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Abstract:

Wave propagation in dispersive nonlinear media has become a topic of intense
research activities, in part stimulated by its potential application to optical fiber
communication systems. Propagation of optical pulses in Titanium Sapphire is mainly
influenced by the group velocity dispersion and the refractive index nonlinearity. Rapid
progress in ultra short time laser technology has made it possible that optical pulses
with durations comparable to the carrier oscillation cycle can be generated. The
propagation of such ultra short and intense pulses is then affected by additional physical
mechanisms, where especially higher order effects become important. Highly nonlinear
operating conditions or the interplay between the different linear and nonlinear effects
can result in dramatic changes of the temporal and spectral properties of the pulse.

The propagation of an ultra short pulse is governed by a generalized nonlinear
Schrodinger equation (NLSE), which can be derived from the underlying Maxwell
equations within the slowly varying envelope approximation. We solve numerically a
generalized Schrodinger equation by using a split step Fourier method. Effects such as
the impacts of group velocity dispersion (GVD), third order dispersion (TOD), self phase
modulation (SPM), wave breaking (WB), self steepening (SS), and intrapulse stimulated
Raman scattering (ISRS) are demonstrated in detail. Examples for the above effects are
demonstrated, as well as their interplay in the context of soliton propagation. The
numerical method therefore presents an advantage tool for describing the ultra short

pulse laser propagation in Titanium sapphire.

Keywords: Titanium sapphire, ultra short laser pulse, Generalized Nonlinear
Schrodinger Equation, Group Velocity Dispersion, Self Phase modulation,

Soliton.
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GENERAL INTRODUCTION

In recent years, optical fibers have increasingly replaced the traditional coax
cable for long distance telecommunication, and transmission speeds of over
1Tbits/s can now be achieved over one single optical fiber. Accompanied with
the rapid growth in optical telecommunications, the spectroscopy studies of rare-
earth ions doped material hosts have became very important as it lightens the
enormous potentialities to optical sources and amplifiers operating at

wavelengths compatible with fiber communications technology.

Optical and laser technologies have expanded considerably over the last few
decades however there is considerable effort to miniaturize such devices. Ti:
sapphire has excellent physical and spectral properties which make it a very
attractive lasing/optoelectronic material and is widely tunable giving rise to
specific applications. Single crystal sapphire is also extremely hard, chemically
inert and has excellent thermal conductivity and high electrical resistivity.
Sapphire may be synthetically grown, with a well advanced process owing to its
demand as an electrically insulating substrate for microelectronic devices. With
the advent of the Ti: sapphire laser, the growth of high quality Ti-doped materials
and its spectroscopic properties were investigated to the extent that the laser
rapidly became commercially viable. To realize a Ti:sapphire waveguide laser, it
is proposed that Ti3* is introduced into a nominally pure sapphire wafer by high

energy ion implantation.

The field of ultrashort laser physics has existed for nearly four decades. It
can be considered a fairly mature field and the generation, manipulation,
measurement and usage of ultrashort pulses are at the frontiers of laser research
today. Mode-locked fiber lasers have made huge advances over recent years and
are being researched to replace bulky solid-state lasers in the future. Fiber lasers
can generate high average powers and a good beam quality, however at present
there is no fiber laser capable of replacing the Ti: Sapphire laser in the region of
700 — 1100 nm. The future progress in the field of ultrashort laser pulse

generation can only unlock new applications. Currently Ti: Sapphire cannot be

1 I Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



GENERAL INTRODUCTION

bettered as an ultrafast laser and it is KLM Ti: sapphire lasers that have produced
pulses of 6 fs in duration. The progress in the field of ultrashort laser pulse
generation has been rapid and continuous, and has a long lifetime ahead. Laser
powers should increase and intensities should be regularly pushed over 102!
W/cm?2. Research continues into discoveries for new gain media in the hope of
improving on the excellent Ti: Sapphire and will continue for as long as ultrashort
laser pulses remain useful, which, judging by the numerous and varied
applications, will be for many years to come. Of course, as the technology
continues to develop, more applications will be found for it. Lasers should
become cheaper to build as technologies and design improve, making them

further compacted, and cheaper to buy as further applications call for them.

Nonlinear optics is a field that has become important since the invention of
the laser. It is providing us with a fundamental understanding of the nature of
light and revealed to us a world of applications. Franken and his staff observed
the first nonlinear optical properties in 1961. Radiation with wavelength 1 = 3471
A and the power of the order of 1mW was observed in the transmitted light.
Franken observed a second harmonic generation, that is, a doubling of the
frequency of light. The effect of the wavelength dependence of gain, nonlinearity
and dispersion to the propagation of short pulses in high-gain efficiency silica
fiber was studied. It resulted in asymmetric spectrum and chirp, and reduction of
the pulse broadening. Wavelength dependence of the nonlinearity was

demonstrated to have the most effect, compared to that of dispersion or gain.

Many nonlinear effects have been studied extensively using optical fibers as
a nonlinear medium, despite the fact that the strengths of the nonlinearities in
fused silica are relatively low compared to many other materials. Another reason
for using optical fibers to study nonlinear effects is because they have small core
areas, which results in high intensity in the core. For more intense laser radiation,

the polarization is composed of a linear part and an intensity dependent

2 I Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



GENERAL INTRODUCTION

nonlinear part. Therefore, most nonlinear effects present in Titane-Sapphire are
induced. These effects include elastic processes such as self-phase modulation

(SPM), self-steepening, third-harmonic generation, intrapulse Raman scattering.

Chapter I is devoted to the theory of Titanium and the Titanium-Doped Sapphire
Crystal.

Chapter II gives the necessary background for the generation and compression of

ultrashort laser pulses.

In chapter III we establish the background theories for propagation of light in
single-mode optical fibers. We give an overview of the scalar nonlinear Schrodinger
equation which governs the propagation of the envelope of an optical pulse in a

single-mode optical fiber.

In chapter IV we describe the pulse-propagation problem by treating fibers as a
linear optical medium. We discuss the conditions under which the GVD effects
dominate over the nonlinear effects by introducing two length scales associated

with GVD and SPM.

In chapter V we consider SPM as a simple example of the nonlinear optical effects
that can occur in optical fibers. We also discuss the case of pure SPM by neglecting

the GVD effects. Then, we introduce the case of both effects: GVD and SPM.

In chapter VI we present an analytical study of pulse splitting in Titanium-

Sapphire, basing our study on the generalized nonlinear of Schrédinger equation.

3 I Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire
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CHAPI: TITANIUM SAPPHIRE THEORY

1.1 Optoelectronics

Optical and laser technologies have changed the way the world shops,
communicates, heals, learns and is entertained over a few short decades. The
expansion of waveguide optical technologies into areas previously the domain of
electronics, can be attributed to the volume/speed/reliability of processing/
transfer/analysis and the advent of the optical fiber and the semiconductor laser.
The growth and improvement in the world’s long distance communication
systems is probably the most apparent example of this evolution. However
optical technologies play an increasingly important role in more and more facets
of modern society. Currently, considerable research is being undertaken to
realize an integrated optical circuit to guide, switch, generate and amplify light in
the same way that semiconductor devices process electrical information.

The invention of the laser in the 1960’s provided a source of high intensity
monochromatic and coherent light and its availability spawned new exciting
fields of scientific research. Many systems reached mature design, and after
experiences with the often hazardous dye lasers which were also susceptible to
chemical degradation, there was considerable interest, in both scientific and
industrial communities, regarding the prospects for a tunable solid-state laser.
Moulton announced lasing in the Ti: sapphire material over the wavelength range
660 — 1180 nm in 1982 [2], and this quickly became the most widely used
tunable laser system after its introduction in 1988.

As previously stated, the miniaturization of such a laser would herald an
exciting progression in the systems development and it could yield a portable,
low power, more efficient, less expensive, robust and highly tunable laser source.
Such a device would be ideal for remote laser spectroscopy which requires tuning
to scan across a wavelength range for applications such as pollution detection,
environmental monitoring and other forms of remote sensing from aircrafts or
satellites and under conditions of appropriately high output power. The
waveguide laser could provide a more economical option for femtosecond time

scale pulse research [3].

d Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



CHAPI: TITANIUM SAPPHIRE THEORY

1.2 Sapphire and Ti: sapphire
1.2.1 Overview

Since the reporting of laser action by Moulton in 1982 [4], the Ti: sapphire
laser has been the subject of extensive investigations and has become the most
widely used tunable solid-state laser. The Ti: sapphire system combines a broad
tuning range of about 400nm with a relatively large gain cross section.

In this lasing material, a Ti3* ion is substituted for an Al3* ion in Al;0s.
These crystals are typically grown by a number of methods and typically consist
of sapphire doped with 0.10 Ti203 % by weight. Crystals of Ti: AlI203 exhibit a
broad absorption band, located in the blue-green region of the visible spectrum
with a peak around 490 nm. A relatively weak absorption band is observed in the
infra-red region. This residual infra-red absorption interferes with efficient laser
operation, particularly in the case of flash-lamp pumping. Optimized crystal
growth techniques and additional annealing processes have drastically reduced
this absorption band compared to earlier crystals. The great interest in this
material arises from the broad vibronic fluorescence band which allows tunable
laser output between 660 — 1180 nm, with the peak of the gain curve around
800 nm. The energy level diagram of Ti: sapphire with the absorption and
emission spectra are shown in Figure 1.1 [5]. Besides having favorable
spectroscopic and lasing properties, another advantage of Ti: Al;03 arises from
the material properties of sapphire itself, namely very a high thermal
conductivity, an exceptional chemical inertness and a mechanical rigidity.

Titanium sapphire is commercially available in sizes up to 3.5c¢m across by
15c¢m long and, due to the well-developed growth technology of sapphire, of good
optical quality. Ti: sapphire lasers have been pumped with a number of sources
such as argon and copper vapor lasers, frequency doubled Nd: YAG and Nd: YLF
lasers, as well as flash-lamps. Flash-lamp pumping is very difficult to achieve in

Ti: sapphire because a very high pump flux is required.

7| Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire
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Figure 1.1: The energy level diagram of Ti: sapphire together with the
absorption and emission spectra. Interaction of the titanium electron
with Al;03 produces the wide spreading of the energy levels and
results in broad tuning [4, 5, 8]

1.2.2 Structure of sapphire and Ti: sapphire

The natural alumina Al;03 (corundum) structure is comprised of
hexagonally close packed oxygen anions with two thirds of the octahedral sites in
between the oxygen planes occupied by Al cations, as shown in Figure 1.2.a. Only
two out of every three aluminum sites are filled, to maintain overall charge
neutrality. The orientations of the common crystal planes are shown in Fig. 1.2.b,
together with the corresponding crystallographic axes, defined in a direction
perpendicular to the planes. High quality sapphire crystals are routinely grown
and are readily available in wafer form, with one or two sides polished to high
optical quality. Ti-doped sapphire crystals (referred to as ‘bulk-doped Ti:
sapphire’) are formed by introducing Ti2O3 into the melt during crystal growth.
The Ti3* ion is incorporated on the Al lattice site, in place of an Al3+ ion, and forms
the (3+) oxidation state that is necessary for lasing. The Ti3* impurity will cause
some local distortion of the lattice due to the difference in size, since the atomic

radius of Al is about two thirds that of Ti.

d Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire
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Figure 1.2: a) 3-D view of the structure of sapphire. Between each layer of
closed packed oxygen ions, are aluminum sites, although only two
out of every three are occupied. b) Diagram of the common crystal

nlanacin tha cannhira lattica [141

The incorporation of other valence states of Ti will require a mechanism to
compensate for the local imbalance of charge and correspondingly, the solubility

of Ti3+ is significantly greater than that of Ti4* in sapphire [6].

1.2.3 Spectroscopy of sapphire and Ti-doped sapphire

Pure single crystal sapphire has a high transparency to wavelengths
between to about in the infra-red, as shown in Fig.1.3. The presence
of defects and impurities in the lattice will affect the electronic structure and may
allow optical transitions to occur. For example, optical absorption at wavelengths
in the ultra-violet accompanies electron transitions that are related to the
presence of defects in the Al>O3 lattice. Impurities, particularly transition metal
ions, give rise to characteristic absorption and often yield brightly colored

crystals [11].

q Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire
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Figurel.3: Transmission of a Imm thick sapphire wafer over a large optical range [16]

For Ti3+-doped sapphire, optical absorption and fluorescence are related to
electronic transitions of the Ti3+ ion incorporated by substitution on the Al lattice.
The origin of the optical transitions has been extensively studied, with an interest
motivated by the advent of the Ti: sapphire laser and the need for high quality
crystals [7].

1.2.4 Influence of Ti** and defects on Ti: sapphire spectroscopy

Although Ti3* is more soluble in sapphire than is Ti*, trace quantities of
Ti4* may be included in the sapphire lattice. The inclusion of Ti** is detrimental to
laser performance as the resulting distortions to the lattice and the inclusion of
associated defects causes a shift in the absorption of the nearby Ti3* ion from
blue-green to the near infra-red. The shift to longer wavelengths is attributed to a
weakened local crystal field as a result of interaction with a nearby Al vacancy
and/or Ti** ion [8]. The absorption shown in Figure 1.4 overlaps the fluorescence
band associated with the laser emission. In a laser configuration, this would
increase the round-trip cavity losses and limit the laser performance. The
absorption band peaks at around 800nm and extends well into the infra-red. The
polarization dependence is in contrast with the absorption characteristic of the

Ti3* ion, as the o polarized absorption is greater than the m polarized absorption.

]_q Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire
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Figure.1.4: Absorption at wavelengths in the near infra-red [5]

The titanium ion in the sapphire lattice is in the trivalent state as it
occupies the site of a trivalent ion, aluminum, and due to lattice defects, it is
probable that traces of Ti*+ exist in the crystal. The ion induces a distortion in the
lattice field and causes a shift in absorption of nearby Ti3* ions towards the
infrared. This shift in absorption results in an overlap with the emission band of
the laser [28, 29]. Figure 1.4 shows the absorption due to the (Ti3+- Ti**) pairs
which can be seen to have a peak near . This effect limits the performance
of the laser as it increases the losses in the cavity. An important characteristic of a
titanium-doped sapphire crystal is the ratio of peak absorption in the blue-green
region ( ) to the parasitic peak absorption near . This ratio is called
Figure of Merit (FOM) and characterizes the quality of the crystal. Today, crystals
with FOM near 1000 can be fabricated, although they are highly priced.

1 ]I Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire
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1.3 Refractive Index

The crystal of Ti: Sa is a uniaxial birefringent crystal. For , the
difference in index of refraction between the ordinary index and the
extraordinary index is about . The refraction index n in the visible and

infra red regions can be modeled using Sellmer’s equation [9]:

— (1.1)
Where the three couples ( are deduced empirically by adjusting the
experimental measurements in the visible field (see figure 1.5).
T=295K
Ordinary axis (0.0033, 1.077) (0.0114, 1.025) (151.2, 5.04)
Extraordinary axis (0.0004, 1.041) (0.0141, 1.03) (123.8, 3.55)

Table 1.1: Values of the couples for Ti:Sa a T= 295 K[4]

B
1.7617
1.7616
1.7615
1.7614
1.7613
1.7612

1.7611

751 A R R N S S
0z . . . .

Wavenlegth in um

Figure.1.5: Curves of dispersion of the indexes of ordinary and
extraordinary refraction of Ti: Sa according to the wavelength in the
visible field, deduced from the expression (1.1)
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In the wavelength range [700nm — 900nm], which corresponds to the field of
operation of the power channels Ti: Sa, the index of refraction is around 1.76 for

the ordinary index and 1.755 for the extraordinary index (see figure 1.5).

1.3.1 Chromatic Dispersion

When an electromagnetic wave interacts with the bound electrons of a
dielectric, the medium response, in general, depends on the optical frequency.
This property, referred to as chromatic dispersion, manifests through the
frequency dependence of the refractive index n(w). On a fundamental level, the
origin of chromatic dispersion is related to the characteristic resonance
frequencies at which the medium absorbs the electromagnetic radiation through
oscillations of bound electrons. Far from the medium resonances, the refractive
index is well approximated by the Sellmeier equation.

Fiber dispersion plays a critical role in propagation of short optical pulses
because different spectral components associated with the pulse travel at
different speeds given by c/n(w) . Even when the nonlinear effects are not
important, dispersion-induced pulse broadening can be detrimental for optical
communication systems.

In the nonlinear regime, the combination of dispersion and nonlinearity
can result in a qualitatively different behavior, as discussed in later chapters.
Mathematically, the effects of fiber dispersion are accounted for by expanding the
mode-propagation constant § in a Taylor series about the frequency w, at which

the pulse spectrum is centered:

where

B, = (d’"_ﬁ)wzwo (m=01.2,..) (1.2)

dwm
The parameters 8;, 5, and [; are related to the refractive index n and its

derivatives through the relations
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1 dn d?n
b= (25 W)
Bs=-(35 2 +wih) (1.3)
37 ¢\ awz dw3)/’ )

where n is the group index and vg is the group velocity. Physically speaking, the
envelope of an optical pulse moves at the group velocity while the parameter 3,
represents the group velocity of the pulse and S, represents the dispersion of the
group velocity and is responsible for pulse broadening. This phenomenon is
known as the group-velocity dispersion (GVD), and £, is the GVD parameter. The
parameter [ given by Eq.(3) represents the Dispersion Slope (Ds) or Third

Order Dispersion (TOD) which is responsible for asymmetry.

¥ 10°

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Wavelength (nm)

Figure.1.6: Variation of 5, and ;3 with wavelength for Ti: Sa crystal.

The dispersion parameter D that what is commonly used in the fiber-optics

literature in place of f,. It is related to 8, by the relation

]_4' Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



CHAPI: TITANIUM SAPPHIRE THEORY

_ 4By _ _2mc, o Ad’n
D_d/'l_ AZBZ~ c dA2 (1.4)

This total GVD represents the pulse broadening in time [ps] by a fiber length of

L[Km] for a pulse with a spectral width of §1 [nm] as follows.

At[ps] = L[Km]. 82 [nm].D [ ps (1.5)

nm.Km

The effect of GVD on the Bit-rate B can be estimated by
B.At =B.L.6A|D| <1 (1.6)
Therefore, the BL product for single mode fibers can be increased by operating at

the ZDW and using a pulse with narrow spectral width [10].

1.4 Fiber Nonlinearities

The response of any dielectric to light becomes nonlinear for intense
electromagnetic fields, and optical fibers are no exception. On a fundamental
level, the origin of nonlinear response is related to anharmonic motion of bound
electrons under the influence of an applied field. As a result, the total polarization
P induced by electric dipoles is not linear in the electric field E, but satisfies the
more general relation

P=¢ey(yM.E+x@®:EE + x® : EEE + ). (1.7)

where g,is the vacuum permittivity and y’(j = 1,2,...) is the jth order
susceptibility. In general, yis a tensor of rank (j + 1). The linear susceptibility
xWrepresents the dominant contribution to P. Its effects are included through
the refractive index n and the attenuation coefficient a. The second-order
susceptibility y®) is responsible for such nonlinear effects as second-harmonic
generation and sum-frequency generation. However, it is nonzero only for media
that lack an inversion symmetry at the molecular level. As Si02 is a symmetric

molecule, )((2) vanishes for silica glasses.
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1.4.1 Nonlinear Refraction

The lowest-order nonlinear effects in optical fibers originate from the
third order susceptibility y®, which is responsible for phenomena such as third
harmonic generation, four-wave mixing, and nonlinear refraction. Unless special
efforts are made to achieve phase matching, the nonlinear processes that involve
generation of new frequencies (e.g. third-harmonic generation and four-wave
mixing) are not efficient in optical fibers. Most of the nonlinear effects in optical
fibers therefore originate from nonlinear refraction, a phenomenon referring to
the intensity dependence of the refractive index. In its simplest form, the

refractive index can be written as

fiw, |[E|?) = n(w) + ny|E|? (1.8)
where n(w) is the linear part given by Eq. (1.1), |E|? is the optical intensity inside
the fiber, and n, is the nonlinear-index coefficient related to ¥ by the relation

(see Section 3.3).

ny = —Re(Xiha (1.9)
The tensorial nature of y® can affect the polarization properties of optical beams
through nonlinear birefringence. The intensity dependence of the refractive index
leads to a large number of interesting nonlinear effects; the most widely studied
is self-phase modulation (SPM). Self-phase modulation refers to the self-induced
phase shift experienced by an optical field during its propagation in optical fibers.
Its magnitude can be obtained by noting that the phase of an optical field changes
by
@ = fikgL = (n + ny|E|*)k,L (1.10)
where ky = 2m/A and L is the fiber length. The intensity-dependent nonlinear
phase shift @y, = n,k,L|E|? is due to SPM. Among other things, SPM is
responsible for spectral broadening of ultrashort pulses and formation of optical

solitons in the anomalous-dispersion regime of fibers [11].
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Table 1: Active medium physical and laser properties

Chemical formula Ti3+:Al203
Crystal structure Hexagonal
Lattice constants a=4.748,c=12.957
Laser action 4 Level Vibronic
Fluorescence lifetime 3.2 us (T=300 K)
Tuning range 660 - 1050 nm
Absorption range 400 - 600 nm
Emission peak 795 nm
Absorption peak 488 nm
Refractive index 1.76 2800 nm
Nonlinear index effect n, 3.2.10-16 cm2.w
Absorption cross section 9.3.10-20 cm?
Mass density (grams/cm) 3.965

Atomic density (atoms/cm) 1.17.1023

Tableau.2: Titanium Doped Sapphire Crystal Characteristics

1.5 Summary of Chapter

Sapphire is a strong, robust, resistant and optically transparent crystal with
numerous commercial applications. The solid-state Ti: sapphire material has a
simple energy level diagram, high absorption cross section and is very widely
vibronically broadened. A very important characteristic of sapphire is that it is
the second hardest material that can be found in nature after diamond and it is
chemically inert to any etchant at room temperature [1-2].

The single crystal is hard, chemically inert, and has high thermal
conductivity and excellent electrical resistivity. These characteristics make
sapphire a successful insulating substrate for microelectronic components.
Furthermore it is an excellent material for fabrication of optical windows in

applications where robustness and high optical transmission are needed.

]_7| Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



CHAPI: TITANIUM SAPPHIRE THEORY

References

[11]

L.D. Morpeth “Ti: sapphirefabrication via High Energy Ion Implantation” University of

Melbourne December 2002

P.F.Moulton, Quant. Electron. Conf., Munich, Germany, June 1982.
E.J.Lerner, Laser Focus World 34, 143 (Oct 1998).
P.F.Moulton, Tunable Solid-state Lasers (Springer-Verlag, 1985).
P.Lacovara, L.Esterowitz, and M.Kokta, IEEE. Journal of Quantum Electronics 21, 1614
(1985).

S.K.Roy and R.L.Coble, J. Am. Ceram. Soc. 51, 1 (1968).
A.R.Moon and M.R.Phillips, J. Am. Ceram. Soc. 77, 356 (1994).

Optical Properties and applications (Technical Bulletin, Union Carbide Crystal
Products, 1988).
Fabien PLE « Etude de l'amplification parasite transverse de la fluorescence dans les
cristaux de  Ti:Sade grandes dimensions » Université Paris XI Orsay

J.K.Kim “investigation of high nonlinearity glass fibers for potential applications in
ultrafast nonlinear fiber devices” PhD faculty of the Virginia 2005.

G.P.Agrawal, “Nonlinear Fiber Optics”, Third Edition, Optics and Photonics, 2001.

]_51 Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



CHAP Ii
ULTRASHORT LASER PULSE
GENERATION AND
COMPRESSION

—Lp

SD[] nm
2 nd
101s
100 MHz

Laser de pompe



CHAP II: ULTRASHORT LASER PULSE GENERATION AND COMPRESSION

Ultrashort laser pulses are considered to be those whose pulse duration is less
than a few picoseconds (1012 s) long. Recent research has led to techniques such as
Kerr-lens mode locking to enable pulse duration down to around 5 femtoseconds
(1015 s) and chirped pulse amplification giving pulses peak powers of several
terawatts. In very recent years research has driven towards the attosecond regime
(10-18 s), allowing for the possibility to probe such phenomena as the motion of
electrons, by utilizing the progress in ultrashort laser pulses. The best commercially
available lasers operate mode-locked with titanium sapphire as the gain medium

and the Ultrafast Laser is an excellent example.

2.1 Introduction [1]

A laser can be described as an optical source that emits a coherent beam of
photons at an exact wavelength or frequency. In stark contrast, other common
light sources emit incoherent light in all directions, normally over a wide range of
wavelengths or frequencies. All lasers have some very important components in
common. With reference to Figure.2.1, these are the laser’s gain medium (1), an
energy source to pump the laser medium (2), a highly reflective mirror (3) and a
partially reflective mirror (4). The highly reflective mirror and the partially
reflective mirror, or output coupler, are aligned so as to cause most of the light to
oscillate between them through the gain medium. With each trip the light
undergoes further amplification. The partially reflective mirror reflects most of
the light incident on it but allows a small percentage to be transmitted through it,

forming the laser output (5).
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Figure.2.1: A schematic of a laser set-up.

