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ABSTRACT. We present a 3D model to analyse the micromechanical behavior of saturated granu-
lar materials under dynamic conditions. Among the possible applications of this model include
the study of sands in quick and liquefaction conditions. The solid grains assumed spherical,
are modeled using Discret Element Method (DEM). Saturating fluid flow and the hydrodynamic
forces generated on the grains are modeled using the Lattice Boltzmann Method (LBM). Spe-
cific aspects to the coupling of the two methods for taking into account the interaction of the
two phases are developed. The numerical applications performed show satisfactory results.

RESUME. Dans ce travail, on présente un modele 3D pour [’analyse micromécanique de la ré-
ponse des milieux granulaires saturés, soumis a des sollicitations dynamiques. Parmi les ap-
plications possibles de ce modeéle, on peut citer ['étude des phénoménes de boulance et de
liquéfaction des sables. Les grains solides, supposés de forme sphérique sont modélisés en uti-
lisant la Méthode des Eléments Discrets (DEM). Les écoulements du fluide saturant ainsi que
les forces hydrodynamiques engendrées sur les grains sont modélisés en utilisant la Méthode
Lattice Boltzmann (LBM). Des aspects spécifiques au couplage des deux méthodes pour la prise
en compte de ['interaction des deux phases sont développés. Les applications numériques réa-
lisées montrent des resultats satisfaisants.
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1. Introduction

Discrete Element modeling of granular materials containing a liquid phase has
received a great interest in recent years. In the case of non-saturated (wet) materi-
als, the DEM is usually applied by adding capilar forces to model the liquid phase
effects (Richefeu et al., 2006). For saturated materials, fluid flows that are induced
by the particles displacements has crucial effects on the material’s behavior. There-
fore a convenient fluid modeling is required in addition to discret element modeling of
grains. In the last two decades, the LBM has emerged as a powerful tool to model fluid
flows in complex geometries. This method has been coupled in different ways with
DEM in order to simulate saturated granular materials behavior (Feng et al., 2007). In
this paper we present a 3D coupled DEM-LBM model to simulate saturated granulars
and suspended particles. Solid particules are modeled as discrete elements. Saturating
fluid flow is modeled using the LBM, the fluid-grains interaction; i.e. the fluid flow
boundary conditions and the hydrodynamic forces on grains, is taken into account by
imposing a no slip condition between the two phases ( fluid and grains). This condition
is imposed through the “Interpolated Bounce Back™ IBB rule proposed by Bouzidi et
al. (Bouzidi et al., 2001).

In the following we describe the model in three sections, the first section describes
the DEM briefly, the second presents the LBM, with the curved moving boundary
treatment used to model fluid-solid interaction and the third section gives the important
issues of the DEM and LBM coupling. The paper ends with a presentation of some
results and validations of the model.

2. Discret element modeling of interaction between moving particles

In this work, we use the Smooth Discrete Element Method (SDEM) (Cundall et
al., 1979). This method is based on the concept that individual material elements are
considered to be separate and interact with each other only along their boundaries
by appropriate physically based interaction laws. Thus a particle’s motion can be
described through Newton’s equations

ma :Fc + Fext +mg, Ju = Mc + Memt [1]

where m and J are respectively the particle’s mass and moment of inertia matrix, a
and w are translational and angular acceleration vectors, g is the gravitational accel-
eration, F'. and M, are the force and the torque caused by all contacts on the particle,
and F.,; and M., are force and torque resulting from other extenal forces such as
hydrodynamic forces. Therfore, given the contact interaction laws, particles displace-
ments evolution can be described through an appropriate time stepping integration of
(Egs. 1). The algorithm of computations for each time step is as follows: (1) The posi-
tions and the dimensions of particles are used to compute contact forces between each
other and with boundary walls. (2) Particles accelerations are computed by means of
the equations of motion (Egs. 1) using contact and other external forces acting on
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them. (3) The “velocity verlet” scheme is used for the integration of the equations of
motion over a time step in order to calculate the particles displacements. (4) Particles
positions are updated according to the calculated displacements.

