y,2,T, S)rs(%, S)dadYdTdZdS > 0. (24)
Rt Jo

We now claim that

Js — /Ooo - G(z,Y,0,T,0)dzdYdT = Jy as 6 — 0. (25)
But then;
Jo = /Ooo Rnﬂu—v\aa—f(x,}’, T)—|f(u)—f(v)\%%ﬂu—vmm@}dxdm:r’ >

i.e. (22). In order to prove this claim we introduce the function

(1 T+8>0, T-8>0,
X(T,5) —{ 0 otherwise.

With this notation we have

J5 = / G(z,Y, Z,T, S)rs(Z, S)x(T, S)dedY dTdZdS.
Rn+3
On the other hand, since [ 75(Z,S)dZdS = 1, we have also
Jo = / G(5,Y,0,T,0)rs(Z, S)x(T, 0)dedY dTdZdS.
Rn+3

Let us denote by K the support of ® and by Cs the support of 7s. We may

assume that
Cs c {(Z,8);121 < 4,|8| < 6}

We have

|Js — Jo| < [ dedYdT [ |G(z,Y,2,T,S)x(T,5)
—G("I"7K07T) O)X(Ta 0)|T5(Za S)dZdSa

and therefore, |J5; — Jo| < As + B;, with

As = / dzdvdl [ |G(z,Y,2,T,S) — Gz, Y,0,T,0)|rs(Z, S)dZds,
K Cs
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and
Bs = / G, .0 T0) [ 1x(T,8) — x(T,0)|rs(Z, S)dZdS)dY dTda.
K Cs
Proceeding as in p.75 of [26] we deduce that

|G(=,Y,2,T,S) - G(x,Y,0,T, 0) <C{lu(zY+2Z,T+S5)-u(Y, )|
+|’U(.’£,Y - ZaT_ S) - U(.’l?,KT)I},

with C; = C(||t|lsos |¥]leo)- Since |rs| < C2072 we find

A5 < C3672 [ dedVdT [, {lu(z,Y + 2, T+ S) —u(z,Y,T)|
+lv(z,Y — Z,T = S) —v(z,Y,T)|}dZdS.

From Lebesgue’s differentiation theorem we know that, for a.e. ,

1
lu(z,Y + Z,T + S) —u(z,Y,T)|dZdS = 0,
jJe

limso —— =<
meas(Cls

for almost all (Y;T) € IR x IR,. Of course, we have an analogous result for
v. Then, applying Lebesgue dominated convergence theorem we deduce that

limsy0 072 [5 dzdYdT [, {lu(z,Y + 2, T+ S) - u(z,Y,T)|
+v(z,Y — Z,T = S) —v(z,Y,T)|}dZdS = 0,

and this implies that As — 0 as § — 0. On the other hand,

)
%(T, S) = X(T, 0)\rs(Z, S)dZdS < Cy™! / (T, ) = x(T,0)dS,

Cs
and therefore

)
By < / IT / (T, 5) ~ X(T,0)45

It is then easy to check that B; < Csd. This concludes the proof of claim
(25) and the Lemma. ®

Lemma 8 Let ug = uo(z,y) be as above and u the solution of (8) obtained by
the vanishing-viscosity method. Let v be any other uniformly bounded entropy
solution with initial data vo € L*(IR™) N L°(IR)". Then for any R, T > 0 we
have

fmn—l fIyISR |U(.’L‘, Y, T) - U(.’E, Y, T)Idydm (26)
< fRn—l f|y|§R+aT luO(xa y) - /UO(:E7 y)ldydxa

with & = maz{[| f'(u)lloo, |1 () lloo}-
\
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Remark 9 Of course, this Lemma implies the uniqueness of the entropy
solution of (3) for smooth initial data satisfying (18).

Proof. We begin by approximating the characteristic function of the set
KR,T = {(yat) € Rx Ry; lyl <R+ Oé(T - t),t € [OaT]}

We introduce the following approximation of Heaviside’s function :

0= [ clis

with ¢; € D(IR) a cut-off function with support on [—¢,¢€]. Then, for ¢, ¢,
0 > 0 with § < T we set

oy, t) = (Ye(t = 8) = Yo(t = )1 = Yo(ly| = B — &(T' ~ 1)))-
Clearly ¢ € D(IR x IR") is nonnegative and satisfies

(4, ) = 1 if |y <R+a(lT—t)—0 and e6+6<t<T—¢
Ay, b) = if |y|>R+a(f—t)+0 or t<e+d.