In most materials light is absorbed, though in some the light is amplified. The only

real difference is the state the atoms are in before they interact with light (see

Figure 2.2). The energy for pumping the laser Figure.2.1 needs to be resonant

with the system to raise atoms to an excited state and then to stimulate them into

emitting photons. For the ruby laser a flash lamp was used, though typically today

a continuous wave (CW) laser is used to supply light at the correct wavelength for

absorption and emission in the gain medium. Einstein concluded that there are

three interactions between matter and light, which are shown in Figure 2.2.

Excited state Excited state Bctiag i
E2
population N2
-l ~hy ey v
%

3 !

Fundamental State  papulation N1 Fundamental State

Fundamental State

ABSORPTI STIMULATED STIMULATED
ONT SPONTANEOUS EMTQQTNNT

Figure.2.2: The interactions between light and matter.
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2.1.1 Definitions:

2.1.1.1. Absorption - A photon, with energy hw, from the radiation field
transfers its energy to an electron as potential energy when it moves from E1 to
E», raising the atom'’s energy and putting it in an excited state.

2.1.1.2. Spontaneous Emission - When an electron in an excited state E>
drops to a lower state E; via decay there is a loss of potential energy in the atom.
This is released as a photon and the photon’s energy is equal to E;-E1= hw. The
released photon’s phase, direction and polarization are all random.

2.1.1.3. Stimulated Emission - When an electromagnetic field is present
around an atom, a photon with energy hw can stimulate the emission of a twin
photon from an excited atom. This twin photon is emitted with identical energy,
direction, phase and polarization as the inducing photon, thus amplifying the
energy [1, 2, 3].

2.1.2 Longitudinal Modes

When it comes to the use of lasers as short pulse generators, the most
important property of optical resonators is the existence of longitudinal modes.
In order words, we now know how to apply a feedback to a gain medium. We
need to explore the conditions under which this feedback can constructively
interfere with the main signal. Fabry-Perot interferometers were originally
developed as high resolution band-pass filters. An electromagnetic field can be
established between two parallel mirrors only when a wave propagating in one
direction adds constructively with the wave propagating in the reverse direction.
The result of this superposition is a standing wave which is established if the
distance L between the two mirrors is an integer multiple of the half-wavelength
of light.

The existence of longitudinal modes is the most important characteristic of
an optical resonator when using lasers as short pulse generators. Longitudinal
modes, sometimes called axial modes, are known to have a time-frequency
property. For laser oscillations to occur within a cavity, a wave must be able to

self-replicate after two reflections so that the electric fields constructively
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interfere and add up in phase. All other frequencies of light consequently
destructively interfere. The discrete sets of frequencies that are formed directly
from these standing waves are then called the longitudinal modes of the cavity.

The condition for a standing wave, where A is the wavelength of light and the

length of the cavity is L, is mT/l =1L (2.1.1)

The value of the positive integer m is known as the mode order and it can be
quite large. For example for a cavity of length L = 0.5m and for A = 500 nm, m
is about 2.10°, meaning there are many possible values of m for just a small
change in wavelength A. Usingv = c/4, Eq.2.1.1 can be written as

v =mc/2L (2.1.2)
The frequency separation Av between adjacent modes (4dm = 1) is also of
importance and can be found using

Av = c/2L (2.1.3)
The round-trip time of flight, T, in the cavity is very easily calculated using
Eq.2.1.4, T =2L/c (2.1.4)
For a fairly typical laser, the cavity length is L = 1.5m and so the period
T = 10 ns. This gives a characteristic frequency v = 100 MHz. These numbers
control the repetition rate of the mode-locked laser and the period of the pulse
train.

Although there are a large number of longitudinal modes (Eq.2.1.1) in the
cavity, spaced from adjacent modes by Eq.2.1.3, they can only oscillate if there is
gain at their specific frequency. Figure.2.3 shows schematically how not all of the
frequencies are amplified and therefore do not all contribute to the laser output
spectrum. The amplifying medium in the laser only amplifies over certain
frequencies. The gain medium, primarily determines the bandwidth over which
the laser may operate. The bandwidth of a laser can be quoted in either frequency
or wavelength as the two have an inverse relationship. Converting between
nanometers and gigahertz depends on the central wavelength or frequency. To
convert a small wavelength interval, 44, into a frequency interval, 4v, the

following relation is needed
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Av = Ad.c/A? (2.1.5)
Analysis of Eq. 2.1.5 shows that one nanometer is worth more than one gigahertz
if the central wavelength, A, is shorter (note that c is the speed of light). It is
generally accepted that Ti: Sapphire has a bandwidth of around 128 THz, which
corresponds to around a 300 nm wavelength range and could potentially support
approximately 250,000 modes (for a30 cm cavity). Compared to a medium such
as helium: neon (He: Ne), which has a1.5GHz bandwidth (a 0.002 nm
wavelength range) and could support just 3 longitudinal modes (again a 30 cm
cavity), it's clear that Ti: Sapphire is the savior of the mode-locked laser.
Figure 2.3 also highlights the fact that it is both the bandwidth of the laser and the
number of longitudinal modes allowed to oscillate, that are responsible for the
laser’s output spectrum [4].

(&)

g Laser gain
g bandwidth —
+~
A=
frequency
. =} Cavity longitudinal mode structure
% — p—Av =2
frequency
o (c)
= Laser output
g
E ‘
| | ‘ | | I L.
frequency

Figure.2.3: A schematic of the longitudinal mode structure in a laser. (a) The
laser’s gain medium will only amplify light over a certain range of
frequencies. This refers to a laser’s gain bandwidth. (b) The
longitudinal modes are equally spaced by Eq.2.1.3. (c) Only the modes
whose corresponding frequencies fall into the laser’s gain bandwidth
will be amplified [5].
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2.1.2.1 Pulsed Operation

The longitudinal modes which are able to self-oscillate in the free
multimode regime of the laser are those for which the unsaturated gain is greater
than the cavity losses, as shown in Figure.2.3.c. The number of modes N can vary
from just a few (in He-Ne lasers for example) to some 10# (in dye lasers and in Ti:
sapphire lasers for example). Therefore a laser cannot deliver ultrashort pulses
while functioning in its usual regime, in which the cavity plays the part of a
frequency selector. However, it has been shown that when a laser operates in its
most usual regime, it oscillates simultaneously over all the resonance frequencies
of the cavity for which the unsaturated gain is greater than the cavity losses.
These frequencies make up the set of longitudinal modes for the laser. While
operating in the multimode regime, the output intensity of the laser is no longer

necessarily constant with time.
2.1.3 Mode-locking techniques [6]

A multi-mode laser is said mode-locked if its modes have a well-defined
and fixed phase relationship. If the phases are locked in such way that there is a
constructive interference between the modes at an instant and a destructive
interference at other times, the output will appear as a pulse. It is instructive to
consider a simple example of mode-locking in which all oscillating modes have
equal amplitude (Fig.2.4). The electromagnetic field due to (2n + 1) equally

spaced modes is given by:

E(t) = ay X3 cos ((wj —wy).t — (@, — Q)k)) (2.1.6)
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Figure.2.4: The influence of the phase relation between oscillating modes on
the output intensity of the oscillation. (a) two modes with
random phases, (b) two modes in phase, (c) five modes with
random phases and (d) five modes in phase.

Figure 2.4 shows how the time distribution of a laser output depends upon
the phase relations between the modes. Figure 2.4.a shows how the intensity
varies for two oscillating modes with random phases and Figure 2.4.b is the
resultant intensity of two modes in phase. Figure 2.4.c gives an idea of how five
modes with random phase relations to one another give a random distribution of
intensity maxima, but let these five modes oscillate with the same initial phase,
Figure 2.4.d, is the resultant intensity of five modes in phase and a period
repetition of a wave packet from the resultant constructive interference can be
seen. In a general continuous wave multi-mode laser, the modes will oscillate
independently from each other and will have random phases relative to one

another.
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Since the total electromagnetic field at any point inside the cavity is given
by the sum of the fields of the oscillating modes, the output of such a laser will be
noise-like, fluctuating in intensity due to interference between the modes.
However it is possible to manipulate the phases of the modes to obtain a more
useful output, using a technique known as mode-locking. When a laser operates
naturally, it will oscillate simultaneously over all resonant frequencies of the
cavity, as long as the unsaturated gain remains greater than the cavity losses. A
mode-locked femtosecond laser requires a broadband gain medium, such as Ti:
Sapphire, which can sustain over 100,000 longitudinal modes in a laser cavity
where we have summed over all possible modes. E (t) is the amplitude of the qth
mode, w, is the frequency of a central mode, Aw is the (angular) frequency
spacing between modes, and ¢, is the phase of the qth mode. In the case of equal
amplitudes (E,;) and locked phases (¢, — ¢,-1 = const) considered here, this

sum becomes:

E(t) = Eje™o ¥n__, el (2.1.7)

Then, it can be written as

E(t) = A(t).e™o where A(t) = E,Y0__, etawt (2.1.8)
So we have got an amplitude-modulated wave oscillating at the central mode
frequency (wgy). In fact the expression for A(t) contains a geometrical
progression. Consequently, we can convert it to another form and write down the

intensity as a function of time in the following way:

2 __ sin?[(2n+1)Aw.t/2]
1) o [A(D]? = 2L, (2.1.9)

This function is a periodic one, with strong peaks (pulses) equally spaced by
very weak subsidiary peaks (Figure 2.4.b, and 2.4.d). From the analysis, one can
show several other important properties of this function. The pulse duration

decreases and its amplitude increases, as the number of modes increases. The
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period of this function (time spacing between pulses) is T = 2n/Aw. The pulse
duration t can be approximately given as At = 2rm/(2n + 1)Aw = 1/Av, where Ay
is the full width of the generation band. From this simple example, it becomes
clear that mode-locking results in a periodic intensity pulse, in contrast to the

noisy, fluctuating output of the non-mode-locked case.

The process leading to mode-locking can be explained in either the time
domain or the frequency domain. In the frequency domain, we can consider that
all the involved modes under modulation develop individual sidebands. The
sidebands of any mode lie close to its neighboring modes, provided that the
frequency of modulation is close to the frequency spacing of the oscillating laser
modes. In turn, the sidebands can couple to the neighboring modes near which
they fall, leading to the phase-locking of an axial mode to its neighbors.
Practically, the methods of achieving mode locking can be split into three main

techniques: active mode-locking, passive mode-locking, and self-mode-locking:

2.1.3.1 Active Mode-Locking [7]

Active mode-locking is a technique for generating ultrashort pulses by
modulating the cavity losses or modulating the round-trip phase change. This is
done with either an acousto-optic or electro-optic modulator ( see Figure 2.5 for
its position in the cavity). Ultrashort pulses are generated if the modulation is
synchronized with the cavity round-trips. Using an acousto-optic modulator is the
most common method and when driven with an electrical signal, a sinusoidal
amplitude modulation (AM) of each longitudinal mode is induced. If the
modulation frequency is driven close to the intermode frequency separation, 4v,
(Eq.2.1.3), then the two sidebands will be very close to the adjacent modes of the
chosen mode. The sidebands and longitudinal modes will now compete against

each other in the gain medium for maximum amplification.
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However, the most efficient use of the energy in the gain medium is for the
longitudinal modes to lock their phases onto the sidebands, which in turn causes
a global phase-locking over the whole spectral distribution. Global phase-locking

will yield a single oscillating pulse that contains all the energy of the cavity.

Modulator ) ) i
Gain medium —

Output coupler

Figure. 2.5: The position of a modulator in an actively mode-locked laser set-
up.

Let us insert an element inside the cavity which modulates its losses (figure

2.6). This element will induce a modulation of the amplitude of each longitudinal

mode. If we assume the modulation to be sinusoidal, of angular frequency (), and

to have a modulation depth «, the time dependency of modes n of frequency
w,, can be written as

e, (t) = E cos (Wut + ¢,)[1 — a(1 — cos (Qt + ¢))] (2.1.10)

This expression can also be written as follows, showing that in the frequency

domain two sidebands show up at either side of mode e, (t):

a
e,(t) = E,(1 — a).cos(w,t + ¢@,) + Enacos[(wn -Vt + ¢, — @]
En%cos[(wn + Q)t + @, — @]. (2.1.11)

Now if the modulation frequency Q/2m is close to the intermode frequency
separation c/2L, the two sidebands will be very close to the two neighboring
modes n+ 1 and n — 1, as shown in figure 2.6 (a modulation frequency of the
order of mc/2L, where m is an integer, can also be used to couple mode n to
modes n + m and n — m). The sidebands and the longitudinal modes themselves

therefore complete inside the amplifying medium for maximum gain.
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Figure.2.6: Illustration of an actively mode-locked laser cavity
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The situation in which the medium is used most efficiently is that in which the
longitudinal modes lock their phases onto the sidebands, causing a global phase-
locking over the whole spectral distribution. This global phase-locking, in turn, is
the condition under which the competition will give rise to the concentration of
all the electromagnetic energy of the cavity into a single pulse traveling back and

forth inside it [8].

2.1.3.2. Passive Mode-Locking [7]

Passive mode-locking works by placing a saturable absorber inside the
laser cavity, which does not need an external modulating signal to operate. This
method introduces a self amplitude modulation into the cavity and allows far
shorter pulses than the active mode-locking method does, because a saturable
absorber, when driven by already very short pulses, can modulate cavity losses
far quicker than any electronic modulator. A saturable absorber is an optical
device; usually a semiconductor saturable absorber mirror (SESAM), with an
intensity-dependent transmission property, meaning it will allow transmission of
high intensity light and will absorb low intensity light. Dyes can also be used but
they are very wavelength-dependent and often exist in liquid form, and thus have

to be refreshed regularly or be free flowing. Furthermore, the concentration of
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these dyes has to be altered as the laser power changes. A SESAM normally
consists of a Bragg mirror, which has alternating layers of two different optical
materials with an optical thickness corresponding to one quarter of the
wavelength of light for which the mirror is designed. The reflectivity then varies
with the intensity of light incident upon it. Figure 2.7 shows the position of a

saturable absorber in a laser set-up.

- -
s
Light pulse
Saturable )
absorber Amplifier
Mirror Mirror

Figure.2.7 Saturable absorber set-up in a passively mode-locked laser.

Let us now follow the pulse along its round trip through the cavity. Let us
start the point where the pulse, which will eventually take over, is already
formed, but has not reached its final shape or its final duration. As the pulse
travels through the saturable absorber, the pulse front is strongly absorbed
(figure 2.8), but if the maximum of the pulse saturates the absorber medium and
if as is the case in a dye laser or in a Ti: sapphire laser, the relaxation time of the
medium is longer than the pulse duration, the tail of the pulse will benefit from

the induced transparency of the medium and will travel through it without being

attenuated.
. Saturable Amplifier .
. Leadin
Leading absorber Leading medium ; g
edge
edge
Befor After After
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Figure.2.8 Illustration of a pulse shape modification after crossing a
saturable absorber and an amplifying medium

When the pulse reaches the amplifying medium, the pulse front will come
upon the unsaturated gain G, and will be strongly amplified while the tail of the
pulse will feel a much weaker gain, which has just been saturated by the front of

the pulse, and thus it will be much less amplified (figure2.8).

It is clear that after many back and forth trips, the resulting pulse will have
narrowed and will have a very strong maximum, since the center of the initially
broad pulse is not affected by the absorber but is amplified by the amplifying
medium. This process is illustrated in figure 2.8. The fact that the saturation
dynamics of the absorber are more rapid than those of the amplifying medium
explains why only the center of the pulse is amplified, the wings, on the contrary,
being attenuated. The pulse reaches its final shape when it becomes self-
consistent in the cavity, that is, when the system reaches a steady state. For the
pulse to be self-consistent, it must keep the same shape after a round trip through

the cavity.

2.1.3.3. Kerr Lens Mode-Locking [9]

Ti: Sapphire was discovered as gain medium with the bandwidth that could
support femtosecond pulses in 1986 and it was generally assumed that
everything was known about mode-locked femtosecond lasers by the end of the
80’s. However, 1990 saw two important discoveries. Ishida et al [10] produced
stable 190 fs pulses using a passively mode-locked Ti: Sapphire laser with a
saturable absorber. Then Sibbet et al [11] showed it was possible to produce 60 fs
pulses from a Ti: Sapphire laser that appeared to have no saturable absorber at
all. The phenomenon was soon understood and is now called Kerr lens mode-
locking (KLM). The optical Kerr effect is a nonlinear interaction of light in a
medium with an instantaneous response. The Kerr effect can be described as a

modification of the refractive index in response to an electric field. Scottish
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physicist John Kerr discovered the occurrence in 1875 and the effect can occur in
glasses, crystals and gases, though certain materials display the effect stronger
than others. The effect is directly proportional to the square of the electric field
(where is the intensity of light) and this leads to an intensity-dependent

refractive index in the material of

- (2.1.12)

Equation 2.1.12 governs the optical Kerr effect where is the overall
refractive index, is the linear refractive index, is the second-order nonlinear
refractive index and is the intensity of the incident light. Figure 2.9.a is the
intensity distribution of a regular Gaussian beam. Figure 2.9.b shows the change
in the index of refraction for a positive ; the index of refraction experienced by

the beam is larger at the center than at the sides.

by L
8} s }1.

Iy
L

G

x ¥

Figure.2.9: a) is the intensity distribution of a regular Gaussian beam and b) is
the variation of the index of refraction for , which follows the
intensity distribution along the diameter [12].

The index of refraction of a material has implications on the light passing through
the material. The velocity of light in a material is equal to the speed of light in
vacuum divided by the index of refraction . Therefore the larger the value of is,
the lower the velocity of light in the material becomes. A lens is a common
refractive element that is thicker in the middle than at the edges, causing the light
to slow down more in the middle than at the edges. Light is focused towards the

center as it becomes bent inwards. In this case the lens has a constant index of
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refraction . However, altering so that it is larger in the center than at the
edges will also bend light towards the center and produce a lens. Studying
Equation 2.1.12 and Figure 2.9 highlights the fact that light itself can alter the
index of refraction. When the intensity of light is high enough, the electric field of
light becomes strong enough to distort the atoms of the material and change its
refractive index.

As the beam is more intense in the center than at the edges, the index of
refraction becomes higher in the center than at the edges, which causes light to
focus. The focusing from the Kerr lens limits, when the beam’s diameter is narrow
enough, is large enough to balance out the Kerr effect (Figure 2.10). The effect is

known as self-focusing.

—_—

Incoming

diffraction
beam

e — e

Kerr + diffraction

Figure.2.10 - Self-focusing of a laser beam in a medium with nz > 0. [12]

The Kerr lens is only formed when the intensity of light is extremely high, such as
the instantaneous intensity of a mode-locked pulse. The weak intensity of a CW
laser is not intense enough to induce an optical Kerr effect. This mechanism of
only focusing the high intensity mode-locked pulses has been utilized for Kerr

lens mode-locking.

Intensity
Kerr medium cw
e . .
pulsed

Aperture

Figure 2.11- Kerr lens mode-locking [12]
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The self-focusing from the Kerr lens means that the strong intensity maxima in a
laser cavity are focused much more strongly than the weaker maxima, which end
up with negligible focusing. The strong intensity maxima have now had their
transverse structures reduced in size and so are less vulnerable to losses in the
cavity, but the weaker intensities occupying a large volume experience enhanced
losses. This leads to self mode-locking of the laser. Putting a slit or aperture into
the system, as in Figure.2.11, increases the difference between the losses
experienced by weaker intensity maxima and stronger intensity maxima by
allowing most of the power of the stronger intensity maxima through, while

heavily attenuating most of the weaker intensities.

2.1.4. Applications
2.1.4.1. Mode-Locked Rhodamine 6G Dye Lasers [7]

Commonly used ultrashort laser sources tend to be passively mode-locked,
because they are more efficient and, hence, of more practical importance. Until
recently, the most widely used ultrashort laser sources were of the type derived
from one form or another of Rhodamine 6G (Rh6 G) dye laser with an intracavity
saturable absorber such as DODCI, oscillating at 630 nm (Fork et al, [1981]).
These have recently largely been superseded by mode-locked solid-state Ti:

sapphire lasers (Spence et al., [1991]).
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Figure.2.12: Sketch of a balanced colliding pulse mode-locked dye laser. The
geometry of the cavity is that of a ring laser with Rhodamine 6G as
a gain medium. These molecules are opticaly pumped by a CW
argon ion laser delivering 5W in its 515nm green line. To ensure
mode-locking, a second jet, dyed with DODCI(3.3'-
diethyloxadicarbocyanine iodide), is placed at the focal point of a
short focal length telescope. The maximum emission of
Rhodamine 6G is close to 590nm. This wavelength is strongly
absorbed by the DODCI molecules, for which the maximum
absorption is close to 580nm in the ground state. Absorption of
photons induces a conformation change of the DODCI molecules
to a photoisomeric state, for which the absorption is red-shifted
down to 620nm.

2.1.4.2 The Mode-locked Laser Oscillator [13]

In a Ti: S oscillator, the fundamental frequency is usually 80MHz, which
lies in the radio frequency spectrum. Ti: S supports much higher multiples of this
fundamental frequency that lie in the near infrared to visible light spectrum.
Stimulated emission in Ti: S can span across a broad band of frequencies. This
broad band corresponds to over one million different cavity modes. A laser
usually operates at one single cavity mode, closest in frequency to the peak of the
emission spectrum.

However, it is possible to force the laser (using filters etc.) to operate at
other single frequencies in the emission spectrum. A laser oscillator is designed
such that several modes across the emission spectrum are brought to laser at

once.
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The modes will then interfere to construct a pulse. This pulse will propagate
between the end mirrors of the cavity, part of it exiting at each round trip,
through a partially transmissive end mirror (output coupler). Each pass through
the crystal amplifies away any energy loss since the last pass. Since the pulse is
composed of several waves with discretely spaced frequencies, the frequency
spectrum of a pulse will be a series of discretely spaced peaks. The peaks will be
evenly spaced in frequency by the fundamental frequency, which is also the rate
at which pulses emerge from the output coupler. The intensity of each peak is
governed by the emission profile of the gain medium. This profile can be

approximated as a Gaussian function.

800 nm
2nl
10fs
100 MHz

Laser de pompe :

Figure.2.13: A Ti: sapphire oscillator. The compensation of dispersion speed
of group is ensured by both prisms, producing a negative dispersion
speed of group. The blocking of mode is ensured by Kerr effect. On the
one hand, in the temporal field, the non-linear phase makes it possible
to compensate for the negative quadratic component resulting from
the dispersion of the cavity in linear mode, which makes it possible to
have perfectly equidistant longitudinal modes. In addition, in the
space field, self focusing by a Kerr lens makes it possible to decrease
the losses when the various longitudinal modes are in phase, thus
privileging the pulse mode [8].

This laser possesses a favorable combination of properties which are, up to
now, the best among all known broadband laser materials. First, the active
medium is solid-state, which means a long operational time and laser

compactness. Second, sapphire has a high thermal conductivity, an exceptional
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chemical inertness and a mechanical resistance. Third, a very broad spectrum is

generated.

2.2 Ultrashort Lasers Pulses

Ultrashort pulses are generated using mode-locked lasers and are defined
as having a pulse duration of a few tens of picoseconds at the very most. De Maria
et al produced the first ultrashort pulses just six years after Maiman'’s first laser
was demonstrated. In addition to ultrashort pulse duration, ultrashort pulses
have a broad spectrum, high peak intensity and can form pulse trains at a high
repetition rate. First it is important to acknowledge the relationship between
spectral width and pulse duration when considering the generation of ultrashort

pulses. The general time and frequency Fourier transforms of a pulse are,[14]

1

E(t)=g

IE(w)e’““’dw and  E(w)= jE(x).e"wdt (2.2.1)

The duration and spectral width of a pulse can then be calculated with standard

statistical definitions,

[ leco]* at [ W2 EGn dw
<At2 == <Aw =2 (2.2.2)
2 2
[ o]~ ae 1B~ dw
These quantities can then be related by the following inequality,
At Aws % (2.2.3)

Eq.2.2.3 is the product of pulse duration and spectral bandwidth and is known as
the time-bandwidth product. In principle this means that in order to generate a
short pulse of light with a specific duration A4t, a broad spectral bandwidth A wis
required. For example, if a pulse is to last a picosecond (10-12s) then the spectral
bandwidth must be atleast 0.441 THz (A w = 4.41.10" Hz ). When equality to 1/2 is
reached in Eq.2.2.3 the pulse is called a Fourier transform-limited pulse. The
variation in phase of such a pulse is beautifully uniform and so has linear time

dependence; the instantaneous frequency is time independent. This can define
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the pulse duration, though the most commonly used definition is based on the
full-width at half-maximum (FWHM) principle of optical power against time,
because experimentally, it is easier to measure. Eq.2.2.3 then becomes

At Av 2K (2.24)

Av is the frequency at full-width half-maximum and Ar is the duration at half

maximum. The value of K from Table.1 depends upon the symmetrical shape of

the pulse

Shape K

Gaussian function 0.441
Exponential function 0.140
Hyperbolic secant 0.315
Rectangular 0.892
Cardinal sine 0.336
Lorentzian function 0.142

Table 1: Various values for K depending on the pulse shape.
If follows directly from Eq.2.2.4 that the minimum achievable duration is limited
by the spectrum of the pulse. In other words, in order to produce ultrashort
pulses a very broad spectral bandwidth is needed. The shortest possible pulse, for
a given spectrum, is known as the transform-limited pulse duration. It should be
noted that Eq.2.2.4 is not an equality, i.e. the product can very well exceed K. If
the product exceeds K the pulse is no longer transform-limited and all frequency
components that constitute the pulse do not coincide in time, i.e. the pulse

exhibits a frequency modulation and so is very often referred to as a chirp [15].

