Chapitre IV

Résultats et discussions

IV.1. INTRODUCTION:

On s'intéresse dans ce chapitre à la modélisation de la composition chimique à l'équilibre thermodynamique d'un mélange gazeux N_2/O_2 . Ainsi la loi d'action de masse (loi de Saha et loi de Guldberg et Waage) permet à l'équilibre thermodynamique de déterminer les concentrations des différentes espèces.

Nous analysons en particulier l'influence de la concentration d'oxygène O_2 et la pression sur l'évolution de la densité de neuf espèces : N, O, N₂, O₂, NO, NO^{+,} NO₂, NO₂ ⁺ et les électrons. Le mélange est soumis à une énergie variant de 1000 à 20000K.

IV.2. INFLUENCE DE LA CONCENTRATION:

Sur les Figures IV.1 jusqu'à IV.90 nous avons représenté l'évolution de la densité des espèces N, O, N₂, O₂, NO, NO⁺, NO₂, NO₂ ⁺ et électrons, en fonction de la température (1000 – 20000K) pour plusieurs concentrations pour différentes concentrations d'oxygène O₂ (1, 10, 50, 90 et 99%) et pour cinq pressions variables (0,001atm, 0.01atm, 1atm, 5atm et 10atm). La pression étant constante pour chaque cas d'analyse de la densité.

IV.2.1. Cas pour la pression 0.001atm :

Nous commençons notre analyse par l'application d'une pression constante égale à 0,001 atm. les courbes sont représentées sur les figures de IV.1 jusqu'à IV.9.

FIGURE IV.1: Evolution de la densité de l'espèce N, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Nous remarquons pour l'espèce N que l'écart entre les concentrations 99% et 1% est plus important que celui entre 50% et 1%. Nous observons aussi que la croissance de l'azote est très rapide entre 1000 et 5000K. Cette croissance est due à la dissociation de la molécule d'azote N_2 :

$$e + N_2 \rightarrow N + N + e$$

Pour les températures supérieures à 5000K la densité se stabilise jusqu'à 10000K à cause des réactions inverses, ensuite elle diminue progressivement jusqu'à 20000K car l'atome N rentre dans la création d'autres espèces (NO, NO⁺, NO₂, NO₂⁺...), ceci pour toutes les concentrations.

FIGURE IV.2: Evolution de la densité de l'espèce O, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Pour l'espèce O l'écart entre les concentrations 99% et 1% est plus important que celui entre 50% et 1%. Nous observons aussi que la croissance de l'oxygène est très rapide entre 1000 et 2400K, elle est due à la dissociation de la molécule d'oxygène :

$$e + O_2 \rightarrow O + O + e$$

Pour les températures supérieures à 2400K la densité se stabilise jusqu'à 10000K ensuite elle diminue progressivement jusqu'à 20000K pour la même raison que l'espèce N, c'est-à-dire la création d'autres espèces (NO, NO⁺, ...), ceci pour toutes les concentrations.

FIGURE IV.3: Evolution de la densité des électrons, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

D'autre part, pour les électrons l'écart n'existe que pour les températures entre 2600 et 5200K, ceci pour toutes les concentrations. Ailleurs l'écart est très faible. La croissance des électrons est due à toutes les réactions de dissociation des molécules d'azote et d'oxygène ainsi qu'à l'ionisation de certaines espèces telles que NO⁺, NO₂⁺, ...

FIGURE IV.4: Evolution de la densité de l'espèce N₂, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Pour l'espèce N_2 nous remarquons en générale une diminution durant toute la simulation de cette espèce. Tout d'abord, la première diminution qui est lente et qui se passe entre 1000K (concentration 99%) et 4000K (concentration 99%) est due à la dissociation de la molécule d'azote. Ensuite la deuxième diminution qui se passe au-delà de 5000K est plus rapide que la première. Elle est due à plusieurs réactions de créations d'autres espèces telles que N, N_2^+ , NO, N_2O ,... Nous observons un écart entre les différentes concentrations qui commence à être significatif à partir de 50%.

FIGURE IV.5: Evolution de la densité de l'espèce O₂, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Pour la molécule d'oxygène O_2 nous remarquons à peu près la même évolution que pour l'espèce N_2 . La différence réside dans les valeurs, par exemple pour la première diminution elle commence vers 1000K (concentration 1%) et se termine vers 2400K (concentration 99%). Ensuite, pour la deuxième diminution qui est plus rapide, elle se passe entre 2500K jusqu'à 20000K (concentration 1%) et 3000K jusqu'à 20000K (concentration 99%). Cette diminution est due à plusieurs réactions de créations d'autres espèces telles que O_2^+ , NO, NO₂, O_3 ,... Nous observons un écart entre les différentes concentrations qui commence à être significatif comme pour N₂ à partir de 50%.

