
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

UNIVERSITY OF ABOU BAKR BELKAÏD – TLEMCEN –

LMD Thesis

Presented to:

FACULTY OF SCIENCES – COMPUTER SCIENCE DEPARTMENT

Thesis submitted in partial fulfilment of the requirements for the degree of:

DOCTORATE

Specialty: Networks and Distributed Systems

By:

Zeyneb Yasmina REMACI

Theme

Web service composition under uncertain QoS

Thesis publicly defended on April 11th, 2022 at Tlemcen university.

Jury members

Mr. Badr Benmammar Professor Univ. Tlemcen President
Mme. Yassamine Seladji Associate Professor Univ. Tlemcen Examiner
Mr. Nabil Keskes Professor ESI Sidi Bel-Abbes Examiner
Mr. Lyazid Toumi Associate Professor Univ. Setif 1 Examiner
Mr. Fethallah Hadjilla Associate Professor Univ. Tlemcen Supervisor
Mme. Fedoua Lahfa Professor Univ. Tlemcen Invited

2021 - 2022

Dedication

Above all, I thank Allah the only one lord, the most merciful, and the most
gracious. All praises to Allah and His blessing for the completion of this

thesis.

This thesis is dedicated to:

My mother & father,

My dear sisters,

My friends.

Acknowledgment

There are no proper words to convey my deep appreciation and respect for my thesis and

research supervisor, Dr. Fethallah Hadjila. I want to thank him for his professional and

academic assistance that made this research project much more efficient and rewarding. I am

very grateful for his support, and for his willingness to spend his valuable time guiding me.

I would like to express my sincere thanks to Prof. Fedoua Lahfda for her guidance,

continuous encouragement, and the warm spirit to finish this thesis.

I would like to express my profound gratitude to Prof. Badr Benmammar, who has honoured

me by accepting to preside the jury of this thesis.

My sincere thanks must also go to the examination committee: Dr. Yassamine Seladji , Dr.

Nabil Keskes, and Dr. Lyazid Toumi. They generously gave their time to offer me valuable

comments toward improving my work.

Last but above all, I shall be thankful to my family who have always been there for me. Their

support was a major contribution to be able to pursue my PhD degree.

Loving thanks to my friends for their motivation, prayers, and unwavering belief that I can

achieve so much.

Abstract

Over the last decade, Web services represent the de facto implementation of the Service-

Oriented Architecture (SOA). Thereby, this technology increasingly emerges in different areas,

which generate an important number of similar Web services offering equivalent functionalities.

Indeed, these functionalities are, in many cases, limited regarding the user’s needs.

Accordingly, selecting appropriate services according to their quality of service (QoS), and

combining them in order to offer a value-added composite service is the most important goal of

SOA. It is worth noting that the composition process is much more challenging because of the

fluctuating environment which usually lead to QoS uncertainty.

Within this context, we propose three main contributions, each one leverages a local search

for selecting the most relevant services and a global search for finding the optimal composition

while considering the user’s requirements and the uncertain QoS. The first approach adopts the

probabilistic dominance heuristic and the backtracking search. The second approach leverages

both the Majority Judgment heuristic and the Constraint Programming search. Finally, the third

approach consists of Entropy and Cross-Entropy of hesitant fuzzy set and the meta-heuristic

called Grey Wolf-Based Composition (GWC). The validation of the proposed approaches has

shown very encouraging results.

KEY WORDS : SOA, Web services, Uncertain Quality of Service, Constraint Program-

ming, Majority Judgment, Entropy, Cross-Entropy, Hesitant fuzzy set, GWC.

Résumé

Au cours de la dernière décennie, les services Web ont représenté la réalisation la plus

efficace de l’architecture orientée services (SOA). De ce fait, cette technologie émerge de plus

en plus dans des domaines différents, ce qui engendre un nombre croissant des services Web

similaires en fournissant des fonctionnalités équivalentes. En effet, ces fonctionnalités sont

limitées par rapport aux besoins des utilisateurs. Par conséquent, la sélection des services Web

appropriés en fonction de leur qualité de service (QoS) et la composition de ces services pour

fournir une application ayant une valeur ajoutée est l’objectif principal de la SOA.

Il convient de noter, que le processus de composition est beaucoup plus difficile en raison

de la fluctuation permanente de l’environnement; ce qui entraîne souvent à l’incertitude de la

QoS.

Pour adresser cette situation, nous proposons trois contributions principales. Chaque con-

tribution s’appuie à la fois sur une recherche locale pour sélectionner les services pertinents

et une recherche globale pour trouver la composition optimale en tenant compte des besoins

de l’utilisateur et la QoS incertaine. La première approche, adopte l’heuristique de domi-

nance probabiliste et la recherche du retour en arrière. La deuxième approche exploite à la fois

l’heuristique du jugement majoritaire et la programmation par contraintes. Enfin, la troisième

approche est basée sur l’entropie et l’entropie croisée de l’ensemble flou hésitant et l’approche

appelée composition des services Web basée sur le loup gris (Grey Wolf-Based Composition

(GWC)). La validation des approches proposées a montré des résultats très encourageants.

Mots clés: SOA, Services Web, Qualité de service incertaine, Programmation par Con-

traintes, Jugement Majoritaire, Entropie, Entropie Croisée, Ensemble Flou hésitant, GWC.

 ملخص

الماضي، العقد مدى الويب دت م إعت على فعلي كخدمات ما . (SOAنمٌودج) الخدمية بنيةللتطبيق هذه جعل يهذا

عدد مهم من خدمات الويب المماثلة التي تقدم ى وجودال يؤدي كما انه . بشكل متزايد في مجالات مختلفة بارزة التكنولوجيا

ختيار الخدمات فإن ا وعليهتكون هذه الوظائف محدودة فيما يتعلق باحتياجات المستخدم. الحالاتفي كثير من كافئة.توظائف م

الخدماتو دمج ، (QoSة)وفقًا لجودة خدم المناسبة أهمية هذه الهدف الأكثر قيمة مضافة هو لتقديم خدمة مركبة ذات

 . (SOA) لبنية الخدميةلبالنسبة

في هذا السياق، صعوبة بسبب البيئة المتقلبة التي تؤدي عادة إلى عدم اليقين في جودة الخدمة.أكثر لتركيب تعد ن عملية اإ

لشامل البحث ااضافة الى .البحث المحلي لاختيار الخدمات الأكثر صلة تعتمد علىنقترح ثلاث مساهمات رئيسية ، كل واحدة

 جودة الخدمة غير المؤكدة. متطلبات المستخدم و الأمثل مع الأخذ في الاعتبار التركيب للعثور على

. (Backtracking search) التراجعبالبحث الى اضافة(Probabilistic dominance) النهج الأول ، يتبنى الهيمنة الاحتمالية

الأغلبية أحكام توجيه من كلاً يعزز الثاني البرمجة (Majority Judgment) النهج في Constraint) المقيدةوالبحث

Programming search) ضبابية مترددة الالمجموعة للالانتروبيا المتقاطعة لنتروبيا و الا . أخيرًا ، يتكون النهج الثالث من

(Entropy and Cross-Entropy of hesitant fuzzy set) خدمات تركيب الأدلة العليا المسماة لىمعتمد عالالتركيب كذا و

أظهر . التحقق من صحة النهج المقترح(Grey Wolf-Based Composition (GWC)) يالذئب الرماد طريقعن الويب

 نتائج مشجعة للغاية.

جودة الخدمة غير المؤكدة، الهيمنة الاحتمالية، البحث بالتراجع، أحكام خدمات الواب، ، SOA: نمٌودج الكلمات الرئيسية

 . (GWC) الأدلة العليا المتقاطعة، المجموعة الالضبابية مترددة، انتروبيا ، الالانتروبيا، البرمجة المقيدة، الأغلبية

Table of Contents

List of Figures vi

List of Tables viii

List of Algorithms viii

List of Acronyms ix

1 General Introduction 1

1.1 Context and motivation . 1

1.2 Problem statement . 2

1.3 Contributions . 4

1.4 Organization of the manuscript . 6

I Background on Web services 8

2 SOA and Web Service technology 9

2.1 Introduction . 9

2.2 Service Oriented Architecture . 10

2.3 Web services . 11

2.4 Why are Web Services Attractive? . 11

2.5 Web service Architecture . 12

2.5.1 General Architecture . 12

2.5.1.1 Participants of Web services 12

2.5.1.2 Operation of Web services . 13

2.5.2 Extended architecture . 14

2.5.2.1 Functional aspects . 14

i

TABLE OF CONTENTS

2.5.2.2 Nonfunctional aspects (Quality of Service) 23

2.6 Cloud computing . 24

2.6.1 Cloud computing definition . 24

2.6.2 Categories of Cloud Computing . 25

2.6.3 Cloud Deployment Models . 25

2.6.4 Most Popular Cloud Computing Platforms 25

2.6.5 Web service and Cloud computing . 27

2.7 Conclusion . 28

3 State of the art 29

3.1 Introduction . 29

3.2 Service composition . 30

3.2.1 Service composition constituent . 30

3.2.2 Quality of Service (QoS) roles in Web service selection 31

3.2.2.1 QoS aggregation functions . 32

3.2.2.2 Weights of QoS Attributes . 32

3.2.3 Composition categories . 34

3.3 Service composition life cycle . 36

3.4 Web service composition solutions . 37

3.4.1 Composition strategies . 40

3.4.2 Classification of Web service composition methods 41

3.4.3 Dynamic QoS-aware service composition 48

3.5 Conclusion . 56

II Contributions 57

4 Uncertain QoS-based Web service composition approaches 58

4.1 Introduction . 58

4.2 Problem formulation . 59

4.3 Motivation scenario . 59

4.4 Composition framework . 61

4.5 Probabilistic dominance approach . 63

4.5.1 Probabilistic dominance relationship 64

Remaci ii

TABLE OF CONTENTS

4.5.2 Dominance Service Ranking algorithm 64

4.5.3 Backtracking search algorithm . 65

4.6 Majority judgment and Constraints Programming approach (MJ-CP) 69

4.6.1 Majority judgment heuristic . 69

4.6.2 Constraints Programming . 72

4.6.2.1 Global QoS Conformance (GQC) 73

4.7 Grey Wolf-Based Composition (GWC) approach 76

4.7.1 Hesitant Fuzzy Set (HFS) . 77

4.7.1.1 QoS Normalization . 78

4.7.1.2 Entropy and Cross-Entropy for Hesitant fuzzy set 78

4.7.1.3 Model of Entropy weights . 80

4.7.2 Grey Wolf Optimizer . 81

4.7.3 Discrete Grey Wolf Optimizer . 85

4.8 Complexity of the proposed approaches . 89

4.9 Conclusion . 90

5 Implementation and experimental results 91

5.1 Introduction . 91

5.2 Case studies . 91

5.3 Dataset Description . 91

5.3.1 Dataset of Probabilistic dominance approach 92

5.3.2 MJ-CP approach’s dataset . 92

5.3.3 Datasets of Grey Wolf based-Composition 93

5.4 Experimental results and analysis . 94

5.4.1 Performance evaluation of the probabilistic dominance approach 94

5.4.2 Performance evaluation of the Majority judgment & Constraint program-

ming approach . 98

5.4.3 Performance evaluation of the Grey Wolf based- Composition (GWC)

approach . 102

5.5 Conclusion . 105

6 General conclusion and perspectives. 106

6.1 Summary . 106

Remaci iii

TABLE OF CONTENTS

6.2 Perspectives . 107

A Simulation of GQC calculation 108

B Academic Achievements 111

References 108

Remaci iv

List of Figures

1.1 An example of Web service composition. 4

1.2 General composition procedure. 5

2.1 General Architecture. 12

2.2 Web service stack. 14

2.3 A SOAP request. 15

2.4 A SOAP response. 16

2.5 WSDL structure. 20

2.6 UDDI structure. 21

2.7 Web Services Orchestration and Choreography. 22

2.8 Cloud computing stack: IaaS, PaaS, and SaaS [Barry and Dick, 2013]. 26

2.9 Relationship of Web services, SOA, and cloud computing. [Barry and Dick, 2013] 27

3.1 Web services composition life cycle. 37

3.2 Example of Pareto dominance. 39

3.3 Classification of meta-heuristic methods. 45

4.1 e-health workflow. 61

4.2 Service composition framework. 63

4.3 Selection module. 69

4.4 Service composition pruning. 76

4.5 Social hierarchy of grey wolves. 82

4.6 Position updating in GWO. 84

4.7 The move function for service s7 . 87

4.8 The move function for service s5 . 87

5.1 Electronic product purchase service (Case study 2) [Hwang et al., 2015]. 93

5.2 Computation time vs. n (r=3, m=50, l=10). 96

v

LIST OF FIGURES

5.3 Computation time vs. r (n=5, m=200, l=100). 96

5.4 Computation time vs. l (n=5, r=3, m=200). 96

5.5 Computation time vs. m (n=5, r=3, l=10). 96

5.6 Computation time vs. m for DSR and ASR. 97

5.7 Computation time vs. l (Case Study 1). 98

5.8 Computation time vs. l (n=5, r=3, m=100). 100

5.9 Computation time vs. m (n=5, r=3, l=100). 100

5.10 Computation time vs. l (n=10, r=3, m=300). 102

5.11 Computation time vs. r (n=10, m=500, l=20). 102

5.12 Computation time vs. number iterations. 103

5.13 Computation time vs. number of particles. 103

Remaci vi

List of Tables

Table 2.1: SOA definitions . 10

Table 2.2: SOAP vs REST [Wagh and Thool, 2012]. 18

Table 3.1: QoS classifications . 33

Table 3.2: QoS aggregation functions [Hwang et al., 2015] 34

Table 3.3: State of the art classification. 51

Table 4.1: Notations [Remaci et al., 2018] . 59

Table 4.2: Normalized QoS realization (Response time). 62

Table 4.3: Ranked services based on Entropy and Cross-Entropy. 86

Table 4.4: Random wolves’ population based on ranked services. 86

Table 4.5: Approaches complexity. 89

Table 5.1: Configuration DSR approach. 92

Table 5.2: Configuration of Gaussian distributions (Case study 1). 95

Table 5.3: Configuration of Gaussian distributions (Case study 2). 95

Table 5.4: Performance comparison between DSR and ASR. 97

Table 5.5: GQC of Top composition (Case Study 1). 99

Table 5.6: GQC of Top compositions (Case study 2). 101

Table 5.7: MSR-CP performance Vs. State-of-the-art methods. 101

Table 5.8: GQC vs. number of iterations for GWC (k=10), GWC (k=m), PSO. . . . 103

Table 5.9: GQC vs. number of particles for GWC (k=25), GWC (k=m), PSO. 103

Table 5.10:GQC and global constraint satisfiability vs. number of particles and num-

ber of services (m). 104

Table 5.11:GQC and global constraint satisfiability vs. number of iterations (MaxIter)

and number of services (m). 104

Table A.1: Calculation of GQC . 108

vii

List of Algorithms

Algorithm 1: DominanceServiceRanking . 65

Algorithm 2: BacktrackingSearch . 68

Algorithm 3: MajorityGradeComparison . 70

Algorithm 4: MajorityServiceRanking . 71

Algorithm 5: ConstraintProgramming . 74

Algorithm 6: EntropyServiceRanking . 81

Algorithm 7: GWC . 88

viii

List of Acronyms

ABC Artificial Bee Colony

EC2 Amazon Elastic Compute Cloud

AWS Amazon Web Services

ANP Analytical Network Process

AS Average Skyline

ASR Average Service Ranking

AWS Amazon Web Services

B2B Business-to-Business

BPEL Business Process Execution Language

BPML Business Process Modeling Language

BWM Best Worst Method

CORBA Common Object Request Broker Architecture

CP Constraint Programming

DCOM Distributed Component Object Model

DP Dynamic Programming

DSR Dominance Service Ranking

EAI Enterprise Application Integration

ESR Entropy Service Ranking

GA Genetic Algorithm

GCE Google Compute Engine

GQC Global QoS Conformance

ix

LIST OF ALGORITHMS

GWC Grey Wolf-Based Composition

GWO Grey Wolf Optimizer

HFE Hesitant Fuzzy Element

HFS Hesitant Fuzzy Set

HTTP Hypertext Transfer Protocol

HTTPR HyperText Transfert Protocole Reliable

IaaS Infrastructure as a Service

IoT Internet of Think

IP Integer Programming

IWD Intelligent Water Drops

JMS Java Message Service

LP Linear Programming

MCDM Multi-Criteria Decision-Making

MJ Majority Judgment

MJ-CP Majority judgment and Constraints Programming approach

MOO Multi-Objective Optimization

MSR-CP Majority Service Ranking and constraint programming algorithm

NIST National Institute of Standards and Technology

PaaS Platform as a Service

PROMETHEE Preference Ranking Organization Method for Enrichment Evaluation

PS Probabilistic Skyline

p.s.g.c percentage of satisfied global constraints

PSO Particle Swarm Optimization

QoS Quality of Service

RESTful Representational State Transfer

RMI Remote method invocation

SaaS Software as a Service

Remaci x

LIST OF ALGORITHMS

SAW Simple Additive Weighting

SOA Service-oriented architecture

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

SOO Single-Objective Optimization

SMTP Simple Mail Transfer Protocol

TGA Triangular Fuzzy Genetic

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

UDDI Universal Description, Discovery and Integration

WPM weighted Product Method

WSDL Web Service Description Language

WSEL Web Services Endpoint Language

W3C World Wide Web Consortium

XML eXtensible Markup Language

XSD XML Schema Definition

Remaci xi

Chapter 1

General Introduction

1.1 Context and motivation
"Web services are a new breed of Web applications. They are self-contained, self-describing,

modular applications that can be published, located, and invoked across the Web".

This is how IBM defined Web services and outlined some features behind the proliferation

of this technology. Actually, the Web services’ goal consists of reusing the existing services

while offering a lightweight integration inside the enterprise (Enterprise Application Integration

(EAI)) and maintaining a data exchange between the enterprises via the exposed services.

The exchange between these enterprises is known as Business-to-Business (B2B) communi-

cation, while the communication between the companies and the final customers is commonly

referred to as business-to-consumer (B2C).

Additionally, Web services improve the efficiency and decrease the cost and the time for an

agile application realization. The enhanced performance of Web services is due to the fact that

the interactions between the modular services are performed without previous knowledge of the

internal implementation details.

Over the last years, Web services have emerged as an appealing technology for providing

several solutions in different vital areas, such as Electronic Health (e.g., INBIOMED [Lopez-

Alonso et al., 2004], [del Rey et al., 2005]), e-government, scientific workflows, and Internet of

Things environments (e.g., smart cities). We also indicate the contribution of Web services in

e-science, such as the platform of Kyoto Encyclopedia of Genes and Genomes (KEGG)1, or the

platform of the National Center for Biotechnology Information (NCBI)2 used for analyzing the
1KEGG Web services: http://www.genome.jp/kegg/soap/
2NCBI Web services: http://www.ncbi.nlm.nih.gov/entrez/query/static/esoap_help.html

1

General Introduction

biological data.

For instance, the e-government applications (e.g., eMayor [Electronic, 2004] system) allows

for the citizens to remotely request their personal and familial certificates and documents, such

as birth or marriage papers. By doing so, the people will avoid the traditional cumbersome

appointments and the crowding issues in public administrations. Additionally, we notice that

the wide-spread of Web services in Internet of Think (IoT) systems, have brought new benefits

[Kyusakov, 2014].

For instance, the embedded applications deployed in smart cities can cooperate to measure the

congestion rates as well as the pollution degrees; these applications can readjust the duration of

red lights to ensure more fluid circulation and less carbon emissions.

It is worth noting that such innovative applications are built using a composition of several

existing IoT services [Benomar et al., 2020], and therefore, it will be crucial to design efficient

models and algorithms to deal with service compositions.

We argue that the efficient realization of such workflows requires the adoption of sophisti-

cated frameworks and protocols in order to face the challenges of the environment (including

the non reliability of the devices, the intermittent connection, the variability, and the fluctuation

of QoS).

1.2 Problem statement
Service-Oriented Computing (SOC) can be seen as the core model that defines the guidelines

to build complex and distributed applications; it supports the development of rapid, low-cost,

flexible, interoperable, and evolvable applications and systems [Papazoglou et al., 2007]. It

presents a set of concepts, principles, and methods for ensuring interaction between existing

(possibly heterogeneous) software components.

The combination of these principles with additional organizational aspects (such as service life

cycle) will form the paradigm of Service-oriented architecture (SOA). SOA allows for building

loosely coupled applications with prominent added-value. These objectives came as a remedy

for the issues encountered in tightly coupled systems and even monolithic applications.

As a concrete instance of SOA, Web services implement these general principles with a set

of standards and protocols [Papazoglou, 2008]. The standards and specifications describing

Web services are promoted by the World Wide Web Consortium (W3C). Among the most pop-

ular frameworks for developing Web services, we can mention ASP.NET [Liberty and Hurwitz,

2005] and Axis [Tong, 2008].

Remaci 2

General Introduction

Nowadays, the majority of public/private companies encapsulate their offered functionali-

ties in terms of web services. Therefore, it is likely to encounter multiple services that provide

similar functionalities while the other aspects (nonfunctional properties) may differ.

Moreover, the customers usually request for (complex) applications which are rarely fulfilled

by an elementary service (since the services are functionally limited). To address the mentioned

limitation, a service composition procedure of atomic services is required. By composing the

necessary atomic services, a value-added application is proposed for the users, this latter appli-

cation may provide emergent properties.

Figure 1.1 shows a user’s request for buying a new product. Firstly, the client wants to find

a product with specific requirements, then he needs to check the currency rate and exchange

if needed, and finally, he desires to make a payment. It is evident, that this request can’t be

achieved with one service, nevertheless, it is realizable with four cooperating services.

In general, the increasing number of the available Web services on the Web has several positive

and negative impacts on the composition process.

As regards, the positive impacts, we can notice that this proliferation will ensure more alterna-

tives for a given functionality and therefore the designers will be more comfortable in choosing

or replacing less reliable services. Furthermore, since the number of equivalent services is in-

creasing exponentially, the temporal cost of building and selecting such compositions will be

largely intolerable.

According to the literature [Alrifai et al., 2012], [Benouaret et al., 2012], [Dahan et al.,

2019], [Remaci et al., 2020], the nonfunctional attributes also known as QoS (e.g., cost, through-

put, reliability, and response time) represent the key ingredient for handling the service selection

issue. Unfortunately, the QoS is largely influenced by environment conditions. We argue that

the QoS is unstable because of different factors, such as the change of the network connectivity,

the presence of cyberattacks, the heterogeneous client-side environments, and the service host-

ing architecture.

For example, due to the network load, the access to an e-commerce service will take an addi-

tional time compared to normal situations. Hence, the QoS of the service is fluctuating, nonde-

terministic, and dynamic; consequently, the QoS uncertainty will change the way of measuring

the pertinence of a service composition as well as the selection algorithms.

We notice that the majority of classical composition approaches assume that the QoS is

deterministic, ignoring the real-world situation. In this thesis, we assume that the QoS variables

Remaci 3

General Introduction

are uncertain and follow an unknown probability distribution. To handle this issue, we suppose

that the user’s request is modeled as an abstract workflow of services that need to instantiated

with concrete services.

The combination of these concrete services must meet a set of QoS requirements that ex-

press the upper/lower bounds of the QoS criteria (e.g., the total cost of the concrete services

is lesser than the user’s budget). In summary, our task consists of searching the Top-k service

compositions that best meet the QoS requirements of the user; the QoS requirement satisfaction

(also expressed as the Global QoS conformance in Chapter 4) aims to maximize the probability

of preserving the global constraints.

Product finder Online Currency
Exchange Online payment

Request

Response

Web services

Bank Currency Exchange
companyOnline store

Figure 1.1: An example of Web service composition.

1.3 Contributions
It is worth noting that the processing of the user’s request is not a self-evident task, since

the search space is increasingly large. Therefore, our proposed composition procedure involves

two major steps: a local search (for individual services) and a global search (for service com-

positions). The first step allows for choosing the appropriate services for each abstract class

of the workflow using a given heuristic, the main intuition behind this is the reduction of the

search space by filtering out the less pertinent services (See Figure 1.2). Likewise, the second

step allows for retrieving the best compositions that optimize the QoS requirements (or global

QoS conformance); to do so, we perform a heuristic search that ensures a trade-off between the

quality of the retained solutions and the computational time.

Remaci 4

General Introduction

S11

S14

S12

S21

S31

S41

S13

S32

S42

S22

S23

S33 S34

S44

S24

Selection
process

Composition
process

S43

Dataset of Web services

Top 2 services

Abstract workflow

Top 2 compositions

User

QoS requirements

S11 S12

S23 S24 S43 S42

S31

S34

S34

S42

S23

S11

S12

S34

S43

S24

Figure 1.2: General composition procedure.

In addition, to the consideration of the functional and nonfunctional requirements of the

user, our framework must handle the fluctuations of the QoS criteria during the two steps.

To best refine the aforementioned framework, a literature review is performed to criticize and

summarize the existing approaches.

The existing works that tackle the Web services selection and/or composition include Math-

ematical programming techniques (such as linear programming [Cardellini et al., 2007], mixed

programming techniques [Ardagna and Pernici, 2007], Markov decision programming), heuris-

tic and meta-heuristic techniques such as the genetic algorithm [Liu et al., 2010], PSO [Huang

et al., 2011]. It is interesting to note that these methods do not consider both the user’s require-

ments and the uncertainty of QoS. Consequently, they cannot provide reliable Web services

composition in dynamic and uncertain environments. To face this uncertainty, we design a set

of heuristics to handle and compare statistical samples of QoS data.

In this thesis, three major contributions are presented:

1. The first contribution [Remaci et al., 2018], is a two-stage framework that deals with the

QoS fluctuations and the large space of possible compositions. The first step leverages the

probabilistic dominance relationship as a heuristic to sort the services in order of merit.

Based on the ranked services, we use the Backtracking algorithm to handle the service

compositions while keeping only the relevant services (Top K services) provided by the

first step.

Remaci 5

General Introduction

2. The second contribution [Zeyneb Yasmina et al., 2022] is also structured in two major

phases; the first one consists of selecting the Top K Web services of each abstract class

of the user’s workflow according to the Majority Judgment (MJ) heuristic. The second

phase leverages the Constraint Programming (CP) approach to search the compositions

and eliminate those that do not fulfill the global constraints. The retained Top K composi-

tions must optimize the Global QoS Conformance objective function [Hwang et al., 2015].

We adopt this metric to take into account both QoS fluctuations and user’s requirements.

3. The third contribution is based on a recent fuzzy Set theory (called Hesitant Fuzzy Set

[Torra and Narukawa, 2009]) that deals with the QoS uncertainty. This contribution is

constituted of two stages; the first one allows for ranking the concurrent services using

the Cross-Entropy based hesitant fuzzy set. The comparison also leverages the concept

of Entropy to compute the weight of each QoS attribute. The second stage performs a

global search based on the grey wolf meta-heuristic. The proposed meta-heuristic is an

improved version of the grey wolf optimization that is well suited to discrete problems,

such as service compositions.

1.4 Organization of the manuscript
The rest of the dissertation is organized as follows:

• Chapter 2: SOA and Web Service technology .

This chapter presents the necessary background and principles on the Web service technol-

ogy, such as the Service-Oriented architecture, the fundamental standards, and protocols.

In addition, the cloud computing technology, and the cloud services are briefly presented.

• Chapter 3: State of the art.

The second chapter briefly introduces the related works and gives an overview of the exist-

ing methods and approaches used to solve the Web services selection and/or composition.

• Chapter 4: Uncertain QoS-based Web service composition approach.

This chapter outlines the proposed approaches for solving the service composition prob-

lem. It presents the architecture of the proposed framework and details the suggested

algorithms.

• Chapter 5: Implementation and experimental results.

This chapter covers the evaluation of the proposed approaches while describing the exper-

Remaci 6

General Introduction

imental datasets and the adopted configuration. Furthermore, it presents the effectiveness

and the performance rates of all proposed algorithms.

• Chapter 6: General conclusion and perspectives.

The final chapter summarizes the main contributions of the thesis and the achieved objec-

tives, it also discusses the possible directions for future researches.

Remaci 7

Part I

Background on Web services

8

Chapter 2

SOA and Web Service technology

2.1 Introduction
The increasing adoption of Internet-based technology spawned the development of large-

scale distributed applications. These applications are constituted of multiple components that

interact and communicate with each other to create an elaborated system. By nature, they are

heterogeneous, complex, and sensitive to changes. Consequently, the major concern of the dis-

tributed computing is to find a software development architecture that handles these limitations.

Actually, SOA is the most desired architecture to enable flexible, interoperable, and loosely

coupled solutions. A real realization of SOA was successfully performed through Web services

in 2000 by the W3C 1. Certainly, Web services are not the only way for implementing the SOA.