2.2.1 Mathematical Description of Laser Pulses
Ultrashort laser pulses are coherent bursts of electromagnetic radiation,

confined in time and space. They are characterized by several parameters:
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temporal coherence, spatial coherence (i.e. focusing ability) contrast, power, etc.

Here the description is concentrated on their temporal aspects.

In order to completely describe a laser pulse, the temporal profile, the spectral
profile and the phase of the pulse have to be known. However, time and
frequency are related through a Fourier transform and it is therefore sufficient to
know only two of these parameters since the third can always be calculated from

the other two.

2.2.1.1 Time Domain Description

The electric field E(t), is a real quantity and all measured quantities are
real. However, the mathematical description is simplified if a complex
representation is used:

E(t) = A(t). e twot, (2.2.5)
where A(t) is the complex envelope, usually chosen such that the real physical

field is twice the real part of the complex field, and w, is the carrier frequency,
usually chosen at the center of the spectrum. In this way, the rapidly varying
envelope is separated from the slowly varying envelope A(t). E(t) can be further
decomposed into:

E®) = |E‘(t)|.ei"’°.e‘i‘/’(t) = |E(t)|.ei¢0.e‘i(®(t)“"’0). (2.2.6)
@(t) is often referred to as the temporal phase of the pulse and ¢,the absolute

phase, which relates the position of the carrier wave to the temporal envelope of
the pulse (see figure.2.14). In @(t), the strong linear term due to the carrier
frequency, wt, is omitted. The absolute phase is important mainly for pulses
consisting of only a few cycles and has recently attracted a great deal of attention.
The absolute phase has, for instance, been shown to be very important when
generating high-order harmonics with few-cycle pulses.

The instantaneous frequency w(t) is given by the first derivative of the temporal

phase:

do(t) _ do(t)
w(t) = & - ar Wo. (2.2.7)
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which means that a nonlinear temporal phase yields a time-dependent frequency

modulation. The pulse is said to carry a chirp (illustrated in Figure 2.15) [15].
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Figure 2.14:  the electric field of an
ultrashort

laser pulse consisting of only a

Time in (fs)

Figure 2.15: the electric field of an
ultrashort laser pulse with a strong
positive chirp. Note the frequency
variation as a function of time. At the
leading edge (to the left) the wavelength

is longer than at the trailing edge.

2.2.1.2 Frequency Domain Description
[t is usually more convenient to represent the pulse in the frequency

domain rather than in the time domain. The frequency representation is obtained

from the time domain by a complex Fourier transform,

1 4o -
E(w) = Ef_oo E(t).e™t . dt. (2.2.8)

Just as in the time domain, £ (w) can be written as:
E(w) = |E(w)|ete™. (2.2.9)

where @ (w) now denotes the spectral phase. An inverse transform leads back to
the time domain,

E@t) = \/%f_*; E(t).e™t . dw. (2.2.10)

From Eq.2.2.10 it is clear that E(t) can be seen as a superposition of

: : ~ 2
monochromatic waves. The square of the spectral amplitude, |E (W)| , represents

the power spectrum, or spectral power density, which is the pulse parameter that

Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire

41



CHAP II: ULTRASHORT LASER PULSE GENERATION AND COMPRESSION

is most easily accessible experimentally. It is commonly referred to as the
spectrum of the pulse. The spectral phase can, in the same manner as the
temporal phase, be decomposed into different parts. A common procedure is to
employ Taylor expansion

)

O(w) = @, + Z‘,’fnian (w —wy)™ with a, = — : (2.2.11)

- n
awly=w,

It can be seen by inserting this Taylor expansion into Eq.2.2.10 that the first two
terms will not change the temporal profile of the pulse. A linear phase variation
does not change the shape of the pulse, but only introduces a temporal shift of the
entire pulse. Therefore, usually only the nonlinear part of the spectral phase is of
interest. Any nonlinear addition to the phase will redistribute the frequency

components and alter the temporal shape of the pulse [16].

2.2.2 Propagation of a Light Pulse in Transparent Medium

What happens to a short optical pulse propagating in a transparent
medium? Because of its large spectral width and because of group velocity
dispersion in transparent media, it undergoes a phase-distortion inducing an
increase of its duration. This happens with any optical element and needs to be
properly corrected in the course of experiments.

The frequency Fourier transform of a Gaussian pulse has already been given as

(0—w,)’
E(w)= EO\/z exp{— —0}
T 4r (2.2.12)

After the pulse has propagated a distance z, its spectrum is modified to

E(, w)=E;(0, w) exp [ik (W) z]: E,(w) exp [ik (w) z] (2.2.13)

where  k(w)=kz=2:=%n(w)z where k(w)is now a frequency dependent
v C

propagation factor. In order to allow for a partial analytical calculation of the

propagation effects, the propagation factor is rewritten using a Taylor expansion

as a function of the angular frequency, assuming that aw << w, (this condition is

only weakly true for the shortest pulses). Applying the Taylor expansion

42 | Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



CHAP II: ULTRASHORT LASER PULSE GENERATION AND COMPRESSION

dk 1 d’k 1 ,d'k
k(w):k(w0)+(w—w0)%wo +5(W_Wo)2 1 e o (w—w,) ) +0(w)  (2.2.14)
Where ﬁ:(m and 9k _[d7k(w) (2.2.15)

dw aw )., aw’ aw* ) |

to Eq.2.2.13, the pulse spectrum becomes
E(r,w)=E, (O,W).exp[— ik(w,)z—ik" z(w—w,) - (% + %k(z) Yw— wo)z} (2.216)

The time evolution of the electric field in the pulse is then derived from the
calculation of the inverse Fourier transform of Eq.2.2.16,

E(t,z)=TF {E(w,z)}

:2l f E(w,z =0).expljp(w)) exp(j wt)div (2.2.17)
So that £(1,2)=¢, - exp| ~T()| 1 2 oxpy | = (222.18)
" Vg(wo) V(p(w())
‘ )
where —— =42 jk% 2, V,(w )=[4 v, (w ){d—w} (2.2.19)
I'z) T ’ oW A W:WO, . (g m ~

In the first exponential of Eq.2.2.18, it is clear that, after propagation over a

distance:, the pulse keeps a Gaussian envelope. This envelope is delayed by an

amountz/V,, ¥, being the group velocity.

In the second term of Eq.2.2.18, one can observe that the phase of the central

frequency ., is delayed by an amount gafter propagation over a distance.. The
4

phase velocity 7, (w,)measures the propagation speed of the plane wave

components of the pulse in the medium. These plane waves do not carry any

information, because of their infinite duration. The resultant intensity is

z—Z]
;
Izt =1 ! or ( f (2.2.20)

ek z) T T alr 2y
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The Temporal Pulse width at point : is

At =Ar A1+ 4 kP ) (2.2.21)

In summary, the propagation of a short optical pulse through a transparent

medium results in a delay of the pulse, a duration broadening and a frequency

chirp.
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Figure.2.16: A numerical calculation of the intensity envelope of a pulse
propagating along -, in a lossless, transparent medium. The
pulse broadens with time but, from energy conservation, its
time integrated intensity remains constant.

2.2.3 Dispersion Parameter of a Transparent Medium
The dispersion of an index of refraction is usually tabulated as a function of
the wavelength of light in vacuum. We therefore need to recalculate the

dispersion as a function of the wavelength.

From Eq.2.2.15 we obtain

2
K-~ p (2.2.22)
2me
Where D is the dispersion parameter.
A d’n
kP =— T (2.2.23)
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dZ
The sign of £® depends on the curvature of the index dispersion d_ﬁ?

2.2.3.1. Temporal study of the widening of ultra-short pulses introduced
by the elements of the cavity

Propagation of ultrashort optical pulses in a linear optical medium
consisting of free space, dispersive media, diffractive optical elements [8,9],
focusing elements and apertures has been extensively studied analytically,
though only a few isolated attempts have been made on numerical simulation. In
view of the recent advance in ultrashort pulse propagation, a strong need is felt
for developing a numerical formalism capable of performing such a complete
analysis of the issues involved in pulse propagation. Here we introduce a
numerical simulation tool for the propagation of ultrashort pulses of arbitrary
shape through linear homogeneous media based on wave optical field
representation, which enables an easy evaluation for the merit functions of the
pulsed field. This allows us to analyze the pulse in the time-frequency domain at
any arbitrary plane. With this tool, we investigate the spectral and temporal
evolution of ultrashort pulses at any arbitrary propagation distance. The

propagation of the pulse is achieved in terms of its spectral equivalent.

Furthermore, we introduce certain sampling rules for the spectral phase so
that the phase information is sampled properly when we move from one spectral
component to another in the spectral equivalent of the pulse. As a consequence,
the algorithm becomes computationally efficient since we only considered a small

number of spectral components for simulation of pulse propagation [17, 18, 19].

The Fourier theorem is the most classical approach for describing the
propagation of electromagnetic signals through dispersive media. In the case of
signals characterized by a slow temporal varying envelope, the phase is usually

approximated by the Taylor expansion in the neighborhood of the central

45 | Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



CHAP II: ULTRASHORT LASER PULSE GENERATION AND COMPRESSION

frequency of the input pulse. For shorter pulses, the concept of group velocity is
irrelevant and the envelope distortion is a function of the higher order terms.

Ultrashort pulses, less than 10 fs, are now available. Their envelope
harmonic content is so high that the Taylor expansion of the phase is now more
possible. There is no other way than a numerical computation of the Fourier
integral. However this method does not permit a straightforward physical
understanding of the envelope propagation and principally does not picture the
fact that this is the group velocity dispersion which generates the ultrashort pulse
distortions. Such a situation claims for another type of decomposition involving
both a time and frequency dependence of the components.

Numerous bidimensional representations of acoustic and electromagnetic
signals have already been suggested. We propose here a method derived from the
Gabor transformation in order to decompose the signal into an infinite number of
elementary components (wavelets) of same duration (much more longer than
that of the original signal), each of them being centered at a frequency Q

belonging to the Fourier spectrum of the pulse[20].

2.2.4. Time-Frequency Decomposition
2.2.4.1 Wavelet Theory

Geophysicist Jean Morlet proposed in 1983, a revolutionary process, the
analysis and the synthesis by the wavelet, which makes it possible to analyze
signals effectively or combine very different phenomena of scales. The wavelets
are very particular elementary functions. They are the shortest and most
elementary vibrations that one can consider. One can say that the wavelet carries
out a zooming on any interesting phenomenon of the signal, in the vicinity of the

point considered [21].
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2.2.4.2 Wavelet Techniques

Starting with a signal e(t), in plane z = 0, we define a wavelet centered at Q by

0(2) = E(w).exp [— %}, with E(w) = ZE—‘; % exp (W:;O)Z], (2.2.24)

Y E(w)

Q Wan
Figure.2.17: A Gaussian envelope decomposed in a number of wavelets
We calculate the electric field associated with the wavelet 0(£2,z = 0).

6(t,z=10) =TF{0(0,z=0)} (2.2.25)

0(t,z=10) = EO\/Z.exp [_(WO_Q)Z] .exp [—itz] .exp [th]. (2.2.26)

4(y+I) y+r y+r

The maximum amplitude of the wavelet 8(t,x = 0) varies with (), center
frequency of analysis on a Gaussian of parameter y + I [22].
yr

In time, the pulse is also Gaussian, of parameter e
14

The signal propagates in the positive z direction in a linear dispersive and
transparent medium, which fills the half space z > 0 and whose refractive index

is n(w). After propagation, the wavelet 8((2, z) may be written as

0(2,z) = j%yE(w). exp [— %} .exp[jo(w)]. (2.2.27)

2
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We can say that 7,,,,..: 1S large enough to ensure a good application of the
function 6(t,z = 0) over a spectral range lying in the neighbourhood of Q in

Figure 2.17. Under these circumstances, we have

o (w) :@(Q)+(W—Q)%W=Q+%(W—Q)Z% ﬂ+...+%(w_

w=

ane
.Q)n m el + G(W) (2.2.28)

Neglecting the higher terms in Eq.2.2.28:

BW) =9@+w - +ow-025  +ew). (2.2.29)
wlyw=0n 2! w=0
000 =% [F o[- em |- “";;”2]
exp [j8© +j(w — MW +3j(w — 0)%.9?)| (2.2.30)

We calculate the temporal electric field associated with the wavelet 6(1, z).

0(t,z) = ifj;o 0(Q, z).exp(jwt)dw (2.2.31)
E n (- wo) ] ©) _[i_'_i__ Q(z)]ﬂz @-wo) _ . (1)
0(t,z) = ——2 e (10°) e lar T ay 2/ el 19l
27 24Ty
0-we)? _ .

[ E*E“’@(”]W N ] N e L I

-0
(2.2.32)

The amplitude of the incident Q2 wavelet is given, from Eq.2.2.33, by

0(t,z) = i F(Z exp(ﬂ)“”)exp( r(z) [t + g(ﬂ)r) X

e (- 21 1) e (- 52) 2+ S 42,
(2.2.33)
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This wavelet is characterized by a Gaussian envelope (see Appendix B). This
decomposition is valid only for the values of Aw much larger than dw (Aw >
Sw).

z . . .
]15 characterized by a Gaussian

The delay of group of the wavelet [t+
Vg(@)

envelope which is the temporal width.

The delay of group of the wavelet is inversely proportional to the velocity of

group. Its envelope propagates without deformation [20].

2.2.4.3 Simulations and Comparison with silica fiber

Initial pulse: Aty =10 fs
Wavelength: A =800nm

Pulse of the wavelet: ATy, aveter = 1000 fs
Propagation lenth: x=1mand,5m
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Figure 2.18: (a) Pulse after propagating 5 cm in silica fiber, (b) Wavelet after
propagating 5 cm in silica fiber, (c) Contour of the wavelet after propagating 5 cm
in silica fiber, (d) Pulse after propagating 1 m in Titanium-Sapphire, (e) wavelet
after propagating 1m in Titane-Sapphire, (f) Contour of the wavelet after
propagating 1 m in Titanium-Sapphire.
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Figure 2.19: (a) Pulse after propagating 10 cm in silica fiber, (b) Wavelet after
propagating 10 cm in silica fiber, (c) Contour of the wavelet after propagating 10 cm
in silica fiber, (d) Pulse after propagating 5 m in Titanium-Sapphire, (e) Wavelet
after propagating 5m in Titane- Sapphire, (f) Contour of the wavelet after
propagating 5m in Titanium-Sapphire [21-23].
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In this part, we made a detailed study of comparison of the propagation of
ultrashort laser pulses in Titanium-Sapphire and in silica fiber. We have
demonstrated here the possible decomposition of an ultrashort pulse into an
infinite number of longer Fourier-transform limited wavelets which propagate
without any deformation through a dispersive medium. After propagation
through the medium, the pulse may be visualized in a three dimensional
representation by the locus of the wavelet maxima. This representation permits
the evaluation of the broadening suffered by the pulse. For a transparent medium,
the propagation of the (2 wavelet is described by the convolution of the incident Q
wavelet with a 8(f2) distribution centered at the group delay, relative to (0 [21,
23].

Although this technique represents a big improvement in our ability to
describe such pulses, they require additional effort, both in the apparatus and in
the extraction of the pulse intensity and phase from the experimental trace. Our
results show that Titanium-Sapphire is a better candidate for a novel generation
of optical fibers for the transmission and propagation of an ultrashort laser pulse.
2.3 Cavity Alignment
2.3.1. Group Velocity Dispersion [1]

An ultrashort pulse of light will lengthen after it has passed through glass,
as the index of refraction, which dictates the speed of light in the material,
depends on the nonlinearly on the wavelength of light. The wavelength of an
ultrashort pulse of light is formed from the distribution of wavelengths on either
side of the center wavelength, with the width of this distribution inversely
proportional to the pulse duration. At a given wavelength, the refractive index
determines the velocity of a single mode, known as the phase velocity. Figure 2.20
is a plot of the refractive index, n(1), versus the wavelength, A, and it sees n(4)
decrease monotonically as A increases, with a gradual upward curvature for most
materials that are transparent in the optical spectrum. This is called dispersion. A
material producing a downward curvature is said to have an anomalous

dispersion.
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Figure. 2.20: Group velocity dispersion curve

The slope of the curve, d’;—?) is the group velocity, which defines the velocity of the

wave packet with a central wavelength A. The second derivative of the slope,

d*n(d)

I yields the group velocity dispersion (GVD), which is defined as the rate at
which the frequency components of the wave packet change their relative phases.

Group velocity dispersion is responsible for a dispersive broadening of the pulses.

2.3.2. Self Phase Modulation [1]

The optical Kerr effect is responsible for the nonlinear effect of Self Phase
Modulation (SPM). Each of the different frequency components of the pulse
experiences a different phase shift, generating new frequencies and broadening
the frequency spectrum of the pulse, symmetrically. The leading edge of the pulse
is shifted to lower frequencies (down chirp) while the trailing edge is shifted to
higher frequencies (up chirp). The center of the pulse experiences an
approximate linear chirp.

Self phase modulation itself is not a dispersive effect, but it causes a pulse to no
longer be transform-limited when crossing a transparent material, which means
the pulse is then subject to dispersion, like that in Figure 2.21. Dispersion causes
the ‘redder’ parts of the pulse to have a higher velocity than the ‘bluer’ parts,
forcing the front of the pulse to move quicker than the back, temporally
broadening the pulse. In anomalous dispersion the opposite is true and the pulse
is temporally compressed. The self phase modulation becomes stronger as the

pulse becomes more intense, in turn causing more broadening.
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N

Figure2.21: Dispersion of light through a prism

2.3.3 Prismatic Group Delay Dispersion Compensator [1]

There are many dispersive elements within a laser cavity. An oscillating
pulse will receive a slight chirp from each of these dispersive elements every
round-trip. The cumulative effect from a lack of compensation for both GVD and
SPM effects would see a temporal broadening for the pulse. The oscillator uses a
pair of prisms that the light passes through twice for complete compensation
against the positively chirped dispersion an ultrashort pulse experiences on a
round-trip. The choice of a material, orientation and distance between the prisms
is such that they introduce a net negative GVD, cancelling out the positive GVD

from the rest of the system.

: A
JAR

£ A

A R
p— i |

Figure 2.22. Pulse compressor, with a negative GDD. Longer wavelengths
traverse more glass. The use of two prisms and a mirror simplifies
the device somewhat, but it remains difficult to vary its GDD over a
wide range and to tune it.
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Group Delay Dispersion (GDD) is a ubiquitous, and often irritating, phenomenon
in ultrafast laser labs. When ultrashort pulses propagate through dispersive
media, their frequency components emerge at different times due to GDD, causing
the resulting pulse to be chirped and stretched and reducing the pulse’s peak
power. This effect can be compensated by using a pulse compressor, which can
introduce negative GDD. The most common method for introducing negative GDD
is through angular dispersion. Martinez et al. showed that angular dispersion,
regardless of its sign, yields negative GDD. Therefore, simply propagating the
pulse through a prism or diffracting it off a grating (but we will, for simplicity,
discuss only prism devices here) yields negative GDD, whose magnitude depends
on the propagation distance. But the output pulse has inconvenient angular and
spatial dispersion. Adding a second identical prism, anti-parallel to the first one,
eliminates the angular dispersion from the output beam. Eliminating the spatial
dispersion requires propagation through an additional identical pair of prisms
(see Fig.2.22). As a result, the four-prism pulse compressor can compensate for the
material dispersion and also reconstruct the beam. Indeed, with the geometry

shown in Figure 2.22 for two prisms, we can obtain the GDD by:

o = Ll (= 2) @ s —2(8) s}

As a comparison, we recall the expression of the dispersion introduced by a

length [ of a transparent medium

no_ 22 dn?

Pm = chzﬁl (2.3.2)

Looking at these different expressions of n, one can see that if usual materials
(including Ti: Sa) present a positive dispersion, it can be compensated by prisms

with a sufficient spacing between them.
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2.3.4 Time Compression with a Pair of Gratings [1]

In order to correct for group velocity dispersion distortions, several optical
devices have been designed that have overall negative group velocity dispersion.
As an example we consider a pair of transmission gratings R; and R,. These

gratings have a groove spacing d , and their separation is [ (Fig.2.23).

A light ray, with wavelength A, impinges on gratings R; with an angle of
incidence y and is scattered with an angle 6. The gratings are set in such a way
that their wavelength dispersions are reversed, which implies that the exiting ray
at point B is parallel to the incident ray. P, and P, are wave planes at the entrance
A and exit B of the system. P, crosses the emerging ray at point C. Between points
A and B the light travels a distance b = [/cos@ . The diffraction due to a grating
can be written as

d(siny + sinf) = A (2.3.3)
In order to calculate the dispersion from Eq.2.3.2, the group delay experienced by
the light must first be evaluated. In this specific case, where propagation takes
place only in air, the group delay is simply equal to the travel time of light along

ABC,

Figure 2.23 Grating pairs used in the control of dispersion. r and b
indicate the relative paths of arbitrary long- and short-
wavelength rays. vy is the (Brewster) angle of incidence at the
prism face. Light is reflected in the plane (p1-p2) in order to
remove the spatial dispersion shown.
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D=—]1- (% — siny)z]_l, (2.3.4)

k" =— 2 [1 — (% — siny)z]_l, (2.3.5)

2mc2d?

This expression demonstrates the possibility of selecting a set of parameters in
such a way as to design a pair of gratings producing positive or negative active
group velocity dispersion. Therefore, one can build optical devices that
compensate a positive group velocity dispersion suffered by optical pulses

traveling through a transparent material.

I|”|.”|I

1y

Figure.2.24: Grating optical compressor. Two gratings are set in subtractive
diffraction geometry. The red components of a light pulse have a longer
optical path than the blue ones. The various components of a positively
dispersed pulse can therefore be reset in phase.

Optical compressors have played a key role in the development of various fields
in which short optical pulses have been used as a primary tool. Figure 2.24 shows

a typical arrangement for a reflective pulse compressor.
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CHAP III:

ULTRASHORT LASER PULSE MODELING

For an understanding of the nonlinear phenomena in optical fibers,
it is necessary to consider the theory of electromagnetic wave
propagation in dispersive nonlinear media. The objective of this chapter
is to obtain a basic equation that governs propagation of optical pulses in
single-mode fibers. Section 3.1 introduces Maxwell’s equations and
important concepts such as the linear and nonlinear parts of the induced
polarization and the frequency-dependent dielectric constant. The
concept of fiber modes is introduced in Section 3.2 where the single-mode
condition is also discussed. Section 3.3 considers the theory of pulse
propagation in nonlinear dispersive media in the slowly varying envelope
approximation with the assumption that the spectral width of the pulse is
much smaller than the frequency of the incident radiation. The numerical
methods used to solve the resulting propagation equation are discussed

in Section 3.4.

3.1 Maxwell’s Equations

Optical communication systems use the phenomenon of total internal reflection

for guiding optical pulses in optical fibers. The propagation of light through such a

dielectric waveguide can be described using Maxwell’s equations for electromagnetic

waves. The propagation of electromagnetic fields in any medium whose electric and

magnetic field vectors are given by £ and H and their corresponding flux densities are

given by D and B, respectively, is governed by the following four Maxwell’s equations

[1]:

B
VXE__E'
aD
VXH—]-I‘E,
V.D = p,
V.B=0,

(3.1)

(3.2)

(3.3)
(3.4)
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where E and H are electric and magnetic field vectors, respectively, and D and B
are corresponding electric and magnetic flux densities. The current density vector
J and the charge density p represent the sources for the electromagnetic field. In
the absence of free charges in a medium such as optical fibers, ] = 0Oand p =0.
The flux densities D and B arise in response to the electric and magnetic fields E
and H propagating inside the medium and are related to them through the
constitutive relations given by [1]
D =¢E+ P, (3.5)
B=pH+ MV, (3.6)
where & is the vacuum permittivity, y, is the vacuum permeability, and P and M
are the induced electric and magnetic polarizations. For a nonmagnetic medium
such as optical fibers, M = 0.
Maxwell’s equations can be used to obtain the wave equation that
describes light propagation in optical fibers. By taking the curl of Eq3.1 and using
Egs. (3.2), (3.5), and (3.6), one can eliminate B and D in favor of E and P and

obtain

1 0%E a%p
VXVXE==5G5a ~ hge

(3.7)
where c is the speed of light in vacuum and the relation pyg, = 1/C? was used. To
complete the description, a relation between the induced polarization P and the
electric field E is needed. In general, the evaluation of P requires a quantum-
mechanical approach. Although such an approach is often necessary when the
optical frequency is near a medium resonance, a phenomenological relation of the
form (1.7) can be used to relate P and E far from medium resonances. This is the
case for optical fibers in the wavelength range 0.5 — 2um that is of interest for the
study of nonlinear effects. If we include only the third-order nonlinear effects

governed by y®, the induced polarization consists of two parts such that

P(T‘, t) = PL(T', t) + PNL(T', t), (38)
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where the linear part P; and the nonlinear part Py; are related to the electric

field by the general relations [2-4]
P(r,t) =g [0 x®D(t —t").E(r,t)dt’ (3.9)

+00
Py, (r,t) =g, ﬂf @t —t,t—t, t—t3)
—o0

X E(r,t))E(r,t,)E(r, t;)dt, dt,dt. (3.10)
These relations are valid in the electric-dipole approximation and assume that the
medium response is local. Egs.(3.7)-(3.10) provide a general formalism for
studying the third-order nonlinear effects in optical fibers. Because of their
complexity, it is necessary to make several simplifying approximations.
In a major simplification, the nonlinear polarization Py; in Eq.(3.8) is treated as a
small perturbation to the total induced polarization. The first step therefore
consists of solving Eq.(3.7) with Py; = 0. Because Eq.(3.7) is then linear in E, it is
useful to write in the frequency domain as
VXVxE(,w) —s(w)‘:—zzﬁ(r,w) =0, (3.11)
where E(r,w) is the Fourier transform of E (r, t) defined as
Ear,w) = [TTE@,t).exp(iwt) dt. (3.12)
The frequency-dependent dielectric constant appearing in Eq.(3.11) is defined
as ew) =1+ FVw), (3.13)
where ¥®(w) is the Fourier transform of y((t). As ¥ (w) is in general
complex, so is e(w). Its real and imaginary parts can be related to the refractive
index n(w) and the absorption coefficient a(w) by using the definition
iac

£ = (n+%2 (3.14)

2w
From Egs. (3.13) and (3.14), n and a are related to y* by the relations
nw) =1+ %Re[)('"(l)(w)], (3.15)
=Y (1)
a(w) = > Im[)( (W)], (3.16)
where R, and [, stand for the real and imaginary parts, respectively.