FIGURE IV.6: Evolution de la densité de l'espèce NO, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Pour l'espèce NO nous obtenons deux phases : une augmentation ensuite une diminution de la densité pour toutes les concentrations. La première étape qui consiste à l'augmentation va de 1000K à 3000K, elle est due à la dissociation élevée de N_2 . La deuxième phase qui correspond à la diminution de la densité de NO et qui va de 3000K jusqu'à 13000K est due surtout à la

FIGURE IV.7: Evolution de la densité de l'espèce NO⁺, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Pour l'espèce NO⁺, nous observons aussi deux phases d'évolution de la densité pour toutes les concentrations. D'abord pour la création qui s'effectue entre 1000K et 4000K et qui est due essentiellement à l'attachement des électrons à la molécule d'oxygène, ensuite une diminution qui s'effectue entre trois étapes. La première étape entre 3000 et 5000K qui est très rapide, ensuite la deuxième étape moins rapide que la précédente entre 5000 et 9000K et enfin la troisième étape plus rapide que la première et qui s'effectue entre 10000 et 15000K. Cette deuxième phase est due surtout au détachement de la molécule

FIGURE IV.8: Evolution de la densité de l'espèce NO₂, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Pour l'espèce NO_2 nous observons aussi deux phases d'évolution de la densité pour toutes les concentrations. D'abord pour la création qui s'effectue entre 1000K et 4000K et qui est due à la transformation spontanée de NO en NO_2 , ensuite une diminution qui s'effectue entre 2000K et 17000K car il n'y a plus de NO.

$$2NO + O_2 \rightarrow 2 NO_2$$

FIGURE IV.9: Evolution de la densité de l'espèce NO⁺₂, pour différentes concentrations d'oxygène (1, 10, 50, 90 et 99%) et pour une pression constante 0,001atm

Pour l'espèce NO_2^+ , nous observons aussi deux phases d'évolution de la densité pour toutes les concentrations. D'abord pour la création qui s'effectue entre 1000K et 2500K et qui est due essentiellement à l'arrachement d'un électron a une molécule de dioxyde d'azote NO_2 , ensuite une diminution qui s'effectue en deux phases. D'abord entre 2500 et 10000K de façon moins forte ensuite entre 10000 et 20000K de façon plus rapide que la précédente. Cette deuxième phase est due surtout au détachement de la molécule

IV.2.2. Cas pour la pression 0.01atm:

Nous avons représenté sur les figures de IV.10 jusqu'à IV.18. L'évolution de la densité des mêmes espèces que précédemment mais cette fois-ci pour une pression constante 0,01atm. Nous remarquons en général la même allure de variation de la densité, mais les valeurs augmentent par rapport à celles qui correspondent à 0.001atm., à cause de la loi des gaz parfaits (voir tableau IV.1 et IV.2).

FIGURE IV.10: Evolution de la densité de l'espèce N pour la pression 0,01atm

FIGURE IV.11: Evolution de la densité de l'espèce O. pour la pression 0,01atm

FIGURE IV.13: Evolution de la densité de l'espèce N₂, pour la pression 0,01atm

FIGURE IV.15: Evolution de la densité de l'espèce NO pour la pression 0,01atm

FIGURE IV.17: Evolution de la densité de l'espèce NO₂, pour la pression 0,01atm

<u>chapitre IV</u>

IV.2.3. Cas pour la pression 1atm :

Nous continuons à augmenter la pression et nous prenons cette fois-ci la pression 1 atm. Les courbes sont représentées sur les figures de IV.19 jusqu'à IV.27. Nous remarquons en général la même allure de variation de la densité, mais les valeurs augmentent par rapport à celles qui correspondent à 0.001 atm. et 0.01 atm, à cause aussi de la loi des gaz parfaits (voir tableau IV.1 et IV.2).

FIGURE IV. 19: Evolution de la densité de l'espèce N pour la pression 1atm_

FIGURE IV. 20: Evolution de la densité de l'espèce O pour la pression 1atm_

FIGURE IV.21. Evolution de la densité des électrons pour la pression 1 atm_

FIGURE IV. 22: Evolution de la densité de l'espèce N₂, pour la pression 1atm_

FIGURE IV. 23: Evolution de la densité de l'espèce O2, pour la pression 1atm_

FIGURE IV. 24: Evolution de la densité de l'espèce NO pour la pression 1atm_

FIGURE IV. 25: Evolution de la densité de l'espèce NO⁺ pour la pression 1atm_

FIGURE IV. 26: Evolution de la densité de l'espèce NO₂, pour la pression 1atm_

FIGURE IV. 27: Evolution de la densité de l'espèce NO⁺₂, pour la pression 1atm_

IV.2.4. Cas pour la pression 5atm :

Nous passons maintenant à la pression 5 atmosphères, les résultats sont représentés sur les figures de IV.28 jusqu'à IV.36. Nous remarquons aussi en général la même évolution de la densité, mais les valeurs augmentent encore plus par rapport à celles qui correspondent à 0.001 - 0.01 et 1 atm., toujours à cause de la loi des gaz parfaits (voir tableau IV.1 et IV.2).