For the sake of simplicity, particles are assumed in this work to be spherical in 3D
modeling and circular in 2D modeling. The contact force F. between two particles
¢ and j is decomposed into two components, a normal part N. and a tangential part
T. due to friction between particles. For the normal force law, we use a linear-elastic

. —
approximation; N, = (—kn5+ 2a\/mkn5> ﬁ if 6 < 0, otherwise N, = 0.
Here / is the branch vector, it is expressed in terms of the position vectors of the
grains { = x,; — Xp;, 0 is the gap or the overlap between the two contacting particles;
§ = |||l — 1 (d; + d;) where d; and d; are the particles diameters, , is the normal
stiffness, m = % is the reduced mass and o € [0, 1[ is a damping parameter
which controls energy dissipation due to inelastic collision. For the friction, we use
the classical Coulomb law expressed as a nonlinear relation between the friction force
T, and the sliding velocity vector d; with a viscous regularization around the zero

velocity; T, = min {ﬁ ) 5
parameter and 1 is the coefficient of friction. Similar force laws are used to compute
the interactions of the grains with the plates boundaries (Richefeu et al., 2006).

oy ||NC||} ”‘g—z”, where (3 is the tangential viscosity

In order to describe the contact phase correctly, the time step of integration should
be sufficiently small compared to the contact’s duration At.. This later could be
estimated from the shosen normal stiffness k,, and the mass of the smallest particle
m as At, = wv/m/k,. The computation time step At used in simulations is usually
taken less than a limite value

AtDEmax %0.17r\/m/kn [2]

3. Lattice Boltzmann Method
3.1. Standard formulation

In the Lattice Boltzmann Method, one solves the kinetic equation for the particle
distribution function f(x, &, t), in which £ is the velocity vector, x the spatial position
vector and ¢ is the time. The macroscopic quantities of interest such as mass density
p and momentum density pu are weighted averages of the distribution function; p =
[ fd€ and pu = [ &fdé€. A popular kinetic model adopted for the method is the so-
called BGK (Bhatnagar, Gross and Krook) model. In this model the collisions term in
the Boltzmann equation is simplified using the simple relaxation time approximation

or NP0
o TEVI=—3(F = 1Y) 3]

where £(?) is the equilibrium distribution function (Maxwell-Boltzmann equilibrium
function) and A is the relaxation time. To solve for f numerically, Eq.(3) is discretized
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Figure 1. (a) D2Q9 model, (b) Flow domain discretization using the D2Q9 model

twice, a first discretization with respect to the time that is divided to increments At
and a second one in the velocity space by chosing a finite set of velocity vectors that
particles can have. The continuous particle distribution function f(x, £, t) becomes
therefore, a set of discrete distributions f;(x, t) associated to the chosen velocity vec-
tors e;. These discretizations lead to the LBGK (Lattice BGK) equation, that describes
the incremental evolution of the discrete particle distributions f;

Filx + @A T+ At) — fi(x,t) = f% ( filx,t) — fe@ (x,t)) [4]

where fi(etn is the discrete equilibrium distribution and 7 is the dimensionless relax-
ation time, so that % = %. In this way the mass and the momentum densities can be
rewritten as sums; p = > o' fi and pu = 9 " e; f; where @ is the number of the
chosen discrete velocity vectors.

As an illustration, we present in the following the widely used model in 2D sim-
ulations. It is named D2Q9 model (2 Dimensions, 9 Velocity vectors). Its discrete
velocity vectors are chosen as follows (Fig. 1a). eg = ¢(0,0),e; = ¢(1,0),e2 =
c(0,1),e3 = ¢(—=1,0),es = ¢c(0,-1),e5 = ¢(1,1),e¢ = c(-1,1),e7 =
c¢(—1,—1),es = ¢(1,—1), where c is the characteristic velocity of the model. In this
way Eq.(4) describes the incremental evolution of the discrete particle distributions f;

in nodes of a regular lattice having a space step Ax = cAt (Fig. 1b). The equilibrium
distribution in its discrete form is fi(ﬂ” = pw; [1 + Zeju+t oo (e;u)® — Fruu
whith w; are weighting factors; wo = 4/9, w1234 = 1/9, ws6,7.8 = 1/36.

The discrete density distributions f; are calculated at each time step according to
Eq. (4) in two steps;

collision step: f""(x,t) = fi(x,t) — L (fq;(x,t) - fi(eq) (x,t))
streaming step: f;(x+e; At,t + At) = fo(x,t)

where f?"! represents the post-collision density distribution.
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After the streaming step the discrete distributions f; are obtained in all nodes,
consequently the mass and momentum densities can be calculated at each node. The
fluid pressure p can be computed from the mass density through the equation of state
p = c2p, where ¢, is the sound speed of the model given in terms of the lattice speed

casc, = c/\/3.

3.2. Discretization parameters for incompressible fluid flow simulations

It can be shown through the Chapman-Enskog analysis (Luo, 2000) that LB models
recovers the incompressible Navier-Stokes equation when the density fluctuation of
the fluid is assumed to be negligible, where the equivalent kinematic viscosity is

V= %ch (T — %) [5]

Therfore, in order to correctly simulate an icompressible fluid flow, one must ensure
that the density fluctuation is sufficiently small. This can be achieved using a model
whose the sound speed c; is sufficiently larger than the maximum velocity of the
simulated flow 44, 1.€. the *computational’ Mach number defined as Ma = “C—”
is sufficiently small. In practice, M a should be maintained, smaller than 0.1. There
are three model parameters Az, At and 7. If given the viscosity of the fluid, only two
of these parameters can be chosen independently since they are related through Eq. 5.
In practice, it is often convenient to choose 7 and Az as two independent parameters
and At is derived from Eq. 5. This is due to the fact that 7 is largely responsible
for the numerical stability of LB simulations and Az is often dictated by the needed
flow details in space. The BGK-LBM is convergent for 0.5 < 7 < oo. This range of
T corresponds to positive viscosities (Eq. 5). In practice 7 is typically chosen in the
range 0.5 < 7 < 3.