Two further simplifications can be made before solving Eq.(3.11). First, because
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of low optical losses in fibers in the wavelength region of interest, the imaginary
part of e(w) is small in comparison to the real part.
Thus, we can replace e(w) by n?(w) in the following discussion of fiber modes
and include fiber loss later in a perturbative manner. Second, as n(w) is often
independent of the spatial coordinates in both the core and the cladding of step-
index fibers, one can use
VXxVxE=V(V.E)—V?E = V?E, (3.17)
where the relation V.D = ¢V.E = 0 was used from Equation.3.3. With these
simplifications, Equation.3.11 takes the form
V2E — nz(w)‘:—;E = 0. (3.18)
This equation is solved in the next section on fiber modes.
3.2 Fiber Modes
At any frequency w, optical fibers can support a finite number of guided
modes whose spatial distribution E(r,w) is a solution of the wave equation
(3.18) and satisfies all appropriate boundary conditions. In addition, the fiber can
support a continuum of unguided radiation modes. Although the inclusion of
radiation modes is crucial in problems involving transfer of power between
bounded and radiation modes [5], they do not play an important role in the
discussion of nonlinear effects. As fiber modes are covered in many textbooks [5-
7], they are discussed only briefly in this section.
3.2.1 Eigenvalue Equation
Because of the cylindrical symmetry of fibers, it is useful to express the

wave Eq.3.18 in cylindrical coordinates p, @ and z:

0%E  10E | 1 0°E 2
207 + 0 op + 22 907 -I- + n kOE 0, (3.19)

where k, = = 2771 and E is the Fourier transform of the electric field E ,i.e.,
1 +00 ~ .
E(r,t) = ;f_oo E(r,w).exp(—iwt) dw. (3.20)

Similar relations exist for the magnetic field H(r, t). As E and H satisfy Maxwell’s

equations (3.1)-(3.4), only two components out of six are independent.
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It is customary to choose E, and H, as the independent components and express

EP,EQ), ﬁp, and Hy in terms E, and H,. Both £, and H, satisfy Eq.3.19. The wave

equation for E, is easily solved by using the method of separation of variables,
resulting in the following general form:

E,(r,w) = AW)F(p) exp(£im®) exp(ifz), (3.21)
where A is a normalization constant, f is the propagation constant, m is an

integer, and F(p) is the solution of

2
42 (kg - 7 - %)F =0, (3.22)
where the refractive index n = n, for p < a for a fiber of core radius a but takes
the value n, outside the core (p > a). Eq.3.22 is the well-known differential

equation for Bessel functions. Its general solution inside the core can be written

as
F(p) = Cm(kp) + CoNy, (kp), (3-23)

where [, is the Bessel function, N,, is the Neumann function, and
k = (nik§ — pH)? (3.24)

The constants C; and C, are determined using the boundary conditions. As
N,,(kp) has a singularity at p = 0, C, = 0 for a physically meaningful solution.
The constant C; can be absorbed in 4 appearing in Eq. (3.21). Thus,

F(p) = Jm(kp), p<a (3.25)
In the cladding region p > a the solution F(p) should be such that it decays
exponentially for large p. The modified Bessel function k,, represents such a
solution. Therefore,

F(p) = kn(vp), pza (3.26)
where

y = (B* — n3k§)'/? (3.27)
The same procedure can be followed to obtain the magnetic field component H,.
The boundary condition that the tangential components of £ and H be continuous
across the core-cladding interface requires that E,, H,, E; and H, be the same
when p = a is approached from inside or outside the core. The equality of these

field components at p = a leads to an eigenvalue equation whose solutions
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determine the propagation constant f for the fiber modes. Since the whole

procedure is well known [5]-[7], we write the eigenvalue equation directly:

k). | K0 | [l 78 oty =(’"5"°(”%‘”5))2 (3.28)

Kim(ka) * vkmGa)l limka) T n2 yiem(ya) an k2y?
where a prime denotes differentiation with respect to the argument and we used
the important relation

k? +y% = n? —nd)k3 (3.29)
The eigenvalue Eq.3.28 in general has several solutions for  for each integer
value of m. It is customary to express these solutions by £,,,,, , where both m and
n take integer values. Each eigenvalue f,,, corresponds to one specific mode
supported by the fiber. The corresponding modal field distribution is obtained
from Eq.3.21. It turns out [5-7] that there are two types of fiber modes,
designated as HE,,, and EH,,,. For m = 0, these modes are analogous to the
transverse-electric (TE) and transverse-magnetic (TM) modes of a planar
waveguide because the axial component of the electric field, or the magnetic field,
vanishes. However, for m > 0, fiber modes become hybrid, i.e., all six components

of the electromagnetic field are nonzero.
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3.2.2 Single-Mode Condition

The number of modes supported by a specific fiber at a given wavelength
depends on its design parameters, namely the core radius a and the core-cladding
index difference (n; —n,). An important parameter for each mode is its cut-off
frequency. This frequency is determined by the condition y = 0. The value of k
when y = 0 for a given mode determines the cut-off frequency from Eq. (3.29). It
is useful to define a normalized frequency V by the relation

V =kq.a=kyan?—n)/?, (3.30)
where k_ is obtained from Eq.(3.29) by setting y = 0.

The eigenvalue equation (3.28) can be used to determine the values of V' at
which different modes reach cut-off. The procedure is complicated, but has been
described in many texts [5-7]. Since we are interested mainly in single-mode
fibers, we limit the discussion to the cut-off condition that allows the fiber to
support only one mode. A single-mode fiber supports only the HE;; mode, also

referred to as the fundamental mode.

3.2.3 Characteristics of the Fundamental Mode

The field distribution E(r,t) corresponding to the HE,; mode has three
nonzero components E,, Eg, and E, or in Cartesian coordinates E,, E, and E,.
Among these, either E, or E,, dominates. Thus, to a good degree of approximation,
the fundamental fiber mode is linearly polarized in either x or y direction
depending on whether E, or E, dominates. In this respect, even a single-mode
fiber is not truly single mode because it can support two modes of orthogonal
polarizations. The notation LP,, is sometimes used to denote the linearly
polarized modes, which are approximate solutions of Eq.3.19. The fundamental
mode HE;, corresponds to LP,, in this notation [6].

The two orthogonally polarized modes of a single-mode fiber are
degenerate (i.e, they have the same propagation constant) under ideal
conditions. In practice, irregularities such as random variations in the core shape

and size along the fiber length break this degeneracy slightly, mix the two
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polarization components randomly, and scramble the polarization of the incident
light as it propagates down the fiber. Assuming that the incident light is polarized
along a principal axis (chosen to coincide with the x axis), the electric field for the

fundamental fiber mode HE; is approximately given by

E(r,w) = 2{AW)F (x,y)exp[iB(w)z]}, (3.31)
where A(w) is a normalization constant. The transverse distribution inside the

core is found to be

F(x,y) =Jo(kp), p < a (3.32)

where p = (x? + y?)1/2 is the radial distance. Outside the fiber core, the field

decays exponentially as [5]

1

F(x,y) = (%)Elo(ka)exp[—y(p —a)l, p=a (3.33)

where K, (yp) in Eq.3.26 was approximated by the leading term in its asymptotic
expansion and a constant factor was added to ensure the equality of F(x,y) at
p = a. The propagation constant f(w) in Eq.3.31 is obtained by solving the
eigenvalue Eq.3.28. Its frequency dependence results not only from the frequency
dependence of n; and n, but also from the frequency dependence of k. The
evaluation of f(w) generally requires a numerical solution of Eq.3.28 although
approximate analytic expressions can be obtained in specific cases [5]. The
effective mode index is related to f by n.r = f/ky,. As the use of modal
distribution F (x, y) given by Eqs.3.32 and Eq.3.33 is cumbersome in practice, the
fundamental fiber mode is often approximated by a Gaussian distribution of the

form
F(x,y) = exp [— (xz:—zyz)], (3.34)

where the width parameter r is determined by fitting the exact distribution to a

Gaussian form or by following a variational procedure.
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3.3 Pulse-Propagation Equation

The study of most nonlinear effects in optical fibers involves the use of
short pulses with widths ranging from ~10ns to 10fs. When such optical pulses
propagate inside a fiber, both dispersive and nonlinear effects influence their
shape and spectrum. In this section we derive a basic equation that governs
propagation of optical pulses in nonlinear dispersive fibers. The starting point is

the wave Eq.3.7. By using Egs. (3.8) and (3.17), it can be written in the form

VZE—iazE _acpg

0%PnL
2oz Hogpe

T Ho 2

(3.35)
where the linear and nonlinear parts of the induced polarization are related to

the electric field E(r, t) through Egs.(3.9) and (3.10), respectively.

3.3.1 Nonlinear Pulse Propagation

It is necessary to make several simplifying assumptions before solving Eq.
3.35. First, Py, is treated as a small perturbation to P;. This is justified because
nonlinear changes in the refractive index are < 107° in practice. Second, the
optical field is assumed to be quasi-monochromatic, i.e., the pulse spectrum,
centered at wy, is assumed to have a spectral width Aw such that Aw/w, < 1.
Since wy~1015S~1 | the last assumption is valid for pulses as short as 0.1 ps. In
the slowly varying envelope approximation adopted here, it is useful to separate

the rapidly varying part of the electric field by writing it in the form
E(r,t) = %J?[E(r, t) exp(—iwgyt) + cc] (3.36)
where % is the polarization unit vector, and E (7, t) is a slowly varying function of

time (relative to the optical period). The polarization components P; and Py; can

also be expressed in a similar way by writing

P(rt) = %f[PL(r, t) exp(—iw,t) + c.c.] (3.37)
Py, (r,t) = %Q[PNL (r,t) exp(—iwyt) + c.c.] (3.38)

The linear component P; can be obtained by substituting Eq.3.37 in Eq.3.9 and is
given by
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PL(rt) =g [0 x5 (¢ — t").E(r,texpliwg(t — t))]dt

= f+°° 7D WE (r,w — wy)exp[—i(w — wy)t]dw, (3.39)

271—

where E(r,w) is the Fourier transform of E(r,t) and is defined similarly to
Eq.3.12. The nonlinear component Py, (7, t) is obtained by substituting Eq.3.38 in
Eq.3.10. Considerable simplification occurs if the nonlinear response is assumed
to be instantaneous so that the time dependence of Y in Eq.3.10 is given by the
product of three delta functions of the form §(t — t;). Eq.3.10 then reduces to
Py (r,t) = gox® : E(r, t)E(r, )E (1, t). (3.40)
The assumption of instantaneous nonlinear response amounts to neglecting the
contribution of molecular vibrations to y©) (the Raman effect).
When Eq.3.36 is substituted in Eq.3.40, Py, (r,t) is found to have a term
oscillating at w, and another term oscillating at the third-harmonic frequency
3wy. The latter term requires phase matching and is generally negligible in

optical fibers. By making use of Eq.3.38, Py, (7, t) is given by

Py (1, t) = g4y E(1, 1), (3.41)

where the nonlinear contribution to the dielectric constant is defined as

ent = 3 K E O (342)
To obtain the wave equation for the slowly varying amplitude E (r, t), it is more
convenient to work in the Fourier domain. This is generally not possible as
Eq.3.35 is nonlinear because of the intensity dependence of ¢,. In one approach,
gy. 1s treated as a constant during the derivation of the propagation equation.
The approach is justified in view of the slowly varying envelope approximation
and the perturbative nature of Py;.
The nonlinear Schrodinger equation that governs propagation of optical pulses

inside single fiber is given by.
—Z+/31§+— + - A iy|Al%A, (3.43)

where the nonlinear parameter y is defined as
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_ 2wy

CAeff

= = Re(x\ P (3.44)

In obtaining Eq.(3.43) the pulse amplitude A is assumed to be normalized such
that |A|? represents the optical power. The quantity y|A|? is then measured in

units of m™" if n, is expressed in units of m?/W. The parameter A,;; is known as

the effective core area and is defined as

+00 2 2
A = UEGIrGy)Paxay)
T ERIFGy)tdxdy

(3.45)

Its evaluation requires the use of modal distribution F(x,y) for the fundamental
fiber mode. Clearly A.¢; depends on fiber parameters such as the core radius and
the core-cladding index difference. If F(x,y) is approximated by a Gaussian

distribution as in Eq. (3.34), A.rf = .

Equation (3.43) describes propagation of picosecond optical pulses in
single-mode fibers. It is often referred to as the nonlinear Schrédinger (NLS)
equation because it can be reduced to that form under certain conditions. It
includes the effects of fiber losses through a, of chromatic dispersion through S,
and f3,, and of fiber nonlinearity through y. Briefly, the pulse envelope moves at

the group velocity v, = 1/B; while the effects of group-velocity dispersion (GVD)

are governed by f3,.

3.3.2 Higher-Order Nonlinear Effects

Although the propagation Eq.3.43 has been successful in explaining a large
number of nonlinear effects, it may need modification depending on the
experimental conditions. For example, Eq.3.43 does not include the effects of
stimulated inelastic scattering such as SRS and SBS. If the peak power of the
incident pulse is above a threshold level, both SRS and SBS can transfer energy
from the pulse to a new pulse, which may propagate in the same or the opposite
direction. The two pulses interact with each other through the Raman or Brillouin
gain and XPM. A similar situation occurs when two or more pulses at different

wavelengths (separated by more than individual spectral widths) are incident on
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the fiber. Simultaneous propagation of multiple pulses is governed by a set of
equations similar to Eq.3.43, modified suitably to include the contributions of
XPM and the Raman or Brillouin gain.

Eq.3.43 should also be modified for ultrashort optical pulses whose width
is close to or < 1ps [9,10]. The spectral width of such pulses becomes large
enough that several approximations made in the derivation of Eq.3.43 become
questionable. The most important limitation turns out to be the neglect of the
Raman effect. For pulses with a wide spectrum (> 0.1 THz), the Raman gain can
amplify the low-frequency components of a pulse by transferring energy from the
high-frequency components of the same pulse. This phenomenon is called
intrapulse Raman scattering. As a result of it, the pulse spectrum shifts toward
the low-frequency (red) side as the pulse propagates inside the fiber, a
phenomenon referred to as the self-frequency shift [8]. The physical origin of this
effect is related to the delayed nature of the Raman (vibrational) response [13].
Mathematically, Eq.3.40 cannot be used in the derivation of Eq.3.43; one must use
the general form of the nonlinear polarization given in Eq.3.10.

The starting point is again the wave Eq.3.35. Eq.3.10 describes a wide
variety of third-order nonlinear effects, and not all of them are relevant to our
discussion. For example, nonlinear phenomena such as third harmonic
generation and four-wave mixing are unlikely to occur unless an appropriate
phase-matching condition is satisfied [18,19]. For pulses shorter than 5 ps but

wide enough to contain many optical cycles (widths> 10 fs), we can obtain:

Z+24+

z

iB29%A _ B3 9°A _ 2400 L9 cia1zay _ 7 40142
e B = (lAPA+ =2 (4P - Ta%E), (346)

It is easy to identify the origin of the last three higher-order terms in Eq.3.46. The
term proportional to 55 results from including the cubic term in the expansion of
the propagation constant. This term governs the effects of third-order dispersion
and becomes important for ultrashort pulses because of their wide bandwidth.

The term proportional to wy ! results from including the first derivative of Py;. It
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is responsible for self-steepening and shock formation [13-14]. The last term,
proportional to Ty in Eq.3.46, has its origin in the delayed Raman response, and is
responsible for the self-frequency shift induced by intrapulse Raman scattering.
For pulses of width T, > 5 ps , the parameters (w,T,)"! and T /T, become so
small (< 0,001) that the last two terms in Equation.3.46 can be neglected. As the
contribution of the third-order dispersion term is also quite small for such pulses
(as long as the carrier wavelength is not too close to the zero-dispersion

wavelength), one can use the simplified equation [11-12]

i24i2a-822_yapa=o. (347)
In the special case of a = 0, Eq.3.47 is referred to as the NLS equation because it
resembles the Schrodinger equation with a nonlinear potential term (variable z
playing the role of time). To extend the analogy further, Eq.3.46 is called the
generalized (or extended) NLS equation. The NLS equation is a fundamental
equation of nonlinear science and has been studied extensively in the context of
solitons [15-17]. Eq.3.47 is the simplest nonlinear equation for studying third

order nonlinear effects in optical fibers.

3.4 Numerical Method

3.4.1 Introduction

A numerical approach is therefore often necessary for an understanding of
the nonlinear effects in optical fibers. A large number of numerical methods can
be used for this purpose [18]. The one method that has been used extensively to
solve the pulse-propagation problem in nonlinear dispersive media is the split-

step Fourier method [19-20].

3.4.2 Split-Step Fourier Method
The relative speed of this method compared with most finite-difference

schemes can be attributed in part to the use of the finite-Fourier-transform (FFT)
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algorithm [21, 22]. This section describes various numerical techniques used to
study the pulse-propagation problem in optical fibers with emphasis on the split-
step Fourier method and its modifications (see Appendix B).

To understand the philosophy behind the split-step Fourier method, it is

useful to write Eq. (3.46) formally in the form

dA ~ =
—=(D+N)4 (3.48)

where D is a differential operator that accounts for dispersion and absorption in a
linear medium and N is a nonlinear operator that governs the effect of fiber

nonlinearities on pulse propagation. These operators are given by

Do _ 20" B _a

b= s oz T som 2 (3:49)
Vo= 24 L1292 14124) — T, 242

N =iy (JAP + -5 57 (A1) - T 250), (3.50)

In general, dispersion and nonlinearity act together along the length of the fiber.
The split-step Fourier method obtains an approximate solution by assuming that
in propagating the optical field over a small distance h, the dispersive and
nonlinear effects can be pretended to act independently[23,24]. More specifically,

propagation from z to z + h is carried out in two steps (see Appendix B).

3.5 Chapter Summary

Pulse propagation in optical fibers is governed by the NLS equation. In this
chapter we have derived the NLS equation that governs the propagation of optical
pulses in optical fibers from the Maxwell’s equations. We gave the analytical
solutions to this equation for two specific cases and discussed the properties of
these solutions. We also presented a numerical method that can be used to study the

propagation of pulse through titanium sapphire.
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CHAP1V: GROUP VELOCITY DISPERSION EFFECT

The preceding chapter discussed how the combined effects of
group-velocity dispersion (GVD) and self-phase modulation (SPM) on
optical pulses propagating inside a fiber can be studied by solving a
pulse-propagation equation. Before considering the general case, it is
instructive to study the effects of GVD alone. This chapter considers the
pulse-propagation problem by treating fibers as a linear optical medium.
In Section 4.1 we discuss the conditions under which the GVD effects
dominate over the nonlinear effects by introducing two length scales
associated with GVD and SPM. Dispersion-induced broadening of optical
pulses is considered in Section 4.2 for several specific pulse shapes,
including Gaussian and ‘sech’ pulses. The effects of initial frequency
chirping are also discussed in this section. Section 4.3 is devoted to the

effects of third-order dispersion on pulse broadening.

4.1 Different Propagation Regimes
In Section 3.3 we obtained the nonlinear Schrodinger (NLS) equation that
governs propagation of optical pulses inside single-mode fibers. For pulse widths

> 5 ps, one can use Eq.3.47 given by

04 _ ;2 B2 9%4 2
i—=—iZA+ zaT2+)/|A| A. (4.1)
where A is the slowly varying amplitude of the pulse envelope and T is measured

in a frame of reference moving with the pulse at the group velocity v, =
(T=t—z/vg). The three terms on the right-hand side of Eq.4.1 govern,
respectively, the effects of fiber losses, dispersion, and nonlinearity on pulses
propagating inside optical fibers. Depending on the initial width T,, and the peak
power P, of the incident pulse, either dispersive or nonlinear effects may
dominate along the fiber. It is useful to introduce two length scales, known as the
dispersion length L, and the nonlinear length Ly; [1-3]. Depending on the
relative magnitudes of Lj, Ly; and the fiber length L, pulses can evolve quite
differently.

Let us introduce a time scale normalized to the input pulse width T, as
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_T _ t-z/vg
T= © T T (4.2)

At the same time, we introduce a normalized amplitude U as

A(z, 1) = \/Foexp(—az/Z)U(z, T), (4.3)
where P, is the peak power of the incident pulse. The exponential factor in Eq.4.3
accounts for fiber losses. By using Egs.(4.1)-(4.3), U(z, 1) is found to satisfy the
equation

l.aU _sgn(Bz) 02U  exp(-az)

0z ZLD at2 LNL

lUIU, (4-4)

where sgn(f,) = *1 depending on the sign of the GVD parameter 8, and

_ T =1
by =10 Lve = 77 (4.5)

The dispersion length L, and the nonlinear length L, provide the length scales
over which dispersive or nonlinear effects become important for pulse evolution.
Depending on the relative magnitudes of L, L, and Ly, the propagation behavior
can be classified in the following four categories.

When fiber length L is such that L « Ly; and L < Lj, neither dispersive
nor nonlinear effects play a significant role during pulse propagation. This can be
seen by noting that both terms on the right-hand side of Eq.4.4 can be neglected

in that case. (It is assumed that the pulse has a smooth temporal profile so that

2
ZTZ~1). As a result, U(z,7) = U(0, 1), i.e.,, the pulse maintains its shape during

propagation. The fiber plays a passive role in this regime and acts as a mere
transporter of optical pulses (except for reducing the pulse energy because of

fiber losses). This regime is useful for optical communication systems.

When the fiber length L is such that L < Ly; but L~Lj, the last term in Eq.
4.4 is negligible compared to the other two. The pulse evolution is then governed
by GVD, and the nonlinear effects play a relatively minor role. The effect of GVD
on propagation of optical pulses is discussed in this chapter. The dispersion-
dominant regime is applicable whenever the fiber and pulse parameters are such

that
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Lp _ YPT¢
Lyt [B2]

When the fiber length L is such that L < L, but L ~Ly,; , the dispersion

< 1. (4.6)

term in Eq.4.4 is negligible compared to the nonlinear term (as long as the pulse
has a smooth temporal profile such that ZZTZ ~1). In that case, pulse evolution in
the fiber is governed by SPM that leads to spectral broadening of the pulse. This
phenomenon is considered in Chapter V. The nonlinearity-dominant regime is
applicable whenever

Lp _ yPoT¢

= > 1. 4.7
LyL 1821 (47)

This condition is readily satisfied for relatively wide pulses (T, > 100 ps) with a
peak power Py~1 W . Note that SPM can lead to pulse shaping in the presence of
weak GVD effects. If the pulse develops a sharp leading or trailing edge, the
dispersion term may become important even when Eq.4.7 is initially satisfied.
When the fiber length L is longer or comparable to both L, and Ly,
dispersion and nonlinearity act together as the pulse propagates along the fiber.
The interplay of the GVD and SPM effects can lead to a qualitatively different
behavior compared with that expected from GVD or SPM alone. In the anomalous-
dispersion regime (S, < 0), the fiber can support solitons. In the normal-
dispersion regime (B, > 0), the GVD and SPM effects can be used for pulse
compression. Eq.4.4 is extremely helpful in understanding pulse evolution in
optical fibers when both dispersive and nonlinear effects should be taken into
account. However, this chapter is devoted to the linear regime, and the following

discussion is applicable to pulses whose parameters satisfy Eq.4.6.

4.2 Dispersion-Induced Pulse Broadening

The effect of GVD on optical pulses propagating in a linear dispersive
medium [4-8] is studied by setting y = 0 in Eq.4.1. If we define the normalized
amplitude U(z, T) according to Eq.4.3, U(z, T) satisfies the following linear partial

differential equation:
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l.aU _ B29%U
dz 2 ar?’