FIGURE IV. 28: Evolution de la densité de l'espèce N pour la pression 5atm_

FIGURE IV. 29: Evolution de la densité de l'espèce O pour la pression 5atm_

FIGURE IV. 30: Evolution de la densité des électrons pour la pression 5atm_

FIGURE IV. 31: Evolution de la densité de l'espèce N2 pour la pression 5atm_

FIGURE IV. 32: Evolution de la densité de l'espèce O₂, pour la pression 5atm_

FIGURE IV. 33 : Evolution de la densité de l'espèce NO pour la pression 5atm_

FIGURE IV. 35: Evolution de la densité de l'espèce NO₂, pour la pression 5atm_

FIGURE IV. 36: Evolution de la densité de l'espèce NO⁺₂ pour la pression 5atm_

IV.2.5. Cas pour la pression 10atm :

Enfin, nous terminons notre analyse sur l'évolution de la densité des mêmes espèces que précédemment par le cas d'application de la pression 10 atmosphères. Les courbes sont représentées sur les figures IV.37 jusqu'à IV.45. Là aussi, nous observons le même comportement de variation de la densité, avec toujours une augmentation très nette par rapport aux valeurs précédentes qui correspondent à 0.001atm. et 0.01atm mais moins importante que pour le cas 1atm et 5atm. (voir tableau IV.1 et IV.2).

FIGURE IV. 37: Evolution de la densité de l'espèce N pour la pression 10atm_

FIGURE IV. 38: Evolution de la densité de l'espèce O pour la pression 10atm_

FIGURE IV. 40: Evolution de la densité de l'espèce N₂ pour la pression 10atm_

FIGURE IV. 41: Evolution de la densité de l'espèce O2 pour la pression 10atm_

FIGURE IV. 42: Evolution de la densité de l'espèce NO pour la pression 10atm_

FIGURE IV. 43 : Evolution de la densité de l'espèce NO⁺ pour la pression 10atm_

FIGURE IV. 44: Evolution de la densité de l'espèce NO2 pour la pression 10atm_

<u>chapitre IV</u>

Résultats et discussions

Finalement, pour comparer l'ensemble des courbes obtenues sur les figures IV.1 jusqu'à IV.45., nous avons relevé les valeurs des différentes densités de toutes les espèces. Les tableaux IV.1 et IV.2., résument ces valeurs pour deux températures choisies respectivement 5000K et 12000K et cinq concentrations d'oxygène 1, 10, 50, 90 et 99%.

Espèces	pression s	1% O ₂	10%O ₂	50%O ₂	90%O ₂	99% O ₂
	0.001atm	9,26E20	8,44E20	5,026E20	1,275E20	1,435E19
	0.01atm	4,117E21	3,758E21	2,338E21	7,693E20	1,248E20
N (m ⁻³)	1atm	4,783E22	4,369E22	2,761E22	1,029E22	2,512E21
	5atm	1,08E23	9,865E22	6,255E22	2,277E22	5,028E21
	10atm	1,53E23	1,399E23	8,921E22	3,213E22	6,679E21
	0.001atm	1,98E19	1,896E20	8,098E20	1,329E21	1,453E21
	0.01 atm	2,478E20	2,313E21	8,979E21	1,352E22	1,453E22
O (m ⁻³)	1atm	2,681E22	2,476E23	9,276E23	1,345E24	1,424E24
	5atm	1,255E23	1,147E24	4,249E24	6,2E24	6,586E24
	10atm	2,382E23	2,151E24	7,829E24	1,144E25	1,218E25
	0.001atm	5,213E20	4,331E20	1,536E20	9,885E18	1,251E17
	0.01atm	1,031E22	8,587E21	3,322E21	3,598E20	9,462E18
$N_2(m^{-3})$	1atm	1,391E24	1,16E24	4,636E23	6,438E22	3,838E21
	5atm	7,085E24	5,916E24	2,379E24	3,152E23	1,537E22
	10atm	1,423E25	1,19E25	4,838E24	6,277E23	2,712E22
	0.001atm	6,195E12	5,681E14	1,036E16	2,792E16	3,334E16
O ₂ (m ⁻³)	0.01atm	9,704E14	8,458E16	1,274E18	2,89E18	3,337E18
	1atm	1,136E19	9,692E20	1,36E22	2,86E22	3,205E22
	5atm	2,487E20	2,08E22	2,853E23	6,074E23	6,855E23
	10atm	8,966E20	7,31E22	9,686E23	2,07E24	2,346E24
NO (m ⁻³)	0.001atm	2,488E16	2,172E17	5,524E17	2,3E17	2,828E16
	0.01atm	1,385E18	1,18E19	2,848E19	1,412E19	2,46E18
	1atm	1,741E21	1,468E22	3,476E22	1,879E22	4,856E21
	5atm	1,838E22	1,536E23	3,607E23	1,916E23	4,494E22

<u>Résultats et discussions</u>

					nesuitu	<u>is et uiscussic</u>
	10atm	4,946E22	4,084E23	9,478E23	4,99E23	1,104E23
	0.001atm	4,031E16	1,588E17	2,898E17	1,605E17	2,857E16
	0.01atm	4,194E17	1,371E18	2,109E18	1,416E18	5,049E17
$NO^{+}(m^{-3})$	1atm	2,293E19	5,67E19	8,03E19	5,566E19	3,194E19
	5atm	7,459E19	2,169E20	3,384E20	2,484E20	1,078E20
	10atm	1,225E20	3,559E20	5,603E20	4,131E20	1,893E20
	0.001atm	1,338E7	1,119E9	1,215E10	8,305E9	1,116E9
	0.01atm	9,321E9	7,415E11	6,948E12	5,187E12	9,713E11
$NO_2 (m^{-3})$	1atm	1,268E15	9,878E16	8,76E17	6,865E17	1,878E17
	5atm	6,264E16	4,787E18	4,164E19	3,227E19	8,04E18
	10atm	3,2E17	2,386E19	2,016E20	1,552E20	3,655E19
NO ₂ ⁺ (m ⁻³)	0.001atm	0,4153	76,51	1295	623,3	48,87
	0.01atm	1567	351600	5,118E6	2,733E6	238100
	1atm	5,24E9	1,436E12	2,024E13	1,182E13	1,708E12
	5atm	1,161E12	2,549E14	2,338E15	1,472E15	2,306E14
	10atm	7,722E12	1,459E15	2,165E16	1,11E16	1,204E15