Meanwhile, they achieved the goal of SOA in different domains.

Indeed, Web services are an emerging technology having minimal dependencies between

components, since they use low-level standards. One of the main standards is the eXtensible

Markup Language (XML) as well as the core protocol of the Internet called Hypertext Transfer

Protocol (HTTP). Furthermore, there are other fundamental standards specific to Web Services

such as Web Service Description Language (WSDL), Simple Object Access Protocol (SOAP),

Universal Description, Discovery and Integration (UDDI).

The goal of this chapter is to introduce a review of the SOA and present the main elements

of Web services. First of all, we present a definition of Web services. Then, we explain the

main participants of Web services and the operations. We will cover the two types of Web

service architectures (SOAP and REST services) and we explain the three main standards for

Web services (SOAP, WSDL, UDDI). Finally, We introduce cloud computing technology, and
1https://www.w3.org/TR/ws-arch/

9

SOA and Web Service technology

the main relationship between Web services, SOA, and cloud computing.

2.2 Service Oriented Architecture
Nowadays, business organizations need for an efficient, extensible, and distributed systems

supporting the high rate of changing requirements. Recently, Service-Oriented Computing

(SOC) is the most desired paradigm to ensure these qualities. It provides a distributed com-

puting infrastructure that relies on services, with smooth and consistent communication be-

tween them. In fact, this paradigm involves the Service Oriented Architecture (SOA) to offer

an architectural model and expose the functionalities of applications as services. SOA is a key

paradigm for modernizing the legacy software systems such as Common Object Request Bro-

ker Architecture (CORBA) or Distributed Component Object Model (DCOM), Remote method

invocation (RMI). These systems are unable to deal with IT/SI challenges, like the growing

number of existing complex systems, the competitive systems, and the heterogeneous imple-

mentation. Therefore, SOA is leveraged to improve interoperability, loose coupling, flexibility,

agility, adaptability, integration, and reusability.

The SOA definition may slightly differ according to the expected goal (see Table 2.1).

Table 2.1: SOA definitions

Authors SOA definitions

[Blanco et al., 2007] SOA can be defined as an architectural style promoting the concept of
business-aligned enterprise service as the fundamental unit of designing, build-
ing, and composing enterprise business solutions.

[Dehne and DiMare, 2007] Service-Oriented Architecture (SOA) is a style of developing and integrating
software. It involves breaking an application down into common, repeatable
services that can be used by other applications, both internal and external, in
an organisation—independent of the applications and computing platforms on
which the business and its partners rely.

[Marks and Bell, 2008] SOA is a conceptual business architecture where business functionality, or
application logic, is made available to SOA users, or consumers, as shared,
reusable services on an IT network. Services in an SOA are modules of busi-
ness or application functionality with exposed interfaces, and are invoked by
messages

[MacKenzie et al., 2006] Service-Oriented Architecture (SOA) is a paradigm for organising and utilising
distributed capabilities that may be under the control of different ownership
domains

Remaci 10

SOA and Web Service technology

In fact, SOA can be implemented using different technologies. Although the most SOA-

based solutions in business sectors and IT systems (such as banking, stock trading, automotive

systems, and healthcare) are implemented based on Web Services. Web services are based on a

set of protocols and languages that facilitate the implementation. Besides of the mentioned ad-

vantages, it is important to note that the development costs for the services and the maintenance

costs are lower. In addition, the development time is faster.

2.3 Web services
There are many definitions of Web services. In this thesis, we present the W3C and [Dust-

dar and Papazoglou, 2008], besides IBM definitions as reference. The W3C’s Web Services

Architecture Working Group has given the following definition of Web service:

"A Web service is a software system identified by a URI and designed to support interoper-

able machine-to-machine interaction over a network. It has an interface defined and described

in a machine-processable format (WSDL). Its definition can be discovered by other software

systems. Other systems may then interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP with an XML serialization

in conjunction with other Web-related standards."

According to [Dustdar and Papazoglou, 2008]:

"Services are self-contained processes deployed over standard middleware platforms, e.g.,

J2EE, or .NET that can be described, published, located (discovered), and invoked over a net-

work... Services are most often built in a way that is independent of the context in which they

are used. This means that the service provider and the consumers are loosely coupled."

2.4 Why are Web Services Attractive?
The efficiency of the Web services technology can be summarized in the following points:

• Modularity and granularity: In SOA, each service represents a bloc for building the

business process. According to [Papazoglou, 2008], the service granularity is the unit of

modularity of a system. Modularity means the amount of service functionalities.

• Reuse: Usually the services have specific functionality; they are enabled to be used in

different and independent business processes for multiple purposes. The reusability has a

high dependence on the composition and the interoperability.

• Composable composition: The granular services are combined to offer a new powerful

service or value-added application.

Remaci 11

SOA and Web Service technology

• Interoperability: The composed services work in a heterogeneous environment, includ-

ing different programmatic languages and platforms which make communication harder

between them. However, in SOA there is a high-level of interoperability ensured using

some standards and protocols.

• Loose coupling: Coupling is exchanging the information between services. In fact, the

services are black boxes and commutation between them is done using standards, such as

XML, which guarantees a given level of compatibility.

• Service discovery: This means that the available service is identifiable and funded based

on the information in the service registry.

2.5 Web service Architecture

2.5.1 General Architecture

The basic Web service architecture models the interactions between three roles: the service

provider, the service registry (broker), and the service requestor (Service customer).

Consequently, the main operations are: publish, find, and bind (see Figure 2.1).

Registry
Service

Service
Customer

Service
Provider

Publish
Find

Bind

Figure 2.1: General Architecture.

2.5.1.1 Participants of Web services

Web services are based on three participants, each one has to accomplish a set of operations.

• Service provider: It is the owner of Web services. The service provider ensures the

implementation of the service and makes an advertisement by publishing its description

on the service registry.

Remaci 12

SOA and Web Service technology

• Service customer: It requests for a specific service provider that can offer the desired ser-

vice. The description can be found using some service discovery mechanisms for binding

to the service.

• Service registry: It represents a set of repositories containing the services information. It

is accessible for any service customer.

2.5.1.2 Operation of Web services

Based on the description of the participants, we can notice three main operations: publish-

ing the service descriptions, finding the service descriptions, and binding and/or invoking the

services based on their service description.

• Publish operation: The publishing operation consists of two main operations: the de-

scription of the Web service operation (e.g., WSDL); followed by the registration of the

Web service.

The categories of the described and registered information are:

– Business information: It is the information about the owner of the Web service.

– Service information: It specify the categories that describe the Web services.

– Technical information: It describes the realization and the invocation of the Web

service.

• Find operation: Finding Web services starts with discovering all different services in the

registry then selecting the most pertinent Web service(s). The selection can be a manual

or an automatic selection. In the Manual Web services selection, the customer selects the

Web service from the set obtained from the discovering operation. However, the automatic

selection of the Web services is based on a full automatic process; without entailing the

customer.

• Bind operation: The invocation and localization of Web services by the customer are

achieved through the bounded details in the service description from the service registry.

The architecture for Web services is founded on principles and standards for connection,

communication, description, and discovery. The interoperability between these operations

is based on four open technologies including Service Description Language (WSDL),

Extensible Markup Language (XML), XML Schemas Definition Language (XSD), and

Simple Object Access Protocol (SOAP).

Remaci 13

SOA and Web Service technology

Service Communication Protocol

SOAP

Transport

HTTP HTTPR SMTP

 Business Process

Service

Service Description

WSDL

Service Registry

UDDI

Orchestration BPEL

Choreography WS-CDL

Q
uality of S

ervice (Q
oS

)

S
ecurity

Transactions

C
oordinations

...

Fonctionnels Aspects NonFonctionnels Aspects

Figure 2.2: Web service stack.

2.5.2 Extended architecture

The extended Web services architecture, also called stack architecture, (see Figure 2.2) is

divided into two sets. The first fold concerns the functional aspects of the architecture, and the

second fold addresses the quality of service aspects (nonfunctional aspects). The detail of each

layer of the stack is explained as follows:

2.5.2.1 Functional aspects

1. Transport: The transport layer represents the mechanism leveraged for transporting the

service request and response between the service provider and the customer. There are

several standards such as Java Message Service (JMS), Simple Mail Transfer Protocol

(SMTP), HyperText Transfert Protocole Reliable (HTTPR); however, the most used is

HTTP.

2. Service communication protocol: This layer is the mechanism used for communication

between the service customer and the service provider. Actually, there are two popu-

lar methods of Web services implementation, called the Simple Object Access Protocol

(SOAP) and the Representational State Transfer (RESTful).

Remaci 14

SOA and Web Service technology

• Simple Object Access Protocol: SOAP is W3C recommended as a communication

protocol. SOAP 1.1 was originally submitted to the W3C in May 2000. It is an XML-

based communication protocol using high level protocols, such as HTTP, FTP, and

SMTP. It allows the service customer and the service provider communication in the

heterogeneous environment with respect to the interoperability. SOAP defines the

organization of the XML message as an envelope form containing two elements:

(a) SOAP header: It is an optional element of the envelope, but if it exists, it must

be the first child element. The header block possibly includes the origin and

the destination of the document. Furthermore, it can be leveraged for digital

signatures, authorizations and authentication, transaction contexts, payments...

(b) SOAP body: It is a mandatory element for all SOAP messages. This element

incorporates one or multiple child elements, including the mandatory message

(payload) to be delivered and processed. Specifically, the body element consists

of application specific data for describing the exchanged information or a fault

message in the case of error occurrence.

Figures 2.3 and 2.4 show a simple SOAP request and response in an HTTP POST.

 POST / temp HTTP / 1 . 1
 Host: www.currency_convertor.com
 Content−Type: text/xml ; charset ="utf-8"
 Content−Length: xxx
 SOAPAction: "http://www.currency_convertor.com/currency"

 <?xml version ="1.0"?>
 <env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 env: encoding Style= "http://schemas.xmlsoap.org/soap/encoding/"/>
 <env:Header/>

 <env:Body>
 <m:GetCurrency xmlns:m="http://www.currency_convertor.com/currency.xsd">
 <m:From>Euro</m:From>
 <m:To>Dollar</m:To>

 <m:Amount>100</m:Amount>
 </m:GetCurrency>
 </env:Body>
 </ env:Envelope>

Figure 2.3: A SOAP request.

Remaci 15

SOA and Web Service technology

 HTTP / 1 . 1 200 OK
 Content−Type: t e x t / xml ; charset ="utf-8"
 Content−Length: xxx
 SOAPAction: "http://www.currency_convertor.com/currency"
 <?xml version ="1.0"?>
 <env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 env: encodingStyle= "http://schemas.xmlsoap.org/soap/encoding/"/>
 <env:Header/>

 <env:Body>
 <m:GetCurrencyResponse xmlns:m="http://www.currency_convertor.com/currency.xsd">
 <Value>117,20</ Value>
 </m:GetCurrencyResponse>
 </env:Body>
 </ env:Envelope>

Figure 2.4: A SOAP response.

• Representational State Transfer: REST [Fielding, 2000] is a recent method for

building Web services. However, it is different from SOAP, since REST is an ar-

chitectural style, not a protocol. REST was firstly founded by [Fielding and Taylor,

2002], and defined as:

"a coordinated set of architectural constraints that attempts to minimize latency and

network communication while at the same time maximizing the independence and

scalability of component implementations".

This architecture, uses a stateless communication protocol, such as HTTP to ex-

change resources through a standardized interface. RESTful Web services depend

on the nonexhaustive set of the principle discussed in follows:

– Resources: It is considered as the most important concept of the REST archi-

tecture. It represents an abstraction of information having at least one represen-

tation and unique identification. This identification is performed through a URI

(Uniform Resource Locator).

– Addressability: In the REST style, it represents all the exposed resources; i.e.,

a set of URIs.

Remaci 16

SOA and Web Service technology

– Stateless Interactions: This principle uses HTTP to exchange requests between

resources while ensuring isolation between them. These requests are indepen-

dent from each other. Furthermore, the state is not shared between the clients

and the servers. However, the context (state) connecting the server and the client

is supported by the client. Furthermore, the client application can be used to

provide all the information for the server to accomplish the request that occurs

at any phase of interactions.

– Uniform Interface: Considering that the REST is based on HTTP, the interac-

tion between resources is managed through a uniform interface. This interface

considers the following HTTP operations:

* PUT: Creates a new resource (new URI) or updates an available resource

(existing URI).

* GET: Returns the representation and the current state of a resource.

* POST: It is a read-write operation leveraged to update the state of the re-

source.

* DELETE: remove the resource with an invalid URI.

– Self-Describing Messages: This means that the messages between services con-

tain both data and metadata describing the method to process this message. Fur-

thermore, it includes the control data to describe the purpose of this message.

• RESTful WS vs SOAP WS:

Actually, we can compare the implementation of Web service using RESTful over

the implementation using SOAP. Technically, RESTful WS is a less complex, lighter,

and more suitable solution compared to SOAP WS. Specifically, the integration in

RESTful WS is lightweight and flexible. Therefore, it is generally adopted for con-

trolling physical things through the Web [Jabbar et al., 2018].

Table 2.2, presents the main differences between the two implementations.

Remaci 17

SOA and Web Service technology

Table 2.2: SOAP vs REST [Wagh and Thool, 2012].

SOAP REST

Changing services in SOAP Web provisioning often means a

complicated code change on the client side.

Changing services in REST Web provisioning not

requires any change in client side code.

SOAP has heavy payload as compared to REST.

REST is definitely lightweight as it is meant for

lightweight data transfer over a most commonly

known interface, - the URI

It requires binary attachment parsing. supports all data types directly.

SOAP Web services always return XML data.
While REST Web services provide flexibility in

regards to the type of data returned.

It consumes more bandwidth because a SOAP response

could require more than 10 times as many bytes as

compared to REST.

It consumes less bandwidth because it’s response

is lightweight.

SOAP request uses POST and require a complex XML

request to be created which makes response-caching

difficult.

Restful APIs can be consumed using simple GET

requests, intermediate proxy servers /

reverse-proxies can cache their response very

easily.

SOAP uses HTTP based APIs refer to APIs that are

exposed as one or more HTTP URIs and typical responses

are in XML / JSON. Response schemas are custom per

object

REST on the other hand adds an element of using

standardized URIs, and also giving importance to

the HTTP verb used (i.e. GET / POST / PUT etc

Language, platform, and transport agnostic. Language and platform agnostic.

Designed to handle distributed computing environments.

Assumes a point-to-point communication model -

not for distributed computing environment where

message may go through or more intermediaries.

Is the prevailing standard for Web services, and hence has

better support from other standards (WSDL, WS) and

tooling from vendors.

Lack of standards support for security, policy,

reliable messaging, etc., so services that have more

sophisticated requirements are harder to develop.

Remaci 18

SOA and Web Service technology

3. Service description: Web services architecture ensures the loose coupling through the

service description that allows the independence between the service provider and the

service consumer. Usually, the description includes information about the structures and

the functional characteristics of the Web service.

• Syntactic description based on WSDL:

The Web Services Description Language (WSDL) is an XML language for describ-

ing a programmatic interface to a Web service [Christensen et al., 2001]. The infor-

mation defined by WSDL is what Web Service can do, where it can be found, and

how it can be invoked. WSDL is based on two parts of descriptions: the description

of the operations and messages (structure), called the service interface definition.

Additionally, the message format and the network protocol description, called the

service implementation definition.

WSDL document consists of two parts (see Figure 2.5) [Papazoglou, 2008]:

– The abstract interface definition: It is the part of a Web service description

that is independent from any particular protocol and message encoding used for

interacting with the service. This part is also independent from the location, in

terms of network address, where the service is available. This makes the abstract

part reusable for different protocols, message encoding, and locations.

– The concrete interface definition: Describes a specific protocol binding, mes-

sage encoding, and location binding of a Web service.

WSDL structure is constituted on the following elements:

(a) Definitions: Associates Web Service with its namespaces.

(b) Types: A container for data type definitions, typically using an XML Schema

Definition (XSD) or possibly some other type system.

(c) Message: An abstract, typed definition of the data contained in the message.

(d) Operation: An abstract description of an action that the Web Service supports.

(e) PortType: The set of operations supported by one or more endpoints.

(f) Binding: A specification of the protocol and data format for a particular port-

Type.

(g) Port: An endpoint, defined in terms of a binding and its network address (typi-

cally a URL). This is not a TCP/IP port, which is represented by a number.

Remaci 19

SOA and Web Service technology

(h) Service: A collection of related endpoints.

WSDL structure

Abstract part

Type

Messages

Operations

Port type

Service

Building

Concrete part

Figure 2.5: WSDL structure.

4. Service registry: The service registry is used for registering the service description of

the available service, and then locating this description if needed. In this layer, multiple

standards are emerging such as UDDI, ebXML, Web Services Inspection Language (WS-

Inspection). However, UDDI is most used as a standard for registering and discovering

Web services according to their description.

• Universal Description, Discovery, and Integration:

The UDDI registry allows the service provider to publish a description about the

company and its services. On the other hand, it offers a searching mechanism for

service customers.

UDDI encodes three types of information about Web services (see Figure 2.6):

(a) White pages: Includes the list of organizations (names) and contact details such

as phone or email; also the details of service.

(b) yellow pages: Includes the information about business categories, characteris-

tics, and capabilities of companies and Web services. It is possible to search for

services based on the category they belong to according to a given classification

scheme.

Remaci 20

SOA and Web Service technology

(c) Green pages: Includes technical data such as the URI of the technical docu-

ments including WSDL.

White pages

Green pages

Yellow pages

Provider name

Contact information

 General classification

Technical information

Yellow pages

Figure 2.6: UDDI structure.

5. Service: It is the principal unit of SOA, which represents a business function that can

be used in multiple applications (we refer to reusability). The service can be classified

according to its granularity:

(a) Atomic service: It is a computational entity that can offer granular functionality.

This atomic service can be part of one or multiple composite services.

(b) A composite service: It is a collection of atomic services in collaboration to achieve

complex tasks.

6. Business process (Composition/Processes): A business process is a set of activities,

functional roles, and relationships that describe a function of the business that accom-

plishes a business goal [Hollingsworth and Hampshire, 1995]. [Papazoglou, 2008] defines

the business process as a set of logically related tasks performed to achieve a well-defined

business outcome. For Web service composition, a business process is a collection of ser-

vice tasks with defined control-flow and data-flow dependencies between them. Service

composition can be achieved using one of two paradigms: the service orchestration and

the service choreography (see Figure 2.7).

(a) Orchestration: In [Peltz, 2003], orchestration is defined as an executable business

process that can interact with both internal and external Web services.

Remaci 21

SOA and Web Service technology

Service B

Service A

Service C

Collaboration

Web service choreography

Service B

Service A

Service C

Service Coordinator

Invoke

Invoke

Invoke

ReplyReply

Reply

Web service orchestration

Figure 2.7: Web Services Orchestration and Choreography.

It represents the communication actions and the internal actions. The interactions are

controlled by one central workflow coordinator called the orchestrator; this coordi-

nator is responsible for the invocation and composition of Web services. Several lan-

guages are used for Web services orchestration including WSFL [Leymann, 2001],

Business Process Modeling Language (BPML) [Arkin, 2002], and Business Process

Execution Language (BPEL). The most used as orchestration language is BPEL.

BPEL: The Business Process Execution Language for Web Services (BPEL4WS,

also known as BPEL or WS-BPEL) proposed by IBM, Microsoft, and BEA. It is an

XML-based language that supports both, composition and coordination protocols.

BPEL is leveraged to define the behavior of business processes as executable or ab-

stract processes.

i. Executable processes: It describes the mean of execution of the process through

BPE by defining the external messages exchanged with other services and the

complete internal details of the business process.

ii. Abstract processes: It models the external message exchange between Web

services based on their interfaces without including the specific details of the

business process.

Remaci 22

SOA and Web Service technology

(b) Choreography: It is a decentralized cooperation where the interaction between Web

services is divided across each service through send and received messages without

depending on a coordinator service. The W3C Web Services Architecture [Booth,

2003], describes choreography as the sequence and conditions under which multiple

cooperating independent agents exchange messages in order to perform a task to

achieve a goal state. Many languages have been proposed for choreography, however,

WS-CDL [Kavantzas et al., 2003] is the approved standard by W3C for describing

the choreography.

Web Services Choreography Description Language WS-CDL: It is an XML-

based language that allows specifying a global viewpoint of the interactions between

services. Furthermore, it describes the data and the control dependencies.

2.5.2.2 Nonfunctional aspects (Quality of Service)

The term "Quality of Service" has been used to express nonfunctional attributes. This layer

focuses on these attributes rather than the functional properties. The Web service standards,

such as WSDL, only support the descriptions of the functional properties. On the other hand, the

Web Service Description language (called Web Services Endpoint Language (WSEL)), which

is an XML format, is used for describing the quality-of-service attributes. The QoS offered by

a Web service is becoming the highest priority for service providers and their customers.

The QoS of Web services can be summarized as follows:

• Availability: It is the probability that a service is available and can be used when re-

quested [Al-Shargabi et al., 2010]. It can be computed as: Number of successful invoca-

tions / total invocations [Al-Masri and Mahmoud, 2008].

• Accessibility: It defines the probability that a service can satisfy a request [Al-Shargabi

et al., 2010]. The accessibility is different from the availability because a service might

be available but inaccessible.

• Accuracy: It is the measure of the service error rate according to the number of errors

generated by a Web service, the number of fatal errors, and the frequency of that situation.

• Integrity: It assures the correctness and the authorization of the transactional properties

in the case of modifications [Kalepu et al., 2003].

Remaci 23

SOA and Web Service technology

• Reliability: It represents the ability to respond correctly and consistently to a service

request, and it is usually expressed in terms of the number of failures per month or year. It

can be measured by: Mean time between failure (MTBF), Mean Time to Failure (MTF),

and Mean Time To Transition (MTTT) [Ran, 2003].

• Security: It specifies the mechanism proposed by the service provider and leveraged for

confidentiality, non-repudiation, encrypts messages, and access control [Kalepu et al.,

2003].

• Cost (Price): It is the total cost of the requested service.

• Response Time: It refers to the amount of time between sending the request and receiving

a response [Bochmann et al., 2001].

• Scalability: It is the ability to serve the requests despite the variations in the volume of

the requests [Al-Shargabi et al., 2010].

• Performance: It represents a measure of the speed in completing a service request. It is

measured in terms of three factors: throughput, latency, and response time [Ran, 2003].

• Throughput: It represents the average rate of successful service requests in a specific

period of time [Ran, 2003].

• Latency: It represents the time taken between the request sending and handling the re-

sponse [Ran, 2003]. The best performance of Web service is defined by a higher through-

put and a lower latency.

2.6 Cloud computing
The frequent evolution of the hardware and software platforms presents a serious preoccu-

pation of the IT industry. The issues related to the development, deployment, maintenance, and

versioning; besides the rising time for consumers as well as for software developers.

Consequently, cloud computing represents a new computing paradigm that hides the complexity

of IT infrastructure and offers the opportunity for cost-effectiveness and time savings.

2.6.1 Cloud computing definition

According to the National Institute of Standards and Technology (NIST), Cloud computing

is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool

Remaci 24

SOA and Web Service technology

of configurable computing resources (e.g. networks, servers, storage, applications, and ser-

vices) that can be rapidly provisioned and released with minimal management effort or service

provider interaction [Mell et al., 2011].

2.6.2 Categories of Cloud Computing

Cloud computing is classified into three categories, namely Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). More specifically they

represent a stack of three layers (see Figure 2.8).

• Software as a Service (SaaS): This service (such as Customer Relationship Management

(CRM), Email, Enterprise Resource Planning (ERP), Games) is provided for different

categories of users using multiple devices. Furthermore, it is running on a cloud infras-

tructure and is controlled by service providers.

• Platform as a Service (PaaS): It is intended for developers, it provides all required com-

putational resources to build their applications; having full control on the installation and

configuration, and access to the environment tools. The PaaS is achieved by several plat-

forms such as Google App Engine, Microsoft Azure Cloud Services.

• Infrastructure as a Service (IaaS): It offers the fundamental physical and virtual re-

sources for hosting and developing applications, such as servers, connections, and soft-

ware. In this layer, the user can control the deployed OS, applications, and data.

The most popular IaaS applications are Amazon Elastic Compute Cloud (EC2), Microsoft

Azure, Google Compute Engine (GCE).

2.6.3 Cloud Deployment Models

• Public Cloud: The cloud infrastructure is proposed for the general public.

• Private Cloud: The cloud infrastructure is exposed to a single organization that can in-

clude multiple users.

• Hybrid Cloud: This is a cloud infrastructure that includes both private and public clouds.

2.6.4 Most Popular Cloud Computing Platforms

There are many cloud computing platforms with plenty of advantages. This study considers

four popularly adopted platforms namely Amazon Web services, Microsoft windows azure,

Google app engine, and IBM cloud.

Remaci 25

SOA and Web Service technology

Operating Systems

Networking

Firewalls/Security

Data Center

Physical Plant/Building

Virtualization

Servers and Storage

Hosted Applications

Suites of Services

Development Tools

and

Database Management

IaaS PaaS SaaS

Figure 2.8: Cloud computing stack: IaaS, PaaS, and SaaS [Barry and Dick, 2013].

• Amazon Web Services (AWS): It represents the pioneer in cloud computing. It was

founded in 2006, and it offers several cloud services to organizations, business enterprises,

and normal Customers. The architecture of Amazon Web services includes four parts:

– Elastic Compute Cloud Amazon (EC2): It is an IaaS cloud provider that offers to

the user virtual servers (called instances). The running virtual machine on the user

side represents an Amazon Machine Image (AMI).

– Simple Storage Service Amazon (S3): It provides data storage as a low-cost. It

is a highly available service that provides a flexible data storage space for archiving

and recuperating data (Buck up). The data are available and accessible for the user

at a lower cost.

– Amazon SimpleDB: This is a form of non-relational database that enables a user

to store data. It uses a simple read/write command from the Application program

interface [Ampaporn and Gertphol, 2015].

– Simple Queue Service Amazon (SQS): It Provides a hosted queue service that

stores the message among the cloud components.

• Microsoft Windows Azure: It represents a form of Platform as a Service maintained in

2010 by Microsoft. It offers flexible services and exposes several tools and platforms for

Remaci 26

SOA and Web Service technology

building, executing, and managing applications.

• Google App Engine: It is proposed by Google in 2011. This cloud platform is classified

as a platform as a service that offers a Google framework for users to develop and execute

their applications avoiding the acquisition and maintaining of databases.

• IBM Clouds: The company information technology company IBM proposed a cloud

computing platform in 2011. It offers the access of considerable computing power.

2.6.5 Web service and Cloud computing

Venn diagram (see Figure 2.9) outlines the relationship between Web services, SOA, and

cloud computing. Web service encapsulates Cloud computing since cloud computing uses Web

services for connection. However, Web services can be used without cloud computing.

In addition, SOA can be implemented with or without Web services. Similarly, cloud computing

can be applied without having the SOA [Barry and Dick, 2013].

However, many types of research indicate that, in cloud computing, Web services are not

SOA

SOA

using

Web

services

SOA

using

cloud

computing

Cloud
computing

Web

services

Figure 2.9: Relationship of Web services, SOA, and cloud computing. [Barry and Dick, 2013]

used only for connection. Nevertheless, they present cloud computing as a new Internet-based

computing paradigm, whereby a pool of computational resources are deployed as Web services

[Ai et al., 2011], [Nadanam and Rajmohan, 2012]. Specifically, the SaaS focuses on exposing

software functions as services (i.e. WS) [Wang and Deters, 2009], [Jamal and Deters, 2011].

Moreover, the cloud computing providers expose an IaaS which is considered as Web service

such as Elastic Compute Cloud (Amazon EC2). The latter is defined by AWS as a Web service

that provides secure, resizable compute capacity in the cloud2.

We can project the definition of IBM on cloud services, since they are modular, compos-

able, and can be invoked across the Web. In addition, the cloud service composition is some-
2Amazon elastic compute cloud (amazon ec2), May 2011. http://aws.amazon.com/ec2/.

Remaci 27

SOA and Web Service technology

how similar to the Web service composition. Therefore, in this thesis, we address the service

composition / selection. The service concept includes both cloud services (Specially IaaS, and

SaaS) and Web services.

2.7 Conclusion
So far, we have begun by introducing the concept of Service-Oriented Architecture (SOA)

and Web services. We have presented the most important standards and protocols that represent

the foundation for Web service implementations, such as SOAP, REST, WSDL, and UDDI.

Furthermore, we have highlighted the details of the general and the extended architecture.

Finally, we have outlined the cloud computing technology and its relationship with SOA and

Web services.

