REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE ABOU BAKR BELKAID-TLEMCEN DEPARTEMENT D'ELECTRONIQUE

Thèse de Magister en Electronique Signaux et Systèmes

Thème

Détection Multi-Utilisateurs par réseau d'antennes appliquée à un signal CDMA à porteuses multiples

Présentée par :

BENYAROU MOURAD

Soutenue le :

Président : A .CHERMITI M.C à l'Université de Tlemcen

Examinateurs : B .BOUAZA M.C à l'Université de Tlemcen

D .LACHACHI M.C à l'Université de Tlemcen

Directeur de thèse : F.T.BENDIMERAD Prof. à l'Université de Tlemcen Co directeur de thèse : F.DEBBAT M.C à l'Université de Mascara

Année Universitaire 2008-2009

REMERCIEMENTS

Cette thèse est le fruit de deux années de recherche au sein du Laboratoire de Telecommunications de l'université de Tlemcen.

Mes premiers remerciements vont à **F** .**T BENDIMERAD** professeur à l'université de Tlemcen et directeur du Laboratoire de Telecommunications de Tlemcen mon encadreur et **F** .**DEBBAT** maître de conférence à l'université de Mascara mon co-encadrante pendant ces 2 années de thèse. Merci pour votre disponibilité, vos encouragements répétés, votre soutien sans faille, et l'esprit de recherche, sain et émulant à la fois, que vous avez su m'insuffler.

Pour avoir examiné et jugé mon travail, j'exprime toute ma gratitude envers les membres du jury : **A .CHERMITI** qui en a été le président, **B .BOUAZA** et **D .LACHACHI**, tous les trois maîtres de conférence à l'université de Tlemcen qui ont accepté d'être examinateurs.

Je tiens à remercier tous les membres du Laboratoire de Telecommunications pour leur soutien pendant ces deux années.

Je terminerai par exprimer mes remerciements envers ma famille sans qui rien de tout cela n'aurait été possible.

Détection Multi-Utilisateurs par réseau d'antennes appliquée à un signal CDMA à porteuses multiples

RESUME

Les travaux présentés dans ce mémoire ont permis d'étudier les nouvelles techniques de modulations MC-CDMA combinant l'accès multiple à répartition de code, utilisant l'étalement de spectre CDMA, et les modulations à porteuses multiples OFDM.

L'OFDM est retenu pour sa grande efficacité spectrale dans les canaux difficiles et le CDMA pour sa capacité d'accès multiple performante et flexible dans les réseaux cellulaires. Une synthèse bibliographique a permis d'exposer les principes de ces deux techniques et des systèmes qui leur sont associées.

La technique MC-CDMA offre notamment un excellent rapport performance /complexité tout en atteignant de bonnes efficacités spectrales.

L'objectif principal de ce projet de recherche est la détection Multi-Utilisateurs par réseau d'antennes appliquée à un signal CDMA à porteuses multiples. Nous nous sommes intéressés dans la dernière partie de ce mémoire aux systèmes MC-CDMA à formation de faisceau (beamforming MC-CDMA) et les MIMO-MC-CDMA qui utilise plusieurs antennes d'émission et réception. Ces systèmes trouvent des applications dans le domaine des radiocommunications, notamment pour les systèmes de troisième, quatrième générations et suivantes.

Après avoir rappelé les techniques de détection Mono-utilisateurs et Multi-Utilisateurs habituellement mises en œuvre dans les récepteurs, les résultats que nous avons trouvés tant sur le canal à bruit gaussien que sur le canal de Rayleigh ont montré que les détecteurs basés sur le critère de l'erreur quadratique offrent de meilleures performances.

Mots clés

Réseau d'antennes, Système MIMO, CDMA, OFDM, MC-CDMA, MIMO-MC-CDMA, architecture V-BLAST, détection Multi-Utilisateurs par réseau d'antennes appliquée à un signal MC-CDMA

Multi-User Detection by antennas Array applied to an MC-CDMA signal.

ABSTRACT

The work presented in this paper were used to study new techniques for MC-CDMA modulations combining access Division Multiple Code using CDMA spread spectrum, and multiple carrier modulation OFDM.

The OFDM is selected for its high spectral efficiency in difficult channels and CDMA for its ability to access flexible and efficient in cellular networks. A bibliographical was able to articulate the principles of these two techniques and the systems associated with them.

The MC-CDMA technology offers an excellent performance / complexity while achieving good spectral efficiency.