Tableau IV.1. Densité des espèces en fonction de la concentration en O2Pour la température 5000K

Espèces	pression	1% O ₂	10% O ₂	50% O ₂	90% O ₂	99% O ₂
	S					
	0.001atm	9,635E18	8,759E18	4,866E18	9,732E17	9,732E16
	0.01atm	7,606E20	6,914E20	3,839E20	7,664E19	7,66E18

$\begin{split} N(m^3) & \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$							
5atm2,704E242,458E241,365E242,728E232,727E2210atm5,57E245,064E242,814E245,631E225,631E220,001atm1,955E171,555E187,774E181,399E191,539E190,01atm1,097E191,098E205,499E209,05E201,09E211atm5,018E215,022E222,517E234,537E234,991E230,01atm2,801E222,801E231,401E242,523E242,776E2410atm5,759E225,757E232,876E245,175E245,697E1010atm5,013E107,449E102,299E109,195E89,195E60,01atm5,617E144,642E141,431E145,703E125,697E10N2(m*)1atm2,173E201,796E205,53E192,198E182,193E165atm7,098E215,866E211,81E217,224E197,218E1710atm3,012E222,489E227,688E213,078E203,078E180,01atm5,775E145,73E166,935E122,25E132,722E30,01atm2,702E92,765E116,935E122,25E132,722E30,01atm3,617E83,288E99,134E93,288E93,617E80,01atm3,617E83,288E99,134E93,83E132,015E1210atm7,745E197,635E135,097E131,835E132,015E1210atm3,617E83,288E99,134E93,288E93,617E80,01atm3,617E83,288E99,134E93,288E93,617E	N (m ⁻³)	1atm	4,731E23	4,301E23	2,387E23	4,758E22	4,753E21
10atm5,57E245,064E242,814E245,031E235,031E230.001atm1,555E171,555E187,774E181,399E191,395E190.01atm1,097E191,098E205,499E209,905E201,09E211atm5,018E215,02E222,517E234,537E234,991E230.0m35atm2,801E222,801E231,401E242,523E242,776E2410atm5,759E225,757E332,876E245,175E245,693E260.01atm5,013E107,449E102,299E109,195E89,195E60.01atm5,017E144,642E141,431E145,703E125,697E10N2(m3)1atm2,173E201,796E205,53E192,198E182,193E165atm7,098E215,866E211,81E217,224E197,218E1710atm3,012E222,489E227,688E213,078E203,078E200,01atm2,762E92,765E116,935E122,25E132,723E130,01atm2,762E92,765E116,935E122,25E132,723E130,01atm3,617E83,288E99,134E93,288E93,617E80,01atm3,617E83,288E99,134E93,288E93,617E3N0 (m3)1atm5,732E175,215E181,451E195,212E185,772E141atm5,732E175,215E181,451E195,212E185,77E175atm1,829E191,663E204,619E201,662E201,827E19N0 (m3)11,829E191,663E20 <td></td> <td>5atm</td> <td>2,704E24</td> <td>2,458E24</td> <td>1,365E24</td> <td>2,728E23</td> <td>2,727E22</td>		5atm	2,704E24	2,458E24	1,365E24	2,728E23	2,727E22
		10atm	5,57E24	5,064E24	2,814E24	5,631E23	5,631E22
0.01atm1.097E191.098E205.499E209.905E201.09E211atm5.018E215.022E222.517E234.537E234.991E230 (m*)5atm2.801E222.801E231.401E242.523E242.776E2410atm5.759E225.757E232.876E245.175E245.693E2410atm5.018E107.449E102.299E109.195E89.195E60.01atm5.617E144.642E141.431E145.703E125.697E101atm2.173E201.796E205.53E192.198E182.193E165atm7.098E215.866E211.81E217.224E197.218E1710atm3.012E222.489E227.688E213.078E203.078E180.01atm5.572E145.53E122.25E132.723E130.2(m*)0.01atm5.75E145.78E116.935E122.25E132.723E130.2(m*)1atm5.77E145.78E161.453E184.72E185.712E185atm1.799E161.799E184.503E191.46E201.767E2010atm3.617E83.288E99.134E93.288E93.617E80.01atm3.617E83.288E99.134E93.288E93.617E8NO (m*)1atm5.73E115.037E131.833E132.015E1210atm7.745E197.039E201.954E211.662201.827E1910atm7.745E197.039E201.954E211.622E121.753E11NO (m*)1atm1.737E111.58E124.06E121.		0.001atm	1,555E17	1,555E18	7,774E18	1,399E19	1,539E19
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.01atm	1,097E19	1,098E20	5,499E20	9,905E20	1,09E21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1atm	5,018E21	5,022E22	2,517E23	4,537E23	4,991E23