(4.8)
This equation is similar to the paraxial wave equation that governs diffraction of
CW light and becomes identical to it when diffraction occurs in only one
transverse direction and [, is replaced by - A1/2m, where A is the wavelength of
light. For this reason, the dispersion-induced temporal effects have a close
analogy with the diffraction-induced spatial effects [2].

Eq.4.8 is readily solved by using the Fourier-transform method. U(z, w) is

the Fourier transform of U(z, T)) such that

Uz T) =5 [ Uz, w)exp(—iwT)dw, (4.9)
then it satisfies an ordinary differential equation
20— _1p w2f
i——= Z,B’ZW U, (4.10)
whose solution is given by
U(zw) = U(0,wexp (B,w?z). (4.11)

Eq.4.11 shows that GVD changes the phase of each spectral component of the
pulse by an amount that depends on both the frequency and the propagated
distance. Even though such phase changes do not affect the pulse spectrum, they
can modify the pulse shape. By substituting Eq.4.11 in Eq.4.9, the general solution
of Eq.4.8 is given by

1 ~ [ .

U(z,T) = Ef_oooo U(0,w)exp (%,BZWZZ - le) dw, (4.12)
where U(0,w) is the Fourier transform of the incident field at z = 0 and is
obtained using

go,w) = [°_U(0,T)exp(iwT)dT, (4.13)

Eq.4.12 and 4.13 can be used for input pulses of arbitrary shapes.

4.2.1 Gaussian Pulses
As a simple example, consider the case of a Gaussian pulse for which the

incident field is of the form [8]
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U(0,T) =exp (— %), (4.14)
where T, is the half-width. In practice, it is customary to use the full width at half
maximum (FWHM) in place of T,. For a Gaussian pulse, the two are related as

Tewnm = 2(In2)Y2Ty ~ 1.665T, (4.15)
By using Eqgs. (4.12)-(4.14) and carrying out the integration, the amplitude at any

point z along the fiber is given by

U(z,T) = L)I/Zexp ( T—z) (4.16)

(T2-iByz  2(1¢-i7)
Thus, a Gaussian pulse maintains its shape on propagation but its width T;
increases with z as
Ty(2) = Ty[1 + (z/Lp)*]*/? (4.17)
T3
B2l

Gaussian pulse. The extent of broadening is governed by the dispersion length

where the dispersion length L, = Eq.4.17 shows how GVD broadens a

Lp. For a given fiber length, short pulses broaden more because of a smaller

dispersion length.

luiz HIFR,

Figure.4.1: (a)Dispersion-induced broadening of a Gaussian pulse inside
titane sapphire at z = 2Lp and z = 4Lp. The solid curve
shows the incident pulse at z = 0, for a) Titanium- Sapphire
and (b) silica fiber (after [9]).
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Fig.4.1 shows the extent of dispersion-induced broadening for Gaussian pulses by
plotting |U(z,T)|? at z = 0, 2L, and 4 L, for titane sapphire and silica fiber. A
comparison of Eqgs. (4.14) and (4.16) shows that although the incident pulse is
unchirped (with no phase modulation), the transmitted pulse becomes chirped.

This can be seen clearly by writing U(z, T) in the form

U(z,T) = U(z,T)lexplid(z,T)], (4.18)
where
_ _sgnBG/) T 1y (7
@0(z,T) = TR +-tan (LD). (4.19)

The time dependence of the phase @(z,T) implies that the instantaneous
frequency differs across the pulse from the central frequency w,. The difference
éw is just the time derivative —d@/0T [the minus sign is due to the choice
of exp (—iwt) in Eq. 3.36] and is given by

_ 09 _ sgn(B2)(2z/Lp) T
Sw(T) = T 1+(z/Lp)? TZ (4.20)

Eq.4.20 shows that the frequency changes linearly across the pulse, i.e., a fiber
imposes linear a frequency chirp on the pulse. The chirp §w depends on the sign
of f,. In the normal-dispersion regime (f, > 0), éw is negative at the leading
edge (T < 0) and increases linearly across the pulse; the opposite occurs in the
anomalous-dispersion regime (f, < 0).

Dispersion-induced pulse broadening can be understood by recalling from
Section 1.3 that different frequency components of a pulse travel at slightly
different speeds along the fiber because of GVD. More specifically, red
components travel faster than blue components in the normal-dispersion regime
(B2 > 0), while the opposite occurs in the anomalous-dispersion regime (S, < 0).
The pulse can maintain its width only if all spectral components arrive together.
Any time delay in the arrival of the different spectral components leads to pulse

broadening.
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4.2.2 Chirped Gaussian Pulses

For an initially unchirped Gaussian pulse, Eq.4.17 shows that dispersion-
induced broadening of the pulse does not depend on the sign of the GVD
parameter f3,. Thus, for a given value of the dispersion length L), the pulse
broadens by the same amount in the normal - and anomalous - dispersion
regimes of the fiber. This behavior changes if the Gaussian pulse has an initial
frequency chirp [9]. In the case of linearly chirped Gaussian pulses, the incident

field can be written as [compare with Eq.4.14]

U(0,T) = exp (— (A+ic) T—Z), (4.21)

2 T¢
where C is a chirp parameter. By using Eq.(4.18) one finds that the instantaneous
frequency increases linearly from the leading to the trailing edge (up-chirp) for
C > 0 while the opposite occurs (down-chirp) for € < 0. Itis common to refer to
the chirp as positive or negative depending on whether C is positive or negative.
The numerical value of C can be estimated from the spectral width of the

Gaussian pulse. By substituting Eq. (4.21) in Eq.4.13, U (0, w) is given by

exp( Wiy ) (4.22)

o 2(1+iC)

1/2

TI(O, w) = (ZnToz)

1+iC

The spectral half-width (at 1/e-intensity point) from Eq. (4.22) is given by
Aw = (1 + C?)Y/?/T, (4.23)
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Figure.4.2 Broadening factor for a chirped Gaussian pulse as a function of
distance. Dashed curve corresponds to the case of an unchirped
Gaussian pulse. For 8, < 0, the same curves are obtained if the
sign of C is reversed (a) for titanium sapphire, and (b) for silica
fiber (after [9 ]).

In the absence of frequency chirp (C = 0) , the spectral width is transform-
limited and satisfies the relation Aw.T, = 1. The spectral width is enhanced by a
factor of (1 + C?)Y? in the presence of linear chirp. Eq.4.23 can be used to
estimate |C| from measurements of Aw and T,.

To obtain the transmitted field, U(0,w) from Eq.4.22 is substituted in Eq.

4.12. The integration can be carried out analytically with the result

;2
A+io)T ) (4.24)

U(z,T) = 17z €XP ( 2[TZ=iBoz(1+iC)]

[T¢-iB2z(1+i0)]
Thus, even a chirped Gaussian pulse maintains its Gaussian shape on propagation.
The width T, after propagating a distance z is related to the initial width T, by the

relation [9]

T _ [(1 4 CBzz)Z + (@)2]1/2 (4.25)

To T¢ T¢
This equation shows that broadening depends on the relative signs of the GVD
parameter 3, and the chirp parameter C. Whereas a Gaussian pulse broadens
monotonically with z if 5,C > 0, it goes through an initial narrowing stage when
B,C < 0. Figure 4.2 shows this behavior by plotting the broadening factor T; /T,
as a function of z/L, for C = 2.

When the pulse is initially chirped and the condition f,C < 0 is satisfied,
the dispersion-induced chirp is in opposite direction to that of the initial chirp. As
a result the net chirp is reduced, leading to pulse narrowing. The minimum pulse-
width occurs at a point at which the two chirps cancel each other. With a further
increase in the propagation distance, the dispersion-induced chirp starts to

dominate over the initial chirp, and the pulse begins to broaden.
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4.2.3 Hyperbolic-Secant Pulses

Although pulses emitted from many lasers can be approximated by a
Gaussian shape, it is necessary to consider other pulse shapes. Of particular
interest is the hyperbolic-secant pulse shape that occurs naturally in the context
of optical solitons and pulses emitted from some mode-locked lasers. The optical

field associated with such pulses often takes the form

U(0,T) = sech (Tlo) exp (— iCTZ), (4.26)

2T¢
where the chirp parameter C controls the initial chirp similarly to that of Eq.4.21.
The transmitted field U(z, T) is obtained by using Egs. (4.12), (4.13), and (4.26).

lufz HFR,

Figure.4.3 : Pulse shapes at z = 2L, and z = 4L}, of a pulse whose shape at z = 0
(solid curve) is described by a “sech” profile for (a) titanium sapphire
and, (b) for silica fiber (after [9 ]). Compare with Fig. 4.1 where the case
of a Gaussian pulse is shown.

Unfortunately, it is not easy to evaluate the integral in Eq.4.12 in a closed form for
non-Gaussian pulse shapes. Fig.4.3 shows the transmitted pulse shapes calculated
numerically at z = 2L, and z = 4L, for the case of unchirped pulses (C = 0). A
comparison of Figs. 4.1 and 4.3 shows that the qualitative features of dispersion-
induced broadening are nearly identical for the Gaussian and “sech” pulses. Note

that T, appearing in Eq.4.26 is not the FWHM but is related to it by
Tewam = 2In(1 +V2)Ty ~ 1.763T, (4.27)
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4.2.4 Super-Gaussian Pulses

same relation for a Gaussian pulse is given in Eq. 4.15.

This relation should be used if the comparison is made on the basis of FWHM. The

So far we have considered pulse shapes with relatively broad leading and

trailing edges. As one may expect, dispersion-induced broadening is sensitive to
pulse-edge steepness. In general, a pulse with steeper leading and trailing edges
broadens more rapidly with propagation simply because such a pulse has a wider

spectrum to start with. Pulses emitted by directly modulated semiconductor

lasers fall in this category and cannot generally be approximated by a Gaussian

pulse.
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Figure.4.4: Pulse shapes at z = L, and z = 2L, of a pulse whose shape
at z = 0 (solid curve) is described by a super-Gaussian profile
for titanium-sapphire (a), and (b) for silica fiber (after [9]).
Compare with Fig. 3.1 where the case of a Gaussian pulse is
shown.

A super-Gaussian shape can be used to model the effects of steep leading and

trailing edges on dispersion-induced pulse broadening. For a super-Gaussian

pulse, Eq.4.21 is generalized to take the form [10]

U0,T) =exp [

_ (1+ic)
2

(

T
To

)"

(4.28)
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where the parameter m controls the degree of edge sharpness. For m =1 we
recover the case of chirped Gaussian pulses. For larger values of m, the pulse
becomes square shaped with sharper leading and trailing edges.

Fig.4.4 shows the pulse shapes at z = 0, Lj, and 2L, in the case of an unchirped
super-Gaussian pulse (C = 0) with m = 3. It should be compared with Fig.4.1
where the case of a Gaussian pulse (m = 1) is shown. The differences between
the two can be attributed to the steeper leading and trailing edges associated

with a super-Gaussian pulse.

Whereas the Gaussian pulse maintains its shape during propagation, the super-
Gaussian pulse not only broadens at a faster rate but also distorts in shape.
Enhanced broadening of a super-Gaussian pulse can be understood by noting that
its spectrum is wider than that of a Gaussian pulse because of steeper leading and
trailing edges. As the GVD-induced delay of each frequency component is directly
related to its separation from the central frequency w,, a wider spectrum results

in a faster rate of pulse broadening.

4.3 Third-Order Dispersion

The dispersion-induced pulse broadening discussed in Section4.2 is due to
the lowest-order GVD term proportional to £, in Eq.1.2. Although the
contribution of this term dominates in most cases of practical interest, it is
sometimes necessary to include the third-order term proportional to S5 in this
expansion. For ultrashort pulses (width T, < 1 ps), it is necessary to include the
p; term even when S, # 0 because the expansion parameter Aw/w is no longer
small enough to justify the truncation of the expansion in Eq.1.2 after the 5, term.

This section considers the dispersive effects by including both B, and S5
terms while still neglecting the nonlinear effects. The appropriate propagation

equation for the amplitude A(z, T) is obtained from Eq.3.46 after setting y = 0.

Using Eq.4.3, U(z, T) satisfies the following equation:
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.oU 92U . . B3 03U

dz 2 aT2 6 aT3" (4.29)

This equation can also be solved by using the Fourier technique of Section 4.2. In

place of Eq.4.12 the transmitted field is obtained from
1 =~ [ [ .
U(z,T) = ;fjooo U(0,w)exp (éﬁzwzz + éﬁ3w3z - lWT) dw, (4.30)

where the Fourier transform U(0,w) of the incident field is given by Eq.4.13.
Eq.4.30 can be used to study the effect of higher-order dispersion if the incident
field U(O, T) is specified. In particular, one can consider Gaussian, super-Gaussian,
or hyperbolic-secant pulses in a manner analogous to Section 4.2. An analytic

solution in terms of the Airy functions can be obtained for Gaussian pulses [13].

4.3.1 Changes in Pulse Shape

As one may expect, pulse evolution along the fiber depends on the relative
magnitudes of 5, and 3, which in turn depend on the deviation of the optical
wavelength A4,. In order to compare the relative importance of the 8, and f;
terms in Eq.(4.29), it is useful to introduce a dispersion length associated with the

third-order dispersion (TOD) term as
Ly =T5/1Bs. | (4.31)

The TOD effects play a significant role only if L', < L, or Ty|B,/B;| < 1. The
situation changes completely for ultrashort pulses with widths in the
femtosecond range. For example, the effect of TOD can be studied experimentally

by propagating 100 fs pulses across a few-meter-long fiber [11,12].
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Figure.4.5 Pulse shapes at z = 5L}, of an initially Gaussian pulse at z = 0
(dotted curve) in the presence of higher-order dispersion. Dashed
curve shows the effect of finite §, = 0 (a) in the case of titanium
sapphire, and (b) in the case of silica fiber (after [9 ]).

Fig.4.5 shows the pulse shapes at z = 5L}, for an initially unchirped
Gaussian pulse [C = 0 in Eq.4.21] for §, = 0 (solid curve) and for a value of
Bs # 0 (dashed curve). Whereas a Gaussian pulse remains Gaussian when only
the S, term in Eq.4.29 contributes to GVD (Fig.4.1), the TOD distorts the pulse
such that it becomes asymmetric with an oscillatory structure near one of its
edges. In the case of positive /3 shown in Fig. 4.5, oscillations appear near the
trailing edge of the pulse. When 5 is negative, it is the leading edge of the pulse
that develops oscillations. When f, = 0, oscillations are deep, with intensity
dropping to zero between successive oscillations. However, these oscillations
damp significantly even for relatively small values of 5, . For the case Lp= L’
shown in Fig. 4.5, oscillations have nearly disappeared, and the pulse has a long
tail on the trailing side. For larger values of 5, such that L, < L}, the pulse shape

becomes nearly Gaussian as the TOD plays a relatively minor role [13].

However, the titane sapphire have f; = 0.00147 it is very low value and

does not contribute to the phenomenon of oscillations.
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Figure.4.6: Evolution of a super-Gaussian pulse with m = 3 along the
fiber length for the case of §, # 0 and B > 0. Higher-order

dispersion is responsible for the oscillatory structure near the
trailing edge of the pulse (a) for titanium sapphire, and (b) for
silica fiber (after [9]).

Eq.4.30 can be used to study pulse evolution for other pulse shapes (with or
without chirp). By way of an example, Fig.4.6 shows evolution of an unchirped
super-Gaussian pulse with € = 0 and m = 3 in Eq.4.28. It is clear that pulse
shapes can vary widely depending on the initial conditions. In practice, one is
often interested in the extent of dispersion-induced broadening rather than

details of pulse shapes.

4.4 Dispersion Compensation

Even though operation at the zero-dispersion wavelength is most desirable
from the standpoint of pulse broadening, other considerations may preclude such
a design. For example, at most one channel can be located at the zero dispersion
wavelength in a wavelength-division-multiplexed (WDM) system. The technique
of dispersion management provides a solution to this dilemma.
It consists of combining fibers with different characteristics such that the average
GVD of the entire fiber link is quite low while the GVD of each fiber section is

chosen to be large enough to make the four-wave-mixing effects negligible.
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Amplifiers compensate for accumulated fiber losses in each section. Between
each pair of amplifiers, just two kinds of fibers, with opposite signs of f,, are
combined to reduce the average dispersion to a small value. When the average
GVD is set to zero, dispersion is totally compensated.

Such a dispersion-compensation technique takes advantage of the linear
nature of Eq.(4.8). The basic idea can be understood from Eq.4.12 representing
the general solution of Eq.4.8. For a dispersion map consisting of two fiber

segments, Eq. 4.12 becomes
U(L,,t) = if_oooo U(0,w)exp sz(ﬂle + ByyLy) — iwt] dw, (4.32)

where L,, = L; + L, is the dispersion-map period, and f3,; is the GVD parameter
of the fiber segment of length L;(j = 1,2). By using D; = —(2mc/2%)B,;, the

condition for dispersion compensation can be written as
D1L1 + DZLZ = 0 (4’33)

As A(L,,, t) = A(0,t) when Eq.4.33 is satisfied, the pulse recovers its initial width
after each map period even though the pulse width can change significantly

within each period.

4.4.1 Compensation of Third-Order Dispersion

When the bit rate of a single channel exceeds 100 Gb/s, one must use
ultrashort pulses (width ~1 ps) in each bit slot. For such short optical pulses, the
pulse spectrum becomes broad enough that it is difficult to compensate GVD over
the entire bandwidth of the pulse (because of the frequency dependence of £5;).
The simplest solution to this problem is provided by fibers, or other devices,
designed such that both f, and p; are compensated simultaneously. The

necessary conditions for designing such fibers can be obtained from Eq.4.30.
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For a fiber link containing two different fibers of lengths L, and L,, the conditions

for broadband dispersion compensation are given by

f21Ly + B2l =0 and  f3Ly + f3,L, =0 (4.34)

where f,; and f3; are the GVD and TOD parameters for fibers of length

L;(j = 1,2). It is generally difficult to satisfy both conditions simultaneously over

a wide wavelength range [17,18].

06

luiz HIFR,

Figure4.7: (a) compensation of the S5, 5, at z = 2.

When both f, and S5 are nearly compensated, propagation of femtosecond
optical pulses is limited by the fourth-order dispersive effects governed by the

parameter [,.
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CHAP V: SELF-PHASE MODULATION EFFECT

An interesting manifestation of the intensity dependence of the
refractive index in nonlinear optical media occurs through self-phase
modulation (SPM), a phenomenon that leads to spectral broadening of
optical pulses [1-3]. SPM is the temporal analog of self-focusing. Indeed,
it was first observed in 1967 in the context of transient self-focusing of
optical pulses propagating in a CS;- filled cell [1]. By 1970, SPM had been
observed in solids and glasses by using picoseconds pulses. The earliest
observation of SPM in optical fibers was made with a fiber whose core
was filled with CS:z [5]. This chapter considers SPM as a simple example
of the nonlinear optical effects that can occur in optical fibers. Section
5.1 is devoted to the case of pure SPM by neglecting the GVD effects. The
effects of GVD on SPM are discussed in Section 5.2 with particular
emphasis on the SPM-induced frequency chirp. Section 5.3 extends the
results to include the higher-order nonlinear effects such as self-

steepening.

5.1 SPM-Induced Spectral Broadening

A general description of SPM in optical fibers requires numerical solutions
of the pulse-propagation Eq.3.46 obtained in Section 3.3. The simpler Eq.3.46 can
be used for pulse widths T, > 5 ps. A further simplification occurs if the effect of
GVD on SPM is negligible so that the £, term in Eq.3.47 can be set to zero. The
conditions under which GVD can be ignored were discussed in Section 4.1 by
introducing the length scales L, and Ly, [see Eq.4.5]. In general, the pulse width
and the peak power should be such that L, > L > Ly, for a fiber of length L. Eq.
4.7 shows that the GVD effects are negligible for relatively wide pulses
(Ty > 100 ps) with a large peak power (P, > 1 W).

94 |



CHAP V: SELF-PHASE MODULATION EFFECT

5.1.1 Nonlinear Phase Shift
In terms of the normalized amplitude U(z, T) defined as in Eq.4.3, the

pulse-propagation Eq.4.4, in the limit 5, = 0, becomes

U _ e g2y, (5.1)

0z LNL

where a accounts for fiber losses. The nonlinear length is defined as

Ly, = (vPo)™h, (5.2)
where P, is the peak power and v is related to the nonlinear-index coefficient n,
as in Eq.3.44. Eq.5.1 can be solved substituting U = Vexp(i@,,) and equating the

real and imaginary parts so that

—-az

0, 2m_c y2 (5.3)

0z LNL

v _
az

As the amplitude V does not change along the fiber length L, the phase equation

can be integrated analytically to obtain the general solution

U(L, T) =U(0,T)expli®y. (L, T)], (5.4)
where U(0, T) is the field amplitude at z = 0 and
B (L, T) = U0, T)*(Less/Lns), (5.5)
with the effective length L., defined as
Lesr = [1—exp(—al)]/a. (5.6)

Eq.5.4 shows that SPM gives rise to an intensity-dependent phase shift but
the pulse shape remains unaffected. The nonlinear phase shift @5, in Eq.5.5
increases with fiber length L. The quantity L.ss plays the role of an effective
length that is smaller than L because of fiber losses. In the absence of fiber

losses,a = 0, and L. = L, the maximum phase shift @,,,, occurs at the pulse

center located at T = 0. With U normalized such that |U(0,0)| = 1, itis given by

Le

Dmax = Wf[ = YPOLeff' (5.7)
The physical meaning of the nonlinear length Ly, is clear from Eq.5.7. It is the
effective propagation distance at which @,,,, = 1. The SPM-induced spectral

broadening is a consequence of the time dependence of @;.
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This can be understood by noting that a temporally varying phase implies that the
instantaneous optical frequency differs across the pulse from its central value wy,.

The difference dw is given by

— _99ni _ _ (Lerr) 0 2
Sw(T) = — 2 = (LNL)aTIU(O,TI , (5.8)

where the minus sign is due to the choice of the factor exp(—iw,t) in Eq.3.36. The
time dependence of dw is referred to as the frequency chirping. The chirp
induced by SPM increases in magnitude with the propagated distance. In other
words, new frequency components are continuously generated as the pulse
propagates down the fiber. These SPM-generated frequency components broaden
the spectrum over its initial width at z = 0.

The extent of spectral broadening depends on the pulse shape. Consider,
for example, the case of a super-Gaussian pulse with the incident field U(0,T)

given by Eq. 4.28. The SPM-induced chirp éw(T) for such a pulse is

ow(T) = 2m Lefy (1)2m—1 exp [— (Tlo)m] (5.9)

To Lni \T

where m = 1 for a Gaussian pulse. For larger values of m, the incident pulse
becomes nearly rectangular with increasingly steeper leading and trailing edges.
Fig.5.1 shows the variation of the nonlinear phase shift @,; and the induced
frequency chirp dw across the pulse at Lesr = Ly in the cases of a Gaussian pulse
(m = 1) and a super-Gaussian pulse (m = 3). As @, is directly proportional to
|U(0,T)? in Eq.5.5, its temporal variation is identical to that of the pulse intensity.
The temporal variation of the induced chirp dw has several interesting features.
First, dw is negative near the leading edge (red shift) and becomes positive near
the trailing edge (blue shift) of the pulse. Second, the chirp is linear and positive
(up-chirp) over a large central region of the Gaussian pulse. Third, the chirp is
considerably larger for pulses with steeper leading and trailing edges. Fourth,
super-Gaussian pulses behave differently than Gaussian pulses because the chirp

occurs only near pulse edges and does not vary in a linear fashion.
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Phase

Frequency éw(T)

Figure 5.1: Temporal variation of SPM-induced phase shift @,; and
frequency chirp 6w for Gaussian (dashed curve) and super-
Gaussian (solid curve) pulses.

5.1.2 Changes in Pulse Spectra

An estimate of the magnitude of SPM-induced spectral broadening can be
obtained from the peak value of dw in Fig.5.1. More quantitatively, we can
calculate the peak value by maximizing dw(T) from Eq.5.9. Eq.5.9 shows that the
broadening factor of a super-Gaussian pulse is also approximately given by @,,,.-
With @,,,,,~100, possible for intense pulses or long fibers, SPM can broaden the
spectrum considerably. In the case of intense ultrashort pulses, the broadened
spectrum can extend over 100 THz or more, especially when SPM is accompanied
by other nonlinear processes such as stimulated Raman scattering and four-wave
mixing. Such an extreme spectral broadening is referred to as supercontinuum
generation [4].

The actual shape of the pulse spectrum S(w) is obtained by taking the
Fourier transform of Eq.5.4. Using S(w) = |ﬁ(L, w) |2, we obtain

Sw) = | U0, TYexpliBy, (L, T) + itw — w)TIdT|".  (5.10)
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In general, the spectrum depends not only on the pulse shape but also on the
initial chirp imposed on the pulse. Figure 5.2 shows the spectra of an unchirped
Gaussian pulse for several values of the maximum phase shift @,,,,. For a given

fiber length, @,,,, increases linearly with peak power P, according to Eq. (5.7).
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Figure 5.2: SPM-broadened spectra for an unchirped Gaussian pulse.
Spectra are labeled by the maximum nonlinear phase
shift @,,,,.- (After Ref. [9]) for a) silica fiber , and b) titanium
sapphire.
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The most notable feature of Fig.5.2 is that SPM-induced spectral
broadening is accompanied by an oscillatory structure covering the entire
frequency range. In general, the spectrum consists of many peaks, and the
outermost peaks are the most intense. The number of peaks depends on @,,,, and
increases linearly with it. The origin of the oscillatory structure can be
understood by referring to Figure.5.1, where the time dependence of the SPM-
induced frequency chirp is shown. In general, the same chirp occurs at two values
of T, showing that the pulse has the same instantaneous frequency at two distinct
points. Qualitatively speaking, these two points represent two waves of the same
frequency but different phases that can interfere constructively or destructively
depending on their relative phase difference. The multipeak structure in the pulse
spectrum is a result of such interference [1]. Mathematically, the Fourier integral
in Eq.5.10 gets dominant contributions at the two values of T at which the chirp is
the same. These contributions, being complex quantities, may add up in phase or

out of phase.