Remaci 28

Chapter 3

State of the art

3.1 Introduction
In most cases, the service provider offers an interesting Web service ensuring one specific

functionality. Meanwhile, users usually demand complex applications that cannot be accom-

plished with an elementary Web service. For example, if a user wants to purchase a product, it

is not sufficient to search for it, but it is necessary to take care of the payment, delivery, and so

on. Invoking multiple services cooperating together involves the service composition process.

We notice that the fact of choosing appropriate service components is complicated for the user,

because of the proliferation of similar services that propose identical functionalities.

Despite the functional similarity, each service is characterized with the nonfunctional proper-

ties called the Quality of Service (QoS). Essentially, QoS represents the key aspect to address

the service composition problem. In fact, it consists of choosing the most appropriate services

and/or compositions having the best QoS, and respecting the user’s requirements.

Nevertheless, the fluctuation of the SOA environment in general, and Web services specifi-

cally entails QoS instability over time. Consequently, it disturbs the composition process, since

dealing with QoS as a static value is inappropriate.

In this chapter, we outline the basic concepts of Web service composition. We start by

introducing some background knowledge. We then explain the role of QoS in the composition

process. After that, we present the main classification of the service composition approaches

and related work of each category. Finally, we address the researches based on uncertain QoS.

29

State of the art

3.2 Service composition
Many definitions are introduced for Web service composition. In [Georgakopoulos and Pa-

pazoglou, 2009], the service composition is defined as a task of developing complex services by

composing other elementary or composite services. An elementary service provides an access

point to Internet-based applications that do not rely on other Web Services to fulfil external re-

quests. A composite service aggregates other elementary services and composite services that

collaborate to implement a set of operations.

Another definition by [Paik et al., 2017], mentions that the activity of aggregating Web

services to build a new service is known as Web Service Composition. Meanwhile, the most

simple definition is that the service composition refers to the process of combining several

services to provide a value-added service [Luo et al., 2010].

3.2.1 Service composition constituent

1. Activities: An activity indicates the work that has to be done. Activities can be atomic,

in which case they are called tasks, or non-atomic, in which case they are named sub-

processes [Paik et al., 2017].

2. Data-flow: It is the message flowing between the activities, for the composite Web ser-

vice. It represents the message exchanges (called the message flows) that join the services.

3. The control flow: It represents the execution order of atomic Web services in the compo-

sition.

4. Workflows: A workflow usually contains a set of activities and the sequence among

them [Tan and Zhou, 2013]. An activity can be either a manual activity that needs human

intervention or an automated workflow activity that will be executed by a software appli-

cation. As regards Web services, the workflow for Web service composition is usually

composed of tasks and transitions which denote the dependencies between tasks and are

associated with an enabling probability [Cardoso et al., 2004]. According to recent stud-

ies, the elemental structures for the workflow model include sequence, parallel, choice,

and loop.

5. Global constraints: It is one of the most important concepts for filtering alternatives. It

represents the requirements over some sequence of variables.

Remaci 30

State of the art

6. Customer: Organization or person that receives a product or service 1.

7. End-user: Person or persons who will ultimately be using the system for its intended

purpose 2.

8. Objective Function: The general objective function intended by the research community

for service selection is to maximize the service requester’s satisfaction of the composite

service execution [Moghaddam and Davis, 2014].

3.2.2 QoS roles in Web service selection

Quality of service is widely addressed in the past few years; starting from ensuring the

best quality for telecommunication and Computer networking, up to extending this concept to

cover several domains such as Web services, cloud services, and IoT systems. The international

quality standard ISO 8402 describes quality as the totality of features and characteristics of a

product or service that bear on its ability to satisfy stated or implied needs.

Actually, the QoS is a collection of characteristics (i.e,. criterion) describing the nonfunc-

tional attributes. Each one is represented as quantitative values and limited by range and bound-

aries. In the Web services’ context, the values of these QoS attributes can be either directly

collected from service providers (e.g., price), recorded from previous executions (e.g., response

time), or collected from user’s feedback (e.g., reputation) [Liu et al., 2004].

The set of QoS attributes can be divided into positive and negative QoS attributes.

The values of positive attributes need to be maximized (e.g., throughput, and availability),

whereas the values of negative attributes need to be minimized (e.g., price, and response time)

[Alrifai et al., 2010], [Alrifai and Risse, 2009]. According to [Zheng et al., 2010], there are

only two categories that incorporate the user-dependent and user-independent. In advance, the

user dependent categories consist of all QoS attributes that are different for each user, such as

throughput and response time. The user independent category includes the attributes that are

similar for all users. QoS properties in this category include popularity, price, etc. According

to [Wang et al., 2012], the QoS attributes can be classified as measurable or immeasurable QoS.

Measurable QoS attributes are quantifiable using a QoS metric, such as average execution time,

while immeasurable QoS attributes are naturally qualitative (e.g. flexibility, reputation, etc.).

In [KangChan et al., 2003], the classification is different, where the QoS attributes can

be viewed as an application and network attributes. The network categories include the QoS
1SOURCE: ISO/IEC 19770-5, 3.10
2SOURCE: ISO/IEC 19770-5, 3.13

Remaci 31

State of the art

attributes such as the Network delay, delay variation, packet loss. The latter attributes are those

that indicate the communication between a Web service and the outside world.

Nevertheless, the application QoS attributes are descriptive of the Web services application,

such as availability, reliability, cost, etc. On the other hand, the QoS can be seen as deterministic

or nondeterministic [Liu et al., 2004]. An attribute is considered deterministic if its value is

recognized before the service invocations (e.g., price, security). However, if the attribute is

unknown at service invocation time (e.g., response time or availability), then this attribute is

considered Nondeterministic.

Table 3.1 summarizes the different classifications of QoS properties.

Frequently, each user request includes two specifications, the functional description and

QoS requirements that represent the QoS constraints over the requested services.

On the other hand, many service providers can functionally respond to the user request, mean-

while, each one rushes to offer the best QoS or at least reach the QoS target specified by them.

Managing the provider’s concurrence during the composition process can be achieved by dif-

ferentiating between multiple candidate services based on the offered QoS, this step represents

the local selection. Likewise, to control the number of possible compositions, the similarity

between the QoS of the composition and QoS requirements requested by the user is considered,

which represents the global selection.

Actually, the composition process may include the local or the global selection; however, if it

includes both, it is considered as hybrid selection (see section 3.4 for more details). Leveraging

the QoS in the composition process is known as QoS-aware service composition.

3.2.2.1 QoS aggregation functions

Practically, moving from the QoS of the atomic services to the QoS of the composite services

is handled according to the workflow model and a QoS aggregation function. The latter is a

mechanism used to compute the overall QoS of the composition based on a set of functions.

It depends on the workflow structures. Broadly speaking, aggregating the QoS in sequential

workflows is different from parallel or loop workflows.

In this thesis, we leverage the aggregation function proposed in [Hwang et al., 2015] (see

Table 3.2).

3.2.2.2 Weights of QoS Attributes

Usually, the user has some preferences or importance concerning each QoS attribute during

the composition process. Nevertheless, many researchers claim that the user has an incomplete

Remaci 32

State of the art

Ta
bl

e
3.

1:
Q

oS
cl

as
si

fic
at

io
ns

Q
oS

Po
si

tiv
e

N
eg

at
iv

e
M

es
ur

ab
le

Im
m

ea
su

ra
bl

e
A

pp
lic

at
io

n
at

tr
ib

ut
es

N
et

w
or

k
at

tr
ib

ut
es

D
et

er
m

in
is

tic
N

on
de

te
rm

in
is

tic

R
es

po
ns

e
tim

e
X

X
X

X
C

os
t

X
X

X
X

N
et

w
or

k
de

la
y

X
X

X
X

T
hr

ou
th

pu
t

X
X

X
X

R
el

ia
bi

lit
y

X
X

X
R

ep
ut

at
io

n
X

X
X

X
Av

al
ab

ili
ty

X
X

X
X

Remaci 33

State of the art

Table 3.2: QoS aggregation functions [Hwang et al., 2015]

Function Attribute

Response time Reliability Fidelity

Sequential
∑n

j=1 q(sj)
∏n

j=1 q(sj) 1/n ∗
∑n

j=1 q(sj)

Loop
∑k

i=1 q(s)
∏n

j=1 q(sj) q(sj)

Parallel maxnj=1 q(sj)
∏n

j=1 q(sj) 1/n ∗
∑n

j=1 q(sj)

Conditional maxnj=1 q(sj) minnj=1 q(sj) minnj=1 q(sj)

idea about the QoS preferences. Therefore, many works proposed solutions for computing QoS

weights. Accordingly, we can distinct four main approaches depending on the leveraged QoS

weights:

• Subjective weights: These approaches use the weights enforced by the users. These

weights are extracted from their feedback data [Karim et al., 2011].

• Objective weights: In these approaches, some systematic methods are adopted to com-

pute the QoS weights for adjusting the user preferences, such as Entropy proposed in [Sun

et al., 2016].

• Combined subjective and objective weights: These approaches integrate both subjective

and objective weights, namely the work proposed in [Ouadah et al., 2018].

• Equitable QoS weights: In these methods (such as [Remaci et al., 2018]), equitable

weights are assigned for each QoS.

3.2.3 Composition categories

Web service composition can be categorized according to the involvement of the user in the

composition process into three categories: manual, automatic, and semi-automatic composi-

tions. It can be also categorized according to the flexibility and dynamicity of the composition

process, where we notice the static and dynamic composition.

• Static composition: A static composition means that the composition process is statically

formed, deployed, and fixed by building the process model including the atomic services

and the dependencies between them. In this case, there is no possibility of modification

after execution, even if the service functionalities or the composition requirements change.

• Dynamic Composition: Since the environment is dynamic during the runtime and the

composition process should adapt to this flexibility, the dynamic composition is per-

Remaci 34

State of the art

formed. According to [Rao and Su, 2004], the dynamic composition is achieved by cre-

ating the abstract model of tasks and selecting the atomic Web services automatically

without the interference of the service requestor in the composition process.

• Manual composition: The Web service composition called manual is the basic method

for creating a composition where the user is involved to select and build the interconnec-

tion (workflow) between Web services. In addition, the execution of the composition is

made by executing the services one by one. Consequently, the modification or extension of

the composition is complicated. Furthermore, this type of composition is usually handled

by the programmer through the use of business process languages, such as Web Ontol-

ogy Language for Web Services (OWL-S), IBM’s Web Services Flow Language (WSFL),

and Business Process Execution Language for Web Services (BPEL4WS), to specify the

composition schema. The presence of many tools (such as ZenFlow, Sedna, and Tavern),

and techniques does not prevent that creating a manual Web service composition is a hard

task, error-prone, and time-consuming.

• Semi-automatic composition: The semi-automatic composition is an enhanced and faster

method for composing service, compared to manual composition where both system and

users are involved in the process of finding, selecting, and composing automatically the

services. In this approach, the workflow is designed before starting the composition pro-

cess.

• Automatic composition: Automatic service composition is a growing area leveraged to

overcome the drawback of manual composition. The automatic Web service composition

aims to eliminate or reduce the user’s implication in the composition process that acceler-

ates the composition process. Automatic composition is the process where the workflow

is automatically implemented through algorithms based on a set of constraints and pref-

erences. In fact, the process model will be automatically generated and the composition

will be dynamic and would change during the run-time.

The automatic Web service composition is characterized by four groups of approaches:

• Workflow-based approaches.

• Model-based approaches.

• Mathematics-based approaches.

Remaci 35

State of the art

• Artificial Intelligence (AI) planning approaches.

In this section, we will focus on the Workflow-based approaches and AI planning approaches.

• Workflow-based approaches: One of the main approaches of automatic Web service

composition is workflow-based planning. In fact, the service components are consid-

ered as activities and the composition is considered as a workflow including the data

and the control flow. The workflows generation can be either static or dynamic. In the

static workflow-based approaches, the abstract process model is specified by the user in

advance. Meanwhile, the process model is handled automatically in dynamic workflow-

based approaches. The user is enquired to define the constraints and the preferences.

• AI planning approaches: These approaches are leveraged for fully automated Web ser-

vice composition. The service composition problem is considered as a planning problem.

Whence, the aim of the planner agent is generating a planning process (composition)

based on a set of possible actions to move from the starting state to the final state.

In the literature, we can find many AI planning approaches to solve service composition

problems, which are devised into three main categories of planning techniques: Classi-

cal planning also called state space-based planning, Neoclassical planning, and Control

Strategies.

3.3 Service composition life cycle
In this section, we present the Web service composition process. Generally, the service

composition process proceeds in four subsequent phases (see Figure 3.1).

1. Service request and planning: In this phase, the end-user describes the composite ser-

vice requested by designating the preferences and the constraints. Afterward, the request

will be decomposed into abstract sets of tasks using specific methods. Besides the decom-

position, the control flow is identified to determine the invoking order of the component

services.

2. Service Discovery: It is the process of finding Web services from registries according

to the user’s requests. The research of services is performed according to the available

description. Eventually, a set of services is discovered.

3. Service composition: This step is composed of two sub-phases. In fact, the previous

phase returns multiple similar services offering similar functionalities. Therefore, the first

Remaci 36

State of the art

sub-phase called the service selection is adopted to perform the local selection of the

optimal services according to the nonfunctional properties (QoS). The second sub-phase

is the generation of the possible composition according to the specific workflow, then the

selection of the optimal composition.

4. Execution: The last phase of the life cycle is the execution of the composition. The

service components are invoked under a defined order and executed to exchange the mes-

sages. This composition is controlled and monitored in the case of failure.

Service request and
planning Service Discovery

Service composition

 Execution

Service registry

Global search

Local search

(Service selection)

Figure 3.1: Web services composition life cycle.

3.4 Web service composition solutions
The augmentation of the functionally similar Web services represents a major challenge for

Web service composition. Broadly speaking, to offer a value-added application, we need to

generate mn combinations (n is the number of tasks and m is the number of services per task).

Then we select the optimal solutions (Top K compositions). In this case, local Web service

selection is suitable to reduce the number of services related to each task. The main key of

characterization between services is Quality of Service (e.g., the response time, availability,

and reputation).

Up to now, QoS-aware Web service composition is widely handled by several researchers,

in which it is considered as a Single-Objective or a Multi-Objective Optimization [Hadjila et al.,

2020].

Remaci 37

State of the art

• Single-Objective Optimization (SOO): SOO can be described as an optimization tech-

nique based on a single objective function where the latter is maximized or minimized.

The objective function includes a combination of variables with or without the constraints.

• Multi-Objective Optimization (MOO) : (also called multi-criteria optimization, multi-

performance, or vector optimization problem) is an optimization technique that involves

a set of constraints to be satisfied and multiple objectives to be either maximized or mini-

mized. Solving MOO problems is solving multiple sub-problems. The provided solutions

are known as Pareto-optimal solutions that provide a good trade-off between the objec-

tives.

In general, there are four fundamental notions in MOO: Pareto dominance, Pareto front,

Pareto optimum, skyline.

– Pareto dominance: Given the choice between two objects, with one object being

better concerning at least one attribute but at least equal with respect to all other

attributes, users will always prefer the first object over the second one (the first object

dominate the second one). In general, we can say that solution i dominates another

solution j; if the solution i is better than or equal to solution j in all objectives and is

strictly better than solution j in at least one objective. The definition of the following

concepts is based on Pareto dominance.

– Pareto optimum solution (nondominated set): It is the best solution having at

least one best objective with preserving the goodness of the other objectives. Broadly

speaking, this solution is not dominated by any other solution. A Pareto optimal

solution denotes that there exists no other solution that can increase the quality of a

given objective without decreasing the quality of at least one other objective [Talbi,

2009].

– Pareto front: It represents the set of all equivalent Pareto-optimal solutions where

another better solution does not exist.

– Skyline: The skyline includes all objects that are not dominated by any other object.

Web service with multiple QoS attributes is similar to multidimensional object. Hence,

we can formulate the skyline set denoted as WS_sky of a set of Web services S as

follows:

WS_sky = {si ∈ S|@sj ∈ S : sj ≺ si}. (3.1)

Remaci 38

State of the art

The Pareto dominance concept can be used to implement an intuitive retrieving since the

dominated objects can be retrieved from the data collection or the final data in the Skyline

set. For example, there is a user’s request to find products that are both trendy and cheap.

Since a trendy product is usually more expensive than another, it is hard to define an

"optimal" product satisfying both conditions. However, the expensive products and not

trendy will be eliminated from the desired list of products. The rest of them represents the

skyline set.

In fact, Pareto dominance is adopted to establish preferences among a given set of solu-

tions. Therefore, it is leveraged to select the most suitable Web service according to the

user’s request. Figure 3.2 illustrates the dominated set, nondominated set, and Pareto front

in the case of a request for Web services with high accuracy and availability (maximiza-

tion).

Availability

A
cc

ur
ac

y

Pareto front

Pareto-optimal set

(Non-dominated)

Dominated set

Figure 3.2: Example of Pareto dominance.

Different methods are proposed for solving the MOO problem; these methods are divided

into three categories:

1. Classical methods: Also called Aggregative Methods, it consists on transforming

MOO to SOO through aggregating the objectives into a scalar function.

Remaci 39

State of the art

Many techniques are proposed, such as :

– Weighted Aggregation: This technique is performed by leveraging a weight for

each objective, then transforming all objectives into one objective function to be

solved by a single-objective optimization method.

– ε-Constraint: The basic idea of this technique is finding Pareto optimal solu-

tions through the consideration of one objective and handling the other objectives

as constraints bounded by vector ε.

– The goal-programming method: It is an optimization program. It can be

thought of as an extension or generalization of linear programming to handle

multiple, normally conflicting objective measures. Each of these measures is

given a goal or target value to be achieved [Bhattacharya and Chatterjee, 2014].

2. Non-Pareto-Based Approaches: These methods address multiple objectives at the

same time [Prakash and Kumar, 2021], without leveraging the transformation into

SOO or integrating directly the concept of Pareto optimality. In general, these meth-

ods are not capable of reaching certain fragments of the Pareto Front. Various reso-

lution methods are proposed such as Vector Evaluated Genetic Algorithm (VEGA)

[Schaffer, 1985].

3. Pareto-Based Approaches: These methods are classified as a posteriori methods

[Branke et al., 2008]. In this category, all objectives are considered when handling

MOO problems. However, there are no preferences on any objective; this means

that finding a trade-off between objectives is primordial. This trade-off is handled

through the concept of dominance. The resolution techniques aim to find all pos-

sible nondominated solutions (such as Nondominated sorting genetic algorithm-II

(NSGA-II) [Deb et al., 2002]).

3.4.1 Composition strategies

We can mention three main composition strategies to preform the Web service composition

process:

• Global selection: The global selection aims to select near-optimal compositions that en-

sure meeting the user’s requirement, called global QoS constraints. Nevertheless, it has

an exponential complexity and the computational cost is NP-hard (i.e., Nondeterministic

Polynomial-time Hard).

Remaci 40

State of the art

• Local selection: A local selection strategy focuses on selecting the most relevant service

for each activity in the abstract process, that will be combined to form a composition.

The selected services have the best trade-off between the required QoS attributes. The

concerned approaches have linear complexity and low computational cost. However, there

is no guarantee that the global constraint is satisfied since it handles only the local con-

straints.

• Hybrid selection: It is a compromise of the two approaches, it has a reduced complexity

in comparison with the global approach, and it can also handle the global constraints.

3.4.2 Classification of Web service composition methods

According to [Hadjila, 2014], the QoS-aware Web service composition can be branched into

four main classes according to the leveraged approach.

1. Exact methods

The main characteristic of these methods is the optimality of the final solution.

Generally, the exact methods are leveraged for reasonable size problem instances. In the

case of large-scale problem instances, the computation time with regard to these methods

is increasingly high.

Many exact methods have been proposed and have demonstrably improved the ability to

obtain optimal solutions such as Integer Programming (IP), Dynamic Programming (DP),

Linear Programming (LP), or graph algorithm. As regards Exact methods, [Gabrel et al.,

2014] leverage a new ILP model for transactional QoS-aware Web service composition.

The service repository is modeled by a Service Dependency Graph (SDG). From this

graph, the 0-1 linear programming model is leveraged for finding the optimal Web service

composition.

In the same context, the work [Liu et al., 2012] presents a branch and bound-based ap-

proach called (BB4EPS). This approach is used to solve the QoS-aware service composi-

tion problem by considering user preferences and constraints. In literature [Alrifai et al.,

2012], the researchers introduce a centralized QoS-aware service composition approach

with considering a complex composition model (sequential, iteration, parallel, and condi-

tional). The proposed approach starts by leveraging MIP-solving techniques to find the op-

timal decomposition of global QoS constraints into local constraints. Then, the distributed

local selection aims to find the best Web services that satisfy these local constraints. The

Remaci 41

State of the art

proposed MIP model requires a few QoS data of available services to improve the over-

head of the composition process. In [Wang et al., 2017], the authors propose a new ap-

proach called SCORE-QoS based on Correlated QoS Requirements. In this approach, the

Service Selection problem is modeled as a Constraint Optimization Problem (COP) with

integrating two types of QoS requirements (with or without users’ optimization goals). To

find the optimal solution for COP the Integer Programming (IP) is employed.

In [Fan et al., 2018], the authors leverage an efficient mechanism to address the Web

service composition problem. The service dependency graph is generated to describe ser-

vices and the relations among them. In addition, the composition problem represents the

searching for a reachable path in the service dependency graph, such as the knapsack-

variant algorithm. Furthermore, an optimization strategy is proposed to reduce the com-

plexity of the knapsack-variant algorithm.

The authors in [Ghobaei-Arani and Souri, 2019], propose the linear programming-based

approach, called "LP-WSC", to handle the QoS-aware Web service composition in a ge-

ographically distributed cloud environment. Firstly, the Z-score normalization method

is applied to normalize the QoS-data since Z-score is adapted to handle the outlier data.

Afterward, the nearest center is selected according to the user’s geographical distance.

Finally, the linear programming technique is used to select the most appropriate composi-

tion that meets the user requirements delivered in the form of a Service Level Agreements

(SLAs). However, the increasing number of decision variables leads to exponentially in-

creasing complexity and exacerbated cost.

2. Heuristic methods The approaches that belong to this category are advised for a specific

optimization problem, but propose a near-optimal solution in lower computation time.

In [Baranwal and Vidyarthi, 2016], the authors consider multiple QoS criteria and intro-

duce QoS metrics to measure the cloud services. Furthermore, an improved ranked voting

method (IRVM) is leveraged with considering the importance of QoS metrics for a voting

framework to select the best provider with the highest score.

In [Wang et al., 2017], the authors propose a new approach called SCORE-QoS based

on Correlated QoS Requirements. In this approach, the Service Selection problem is

modeled as a Constraint Optimization Problem (COP) with integrating two types of QoS

requirements (with or without users’ optimization goals). To find the optimal solution for

Remaci 42

State of the art

COP the Integer Programming (IP) is employed.

The QoS-based Web service selection can be reported to the Multi-Criteria Decision Mak-

ing (MCDM) methods to find the most pertinent Web service from multiple and similar

Web services such that the QoS is optimized and users’ QoS requirements are satisfied.

In [Purohit and Kumar, 2018], an improved Preference Ranking Organization Method for

Enrichment Evaluation (PROMETHEE) [Mareschal et al., 1984] is presented to address

the problem of Web Services Selection (WSS). Based on the classification techniques, the

number of equivalent services is reduced; additionally, the hybrid QoS weight evaluation

scheme depending on a Maximizing Deviation Method (MDM) and PROMETHEE-PLUS

are leveraged to select the Top K Web services with respecting end-user QoS require-

ments.

The work in [Ouadah et al., 2018], introduces the Skyline-Entropy-Fuzzy-Ahp-Promethee

(SEFAP) approach for skyline services selection. This approach is based on the Block

Nested Loops (BNL) algorithm to generate the skyline Web service. Furthermore, the

Entropy and Fuzzy AHP (Analytic Hierarchy Process) are used to extract the objective

and subjective weights. Finally, the PROMETHEE method is proposed to rank the skyline

Web services.

The work presented in [Al-Faifi et al., 2019] employs a hybrid MCDM method to select

the best cloud service provider (CSP) from smart data. The hybrid method integrates

the clustering by adopting the k-means algorithm that regroups services providers into

k clusters. Then, DEMATEL is adopted to obtain one proxy from each cluster and to

determine interdependency and relations between criteria. Finally, the Analytical Net-

work Process (ANP) is used to rank the clusters and provide the pertinent CSP. The hy-

brid multi-criteria decision-making model is proposed in [Jatoth et al., 2019] for the QoS

based cloud service selection. The hybrid model called (EGTOPSIS) consists of both

AHP and extended versions of Grey TOPSIS to compute the weights of criteria; the latter

is then used for ranking the services. The research in [Serrai et al., 2018], exploits the

AHP method to generate normalized weights of the QoS criteria derived from the user’s

request. Then, they introduce a novel approach called OMRI (Optimized method of Ref-

erence idea). OMRI is an improvement of the data normalization technique called RIM

(Reference Ideal Method), since RIM does not guarantee a good ranking due to the data

Remaci 43

State of the art

normalization technique used in the process. Additionally, the OMRI method is combined

with different appropriate MCDM ranking methods (weighted Product Method (WPM),

Simple Additive Weighting (SAW), VIKOR, and Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS)) for ranking Web services.

In [Youssef, 2020], the Best Worst Method (BWM) is leveraged to acquire the weights

of criteria and relative scores for alternatives. These weights and scores are used in the

TOPSIS method to rank Cloud services.

In a more recent work [Tiwari and Kumar, 2021], the authors adopt the Gaussian TOP-

SIS (G-TOPSIS) for a robust reversal ranking. This method is leveraged to address the

MCDM-based cloud service selection based on QoS. To evaluate the proposed approach,

the authors use the CloudHarmony dataset as a benchmark service provider.

3. Meta-heuristic methods: The term of "meta-heuristic" was firstly proposed in [Glover,

1986]. Where, meta means "beyond" or "higher level" and heuristic is the Greek word

that means "heuriskein" or "to search". Generally, these approaches perform better than

simple heuristics. They are leveraged to solve a large part of different NP-hard problems

since the latter require a high computation time. In fact, most of meta-heuristic approaches

represent an iterative and random process. Moreover, many of them are inspired from the

natural systems. The main characteristic of the meta-heuristics is that they are not pro-

posed for a particular problem, but they are approximative and search for a good enough

solution.

Meta-heuristic algorithms mimic the exploitation and exploration behaviors (also called

intensification and diversification). The exploration means exploring the search space

by generating diverse solutions, while exploitation means exploiting the local area and

searching for good solutions in this region.

The meta-heuristics can be classified into two classes (see Figure 3.3); population-based

methods and point-to-point methods. The population-based methods (such as genetic

algorithms and particle swarm optimization) are characterized by invoking multiple par-

ticles. However, point-to-point methods use a single agent or solution and improve this

solution using local search. For instance, the simulated annealing and Tabu search are

point-to-point methods.

The work by [Zhao et al., 2012], proposes an improved ant colony optimization algorithm

Remaci 44

State of the art

Particle Swarm intelligence
Ant colony optimization
Grey wolf optimization

Bee algorithm

Meta-heuristic

Population-Based methods

Simulated anealing
Tabu search

Variable neighberhood
search

Genetic algorithms
Harmony search

Clonal selection algorithm

Evolutionary algoriths Swarm intelligencePoint-to-point methods

Point-to-point methods

Figure 3.3: Classification of meta-heuristic methods.

to solve the multi-dimension multi-objective composition optimization. The implemented

ACO algorithm introduces certain changes in the pheromone and transition probability.

The authors in [Merzoug et al., 2014] suggest an approach based on the harmony search.

This approach addresses the mono-objective service selection to retrieve the near-optimal

compositions while considering the user’s constraints. Similarly, in [Bekkouche et al.,

2017], the authors propose a new framework for QoS-aware automated Web service com-

position. They employ a planning graph that contains all possible compositions that sat-

isfy the QoS constraints. Then, the compositions are ranked using the harmony search

meta-heuristic.

Genetic algorithms and their extensions are widely used to tackle the QoS-aware Web

service selection problem. To overcome the limitation of the basic genetic algorithm, the

work in [Li et al., 2018] presents a cooperative evolutionary genetic algorithm (CGA)

based on a real coding method. Furthermore, the entropy method is used to determine the

weights of each QoS attribute. [Ranjan and Sahoo, 2020] is another work that introduces

an approach based on the genetic algorithm for selecting the optimum composition in a

fog environment. This approach considers both the user’s preference and QoS attributes

mentioned in the service level agreement (SLA). The work in [Thangaraj and Balasubra-

Remaci 45

State of the art

manie, 2021], introduces a hybrid meta-heuristic approach for the QoS-aware selection of

services. This approach is based on both genetic algorithm and Tabu search for reducing

the space search while respecting the QoS constraints.