10atm5,759E225,757E232,876E245,175E245,693E24 $N_2(m^3)$ 0.001atm9,013E107,449E102,299E109,195E89,195E6 $N_2(m^3)$ 1atm2,173E201,796E205,53E192,198E182,193E16 $5atm$ 7,098E215,866E211,81E217,224E197,218E1710atm3,012E222,489E227,688E213,078E203,078E18 $0.01atm$ 5542005,542E71,386E94,49E95,433E9 $0.01atm$ 2,762E92,765E116,935E122,25E132,723E13 $0.01atm$ 2,762E92,765E116,935E122,25E132,723E13 $0.01atm$ 5,775E145,783E161,453E184,72E185,712E18 $5atm$ 1,799E161,799E184,503E191,46E201,767E20 $10atm$ 7,606E167,601E181,897E206,142E207,432E20 $NO(m^3)$ 1atm5,733E175,215E181,451E195,212E185,727E17 $5atm$ 1,829E191,663E204,619E201,662E201,827E19 $NO^+(m^3)$ 1atm7,745E197,039E201,954E217,037E207,74E19 $NO^+(m^3)$ 1atm1,244E181,15E193,464E191,367E191,538E18 $5atm$ 1,66E191,535E204,631E201,843E202,08E19 $NO^+(m^3)$ 1atm1,244E181,15E193,44E2191,53E121,538E18 $5atm$ 1,66E191,535E201,364E211,54520 <td< td=""><td>O (m⁻³)</td><td>5atm</td><td>2,801E22</td><td>2,801E23</td><td>1,401E24</td><td>2,523E24</td><td>2,776E24</td></td<>	O (m ⁻³)	5atm	2,801E22	2,801E23	1,401E24	2,523E24	2,776E24
$ N_2(m^3) = \begin{cases} 0.001atm & 9,013E10 & 7,449E10 & 2,299E10 & 9,195E8 & 9,195E6 \\ 0.01atm & 5,617E14 & 4,642E14 & 1,431E14 & 5,703E12 & 5,697E10 \\ \hline 1atm & 2,173E20 & 1,796E20 & 5,53E19 & 2,198E18 & 2,193E16 \\ \hline 5atm & 7,098E21 & 5,866E21 & 1,81E21 & 7,224E19 & 7,218E17 \\ \hline 10atm & 3,012E22 & 2,489E22 & 7,688E21 & 3,078E20 & 3,078E18 \\ \hline 0.001atm & 554200 & 5,542E7 & 1,386E9 & 4,49E9 & 5,433E9 \\ \hline 0.01atm & 5,775E14 & 5,783E16 & 1,453E18 & 4,72E18 & 5,712E18 \\ \hline 5atm & 1,799E16 & 1,799E18 & 4,503E19 & 1,46E20 & 1,767E20 \\ \hline 10atm & 7,606E16 & 7,601E18 & 1,897E20 & 6,142E20 & 7,432E20 \\ \hline 0.001atm & 3,617E8 & 3,288E9 & 9,134E9 & 3,288E9 & 3,617E8 \\ \hline 0.001atm & 2,016E12 & 1,833E13 & 5,097E13 & 1,833E13 & 2,015E12 \\ \hline 0.01atm & 5,73E17 & 5,215E18 & 1,451E19 & 5,212E18 & 5,727E17 \\ \hline 5atm & 1,829E19 & 1,663E20 & 4,619E20 & 1,662E20 & 1,827E19 \\ \hline 10atm & 7,745E19 & 7,039E20 & 1,954E21 & 7,037E20 & 7,74E19 \\ \hline 0.001atm & 1,737E11 & 1,58E12 & 4,406E12 & 1,592E12 & 1,753E11 \\ \hline 0.01atm & 1,244E18 & 1,15E19 & 3,464E19 & 1,367E19 & 1,538E18 \\ \hline 5atm & 1,66E19 & 1,535E20 & 4,631E20 & 1,843E20 & 2,08E19 \\ \hline 10atm & 4,899E19 & 4,525E20 & 1,364E21 & 5,445E20 & 6,154E19 \\ \hline 0.01atm & 3,137E-5 & 0,00285 & 0,03961 & 0,02567 & 0,00311 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 & 1225 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 & 1225 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 & 1225 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 & 10130 \\ \hline 0.01atm & 1,2,34 & 1123 & 15640 \\ \hline $		10atm	5,759E22	5,757E23	2,876E24	5,175E24	5,693E24
$ N_2 (m^{-3}) = \begin{array}{ $		0.001atm	9,013E10	7,449E10	2,299E10	9,195E8	9,195E6
$N_2(m^3)$ Iatm $2,173E20$ $1,796E20$ $5,53E19$ $2,198E18$ $2,193E16$ $5atm$ $7,098E21$ $5,866E21$ $1,81E21$ $7,224E19$ $7,218E17$ $10atm$ $3,012E22$ $2,489E22$ $7,688E21$ $3,078E20$ $3,078E18$ $0.001atm$ 554200 $5,542E7$ $1,386E9$ $4,49E9$ $5,433E9$ $0.01atm$ $2,762E9$ $2,765E11$ $6,935E12$ $2,25E13$ $2,723E13$ $0.01atm$ $5,775E14$ $5,783E16$ $1,453E18$ $4,72E18$ $5,712E18$ $5atm$ $1,799E16$ $1,799E18$ $4,503E19$ $1,46E20$ $1,767E20$ $10atm$ $7,606E16$ $7,601E18$ $1,897E20$ $6,142E20$ $7,432E20$ $0.01atm$ $3,617E8$ $3,288E9$ $9,134E9$ $3,288E9$ $3,617E8$ $0.01atm$ $2,016E12$ $1,833E13$ $5,097E13$ $1,833E13$ $2,015E12$ $NO(m^3)$ Iatm $5,73E17$ $5,215E18$ $1,451E19$ $5,212E18$ $5,727E17$ $5atm$ $1,829E19$ $1,663E20$ $4,619E20$ $1,662E20$ $1,827E19$ $10atm$ $7,745E19$ $7,039E20$ $1,954E21$ $7,037E20$ $7,74E19$ $NO^*(m^3)$ Iatm $1,244E18$ $1,15E19$ $3,464E19$ $1,367E19$ $4,538E18$ $5atm$ $1,66E19$ $1,535E20$ $4,631E20$ $1,843E20$ $2,08E19$ $10atm$ $4,899E19$ $4,525E20$ $1,364E21$ $5,445E20$ $6,154E19$ $10atm$ $1,234$ 1123 15640 10130 <t< td=""><td></td><td>0.01atm</td><td>5,617E14</td><td>4,642E14</td><td>1,431E14</td><td>5,703E12</td><td>5,697E10</td></t<>		0.01atm	5,617E14	4,642E14	1,431E14	5,703E12	5,697E10