3.3. Solid moving boundary treatment

Boundary conditions are introduced in LBM in terms of distribution functions f;
that are constructed from the imposed physical boundary conditions such as pressure
and velocity. We present in the following the treatment of a solid moving boundary,
since it is the principal one encountered in granular materials hydromechanics. Details
about other boundary conditions in the LBM can be found in the literature. A simple
way to represent solid obstacles such as solid particles in a LB dicretization, is to
assume them as composed of grouped sets of pixels (voxels in 3D) whose centers are
lattice nodes (Fig. 2). We call “fluid nodes” the nodes that are in the fluid domain and
“solid nodes” the ones occupied by solid obstacles. A solid boundary node is a solid
node having at least one link with fluid nodes. The fluid-solid interaction is done only
through the boundary nodes. The interior solid nodes are useless in computation’s
process. It is assumed that there is no slip of the fluid on a solid surface, i.e. the fluid
particles in contact of a solid surface have the same velocity as that of the surface.
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Figure 2. Representation of a moving solid particle on a lattice grid

This condition could be imposed in LBM using the bounce back scheme. This means
that any incoming fluid particle from a fluid node to a solid node will be reflected back
to the node it comes from. The momentum of the reflected particle may be different
from the momentum of the streamed one, it depends on the position and the velocity
of the solid boundary. Therfore, at the solid boundary nodes, instead of the collision
step, the distributions that will be used in the streaming step are constructed using
the post-collision distributions at neighboring fluid nodes. In this work we use the
interpolated bounce back scheme proposed by Bouzidi et al. (Bouzidi et al., 2001).
For a linear interpolation, the post-collision distributions that will be assigned to solid
boundary nodes before the streaming step are

[t (s, t) = 2 f7" (g, 1) + (1= 29) f" (e, 1) + Bwipy 5, ¢ < §
1t t 2q—1 ut U
f;f” f(xs’t) = % i f<xf’ t) + qg—qf;m f(xf’vt) + %wipwe_;;_a q = %
[6]
where 7 refers to the opposite direction of the direction i (e; = —e;), ¢ = “ll’;;ff’;“ll

is a parameter defining the position of the solid boundary between the solid and the
fluid node (Fig. 2), u,, is the velocity of the boundary and p,, is the fluid mass density
at the boundary.

When a particle moves, there are grid nodes that move out of the solid region
into the fluid region to become fluid nodes (indicated by [J in Fig. 2). Therfore one
must specify some number of unknown distribution functions on this nodes. There are
several techniques to compute values of the unknown distribution functions (on the
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nodes which move from non-fluid to fluid region). In this model we use the simple
technique described hereafter; unknown distributions are computed as the equilibrium
distribution functions by using the averaged density in the system and the velocity of
the solid particle at the specified node just before it leaves the the solid region.

3.4. Hydrodynamic force on a solid particle, momentum exchange method

Based on the bounce back scheme, the hydrodynamic forces acting on an obstacle
can be obtained through the momentum exchange method. The momentum change of
the bounced fluid particle is (£ (xs,t) x €; — f7**(xs,t) x ;) x Az®. Then, the
average force transmitted over a time step At to the solid particle, along a boundary
link £ defined by boundary nodes x¢ and x, (Fig.2) is

Bl = — o [0 (0, 1) % € — f"(x7,8) X €] 7]

Then the total hydrodynamic force exerted on the solid particle can be calculated by
summing up the forces from all the related boundary links Fy = 3", Fy.