In [Li et al., 2020], the authors propose a new approach to address the QoS-aware Web

service composition problem. First, a novel method called Fuzzy Optimal Continuity

Construction (FOCC) is proposed to represent fuzzy continuous neighbourhood relations

between the services, which represents a pre-processing, to make the meta-heuristic algo-

rithms effective in a discrete space. Then, the Chaos Harris Hawk Optimization (CHHO)

algorithm is proposed to retrieve the best composition using Logistic Chaotic Single-

Dimensional Perturbation (LCSDP) strategy and a meta-heuristic called Harris Hawk Op-

timization (HHO). The authors in [Dahan et al., 2019] improve the performance of the

Artificial Bee Colony (ABC) algorithm by adopting the neighbouring node selection and

swapping strategies.

In order to take into account interval-based QoS, the original crowding distance of NSGA-

II is improved. In [Dahan, 2021], an agent-based ant colony optimization (MAACS)

method is leveraged. They propose searching decomposition and real-time population

re-disruption techniques to reduce the complexity of the cloud service composition.

The work by [Hosseinzadeh et al., 2020], handles a service composition model in cloud-

edge computing through a hybrid method that combines the Artificial Neural Network

(ANN) and the meta-heuristic Particle Swarm Optimization (Particle Swarm Optimization

(PSO)) algorithm. Furthermore, to support the correctness and to improve the proposed

ANN-PSO, a formal verification method is used. This latter one is based on a labelled

transition system to check some critical Linear Temporal Logics (LTL) formulas.

For the cloud service composition, the authors in [Naseri and Navimipour, 2019] present

a hybrid approach based on an agent-based method and PSO. The agent-based method is

used to compose the cloud services by identifying the QoS parameters, and the PSO algo-

rithm is employed to select the best-combined cloud services based on a fitness function.

In [Fekih et al., 2016], the authors use the skyline method to reduce the number of services

candidates. Then, they propose a Valued Constraint Satisfaction Optimization approach

(VCSOP) based on the PSO meta-heuristic, to model the Web service composition prob-

lem while considering the user’s needs and context changes.

Remaci 46

State of the art

In [Dahan et al., 2021], the authors introduce an improved meta-heuristic, called En-

hanced Flying Ant Colony Optimization (EFACO). It is proposed to restrict the flying

process and a novel neighbouring selection process to overcome the execution time prob-

lem, meanwhile it reduces the quality of selection. Therefore, they leveraged a multi-

pheromone method to increase the exploration by attributing a pheromone value for each

QoS attribute. The work in [Barkat et al., 2021] tackles the Web service composition

in the multi-cloud environment. Therefore, the authors leveraged an Intelligent Water

Drops (IWD) algorithm based on the quality of service (QoS).

4. Pareto dominance-based methods They are leveraged to handle the increasing number

of services over the Web. Moreover, they deal with the involvement of the user to intro-

duce his preferences. Specifically, These approaches are proposed to solve multi-objective

problems by seeking a set of optimal solutions.

In [Alrifai et al., 2010], the authors propose an approach for the service selection and

composition based on the dominance relationship. First, the search space is reduced by

eliminating the nonskyline services of each abstract class. Second, the K-means algorithm

is leveraged for hierarchical clustering to downsize the number of skylines. Finally, the

composition space is explored using the clusters heads combination.

The work by [Halfaoui et al., 2015], proposes a heuristic based on a new concept for

local selection, called the Averaged-Fuzzy-Dominated-score (denoted AFDetS()). This

approach is adopted to rank services based on QoS. In [Yu and Bouguettaya, 2013], the

authors propose three algorithms for searching skyline compositions (denoted C-SKY):

One Pass Algorithm (OPA), Dual Progressive algorithm (DPN), and Bottom-Up Algo-

rithm (BUA). Based on the OPA algorithm, all possible compositions are generated by

combining the skyline services (C-Skies). DPN algorithm sorts the skyline composite ser-

vices via a fitness function where the QoS criteria are aggregated according to the sum.

However, this approach assumes that the QoS of different services are independent of

each other. In [Benouaret et al., 2011], the authors propose an approach based on the

fuzzy dominance relationship through a new concept, called α-dominance. This concept

is used for pruning the α-Pareto-dominated services and selecting the α-Pareto-dominant

services. besides allowing users to control the size of the skylines through the modification

of α degree, the selected Web services have a good compromise between QoS attributes.

However, this approach does not consider the service composition.

Remaci 47

State of the art

In [Wang et al., 2016], the KD-tree (K-Dimensional tree) is adopted to find skyline Web

services from clusters. In fact, each cluster regroups the services having the same func-

tionalities. Since, the number of services in the clusters is large, finding the skyline ser-

vices is handled by employing the KDS algorithm. Furthermore, lottery scheduling is

leveraged to schedule and select services. The key idea is to distribute lottery tickets to

services; services with higher quality will get more tickets and have more chances to be

executed.

In [Serrai et al., 2016], the authors propose a hybrid Web service selection approach.

First, the skyline method presented in [Alrifai et al., 2010] is employed to eliminate the

dominated services and helps to reduce the search space. Secondly, Best-Worst Method

(BWM) is adopted to assign weight to QoS criteria, since BWM is less complex, more

consistent, and reliable than AHP. Finally, the VIKOR method (Multi-criteria Optimiza-

tion and Compromise Solution) is leveraged to rank and sort the skyline services based on

their pertinence relatively to the QoS weights.

In [Permadi and Santoso, 2018], skyline techniques are employed to address the service

composition. This method consists of computing dynamic skylines using Sort and Limit

Skyline algorithm (SALSA) to find the optimal solution that meets the users’ preferences

with respect to the budget constraints. This approach is proposed to overcome large search

space problems. Nevertheless, the computational time still increases when the number of

compositions is large.

In [Liang et al., 2019], the authors propose an improved skyline algorithm using the

Bitmap method to handle the QoS-based Web service selection. This algorithm can reduce

the dominance checks in regions and the candidate service set besides saving memory

space.

3.4.3 Dynamic QoS-aware service composition

Web service composition is a challenging task. The concurrence between the service

providers is the major obstacle. Furthermore, the time available for the composition pro-

cess is limited, and the complexity of the composition problem is considered as NP-hard.

This means that complexity and timeliness are also challenging. Therefore, the service

selection and composition approach must be efficient. On the other hand, finding the ser-

vice composition that respects all users’ QoS requirements is a difficult task. Moreover,

the dynamic nature of the Web service environment has an impact on the QoS of the ser-

Remaci 48

State of the art

vice and consequently on the QoS of the composition. Broadly speaking, the QoS vary

over time and this represents another challenge to deal with in the composition process.

In the following, we focus on service selection and/or composition works that handle the

uncertain QoS.

The work proposed in [Pei et al., 2007], extends the traditional notion of skylines [Börzsönyi

et al., 2001] to probabilistic skylines to retrieve the most dominant uncertain object ser-

vices having a degree of at least p. To compute the p-skyline, two algorithms are proposed

based on three techniques: bounding, pruning, and refining. However, the noisy services

have a high impact on the P-skyline [Pei et al., 2007]. Therefore, the p-dominant skyline

concept is introduced in [Yu and Bouguettaya, 2010] to overcome the mentioned limi-

tation. To compute the p-dominant skyline, the authors propose a dual pruning process

through two stages algorithm that uses an extension of the R-tree [Guttman, 1984] called

p-R-tree. This approach does not handle the composition process.

[Benouaret et al., 2012] is another research that introduces an improved skyline-based ap-

proach. It addresses the uncertain QoS through a probability distribution representation to

select the most relevant candidate services. In this approach, the extensions pos-dominates

and the nec-dominates skyline was presented to replace the traditional P-skyline. Further-

more, Optimizing the dominance computation is leveraged to overcome the high compu-

tational cost. The works presented in [Wen et al., 2014] also address the QoS uncertainty

for the service selection using probabilistic dominance. In this context, the concept of

dominance ability is introduced to compute the Top K dominant compositions. The pro-

posed approach leverage two algorithms called Bounding Batch Computing (BBC) and

Top-k Services Retrieving (TSR) to select top k dominating services. Furthermore, half

independent selection of component services approach (HIS) is proposed to improve the

accuracy of obtained top-k composite services. It is important to note that this work does

not consider global constraints.

The work in [Seghir et al., 2019] proposes an Interval-based Multi-Objective Artificial

Bee Colony (IM_ABC) approach to handle the QoS uncertainty in the service composi-

tion process. In fact, the composition problem is considered as an interval constrained

multi-objective optimization, where a new uncertain constrained dominance relation is

introduced to deal with the interval-valued objective functions and rank the candidate ser-

Remaci 49

State of the art

vices. Furthermore, controlling the diversity of the nondominated solutions is tackled by

improving the original crowding distance of NSGA-II to a new interval distance definition.

The service composition in a multi-Cloud environment is addressed in [Haytamy and

Omara, 2020] by a modified PSO with considering the uncertainty of QoS attributes. The

work advanced in [Xu et al., 2018], integrated both fuzzy set theory (FST) and Genetic

Algorithm (GA) to solve the uncertain QoS service composition. In fact, the proposed

approach is called a Triangular Fuzzy Genetic (TGA) algorithm where it is used in the

specification specification of the uncertain information of QoS properties with triangular

fuzzy numbers. Additionally, it presents a feasible method for QoS normalization and

propose a practicable method of defuzzification. The fitness function based on the Pareto

dominance is employed in TGA for evaluating the criterion and selecting the solution

that best meets the user’s preferences. In [Mostafa and Zhang, 2015], modelling multi

objective service compositions in a dynamic environment is handled with the Partially

Observable Markov Decision Process (POMDP). To solve this issue, the Multi-Objective

Reinforcement Learning (MORL) methods are employed through the algorithm called

Baseline Multi-Objective Reinforcement Learning for Service Composition. In addition,

two approaches were proposed to address the multiple policies multi-objective service

composition. The first approach is based on user preferences, and the second approach

is based on a convex-hull operator to find the Pareto optimal solutions. The experimental

results have shown good effectiveness for solving the service composition in a dynamic

environment. However, it suffers from high cost and complexity.

For solving QoS-aware service composition, the work in [Elsayed et al., 2017] proposes

a hybrid approach that combines the GA and the Q-learning. Q-Learning algorithm is

used to generate the initial population instead of the random generation. Furthermore, the

genetic operators are leveraged for the population to find the optimal composition in terms

of QoS.

The authors in [Tripathy et al., 2015], propose a representation of Web-Service Based Sys-

tems (SBS) through the service cluster graph. Additionally, a dynamic time-aware service

selection is efficiently performed by employing Bellman ford’s single-source shortest path

graph algorithm. Indeed, dealing with dynamic QoS requirements is handled by employ-

ing a run-time adaptation scheme based on a service reselection approach.

[Hadjila et al., 2020] is a recent work that handles the QoS uncertainty in Web service

Remaci 50

State of the art

composition. The proposed approach adopts multiple fuzzy heuristics and global opti-

mization. The optimization leverages a set of rules to prune the search space such as fuzzy

dominance-based ranking, probabilistic skyline-based ranking, P-dominant skyline-based

ranking, and average skyline-based ranking. In addition, for providing the Top K compo-

sitions, the authors leverage the constraint programming-based search.

A pioneer work is proposed in [Hwang et al., 2015], to handle the service selection with

uncertain QoS. This work addresses the modelling of fluctuating QoS for both atomic

and composite services. To identify the best services, the approach starts with global

constraints decomposition into local constraints where the computed local thresholds are

the fraction of the global constraint with respect to the average of QoS attributes of each

class. Afterward, the composition is performed and evaluated according to a local objec-

tive function. The resulted solution is improved based on the simulated annealing method

by replacing some selected services with others whenever the global constraints are vio-

lated.

In [Kim et al., 2016], the authors address an important problem in service selection where

they claim that the outliers affect the service selection quality. In this context, the pro-

posed framework deals with outliers and proposes global constraints’ decomposition into

local constraints. The local constraints are further used to eliminate the candidate ser-

vices that violate these constraints. Furthermore, service selection is performed through

a ranking score that maximizes the probability of satisfying a global QoS constraint of a

composite service.

Table 3.3 summarizes the main approaches for service selection and/ or composition (i.e., the

service composition may include the service selection). We specify if the researchers emphasize

the static QoS or uncertain QoS. Furthermore, we indicate if the researchers concern Web

services or cloud services.

Table 3.3: State of the art classification.

Approaches SS CS QoS Static

QoS

Uncertain

QoS

Web

service

Cloud

service

[Hwang et al., 2015] X Response Time,

Reliability, Fidelity
X X

[Wen et al., 2014] X X X

Remaci 51

State of the art

[Hadjila et al.,

2020]
X X X

[Gabrel et al., 2014] X Response Time,

Throughput
X X

[Liu et al., 2012] X
Execution duration,

Reputation,

Reliability,

Cost,Availability

X X

[Alrifai et al., 2012] X
Response Time,

Throughput,

Availability, Cost

X X

[Fan et al., 2018] X Cost X X

[Ghobaei-Arani and

Souri, 2019]
X

Response Time,

Cost, Availability,

Reliability

X X

[Halfaoui et al.,

2015]
X X X

[Baranwal and Vid-

yarthi, 2016]
X Cloud QoS X X

[Wang et al., 2017] X Cost, Throughput X X

[Purohit and Kumar,

2018]
X

Response Time,

Availability,Cost,

Throughput,

Reliability,

Successability,

Compliance,

Best practice, Latency

X X

[Ouadah et al.,

2018]
X Cost,

Availability, Reliability
X X

Remaci 52

State of the art

[Serrai et al., 2018] X
Response Time,

Reputation, Cost,

Availability,

Reliability

X X

[Youssef, 2020] X

Scalability, Cost,

Sustainability,

Usability,

Interoperability,

Maintainability,

Response Time,

Reliability

X X

[Tiwari and Kumar,

2021]
X

CPU performance,

Disk performance,

Disk I/O consistency,

Memory performance

Cost

X X

[Zhao et al., 2012] X Response Time,

Cost, Reliability
X X

[Merzoug et al.,

2014]
X

Cost, Response Time,

Fiability,

Availability,

Reputation

X X

[Bekkouche et al.,

2017]
X

Response Time, Cost,

Availability, Fiability,

Reputation

X X

[Li et al., 2018] X
Response Time,

Cost, Availability,

Reputation

X X

Remaci 53

State of the art

[Thangaraj and Bal-

asubramanie, 2021]
X

Availability,

Response Time,

Throughput,

Interoperability

X X

[Li et al., 2020] X
Response Time,

Availability,

Throughput, Latency

X X

[Ranjan and Sahoo,

2020]
X

Availability,

Reliability,

Cost, Delay

X X

[Dahan et al., 2019] X
Cost,

Response Time,

Throughput,

Reliability

X X

[Dahan, 2021] X X X

[Hosseinzadeh

et al., 2020]
X

Availability,

Response Time,

Cost

X X

[Naseri and Nav-

imipour, 2019]
X

Response Time, Cost,

Reliability, Makespan,

Resource count

X X

[Dahan et al., 2021] X
Cost,

Response Time,

Throughput, Reliability

X X

[Yu and Bouguet-

taya, 2013]
X

Response Time,

Cost,

Availability, Reliability

X X

[Benouaret et al.,

2011]
X X X

Remaci 54

State of the art

[Wang et al., 2016] X
Reliability,

Response Time,

Cost

X X

[Serrai et al., 2016] X
Response Time,

Throughput,

Reliability,

Best Practice

X X

[Permadi and San-

toso, 2018]
X Delay,

Bandwidth capacity
X X

[Al-Faifi et al.,

2019]
X

Response Time,

Cost,

Reliability

X X

[Liang et al., 2019] X

Response time,

Availability, Throughput,

Success rate,

Reliability, Compliance,

Best practices, Latency,

Documentation

X X

[Jatoth et al., 2019] X

Cost,

Processing performance,

Operational consistency,

Disc storage performance,

I/O Memory performance

X X

[Benouaret et al.,

2012]
X X X

[Seghir et al., 2019] X
Response Time,

Cost, Throughput,

Reliability

X X

[Haytamy and

Omara, 2020]
X Response Time,

Cost, Throughput
X X

Remaci 55

State of the art

[Xu et al., 2018] X

Response Time,

Reputation,

Throughput, Latency,

Reliability,

Success rate

X X

[Mostafa and

Zhang, 2015]
X Response Time,

Cost, Availability
X X

[Tripathy et al.,

2015]
X Response Time,

Cost, Safety, Reliability
X X

[Kim et al., 2016] X Response Time,

Availability, Reliability
X X

3.5 Conclusion
In this chapter, we have introduced some basic concepts of web service composition and

related works in this field according to the four categories. Subsequently, we have outlined the

uncertain QoS-aware service composition, and we have reviewed some related works regarded

to this context. In the next chapter, we will present our proposed approaches to deal with the

service composition problem.

Remaci 56

Part II

Contributions

57

Chapter 4

Uncertain QoS-based Web service

composition approaches

4.1 Introduction
The service composition problem is known as a NP-hard problem [Moghaddam and Davis,

2014]. Therefore, it attracted an increasing interest by many researchers in both academy and

industry.

In fact, we notice that a few researchers address all the WSC aspects. More specifically, we

mention the consideration of the complex user requirements, the emergence of similar services

over the Web, and the presence of uncertain QoS. Actually, the increasing number of concurrent

service providers entails an exponential increase of the possible compositions.

Broadly speaking, to answer a user’s request we need to examine mn combinations (n is the

number of required tasks, and m is the number of concurrent services per task). Even though

the Quality of Service is the main characteristic used to distinguish between the concurrent Web

services as well as to design the best composition, it represents another challenge for solving the

service composition problem. The challenge lies in the technique that deals with the uncertainty

of QoS, especially dealing with the different realizations of each QoS attribute.

In order to handle all mentioned challenges, we propose effective approaches for uncertain

QoS-based Web service composition.

In this chapter, we present a problem formulation; then we suggest a scenario that shows

the motivation behind the proposed solutions. Afterwards, we propose a global architecture of

the Web Service Composition framework. We then present the details of our contributions to

58

Uncertain QoS-based Web service composition approaches

solve WSC problem, while describing the main three algorithms. Finally, we summarize the

contributions in the conclusion.

4.2 Problem formulation
To simplify the problem of the service composition with uncertain QoS, we leverage the

notation shown in Table 4.1. We consider that the user requests some specific functionalities

(e.g., finding a product or making a payment); each functionality represents a task. The entire

workflow has n tasks CL1, CL2,...,CLn, each task is performed by a service si. There exist

m concurrent services that achieve the same task. All services are characterized by r QoS

attributes. Each QoS criterion is represented by a sample of l realizations.

Table 4.1: Notations [Remaci et al., 2018]

Notations Meaning

n The number of abstract classes.

m The number of services per classes.

r The number of QoS attributes.

l The number of service instances (i.e., the number of QoS realizations
or the sample size).

CL1,CL2, ...,CLn The set of abstract classes, each class contains atomic Web services
with the same functionality and different QoS. The size of each CLj

is m.

Si Stands for the id of the selected service related to CLj.

QoSpiju The value of the pth QoS attribute related to the uth instance of the
service Si ∈ Clj.

b1,b2,...,br The user’s global constraints (i.e., the bounds that must be fulfilled
by the QoS of the composition).

w1, ...,wr The weight of the QoS criteria.

K The size of the returned list (of compositions).

4.3 Motivation scenario
The challenge of providing a more sophisticated application is how to retrieve the most

relevant services from a set of ssimilar ones, and based on these services how to select the

optimal composition that satisfies both functional and nonfunctional requirements, especially

in the uncertain environment. In order to clarify the above-mentioned challenges, we present

Remaci 59

Uncertain QoS-based Web service composition approaches

the example specified in [Zeyneb Yasmina et al., 2022].

Let us consider an e-health application used by a health centre. This application includes

a module for authentication and access control, an annotation of medical images module, a

disease diagnosis module, a module for obtaining multimodal medical images, a medical image

sharing module, and a medical scheduling module (see Figure 4.1).

Firstly, the doctor can access the cloud storage service using authentication and access con-

trol services. Then, using the annotation service, the doctor can localize the region of interest

and label the organs through the use of bounding boxes with different colors. If the lesion is

clear, the doctor mentions the anomaly or the disease related to the images (e.g., inflammation,

fibrillation, etc.). However, if the lesion is ambiguous or noisy, the doctor asks for images with

different modalities such as ultrasound images, CT scan images, MRI images.

In parallel, the doctor shares the medical image with the physicians via the medical image shar-

ing service. Finally, an appointment is fixed for the patient through the medical scheduling

service [Zeyneb Yasmina et al., 2022].

Time is essential in the e-health application, since it usually is a life or death case. Therefore,

this health centre requires that the total response time should not exceed 1.3 ms.

Let us assume that for each service there are two concurrent providers that offer similar

functionalities. Additionally, due to the fluctuating environment the QoS of each service change

over time. The QoS realizations of each service are summarized Table 4.2.

In this case, we have to handle four aspects:

• We must to represent the user’s requirements (such as the global constraints, the number

of tasks, the control flow).

• We must to find the best metric for QoS aggregation since the QoS value is nondetermin-

istic.

• We must to reduce the space search for the concurrent service and the possible composi-

tions.

• In order to retrieve the most stable services, and select the best composition, we must to

manage the nondeterministic QoS.

The contributions of this thesis are summarized as follows:

1. We select the Top K Web services of each abstract class of the user’s workflows by lever-

aging a given set of heuristics.

Remaci 60

Uncertain QoS-based Web service composition approaches

2. We use the global search approaches to eliminate the compositions that do not fulfill the

global constraints, then we find the Top K compositions.

3. We conduct a series of experiments to evaluate our framework on real and synthetic

datasets. Moreover, we consider different workflows.

Authentication and access control
for

cloud storage service

Annotation of medical images

Medical image sharing Obtaining
multimodal medical images

Medical care scheduling service

Disease Diagnosis

Lesion is
clear?

Figure 4.1: e-health workflow.

4.4 Composition framework
Figure 4.2, illustrates the framework adopted for the Web service composition process. This

framework assists users to find the best service composition from a set of concurrent services,

in order to achieve their requirements. It consists of three main modules:

1. Class management module: To deal with the increasing number of services exposed

over the Web we organize them into specific groups called abstract classes. Therefore,

our framework includes the class management module that ensures the assignment of

each service to an abstract class and guarantees recurrent updates to add new services and

eliminate the unavailable components.

Remaci 61

Uncertain QoS-based Web service composition approaches

Ta
bl

e
4.

2:
N

or
m

al
iz

ed
Q

oS
re

al
iz

at
io

n
(R

es
po

ns
e

tim
e)

.

A
ut

he
nt

ic
at

io
n

an
d

ac
ce

ss
co

nt
ro

l
A

nn
ot

at
io

n
of

m
ed

ic
al

im
ag

e
M

ed
ic

al
di

ag
no

si
s

O
bt

ai
ni

ng
m

ul
tim

od
al

m
ed

ic
al

im
ag

es
M

ed
ic

al
im

ag
e

sh
ar

in
g

M
ed

ic
al

sc
he

du
lin

g
S
1
1

S
1
2

S
2
1

S
2
2

S
3
1

S
3
2

S
4
1

S
4
2

S
5
1

S
5
2

S
6
1

S
6
2

t 1
0.

2
0.

2
0.

1
0.

8
0.

5
0.

2
0.

2
0.

4
0.

3
0.

6
0.

1
0.

3
t 2

0.
5

0.
8

0.
1

0.
9

0.
6

0.
4

0.
7

0.
9

0.
6

0.
1

0.
4

0.
5

Remaci 62

Uncertain QoS-based Web service composition approaches

2. QoS management and integration module: The QoS is usually represented as a set of

quantitative values since the QoS is nondeterministic. These values are usually collected

from the Web service providers and social networks, and this module is stored in some

data warehouse.

3. Selection module: In fact, this module is composed of two main sub-modules: atomic

service selection and composition selection modules. The first one is leveraged to select

the best services from each abstract class based on the uncertain QoS, where the second

module allows for building a composition from the returned set of components from the

previous sub-module. Afterward, we retrieve the optimal composition that better meets

the user’s requirements.

Class	management
module

QoS
management/integration

module

Selection
module

Service	provider1

Service	provider	n

Third	party

User's	need:
-Abstract	classes.
-Control	flow.
-Global
constraints.

Top	K
composition

Dynamic	QoS
storage

Social	network

Figure 4.2: Service composition framework.

4.5 Probabilistic dominance approach
In this section, we introduce the first proposed approach included in the selection module.

In fact, this module incorporates two algorithms: dominance service ranking algorithm which

is based on probabilistic dominance, and the backtracking search algorithms that address the

WSC problem.

Remaci 63

Uncertain QoS-based Web service composition approaches

4.5.1 Probabilistic dominance relationship

This concept is an extension of deterministic dominance. Meanwhile, it is leveraged in the

presence of uncertainty. Selecting one or Top-K compositions is a time-consuming process,

since it requires exploring and evaluating mn compositions. Therefore, we proposed to achieve

a pre-process to reduce the service search space. Thus, we sort and rank services of each

abstract class, by comparing the services with respect to the probabilistic dominance. In fact,

this relation measures the average fraction of the instances of Si that are weakly dominated by

an instance of Si′ . The weak dominance relationship is defined between two QoS realizations

vectors.

Let X and Y be two vectors of Rr:

X >> Y iff for each dimension q ∈ 1, .., r,X(q) ≥ Y (q).

prob− dom(S
′

i , Si) =
1

l
∗
∑

l
u
′
=1
individual − prob− dom(u

′
, i
′
, i) (4.1)

Where

individual − prob− dom(u
′
, i
′
, i) =

(|(QoS1iju, .., QoSriju)/(QoS1i′ju′ , .., QoSri′ju′) >> (QoS1iju, .., QoSriju)|l), u ∈ 1, .., l.

(4.2)

Where the >> denotes "better than".

4.5.2 Dominance Service Ranking algorithm

Dominance Service Ranking (DSR) algorithm aims to rank the services of the same ab-

stract class depending on the computed score. This score is incremented during each pairwise

comparison through the probabilistic dominance test.

The pseudo-code of Algorithm 1 is given below:

This Algorithm requires only the abstract classes that contain the services as an input.

1. In lines 1-3, we initialize the ranked Class RankedClj (with an empty structure).

2. In lines 5-7, we initialize the ranking score of each service of the current class j.

3. In lines 8 up to 11, we perform a pairwise comparison between each service (Si,Si′) of

the same class j, through the use of the probabilistic dominance formula 4.1.

Remaci 64

Uncertain QoS-based Web service composition approaches

Algorithm 1 DominanceServiceRanking
Input: Cl1, ..., Cln.
Output: RankedCl1, ..., RankedCln
Begin

1: for j=1 to n do
2: RankedClj =<>;
3: end for
4: for j=1 to n do begin
5: for y=1 to m do
6: score(y) = 0;
7: end for
8: for i = 1 to m do begin
9: for i′ = 1 to m do begin

10: if (i! = i
′
) then begin

11: if (prob-dom(Si, S
′
i) ≥ prob-dom(S

′
i ,Si)) then begin

12: score(i) = score(i) + 1;
13: end for
14: end for
15: RankedClj=decreasing-sort(Clj)
16: end for
17: return < RankedCl1, ..., RankedCln >
18: end

4. In line 12, we update the score of Si if probabilistic dominance between the services

(Si,Si′) is better than the probabilistic dominance between (Si′ ,Si).

5. We sort the elements of RankedClj according to the scores updated in line 15.

6. We return the ranked classes in line 17.

By employing algorithm 1 for ranking the services of the class Obtaining multimodal medical

images service (see Table 4.2), we can notice than s41 is better ranked that s42 since :

prob− dom (s41, s42) = 3
4

(since 0.2 >> 0.4, 0.2 >> 0.4 and 0.7 >> 0.9).

prob− dom (s42, s41) = 1
4

since 0.4 >> 0.7).

4.5.3 Backtracking search algorithm

This algorithm is one of the main algorithms for solving constraint satisfaction problems.

This algorithm browses all alternatives in the search space through two recursive phases: mov-

ing forward and going back (termed back-track).

In order to handle the service composition problem, we propose this algorithm to perform

an exhaustive search (i.e., for generating and browsing the possible compositions). At the end

of the process, the optimal composition or Top K compositions are selected.

Remaci 65

Uncertain QoS-based Web service composition approaches

Choosing a composition from a set of candidate compositions is based on the objective

function (utility function), used for comparing the compositions. This function attempts to

minimize the negative QoS values and maximize the positive QoS ones. Furthermore, the result

is a normalized score in the range [0,1]; the closer the score to 1, the better the composition.

This means that the composition’s objective value depends on the QoS values.