Let us now suppose that & < 6. Given any nonnegative ¢ = 9 (z) € D(R™™),
we use ¥(2)p(y,t) as test function in (22) to get

J& 0 fpn = vl(@) (Gt = 8) = Gt = T = Yo(lyl = R — (T - t)))dydwdt
5 fe lu = 0] Agtp(2) (Ye(t = 8) = Ye(t — T))
(1= Y(jy| - R — o(T —1)))dydzdt
+ [ [l £ () = £(0)] = afu — o [[(@) (Ye(t = 8) = Ye(t = T))

Co(ly| — R — o(T — t))(signy)dydzdt > 0.
Since |f(u) — f(v)] < alu—v| and Y,(t - 6) — Ye(t —T) > 0, we deduce that
the last integral is negative. Therefore we get
0< [ Jnlu—vd(@)(C(t = 6) = Gt = T))(1 = Ya(lyl = R — (T — 1)))dydod?

+f0 szn lu — UIAaﬂp( (Y, (t—é)"Ye(t—T))
(1=Yy(lyl = R — (T — 1)) dyddt.
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Now we let 8 tend to 0. Applying Lebesgue’s dominated convergence theorem
we get

0< fprr iy lum vlw( ><<E<t — §) = Co(t — T))dydwd
+ Jo S 1o = 0l(Botpl(@)) (Ye(t — 8) = Ye(t — T))dadyd
with
Karp={(@t) e Rx Ryl <R+oa(T —t),6 —e <t <T+e}
This can be equivalently rewritten as follows :
0< [P -19) - T)) [gnr [s, ¥(2)|u — v|dydzdt
(27)
+ [E(Velt = 8) = Yalt = T)) fgos f5, Dat(2)|u — v|dydadt,
where S, is as follows : S; = {y € R;|y| < R+ ot — T)}. Now,
limeyo  [o7(Ye(t = 8) = Ye(t = T)) [gn-r [5, Dath(m)|u — v|dydzdt

= de S fst Ap(z)|u — v|dydzdt,
and then clearly

limsoolimeyo  fo(Ye(t = 8) — Ye(t = T)) fipo-1 f5, Dot (@) |u — v]dydadt

= [T [ [, Dath(@)|u — v|dydadt.

On the other hand, if we introduce the functionw : R !'x R — IR, defined
by

U)((E,t) = |U(.’I7,y,t) —’U(.’L',y,t)|dy,
St

and set w, = w * (; (convolution in the time variable), defined for ¢ > ¢, we
have

[ (Gt —=8) = ¢t = T)) figumr (@) [, lu — v|dydzdt

= fmn—l(w6($a 6) — we(x, T))p(z)dz.
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Letting first, ¢ — 0 and then 6 — 0 we obtain that

fR“‘l Qﬂ(m) f]y|§R+at |u0(m, y) - Yo ("Ea y)|dyd$

- fan—l %b(w) .ﬂy[SR |U(.’E, Y, T) - ’U({L‘, Y, T)Idyd.’]l'

= limy_,o limg_yo fooo(g}(t —68) = ¢t =T)) [pn-t fSt P(x)|u — v]dydzdt.

(28)
From (27)-(28) we deduce that

Jrnr (@) ficria U0(®,y) — vo(z, y)|dyde
- fR"—l ’l/)(x) f|y]5R IU(IL‘, Y, T) - ’U(SL‘, Y, T)|dydx (29)

+ foT Jn-1 Datb(z) [o [u — vldydzdt > 0.
Let us choose now ¢ € D(IR) such that

1 if x| <1
Tl 0 if jz|>2

and 0 < ¢ < 1 when 1 < |z| < 2. We take in (29), ¥(z) = ¢(x/8) and let
B — oco. We obtain in this way

fn{n—l f]y|§R lu(x, y)T) - ’U(.’E, y,T)|dydw

S fan—l f|y|§R+at |U0($,y) - ’UO("E’ y)ldydxy

with completes the proof of Lemma (8) . m

We complete this section the proof of the main results by dealing with
bounded and integrable initial data, possibly non smooth. Given uy €
L}(IR™) N L*®(IR™), we construct a sequence of smooth data ug,, C D(IR"),
such that ug,, is uniformly bounded in IR"™ and

Ugn = up in L'(IR") as n — oo. (30)
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Let us denote by wu, the entropy solution of (3) with data ug,. In view of
(30) and the concentration (6) we conclude that the sequence {u,} converges
in C([0,00); L*(IR"™) to a function u = u(z,y,t) as n — oo. In view of (10)
the u, are also uniformly bounded on L*°((/R") x (0,00)). By interpolation
we deduce that

up, — u in C([0,00); LP(IR™))

for every p € [1,00). This allows us to pass to the limit in equation (3) and
entropy condition (2), which are of course satisfied by u,. Thus the limit
is an entropy solution of (3). It is also verifies the initial data wuo. For the
uniqueness, since the solutions are supposed to be bounded and belong to
C([0,00); L' (IR"), proceeding as above, we may prove that for every pair of
entropy functions v and v we have

/ lu(z,9,T) - v(z, y, T)ldydz < / u(z, 4, 8) — v(z,y, ) dyds,
7 R"—l

whenever 0 < t < T. Taking a limits as ¢ — 0 on the right hand side, we
deduce the L'—contraction property (6), hence uniqueness. m
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