5.1.3 Effect of Pulse Shape and Initial Chirp

As mentioned before, the shape of the SPM-broadened spectrum depends
on the pulse shape and on the initial chirp if the input pulse is chirped [11]. Fig.
5.3 compares the pulse spectra for Gaussian (m = 1) and super-Gaussian (m = 3)
pulses obtained using Eq.4.28 in Eq.5.10 and performing the integration
numerically. In both cases, input pulses are assumed to be unchirped (C = 0). The
fiber length and the peak power are chosen such that @,,,, = 4.57.

The qualitative differences between the two spectra can be understood by
referring to Figure 5.1, where the SPM-induced chirp is shown for the Gaussian
and super-Gaussian pulses.

We notice that Fig.5.3 exhibit five peaks in the case of the silica fiber, and two
peaks in Titanium sapphire. This is so because the chirp is nearly zero over the
central region in Fig.5.1 for such a pulse, as a consequence of the nearly uniform

intensity of a super-Gaussian pulse for |T| < T,. The frequency chirp occurs
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mainly near the leading and trailing edges. As these edges become steeper, the
tails in Fig.5.3 extend over a longer frequency range but, at the same time, carry

less energy because chirping occurs over small time duration.
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Figure.5.3: Comparison of SPM-broadened spectra for unchirped
Gaussian and super-Gaussian pulses at a peak power
corresponding to @,,,, = 4.5. a) Silica fiber (after[16]) and
b) Titanium sapphire.

A positive chirp increases the number of spectral peaks while the opposite occurs
in the case of a negative chirp in silica fiber. This can be understood by noting
that the SPM-induced frequency chirp is linear and positive (frequency increases
with increasing T) over the central portion of a Gaussian pulse (see Fig.5.1). Thus,

it adds with the initial chirp for C > 0, resulting in an enhanced oscillatory
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structure. The outermost peaks in Fig.5.4 for C = —5 are due to the residual chirp
near the leading and trailing edges. In the case of titanium sapphire the pulse
remains unchanged except for a creation of two peaks in the leading and trailing

edges of the pulse. The spectral range is about three times larger for negative

chirp and there is a creation of two peaks.
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Figure 5.4: Effect of initial frequency chirp on SPM-broadened spectra of a
chirped Gaussian pulse for € = 5 and C = —5. The two spectra should
be compared with the left spectrum in Fig. 5.3 where C = 0. In all cases
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Dmax = 4.5m. a) silica fiber and b) Titanium sapphire (after[16]).

For positive values of the chirp parameter C, the pulse spectrum at the fiber

output can become narrower than that of initially unchirped pulses. These results
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can be understood qualitatively by noting that the spectrum narrows as long as

the SPM-induced chirp compensates the initial chirp.

5.2 Effect of Group-Velocity Dispersion

The SPM effects discussed in Section 5.1 describe the propagation behavior
realistically only for relatively long pulses (T, > 100 ps) for which the dispersion
length L, is much larger compared with both the fiber length L and the nonlinear
length Ly;. As pulses become shorter and the dispersion length becomes
comparable to the fiber length, it becomes necessary to consider the combined
effects of GVD and SPM [6]. New qualitative features arise from an interplay
between GVD and SPM. In the anomalous-dispersion regime of an optical fiber,
the two phenomena can cooperate in such a way that the pulse propagates as an
optical soliton (Chapter VI). In the normal-dispersion regime, the combined
effects of GVD and SPM can be used for pulse compression. This section considers
the temporal and spectral changes that occur when the effects of GVD are

included in the description of SPM [7-9].

5.2.1 Pulse Evolution
The starting point is the nonlinear Schrodinger (NLS) Eq.3.47 or its other

form given in Eq.4.4. The later equation can be written in a normalized form as

ig—g= sgn(ﬁz)la—U—Nze‘“lele, (5.11)

2 912

where & and 7 represent the normalized distance and time variables defined as

5 = Z/LD, T = T/To, (512)
and the parameter N is introduced by using
2 _ Lp _ YRTS
N T (5.13)

The physical significance of N will become clear in Chapter.VI where the integer
values of N are found to be related to the soliton order. The practical significance

of the parameter N is that solutions of Eq.5.11 obtained for a specific N value are
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applicable to many practical situations through the scaling law of Eq.5.13. As it is
evident from Eq.5.13, N governs the relative importance of the SPM and GVD
effects on pulse evolution along the fiber. Dispersion dominates for N <« 1 while
SPM dominates for N > 1. For values of N~1, both SPM and GVD play an equally
important role during pulse evolution. In Eq.5.11, sgn(f,) = +1 depending on
whether GVD is normal (S, > 0) or anomalous (f, < 0). The split-step Fourier

method of Section 3.4 can be used to solve Eq.5.11 numerically.
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Figure 5.5: Evolution of pulse shapes and optical spectra over a distance
of 5L, for an initially unchirped Gaussian pulse propagating
in the normal-dispersion regime of the fiber. a) for Titanium
sapphire, and b) fiber silica (after[16]).

Fig.5.5 shows evolution of the shape and the spectrum of an initially

unchirped Gaussian pulse in the normal-dispersion regime of a fiber using N = 1
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and a = 0. The qualitative behavior is quite different from that expected when
either GVD or SPM dominates. In particular, the pulse broadens much more
rapidly compared with the N = 0 case (no SPM). This can be understood by
noting that SPM generates new frequency components that are red-shifted near
the leading edge and blue-shifted near the trailing edge of the pulse.
As the red components travel faster than the blue components in the normal-
dispersion regime, SPM leads to an enhanced rate of pulse broadening compared
with that expected from GVD alone.

This in turn affects the spectral broadening as the SPM-induced phase shift
@y. becomes less than that occurring if the pulse shape were to remain
unchanged. Indeed, @,,,, =5 at z = 5Lp, and a two-peak spectrum is expected
in the absence of GVD. The single-peak spectrum for z/L, =5 in Figure.5.5 implies

that the effective @,,,, is below  because of pulse broadening.

5.2.2 Optical Wave Breaking

Eq5.11 suggests that the effects of SPM should dominate over those of GVD
for values of N > 1, at least during the initial stages of pulse evolution. In fact, by
introducing a new distance variable as Z = N2¢ = z/Ly,;, Eq.5.11 can be written

as

.0U  do*U 2

here fiber losses are neglected and d = 8,/(yP,TZ) is a small parameter. Using

the transformation

U(z,T) = /p(z, Texp (i [ vz, T)dT), (5.15)

in Eq.5.14, the pulse-propagation problem reduces approximately to a fluid
dynamics problem in which the variables p and v play, respectively, the role of
density and velocity of a fluid [10]. In the optical case, these variables represent
the power and chirp profiles of the pulse. For a square-shape pulse, the pulse-
propagation problem becomes identical to the one related to “breaking of a dam”

and can be solved analytically [11].
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Figure 5.6: Evolution of an initially unchirped Gaussian pulse for N = 30

at z/Lp = 0.1 in the normal-dispersion regime a) Titanium
sapphire, b) silica fiber (after [16]).

The approximate solution, although useful, does not account for a

phenomenon termed Optical Wave Breaking [12-13]. It turns out that GVD cannot
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be treated as a small perturbation even when N is large. The reason is that,
because of a large amount of the SPM-induced frequency chirp imposed on the
pulse, even weak dispersive effects lead to significant pulse shaping. In the case of
normal dispersion (S, > 0), the pulse becomes nearly rectangular with relatively
sharp leading and trailing edges and is accompanied by a linear chirp across its
entire width. It is this linear chirp that can be used to compress the pulse by
passing it through a dispersive delay line.

The GVD-induced pulse shaping has another effect on pulse evolution. It
increases the importance of GVD because the second derivative in Eq.5.11
becomes larger near the pulse edges. As a consequence, the pulse develops a fine
structure near its edges. Figure 5.6 shows the pulse evolution for N = 30 for the
case of an initially unchirped Gaussian pulse. The oscillatory structure near pulse
edges is already present at z/Lp, = 0.06. Further increase in z leads to a
broadening of the pulse tails. Fig.5.7 shows the pulse shape and the spectrum at
z/Lp, = 0.08.

The noteworthy feature is that rapid oscillations near pulse edges are always
accompanied by the side lobes in the spectrum. The central multipeak part of the
spectrum is also considerably modified by GVD. In particular, the minima are not

as deep as expected from SPM alone.

The physical origin of temporal oscillations near the pulse edges is related to
Optical Wave Breaking [44]. Both GVD and SPM impose frequency chirp on the
pulse as it travels down the fiber. However, as seen from Eqgs.(4.20) and (5.9),
although the GVD-induced chirp is linear with time, the SPM-induced chirp is far
from being linear across the entire pulse. Because of the nonlinear nature of the
composite chirp, different parts of the pulse propagate at different speeds. In
particular, in the case of normal GVD (S, > 0), the red-shifted light near the
leading edge travels faster and overtakes the unshifted light in the forward tail of
the pulse. The opposite occurs for the blue-shifted light near the trailing edge. In

both cases, the leading and trailing regions of the pulse contain light at two
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different frequencies that interfere. The phenomenon of Optical Wave Breaking
can also be understood as a four-wave-mixing process. Nonlinear mixing of two
different frequencies w; and w, in the pulse tails creates new frequencies at
2w; —w, and 2w, — w;. The spectral sidelobes in Fig.5.7 represent these new

frequency components.
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Figure 5.7: Shape and spectrum of an initially unchirped (C = 0)
Gaussian pulse at z/Lp, = 0.08. All parameters are identical to
those of Fig.5.6. Spectral sidelobes and temporal structure near
pulse edges are due to Optical Wave Breaking. a) Titanium
sapphire, and b) silica fiber (after[16]).

Temporal oscillations near pulse edges and the spectral sidelobes are

manifestations of the same phenomenon. The results shown in Figs. 5.6 and 5.7
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are obtained for an unchirped pulse (C = 0). Pulses emitted from practical laser

sources are often chirped and may follow quite a different evolution pattern

depending on the sign and magnitude of the chirp parameter.

Fig.5.8 shows the pulse shape and the spectrum under conditions identical
to those of Fig.5.7 except for the chirp parameter, which has a value C = 20. A

comparison of the two figures illustrates how much an initial chirp can modify

the propagation behavior.
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Figure 5.8: Pulse shape and spectrum under conditions identical to those

For an initially chirped pulse, the shape becomes nearly triangular rather
than rectangular. At the same time, the spectrum exhibits an oscillatory structure

in the wings while the central SPM-like structure (seen in Fig.5.7 for the case of

of Fig. 5.7 except that the input Gaussian pulse is chirped
with C = 20. a) silica fiber (after[16])and b) Titanium
sapphire.
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an unchirped pulse) has almost disappeared. These changes in the pulse shape
and spectrum can be understood qualitatively by recalling that a positive initial
chirp adds to the SPM-induced chirp. As a result, Optical Wave Breaking sets in
earlier for chirped pulses. Pulse evolution is also sensitive to fiber losses. For an
actual comparison between theory and experiment, it is necessary to include both
the chirp and losses in numerical simulations. The spectral sidelobes associated
with the Optical Wave Breaking were indeed found to be correlated with the

generation of new frequencies near the pulse edges.

5.2.3 Effect of Third-Order Dispersion

In the case of an ultrashort pulse, it is necessary to include the effects of
third-order dispersion (TOD) on SPM-induced spectral broadening [14-16]. The
pulse propagation equation is obtained from Eq.3.46 by setting [, =0 and
neglecting the higher-order nonlinear terms. If we introduce the dispersion

length L, from Eq.4.31 and define ¢ = z/L, as the normalized distance, we

obtain
U LU _ §2g-az|y)2
loe = sgn(Bs e N4e~%|U|%U, (5.16)
where
! 3
N2 = Lo _ red 517
Ly |B3] ( )

Similar to Eq.5.11, the parameter N governs the relative importance of the GVD
and SPM effects during pulse evolution; GVD dominates for N < 1 while SPM
dominates for N > 1. Eq.5.16 can be solved numerically using the split-step
Fourier method of Section 3.4. In the following discussion we assume S5 > 0 and
neglect fiber losses by setting a = 0.

Fig.5.9 shows the shape and the spectrum of an initially unchirped
Gaussian pulse at § = 5 for the case N = 1. The pulse shape should be compared
with that shown in Figure 4.5 where SPM effects were absent (N = 0). The effect

of SPM is to increase the number of oscillations seen near the trailing edge of the
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pulse. At the same time, the intensity does not become zero at the oscillation

minima. The effect of GVD on the spectrum is also evident in Fig5.9.

In the absence of GVD, a symmetric two-peak spectrum is expected
(similar to the one shown in Figure 5.2 for the case @,,,, = 1.57 (since @,,, = 5
for the parameter values used in Fig.5.9). The effect of TOD is to introduce
spectral asymmetry without affecting the two-peak structure. Pulse evolution
exhibits qualitatively different features for large values of N. As an example, Fig.

5.10 shows the shape and spectrum of an initially
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Figure 5.9:Pulse shape and spectrum of unchirped Gaussian pulses
propagating exactly at the zero-dispersion wavelength with
N =1 and z = 5L;. a) Titanium sapphire, and b) silica fiber
(after[16]),

unchirped Gaussian pulse at §' = 0.1 for the case N = 10. The pulse develops an

oscillatory structure with deep modulation. Because of rapid temporal variations,
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the third derivative in Eq.5.16 becomes large locally, and the TOD effects become

more important as the pulse propagates inside the fiber.

The most noteworthy feature of the spectrum is that the pulse energy becomes
concentrated in two spectral bands, a feature common for all values of N > 1. As
one of the spectral bands lies in the anomalous-dispersion regime, the pulse
energy in that band can form a soliton. The energy in the other spectral band,
lying in the normal-dispersion regime of the fiber, disperses with propagation.

The soliton-related features are discussed later in Chapter.VI.
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Figure 5.10: Pulse shape and spectrum under conditions identical to
those of Fig. 5.9 except that N =10 and z/L,, = 0.1. a)
Titanium sapphire, and b) silica fiber (after[16]),
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In dispersion-managed fiber links, 8, is large locally but nearly vanishes on
average. The effects of TOD play an important role in such links, especially for
short optical pulses. The spectral and temporal evolution depends on whether
the Dispersion-Compensating Fiber (DCF) is placed before or after the standard
fiber (pre- or post-compensation). In the case of post-compensation, the pulse

develops an oscillating tail because of TOD and exhibits spectral narrowing.

5.3 Higher-Order Nonlinear Effects

The discussion of SPM so far is based on the simplified propagation
Eq.3.46. For ultrashort optical pulses (T, < 1 ps), it is necessary to include the
higher-order nonlinear effects through Eq.3.46. If Eq.4.3 is used to define the

normalized amplitude U, this equation takes the form

2 3 - 2
DBl Y 3BT L 1 E 2 (YU +is 2 (JUIPY) — U 22), (5.18)

az
0z 2Lp 012 6L, 073 LNL

Where L, L, and Ly, are the three length scales defined as

3
Ly=2  L[,=— (5.19)
|83l

2

L, =2
D

YPy

T 1Bl

The parameters s and 7tz govern the effects of self-steepening and intrapulse

Raman scattering, respectively, and are defined as

s=—— r,=21k (5.23)

woTo’ R To

Both of these effects are quite small for picosecond pulses but must be considered

for ultrashort pulses with T, < 1 ps.

5.3.1 Self-Steepening

Self-steepening results from the intensity dependence of the group velocity
[17-18]. Its effects on SPM were first considered in liquid nonlinear media [2] and
later extended to optical fibers [19-20]. Self-steepening leads to an asymmetry in

the SPM-broadened spectra of ultrashort pulses [21].
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Before solving Eq.5.18 numerically, it is instructive to consider the dispersionless
case by setting 8, = 3 = 0. Eq.5.18 can be solved analytically in this specific case
if we also set 7z = 0. Defining a normalized distance as Z = z/Ly; and neglecting

fiber losses (a = 0), Eq.5.18 becomes

U 9 217y = il7712
>+ sZ(|UIPU) = i|UJ2U. (5.21)

Using U = VIexp (i®) in Eq. 5.21 and separating the real and imaginary parts, we
obtain the following two equations:

al al

—; +3s15-=0, (5.22)

a9 00 _

sl =1 (5.23)
Since the intensity Eq.5.22 is decoupled from the phase Eq.5.23, it can be solved

easily using the method of characteristics. Its general solution is given by [18]

1(Z,t) = f(t — 3s1Z), (5.24)
where we used the initial condition 1(0,7) = f(7), where f(7) describes the pulse
shape at z = 0. Eq.5.24 shows that each point T moves along a straight line from
its initial value, and the slope of the line is intensity dependent. This feature leads

to pulse distortion. As an example, consider the case of a Gaussian pulse for which

1(0,7) = f (1) = exp(—712). (5.25)
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From Eq.5.24, the pulse shape at a distance Z is obtained by using
1(Z,7) = exp[—(t — 3s1Z)?]. (5.26)

The implicit relation for I(Z,7) should be solved for each 7 to obtain the

pulse shape at a given value of Z. Figure 5.11 shows the calculated pulse shapes

at sZ = 25, for s = 0.0042. As the pulse propagates inside the Titanium sapphire,
it becomes asymmetric, with its peak shifting toward the trailing edge. As a result,
the trailing edge becomes steeper and steeper with increasing Z.

Physically, the group velocity of the pulse is intensity dependent such that the
peak moves at a lower speed than the wings.
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Figure 5.12: a) Spectrum of a Gaussian pulse at a distance z = 0.2Ly; /s
where s =0.01and Ly; is the nonlinear length. Self-
steepening is responsible for the asymmetry in the SPM-
broadened spectrum. The effects of GVD are neglected for
a) Titane sapphire, and b) silica fiber (after [16]).

As a result, significant self-steepening of the pulse can occur in a few-centimeter
long fiber. Optical shocks with an infinitely sharp trailing edge never occur in
practice because of the GVD.

As the pulse edge becomes steeper, the dispersive terms in Eq.5.18 become
increasingly more important and cannot be ignored.

Self-steepening also affects SPM-induced spectral broadening. In the
dispersionless case, @(z, ) is obtained by solving Eq.5.23. It can then be used to

calculate the spectrum using
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S(w) = |f [1(z,T)]Y?explid(z,7) + i(w — WO)T]dT| (5.27)

Figure 5.12 shows the calculated spectrum at sz/Ly; = 0.105 for s = 0.0042. The
most notable feature is the spectral asymmetry— the red-shifted peaks are more
intense than the blue-shifted ones. The spectrum is asymmetric simply because
the pulse shape is asymmetric. A steeper trailing edge of the pulse implies larger
spectral broadening on the blue side as SPM generates blue components near the

trailing edge (see Fig. 5.1).

In the absence of self-steepening (s = 0), a symmetric six-peak spectrum is
expected because @,,,,, = 6.41 for the parameter values used in Fig.5.12 for silica
fiber, and two peak spectrum for titanium sapphire. Self-steepening stretches the
blue portion. The amplitude of the high-frequency peaks decreases because the

same energy is distributed over a wider spectral range.

5.3.2 Effect of GVD on Optical Shocks

The spectral features seen in Fig. 5.12 are considerably affected by GVD,
which cannot be ignored when short optical pulses propagate inside titane
sapphire. The pulse evolution in this case is studied by solving Eq.5.18
numerically. Figure 5.13 shows the pulse shapes and the spectra at z/L, = 0.2
and 0.4 in the case of an initially unchirped Gaussian pulse propagating with

normal dispersion (8, > 0) and 5 = 0.
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Pulse shapes and spectra at z/L, = 0.2 (upper row S, = 0) and
(lower row [, = 1.01) for a Gaussian pulse propagating in the
normal-dispersion regime of the fiber. The other parameters are
a=0,B; =05 =0.0042, §, = 0 a) for Titanium sapphire, and, b)
for silica fiber (after [16]).

The parameter N defined in Eq.5.13 is taken to be 10, resulting in

Ly, = 100Ly;. In the absence of GVD (5, = 0), the pulse shape and the spectrum
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shown in the upper row of Fig. 5.13 reduce to those shown in Figs. 5.11 and 5.12
in the case of sz/Ly; = 0.105. A direct comparison shows that both the shape and
spectrum are significantly affected by GVD even though the propagation distance
is only a fraction of the dispersion length (z/L, = 0.2).

The lower row of Fig.5.13 shows the pulse shape and spectrum at 8, = 1.01,
where the qualitative changes induced by GVD are self-evident. It is the GVD that
dissipates the shock by broadening the steepened trailing edge, a feature clearly
seen in the asymmetric pulse shapes of Fig.5.13. Although the pulse spectra do
not exhibit deep oscillations (seen in Fig.5.12 for the dispersionless case), the
longer tail on the blue side is a manifestation of self-steepening. With a further
increase in the propagation distance z, the pulse continues to broaden while the

spectrum remains nearly unchanged.

5.3.3 Intrapulse Raman Scattering

The discussion so far has neglected the last term in Eq.5.18 that is
responsible for intrapulse Raman scattering. In the case of optical fibers, this
term becomes quite important for ultrashort optical pulses (T, < 1ps) and
should be included in modeling pulse evolution of such short pulses in optical
fibers [21]. The effects of intrapulse Raman scattering are most dramatic in the
context of solitons, where they lead to new phenomena such as decay and self-

frequency shift of solitons (see Chapter VI).

5.4 Chapter summary

The SPM and other nonlinear effects such as stimulated Raman scattering
and four-wave mixing, occurring simultaneously inside optical fibers, can
broaden the spectrum of an ultrashort pulse so much that it may extend over
100 nm or more. Such extreme spectral broadening is called supercontinuum, a
phenomenon that attracted considerable attention during the 1990’s because of

its potential applications.
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A fascinating manifestation of the fiber nonlinearity occurs through optical
solitons, formed as a result of the interplay between the dispersive and nonlinear
effects. The word soliton refers to special kinds of wave packets that can propagate
undistorted over long distances. Solitons have been discovered in many branches of
physics. In the context of optical fibers, not only are solitons of fundamental interest
but they have also found practical applications in the field of fiber-optic
communications. This chapter is devoted to the study of pulse propagation in
optical fibers in the regime in which both the group velocity dispersion (GVD) and
self-phase modulation (SPM) are equally important and must be considered
simultaneously.

The chapter is organized as follows. Section 6.1 considers the phenomenon of
modulation instability. Section 6.2 discusses the fibers solitons phenomenon. Higher-
order nonlinear effects such as self-steepening and intrapulse Raman scattering are
the focus of Section 6.3. Finally section 6.4 discusses the ultrashort pulses

propagation.

6.1 Modulation Instability

Many nonlinear systems exhibit an instability that leads to modulation of
the steady state as a result of an interplay between the nonlinear and dispersive
effects [1-7]. This phenomenon is referred to as the modulation instability and
was studied during the 1960s in such diverse fields as fluid dynamics [2-4],
nonlinear optics [5-7] and plasma physics [8]. In the context of optical fibers,
modulation instability requires anomalous dispersion and manifests itself as a
breakup of the CW or quasi-CW radiation into a train of ultrashort pulses. This
section discusses modulation instability in optical fibers as an introduction to

soliton theory.

6.1.1 Linear Stability Analysis
Consider the propagation of CW light inside an optical fiber. The starting

point is the simplified propagation Eq.3.46.
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If fiber losses are ignored, this equation takes the form

,0A [, 0%A

and is referred to as the nonlinear Schrodinger (NLS) equation in the soliton
literature. As discussed in Section 3.3, A(z,T) represents the amplitude of the
pulse envelope, B, is the GVD parameter, and the nonlinear parameter y is
responsible for SPM. In the case of CW radiation, the amplitude A is independent
of T at the input end of the fiber, z = 0. Assuming that A(z,T) remains time-
independent during propagation inside the fiber, Equation 6.1 is readily solved to
obtain the steady-state solution

A = [Poexp(iDy.), (6.2)
where P, is the incident power and @y, = yP,z is the nonlinear phase shift
induced by SPM. Eq.6.2 implies that CW light should propagate through the fiber
unchanged except for acquiring a power-dependent phase shift (and for
reduction in power in the presence of fiber losses).

The effect of higher-order dispersive and nonlinear effects such as self-
steepening and intrapulse Raman scattering can also be included using Eq.3.46 in
place of Eq.6.1 as the starting point. The third-order dispersion 5 does not affect
the gain spectrum of modulation instability. When optical pulses with widths

smaller than 100 ps are used, modulation instability can be initiated by SPM.