The traditional objective function (see Equation 4.3), represents a weighted sum of all QoS

values is widely applied [Fethallah et al., 2012], [Merzoug et al., 2014]. The latter is appropriate

if the QoS is static, however, the QoS is nondeterministic. Therefore, we improved the objective

function (see Equation 4.6) to consider all QoS realizations by leveraging the median value as

a representative value.

The composition that violates the user’s requirement is unfeasible, even if it has a high

score. Therefore, we integrate another objective function called percentage of satisfied global

constraints (p.s.g.c) in the backtracking search algorithm, according to inequalities 4.12, and

4.13. The p.s.g.c is adopted by [Remaci et al., 2018], [Hadjila et al., 2020], and it is defined

as the fraction of global constraints with respect to the median QoS that is preserved by the

composition.

U(C) =
r∑
p=1

wp ∗
(Q
′
p(C)−Qmin

′
(p))

(Qmax′(p)−Qmin′(p))
(4.3)

UPositive(C) =
r∑
p=1

wp ∗
(MedianQ

′
p(C)−Qmin

′
(p))

(Qmax′(p)−Qmin′(p))
(4.4)

UNegative(C) =
r∑
p=1

wp ∗
(Qmax

′
(p)−MedianQ

′
p(C))

(Qmax′(p)−Qmin′(p)) (4.5)

U(C) = UPositive(C) + Unegative(C) (4.6)

Qmin
′
(p) =

n∑
j=1

Qmin(j, p) (4.7)

Qmin
′
(p) is the minimal aggregated QoS of the pth attribute for all possible compositions.

Qmax
′
(p) =

n∑
j=1

Qmax(j, p) (4.8)

Remaci 66

Uncertain QoS-based Web service composition approaches

Qmax
′
(p) is the maximal aggregated QoS of the p th attribute for all possible compositions.

Equations Qmin(j, p), Qmax(j, p) are defined as follows :

Qmin(j, p) =Minu∈{1,...,l},si∈CLj
(QoSpiju) (4.9)

Qmin(j, p) is the minimal QoS value of the pth attribute of all services related to the ith

task.

Qmax(j, p) =Maxu∈{1,...,l},si∈CLj
(QoSpiju) (4.10)

Qmax(j, p) is the maximal QoS value of the pth attribute of all services related to the ith

task.

MedianQ
′

p(C) =
n∑
j=1

Medianu∈{1,...,l}QoSpsjju (4.11)

If the criterion p is positive, the global constraint related to p is defined as:

MedianQ′p(C) ≥ bp;∀p ∈ {1, ..., l} (4.12)

If the criterion p is negative, the global constraint related to p is defined as:

MedianQ′p(C) ≤ bp;∀p ∈ {1, ..., l} (4.13)

Where MedianQ
′
p(C) represents the aggregated pth QoS value of each component in the

composition C with respect to the median QoS value, the aggregation changes according to the

QoS attributes, see Table 3.2.

The main advantage is that the evaluation function considers both the uncertain QoS and the

user’s requirements, to retrieve the Top-K composition that maximizes, the chance of satisfying

the global constraints (see inequalities 4.12, 4.13), and maximize the function U(.) (see Equa-

tion 4.6). Broadly speaking, a composition C is ranked above the composition C ′ if the degree

of satisfying the global constraints of C with respect to Equations 4.12, and 4.13 is higher than

the degree of C ′ . If the degrees of C and C ′ tie, then we leverage the Equation 4.6 to rank these

compositions.We can notice that both the evaluation functions depend on the median value.

The motivation behind choosing this value is the uncertain QoS that needs to be considered in

the composition process.

Remaci 67

Uncertain QoS-based Web service composition approaches

In general, the distribution probability that generates QoS data is usually unknown, con-

sequently, we can notice the existence of some extreme values called outliers that perturb the

selection and ranking of compositions. Therefore, we leverage the median value as a represen-

tative value since it is not sensitive to variation or extreme values.

Algorithm 2 BacktrackingSearch
Input: RankedCl1, ..., RankedCln ,b1, b2, ..br: global constraints, k: size of the results set; t: the
minimum
Output: TopKCompositions Begin

1: Top-K Compositions=<> // the result is initially empty.
2: for i=1 to kn do
3: c = GetNextComposition(RankedCl1, . . . , RankedCln);
4: degree = 1/r ∗

∑r
p=1CC(p, c)

5: if (degree ≥ t) then
6: if better (c, Top-K Compositions) then
7: Update (c, Top-K Compositions)
8: end for
9: return (Top-K Compositions)

10: end

The explanation of algorithm 2 is given as follows:

The inputs of this algorithm are the ranked classes obtained from algorithm 1. In order to reduce

the search space, we only retain Top-k services from each abstract class. Thus, we can reduce

the possible composition from mn to kn.

1. In line 2, we browse all the possible compositions.

2. In line 3, we get the current composition C.

3. In line 4, we compute the fraction of satisfied global constrained.

4. In line 5, we check that the fraction of the preserved global constraints is above the thresh-

old.

5. In line 6, we compare C with the existing "Top-K Composition" elements through the use

of Equations 4.12, 4.13, and 4.6 .

6. In line 7, we update the result Top-K Compositions if C is better than an existing compo-

sition.

7. We return the final result in line 9.

Remaci 68

Uncertain QoS-based Web service composition approaches

4.6 Majority judgment and Constraints Programming approach (MJ-CP)
In this heuristic, the selection module address the Top K service compositions problem

based on two main algorithms: Majority Service Ranking and constraint programming algo-

rithm (MSR-CP).

Practically, the dataset is introduced as input, the algorithm 3 is invoked to sort the services of

the abstract classes according to a specific score. Following that, we invoke the second algo-

rithm, called Constraint Programming (CP), where we retain only the Top K services having

the highest scores from the ranked services. This algorithm allows for the selection of the Top

K compositions by considering the user’s requirements, and the fact that the QoS is uncertain.

A general overview of the proposed selection module is described in Figure 4.3.

User

Algorithm

 MajorityServiceRanking

Algorithm MajorityGradeComparison

Algorithm
 ConstraintProgrammingDataset

Qp(Sj),Qp(Sj') Scorej

- User's global constraints.

- Ranked Classes: RankedCln.
 Top K compositions

Figure 4.3: Selection module.

4.6.1 Majority judgment heuristic

The majority judgment is a recent voting theory proposed in 2007 by Balinski and Laraki

in [Balinski and Laraki, 2007]. This procedure is proposed for election allowing all voters to

evaluate each candidate, compared to other voting methods where the voter might only choose

one candidate. In this method, the voter provides much more valuable information than in the

traditional methods.

In this thesis, we were inspired by this voting theory. We proposed a heuristic for ranking the

services with considering the QoS fluctuation by employing the Majority judgment procedure.

Remaci 69

Uncertain QoS-based Web service composition approaches

Actually, this procedure is based on two main concepts: the majority-grade, the tie-breaking

rule.

1. Majority-grade: It represents the median value. Nevertheless, it imposes a specific rule:

the majority-grade is the middle of the list if the number of instances is odd, and it is equal

to the lower of the two middle grades if the number of the list is even then. According

to [Balinski and Laraki, 2007], The choice of the smallest grade of the middle-interval

when the number of judges is even is the logical consequence of a principle of consensus.

2. Tie-breaking rule: It is applied iteratively when two or more service’s majority-grades

are equal: the grades are dropped from each service; then the new grade is computed by

repeating the same process.

The majority judgment heuristic is leveraged for ranking the services and outlined in algo-

rithm 4. As well, algorithm 3 is a part of a program for service ranking. This algorithm takes

as inputs the two vectors related to the services to be compared (i.e., services H and G), each

vector contains l QoS realizations of the same QoS attribute, where the output can be either 0,

0.5, or 1. This value is used in algorithm 4 to update the score of the winning service.

Algorithm 3 MajorityGradeComparison
Input: H =< h1, .., hl >,G =< g1, .., gl > .
Output: Score ∈ {0, 0.5, 1}.
Begin

1: i=L;
2: while i >0 do
3: if (odd(i)) then
4: middle = i÷ 2 + 1;
5: if (i == 1 and hi == gi) then return 0.5;
6: else if (even (i)) then
7: middle = i÷ 2;
8: if (hmiddle ≥ gmiddle and H.type == positive) then return 1;
9: else if (hmiddle 6= gmiddle and H.type == negative) then return 1;

10: else if (hmiddle == gmiddle) then return 0;
11: else if (hmiddle! = gmiddle) then
12: remove hmiddle and gmiddle from both H and G (respectively);
13: i−−;
14: end while
15: end

Remaci 70

Uncertain QoS-based Web service composition approaches

Algorithm 4 MajorityServiceRanking
Input: < CL1, ..., CLn >,
Output: RankedCl1, ..., RankedCln
Begin

1: for j=1 to n do
2: RankedClj =<>;
3: end for
4: for j=1 to n do
5: for i=1 to m do
6: score(y)=0;
7: end for
8: for i=1 to m do
9: for i′ = 1 to m do

10: if i 6= i
′ then

11: for p=1 to r do
12: Score(i) = score(i) + 1/r ∗MajorityGradeComparison(Qp(Si), Qp(Si′));
13: end for
14: end for
15: end for
16: RankedClj=decreasing-sort (Clj)
17: end for
18: return < RankedCl1, ..., RankedCln >
19: end

The internal process of algorithm 4 is presented in follows:

1. In lines 1-3, we assign an empty arrangement to the ranked class RankedClj .

2. In lines 5-7, we set the score of all services of class j to 0.

3. In lines 8-11, we invoke algorithm 3 to compare each pair of services (si, s
′
i) of the current

class j

4. In line 12, we compute the score of si.

5. In line 16 we rank the elements of RankedCli according to the scores updated in 12.

6. We return the ranked classes in line 18.

Example

H =< 14, 15, 21, 23, 24 > and G =< 11, 17, 19, 21, 22 >, since

majorityGradeH = median(H) = 21, and majorityGradeG = median(G) = 19, then h is

ranked above g (because 21 > 19); additionally, the algorithm 3 returns 1.

Example

H =< 17, 18, 21, 21 > and G =< 13, 18, 22, 23 >. Since the median interval of h is [18,21]

Remaci 71

Uncertain QoS-based Web service composition approaches

and the median interval of G is [18,22], then the majority grade of both series is 18.

To resolve the issue, we delete the majority grade (i.e., 18) from H and G, and we repeat the

same process. Thus, H =< 16, 21, 21 > and G =< 13, 22, 23 >, and majorityGradeH =

median(H) = 21, and majorityGradeG = median(G) = 22.

Based on this information, G will be ranked above H (because 22 > 21); in addition, the

algorithm 3 returns 0.

4.6.2 Constraints Programming

The real-life problems (such as scheduling, networks, data mining. . .) are usually con-

sidered as constraint satisfaction problems CSP. Considering this, the constraint programming

(CP) is used for modelling and solving CSP. Constraint Programming (CP) has been defined as

a technology of software used to describe and solve combinatorial problems [Apt, 2003].

CP is based on four concepts: the decision variables; the inputs which are a finite domain of

values, a set of constraints; and the objective function. For example, the price of the product is

the decision variable, and the constraint might be expressed as searching for the product where

the cost is less than 100 dollars.

In CP, we can search for one or several feasible solutions. However, the exhaustive search

is time-consuming. Therefore, we can use this feature for retrieving the infeasible solutions.

For solving the service composition problem, we can notice that even when reducing the

number of services through the use of ranking algorithms fromm service per class to k services,

the number of possible compositions is constantly high (with kn compositions).

Therefore, we propose an effective algorithm based on the CP concept, which allows reducing

the search space by eliminating partial compositions that violate the global constraints.

In this approach, we notice that it will be useful to reduce the search space by eliminating

partial compositions that violate the user’s constraints. This means that during the composition

process, we combine the services one by one, we evaluate the feasibility of the partial compo-

sition, and we remove this partial composition if it violates the global constraints.

The evaluation is performed through Inequalities 4.12, and 4.12 characterized by one sample of

QoS realization designated by the median value. Besides that, we address the QoS fluctuations

problem by selecting the Top K compositions by employing the Global Quality Conformance

as the objective function. Furthermore, we tackle in this algorithm four composition models:

sequential, loop, parallel, and choice using the aggregation functions presented in Table 3.2.

Remaci 72

Uncertain QoS-based Web service composition approaches

4.6.2.1 Global QoS Conformance (GQC)

The concept of Global QoS Conformance (GQC) is proposed in [Hwang et al., 2015], for

computing the probability of respecting the global constraints by the composite service (see

Equation 4.14). The reason for using this function is to search a composition C that maximizes

GQC, consequently maximizing the ratio of respecting the users’ constraints. Indeed, this cri-

terion is widely adopted in the literature [Hwang et al., 2015, Kim et al., 2016, Hadjila et al.,

2020].

GQC((Sij, ..., Sin), (b1, ..., br)) =
r∏

i=1

Pr((Si1, ..., Sin), bi) (4.14)

Pr((Si1, ..., Sin), bp) =1/ln ∗
∑l

u1=1 ...
∑l

un=1

Step(Aggregate(QoSp si1u1
, ...,QoSp sinun

), bp)

(4.15)

Step is defined as:

Step(Aggregate(QoSp s1nu1
, ...,QoSp sinun

), bp) =

1 if Aggregate(QoSp si1u1
, ...,QoSp sinun

) ≥ bp

and the criterion p is positive

1 if Aggregate(QoSp si1u1
, ...,QoSp sinun

) ≤ bp

and the criterion p is negative

0 otherwise.

(4.16)

We adopt the product of the r probabilities of Equation 4.14, to address the satisfaction of

r global constraints as a whole. Each individual probability Pr((sw1 , ..., swn), bi) measures the

chance that the aggregated Quality of Service (QoSi) of the composition C = (sw1 , ..., swn) is

greater than or equal to the user’s bound bi (in the case where QoSi is a positive criterion).

In the context of CP algorithm, if the GQC of C is higher than that of C ′ with respect to

Equation 4.14, then the compositionC is better ranked then the compositionC ′ . Nevertheless, if

the composition C ties with C ′ , we rank them according to the objective function (see Equation

4.6), the higher the score of U(.), the better the rank.

The computation of GQC, and Equation 4.6 is explained through the previously mentioned

Example (see Table 4.2, Figure 4.1):

We have the following QoS realizations (i.e., response time):

Remaci 73

Uncertain QoS-based Web service composition approaches

s11 < 0.2, 0.5 >, s12 < 0.2, 0.8 > , s21 < 0.1, 0.1 >, s31 < 0.5, 0.6 >, s41 < 0.2, 0.7 >,

s51 < 0.3, 0.6 >, s61 < 0.1, 0.4 >.

By evaluating the composition C1 =< s11, s21, s31, s41, s51, s61 >, we obtain:

1. MedianQ′1(C1 =< s11, s21, s31, s41, s51, s61 >) = 0.35+0.1+Max(0.55,Max(0.45, 0.45)+

0.25 = 1.25 ≤ 1.3 (the composition C1 is feasible).

2. GQC(C1) = 1
26
∗33 = 0.52 (we have 33 feasible combinations among 64 possible cases,

see Table A.1 for more details).

If Qmin(j, 1) = 0 and Qmax(j, 1) = 1 whare j ∈ {1, ..., n}, then

3. U(C1) = 1.25−0
(6−0) = 0.21.

However, if we consider C2 =< s12, s21, s31, s41, s51, s61 >, then

4. MedianQ′1(C2 =< s12, s21, s31, s41, s51, s61 >) = 0.50+0.1+Max(0.55,Max(0.45, 0.45)+

0.25 = 1.4 ≥ 1.3 (The composition C2 is not feasible, because it violates the global con-

straint).

5. GQC(C2) = 0.23.

6. U(C2) = 1.4−0
(6−0) = 0.23.

The overview of CP is summarized in algorithm 5.

Algorithm 5 ConstraintProgramming
Input: C, TopKC,RankedCl1, ..., RankedCln
,b1, ..., br.
Output: TopKC :the liste of the best K compositions in terms of GQC;
Begin

1: if (Size(C) == n) then
2: Update1 (C, TopKC)
3: else
4: j=GetFirstunassignedClass(C)
5: for i=1 to k do
6: Update2 (C,RankedClj , i)
7: if (GQC(C, b1, ..., br) == True) then
8: TopKC= CP (C, TopKC,Cl1, ..., RankedCln, b1, ..., br)
9: end for

10: if (j==1) then return TopKC;
11: end

This pseudo-code is explained as follows:

Remaci 74

Uncertain QoS-based Web service composition approaches

1. Lines 1-2 : If C is fully assigned and already feasible, then we update the Top KC and

return to the previous CP call (in which we handle the next service of the previous class

i.e., the class with ID n-1).

2. Lines 4-13 : In this case, the assignment of C is only partial (i.e., C is empty or contains

less than or equal to n-1 services).

3. In line 5, we get the first class of C which is unassigned (its rank is denoted as j). Then,

we explore the first k services of RankedClj .

4. Following this, we assign the jth component of C with the service i (See line 7). If the

global constraints of C are preserved, we call CP to process the next class.

5. If all services of the first class are processed and consequently all compositions are exam-

ined, then we return TopKC (see line 13).

Update1(): This function is called for updating TopKC list by inserting the current com-

position C if it contains less than K elements, or the GQC of C is better than the existing

solutions, then the worst solution is removed.

Update2(): This function is employed to attribute the ith service of RankedClj to the jth

component of C. To explain the concept of the partial elimination of CP, we continue with the

example shown in the motivation scenario (see Figure 4.1, and Table 4.2).

Let us consider the lower value of QoS realization as median value (according to majority

judgment concept), thus, the evaluation of the composition C =< s11, s22, s32, s41, s51, s61 >,

is performed as follows:

1. MedianQ′Responsetime(C =< s11 >) = 0.2 ≤ 1.3 (GC1 is still preserved).

If C1 is updated with s22 (i.e, C =< s11, s22 >), then

2. MedianQ′Responsetime(C =< s11, s22 >) = 0.2 + 0.8 = 1 ≤ 1.3 (GC1 is still preserved).

If C1 is updated with s31 (i.e, C =< s11, s22, s31 >), then

3. MedianQ′Responsetime(C =< s11, s2, s31 >) = 0.2 + 0.8 +Max(0.5, 0.2) = 1.5 ≥ 1.3

(GC1 is violated).

Consequently, it will be useless to process the following classes (i.e., CL5 and CL6), since GC1

is violated. Furthermore, if we have another QoS (e.g., reliability) we can skip the composition

process.

Remaci 75

Uncertain QoS-based Web service composition approaches

S11

S12

S21

S22

S31

S32 S51

S41

S52

S42

S61

S62

Authentication &
access control

Annotation of medical
image

Disease diagnosis

Obtaining multimodal
medical images

 Medical
scheduling

Medical image
sharing

Figure 4.4: Service composition pruning.

By performing this pruning method, we can avoid kn−p possible compositions (p is the number

of assigned classes); in our example, we prune four compositions (colored compositions in Fig-

ure 4.4):

<s11, s22, s31, s51, s61>, <s11, s22, s31, s51, s62>, <s11, s22, s31, s52, s61>, and <s11, s22, s31, s52, s62>.

4.7 Grey Wolf-Based Composition (GWC) approach
Generally, the service composition problem is considered as a Multi-Criteria Decision-

Making (MCDM) problem. Since we have to retrieve the optimal services from a set of alterna-

tives, then we have to select the best composition based on multiple criteria (or QoS attributes).

There are several MCDM methods to solve such a problem. Meanwhile, the environment

fluctuations represent another real-world problem that involves critical troubles on the services

applications exposed over the Web. More specifically, we mention drawbacks caused by the

imprecise and vague information of QoS, especially during the service composition process.

Fuzzy set (FS) theory was introduced by [Zadeh, 1996] and used as a key method to solve

MCDM problems [Yager, 1977]. Therefore, we propose a new framework based on the Cross-

Entropy of the Hesitant Fuzzy Set, which is a recent extension of FS. In addition, we introduce

the approach called Grey Wolf-Based Composition (GWC) for selecting the Top K composi-

tions.

Remaci 76

Uncertain QoS-based Web service composition approaches

4.7.1 Hesitant Fuzzy Set (HFS)

Fuzzy sets theory attracts larger attention by researchers, since it is mainly proposed for

handling several real-world problems. Dealing with the uncertainty of the information is always

an interesting research field in the Fuzzy sets theory.

[Torra and Narukawa, 2009] proposed an extension of the fuzzy sets, called Hesitant fuzzy

set, to deal with the limitation of the habitual Fuzzy sets extensions regarding the uncertain

information. In fact, Hesitant Fuzzy Set (HFS) represents a set of possible values in the range

[0,1] instead of one membership degree. Accordingly, we can adopt the hesitant fuzzy set to

represent the QoS realizations of Web services.

Let X be a fixed set, a HFS on X defined in terms of a function that is when applied to X

returns a subset of [0,1].

The HFS is represented mathematically by [Xia and Xu, 2011] as:

A = {< x, hA(x) > |x ∈ X} (4.17)

The range of the set hA(x) is [0,1], denoting the possible membership degrees of the element

x ∈ X with respect to the set A.

According to [Xia and Xu, 2011], hA(x) is called a Hesitant Fuzzy Element (HFE) and θ the

set of all HFEs.

In following, we model the service s11 of the class Authentication and access control with

HFS:

• An abstract class denoted as CL1 (Authentication and access control).

• One QoS attribute (i.e., response time).

• The QoS realizations of the service s11 are given as follows :

Q = q1(i.e., response time),

As11 = {< q1{0.2, 0.5}}.

hs11(q1) = {0.2, 0.5} is the HFE.

In the following, we introduce some well-known hesitant fuzzy sets basics [Torra, 2010]:

1. Empty set: h(x) = {0} for all x in X.

2. Full set: h(x) = {1} for all x in X.

Remaci 77

Uncertain QoS-based Web service composition approaches

3. Complete ignorance for a x ∈ X (all is possible): h(x) = [0, 1].

4. Nonsense set: h = ∅∗.

4.7.1.1 QoS Normalization

The service composition process deals with several QoS; each one has different measure-

ment units and magnitudes [Polska et al., 2021]. Therefore, transforming the QoS to an uniform

range is primordial.

We leverage the following normalization procedure (see Equation 4.18) which enables us to

map the QoS values into one range from 0 to 1.

NQoSpsiju
= (QoSpsiju −Qmin(p))/(Qmax(p)−Qmin(p)) (4.18)

Qmin(j, p) = MINSi∈Clj , u ∈ 1, ..l(QoSpsiju) (4.19)

Qmax(j, p) = MAXSi∈Clj,u∈1,..l(QoSpsiju) (4.20)

4.7.1.2 Entropy and Cross-Entropy for Hesitant fuzzy set

Entropy and Cross-Entropy concepts are widely used for solving the MCDM problems.

Indeed, the Entropy is leveraged to compute the weights of criteria. However, Cross-Entropy is

applied to compute the divergence between two probability distributions. Hence, we leverage

the Cross-Entropy for computing divergence between QoS realizations and best and/or worst

solutions.

According to [Xu and Xia, 2012], Cross-Entropy for the hesitant fuzzy set is defined as

follow:

Let hsj1(p) and hsj2(p) be two HFEs of the services sj1 and sj2 respectively, then the Cross-

Entropy C(hsj1(p), hsj2(p)) is specified as:

Remaci 78

Uncertain QoS-based Web service composition approaches

C(hsj1(p), hsj2(p)) =

1
lT0

∑l
u=1

(
(1+tQoSps1ju

) ln(1+tQoSps1ju
)+(1+tQoSps2ju

) ln(1+tQoSps2ju
)

2
−

2+tQoSps1ju
+tQoSps2ju

2
ln(

2+tQoSps1ju
+tQoSps2ju

2
)+

(1+t(1−QoSps1j(l−u+1))) ln(1+t(1−QoSps1j(l−u+1)))

2
+

(1+t(1−QoSps2j(l−u+1))) ln(1+t(1−QoSps2j(l−u+1)))

2
−

(
2+t(1−QoSps1j(l−u+1)+1−QoSps2j(l−u+1))

2

ln(
2+t(1−QoSps1j(l−u+1)+1−QoSps2j(l−u+1))

2
)

))

(4.21)

Where

T0 = (1 + t) ln(1 + t)− (2 + t)(ln(2 + t)− ln(2)), t ≥ 0. (4.22)

Based on the definition of the Cross-Entropy and the realizations of q1 (i.e., response time)

presented in Example1, the Cross-Entropy between the service s11 and s12 will be:

t = 2,T0 = 0.52,

C(hs11(1), hs12(1)) = 0.719

According to [Xu and Xia, 2012] the entropy (or disorder quantity) of a fuzzy hesitant set is

defined as follows:

Let h be a HFE, then entropy is specified as:

Ea(h) = 1− C1(h, h
c). (4.23)

Remaci 79

Uncertain QoS-based Web service composition approaches

Esjiq(h) = 1− 2
lT0

∑l
u=1

(
(1+tQoSps1ju

)ln(1+tQoSps1ju
)+(1+t(1−QoSps1j(l−u+1)))ln(1+t(1−QoSps1j(l−u+1)))

2

−2+tQoSps1ju
+t(1−QoSps1j(l−u+1))

2
ln

2+tQoSps1ju
+t(1−QoSps1j(l−u+1))

2

) (4.24)

Using the definition of Entropy, the entropy of Example1 will be:

E111(hs11) = 0.841

4.7.1.3 Model of Entropy weights

Generally, solving the service composition problem requires the knowledge of QoS and its

importance as QoS weights. Different approaches ask the users to set their QoS preferences.

However, these methods are inappropriate since the users don’t have the necessary knowledge

to attribute the weight for each QoS attribute.

In this approach, we leverage entropy theory to provide the QoS weights. The higher the

weight, the more important the QoS criterion is.

w
′

p =
1− Ep

m−
∑r

p=1 Ep

(4.25)

Where

Ep =
1

m

m∑
i=1

Ehip , p = 1, 2, ..., r. (4.26)

Ehip = 1− C(hip, h
c
ip). (4.27)

Based on the computed QoS weights, we propose an algorithm that allows to rank Web

services.

Algorithm 6 Entropy Service Ranking (ESR) is presented below.

The description of algorithm 6, is presented as follows:

• We firstly start to compute the weight wp of each attribute p according to Equation (4.25)

(lines 1 to 3).

Remaci 80

Uncertain QoS-based Web service composition approaches

Algorithm 6 EntropyServiceRanking
Input: < CL1, ...,CLn >,
h+p = 1 // positive ideal solution,
h−p = 0 // negative ideal solution
Output: RankedCl1, ...,RankedCln
Begin

1: for p=1 to r do
2: wp = compute-weight() // The weight is computed according to Equation (4.25)
3: end for
4: for j=1 to n do
5: for i=1 to m do
6: C+(sji) =

∑r
p=1(wpC(hsji(p), h

+
p))

7: C−(sji) =
∑r

p=1(wpC(hsji(p), h
−
p))

8: c(sji) =
C+(sji)

C+(sji)+C−(sji)

9: end for
10: RankedClj=ascending-sort (CLj, c(sji))
11: end for
12: return < RankedCl1, ...,RankedCln >
13: end

• We compute the Cross-Entropy between the service sji and the positive-ideal solution h+
p

which concerns positive attributes (resp the negative-ideal solution h−p which concerns the

negative attributes) (lines 4 to 7).

• We compute the closeness degree between the service sji and the ideal solution (line 8).

• We sort the services of each class according to the values of c(sji) in ascending order(to

explore new areas). The smaller the value of c(sji), the better the rank (line 10).

• We return the ranked classes in line 12.

4.7.2 Grey Wolf Optimizer

Grey Wolf Optimizer (GWO) is a recent swarm intelligence algorithm proposed in [Mirjalili

et al., 2014]. This population-based meta-heuristic succeed to overcomes the shortcoming of

the previous meta-heuristics. It enjoys a superiority due to its flexibility, simplicity of imple-

mentation with few control parameters, and fast convergence characteristics [Faris et al., 2018].

GWO represents the leadership and social hierarchy of the grey wolves (GW). Roughly speak-

ing, this includes four main categories called: alpha (α), beta (β), delta (δ), and omega (ω).

Additionally, GW groups follow a specific category order where the leadership starts from the

upper level to the lower one (see Figure 4.5). Moreover, GW are characterized by their special

hunting behavior which is realized in three phases: encircling, hunting, and attacking.

Remaci 81

Uncertain QoS-based Web service composition approaches

The rest of solutions

The third best solution

The socond best solution

The optimal solutionα

ω

γ

β

Figure 4.5: Social hierarchy of grey wolves.

Successfully, the GWO is adapted to several and recent problems (such as Support Vec-

tor Machine (SVM) Classification [Eswaramoorthy et al., 2016], Wireless Sensor Networks

(WSNs) [Parsian et al., 2017], Path Planning [Zhang et al., 2016], Biomedical Research [Bian

et al., 2017]). Therefore, we leveraged this meta-heuristic to handle the service composition

problem. This approach considers that the α category is the most suitable solution, whereas β

and δ represent the second and third best solutions; the Omega category (ω wolves) represents

the weakest solutions.