The main objective of this research project is the Multi-User Detection by array antenna applied to a CDMA signal with multiple carriers. We are interested in the latter part of this memory to beamforming MC-CDMA systems and MIMO-MC-CDMA using multiple antennas to transmitting and receiving. These systems are used in the radio communications domain, including systems for third, fourth and subsequent generations. After reviewing the techniques for detecting single-user and multi-user usually implemented in the receivers, the results we have found both on the channel Gaussian noise on the Rayleigh channel showed that the sensors based on the error square criterion offer better performance.

Keywords

Array antennas, MIMO systems, CDMA, OFDM, MC-CDMA, MIMO-MC-CDMA, V-BLAST architecture, Multi-User Detection by antennas Array applied to an MC-CDMA signal.

ملخص

العمل المعروض في هذه المذكرة يقوم بدراسة تقنيات جديدة في التعديلات MC-CDMA بادماج السماحية المتعددة و رموز التجزئة باستخدام CDMA والتعديل المتعدد الاستعمالات OFDM.

اختيرت OFDM لكفاءتها الطيفية العالية في القنوات الصعبة و CDMA لقدرتها الفعالة و المرنة في السماحية المتعددة و في الشبكات الخلوية. بعد بحث مكتبي عميق توصلنا لتوضيح مبادئ هذه النظم والتقنيات المرتبطة بها.

تقنّية MC-CDMA توفر عامل ممتّاز في الكفاءة/التعقد مع تحقيق الكفاءة الجيدة الطيفية.

الهدف الرئيسي لهذا المشروع البحثي هو كشف الرموز المتعددة المداخل باستخدام شبكة هوائيات المطبقة على إشارة CDMA مع تعدد الناقلات. ولقد اهتممنا في الجزء الأخير من هذه المذكرة بأنظمة تشكيل الموجات الموجهة CDMA ،و MIMO MC-CDMA ،و MIMO MC-CDMA باستخدام عدة هوائيات إرسال واستقبال. وتستخدم هذه الأنظمة في مجال الاتصالات اللاسلكية ، خاصة في الأنظمة ذات الجيل الثالث والرابع والأجيال اللاحقة.

وبعد استعراض تقنيات للكشف عن مستخدم واحد ومتعددة المستخدمين عادة ما تنفذ في الاستقبال ، فإن النتائج التي وجدنها على قناة ضوضاء GAUSS و على قناة Rayleigh بينت أن أجهزة الكشف المعتمدة على معيار الخطأ الرباعي قدمت أفضل النتائج.

الكلمات الرئيسية

ABREVIATIONS

AA Adaptative Array

ADSL Asymmetric Digital Subscriber Line

AMRC Accès Multiple par Répartition de Code

AMRS Accès Multiple par Répartition Spatial

AWGN Additive White Gaussian Noise

BBAG Bruit Blanc Additif Gaussien

BLAST Bell Labs Advanced Space-Time

BPSK Binary Phase Shift Keying

BTS Base Transceiver Station

CAI Co-Antenna Interference

CDMA Code Division Multiple Access

CEQMM Combinaison à Erreur Quadratique Moyenne Minimale

CGE Combinaison à Gain Egal

CGM Combinaison à Gain Maximal

CRO Combinaison à Restauration d'Orthogonalité

DVB Digital Video Broadcasting

DS-CDMA Direct Sequence Code Division Multiple Access

DOA Direction Of Arrival

EGC Equal Gain Combining

EQMM Erreur Quadratique Moyenne Minimale

FC Faisceau Commuté

FDMA Frequency Division Multiple Access

FFT Fast Fourier Transformer

GMMSE Global Minimum Mean-Square Error

HSR High Sensitivity Receiver
IC Interference cancellation

IEC Interference Entre sous Canaux
IES Interférence Entre Symboles

IFFT Inverse Fast Fourier Transformer

IIC Interférence Inter Chip

LAN Local Aria Network

LMS Lest Mean Square

LST Layered Space –Time (système spatio temporel)