5atm7,098E215,866E211,81E217,224E197,218E1710atm3,012E222,489E227,688E213,078E203,078E180.001atm5542005,542E71,386E94,49E95,433E90.01atm2,762E92,765E116,935E122,25E132,723E130.11atm5,775E145,783E161,453E184,72E185,712E185atm1,799E161,799E184,503E191,46E201,767E2010atm7,606E167,601E181,897E206,142E207,432E2010atm3,617E83,288E99,134E93,288E93,617E80.01atm2,016E121,833E135,097E131,833E132,015E12NO (m ⁻³)1atm5,733E175,215E181,451E195,212E185,727E175atm1,829E191,663E204,619E201,662E201,827E19NO (m ⁻³)1atm7,745E197,039E201,954E217,037E207,74E19NO (m ⁻³)1atm1,737E111,58E124,406E121,592E121,753E11NO '(m ³)1atm1,244E181,15E193,464E191,367E191,538E18NO '(m ³)1atm1,244E181,15E193,464E191,367E191,538E18NO '(m ³)1atm1,244E181,15E193,64E191,367E191,538E18NO '(m ³)1atm1,244E181,15E193,64E215,445E206,154E19NO '(m ³)1atm1,244E181,15E193,64E191,8	$N_2(m^{-3})$	1atm	2,173E20	1,796E20	5,53E19	2,198E18	2,193E16
10atm3,012E222,489E227,688E213,078E203,078E180.001atm5542005,542E71,386E94,49E95,433E90.01atm2,762E92,765E116,935E122,25E132,723E130.2(m3)1atm5,775E145,783E161,453E184,72E185,712E185atm1,799E161,799E184,503E191,46E201,767E2010atm7,606E167,601E181,897E206,142E207,432E2010atm3,617E83,288E99,134E93,288E93,617E80.01atm2,016E121,833E135,097E131,833E132,015E12NO (m3)1atm5,733E175,215E181,451E195,212E185,727E175atm1,829E191,663E204,619E201,662E201,827E1910atm7,745E197,039E201,954E217,037E207,74E19NO (m3)1atm1,737E111,58E124,406E121,592E121,753E11NO^+(m3)1atm1,24E181,15E193,464E191,367E191,538E18NO^+(m3)1atm1,66E191,535E204,631E201,843E202,08E19NO^+(m3)1atm1,66E191,535E201,661E201,843E202,08E1910atm1,244E181,15E193,64E191,367E191,538E1810atm1,66E191,535E201,664E121,843E202,08E1910atm3,137E-50,002850,039610,025670,0031110atm12,34<		5atm	7,098E21	5,866E21	1,81E21	7,224E19	7,218E17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10atm	3,012E22	2,489E22	7,688E21	3,078E20	3,078E18
$ \begin{array}{c} 0.01 atm & 2,762 E9 & 2,765 E11 & 6,935 E12 & 2,25 E13 & 2,723 E13 \\ \hline 1 atm & 5,775 E14 & 5,783 E16 & 1,453 E18 & 4,72 E18 & 5,712 E18 \\ \hline 5 atm & 1,799 E16 & 1,799 E18 & 4,503 E19 & 1,46 E20 & 1,767 E20 \\ \hline 10 atm & 7,606 E16 & 7,601 E18 & 1,897 E20 & 6,142 E20 & 7,432 E20 \\ \hline 10 atm & 3,617 E8 & 3,288 E9 & 9,134 E9 & 3,288 E9 & 3,617 E8 \\ \hline 0.01 atm & 2,016 E12 & 1,833 E13 & 5,097 E13 & 1,833 E13 & 2,015 E12 \\ \hline 0.01 atm & 5,733 E17 & 5,215 E18 & 1,451 E19 & 5,212 E18 & 5,727 E17 \\ \hline 10 atm & 7,745 E19 & 7,039 E20 & 1,954 E21 & 7,037 E20 & 1,827 E19 \\ \hline 10 atm & 1,737 E11 & 1,58 E12 & 4,406 E12 & 1,592 E12 & 1,753 E11 \\ \hline 0.01 atm & 1,244 E18 & 1,15 E19 & 3,464 E19 & 1,367 E19 & 1,538 E18 \\ \hline 5 atm & 1,66 E19 & 1,535 E20 & 4,631 E20 & 1,843 E20 & 2,08 E19 \\ \hline 10 atm & 4,899 E19 & 4,525 E20 & 1,364 E11 & 5,445 E20 & 2,08 E19 \\ \hline 10 atm & 3,137 E-5 & 0,002 85 & 0,039 61 & 0,025 67 & 0,003 11 \\ \hline 0.01 atm & 12,34 & 1123 & 15640 & 101 30 & 122 5 \\ \hline 0.01 atm & 12,3$		0.001atm	554200	5,542E7	1,386E9	4,49E9	5,433E9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.01atm	2,762E9	2,765E11	6,935E12	2,25E13	2,723E13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$O_2(m^{-3})$	1atm	5,775E14	5,783E16	1,453E18	4,72E18	5,712E18
10atm7,606E167,601E181,897E206,142E207,432E200.001atm3,617E83,288E99,134E93,288E93,617E80.01atm2,016E121,833E135,097E131,833E132,015E121atm5,733E175,215E181,451E195,212E185,727E175atm1,829E191,663E204,619E201,662E201,827E1910atm7,745E197,039E201,954E217,037E207,74E19NO^+(m ⁻³)0.001atm1,737E111,58E124,406E121,592E121,753E11 $NO^+(m^{-3})$ 1atm1,244E181,15E193,464E191,367E191,538E18 $NO^+(m^{-3})$ 1atm1,66E191,535E204,631E201,843E202,08E19 $NO^+(m^{-3})$ 0.01atm3,137E-50,002850,039610,025670,003110.01atm12,34112315640101301225		5atm	1,799E16	1,799E18	4,503E19	1,46E20	1,767E20
0.001atm3,617E83,288E99,134E93,288E93,617E80.01atm2,016E121,833E135,097E131,833E132,015E121atm5,733E175,215E181,451E195,212E185,727E175atm1,829E191,663E204,619E201,662E201,827E1910atm7,745E197,039E201,954E217,037E207,74E190.001atm1,737E111,58E124,406E121,592E121,753E110.01atm1,244E181,15E193,464E191,367E191,538E185atm1,66E191,535E204,631E201,843E202,08E1910atm4,899E194,525E201,364E215,445E206,154E190.001atm3,137E-50,002850,039610,025670,003110.01atm12,34112315640101301225		10atm	7,606E16	7,601E18	1,897E20	6,142E20	7,432E20