In [Mirjalili et al., 2014], the researchers modeled mathematically the three main phases of

the hunting behavior.

1. The encircling behavior is modeled as follows:

−→
D = |

−→
C .
−→
X p(t)−

−→
X(t)| (4.28)

−→
X(t + 1) =

−→
X p(t)−

−→
A .
−→
D (4.29)

Where

(a) t is the current iteration.

(b)
−→
X p represents the prey’s position.

(c)
−→
X(t) is the current position of a wolf.

(d)
−→
X(t + 1) is the next position.

Remaci 82

Uncertain QoS-based Web service composition approaches

(e) D represents the disturbed distance between the position of the current wolf X(t) and

the position of the prey Xp (which represents the best wolf in the pack, such as alpha

or even beta), the perturbation parameter C allows for exploration of new areas when

its magnitude is greater than or equal to 1, otherwise, it encourages the exploitation

of the current region.

(f) Equation 4.29 represents the actual encircling process, we notice that the distance D

is scaled by the factor A which is comprised between -2a and 2a, and this enables

the presence of wolves (i.e., X(t+1)) in the perimeter of the prey, especially when A

belongs to [-1,1].

The random vectors
−→
A and

−→
C are calculated as follows [Mirjalili et al., 2014]:

−→
A = 2.−→a .−→r 1 −−→a (4.30)

−→
C = 2.−→r 2 (4.31)

−→a = 2− 2.t

T
(4.32)

Where −→a linearly decreases from 2 to 0 during the iterations; −→r 1,
−→r 2 are random values

in the range [0, 1]. Accordingly, the range of
−→
A is [-2a,2a] and the range of

−→
C is [0,2]. T

is the maximum number of iterations.

The exploration and the exploitation processes are controlled in GWO through the vectors
−→
A ,
−→
C . In the exploration process, the wolf discovers the promising areas and diverges

from the prey (to explore new areas) when
−→
A > 1 or

−→
A < −1. In addition, the parameter

−→
C contributes to the exploration process since the wolf moves closer to the prey when
−→
C > 1.

Moreover, in the exploitation, the wolf makes an advance towards the prey when−1 <
−→
A < 1.

The vectors
−→
A ,
−→
C are used in the next equations, where

−→
A 1,
−→
C 1 are the vectors related to

alpha (α) (
−→
A2,
−→
C2 are related to β and

−→
A 3,
−→
C 3 are related to δ).

2. Hunting is the second step after encircling the prey. In this step, only the three main

leaders have knowledge about the position of the prey, therefore, all omega wolves update

their positions according to alpha, beta, and delta positions’.

Remaci 83

Uncertain QoS-based Web service composition approaches

Figure 4.6 is a simple representation of the omega’s relocation in 2d search space near the

prey according to a specific distance D.

Alpha

Beta

Delta

a3

C2

a1

C3

C1

a2

Move

R

Ddelta

Dalpha

Dbeta

Omega

Next
position

Figure 4.6: Position updating in GWO.

−→
Dα (
−→
D β and

−→
D δ respectively) is the disturbed distance between the position of the current

omega wolf and the position of the alpha wolf (beta and delta respectively) (see Equations

4.34 - 4.36). Hunting is also modelled according to Equation 4.33.

Obviously, the computation of the distance D is controlled by the vectors
−→
C , and

−→
A ,

since the latter parameters assist candidate solutions to have hyper-spheres with different

random radii [Mirjalili et al., 2014].

To improve the position of the current wolf (termed as
−→
X(t)), we calculate the next posi-

tion (
−→
X(t + 1)) using Equation 4.33.

−→
X(t + 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
. (4.33)

Where
−→
Dα =

−→
C 1.
−→
Xα −

−→
X (4.34)

Remaci 84

Uncertain QoS-based Web service composition approaches

−→
D β =

−→
C 2.
−→
X β −

−→
X (4.35)

−→
D δ =

−→
C 3.
−→
X δ −

−→
X . (4.36)

Where
−→
Xα,
−→
X β,
−→
X δ denote the positions of alpha, beta, and delta respectively.

−→
X 1 =

−→
Xα −

−→
A 1.
−→
Dα (4.37)

−→
X 2 =

−→
X β −

−→
A 2.
−→
D β (4.38)

−→
X 3 =

−→
X δ −

−→
A 3.
−→
D δ (4.39)

3. The hunting behavior is ended through the attacking step. It is simply formulated by the

value of a (see Equation 4.32) that implicitly controls the exploration and exploitation.

4.7.3 Discrete Grey Wolf Optimizer

Actually, the initial GWO address for the continuous optimization problem, nevertheless,

the service composition problem in a discrete optimization problem. To handle this situation,

we propose a recent approach called Grey Wolf-Based Composition (GWC).

In this approach, we update the previous Equations as follows:

−→
X(t + 1) = b

−→
X 1 +

−→
X 2 +

−→
X 3

3
c. (4.40)

Where
−→
Xα,
−→
X β,
−→
X δ denote the locations of the services alpha, beta, and delta respectively in

the ranked classes.
−→
X 1 = Move(

−→
X , b
−−−−−−−−→
Dα mod 3c,A1) (4.41)

−→
X 2 = Move(

−→
X , b
−−−−−−−−→
Dβ mod 3c,A2) (4.42)

−→
X 3 = Move(

−→
X , b
−→
Dδ mod 3c,A3) (4.43)

Remaci 85

Uncertain QoS-based Web service composition approaches

−→
Dα =

−→
C 1.
−→
Xα −

−→
X (4.44)

−→
D β =

−→
C 2.
−→
X β −

−→
X (4.45)

−→
D δ =

−→
C 3.
−→
X δ −

−→
X (4.46)

Move(
−→
X , b
−−−−−−−→
Dα mod 3c,A1) means that the position of the next service regarding α, is the

current position moved with b
−−−−−−−→
Dα mod 3c steps.

As well, in this algorithm, we adopt the GQC (see Equation (4.14)) as the objective function.

Example

The following example is presented to explain the function called Move(
−→
X , b
−−−−−−→
D mod 3c,A).

Let’s assume that we have a dataset that contains 2 tasks and 10 services; the ranked classes

based on Entropy and Cross-Entropy are presented in Table 4.3.

We generate the population (wolves) by setting k to 7 (7 pertinent services from each class),

A1 = A2 = A3 = 0.5 (i.e., −1 < A < 1) and C1,C2,C3 =1.

Table 4.3: Ranked services based on Entropy and Cross-Entropy.

Ranked CL1 s6 s7 s8 s4 s10 s2 s9 s5 s3 s1

Ranked CL2 s10 s3 s2 s9 s5 s8 s7 s4 s1 s6

Table 4.4: Random wolves’ population based on ranked services.

Task 1 Task 2

s8 s10 Alpha

s9 s9 Beta

s4 s2 Delta

s7 s5 Omega 1

s6 s10 Omega 2

s4 s3 Omega 3

Using Equation 4.40, we update the omega’s position (the fourth line of Table 4.4) as fol-

lows:

Remaci 86

Uncertain QoS-based Web service composition approaches

Ranked
CL1 s6 s7 s8 s4 s10 s2 s9 s5 s3 s1

K = 7

C1 S7 S5

New position = 3

C1 S8 S5

Figure 4.7: The move function for service s7 .

s10 s3 s2 s9 s5 s8 s7 s6

K = 7

C1 S7 S5

New position = 3

C1 S8 S2

s4 s1 s6
Ranked
CL2

Figure 4.8: The move function for service s5 .

• d1 = 1, because the position of Alpha(s8) equals 3 and the position of s7 equals 2. Since

the position of alpha is greater than the position of s7, then Move (s7, b1 mod 3c,A1) = 3:

in fact, 2 (i.e., position of s7) + 1 (i.e., b1 mod 3c steps) will provide 3 as a new position.

• newposition = 3.

• d2 = 5 and Move (s7, b5 mod 3c,A2) = 4 (According to beta).

• newposition = 4.

• d3 = 2 and Move (s7, b2 mod 3c,A3) = 4 (According to delta).

• newposition = 4.

New position = b3+4+4c
3

= 3.

• d1 = 4, because the position of Alpha equals 1 and the position of s5 equals 5. Since the

position of alpha is less than position of s5, then Move (s5, b4 mod 3c,A1) = 4. In fact, 5

(i.e., position of s5) - 1 (i.e., b4 mod 3c steps)= 4.

Remaci 87

Uncertain QoS-based Web service composition approaches

• newposition = 4.

• d2 = 1 and Move (s5, b1 mod 3c,A2) = 4 (According to beta).

• newposition = 4.

• d3 = 2 and Move (s5, b2 mod 3c,A3) = 3 (According to delta).

• newposition = 3.

New position = b4 + 4 + 3c/3 = 3. New composition <s8, s2>.

The detailed grey wolf-based composition algorithm (GWC) is presented in follows.

In addition, we leverage GQC as an objective function (see Equation 4.14).

Algorithm 7 GWC
Input: < CL1, ...,CLn > , k , MaxIter , PopSize.

Output: TopKCompositions

Begin
1: < RankedCl1, ...,RankedCln >= EntropyServiceRanking(CL)
2: for i=1 to PopSize do
3: Initialize the grey wolf population Xi = init(< RankedCl1, ...,RankedCln >, k) // Initialize the

grey wolf population based on (< RankedCl1, ...,RankedCln >) where (i = 1, 2, ...,PopSize).
4: Initialize a, A, and C;
5: FitnessXi = ComputeGQC(Xi);
6: end for
7: Decreasing-sort(Xi,FitnessXi)
8: Xα = X1;
9: Xβ = X2;

10: Xδ = X3;
11: t=1
12: while (t ≤ MaxIter) do
13: for i=1 to PopSize do
14: Update1 (Xi) //the position of the current wolf is updated using Equation (4.40)
15: FitnessXi = ComputeGQC(Xi);
16: end for
17: Update2 (a, A, C) //We update A, C, a using Equations (4.30), (4.31), (4.32)
18: Decreasing-sort(Xi,FitnessXi)
19: Update3 (Xα,Xβ,Xδ);
20: t=t+1;
21: end while
22: return (TopKCompositions)
23:

24: end

Remaci 88

Uncertain QoS-based Web service composition approaches

The implementation of GWC algorithm is explained as follows:

1. We call the ESR algorithm to obtain the ranked classes (line 1).

2. Based on the Top-k elements (Top-K services retrieved based on algorithm 7), we generate

the grey wolf population (service compositions) (lines 2-3).

3. We initialize a, A, and C (line 4).

4. We evaluate each individual of the population (composition) with the GQC (line 5).

5. We design the leaders α, β, δ, based on a deceasing-sort function (lines 7 to 10).

6. For each iteration (lines 12 up to 21):

• We call the function Update1 to relocate the wolves’ positions according to Equation

(4.40) (line 14) .

• We evaluate the new wolves according to Equation (4.14) (line 15).

• We invoke the function Update2 to update the vectors A, C using Equations (4.30),

(4.31) (line 17).

• We apply a selection mechanism between wolves to retrieve the best new wolves

α, β, δ (i.e., Update3) after a decreasing sort (lines 18 to 19).

7. We return the Top k composition (α, β, δ) (Top3).

4.8 Complexity of the proposed approaches
In Table 4.5, we present the complexity of each proposed algorithm.

Table 4.5: Approaches complexity.

Approach Algorithm Complexity

DSR
DSR O(n.m2.r.l2 + n.mlogm)

Backtraking

algorihm
O(kn(k.r.n+ n+ klogk))

MJ-CP
MSR O(n.m2.r.l2 + n.mlogm)

MJ-CP O(kn(k.r.n+ n+ klogk))

GWC
ESR O(2.n.m.r.l)

GWC O(2.n.m.r.l + PopSize.MaxIter(n + r.ln) + PopSize ∗ log(PopSize))

Remaci 89

Uncertain QoS-based Web service composition approaches

4.9 Conclusion
In the aim of finding the best composition in a fluctuating environment, we proposed to re-

duce the search space by retrieving the relevant services according to their QoS. These services

are combined in order to generate multiple compositions, which means that another selection

process is performed to find the composition that respects the global constraints. Therefore, we

present in this chapter the following approaches:

1. The first approach is mainly composed of two algorithms: Dominance Service Ranking

(DSR) is leveraged for ranking the services. The ranking mechanism is implemented

according to the probabilistic dominance relationship. The second algorithm is the Back-

tracking search. this algorithm is proposed to select the Top K compositions according to

an improved objective function.

2. The second approach is termed Majority judgment and Constraints Programming ap-

proach (MJ-CP). MJ denotes the Majority service ranking algorithm. It is leveraged

for local selection of services. The Constraint programming algorithm (CP) is adopted for

global selection (i.e., composition selection).

3. The last approach is called Grey wolf-based composition. In fact, this is a combination

of two algorithms: Entropy Service Ranking advanced for selecting the services with the

consideration of the uncertain QoS (local search). Following that, the Grey wolf-based

composition algorithm is proposed to select the Top K compositions according to the

GQC.

Remaci 90

Chapter 5

Implementation and experimental results

5.1 Introduction
In this chapter, we present the experiments carried out to evaluate the performance of our

approaches. We initially introduce the detailed architecture of the selection module.

Next, we describe the datasets adopted in the experiments. Finally, we present the results of

the experiments.

5.2 Case studies
We report the three case studies that we have proposed for the evaluation:

1. The first case concerns the e-health application presented in section 4.3. (see Figure 4.1).

2. The second case is the electronic product purchase composite service, adopted by [Hwang

et al., 2015] (see Figure 5.1). This composite service is constituted of ElectronicPro-

ductFinder, SendSMS, SmartPayment, CreditCardPayment, and Delivery services.

3. The e-learning system on the cloud is the third case. This system includes two cloud

services:

• An Amazon EC2 Spot instance for storage management of the learning system (IaaS

application).

• An application server for handling the learning contents (SaaS application).

5.3 Dataset Description
The experiments have been conducted using both real and synthetic datasets to evaluate the

proposed selection module. Each approach has its own datasets (It could include one or multiple

91

Implementation and experimental results

datasets).

In this section, we present both datasets, and configurations adopted in these experiments.

5.3.1 Dataset of Probabilistic dominance approach

The QoS of this dataset is generated by randomizing data values and leveraged for evaluating

the Dominance Service ranking and Backtracking search algorithms.

The performed configuration is presented in Table 5.1. The number of tasks varies from 10

to 20, and the size of the service per task is up to 1100. The services are characterized by at

least two QoS. Each QoS consist of 100 to 400 realizations (instances).

The proposed configuration is presented as follows:

Table 5.1: Configuration DSR approach.

Parameters Values Values
Number of Tasks (n) 10, 15, 20

Number of Services (m) 100 to 1100
Number of QOS criteria (r) 2 to 10

Instances (l) 100 to 400
Size of the result (k) 2 ,6,10

5.3.2 MJ-CP approach’s dataset

For the second experiment, we generate three types of datasets:

1. In order to evaluate our case study (see Figure 4.1), we generate a dataset according to

a Gaussian distribution, the mean and the standard deviation of the response time and

reliability are presented in Table 5.2. The fidelity is uniformly generated between 1 and

4. Furthermore, we fixed the global constraints of response time, reliability, and fidelity

as 2600 ms, 0.035, and 3.

2. The second one is a standard dataset provided by Al-Masri and Q. H. Mahmoud [Al-

Masri and Mahmoud, 2007]. It includes 365 rows that represent the Web services, and 13

columns, each one representing a QoS attribute. More specifically, we leverage this real-

world dataset to analyze the example of Hwang et al.,2015 (see Figure 5.1). The response

time and reliability values are generated according to a Gaussian distribution. The range

of each task is presented in Table 5.3, where µ is the mean and σ is the standard deviation.

Likewise, the fidelity is uniformly generated between 1 and 4. In addition, we set the

global constraints of response time, reliability, and fidelity as 2400 ms, 0.025, and 3.

3. In order to emphasize the analysis, we adopt the dataset proposed by [Hadjila et al., 2020],

Remaci 92

Implementation and experimental results

where the QoS values are generated according to a centered reduced Gaussian distribution

(i.e., mean=0 and sigma=1).

For this dataset, we designate the following parameters:

• n=2.

• m=500.

• r=4 (i.e., response time, reputation, reliability, and throughput).

• l=21.

• bj= 0.6*n for additive QoS attributes (such as reputation).

0.6n for multiplicative QoS attributes (such as reliability).

0.6 for Max/Min QoS attributes(such as throughput).

Electronic
Product	Finder

Yes

No

More

+

+

Delivery

CreditCard
Payment

Smart
Payment

Payment
Type

SendSMS

Figure 5.1: Electronic product purchase service (Case study 2) [Hwang et al., 2015].

5.3.3 Datasets of Grey Wolf based-Composition

For evaluating the third proposed approach, we adopt the same dataset of Al-Masri and Q.

H. Mahmoud [Al-Masri and Mahmoud, 2007], for analyzing the second case study (see Figure

5.1, and Table 5.3).

Furthermore, in order to analyze the third case study, we use another synthetic dataset pro-

duced according to a centred reduced Gaussian distribution (i.e., mean=0 and sigma=1).

Remaci 93

Implementation and experimental results

We employ the r4.large windows spot instance for one year, to generate the simulation re-

quests, where the price configuration is: $0.10 per hour for a virtual machine of 2 vcpu and 15

Gb for memory.

The capacity and/or price changes cause the revocation of the spot instances; consequently,

this will influence the availability attribute. For instance, if the availability is equal to 70%, then

the instance is available for approximately eight months (according to a request of one year).

Further, we propose the following configuration:

• n=2.

• m=500.

• r=3 (i.e., response time, availability, and fidelity).

• l=21.

• bj= 0.6*n for additive QoS attributes (such as response time).

• 0.6n for multiplicative QoS attributes (such as availability).

• 0.6 for Max/Min QoS attributes(such as throughput).

• k = 10 up to 25.

• PopSize=100 up to 500.

• MaxIter= 100 up to 500.

5.4 Experimental results and analysis
In this section, we present the results of the performed experiments, and we provide a de-

tailed analysis of each result. It is worth mentioning that all algorithms were implemented using

the Java programming language. Experiments were performed on a Windows 7 with an Intel I3

core 2.53GHz processor, 4 GB RAM.

5.4.1 Performance evaluation of the probabilistic dominance approach

In this experiment, we leverage a sequential workflow, and we treat only the QoS criteria of

a composition that are aggregated according to the sum function (such as reputation). While, the

multiplicative criteria are replaced with their log value and we handled them as additive criteria.

Furthermore, the default value of each weight wp equals to 1/r. We assign this equitable weight

Remaci 94

Implementation and experimental results

Table 5.2: Configuration of Gaussian distributions (Case study 1).

Task Response Time Reliability
Authetication and access control

for cloud storage service
µ ∈ [110,130]
σ =50

µ ∈[0.5,0.95]
σ =0.17

Annotation of medical images
µ ∈[1300,2000]
σ = 300

µ ∈[0.60,0.90]
σ =0.11

Medical image sharing
µ ∈[120,200]
σ =37

µ ∈[0.40,0.95]
σ =0.13

Medical diagnosis
µ ∈[100,150]
σ =31

µ ∈[0.60,0.80]
σ =0.27

Obtaining multimodal medical images
µ ∈[350,600]
σ =53

µ ∈[0.53,0.65]
σ =0.25

Medical scheduling service
µ ∈[800,900]
σ =250

µ ∈[0.71,0.85]
σ =0.33

Table 5.3: Configuration of Gaussian distributions (Case study 2).

Task Response Time Reliability

Electronic Product Finder
µ ∈ [78,117]
σ ∈[0,30]

µ ∈[0.63,0.95]
σ =

√
µ(1− µ)

SendSMS
µ ∈[1046,1569]
σ ∈ [0,435]

µ ∈[0.45,0.80]
σ =

√
µ(1− µ)

SmartPayment
µ ∈[117,175]
σ ∈[0,45]

µ ∈[0.60,0.90]
σ =

√
µ(1− µ)

CreditCard Validator
µ ∈[254,48]
σ ∈[0,105]

µ ∈[0.48,0.71]
σ =

√
µ(1− µ)

UPSTracking
µ ∈[74,111]
σ ∈[0,30]

µ ∈[0.62,0.94]
σ =

√
µ(1− µ)

to each QoS criterion since we consider that the user attributes the same importance for all of

them.

We analyze the computation time when retrieving 2, 6, and 10 services per class. Fur-

thermore, we compare the DSR algorithm with Average Service Ranking (ASR) that rank the

service according to the sum of average, based on the following Equation:

Rank(i, j) =
r∑
p=1

AV GQoSpsiju (5.1)

Where

AV GQoSpsiju is the average QoS computed over all the instances of Si ∈ Clj .

Finally, we perform a comparison based on computational time, the utility function 4.6, and the

ratio of respected user’s constraints (p.s.g.c) through the inequalities 4.12, 4.13.

Remaci 95

Implementation and experimental results

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

Tasks (n)
8 10 12 14 16 18 20 22

K = 2
k = 6

Figure 5.2: Computation time vs. n (r=3,
m=50, l=10).

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0

5 000

10 000

15 000

20 000

25 000

30 000

QoS (r)
0 2 4 6 8 10 12

k=2
k=6
k=10

Figure 5.3: Computation time vs. r (n=5,
m=200, l=100).

The performance evaluation in Figure 5.2 shows that the number of tasks influences the com-

putational time, which follows an exponential growth. In fact, the execution time is acceptable

when we select 2 services per class. However, when we select 6 or more, the computational

time overhead is not tolerable for n ≥ 10, since the backtracking search algorithm checks at

least 610 possible compositions (kn).

Figure 5.3 shows the sensitivity to QoS attributes (r) over the execution time. We can notice

that all values of r, are tolerable for k=2 and k=6, however, for k=10 and r ≥4, the execution

time will be unacceptable. The same observation is made for Figure 5.4, for k=2 and k=6, the

execution time is tolerable, however for k=10 and l≥ 200 the computational is not acceptable.

C
om

pu
ta

tio
n

 t
im

e
(s

ec
)

50 000

100 000

150 000

200 000

Ins tances (l)
50 100 150 200 250 300 350 400 450

K=2
K=6
K=10

Figure 5.4: Computation time vs. l (n=5,
r=3, m=200).

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0

200

400

600

800

1 000

1 200

Serv ices (m)
0 200 400 600 800 1 000 1 200

K=2
k=6
k=10

Figure 5.5: Computation time vs. m (n=5,
r=3, l=10).

As shown in Figure 5.5, the number of services (m) has a slight impact on the global search

(algorithm 2), this is mainly due to the fact that building the compositions depends on the

number of relevant services (i.e., K).

We can notice from Figure 5.6, that the ASR approach is better than the DSR in terms of

execution time. This is due to the fact that the ASR algorithm doesn’t depend on m, unlike the

Remaci 96

Implementation and experimental results

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0

5

10

15

20

25

Serv ices (m)
0 200 400 600 800 1 000 1 200

DSR
ASR

Figure 5.6: Computation time vs. m for DSR and ASR.

DSR algorithm. Furthermore, the complexity of Equation 5.1 is only O(r.l), and the Equation

4.1 complexity is O(r.l2).

Table 5.4: Performance comparison between DSR and ASR.

Parameters Solutions Algorithms Utility U ′(.) p.s.g.c (%)

n=5, r=3,
m=200 ,l=300

Top2 Solutions DSR + Algo 2 0.4063 100
0.4053 100

ASR + Algo 2 0.3823 100
0.3813 100

Top6 Solutions DSR + Algo 2 0.4075 100
0.4073 100
0.407 100
0.4068 100
0.4065 100
0.4064 100

ASR+ Algo2 0.3997 100
0.3992 100
0.3989 100
0.3984 100
0.3983 100
0.3982 100

It is clearly seen in Table 5.4 that both approaches (ASR and DSR) have a superiority in

terms of p.s.g.c. Meanwhile, we observe a slight fitness superiority (Equation 4.6) of the DSR

compared to the ASR, for all values of K.

Regarding these experimental results, we can notice that the pairwise service comparison

Remaci 97

Implementation and experimental results

(Dominance Service Ranking algorithm) leveraged for the service selection and the exhaustive

search (backtracking search algorithm) is extremely time-consuming. Therefore, we propose

the following approaches to solve the service composition problem.

5.4.2 Performance evaluation of the Majority judgment & Constraint programming

approach

In the experiments related to the first case study, we extend the number of concurrent ser-

vices from 100 to 500 and the number of QoS realizations from 10 to 60.

C
om

pu
ta

tio
n

tim
e

(m
se

c)

20 000

40 000

60 000

80 000

100 000

Ins tances (l)
0 10 20 30 40 50 60 70

MSR-CP
Hwang et al., 2015
Seghir et al., 2019
Xu et al., 2018

Figure 5.7: Computation time vs. l (Case Study 1).

In Table 5.5, we present the GQC and the utility function of each approach with respect to

the number of candidate services (m) and instances (l) (our approach and [Hwang et al., 2015]

approach use the GQC as a utility function). For IM_ABC [Seghir et al., 2019] approach, we

present the interval-valued QoS of the best feasible solution. However, if the best solution is

infeasible because of constraint violation, we compute the TCV function that represents the

total constraint violation (expressed in terms of an unnormalized interval). For TGA [Xu et al.,

2018] approach, the utility function is computed based on Equation 5.2, where (dij)h is the

defuzzified QoS value of the hth criterion, and the (pj)h represents the QoS priority weight

vector.

Fj =
k∑

h=1

(pj)h ∗ (dij)h (5.2)

We can notice that the utility function of state-of-the-art methods is advanced (e.g., 0.86 for

Remaci 98

Implementation and experimental results

Ta
bl

e
5.

5:
G

Q
C

of
To

p
co

m
po

si
tio

n
(C

as
e

St
ud

y
1)

.

l=
10

l=
20

l=
30

l=
40

G
Q

C
U

til
ity

Fu
nc

tio
n

G
Q

C
U

til
ity

Fu
nc

tio
n

G
Q

C
U

til
ity

Fu
nc

tio
n

G
Q

C
U

til
ity

Fu
nc

tio
n

m
=1

00

M
SR

-C
P

0.
95

0.
87

0.
86

0.
84

H
w

an
g

et
al

.,2
01

5.
0.

79
0.

72
0.

71
0.

73

Se
gh

ir
et

al
.,2

01
9.

0.
62

T
C

V
=

[-
0.

56
,0

.0
40

]
0.

62
T

C
V

=
[-

0.
68

,0
.0

4]
0.

68
T

C
V

=
[-

0.
83

,0
.0

44
]

0.
62

T
C

V
=

[-
0.

81
,0

.0
44

]
X

u
et

al
.,2

01
8.

0.
63

0.
86

0.
80

0.
84

0.
81

0.
82

0.
73

0.
78

m
=3

00

M
SR

_C
P

0.
95

0.
93

0.
91

0.
88

H
w

an
g

et
al

.,2
01

5.
0.

77
0.

81
0.

66
0.

66

Se
gh

ir
et

al
.,2

01
9.

0.
56

T
C

V
=

[-
0.

44
,0

.0
44

]
0.

63

T
C

V
=0

q 1
=

[6
11
.7
1,
12

51
.5
]

q 2
=

[0
.0
4
,0
.8
03

1]
q 3

=
[3
,4
]

0.
62

T
C

V
=

[-
0.

88
,0

.0
44

]
0.

60
T

C
V

=
[-

0.
81

,0
.0

44
]

X
u

et
al

.,2
01

8.
0.

50
0.

52
0.

50
0.

48
0.

48
0.

46
0.

49
0.

45

m
=5

00

M
SR

_C
P

0.
93

0.
88

0.
87

0.
88

H
w

an
g

et
al

.,2
01

5.
0.

89
0.

82
0.

74
0.

74

Se
gh

ir
et

al
.,2

01
9.

0.
62

T
C

V
=

[0
.0

25
,0

.0
4]

0.
57

T
C

V
=

[-
0.

84
,0

.0
44

]
0.

56

T
C

V
=0

q 1
=

[5
74
.4
3
,1
38

3.
6]

q 2
=

[0
.0
37
,0
.8
]

q 3
=

[3
,3
]

0.
56

T
C

V
=

[-
0.

80
,0

.0
44

]

X
u

et
al

.,2
01

8.
0.

42
0.

39
0.

40
0.

37
0.

37
0.

35
0.

35
0.