4. Coupling of DEM and LBM

In this model, coupling means the use of the DEM by introducing the hydrody-
namic forces as external forces in the equations of motion of grains (Egs. 1). These
forces are obviously not independent of grains motion, therefore they should be re-
evaluated continuously. The space LB discretization is dictated in this case by the
diameters of the granular material particles. i.e. solid particles should be represented
with a sufficient resolution. For moderate Reynolds numbers, the needed resolu-
tion to obtain an accurate evaluation of the hydrodynamic force is about 10 lattice
across the diameter for a circular particle (2D) and about 7 lattice across the diam-
eter for a spherical particle (3D). As mentioned above (Sect.3.2) the time step in
LBM (noted in the follwing Aty ) depends on the other discretization parameters
and derived from Eq. 5. Aty p is often larger than the maximum value for the DEM
AtpEmaz (Eq. 2). Therfore, one should perform a number n,y of DEM computa-
tion steps then perform one LB computation step, i.e. choose the DEM time step
Atpg, such that ng. Atpg = Atpp. The integer number ng may be computed as

ng = Int (NA) + 1, then the DEM time step is set At pp = ALz

AtpEmaz na

5. Numerical applications
5.1. Computation of permeability of a granular deposit

A polydisperse granular sample with periodic boundaries in both horizontal direc-
tions is constructed using the DEM. The sample is then is subjected to an upward fluid
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Figure 3. Permeability vs. porosity.

flow in order to measure its permeability, we use to this end the D3Q19 LB model.
To drive an upward flow in the sample, the horizontal lower and upper boundaries are
subjected to a pressure difference, we use the Zou & He (Zou et al., 1997) pressure
boundary conditions. In both horizontal directions periodic boundaries are imple-
mented. Permeabilities are mesured for several samples having differentes porosities
(noted n). All samples are composed of 200 spherical particles having diameters that
follow the cumulative beta distribution (Voivret et al., 2007)(with dypq = 2dmin). A
comparison with the the permeability coefficient given by Karman-Kozeny formula is
shown in (Fig. 3). The permeability coefficients are presented in a non-dimensional
form k/(d)* where (d) is the mean diameter of the sample grains. This graph shows
that the variation of the permeability values obtained by numerical simulation has
same shape as the Carman-Kozeny correlation. The differences between the DEM-
LBM values and the Carman-Kozeny ones are for all points less than 15%.

5.2. Assessement of the quick condition

One of the samples described in Sect. 5.1 is subjected to an increasing hydraulic
gradient. It is assumed that grains remain at rest until the boiling onset.The hydrody-
namic forces on the grains of the sample are computed using the LBM, then injected
in DEM to study the evolution of the vertical intergranular stress in a granular sample.
The average vertical intergranular stress o, is computed in five control slices, for
each increment of the hydraulic gradient. Figure 4 shows the evolution of the normal-
ized vertical stress in the centers of the five slices with increasing hydraulic gradient
i. These stresses are obtained by dividing average vertical stresses by the vertical
stress at the bottom of the sample ¢ . It is clearly observable that the vertical stresses
decrease when the hydraulic gradient increases. The critical value of the hydraulic
gradient can be estimated as the point of intersection of the lines corresponding to the
fives slices. In the present case, it is about 7. = 1.040. The critical hydraulic gradient
is defined in classical soil mechanics as i, = (”_”p& where ps and p,, are the
solid and the fluid mass densities and n is the porosiify. Using this expression for the
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Figure 4. Intergranular vertical stress vs. hydraulic gradient.

sample’s average porosity n = 0.349, leads to the critical hydraulic gradient value
i. = 1.042. Note that the sample’s average porosity is obtained in our case numeri-
cally as the ratio of the fluid LB nodes to the total number of LB nodes in the model.
It is clear that the obtained values of the critical hydraulic gradient with the numerical
model and the classical formula are very close (1.040 and 1.042).

5.3. Sedimentation of two particles “drafting, kissing and tumbling”

The two validations performed above do not involve the effective DEM-LBM cou-
pling since the solid particles are maintained at fixed positions with respect to the grid
used by the LBM. In this application we simulate the sedimentation of two solid par-
ticles in a column of fluid. It is known experimentally that two particles dropped close
to each other in a Newtonian fluid will undergo drafting, kissing and tumbling. For
the sake of clarity in visualization, we perform a 2D simulation. The channel is 2 cm
wide (x-direction) and 8 cm high (y-direction). The fluid has the properties of water
with viscosity 0.01 g/cm.s and density 1 g/cm?. The particles density is 1.01 g/cm?,
and the radii of the particles are 0.1 cm. Initially, the first particle is 0.001 cm off the
channel center at a height of 7.2 ¢m and the second particle is at the channel center at
a height 6.8 cm. The two particles start settling in the y-direction, due to the gravity
force.

Figure 5 shows the positions of the particles at different times. Fixed straigth lines
on the particles are represented to show their rotations during the sedimentation. It
is clear that the drafting, kissing and tumbling are well captured by the LBM-DEM
simulation.
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Figure 5. Numerical simulation of two circular particles sedimentation at different
time stages

6. Conclusions

A 3D coupled DEM-LBM model is presented to investigate the micro-mechanical
dynamic response of saturated granular materials. The first two numerical applications
shown are made for the case of grains that are at rest, the obtained results are in
good agreement with experimental results. For moving grains, The simulations show
qualitatively correct results.
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