6.2 Fiber Solitons

The occurrence of modulation instability in the anomalous-GVD regime of
optical fibers is an indication of a fundamentally different character of Eq.6.1
when £, < 0. It turns out that this equation has specific pulse-like solutions that
either do not change along the fiber length or follow a periodic evolution pattern.
Such solutions are known as optical solitons. The history of solitons, in fact, dates
back to 1834, the year in which Scott Russell observed a heap of water in a canal
that propagated undistorted over several kilometers. Here is a quote from his

report published in 1844 [9-11]:
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Such waves were later called solitary waves. However, their properties
were not understood completely until the inverse scattering method was
developed. The term soliton was coined in 1965 to reflect the particle-like nature
of those solitary waves that remained intact even after mutual collisions. Since
then, solitons have been discovered and studied in many branches of physics
including optics. In the context of optical fibers, the use of solitons for optical

communications was first suggested in 1973.

6.2.1 Fundamental Soliton

The first-order soliton (N = 1) corresponds to the case of a single
eigenvalue. It is referred to as the fundamental soliton because its shape does not
change on propagation. We obtain the following general form of the fundamental

soliton:

u(é,7) = sech(t)exp(ié/2) (6.3)

The solution in Eq.6.3 can also be obtained by solving the NLS equation directly.
It is this feature of the fundamental solitons that makes them attractive for optical
communication systems. The peak power P, required to support the fundamental

soliton is obtained by setting N = 1 and is given by

_ B2l 3.11|B,|

2 2
YTy YTewum

o (6.4)
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Figure 6.1 Temporal evolution over one soliton period for: a) N=1, b)
N=2, and c) N=3 (after [27])

where the FWHM of the soliton is defined using Tryyyy = 1.76T, from Eq.4.27.
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6.2.2 Higher-order Soliton
6.2.2.1 Second-order Soliton

A Second-order soliton is described in [25]:

4[cosh(37)+3exp(4ié)cosh(t)]exp(i&/2)
[cosh(4T)+4cosh(2T)+3cos(4€)]

u(¢,7) = (6.5)

where the soliton order N is an integer.

Figure 6.2: Spectral evolution over one soliton period for the third-
order soliton. b) For Titanium sapphire, and a) For silica
fiber (after [27])
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An interesting property of the aforementioned solution is that |u(¢,7)|?* is
periodic in ¢ with the period ¢, = % rad. In fact, this periodicity occurs for all

higher-order solitons. Using the definition ¢ = z/L, from Eq.5.12, the soliton

period zo in real units becomes

2
z0=—LD=ET—°zM (6.6)

6.2.2.2 Third-Order Soliton

Periodic evolution of a third-order soliton over one soliton period is
shown in Fig.6.3. As the pulse propagates along the fiber, it first contracts to a
fraction of its initial width, splits into two distinct pulses at z,/2, and then merges
again to recover the original shape at the end of the soliton period at z = z, . This

pattern is repeated over each section of length z,.

Wz

Figure 6.3: Spectral evolution over one soliton period for the third-
order soliton. a) for silica fiber [27], and b) for Titanium
sapphire.
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To understand the origin of periodic evolution for higher-order solitons, it
is helpful to look at changes in the pulse spectra shown in Figure 6.3 for the
N = 3 soliton. The temporal and spectral changes result from an interplay
between SPM and GVD. The SPM generates a frequency chirp such that the
leading edge of soliton is red-shifted while its trailing-edge is blue-shifted from
the central frequency. The SPM-induced spectral broadening is clearly seen in Fig.
6.3 for z/z, = 0.2 with its typical oscillatory structure. In the absence of GVD, the
pulse shape would have remained unchanged. Only the central portion of the
pulse contracts because the chirp is nearly linear only over that part. However, as
a result of a substantial increase in the pulse intensity near the central part of the
pulse, the spectrum changes significantly as seen in Figure 6.3 for z/z, = 0.3.Itis
this mutual interaction between the GVD and SPM effects that is responsible for

the evolution pattern seen in Fig.6.1.

In the case of a fundamental soliton (N = 1), GVD and SPM balance each
other in such a way that neither the pulse shape nor the pulse spectrum changes
along the fiber length. In the case of higher-order solitons, SPM dominates

initially but GVD soon catches up and leads to pulse contraction, seen in Fig.6.1.

6.3 Higher-Order Effects

The properties of optical solitons considered so far are based on the NLS
Eq.6.1. As discussed in Section 3.3, when input pulses are so short that T, < 5 ps,
it is necessary to include higher-order nonlinear and dispersive effects through
Eq.3.46. In terms of soliton units introduced in Section 6.2, Eq.3.46 takes the

form:

.0 alul?
is (Jul“w) + TRU——, (6.7)

23u

where the pulse is assumed to propagate in the region of normal GVD (5, > 0)

and fiber losses are neglected (@ = 0). The parameters &5, s, and 7z govern,
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respectively, the effects of third-order dispersion (TOD), self-steepening, and

intrapulse Raman scattering. Their explicit expressions are

B3 1 Tr
6|B2|To woTo

(6.8)

All three parameters vary inversely with the pulse width and are negligible for
T, > 1 ps. They become appreciable for femtosecond pulses.

As an example: §; = 0.0024, s = 0.0042, and 1z = 0.001 for a 50 fs pulse
(T, = 30 fs) propagating at 0.8 um in Titane- sapphire, if we take T, = 3 fs.

6.3.1 Third-Order Dispersion

When optical pulses propagate relatively far from the zero-dispersion
wavelength of an optical fiber, the TOD effects on solitons are small and can be
treated perturbatively. To study such effects as simply as possible, let us sets = 0
and 7z = 0 in Eq.6.7 and treat the §5 term as a small perturbation [13].
Physically speaking, the TOD slows down the soliton and, as a result, the soliton
peak is delayed by an amount that increases linearly with distance. This TOD-
induced delay is negligible in most fibers for picosecond pulses for distances as
large as ¢ = 100 as long as 3, is not nearly zero.

Eq.6.7 cannot be used in this case because the normalization scheme used
for it becomes inappropriate. Normalizing the propagation distance to

=T /|B;| through &' = z/L),, we obtain the following equation:

La—f,— sgn(ﬁ3)ga—3+ lul>u =0, (6.9)

Where u = NU, where N is defined by

~o i _ YPT§
N®= Ly sl (6-10)

Figure.6.4 shows the pulse shape and the spectrum at &’ =3 for N =2 and
compares them with those of the input pulse at ¢’ = 0. The most striking feature
is the spectrum splitting into two well-resolved spectral peaks [14]. These peaks
correspond to the outermost peaks of the SPM-broadened spectrum (see Fig.5.2).
As the red-shifted peak lies in the anomalous-GVD regime, pulse energy in that

spectral band can form a soliton.
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Figure 6.4: Pulse shape and spectrum at z/L}, = 3 of a hyperbolic secant
pulse propagating at the zero-dispersion wavelength with a
peak power such that N = 2. Dotted curves show for
comparison the initial profiles at the fiber input for a)
Titanium sapphire, and b) silica fiber (after [27]).

The energy in the other spectral band disperses away simply because that part of
the pulse experiences normal GVD. It is the trailing part of the pulse that
disperses away with propagation because SPM generates blue-shifted
components near the trailing edge. The pulse shape in Fig.6.4 shows a long
trailing edge with oscillations that continues to separate away from the leading
part with increasing &’. The important point to note is that, because of SPM-

induced spectral broadening, the input pulse does not really propagate at the
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zero-dispersion wavelength even if §, = 0 initially. In fact, the pulse creates its
own |, | through SPM.

In general, solitons at the zero-dispersion wavelength require less power
than those occurring in the anomalous-GVD regime. This can be seen by
comparing Eq.5.13 and Eq.6.10. To achieve the same values of N and N , the
required power is smaller by a factor of T,|S,/f3| for pulses propagating at the

zero-dispersion wavelength.

6.3.2 Self-Steepening

The phenomenon of self-steepening has been studied extensively [15,16].
Since it has already been covered in Section 5.3, its impact on solitons is
discussed only briefly. To isolate the effects of self-steepening governed by the
parameter s, it is useful to set 3 = 0 and 7; = 0 in Eq. 6.7. Pulse evolution inside

fibers is then governed by

ou  10%u 2 4is 2 (lul?

P +oo5 |lul“u + is P (Jul*u)o. (6.11)
As discussed in Section 5.3, self-steepening creates an optical shock on the
trailing edge of the pulse in the absence of the GVD effects. This phenomenon is
due to the intensity dependence of the group velocity that results in the peak of
the pulse moving slower than the wings. The GVD dissipates the shock and

smoothes the trailing edge considerably. However, self-steepening would still

manifest through a shift of the pulse center.
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Figure.6.5:Pulse shapes at £ =5 and 10 for a fundamental soliton in
the presence of self-steepening (s = 0.041). Dashed curves
show the initial shape for comparison. The solid curves
coincide with the dashed curve when s = 0. a) for Titanium
sapphire, and b) for silica fiber (after [27]).

The self-steepening-induced shift is shown in Fig.6.5, where pulse shapes
at{ =0, 5,and 10 are plotted for s = 0.2 and N = 1 by solving Eq.6.11 for silica
fiber numerically with the input u(0,7) = sech (7). As the peak moves slower
than the wings for s # 0, it is delayed and appears shifted toward the trailing side
in the case of silica fiber. Although the pulse broadens slightly with propagation,
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it nonetheless maintains its soliton nature. The group velocity changes as a result
of the shift. The delay of the peak seen in Fig. 6.5 is due to this change in the group

velocity. In the limit s = 0, it reduces to the hyperbolic secant form of Eq. 6.3.

g T . 520.004277

it-B, Z0 T, =00 iz

By z1 T, = TiE

Figure.6.6: Decay of a second-order soliton (N = 2) induced by self-
steepening (s = 0.2). Pulse evolution over five soliton
periods is shown. a) for titanium sapphire, and b) for silica
fiber (after [27]).
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The effect of self-steepening on higher-order solitons is remarkable in that
it leads to breakup of such solitons into their constituents, a phenomenon
referred to as soliton decay. Figure 6.6 shows this behavior for a second-order
soliton (N = 2) using s = 0.2. For this relatively large value of s, the two solitons
have separated from each other within a distance of two soliton periods and
continue to move apart with further propagation inside the fiber (see figure 6.6b:
silica fiber).

A qualitatively similar behavior occurs for smaller values of s except that a
longer distance is required for the breakup of solitons. In the absence of self-
steepening (s = 0), the two solitons form a bound state because both of them
propagate at the same speed (the eigenvalues have the same real part). The effect
of self-steepening is to break the degeneracy so that the two solitons propagate at
different speeds. As a result, they separate from each other, and the separation
increases almost linearly with the distance [16].

In the case of the titanium sapphire the phenomenon of self steepening is
governed by the group velocity dispersion and the pulse does not present the

wave shock.

6.3.3 Intrapulse Raman Scattering

Intrapulse Raman scattering plays the most important role among the
higher-order nonlinear effects. Its effects on solitons are governed by the last
term in Eq.6.11 and were observed experimentally in 1985. The need to include
this term became apparent when a new phenomenon, called the soliton self-
frequency shift, was observed in 1986 [17] and explained using the delayed
nature of the Raman response [18]. Since then, this higher-order nonlinear effect
has been studied extensively [19]. To isolate the effects of intrapulse Raman
scattering, it is useful to set §3 = 0 and s = 0 in Eq.6.11. Pulse evolution inside

fibers is then governed by:

,0u | 10%u 2. alul?
P toozt lul“u = TRU——. (6.13)
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For pulse widths ~1 ps or shorter, the spectral width of the pulse is large
enough that the Raman gain can amplify the low frequency (red) spectral
components of the pulse, with high-frequency (blue) components of the same
pulse acting as a pump. The process continues along the fiber, and the energy
from blue components is continuously transferred to red components. Such an

energy transfer appears as a red shift of the soliton spectrum, with the shift

increasing with distance.

=

lu(z 4P

it-B, 20T, 200

Figure 6.7: Decay of a second-order soliton (N = 2) induced by intrapulse

Raman scattering (tz = 0.01), a) for titanium sapphire, and b)
for silica fiber (after [27]).
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The effect of intrapulse Raman scattering on higher-order solitons is similar
to the case of self-steepening. In particular, even relatively small values of 74 lead
to the decay of higher-order solitons into its constituents [20]. Figure 6.7 shows
such a decay for a second-order soliton (N = 2) by solving Eq.6.13 numerically
with 7z = 0.01. A comparison of Figures 6.6 and 6.7 shows the similarity and the
differences for two different higher-order nonlinear mechanisms. An important
difference is that relatively smaller values of 7, compared with s can induce
soliton decay over a given distance. For example, if s = 0.01 is chosen in Fig.6.6,
the soliton does not split over the distance z = 5L, . This feature indicates that
the effects of 7 are likely to dominate in practice over those of self-steepening

(case of silica fiber).

Nizaife,

izalfF,

Figure 6.8: Pulse spectrum at z/z, = 5 for parameter values identical to
those of Fig. 6.7. Dashed curves show the spectrum of input
pulses. a) for Titanium sapphire, and b) for silica fiber (after

[27]).
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Another important difference seen in Figs. 6.6 and 6.7 is that both solitons are
delayed in the case of self-steepening, while in the Raman case the low-intensity
soliton is advanced and appears on the leading side of the incident pulse. This
behavior can be understood qualitatively from Fig. 6.8 where the pulse spectrum
at z = 5z, is compared with the input spectrum for the second-order soliton
(whose evolution is shown in Fig. 6.7. The most noteworthy feature is the huge
red shift of the soliton spectrum, about four times the input spectral width for
Tz = 0.01 and z/z, = 5. The red-shifted broad spectral peak corresponds to the
intense soliton shifting toward the right in Fig.6.7, whereas the blue-shifted
spectral feature corresponds to the other peak moving toward the left in that
Figure. Because the blue-shifted components travel faster than the red-shifted
ones, they are advanced while the others are delayed with respect to the input
pulse. This feature of the Raman term can be understood by noting that the
Raman-induced spectral red shift does not preserve pulse energy because a part
of the energy is dissipated through the excitation of molecular vibrations.

In the case of the titanium sapphire the phenomenon of intra pulse Raman
scattering is governed by the group velocity dispersion and the pulse does not

present the wave shock.

6.4 Propagation of Femtosecond Pulses

For femtosecond pulses having widths T, < 1 ps, it becomes necessary to
include all the higher-order terms in Eq.6.17 because all three parameters §5, s,
and Tz become non-negligible. Evolution of such ultrashort pulses in optical fibers
is studied by solving Eq.6.7 numerically. As an example, Fig. 5.9 shows the pulse
shapes and spectra when a second-order soliton is launched at the input end of a
fiber after choosing 6; = 0.0024,s = 0.0042, and 7; = 0.001. These values are
appropriate for a 50fs pulse (T, = 30 fs) propagating in the 0.8 um region of

Titane-sapphire.

136 | Nonlinear Propagation of an Ultrashort Laser Pulse in Titanium Sapphire



CHAP VI: GENERALIZED OF NONLINEAR PULSE PROPAGATION IN TITANIUM SAPPHIRE

Soliton decay occurs within a soliton period, and the main peak shifts toward the
trailing side at a rapid rate with increasing distance. This temporal shift is due to
the decrease in the group velocity occurring as a result of the red shift of the

soliton spectrum. A shift in the carrier frequency of the soliton changes its speed

because v, = (df/dw)~! is frequency-dependent.

sE0.004ZNsz . 520,08, 8,=0.08 "

T8 = 00024 oy

Figure 6.9: Evolution of pulse shapes and spectra a) for titanium sapphire,
and b) for silica fiber (after [27]).
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When the input peak power is large enough to excite a higher-order soliton
such that N > 1, the pulse spectrum evolves into several bands, each
corresponding to the splitting of a fundamental soliton from the original pulse.
The combined effect of TOD, self-steepening, and intrapulse Raman scattering on
a higher-order soliton is to split it into its constituents. In fact, the TOD can itself
lead to soliton decay even in the absence of higher-order nonlinear effects when

the parameter §5 exceeds a threshold value [22].

An interesting question is whether Eq.6.7 permits shape-preserving,
solitary-wave solutions under certain conditions. Several such solutions have
been found using a variety of techniques. In most cases, the solution exists only
for a specific choice of parameter combinations. From a practical standpoint, such
solutions of Eq.6.7 are rarely useful because it is hard to find fibers whose

parameters satisfy the required constraints.

As successful as Eq.6.7 is in modeling the propagation of femtosecond
pulses in optical fibers, it is still approximate. As discussed in Appendix B, a more
accurate approach should use Eq.B.25, where R(t) takes into account the time-
dependent response of the fiber nonlinearity. The delayed nature of the
molecular response not only leads to the soliton self-frequency shift but also
affects the interaction between neighboring solitons. Equation 3.46 has been used
to study numerically how intrapulse stimulated Raman scattering affects the

evolution of femtosecond optical pulses in optical fibers for silica fiber [21].

The titanium sapphire smooth the two phenomena of self steepening and
intra pulse Raman scattering, but remain the effects of group velocity dispersion

accompanied in the propagation of an ultrahort lasers pulse.
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GENERAL CONCLUSION

The work described in this thesis charts the progress towards identifying novel
waveguides such as titanium-doped sapphire for guiding the ultrashort laser pulse
propagation. Titanium-doped sapphire is a material that has a simple energy level
diagram, a high absorption cross section and is vey widely vibronically broadened.
These characteristics make sapphire a successful insulating substrate for micro-

electronic components. Furthermore, it is an excellent material for optical windows.

The progress in the field of ultrashort laser pulse generation has been rapid and
continuous, and has a long lifetime ahead. Laser powers should increase and intensities
should be regularly pushed over 102! W/cm?. Research continues into discoveries for
new gain media in the hope of improving on the excellent Ti: Sa and will continue for as
long as ultrashort laser pulses remain useful, which judging by the numerous and varied
applications, will be for many years to come. Of course, as technology continues to
develop, more applications will be found for it. The laser should become cheaper to
build as technologies and design improve, making them more compact and cheaper to

buy as further applications call for them.

For an understanding of the nonlinear phenomena in optical fibers, it is necessary
to consider the theory of electromagnetic wave propagation in dispersive nonlinear
media. From Maxwell’s equations, which describe the propagation of an electric field, we
obtain the generalized nonlinear Schrodinger equation that describes the ultrashort

laser pulse propagation through a titane sapphire waveguide.

Firstly, we consider the pulse propagation problem by treating fibers as linear
optical media. We discuss the conditions under which the GVD effects dominate over the
nonlinear effects by introducing two length scales associated with GVD and SPM. The
dispersion induced pulse broadening discussed in detail is due to the lowest order GVD
term proportional to ,. Although the contribution of this term dominates in most cases
of practical interest, it is sometimes necessary to include the third order term
proportional to 3 in this expansion. The TOD distorts the pulse such that it becomes
asymmetric with an oscillatory structure near one of its edges. The effect of third order

dispersion is to make the intensity profile asymmetric and introduce a long oscillating
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tail in leading or trailing edges of the pulses. The dispersion compensation technique has
also been used for femtosecond optical pulses. When both [, and pB; are nearly
compensated, propagation of femtosecond optical pulses is limited by the fourth order

dispersive effects governed by the parameter f,.

Then, we consider the pulse propagation problem by treating fibers as nonlinear
optical media. An interesting manifestation of the intensity dependence of the refractive
index in nonlinear optical media occurs through self phase modulation, a phenomenon
that leads to spectral broadening of optical pulses. The SPM induced spectral
broadening is a consequence of the time dependence of @;. This can be understood by
noting that a temporally varying phase implies that the instantaneous optical frequency
differs across the pulse from its central value w,. The chirp induced by SPM increases in
magnitude with the propagated distance. In other words, new frequency components
are generated continuously as the pulse propagates down the fiber. These SPM
generated frequency components broaden the spectrum over its initial width at z=0.

The number of peaks depends on @,,,, and increases linearly with it. As mentioned
before, the shape of the SPM broadened spectrum depends on the pulse shape and on
the initial chirp if the input pulse is chirped. Next, we introduce new qualitative features,
that arise from an interplay between GVD and SPM. In the anomalous dispersion regime
of an optical fiber, the two phenomena can cooperate in such a way that the pulse
propagates as an optical soliton. In the normal regime, the combined effects of GVD and

SPM can be used for pulse compression.

Finally, we discuss the generalized nonlinear Schrodinger equation form for an
ultrashort laser pulse. We define two other phenomena: the self steepening and the
intrapulse Raman scattering effects. The self steepening results from the intensity
dependence of the group velocity. This effect, as a result the trailing edge becomes
steeper and steeper with increasing distance. Physically, the group velocity of the pulse
is intensity-dependent such that the peak moves at a lower speed than the wings. The
self steepening of the pulse eventually creates an optical shock, analogous to the

development of an acoustic shock on the leading edge of a sound wave.
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The intrapulse Raman scattering plays the most important role among the higher
order nonlinear effects. Its effects on solitons are governed by the last term in GNLSE.
Physically, the red shift can be understood in terms of stimulated Raman scattering. For
pulse widths ~1ps or shorter, the spectral width of the pulse is large enough that Raman
gain can amplify the low frequency (red) spectral components of the pulse, with high
frequency (blue) components of the same pulse acting as a pump. The process continues
along the fiber, and the energy from blue components is continuously transferred to red

components.

For pulses shorter than 20 fs even the use of this equation becomes
questionable because of the slowly varying envelope approximation, made in its
derivation. Because such short pulses can be generated by modern mode-locked lasers,
attempts have been made to improve upon this approximation while still working with
the pulse envelope. For supershort pulses containing only a few cycles, it eventually
becomes necessary to abandon the concept of the pulse envelope and solve Maxwell’s

equation directly.
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APPENDIX A

A.1 Analytical expression of the temporal pulse crossing a dispersive medium

One considers an isotropic transparent medium characterized by an index of refraction
n(w). In a preoccupation with a simplicity, one supposes that the electric field entering

medium has it an envelope of Gaussian form:

Ty

2
t—t
E@t)=E@,))= exp(jwot)ex{— ( 20) }
+o0 2
By using the remarkable integral Iexp [_ ax? + bx]dx = \ﬁ exp(b—j,
St a a
1 +00

And transformation of Fourrier formulates it: S(w) = T I E(¢) exp(— jwot)
T

The spectrum of this impulse is calculated

N -

N _J;OE(tO ) exp(— jwot) expli— T—ZO):I exp(— jwt)) dt

- —Ijg_:[) +Ji exp{— (t;%)} exp(j(w, — w)t)dt

0

E(t,) te ¢ t? , t
= expl — — exp| —— |ex w, —w)+2—)¢t |.dt
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0

= E(to)exp fo VT, exp i Te
/_272_ z_g 0 2 0

_E@) 7, exp[— @ﬁ? } expl- jto (w=w, )}

Whose phase is modified during the propagation in the medium?