34

Remaci 99

Implementation and experimental results

Xu et al.,2018 approach), however, MSR-CP ensures the highest GQC in all experiments pre-

sented in Table 5.5 (about 20% better than other methods). These results indicate that MSR-CP

is more effective than the state-of-the-art methods. This is due to the fact that our approach

retrieves the most pertinent services through the MajorityServiceRanking algorithm, and con-

siders the global constraints in the selection of Top compositions. The curves shown in Figure

5.7 present the evolution of the computation time. We can notice that our approach is sensitive

to the number of instances and slower than the approaches [Xu et al., 2018,Seghir et al., 2019],

this is mainly due to the computation of GQC that is based on the number of instances l and

number of abstract tasks n.

In the sequel, we present a comparison between the local selection’ algorithms MSR, and

DSR.

T
im

e
(m

se
c)

54,5982

403,429

2 980,96

22 026,5

162 755

Ins tances (l)
0 100 200 300 400 500 600 700 800 900

MSR
DSR

Figure 5.8: Computation time vs. l (n=5,
r=3, m=100).

T
im

e
(m

se
c)

54,5982

403,429

2 980,96

22 026,5

162 755

1,2026e+06

Serv ices (m)
0 200 400 600 800 1 000 1 200

MSR
DSR

Figure 5.9: Computation time vs. m (n=5,
r=3, l=100).

It can be seen from Figure 5.8, that the number of instances l has an impact on the compu-

tational time of DSR and MSR. Although the performance of MSR is better to that of DSR, it

demonstrates a rising slope above 500 instances, this is mainly due to the sorting cost which

will be prohibitive when the size of the QoS series is large.

From Figure 5.9, we can notice that time complexity is polynomial with respect to the num-

ber of services of both approaches. Nevertheless, there is a superiority of our ranking for all

values of m. In fact, MSR can be improved to further reduce the execution time. In particu-

lar, we can use the transitivity property to prune the comparison steps; however, this pruning

heuristic is not possible for DSR since we have to perform a pairwise comparison between the

services to obtain the ranking score.

In the experiments of Table 5.6 , we fix the number of the services per class to 100 and vary

the number of instances from 100 to 500. As depicted in Table 5.6, the GQC scores of Top

Remaci 100

Implementation and experimental results

Table 5.6: GQC of Top compositions (Case study 2).

l=100 l=300 l=500
k=1 k=2 k=1 k=2 k=1 k=2

MSR-CP 0,83 0,83 0,82 0,82 0,63 0,6328
[Hwang et al., 2015] 0,75 0,75 0,74 0,73 0,56 0,5616

composition of our approach are higher than those of [Hwang et al., 2015].

The third dataset [Hadjila et al., 2020] is adopted to compare our proposed model, termed

MSR-CP with the following approaches:

• The probabilistic optimization of [Hwang et al., 2015].

• The Outlier-robust optimization of [Kim et al., 2016].

• The Probabilistic Skyline (PS) and Average Skyline (AS) heuristics are presented in [Had-

jila et al., 2020].

Table 5.7: MSR-CP performance Vs. State-of-the-art methods.

GQC p.s.g.c
Probabilistic skyline of [Hadjila et al., 2020] 0.036 100%
Average skyline of [Hadjila et al., 2020] 0.025 75%
p-dominant skyline of [Hadjila et al., 2020] 0.037 75 %
[Hwang et al., 2015] 0.044 25%
[Kim et al., 2016] 0.001 25%
MSR-CP 0.044 100%

We can notice from Table 5.7 that MSR-CP is superior in terms of GQC and p.s.g.c with

respect to all existing methods. Additionally, we can mention that even if MSR-CP ties with

that of [Hwang et al., 2015], in terms of GQC, the p.s.g.c is still higher than that of [Hwang

et al., 2015].

The modest results obtained by [Kim et al., 2016] and [Hwang et al., 2015] are mainly due to

the low quality of the derived local thresholds. These experiments confirm that the optimization

with global constraints is more promising than the optimization based on local thresholds.

The probabilistic skylines also show satisfying results (in terms of GQC and p.s.g.c).

Their main weakness lies in their sensitivity to outliers and noisy QoS data; therefore, the GQC

of Top-K compositions will be affected. Regarding the average skyline heuristic, we observe

that its performance is largely sensitive to the number of QoS attributes (r) and the sample

size (l). More specifically, the larger the number of attributes, the lower the quality of results

Remaci 101

Implementation and experimental results

(the curse of dimensionality), and the larger the sample size, the lower the performance (the

averaging process entails an information loss).

5.4.3 Performance evaluation of the Grey Wolf based- Composition (GWC) approach

In these experiments, we compare the algorithms ESR, and DSR for the local selection of

cloud services. We desire to identify the impact of the number of concurrent cloud services,

and the number of instances on the cloud service selection.

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

0

50

100

150

200

Ins tances (l)
0 50 100 150 200 250

ESR
DSR

Figure 5.10: Computation time vs. l
(n=10, r=3, m=300).

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

0

2

4

6

8

10

QoS (r)
2 4 6 8 10 12

ESR
DSR

Figure 5.11: Computation time vs. r
(n=10, m=500, l=20).

As shown in Figures 5.10 and 5.11, the computational time of ESR is much superior than

that of DSR. It is mainly due to the pairwise comparison performed by DSR. Consequently, the

complexity of DSR is O(nm2.r.l2 + n.mlogm), whereas the complexity of ESR is O(2.n.m.r.l).

Afterward, we implement the experiments on the whole selection module (i.e., local selec-

tion, and global cloud service selection). To this end, We designate two meta-heuristics Particle

Swarm Optimization (PSO) [Fethallah et al., 2012], and Genetic Algorithms (GA) [Canfora

et al., 2005] to implement the comparison. Therefore, we diversify the number of iterations

(i.e., MaxIter in algorithm 5) and fix the number of particles (i.e., PopSize) to 100 (our search

space contains 100 possible solutions for k=10 and 5002 solutions for k=m). Following that, we

set the number of iterations to 200, and we alternate the number of particles between 100 and

500 (our search space contains 252 possible solutions for k=25 and 5002 solutions for k=m).

Tables 5.8, 5.9 show the GQC values according to different iterations and particles respec-

tively. From these Tables, we deduce that the GQC value of the GWC approach with k=10 is

more efficient than both GWC with k=m, PSO, and GA. This is mainly due to the local search

that reduces the search space to (k).

In Figures 5.12 , 5.13 we give a comparison between our method (GWC), PSO, and GA

Remaci 102

Implementation and experimental results

Table 5.8: GQC vs. number of iterations for GWC (k=10), GWC (k=m), PSO.

Iterations (MaxIter)
GWC

PSO GA
k=m k=10

100 0.22 0.29 0.17 0.15

200 0.24 0.30 0.18 0.15

300 0.29 0.31 0.20 0.14

400 0.28 0.32 0.21 0.13

500 0.28 0.32 0.22 0.16

Table 5.9: GQC vs. number of particles for GWC (k=25), GWC (k=m), PSO.

Particles (PopSize)
GWC

PSO GA
k=m k=25

100 0.23 0.28 0.18 0.15

200 0.23 0.30 0.20 0.16

300 0.28 0.30 0.21 0.15

400 0.24 0.32 0.23 0.17

500 0.28 0.32 0.24 0.16

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0,5

1

1,5

2

2,5

3

3,5

Iterations
0 100 200 300 400 500 600

GWC
PSO
GA

Figure 5.12: Computation time vs. num-
ber iterations.

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0,5

1

1,5

2

2,5

3

3,5

4

Par tic les
0 100 200 300 400 500 600

GWC
PSO
GA

Figure 5.13: Computation time vs. num-
ber of particles.

in terms of the computation times. We can notice that the GWC approach is better than GA

(about 0.4 sec) and slightly more time-consuming than PSO. The main reason is that the GWC

algorithm is based on the ESR algorithm (having the complexity of O(2.n.m.r.l)); thus, the

complexity of GWC is O(2.n.m.r.l + PopSize.MaxIter(n + r.ln) + PopSize ∗ log(PopSize)).

By analyzing the results of the first study, we notice that our approach is very encouraging.

Remaci 103

Implementation and experimental results

Table 5.10: GQC and global constraint satisfiability vs. number of particles and number of services (m).

PopSize = 100 PopSize = 300 PopSize = 500

GQC p.s.g.c GQC p.s.g.c GQC p.s.g.c

m=100

GWC 0.92 100% 0.91 100% 0.94 100%

IM_ABC . [Seghir et al., 2019] 0.68 66.7% 0.56 66.7% 0.45 100%

TGA [Xu et al., 2018] 0.62 66.7% 0.67 66.7% 0.68 100%

m=300

GWC 0.92 100% 0.92 100% 0.95 100%

IM_ABC [Seghir et al., 2019] 0.45 66.7% 0.67 66.7% 0.56 100%

TGA [Xu et al., 2018] 0.63 66.7% 0.65 66.7% 0.66 66.7%

m=500

GWC 0.93 100% 0.95 100% 0.98 100%

IM_ABC [Seghir et al., 2019] 0.67 66.7% 0.56 66.7% 0.58 66.7%

TGA [Xu et al., 2018] 0.58 66.7% 0.62 66.7% 0.66 66.7%

Table 5.11: GQC and global constraint satisfiability vs. number of iterations (MaxIter) and number of
services (m).

MaxIter = 100 MaxIter = 300 MaxIter = 500

GQC p.s.g.c GQC p.s.g.c GQC p.s.g.c

m=100

GWC 0.94 100% 0.92 100% 0.93 100%

IM_ABC [Seghir et al., 2019] 0.66 66.7% 0.67 100% 0.67 100%

TGA [Xu et al., 2018] 0.64 66.7% 0.54 66.7% 0.66 66.7%

m=300

GWC 0.92 100% 0.92 100% 0.93 100%

IM_ABC [Seghir et al., 2019] 0.55 66.7% 0.57 66.7% 0.56 66.7%

TGA [Xu et al., 2018]. 0.67 66.7% 0.64 66.7% 0.64 100%

m=500

GWC 0.94 100% 0.97 100% 0.95 100%

IM_ABC [Seghir et al., 2019] 0.65 66.7% 0.63 66.7% 0.67 66.7%

TGA [Xu et al., 2018] 0.61 66.7% 0.57 100% 0.61 100%

Even if the execution time is slightly higher than PSO, it is still acceptable (less than 5 sec-

onds). Furthermore, GWC shows better results in terms of GQC, since it considers all global

constraints and nondeterministic QoS.

In Tables 5.10, and 5.11, we give a comparison between our proposal and TGA [Xu et al.,

2018] and IM_ABC [Seghir et al., 2019] approaches according to the second case study in terms

Remaci 104

Implementation and experimental results

of GQC and p.s.g.c.

From the above-mentioned tables, we observe that GWC is more effective compared to TGA

and IM_ABC approaches in terms of GQC. Furthermore, we can notice that the overall global

constraints are respected in our proposal according to the p.s.g.c values. We can conclude

that the reduction of the search space through the elimination of irrelevant services through

the Entropy Service Ranking algorithm provides significant improvement to the composition

results.

5.5 Conclusion
In this chapter, we have briefly presented the implementation of our approaches including

the datasets and the configurations. We also conducted a set of experiments to assess the effi-

ciency of our approaches. The results indicate that our approaches are extremely promising for

both Web service and cloud service composition.

Remaci 105

Chapter 6

General conclusion and perspectives.

Web services constitute a key component to build distributed and complex systems. These

latter systems needs multiple multiple interoperable and loosely coupled modules or services to

create the desired functionality. The composition process must face several challenges, such as

the exponential growth of Web services, the environment fluctuations, the QoS dynamicity and

so on. The main objective of this thesis is to solve the Web service composition under uncertain

QoS.

6.1 Summary
In the first chapter, we guided the reader to learn about the service oriented paradigm and its

various implementations and challenges. We have presented the general principles of SOA and

introduced the technology of Web services. We have also shown the two main implementations

of web services, which are : the SOAP services and the REST services. Furthermore, we

have addressed the cloud computing technology with a brief definition, then we highlighted the

relationship between cloud computing and Web services. Thereafter, we presented a survey

on the QoS-based service composition. We have detailed the main categories for solving this

problem. After that, we addressed the problem of QoS uncertainty in service composition in

a deeper way. we highlighted the main difficulties encountered in the related works of this

issue. To handle the problem of service composition with QoS fluctuations, we firstly formulate

it as a combinatorial optimization problem with global constraints, then a general framework

based on constraint programming is proposed to solve the searching task. The key idea is to

reduce the search space by eliminating the irrelevant services and selecting the optimal/near-

optimal composition that satisfies the user’s requirements (global constraints) and considering

the nondeterministic nature of QoS.

106

General conclusion and perspectives.

In the first approach, we propose two algorithms. The first one allows for sorting the services

according to the probabilistic dominance relationship, and the second one is adopted to explore

the search space by using a backtracking algorithm. The second approach is a two-stage heuris-

tic. The first one ranks the existing services based on the majority judgment heuristic. The

second stage is leveraged to build up the Top-k compositions using constraint programming.

The third approach is devoted to the Cloud service selection. We leverage the concept of En-

tropy and Cross-Entropy in a hesitant fuzzy set to sort and rank the cloud services. Afterward,

we employ an improved meta-heuristic called Grey wolf-based composition GWC to select the

best compositions. Our methods are objectively assessed using a collection of datasets ; these

datasets follow multiple probability distributions and cover several types of workflows (see the

fourth chapter). The experimental analysis and evaluation show that our approaches are effec-

tive in dealing with service composition under QoS uncertainty.

6.2 Perspectives
There are several research directions that we plan to investigate in future work.

• The service composition usually requires machine-understandable descriptions, hence, the

semantic is an important concept to solve the service composition problem. Therefore, we

intend to address the uncertain QoS-aware semantic Web service composition.

• In the real world, there a trade-offs between QoS attributes (they may conflict with each

other). In the forthcoming works, we consider addressing the dependencies and correla-

tions between both QoS user requirements and QoS of the web services in the composition

process.

• In the context of cloud service composition, there are more specific QoS attributes and

contextual aspects, that characterize the cloud services. In future work, we will consider

other QoS attributes such as Disc storage performance, I/O Memory performance, and

data center regions to refine the cloud composition.

• The service-oriented IoT is a recent and emerged research area. In fact, third parties such

as enterprises and users intend to integrate other exposed IoT services which are usually

implemented in electronic devices. Accordingly, we intend to investigate the potential of

the proposed approaches in an IoT context. Likewise, we address the QoS of the

IoT services, especially in the fluctuated environments.

Remaci 107

Appendix A

Simulation of GQC calculation

Table A.1: Calculation of GQC

u1u2u3u4u5u6 Instances
Aggregated

QoS

Step(Aggregate

(s1u11, s2u21, s3u31, s4u41, s5u51, s6u51), b1)

1 1 1 1 1 1 0.2, 0.1, 0.5, 0.2, 0.3 ,0.1 0.9 1

1 1 1 1 1 2 0.2, 0.1, 0.5, 0.2, 0.3, 0.4 1.2 1

1 1 1 1 2 1 0.2, 0.1, 0.5, 0.2, 0.6, 0.1 1 1

1 1 1 1 2 2 0.2, 0.1, 0.5, 0.2, 0.6, 0.4 1.3 1

1 1 1 2 1 1 0.2, 0.1, 0.5, 0.7, 0.3, 0.1 1.1 1

1 1 1 2 1 2 0.2 ,0.1, 0.5, 0.7, 0.3, 0.4 1.4 0

1 1 1 2 2 1 0.2, 0.1, 0.5, 0.7, 0.6, 0.1 1.1 1

1 1 1 2 2 2 0.2, 0.1, 0.5, 0.7, 0.6, 0.4 1.4 0

1 1 2 1 1 1 0.2, 0.1, 0.6, 0.2, 0.3, 0.1 1 1

1 1 2 1 1 2 0.2, 0.1, 0.6, 0.2, 0.3, 0.4 1.3 1

1 1 2 1 2 1 0.2, 0.1, 0.6, 0.2, 0.6, 0.1 1 1

1 1 2 1 2 2 0.2 ,0.1, 0.6, 0.2, 0.6, 0.4 1.3 1

1 1 2 2 1 1 0.2, 0.1, 0.6, 0.7, 0.3, 0.1 1.1 1

1 1 2 2 1 2 0.2, 0.1, 0.6, 0.7, 0.3, 0.4 1.4 0

1 1 2 2 2 1 0.2, 0.1, 0.6, 0.7, 0.6, 0.1 1.1 1

1 1 2 2 2 2 0.2, 0.1, 0.6, 0.7, 0.6, 0.4 1.4 0

1 2 1 1 1 1 0.2, 0.1, 0.5, 0.2, 0.3, 0.1 0.9 1

1 2 1 1 1 2 0.2, 0.1, 0.5, 0.2, 0.3, 0.4 1.2 1

108

Simulation of GQC calculation

1 2 1 1 2 1 0.2, 0.1, 0.5, 0.2, 0.6, 0.1 1 1

1 2 1 1 2 2 0.2 ,0.1, 0.5, 0.2, 0.6, 0.4 1.3 1

1 2 1 2 1 1 0.2, 0.1, 0.5, 0.7, 0.3, 0.1 1.1 1

1 2 1 2 1 2 0.2, 0.1, 0.5, 0.2, 0.3, 0.4 1.2 1

1 2 1 2 2 1 0.2, 0.1, 0.5, 0.7, 0.6, 0.1 1.1 1

1 2 1 2 2 2 0.2 ,0.1, 0.5, 0.7, 0.6, 0.4 1.4 0

1 2 2 1 1 1 0.2, 0.1, 0.6, 0.2, 0.3, 0.1 1 1

1 2 2 1 1 2 0.2, 0.1, 0.6, 0.2, 0.3, 0.4 1.3 1

1 2 2 1 2 1 0.2, 0.1, 0.6, 0.2, 0.6, 0.1 1 1

1 2 2 1 2 2 0.2 ,0.1, 0.6, 0.2, 0.6, 0.4 1.3 1

1 2 2 2 1 1 0.2, 0.1, 0.6, 0.7, 0.3, 0.1 1.1 1

1 2 2 2 1 2 0.2, 0.1, 0.6, 0.7, 0.3, 0.4 1.4 0

1 2 2 2 2 1 0.2, 0.1, 0.6, 0.7, 0.6, 0.1 1.1 1

1 2 2 2 2 2 0.2 ,0.1, 0.6, 0.7, 0.6, 0.4 1.4 0

2 1 1 1 1 1 0.5, 0.1, 0.5, 0.2, 0.3 ,0.1 1.2 1

2 1 1 1 1 2 0.5, 0.1, 0.5, 0.2, 0.3, 0.4 1.5 0

2 1 1 1 2 1 0.5, 0.1, 0.5, 0.2, 0.6, 0.1 1.3 1

2 1 1 1 2 2 0.5, 0.1, 0.5, 0.2, 0.6, 0.4 1.6 0

2 1 1 2 1 1 0.5, 0.1, 0.5, 0.7, 0.3, 0.1 1.4 0

2 1 1 2 1 2 0.5 ,0.1, 0.5, 0.7, 0.3, 0.4 1.7 0

2 1 1 2 2 1 0.5, 0.1, 0.5, 0.7, 0.6, 0.1 1.4 0

2 1 1 2 2 2 0.5, 0.1, 0.5, 0.7, 0.6, 0.4 1.7 0

2 1 2 1 1 1 0.5, 0.1, 0.6, 0.2, 0.3, 0.1 1.3 1

2 1 2 1 1 2 0.5, 0.1, 0.6, 0.2, 0.3, 0.4 1.6 0

2 1 2 1 2 1 0.5, 0.1, 0.6, 0.2, 0.6, 0.1 1.3 1

2 1 2 1 2 2 0.5 ,0.1, 0.6, 0.2, 0.6, 0.4 1.6 0

2 1 2 2 1 1 0.5, 0.1, 0.6, 0.7, 0.3, 0.1 1.4 0

2 1 2 2 1 2 0.5, 0.1, 0.6, 0.7, 0.3, 0.4 1.7 0

2 1 2 2 2 1 0.5, 0.1, 0.6, 0.7, 0.6, 0.1 1.4 0

2 1 2 2 2 2 0.5, 0.1, 0.6, 0.7, 0.6, 0.4 1.7 0

Remaci 109

Simulation of GQC calculation

2 2 1 1 1 1 0.5, 0.1, 0.5, 0.2, 0.3, 0.1 1.2 1

2 2 1 1 1 2 0.5, 0.1, 0.5, 0.2, 0.3, 0.4 1.5 0

2 2 1 1 2 1 0.5, 0.1, 0.5, 0.2, 0.6, 0.1 1.3 1

2 2 1 1 2 2 0.5 ,0.1, 0.5, 0.2, 0.6, 0.4 1.6 0

2 2 1 2 1 1 0.5, 0.1, 0.5, 0.7, 0.3, 0.1 1.4 0

2 2 1 2 1 2 0.5, 0.1, 0.5, 0.7, 0.3, 0.4 1.7 0

2 2 1 2 2 1 0.5, 0.1, 0.5, 0.7, 0.6, 0.1 1.4 0

2 2 1 2 2 2 0.5 ,0.1, 0.5, 0.7, 0.6, 0.4 1.7 0

2 2 2 1 1 1 0.5, 0.1, 0.6, 0.2, 0.3, 0.1 1.3 1

2 2 2 1 1 2 0.5, 0.1, 0.6, 0.2, 0.3, 0.4 1.6 0

2 2 2 1 2 1 0.5, 0.1, 0.6, 0.2, 0.6, 0.1 1.3 1

2 2 2 1 2 2 0.5 ,0.1, 0.6, 0.2, 0.6, 0.4 1.6 0

2 2 2 2 1 1 0.5, 0.1, 0.6, 0.7, 0.3, 0.1 1.4 0

2 2 2 2 1 2 0.5, 0.1, 0.6, 0.7, 0.3, 0.4 1.7 0

2 2 2 2 2 1 0.5, 0.1, 0.6, 0.7, 0.6, 0.1 1.4 0

2 2 2 2 2 2 0.5 ,0.1, 0.6, 0.7, 0.6, 0.4 1.7 0

Remaci 110

Appendix B

Academic Achievements

• Journal Paper

– Zeyneb Yasmina Remaci, Fethallah Hadjila, and Fadoua Lahfa. Web service se-

lection and composition based on uncertain quality of service. Concurrency and

Computation: Practice and Experience, 34(1):e6531, 2022.

• Conference Papers:

– Zeyneb Yasmina Remaci, Fethallah Hadjila, and Fedoua Didi. Selecting web

service compositions under uncertain qos. In Computational Intelligence and Its

Applications - 6th IFIP TC 5 International Conference, CIIA 2018, Oran, Algeria,

May 8-10, 2018, Proceedings, volume 522 of IFIP Advances in Information and

Communication Technology, pages 622–634. Springer, 2018.

– Zeyneb Yasmina Remaci, Fethallah Hadjila , Abdelhak Echialli, and Mohammed

Merzoug. Dynamic web service selection based on score voting. In International

Conference on Computing Systems and Applications, pages 185–195. Springer,

2020.

111

Bibliography

[Yager, 1977] Yager, R. R. Multiple objective decision-making using fuzzy sets. International

Journal of Man-Machine Studies, 9(4):375–382, 1977.

[Guttman, 1984] Guttman, A. R-trees: A dynamic index structure for spatial searching. In

Proceedings of the 1984 ACM SIGMOD international conference on Management of

data, pages 47–57. 1984. doi:10.1145/602259.602266.

[Mareschal et al., 1984] Mareschal, B., Brans, J. P., and Vincke, P. Promethee: a new family of

outranking methods in multicriteria analysis. 1984.

[Schaffer, 1985] Schaffer, J. D. Multiple objective optimization with vector evaluated genetic

algorithms. In Proceedings of the 1st International Conference on Genetic Algorithms,

page 93–100. L. Erlbaum Associates Inc., USA, 1985. ISBN 0805804269.

[Glover, 1986] Glover, F. Future paths for integer programming and links to artificial intelli-

gence. Computers & operations research, 13(5):533–549, 1986.

[Hollingsworth and Hampshire, 1995] Hollingsworth, D. and Hampshire, U. Workflow man-

agement coalition: The workflow reference model. Document Number TC00-1003,

19(16):224, 1995.

[Zadeh, 1996] Zadeh, L. A. Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected

papers by Lotfi A Zadeh, pages 394–432. World Scientific, 1996.

[Fielding, 2000] Fielding, R. T. Architectural styles and the design of network-based software

architectures. University of California, Irvine, 2000.

[Bochmann et al., 2001] Bochmann, G. v., Kerhervé, B., Lutfiyya, H., Salem, M.-V. M., and

Ye, H. Introducing qos to electronic commerce applications. In International Symposium

on Electronic Commerce, pages 138–147. Springer, 2001.

112

BIBLIOGRAPHY

[Börzsönyi et al., 2001] Börzsönyi, S., Kossmann, D., and Stocker, K. The skyline operator. In

Proceedings 17th international conference on data engineering, pages 421–430. IEEE,

2001. doi:10.1109/ICDE.2001.914855.

[Christensen et al., 2001] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al.

Web services description language (wsdl) 1.1. 2001.

[Leymann, 2001] Leymann, F. Web Services Flow Language (WSFL 1.0). 2001.

[Arkin, 2002] Arkin, A. Business process modeling language (bpml). http://www. bpmi.

org/bpml_prop. esp, 2002.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast and elitist mul-

tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,

6(2):182–197, 2002.

[Fielding and Taylor, 2002] Fielding, R. T. and Taylor, R. N. Principled design of the modern

web architecture. ACM Trans. Internet Technol., 2(2):115–150, 2002. ISSN 1533-5399.

doi:10.1145/514183.514185.

[Apt, 2003] Apt, K. Principles of constraint programming. Cambridge university press, 2003.

[Booth, 2003] Booth, D. Web services architecture. http://www. w3. org/TR/2003/WD-ws-

arch-20030808/# whatis, 2003.

[Kalepu et al., 2003] Kalepu, S., Krishnaswamy, S., and Loke, S. W. Verity: a qos metric

for selecting web services and providers. In Fourth International Conference on Web

Information Systems Engineering Workshops, 2003. Proceedings., pages 131–139. IEEE,

2003.

[KangChan et al., 2003] KangChan, L., JongHong, J., WonSeok, L., Seong-Ho, J., and Sang-

Won, P. Qos for web services: Requirements and possible approaches. W3C Working

Group Note, 2003.

[Kavantzas et al., 2003] Kavantzas, N., Olsson, G., Mischkinsky, J., and Chapman, M. Web

services choreography description. Language (WS-CDL), 1(2):3, 2003.

[Peltz, 2003] Peltz, C. Web services orchestration and choreography. Computer, 36(10):46–52,

2003. ISSN 0018-9162. doi:10.1109/MC.2003.1236471.

Remaci 113

BIBLIOGRAPHY

[Ran, 2003] Ran, S. A model for web services discovery with qos. ACM Sigecom exchanges,

4(1):1–10, 2003.

[Cardoso et al., 2004] Cardoso, J., Sheth, A., Miller, J., Arnold, J., and Kochut, K. Quality of

service for workflows and web service processes. Journal of web semantics, 1(3):281–

308, 2004.

[Electronic, 2004] Electronic, E. secure municipal administration for european citizens-

emayor. 6th Framework Programme, 2004.

[Liu et al., 2004] Liu, Y., Ngu, A. H., and Zeng, L. Z. Qos computation and policing in dynamic

web service selection. Proceedings of the 13th International World Wide Web Conference

on Alternate Track Papers & Posters, pages 66–73, 2004. doi:10.1145/1013367.1013379.

[Lopez-Alonso et al., 2004] Lopez-Alonso, V., Sanchez, J., Liebana, I., Hermosilla, I., and

Martin-Sanchez, F. Inbiomed: a platform for the integration and sharing of genetic, clin-

ical and epidemiological data oriented to biomedical research. In Proceedings. Fourth

IEEE Symposium on Bioinformatics and Bioengineering, pages 222–226. 2004. doi:

10.1109/BIBE.2004.1317346.

[Rao and Su, 2004] Rao, J. and Su, X. A survey of automated web service composition meth-

ods. In International Workshop on Semantic Web Services and Web Process Composition,

pages 43–54. Springer, 2004.

[Canfora et al., 2005] Canfora, G., Di Penta, M., Esposito, R., and Villani, M. L. An approach

for qos-aware service composition based on genetic algorithms. In Proceedings of the

7th annual conference on Genetic and evolutionary computation, pages 1069–1075. New

York, NY, USA, 2005.

[Liberty and Hurwitz, 2005] Liberty, J. and Hurwitz, D. Programming ASP. NET: Building

Web Applications and Services with ASP. NET 2.0. " O’Reilly Media, Inc.", 2005.

[del Rey et al., 2005] del Rey, D. P., Crespo, J., Anguita, A., Ordóñez, J. L. P., Dorado, J.,

Bueno, G., Feliú, V., Estruch, A., and Heredia, J. A. Biomedical image processing inte-

gration through inbiomed: A web services-based platform. In International Symposium

on Biological and Medical Data Analysis, pages 34–43. Springer, 2005.