MAI Multiple Access Interferences

MC-CDMA Multiple carrier Code Division Multiple Access

MC-DS-CDMA Multiple carrier Direct Spread Code Division Multiple Access

MLSE Maximum Likelihood Sequence Estimation

MIMO Multiple Input Multiple Output

MMSE Minimum Mean Square Error

MRC Maximum Ratio Combining

MISO Multiple Input Single Output

MT-CDMA Multi Tone Code Division Multiple Access

MSE Minimum Square Error

MV Maximum de Vraisemblance

OFDM Orthogonal Frequency-Division Multiplexing

ORC Orthogonally Restoring Combining

PA Phased Array

PEB Probabilité d'Erreur Binaire

PIC Parallel Interference Canceller

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RCS Reduction Cluster Size

RSB Rapport Signal sur Bruits

RTM Reduction de la Taille des Motifs

SDMA Spatial Division Multiple Access

SFIR Spatial Filter Interference Reduced

SIC Successive Interference Canceller

SINR Signal to Interference and Noise Ratio

SIR Signal to Interference Ratio

SL Switched Lobe

SNR Signal to Noise Ratio
SUD Single User Detector

TDMA Time Division Multiple Access

TEB Taux d'Erreur Binaire

TFD Transformer de Fourier Rapide

ZF Zero Forcing

TABLE DES FIGURES

Figure I.1 Structure d'une chaîne de transmission numérique	7
Figure I.2 : Présentation des interférences dans le plan temps fréquence code	10
Figure I.3: propagation par trajets multiples	12
Figure I.4 : Amplitude moyenne de la réponse temporelle du canal pour 16 trajets signific	catifs
Figure I.5 : Capacité en fonction du SNR	16
Figure I.6: La technique d'accès multiple CDMA	18
Figure I.7 : Effet de l'étalement de spectre sur la présence d'un brouilleur	19
Figure I.8: Exemple du CDMA dans le cas de deux utilisateurs	19
Figure I.9 : Schéma d'un codage CDMA par séquence directe (DS-CDMA)	20
Figure I.10 : Etalement BPSK pour une modulation sinusoïdale	21
Figure I.11 : Comparaison des systèmes multi-porteuses et mono-porteuses	25
Figure I.12: Symbole OFDM	25
FigureI.13: N sous-porteuses orthogonales pour un système OFDM	26
Figure I.14 : Intervalle de garde (Préfixe cyclique)	28
Figure I.15 : Schéma bloc d'un système OFDM	28
Figure I.16 Densité spectrale de puissance de la transmission OFDM à l'émission	29
Figure I.17 Signal à l'entrée du récepteur OFDM	29
Figure I.18 : Spectre de puissance pour multiporteuses classique	32
Figure I.19 : Émetteur MT-CDMA	33
Figure I.20 : Spectre de puissance MT-CDMA	33
Figure I.21 : Émetteur MC-DS-CDMA	35
Figure I.22 : Spectre de puissance MC-DS-CDMA	35
Figure I.23 : Émetteur MC-CDMA	36
Figure I.24 : Spectre de puissance MC-CDMA	36
Figure II.1 : Modulateur MC-CDMA du j ième utilisateur avec $Lc = Np$	40
Figure II.2 : Gain apporté par le système d'accès MC-CDMA	42
Figure II.3 : Représentation d'une chaîne de radiocommunications utilisant la technique	
MC-CDMA	43

Figure II.4 : Performances des techniques de détection mono-utilisateur sur canal théorique de
Rayleigh
Figure II.5 : Détection mono utilisateur dans un canal AWGN avec le détecteur MMSE 50
Figure II.6 : Détection mono utilisateur dans un canal de Rayleigh $$ avec MMSE50 $$
Figure II.7 : Classification des différentes techniques de détection Multi-Utilisateurs 53
Figure II.8 : Nième étage d'un récepteur PIC
Figure II.9 : Nième étage d'un récepteur SIC
Figure II.10 : Détection multi utilisateur dans un canal AWGN avec le détecteur
conventionnel Système MC-CDMA pour 4 utilisateurs
Figure II.11 : Détection multi utilisateur dans un canal de Rayleigh avec MMSE
Système MC-CDMA pour 4 utilisateurs
Figure III.1 : Augmentation de la capacité
Figure III.2 : Le concept cellulaire
Figure III.3 : La technique SDMA
Figure III.4 : Type d'antennes intelligentes
Figure III.5 : Schéma représentatif d'une antenne adaptative
Figure III.6 : Comportement d'un réseau adaptatif d'antenne en présence d'une interférence69
Figure III.7 Diagramme de rayonnement d'une antenne adaptatif à 10 éléments73
Figure III.8 Processus d'adaptation d'un réseau d'antennes
Figure III.9 Classification des algorithmes adaptatifs
Figure III.10 : Configuration d'un réseau adaptatif d'antennes
Figure III.11 : Formation de faisceau fréquentiel
Figure III.12 : Détection d'un signal MC-CDMA par réseau d'antenne à 8 élément dans un
canal de Rayleigh
Figure.III.13 – Schéma d'un système de transmission sans fil MIMO
Figure III.14 : système MIMO-V-BLAST MC- CDMA en émission85
Figure III.15 : système V-BLAST MC- CDMA en réception
Figure III.16 MIMO MC-CDMA avec V-BLAST Réception pour 4 utilisateurs 88
Figure III.17 MIMO MC-CDMA avec V-BLAST Réception mono-utilisateur