NO (m-3)0.01atm2,016E121,833E135,097E131,833E132,015E121atm5,733E175,215E181,451E195,212E185,727E175atm1,829E191,663E204,619E201,662E201,827E1910atm7,745E197,039E201,954E217,037E207,74E190.001atm1,737E111,58E124,406E121,592E121,753E110.01atm4,431E144,069E151,181E164,438E154,928E14NO+(m-3)1atm1,244E181,15E193,464E191,367E191,538E185atm1,66E191,535E204,631E201,843E202,08E1910atm4,899E194,525E201,364E215,445E206,154E190.001atm3,137E-50,002850,039610,025670,003110.01atm12,34112315640101301225		0.001atm	3,617E8	3,288E9	9,134E9	3,288E9	3,617E8
NO (m ⁻³) 1atm 5,733E17 5,215E18 1,451E19 5,212E18 5,727E17 5atm 1,829E19 1,663E20 4,619E20 1,662E20 1,827E19 10atm 7,745E19 7,039E20 1,954E21 7,037E20 7,74E19 0.001atm 1,737E11 1,58E12 4,406E12 1,592E12 1,753E11 0.01atm 4,431E14 4,069E15 1,181E16 4,438E15 4,928E14 NO ⁺ (m ⁻³) 1atm 1,244E18 1,15E19 3,464E19 1,367E19 1,538E18 5atm 1,66E19 1,535E20 4,631E20 1,843E20 2,08E19 10atm 4,899E19 4,525E20 1,364E21 5,445E20 6,154E19 0.001atm 3,137E-5 0,00285 0,03961 0,02567 0,00311 0.01atm 12,34 1123 15640 10130 1225		0.01atm	2,016E12	1,833E13	5,097E13	1,833E13	2,015E12
5atm 1,829E19 1,663E20 4,619E20 1,662E20 1,827E19 10atm 7,745E19 7,039E20 1,954E21 7,037E20 7,74E19 0.001atm 1,737E11 1,58E12 4,406E12 1,592E12 1,753E11 0.01atm 4,431E14 4,069E15 1,181E16 4,438E15 4,928E14 NO ⁺ (m ⁻³) 1atm 1,244E18 1,15E19 3,464E19 1,367E19 1,538E18 5atm 1,66E19 1,535E20 4,631E20 1,843E20 2,08E19 10atm 4,899E19 4,525E20 1,364E21 5,445E20 6,154E19 0.001atm 3,137E-5 0,00285 0,03961 0,02567 0,00311 0.01atm 12,34 1123 15640 10130 1225	NO (m ⁻³)	1atm	5,733E17	5,215E18	1,451E19	5,212E18	5,727E17
10atm7,745E197,039E201,954E217,037E207,74E190.001atm1,737E111,58E124,406E121,592E121,753E110.01atm4,431E144,069E151,181E164,438E154,928E14NO+(m-3)1atm1,244E181,15E193,464E191,367E191,538E185atm1,66E191,535E204,631E201,843E202,08E1910atm4,899E194,525E201,364E215,445E206,154E190.001atm3,137E-50,002850,039610,025670,003110.01atm12,34112315640101301225		5atm	1,829E19	1,663E20	4,619E20	1,662E20	1,827E19
0.001atm1,737E111,58E124,406E121,592E121,753E110.01atm4,431E144,069E151,181E164,438E154,928E14NO+(m-3)1atm1,244E181,15E193,464E191,367E191,538E185atm1,66E191,535E204,631E201,843E202,08E1910atm4,899E194,525E201,364E215,445E206,154E190.001atm3,137E-50,002850,039610,025670,003110.01atm12,34112315640101301225		10atm	7,745E19	7,039E20	1,954E21	7,037E20	7,74E19
0.01atm 4,431E14 4,069E15 1,181E16 4,438E15 4,928E14 NO ⁺ (m ⁻³) 1atm 1,244E18 1,15E19 3,464E19 1,367E19 1,538E18 5atm 1,66E19 1,535E20 4,631E20 1,843E20 2,08E19 10atm 4,899E19 4,525E20 1,364E21 5,445E20 6,154E19 0.001atm 3,137E-5 0,00285 0,03961 0,02567 0,00311 0.01atm 12,34 1123 15640 10130 1225		0.001atm	1,737E11	1,58E12	4,406E12	1,592E12	1,753E11
NO ⁺ (m ⁻³) 1atm 1,244E18 1,15E19 3,464E19 1,367E19 1,538E18 5atm 1,66E19 1,535E20 4,631E20 1,843E20 2,08E19 10atm 4,899E19 4,525E20 1,364E21 5,445E20 6,154E19 0.001atm 3,137E-5 0,00285 0,03961 0,02567 0,00311 0.01atm 12,34 1123 15640 10130 1225		0.01atm	4,431E14	4,069E15	1,181E16	4,438E15	4,928E14
5atm 1,66E19 1,535E20 4,631E20 1,843E20 2,08E19 10atm 4,899E19 4,525E20 1,364E21 5,445E20 6,154E19 0.001atm 3,137E-5 0,00285 0,03961 0,02567 0,00311 0.01atm 12,34 1123 15640 10130 1225	$NO^{+}(m^{-3})$	1atm	1,244E18	1,15E19	3,464E19	1,367E19	1,538E18
10atm 4,899E19 4,525E20 1,364E21 5,445E20 6,154E19 0.001atm 3,137E-5 0,00285 0,03961 0,02567 0,00311 0.01atm 12,34 1123 15640 10130 1225		5atm	1,66E19	1,535E20	4,631E20	1,843E20	2,08E19
0.001atm 3,137E-5 0,00285 0,03961 0,02567 0,00311 0.01atm 12,34 1123 15640 10130 1225		10atm	4,899E19	4,525E20	1,364E21	5,445E20	6,154E19
0.01atm 12,34 1123 15640 10130 1225		0.001atm	3,137E-5	0,00285	0,03961	0,02567	0,00311
		0.01atm	12,34	1123	15640	10130	1225