Remaci 114

BIBLIOGRAPHY

[MacKenzie et al., 2006] MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R.,

and Hamilton, B. A. Reference model for service oriented architecture 1.0. OASIS

standard, 12(S 18), 2006.

[Al-Masri and Mahmoud, 2007] Al-Masri, E. and Mahmoud, Q. H. Discovering the best web

service. Proceedings of the 16th ACM International Conference on World Wide Web,

pages 1257–1258, 2007. doi:10.1145/1242572.1242795.

[Ardagna and Pernici, 2007] Ardagna, D. and Pernici, B. Adaptive service composition in flex-

ible processes. IEEE Transactions on software engineering, 33(6):369–384, 2007.

[Balinski and Laraki, 2007] Balinski, M. and Laraki, R. A theory of measuring, electing, and

ranking. Proceedings of the National Academy of Sciences, 104(21):8720–8725, 2007.

[Blanco et al., 2007] Blanco, P., Kotermanski, R., and Merson, P. Evaluating a service-oriented

architecture. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFT-

WARE ENGINEERING INST, 2007.

[Cardellini et al., 2007] Cardellini, V., Casalicchio, E., Grassi, V., and Presti, F. L. Flow-based

service selection forweb service composition supporting multiple qos classes. In IEEE

International Conference on Web Services (ICWS 2007), pages 743–750. IEEE, 2007.

[Dehne and DiMare, 2007] Dehne, D. and DiMare, J. Service-oriented architecture-unlocking

hidden value in insurance systems. IBM Global Business Service, 8(7), 2007.

[Papazoglou et al., 2007] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F.

Service-oriented computing: State of the art and research challenges. Computer,

40(11):38–45, 2007.

[Pei et al., 2007] Pei, J., Jiang, B., Lin, X., and Yuan, Y. Probabilistic skylines on uncertain

data. In Proceedings of the 33rd international conference on Very large data bases,

pages 15–26. Citeseer, 2007.

[Al-Masri and Mahmoud, 2008] Al-Masri, E. and Mahmoud, Q. H. Toward quality-driven web

service discovery. IT Professional, 10(3):24–28, 2008.

[Branke et al., 2008] Branke, J., Branke, J., Deb, K., Miettinen, K., and Slowiński, R. Multi-

objective optimization: Interactive and evolutionary approaches, volume 5252. Springer

Science & Business Media, 2008.

Remaci 115

BIBLIOGRAPHY

[Dustdar and Papazoglou, 2008] Dustdar, S. and Papazoglou, M. P. Services and service

composition–an introduction (services und service komposition–eine einführung). IT-

Information Technology, 50(2):86–92, 2008.

[Marks and Bell, 2008] Marks, E. A. and Bell, M. Service-oriented architecture: a planning

and implementation guide for business and technology. John Wiley & Sons, 2008.

[Papazoglou, 2008] Papazoglou, M. Web services: principles and technology. Pearson Educa-

tion, 2008.

[Tong, 2008] Tong, K. I. K. Developing Web Services with Apache Axis2. Tip Tec Develop-

ment, 2008.

[Alrifai and Risse, 2009] Alrifai, M. and Risse, T. Combining global optimization with local

selection for efficient qos-aware service composition. In Proceedings of the 18th inter-

national conference on World wide web, pages 881–890. New York, NY, USA, 2009.

[Georgakopoulos and Papazoglou, 2009] Georgakopoulos, D. and Papazoglou, M. Service-

oriented computing. Sirsi) i9780262072960. 2009.

[Talbi, 2009] Talbi, E.-G. Metaheuristics: from design to implementation, volume 74. John

Wiley & Sons, 2009.

[Torra and Narukawa, 2009] Torra, V. and Narukawa, Y. On hesitant fuzzy sets and decision.

In 2009 IEEE international conference on fuzzy systems, pages 1378–1382. IEEE, 2009.

[Wang and Deters, 2009] Wang, Q. and Deters, R. Soa’s last mile-connecting smartphones to

the service cloud. In 2009 IEEE International Conference on Cloud Computing, pages

80–87. 2009. doi:10.1109/CLOUD.2009.73.

[Al-Shargabi et al., 2010] Al-Shargabi, B., Sabri, A., and El Sheikh, A. Web service composi-

tion survey: State of the art review. Recent Patents on Computer Science, 3(2):91–107,

2010.

[Alrifai et al., 2010] Alrifai, M., Skoutas, D., and Risse, T. Selecting skyline services for qos-

based web service composition. In Proceedings of the 19th international conference on

World wide web, pages 11–20. 2010. doi:10.1145/1772690.1772693.

Remaci 116

BIBLIOGRAPHY

[Liu et al., 2010] Liu, H., Zhong, F., Ouyang, B., and Wu, J. An approach for qos-aware web

service composition based on improved genetic algorithm. In 2010 International confer-

ence on web information systems and mining, volume 1, pages 123–128. IEEE, 2010.

[Luo et al., 2010] Luo, J., Li, W., Liu, B., Zheng, X., and Dong, F. Multi-agent coordination for

service composition. In Agent-based service-oriented computing, pages 47–80. Springer,

2010.

[Torra, 2010] Torra, V. Hesitant fuzzy sets. International Journal of Intelligent Systems,

25(6):529–539, 2010.

[Yu and Bouguettaya, 2010] Yu, Q. and Bouguettaya, A. Computing service skyline from

uncertain qows. IEEE Transactions on Services Computing, 3(1):16–29, 2010. doi:

10.1109/TSC.2010.7.

[Zheng et al., 2010] Zheng, Z., Zhang, Y., and Lyu, M. R. Distributed qos evaluation for real-

world web services. In 2010 IEEE International Conference on Web Services, pages

83–90. 2010. doi:10.1109/ICWS.2010.10.

[Ai et al., 2011] Ai, L., Tang, M., and Fidge, C. Resource allocation and scheduling of mul-

tiple composite web services in cloud computing using cooperative coevolution genetic

algorithm. In International Conference on Neural Information Processing, volume 7063,

pages 258–267. Springer, Berlin, Heidelberg, 2011. ISBN 978-3-642-24957-0. doi:

10.1007/978-3-642-24958-7_30.

[Benouaret et al., 2011] Benouaret, K., Benslimane, D., and Hadjali, A. On the use of fuzzy

dominance for computing service skyline based on qos. In 2011 IEEE International

Conference on Web Services, pages 540–547. IEEE, 2011. doi:10.1109/ICWS.2011.93.

[Huang et al., 2011] Huang, L., Zhang, X., Huang, Y., Wang, G., and Wang, R. A qos opti-

mization for intelligent and dynamic web service composition based on improved pso

algorithm. In 2011 Second international conference on networking and distributed com-

puting, pages 214–217. IEEE, 2011.

[Jamal and Deters, 2011] Jamal, S. and Deters, R. Using a cloud-hosted proxy to support mo-

bile consumers of restful services. Procedia Computer Science, 5:625–632, 2011.

Remaci 117

BIBLIOGRAPHY

[Karim et al., 2011] Karim, R., Ding, C., and Chi, C.-H. An enhanced promethee model for

qos-based web service selection. In 2011 IEEE international conference on services

computing, pages 536–543. IEEE, 2011.

[Mell et al., 2011] Mell, P., Grance, T., et al. The nist definition of cloud computing. 2011.

[Xia and Xu, 2011] Xia, M. and Xu, Z. Hesitant fuzzy information aggregation in decision

making. International journal of approximate reasoning, 52(3):395–407, 2011.

[Alrifai et al., 2012] Alrifai, M., Risse, T., and Nejdl, W. A hybrid approach for efficient web

service composition with end-to-end qos constraints. ACM Transactions on the Web

(TWEB), 6(2):1–31, 2012. doi:10.1145/2180861.2180864.

[Benouaret et al., 2012] Benouaret, K., Benslimane, D., and Hadjali, A. Selecting skyline web

services from uncertain qos. In 2012 IEEE Ninth International Conference on Services

Computing, pages 523–530. IEEE, 2012. doi:10.1109/SCC.2012.84.

[Fethallah et al., 2012] Fethallah, H., Chikh, M. A., Mohammed, M., and Zineb, K. Qos-aware

service selection based on swarm particle optimization. In 2012 International Conference

on Information Technology and e-Services, pages 1–6. IEEE, 2012. doi:10.1109/ICITeS.

2012.6216594.

[Liu et al., 2012] Liu, M., Wang, M., Shen, W., Luo, N., and Yan, J. A quality of service

(qos)-aware execution plan selection approach for a service composition process. Future

Generation Computer Systems, 28(7):1080–1089, 2012.

[Nadanam and Rajmohan, 2012] Nadanam, P. and Rajmohan, R. Qos evaluation for web ser-

vices in cloud computing. In 2012 Third International Conference on Computing, Com-

munication and Networking Technologies (ICCCNT’12), pages 1–8. IEEE, 2012.

[Wagh and Thool, 2012] Wagh, K. and Thool, R. A comparative study of soap vs rest web

services provisioning techniques for mobile host. Journal of Information Engineering

and Applications, 2(5):12–16, 2012.

[Wang et al., 2012] Wang, L., Shen, J., and Yong, J. A survey on bio-inspired algorithms for

web service composition. In Proceedings of the 2012 IEEE 16th International Confer-

ence on Computer Supported Cooperative Work in Design (CSCWD), pages 569–574.

2012. doi:10.1109/CSCWD.2012.6221875.

Remaci 118

BIBLIOGRAPHY

[Xu and Xia, 2012] Xu, Z. and Xia, M. Hesitant fuzzy entropy and cross-entropy and their

use in multiattribute decision-making. International Journal of Intelligent Systems,

27(9):799–822, 2012.

[Zhao et al., 2012] Zhao, S., Wang, L., Ma, L., and Wen, Z. An improved ant colony opti-

mization algorithm for qos-aware dynamic web service composition. 2012 International

Conference on Industrial Control and Electronics Engineering, pages 1998–2001, 2012.

[Barry and Dick, 2013] Barry, D. K. and Dick, D., editors. Web Services, Service-Oriented

Architectures, and Cloud Computing (Second Edition). The Savvy Manager’s Guides.

Morgan Kaufmann, Boston, second edition edition, 2013. ISBN 978-0-12-398357-2.

doi:https://doi.org/10.1016/B978-0-12-398357-2.00019-1.

[Tan and Zhou, 2013] Tan, W. and Zhou, M. Business and Scientific Workflows: A Web Service-

Oriented Approach, volume 5. John Wiley & Sons, 2013.

[Yu and Bouguettaya, 2013] Yu, Q. and Bouguettaya, A. Efficient service skyline computation

for composite service selection. IEEE Transactions on Knowledge and Data Engineer-

ing, 25(4):776–789, 2013. doi:10.1109/TKDE.2011.268.

[Bhattacharya and Chatterjee, 2014] Bhattacharya, A. and Chatterjee, T. Goal Programming

Based Multi-Objective Optimization Techniques of Task Allocation in Distributed Envi-

ronment. Lulu. com, 2014.

[Gabrel et al., 2014] Gabrel, V., Manouvrier, M., and Murat, C. Optimal and automatic trans-

actional web service composition with dependency graph and 0-1 linear programming. In

International Conference on Service-Oriented Computing, volume 8831, pages 108–122.

Springer, Berlin, Heidelberg, 2014.

[Hadjila, 2014] Hadjila, F. Composition et interopération des services web sémantiques. These,

2014.

[Kyusakov, 2014] Kyusakov, R. Efficient WEB services for end-to-end interoperability of em-

bedded systems. Ph.D. thesis, Luleå tekniska universitet, 2014.

[Merzoug et al., 2014] Merzoug, M., Chikh, M. A., and Fethallah, H. Qos-aware web ser-

vice selection based on harmony search. In 2014 4th International Symposium ISKO-

Remaci 119

BIBLIOGRAPHY

Maghreb: Concepts and Tools for knowledge Management (ISKO-Maghreb), pages 1–6.

IEEE, 2014.

[Mirjalili et al., 2014] Mirjalili, S., Mirjalili, S. M., and Lewis, A. Grey wolf optimizer. Ad-

vances in engineering software, 69:46–61, 2014.

[Moghaddam and Davis, 2014] Moghaddam, M. and Davis, J. G. Service selection in web

service composition: A comparative review of existing approaches. Web Services Foun-

dations, pages 321–346, 2014.

[Wen et al., 2014] Wen, S., Tang, C., Li, Q., Chiu, D. K. W., Liu, A., and Han, X. Probabilistic

top-k dominating services composition with uncertain qos. Service Oriented Computing

and Applications, 8(1):91–103, 2014. doi:10.1007/s11761-013-0152-4.

[Ampaporn and Gertphol, 2015] Ampaporn, P. and Gertphol, S. Performance measurement of

simpledb apis for different data consistency models. In 2015 International Computer

Science and Engineering Conference (ICSEC), pages 1–6. IEEE, 2015.

[Halfaoui et al., 2015] Halfaoui, A., Hadjila, F., and Didi, F. Qos-aware web services selec-

tion based on fuzzy dominance. In IFIP International Conference on Computer Sci-

ence and its Applications, volume 456, pages 291–300. Springer, 2015. doi:10.1007/

978-3-319-19578-0_24.

[Hwang et al., 2015] Hwang, S.-Y., Hsu, C.-C., and Lee, C.-H. Service selection for web ser-

vices with probabilistic qos. IEEE Transactions on Services Computing, 8(3):467–480,

2015.

[Mostafa and Zhang, 2015] Mostafa, A. and Zhang, M. Multi-objective service composition in

uncertain environments. IEEE Transactions on Services Computing, pages 1–1, 2015.

[Tripathy et al., 2015] Tripathy, A. K., Patra, M. R., and Pradhan, S. K. Dynamic qos require-

ment aware service composition and adaptation. In Service-Oriented Computing-ICSOC

2014 Workshops, pages 378–385. Springer, 2015.

[Baranwal and Vidyarthi, 2016] Baranwal, G. and Vidyarthi, D. P. A cloud service selection

model using improved ranked voting method. Concurrency and Computation: Practice

and Experience, 28(13):3540–3567, 2016. doi:10.1002/cpe.3740.

Remaci 120

BIBLIOGRAPHY

[Eswaramoorthy et al., 2016] Eswaramoorthy, S., Sivakumaran, N., and Sekaran, S. Grey wolf

optimization based parameter selection for support vector machines. COMPEL-The in-

ternational journal for computation and mathematics in electrical and electronic engi-

neering, 35:1513–1523, 2016.

[Fekih et al., 2016] Fekih, H., Mtibaa, S., and Bouamama, S. User-centric web services com-

position approach based on swarm intelligence. In 2016 IEEE 18th International Con-

ference on High Performance Computing and Communications; IEEE 14th International

Conference on Smart City; IEEE 2nd International Conference on Data Science and

Systems (HPCC/SmartCity/DSS), pages 1087–1094. IEEE, 2016.

[Kim et al., 2016] Kim, M., Oh, B., Jung, J., and Lee, K. Outlier-robust web service selection

based on a probabilistic qos model. IJWGS, 12(2):162–181, 2016. doi:10.1504/IJWGS.

2016.076619.

[Serrai et al., 2016] Serrai, W., Abdelli, A., Mokdad, L., and Hammal, Y. An efficient approach

for web service selection. In 2016 IEEE Symposium on Computers and Communication

(ISCC), pages 167–172. IEEE, 2016. doi:10.1109/ISCC.2016.7543734.

[Sun et al., 2016] Sun, R., Zhang, B., and Liu, T. Ranking web service for high quality

by applying improved entropy-topsis method. In 2016 17th IEEE/ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing (SNPD), pages 249–254. IEEE, 2016.

[Wang et al., 2016] Wang, Y., Song, Y., and Liang, M. A skyline-based efficient web service

selection method supporting frequent requests. 20th IEEE International Conference on

Computer Supported Cooperative Work in Design, CSCWD 2016, Nanchang, China,

May 4-6, 2016, pages 328–333, 2016. doi:10.1109/CSCWD.2016.7566009.

[Zhang et al., 2016] Zhang, S., Zhou, Y., Li, Z., and Pan, W. Grey wolf optimizer for unmanned

combat aerial vehicle path planning. Adv. Eng. Softw., 99:121–136, 2016. doi:10.1016/j.

advengsoft.2016.05.015.

[Bekkouche et al., 2017] Bekkouche, A., Benslimane, S. M., Huchard, M., Tibermacine, C.,

Hadjila, F., and Merzoug, M. Qos-aware optimal and automated semantic web ser-

vice composition with user’s constraints. Service Oriented Computing and Applications,

11(2), pages 183–201, 2017.

Remaci 121

BIBLIOGRAPHY

[Bian et al., 2017] Bian, X.-Q., Zhang, Q., Zhang, L., and Chen, J. A grey wolf optimizer-

based support vector machine for the solubility of aromatic compounds in supercritical

carbon dioxide. Chemical Engineering Research and Design, 123:284–294, 2017.

[Elsayed et al., 2017] Elsayed, D. H., Nasr, E. S., Alaa El Din, M., and Gheith, M. H. A new

hybrid approach using genetic algorithm and q-learning for qos-aware web service com-

position. In International Conference on Advanced Intelligent Systems and Informatics,

pages 537–546. Springer, 2017. doi:10.1007/978-3-319-64861-3_50.

[Paik et al., 2017] Paik, H.-Y., Lemos, A. L., Barukh, M. C., Benatallah, B., and Natarajan, A.

Web service implementation and composition techniques, volume 256. Springer, 2017.

[Parsian et al., 2017] Parsian, A., Ramezani, M., and Ghadimi, N. A hybrid neural network-

gray wolf optimization algorithm for melanoma detection. Biomedical Research (0970-

938X), 28(8), 2017.

[Wang et al., 2017] Wang, Y., He, Q., Ye, D., and Yang, Y. Service selection based on corre-

lated qos requirements. In 2017 IEEE International Conference on Services Computing

(SCC), pages 241–248. 2017. doi:10.1109/SCC.2017.38.

[Fan et al., 2018] Fan, S.-L., Yang, Y.-B., and Wang, X.-X. Efficient web service composition

via knapsack-variant algorithm. In International Conference on Services Computing,

pages 51–66. Springer, 2018.

[Faris et al., 2018] Faris, H., Aljarah, I., Al-Betar, M. A., and Mirjalili, S. Grey wolf opti-

mizer: a review of recent variants and applications. Neural computing and applications,

30(2):413–435, 2018.

[Jabbar et al., 2018] Jabbar, S., Khan, M., Silva, B. N., and Han, K. A rest-based industrial

web of things’ framework for smart warehousing. The Journal of Supercomputing,

74(9):4419–4433, 2018.

[Li et al., 2018] Li, Y., Hu, J., Wu, Z., Liu, C., Peng, F., and Zhang, Y. Research on qos service

composition based on coevolutionary genetic algorithm. Soft Computing, 22(23):7865–

7874, 2018.

Remaci 122

BIBLIOGRAPHY

[Ouadah et al., 2018] Ouadah, A., Hadjali, A., Nader, F., and Benouaret, K. Sefap: an effi-

cient approach for ranking skyline web services. Journal of Ambient Intelligence and

Humanized Computing, 10(2):709–725, 2018. ISSN 1868-5145.

[Permadi and Santoso, 2018] Permadi, V. A. and Santoso, B. J. Efficient skyline-based web

service composition with qos-awareness and budget constraint. In 2018 International

Conference on Information and Communications Technology (ICOIACT), pages 855–

860. IEEE, 2018.

[Purohit and Kumar, 2018] Purohit, L. and Kumar, S. A classification based web service se-

lection approach. IEEE Transactions on Services Computing, pages 1–1, 2018. ISSN

1939-1374. doi:10.1109/TSC.2018.2805352.

[Remaci et al., 2018] Remaci, Z. Y., Hadjila, F., and Fedoua, D. Selecting web service com-

positions under uncertain qos. In Computational Intelligence and Its Applications - 6th

IFIP TC 5 International Conference, CIIA 2018, Oran, Algeria, May 8-10, 2018, Pro-

ceedings, volume 522 of IFIP Advances in Information and Communication Technology,

pages 622–634. Springer, 2018. doi:10.1007/978-3-319-89743-1_53.

[Serrai et al., 2018] Serrai, W., Abdelli, A., Mokdad, L., and Serrai, A. How to deal with qos

value constraints in mcdm based web service selection. Concurrency and Computation:

Practice and Experience, e4512, 2018.

[Xu et al., 2018] Xu, J., Guo, L., Zhang, R., Hu, H., Wang, F., and Pei, Z. Qos-aware service

composition using fuzzy set theory and genetic algorithm. Wireless Personal Communi-

cations, 102(2):1009–1028, 2018.

[Al-Faifi et al., 2019] Al-Faifi, A., Song, B., Hassan, M. M., Alamri, A., and Gumaei, A. A

hybrid multi criteria decision method for cloud service selection from smart data. Future

Generation Computer Systems, 93:43–57, 2019.

[Dahan et al., 2019] Dahan, F., Mathkour, H., and Arafah, M. Two-step artificial bee colony

algorithm enhancement for qos-aware web service selection problem. IEEE Access,

7:21787–21794, 2019.

Remaci 123

BIBLIOGRAPHY

[Ghobaei-Arani and Souri, 2019] Ghobaei-Arani, M. and Souri, A. Lp-wsc: a linear program-

ming approach for web service composition in geographically distributed cloud environ-

ments. The Journal of Supercomputing, 75(5):2603–2628, 2019.

[Jatoth et al., 2019] Jatoth, C., Gangadharan, G., Fiore, U., and Buyya, R. Selcloud: a hybrid

multi-criteria decision-making model for selection of cloud services. Soft Computing,

23(13):4701–4715, 2019.

[Liang et al., 2019] Liang, X., Lu, Q., and Li, M. Research on web service selection based on

improved skyline algorithm. In 2019 IEEE Intl Conf on Parallel & Distributed Process-

ing with Applications, Big Data & Cloud Computing, Sustainable Computing & Com-

munications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),

pages 1323–1328. IEEE, 2019.

[Naseri and Navimipour, 2019] Naseri, A. and Navimipour, N. J. A new agent-based method

for qos-aware cloud service composition using particle swarm optimization algorithm.

Journal of Ambient Intelligence and Humanized Computing, 10(5):1851–1864, 2019.

[Seghir et al., 2019] Seghir, F., Khababa, A., and Semchedine, F. An interval-based multi-

objective artificial bee colony algorithm for solving the web service composition under

uncertain qos. The Journal of Supercomputing, 75(9):5622–5666, 2019.

[Benomar et al., 2020] Benomar, Z., Longo, F., Merlino, G., and Puliafito, A. Enabling secure

restful web services in iot using openstack. In 2020 IEEE 17th International Conference

on Mobile Ad Hoc and Sensor Systems (MASS), pages 410–417. IEEE, 2020.

[Hadjila et al., 2020] Hadjila, F., Belabed, A., and Merzoug, M. Efficient web service selection

with uncertain qos. International Journal of Computational Science and Engineering,

21(3):470–482, 2020.

[Haytamy and Omara, 2020] Haytamy, S. and Omara, F. Enhanced qos-based service compo-

sition approach in multi-cloud environment. In 2020 International Conference on Inno-

vative Trends in Communication and Computer Engineering (ITCE), pages 33–38. IEEE,

2020.

Remaci 124

BIBLIOGRAPHY

[Hosseinzadeh et al., 2020] Hosseinzadeh, M., Tho, Q. T., Ali, S., Rahmani, A. M., Souri, A.,

Norouzi, M., and Huynh, B. A hybrid service selection and composition model for cloud-

edge computing in the internet of things. IEEE Access, 8:85939–85949, 2020.

[Li et al., 2020] Li, C., Li, J., and Chen, H. A meta-heuristic-based approach for qos-aware

service composition. IEEE Access, 8:69579–69592, 2020.

[Ranjan and Sahoo, 2020] Ranjan, A. and Sahoo, B. Web service selection mechanism in

service-oriented architecture based on publish-subscribe pattern in fog environment. In

Artificial Intelligence and Evolutionary Computations in Engineering Systems, pages

269–281. Springer, 2020.

[Remaci et al., 2020] Remaci, Z. Y., Hadjila, F., Echialli, A., and Merzoug, M. Dynamic web

service selection based on score voting. In International Conference on Computing Sys-

tems and Applications, pages 185–195. Springer, 2020.

[Youssef, 2020] Youssef, A. E. An integrated mcdm approach for cloud service selection based

on topsis and bwm. IEEE Access, 8:71851–71865, 2020.

[Barkat et al., 2021] Barkat, A., Kazar, O., and Seddiki, I. Framework for web service compo-

sition based on qos in the multi cloud environment. International Journal of Information

Technology, 13(2):459–467, 2021.

[Dahan, 2021] Dahan, F. An effective multi-agent ant colony optimization algorithm for qos-

aware cloud service composition. IEEE Access, 9:17196–17207, 2021. doi:10.1109/

ACCESS.2021.3052907.

[Dahan et al., 2021] Dahan, F., El Hindi, K., Ghoneim, A., and Alsalman, H. An enhanced ant

colony optimization based algorithm to solve qos-aware web service composition. IEEE

Access, 9:34098–34111, 2021.

[Polska et al., 2021] Polska, O., Kudermetov, R., Alsayaydeh, J. A. J., and Shkarupylo, V.

Qos-aware web-services ranking: Normalization techniques comparative analysis for lsp

method. ARPN Journal of Engineering and Applied Sciences, 16(2):248–254, 2021.

[Prakash and Kumar, 2021] Prakash, J. and Kumar, T. V. A multi-objective approach for ma-

terialized view selection. In Research Anthology on Multi-Industry Uses of Genetic Pro-

gramming and Algorithms, pages 512–533. IGI Global, 2021.

Remaci 125

BIBLIOGRAPHY

[Thangaraj and Balasubramanie, 2021] Thangaraj, P. and Balasubramanie, P. Meta heuristic

qos based service composition for service computing. Journal of Ambient Intelligence

and Humanized Computing, 12(5):5619–5625, 2021.

[Tiwari and Kumar, 2021] Tiwari, R. K. and Kumar, R. G-topsis: a cloud service selection

framework using gaussian topsis for rank reversal problem. The Journal of Supercom-

puting, 77(1):523–562, 2021.

[Zeyneb Yasmina et al., 2022] Zeyneb Yasmina, R., Fethallah, H., and Fadoua, L. Web ser-

vice selection and composition based on uncertain quality of service. Concurrency and

Computation: Practice and Experience, 34(1):e6531, 2022.

Remaci 126

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	General Introduction
	Context and motivation
	Problem statement
	Contributions
	Organization of the manuscript

	I Background on Web services
	SOA and Web Service technology
	Introduction
	Service Oriented Architecture
	Web services
	Why are Web Services Attractive?
	Web service Architecture
	General Architecture
	Participants of Web services
	Operation of Web services

	Extended architecture
	Functional aspects
	Nonfunctional aspects (Quality of Service)

	Cloud computing
	Cloud computing definition
	Categories of Cloud Computing
	 Cloud Deployment Models
	Most Popular Cloud Computing Platforms
	Web service and Cloud computing

	Conclusion

	State of the art
	Introduction
	Service composition
	Service composition constituent
	 roles in Web service selection
	QoS aggregation functions
	Weights of QoS Attributes

	Composition categories

	Service composition life cycle
	Web service composition solutions
	Composition strategies
	Classification of Web service composition methods
	Dynamic QoS-aware service composition

	Conclusion

	II Contributions
	Uncertain QoS-based Web service composition approaches
	Introduction
	Problem formulation
	Motivation scenario
	Composition framework
	Probabilistic dominance approach
	Probabilistic dominance relationship
	Dominance Service Ranking algorithm
	Backtracking search algorithm

	Majority judgment and Constraints Programming approach (MJ-CP)
	Majority judgment heuristic
	Constraints Programming
	Global QoS Conformance (GQC)

	Grey Wolf-Based Composition (GWC) approach
	Hesitant Fuzzy Set (HFS)
	QoS Normalization
	Entropy and Cross-Entropy for Hesitant fuzzy set
	Model of Entropy weights

	Grey Wolf Optimizer
	Discrete Grey Wolf Optimizer

	Complexity of the proposed approaches
	Conclusion

	Implementation and experimental results
	Introduction
	Case studies
	Dataset Description
	Dataset of Probabilistic dominance approach
	MJ-CP approach's dataset
	Datasets of Grey Wolf based-Composition

	Experimental results and analysis
	Performance evaluation of the probabilistic dominance approach
	 Performance evaluation of the Majority judgment & Constraint programming approach
	Performance evaluation of the Grey Wolf based- Composition (GWC) approach

	Conclusion

	General conclusion and perspectives.
	Summary
	Perspectives

	References
	Simulation of GQC calculation
	Academic Achievements