SOMMAIRE

INTRODUCTION GENERALE	2
CHAPITRE 1	
Introduction aux systemes de transmission numerique	<u>.</u>
I.1 Introduction	5
I.2 Description d'un système de communication numérique	6
I.2.1 Chaîne de transmission numérique	6
I.2.1.1 Structure d'une chaîne de transmission	8
1.2.1.2 Caractéristiques du système de communication numérique	9
I.2.2 Les interférences	10
I.2.2.1 Le bruit de fond radio-éléctrique	10
I.2.2.2 Interférences propres au système	10
I.2.2.3 Les interférences externes au système (brouilleurs)	11
I.2.3 Canal de propagation	11
I.2.3.1 Caractérisation et modélisation d'un canal de propagation radioélect	rique12
I.2.3.2 Modèle du canal multi trajets	15
I.2.3.3 Classification	17
I.3 Techniques des modulations avancées	18
I.3.1 CDMA	18
I. 3.1.1 Modèle de signal	20
I.3. 2 OFDM	24
I.3.2.1 Principe de l'OFDM	25
I.3.2.2 Notion d'orthogonalité	27
I.3.2.3 Préservation de l'orthogonalité (Intervalle de garde) :	28
I.3.2.4 Schéma bloc d'un système OFDM	29
I.3.2.5 Modèle de signaux et adaptation	31
I.3.3 MC-CDMA	33
I.3.3.1 L'étalement par multiporteuses classique	33

I.3.3.2 L'étalement par fréquences orthogonales	35
I.4 Conclusion	38
CHAPITRE 2	
DETECTION MULTIUTILISATEUR D'UN SIGNAL MCCDMA	
II.1 Introduction	40
II.2 Principes du système AMRC à porteuses multiples ou MC-CDMA	41
II.3 Modélisation du système MC-CDMA dans le cas d'une liaison descendante	43
II.4 Les détecteurs mono utilisateurs	46
II.5 Les techniques de détection Multi-Utilisateurs dans les systèmes MC-CDMA	52
II.6 Conclusion.	60
CHPITRE 3	
DETECTION MULTIUTILISATEUR PAR RESEAUX D'ANTENNES APPL	IQUEE A
UN SIGNAL MCCDMA	
III.1 Introduction	62
III.2 Avantages des antennes intelligentes	64
III.2.1 Augmentation de la capacité	64
III.2.2 Réduction de la taille du motif (RTM)	65
III.2.3 Accès multiple par répartition spatiale.(SDMA.SpaceDivision Multiple	Access)66
III.3 Types d'antennes intelligentes	67
III.4 Structure d'un réseau adaptatif d'antenne	69
III.5. Formulation mathématique du problème de l'adaptativité	70
III.6. Méthodes de formation de faisceaux	74
III.6.1 Méthodes non aveugles	76
III.6.2 Les méthodes aveugles	77
III.7. Formation de faisceau pour les systèmes MC-CDMA	77
III.7.1 Formation de faisceau dans le domaine fréquentiel	78
III.7.2 Modèle de signaux	79
III.7.3 Formations de faisceau par le critère MMSE	80

III.8. MIMO MC CDMA82
III.8.1 Multiplex spatial84
III.8.2 Algorithmes de détection
III.9 Conclusion90
CONCLUSIONS ET PERSPECTIVES
CONCLUSIONS ET PERSPECTIVES92
ANNEXES
ANNEXE 1 Représentation géométrique des signaux94
ANNEXE 2 Séquences pseudo aléatoires95.
ANNEXE3 Modulation BPSK97
ANNEXE 4 Calcul des vecteurs d'égalisation optimaux au sens du critère MMSE100
ANNEXE 5 Calcul du rapport signal sur bruit (SNR : Signal to Noise Ratio)102
ANNEXE 6 Rappels sur l'Enveloppe Complexe
ANNEXE 7 Le Bruit Blanc Gaussien Additif
REFERENCES BIBLIOGRAPHIQUES
REFERENCES BIBLIOGRAPHIQUES