G(w) = S(w)exp[- jp(w)] P(w) = %n(wu,

If the variation of the index of refraction n(w) according to the pulsation is slow, the

phase can be developed in Taylor series around wy:
P(W) = p(W,)+a—w—w,) +b(w—wy)” +........ ,

2
_ dk L oAk

: - L.
dw|,, dw™|

0

a
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At the exit of the transparent medium, the amplitude is given by the opposite transform

of Fourrier of G(w) :

E"(t) = ﬁ IG(W) exp(jwt)dw

- ﬁ .[S(w) exp(jwt)expl- jg(w,) — ja(w—wy) — jb(w—w,)* kiw
_ ﬁ E\%O  expl- (o, ) [exp {_ @75 b= )2}

X exp[— ja(w ) )]exp(jwt)exp[— Jto (W W )]dw

1 E(IO) . . wg s
=— T, exp| — jt,w, — jo(w,) ———1, — jbw, + jaw,
(272_ (2 0 |: 0770 0 4 0 0 0
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X Iexp[—&—]b W lexp| =2 Zreg = jbw, + o wdw
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oy —+jb
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The electric field at exit of the medium is written then

tie ] A it 2
[ sortie — T—OE(IO) eXp[— J((o + ¢(W0 ))] eXp(]WOt)eXp{— (zo—a)}a
; 7, +4jb
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£ = Lt ot sl - SN

0 Ty +16b

2
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7 16

7, T

= iE(zO)eXp - é(r —t, — a)2 } exp[— j((p(wo) + ¢)]exp(jw0t)>< exp{i;‘b (t —t, — a)2]
T

This gives the following expression for the intensity at exit of the medium:
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A.2 Calculation of the electric field of the wavelet:

0(t,z = 0) = TF{6(Q,z = 0)}
= Ler@(Q z= 0). exp( jwt)dw

—00

2 2
= i % exp{— %} exp{— %} exp(jwt )dw
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= /4 .exp .€X +£ _1“}/ .exp —lz‘2 expjM .
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A.3 Calculation of the electric field through a dispersive medium of index n(w):

L _(w-0)f
5 \/7[—}/ E (w).exp{ p” }
0(Q,z)= ﬁ.E(w).exp{— %}.exp[ﬂo(w)]

(w-Qf _
0t,2) =5 J_ [ E(w)exp[ T .expljp(w)]

0(Q,z=0) =

A

exp[]go(o) +jip" (w-Q) +%j¢(2) (w— Q)Z}exp(jwt).dw

Temporal intensity 4 (z,z) associated the wavelet such as

0(t,z) = i j 6(Q, z).exp(jwt )dw
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knowing that:

(w—w0)2 =(w—w0 +Q—Q)2
=(w-Qf +(Q-w,)’ +2(w-Q)Q-w,)
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B.1 Nonlinear Pulse Propagation
The study of most nonlinear effects in optical fibers involves the use of short
pulses with widths ranging from ~10ns ns to 10fs. When such optical pulses
propagate inside a fiber, both dispersive and nonlinear effects influence their
shape and spectrum. In this section we derive a basic equation that governs
propagation of optical pulses in nonlinear dispersive fibers. The starting point is
the wave Eq.3.7. This is generally not possible as Eq.3.35 is nonlinear because of
the intensity dependence of €y;. In one approach, €y, is treated as a constant
during the derivation of the propagation equation. The approach is justified in
view of the slowly varying envelope approximation and the perturbative nature
of Py;.Substituting Equations.3.36-3.37 in Eq..3.35, the Fourier transform
E(r,w — wy), defined as
Er,w—wo) = [ E(r,t).expli(w — wo)t] dt, (B.1)
is found to satisfy the Helmholtz equation
V2E + e(W)kZE = 0, (B.2)
where k, = w/c and
eW) = 1+ /W) +ewy (B3)
is the dielectric constant whose nonlinear part ¢y, is given by Eq.3.42. Similar to
Eq.3.14, the dielectric constant can be used to define the refractive index 71 and
the absorption coefficient &. However, both 7 and & become intensity dependent
because of gy;. It is customary to introduce
il =n+n,|E|? @ =a+ a,|E|?. (B.4)
Using ¢ = (i + i@/2ky)? and Eq.3.42 and Eq.B.3, the nonlinear-index coefficient

n, and the two-photon absorption coefficient a, are given by

3 (3 — 3w (3)
n, = aRe()(xxxx , = 4—7121m()(xxxx : (B.5)

The linear index n and the absorption coefficient a are related to the real and

imaginary parts of)(",(ci) asin Eq.3.15 and Eq.3.16.
Eq.B.2 can be solved by using the method of separation of variables. If we
assume a solution of the form

E(r,w —wy) = F(x,y)A(z,w — wy) exp(ifz), (B.6)
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where A(z, w)is a slowly varying function of z and S, is the wave number to be
determined later, Eq.B.2 leads to the following two equations for F(x,y) and

Az, w):

Tt [ewkE - 7P =0, (B.7)
2By 22 + (B> - B4 = 0. (B.8)

In obtaining Eq.B.8, the second derivative (9247)/0z?> was neglected since
A(z,w)is assumed to be a slowly varying function of z. The wave number g is
determined by solving the eigenvalue Eq.B.7 for the fiber modes using a
procedure similar to that used in Section 3.2. The dielectric constant £(w) in Eq.
B.7 can be approximated by

e =(n+ An)? =~ n? + 2nAn, (B.9)

where An is a small perturbation given by

An = n,|E|? + —.
2k,

(B.10)

Eq.B.7 can be solved using first-order perturbation theory [11]. We first
replace ¢ with n? and obtain the modal distribution F(x,y), and the
corresponding wave number B(w). For a single-mode fiber, F(x,y) corresponds
to the modal distribution of the fundamental fiber mode HE;; given by Eq.B.6 and
Eq.B.7, or by the Gaussian approximation Eq.B.8. We then include the effect of An
in Eq.B.7. In the first-order perturbation theory, An does not affect the modal

distribution F(x, y). However, the eigenvalue § becomes

Bw) = p(w) + AB, (B.11)
where

g =Ko 122 anlF (x,y) |2 dxdy
- +00
JIZ An|F(x,y)|?dxdy

(B.12)

This step completes the formal solution of Eq.3.35 to the first order in
perturbation Py;. Using Eqgs.3.36 and 3.46, the electric field E (7, t) can be written

as
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E(r,t) = %J?[F(x, Y)A(z, t) expli(Byz — wot)] + c.c.] (B.13)
where (z,t) is the slowly varying pulse envelope. The Fourier transform

A(z,w — w,) of A(z, t) satisfies Eq.B.8, which can be written as

2= i[Bw) + 08 — Bo)A (B.14)
where we used Eq.B.11 and approximated 52 — 82 by 2,(8 — 2). The physical
meaning of this equation is clear. Each spectral component within the pulse
envelope acquires, as it propagates down the fiber, a phase shift whose
magnitude is both frequency and intensity dependent. At this point, one can go
back to the time domain by taking the inverse Fourier transform of Eq.B.14, and
obtain the propagation equation for A(z,t). However, as an exact functional form
of f(w) is rarely known, it is useful to expand f(w) in a Taylor series about the

carrier frequency w, as

BW) = Bo+ (W = wo)By +5 (W — wo)?B, + = (W — wo)*Bs + -+~ (B.15)
where
B = (Gom). m=12,.). (B.16)

The cubic and higher-order terms in this expansion are generally negligible if the
spectral width Aw < w,. We substitute Eq.B.15 in Eq.B.14 and take the inverse

Fourier transform by using
Az, t) = —[% A(z,w — wo)exp[—i(w — wy)t]dw. (B.17)
During the Fourier-transform operation, w — w,, is replaced by the differential

operator i(a/at). The resulting equation for A(z, t) becomes

A B, 024
— =B szatz + iABA. (B.18)

The term with Aﬁ includes the effect of fiber loss and nonlinearity. By using Eq.
B.10 and Eq.B.12, Aﬁ can be evaluated and substituted in Eq.B.18. The result is

4 1P 074 2
+ ,81 TS5 2t; A iy|A|*A, (B.19)
where the nonlinear parameter y is defined as
_ N2Wo
= che (B.20)
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In obtaining Eq.B.19 the pulse amplitude A is assumed to be normalized such that
|A]? represents the optical power. The quantity y|4|? is then measured in units of

m~1 if n, is expressed in units of m?/W. The parameter Agfrs is known as the

effective core area and is defined as

(IR Gey)Paxdy)’

Aery = P21 Gey)dxdy

(B.21)

Its evaluation requires the use of modal distribution F(x,y) for the fundamental
fiber mode. Clearly A.¢; depends on fiber parameters such as the core radius and
the core-cladding index difference. If F(x,y) is approximated by a Gaussian
distribution as in Eq.3.34, A.¢f = nw?.

Eq.B.19 describes propagation of picosecond optical pulse in single-mode
fibers. It is often referred to as the nonlinear Schrodinger (NLS) equation because
it can be reduced to that form under certain conditions. It includes the effects of
fiber losses through «a, of chromatic dispersion through f; and S,, and of fiber
nonlinearity through y. Briefly, the pulse envelope moves at the group velocity

vy = 1/, while the effects of group-velocity dispersion (GVD) are governed by
Bo-

B.2 Higher-Order Nonlinear Effects
The starting point is again the wave Eq.3.35. Eq.3.10 describes a wide
variety of third-order nonlinear effects, and not all of them are relevant to our
discussion. For example, nonlinear phenomena such as third harmonic
generation and four-wave mixing are unlikely to occur unless an appropriate
phase-matching condition is satisfied. Nonresonant, incoherent (intensity-
dependent) nonlinear effects can be included by assuming the following
functional form for the third-order susceptibility:
Xt =t t—tyt—t3) = yOR(t —t)6(t — t,)5(t — t3), (B.22)
where R(t) is the nonlinear response function normalized in a manner similar to

the delta function, i.e., f:: R(t)dt = 1. By substituting Eq.B.22 in Eq.3.10 the

nonlinear polarization is given by
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Pui(r,t) = X PE(r, 0) [, E(t = t)IE(r, t)]? dty (B23)
where it is assumed that the electric field and the induced polarization vectors
point along the same direction. The upper limit of integration in Eq.B.23 extends
only up to t because the response function R(t — t;) must be zero for t; >t to
ensure causality.

The analysis of Section 3.3.1 can still be used by working in the frequency
domain. Using Eqs.3.34-3.36, E is found to satisfy
VZE + n2(W)kEE = —ikga + x©® ‘:—;ffio R(w —wy)

X E(wy, 2)E(w,, 2)E*(wy + w, —w, 2)dw,dw, (B.24)
where R(w) is the Fourier transform of R(t). As before, one can treat the terms
on the right-hand side as a small perturbation and first obtain the modal
distribution by neglecting them. The effect of perturbation terms is to change the
propagation constant for the fundamental mode by AS as in Eq.B.11 but with a
different expression for Af One can then define the slowly varying amplitude
A(z,t) as in Eq.B.13 and obtain, after some algebra, the following equation for
pulse evolution inside a single-mode fiber:

The following equation for pulse evolution inside a single-mode fiber:

04  a 6A+i,8262A Bs 834
2T Pt 9 T s o
. i 0 o /] ! /
=iy (1 + WLOE) (A(z,0) [__R(tHIA(z, t — t")|?dt") (B.25)
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Fig: B.1 Temporal variation of the Raman response function
obtained by using the actual Raman-gain spectrum of
silica fibers.

where is the nonlinear parameter as defined in Eq.B.20. In general, the effective
core area is also a function of because the mode distribution is
frequency dependent. However, the variation of over the pulse spectrum is
typically negligible and can be included in a straightforward manner.

The time derivative appearing on the right-hand side of Eq.B.25 results
when Eq.3.38 is used in Eq.3.7 and the first-order time derivative of is
retained in the analysis used for ultrashort pulses. This term is responsible for
self-steepening and shock formation at a pulse edge and has been discussed
extensively since 1967. This term also includes the nonlinear energy loss
resulting from intrapulse Raman scattering. Eq.B.25 may be valid even when the
slowly varying envelope approximation does not hold and can be used for pulses
as short as a few optical cycles if enough higher-order dispersive terms are
included. The response function should include both the electronic and
vibrational (Raman) contributions. Assuming that the electronic contribution is
nearly instantaneous, the functional form of R(t) can be written as

(B.26)
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where f; represents the fractional contribution of the delayed Raman response to
nonlinear polarization Py;. The Raman response function h(t) is responsible for

the Raman gain whose spectrum is given by

gr(Aw) = :}TifRX(S)Im[ﬁR (AW)]» (B.27)
where Aw =w —w, and Im stands for the imaginary part. The real part of
hg(Aw)can be obtained from the imaginary part by using the Kramers-Kronig

relations. Attempts have been made to determine an approximate analytic form

of the Raman response function.
hg(t) = a2 exp|—)sin{_)- (B.28)

The parameters 7, and 7, are two adjustable parameters and are chosen to

provide a good fit to the actual Raman-gain spectrum. Their appropriate values
are 7, = 12.2 fs and 1, = 32 fs. Eq.B.25 governs evolution of ultra-short pulses
in optical fibers. Its accuracy has been verified by showing that it preserves the
number of photons during pulse evolution if fiber loss is ignored by setting a = 0.
As the higher-order dispersion term (involving 3) and the shock term (involving
w,) are negligible for such pulses, Eq.B.25 reduces to Eq.B.19.

The pulse energy is not conserved in the presence of intrapulse Raman
scattering because a part of the pulse energy is absorbed by silica molecules.
Equation B.25 includes this source of nonlinear loss. It is easy to see that it
reduces to the simpler equation obtained in Section 3.3.1 [Eq.B.19] for optical
pulses much longer than the time scale of the Raman response function hg(t)
because R(t) for such pulses is replaced by the delta function §(t). Noting that
hg (t) becomes, nearly zero for t > 1 ps (see Fig. B.1), this replacement is valid for
picoseconds pulses having widths much greater than 1 ps. As the higher-order
dispersion term (involving ;) and the shock term (involving w,) are negligible
for such pulses, Eq.3.67 reduces to Eq.B.19. For pulses shorter than 5 ps but wide
enough to contain many optical cycles (widths> 10 fs), we can simplify Eq.B.25

using a Taylor-series expansion such that
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Azt = t)? ~ |A(z, D — t' = |A(z, )| (B.29)
This approximation is reasonable if the pulse envelope evolves slowly along the

fiber. Defining the first moment of the nonlinear response function as

d(Imhg)

Tp = [ tR(D)dt = fg [ t hg(D)dt = fr———=

o) , (B.30)

Aw=0

and noting that fooo R(t)dt = 1, Eq. (C.25) can be approximated by

0A  « i, 9%A B3 034
L4222 B2 72
0z t 2 + 2 0t2 6 0t3

— 2 L9 ra122) — 214l
= iy (|A| A+ 2 (1A1PA) ~ T AT ) (B.31)

where a frame of reference moving with the pulse at the group velocity vg (the

so-called retarded frame) is used by making the transformation

T=t—==t-pz (B.32)

Vg
A second-order term involving the ratio Tz/w, was neglected in arriving at
Eq.B.31 because of its smallness.

It is easy to identify the origin of the last three higher-order terms in
Eq.B.31. The term proportional to 5 results from including the cubic term in the
expansion of the propagation constant in Eq.B.15. This term governs the effects of
third-order dispersion and becomes important for ultrashort pulses because of
their wide bandwidth. The term proportional to w,* results from including the
first derivative of Py;. It is responsible for self-steepening and shock formation.
The last term proportional to T in Eq.B.25 has its origin in the delayed Raman
response, and is responsible for the self-frequency shift induced by intrapulse
Raman scattering. By using Eq.B.27 and Eq.B.30, T, can be related to the slope of
the Raman gain spectrum that is assumed to vary linearly with frequency in the

vicinity of the carrier frequency w.

For pulses of width Ty > 5 ps , the parameters (w,T,) ! and Ty /T, become
so small (< 0,001) that the last two terms in Eq.B.25 can be neglected. As the

contribution of the third-order dispersion term is also quite small for such pulses
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(as long as the carrier wavelength is not too close to the zero-dispersion
wavelength), one can use the simplified equation

B, 024
2 9T?

iZ+isA- —ylA?A = 0. (B.33)
This equation can also be obtained from Eq.B.19 by using the transformation
given in Eq.3.46. In the special case of a = 0, Eq.B.33 is referred to as the NLS
equation because it resembles the Schrodinger equation with a nonlinear
potential term (variable z playing the role of time). To extend the analogy further,
Eq.B.25 is called the generalized (or extended) NLS equation. The NLS equation is
a fundamental equation of nonlinear science and has been studied extensively in
the context of solitons. Eq.B.33 is the simplest nonlinear equation for studying
third order nonlinear effects in optical fibers. Eq.B.33 appears in optics in several
different contexts. For example, the same equation holds for propagation of CW
beams in planar waveguides when the variable T is interpreted as the spatial
coordinate. The 8, term in Eq.B.33 then governs beam diffraction in the plane of
the waveguide. This analogy between “diffraction in space” and “dispersion in

time” is often exploited to advantage since the same equation governs the

underlying physics.

B.3 Numerical Methods

A numerical approach is therefore often necessary for an understanding of
the nonlinear effects in optical fibers. A large number of numerical methods can
be used for this purpose. The one method that has been used extensively to solve
the pulse-propagation problem in nonlinear dispersive media is the split-step
Fourier method. The relative speed of this method compared with most finite-
difference schemes can be attributed in part to the use of the finite-Fourier-
transform (FFT) algorithm. This section describes various numerical techniques
used to study the pulse-propagation problem in optical fibers with emphasis on

the split-step Fourier method and its modifications.
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B.3.1 Split-Step Fourier Method

To understand the philosophy behind the split-step Fourier method, it is

useful to write Eq.B.25 formally in the form

0A ~ ~
— = (D +N)4, (B.34)

where D is a differential operator that accounts for dispersion and absorption in a
linear medium and N is a nonlinear operator that governs the effect of fiber
nonlinearities on pulse propagation. These operators are given by

iﬂz 62 ﬁ3 63 a

b=- 2 a12 ' 6 OT3 2’ (B-35)
V=i 24 L10 i yizay . 2AF
N =iy (1417 + -5 (AP - T 250), (B.36)

In general, dispersion and nonlinearity act together along the length of the fiber.
The split-step Fourier method obtains an approximate solution by assuming that
in propagating the optical field over a small distance h, the dispersive and
nonlinear effects can be pretended to act independently. More specifically,
propagation from z to z + h is carried out in two steps. In the first step, the

nonlinearity acts alone, and D =0in Eq.B.34.

In the second step, dispersion acts alone, and N = 0 in Eq.B.36. Mathematically,

A(z+hT) = exp(hﬁ) exp(hﬁ) A(z,T). (B.37)
The exponential operator exp(hﬁ) can be evaluated in the Fourier domain using
the prescription

exp(hD)B(z,T) = F;texp|hD (iw)|FB(z,T), (C.38)
where Fr denotes the Fourier-transform operation, D (iw) is obtained from
Eq.B.35 by replacing the differential operator 0 /0T by iw, and w is the frequency
in the Fourier domain. As D(iw) is just a number in the Fourier space, the
evaluation of Eq.B.37 is straightforward. The use of the FFT algorithm makes

numerical evaluation of Eq.B.37 relatively fast. It is for this reason that the split-
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step Fourier method can be faster by up to two orders of magnitude compared
with most finite-difference schemes. To estimate the accuracy of the split-step
Fourier method, we note that a formally exact solution of Eq.B.34 is given by

A(z+ hT) = exp[h(ﬁ + N)] A(z,T), (B.39)
if N is assumed to be z independent. At this point, it is useful to recall the Baker-
Hausdorff formula for two noncommuting operators @ and b,

exp(d)exp(B) = exp (d +b+ % [c’i, B] + % [& — b, [c’i, B]] + - ) (B.40)
where [d, 13] = ab — ba. A comparison of Egs. (B.37) and (B.39) shows that the
split-step Fourier method ignores the noncommutating nature of the operators D
and N. By using Eq.B.40 with @ = hD and b = hN the dominant error term is

found to result from the single commutator %hz []3, N]. Thus, the splitstep Fourier

method is accurate to second order in the step size h.

DISPERSION NOMLINEARITY
ONLY ONLY

Alz,T)

L —

Fig: B.2 Schematic illustration of the symmetrized split-step Fourier method
used for numerical simulations. Fiber length is divided into a large
number of segments of width h. Within a segment, the effect of
nonlinearity is included at the midplane shown by a dashed line.

The accuracy of the split-step Fourier method can be improved by adopting
a different procedure to propagate the optical pulse over one segment from z to

Z + h. In this procedure Eq.B.37 is replaced by
A(z+hT) = exp (% 5) exp (fzz+h N(z’)dz’) exp (gﬁ) A(z,T). (B.41)

The main difference is that the effect of nonlinearity is included in the

middle of the segment rather than at the segment boundary. Because of the
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symmetric form of the exponential operators in Eq.B.41, this scheme is known as
the symmetrized split-step Fourier method. The integral in the middle
exponential is useful to include the z dependence of the nonlinear operator N . If
the step size h is small enough, it can be approximated by exp(hIV ), similar to
Eq.B.37. The most important advantage of using the symmetrized form of Eq.B.41
is that the leading error term results from the double commutator in Eq.B.40 and
is of third order in the step size h. This can be verified by applying Eq.B.40 twice
in Eq.B.41. The accuracy of the split-step Fourier method can be further improved
by evaluating the integral in Eq.B.41 more accurately than approximating it by
hN(2).

A simple approach is to employ the trapezoidal rule and approximate the

integral by
[T R (z)dz' = Z[N(@) + Nz + h)]. (B.42)

However, the implementation of Eq.B.42 is not simple because N(z + h) is
unknown at the midsegment located at z + h/2. It is necessary to follow an
iterative procedure that is initiated by replacing N(z + h) by N(z) . Eq.B.41 is
then used to estimate A(z + h, T) which in turn is used to calculate the new value
of N(z + h). Although the iteration procedure is time-consuming, it can still
reduce the overall computing time if the step size h can be increased because of
the improved accuracy of the numerical algorithm. Two iterations are generally
enough in practice.

The implementation of the split-step Fourier method is relatively
straightforward. As shown in Fig.B.2, the fiber length is divided into a large
number of segments that need not be spaced equally. The optical pulse is
propagated from segment to segment using the prescription of Eq.B.41. More
specifically, the optical field A(z,T) is first propagated for a distance h/2 with
dispersion only using the FFT algorithm and Eq.B.38. At the midplane z + h/2,
the field is multiplied by a nonlinear term that represents the effect of

nonlinearity over the whole segment length h. Finally, the field is propagated the
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remaining distance h/2 with dispersion only to obtain A(z + h, T). In effect, the
nonlinearity is assumed to be lumped at the midplane of each segment (dashed
lines in Fig.B.2).

The split-step Fourier method has been applied to a wide variety of optical
problems including wave propagation in atmosphere, graded-index fibers,
semiconductor lasers, unstable resonators, and waveguide couplers. It is referred
to as the beam-propagation method when applied to the propagation of CW

optical beams in nonlinear media where dispersion is replaced by diffraction.

For the specific case of pulse propagation in optical fibers, the split-step
Fourier method was first applied in 1973. Its use has become widespread since
then because of its fast execution compared with most finite difference schemes.

Although the method is relatively straightforward to implement, it requires
that step sizes in z and T be selected carefully to maintain the required accuracy.
In particular, it is necessary to monitor the accuracy by calculating the conserved
quantities such as the pulse energy (in the absence of absorption) along the fiber
length. The optimum choice of step sizes depends on the complexity of the
problem. Although a few guidelines are available, it may sometimes be necessary
to repeat the calculation by reducing the step size to ensure the accuracy of
numerical simulations. The time window should be wide enough to ensure that
the pulse energy remains confined within the window. Typically, window size is
10-20 times the pulse width. In some problems, a part of the pulse energy may
spread so rapidly that it may be difficult to prevent it from hitting the window
boundary. This can lead to numerical instabilities as the energy reaching one
edge of the window automatically reenters from the other edge (the use of the
FFT algorithm implies periodic boundary conditions). It is common to use an
“absorbing window” in which the radiation reaching window edges is artificially
absorbed even though such an implementation does not preserve the pulse
energy. In general, the split-step Fourier method is a powerful tool provided care

is taken to ensure that it is used properly.
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If the only a step h is taken along the waveguide z, then the linear and non-linear
components can be treated separately resulting in only a small numerical error.

These steps are illustrated in Figure 3.2.

Fig. B.3 Principe of SSFM

In each step in the splits-step method there are three operations, involving the
non-linear and linear components. The non-linear transfer function is applied
from Ao to h/2, then from h/2 to Ai. The linear transfer function is then applied

from Ao to Ai. This is illustrated in Figure B.4.

8,
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Fig.B.4: method schematization
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Sigles and Acronyms

AM : Amplitude Modulation

CW: Continuous Wave

CS: : Sulfure de Carbone

DSF : Dispersion Shifted Fiber

DODCI: 3.3’-DiethylOxaDicarboCyanine lodide
FFT : Fast Fourier Transform

FWHM: Full-Width at Half-Maximum

FWM : Four-Wave Mixing

GVD : Group Velocity Dispersion

GDD: Group Delay Dispersion

He: Ne: Laser Helium Neon

KLM: Kerr Lens Mode-Locking

LASER : Light Amplification by Simulated Emission of Radiation
NLSE : NonLinear Schrodinger Equation

NRZ : Non-Return-to-Zero

NZDSF : Non-Zero Dispersion Shifted Fiber

Nd: YAG: Neodymium: Yttrium-Aluminum Garnet
Nd: YLF: Neodymium: Yttrium Lithium Flioride
PMD : Polarization Mode Dispersion

SBS : Stimulated Brillouin Scattering

SMF : Single Mode Fiber

SPM : Self-Phase Modulation

SRS : Stimulated Raman Scattering-

SSF : Split-Step Fourier

SESAM: SEmiconductor Saturable Absorber Mirror
TE :Transverse Electric

TM: Transverse Magnetic

TOD: Third Order Dsipersion

Ti: Al203: Titane Sapphire

WB: Wave Breaking

ZDW: Zero-Dispersion Wavelength



Abstract:

Wave propagation in dispersive nonlinear media has become a topic of intense
research activities, in part stimulated by its potential application to optical fiber
communication systems. Propagation of optical pulses in Titanium Sapphire is mainly
influenced by the group velocity dispersion and the refractive index nonlinearity. Rapid
progress in ultra short time laser technology has made it possible that optical pulses
with durations comparable to the carrier oscillation cycle can be generated. The
propagation of such ultra short and intense pulses is then affected by additional
physical mechanisms, where especially higher order effects become important. Highly
nonlinear operating conditions or the interplay between the different linear and
nonlinear effects can result in dramatic changes of the temporal and spectral properties
of the pulse.

The propagation of an ultra short pulse is governed by a generalized nonlinear
Schrodinger equation (NLSE), which can be derived from the underlying Maxwell
equations within the slowly varying envelope approximation. We solve numerically a

generalized Schrodinger equation by using a split step Fourier method. Effects such as

the impacts of group velocity dispersion (GVD), third order dispersion (TOD), self phase

modulation (SPM), wave breaking (WB), self steepening (SS), and intrapulse stimulated
Raman scattering (ISRS) are demonstrated in detail. Examples for the above effects are
demonstrated, as well as their interplay in the context of soliton propagation. The
numerical method therefore presents an advantage tool for describing the ultra short

pulse laser propagation in Titanium sapphire.

Keywords: Titanium sapphire, ultra short laser pulse, Generalized Nonlinear
Schrodinger Equation, Group Velocity Dispersion, Self Phase modulation,

Soliton.