-

$NO_2 (m^{-3})$	1atm	1,605E9	1,461E11	2,037E12	1,319E12	1,595E11
	5atm	2,857E11	2,598E13	3,611E14	2,339E14	2,83E13
	10atm	2,488E12	2,261E14	3,135E15	2,032E15	2,458E14
	0.001atm	2,606E-11	2,367E-9	3,275E-8	2,114E-8	2,556E-9
	0.01atm	9,103E-5	0,00824	0,1119	0,0706	0,00849
	1atm	295000	2,642E7	3,402E8	2,006E8	2,369E7
$NO_2^+ (m^{-3})$	5atm	1,255E8	1,123E10	1,437E11	8,413E10	9,914E9
	10atm	1,569E9	1,403E11	1,792E12	1,047E12	1,233E11

Tableau IV.2. Densité des espèces en fonction de la concentration en O2Pour la température 12000K

IV.3. CONCLUSION

Comme conclusion à cette partie, nous pouvons dire que d'après l'analyse de ces graphes l'influence de la concentration d'oxygène sur la composition chimique des espèces est très importante pour toutes les espèces, surtout pour les hautes pressions et les hautes températures. Néanmoins, elle dépend de chaque espèce, par exemple pour les radicaux N et O l'influence de la concentration est significative à partir de 15000K alors que pour NO, NO⁺, NO₂ et NO₂⁺ elle est significative respectivement à partir de 7000K, 5000K, 3000K et 4000K. Cette influence est différente à cause des énergies de dissociation et d'ionisation qui sont différentes pour toutes ces espèces.