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General Introduction

Comprehensive research on the Human Immunodeficiency Virus (HIV)

aims to promote a deeper understanding of the virus, the immunopathology

associated with the infection it causes, and the mechanisms that contribute to

its persistence. This study is at the forefront of novel therapeutic strategies

that may limit the spread of the illness and its progression and ultimately lead

to a new method of treating the virus that causes AIDS.

In collaboration with organizations and the pharmaceutical industry, clin-

ical research seeks to create novel medicines by conducting studies that ad-

here to established methods. Notwithstanding the advancements in infection

control, it is crucial to uphold the significance of prevention. Analysis of

prevention-related behavior and evaluation of treatment availability depends

on researchers in the human and social sciences as well as public health.

Furthermore, fundamental and clinical research on HIV vaccine prevention

continues to be a top focus. To create a vaccination that is available to ev-

eryone, researchers must expand their knowledge of immunological systems.

This involves the ongoing development of vaccination candidates as well as the

thorough testing of their immunological response-inducing potential and ac-

ceptability. HIV is the most researched virus in the world since several research

teams have been addressing these problems for several years.

There are several AIDS medicines available today. But in only a few years,

science has advanced significantly. Preventing the virus from growing en-bloc

during one of the phases of its propagation is the goal of HIV therapy. Cur-

rently, the virus cannot be eradicated by these compounds. Initially, they were

administered as triple treatments. We are now discussing multi-therapies, and

depending on the situation, the combinations can range from two to five (or

more) physicians.

First off, patients have been shown to take these medications less often

(compliance) due to their serious adverse effects. These include nausea, di-

arrhea, neuropathy (atrophy of nerve cells), lipodystrophy (alterations in the

body’s fat distribution, such as face hollowing, neck or abdominal fat deposits)

and psychiatric problems (depression, mood swings, and disorientation). When

9



10 General Introduction

keeping an eye on the patient, it is crucial to consider these things.

The success of antiretroviral therapies for HIV depends on at least 95%

adherence, which might be difficult because of social and lifestyle limitations.

Easing adherence while guaranteeing efficient virus control requires optimizing

medication doses in order to enhance patients quality of life, reduce adverse

effects, and preserve treatment efficiency.

Our goal is to ensure treatment effectiveness while reducing administered

amounts and/or associated costs. We thus made the decision to develop a sim-

plified model of in vivo viral transmission by incorporating several treatments

used in hospital or clinical settings as injectable controls into the model. Next,

using controls injected into the model, we modeled the various treatments

currently used in hospital settings or in clinical research.

This method makes it easier to investigate cost functions and makes it

easier to analyze the control system numerically. It also draws attention to the

controversy over how to balance boosting healthy immune cells with lowering

the virus load. Some support boosting CD4 cell proliferation, while others

place more emphasis on avoiding viral exhaustion. This emphasizes how crucial

a balanced approach is to creating the best HIV therapies.

The first chapter summarises the biological aspect of the problem to

help the non-biologist reader understand the situation. It discusses how the

infection spreads and develops in the body, how it is monitored, and what

treatments are currently available and being researched to combat it.

The next chapter begins with an overview of the state of the art in the

field, followed by a qualitative mathematical analysis to identify key model

features such as competitiveness, uniform persistence, and the local and global

stability of equilibrium points. MATLAB is employed to numerically simu-

late the model for different R0 values.

The final part, which is an essential component of this study, presents the

control method applied to the model together with its biological interpretation.

After that the bang-bang control is obtained by applying a linear crite-

rion. In every situation, we do a comparison analysis. Comparative evaluation

of the decrease in blood-borne viruses and the increase in healthy cells for each

control group in relation to the decrease in infected cells.

Before combining the simulations, we first run them separately for each

control. Each scenario is subjected to numerical simulations, which are under-

taken for each.

At the end of the paper, a conclusion is presented, together with an example

illustrating the main results. The study focuses on understanding the behavior

of the system, while emphasizing the key mathematical tools used throughout.



Chapter 1

Biological Context

1.1 HIV Infection Dynamics

1.1.1 History of HIV Virus

The first cases of what would later be known as AIDS were reported in

1981 in the United States, when the Centers for Disease Control and Pre-

vention (CDC) described unusual infections and rare cancers among young

homosexual men. The syndrome, characterized by lesions in the lymphatic

system and severe immune deficiency, quickly became a major public health

concern. Subsequent cases among homosexual communities and intravenous

drug users helped define and recognize this new syndrome as AIDS.

In 1983, French researchers led by Luc Montagnier at the Pasteur Institute

isolated the virus responsible, initially named LAV (Lymphadenopathy Associ-

ated Virus). Around the same time, in the United States, Robert Gallo’s team

identified a similar virus, named HTLV-III (Human T-Lymphotropic Virus

Type III). A conflict then arose between France and the United States con-

cerning the priority of the discovery and the patents for HIV diagnostic tests,

a dispute that was eventually settled through a shared agreement.

In 1985, abnormal serological responses were observed in blood samples

from Senegalese sex workers, suggesting the existence of a second, related

virus, more closely linked to simian retroviruses. This second virus was iso-

lated in 1986 and named HIV-2, later confirmed to be less transmissible and

less aggressive than HIV-1. Following a taxonomic classification carried out

the same year, HIV types 1 and 2 were officially recognized as the causative

agents of AIDS [27].

Throughout the late 1980s and early 1990s, the number of people living

with HIV/AIDS increased dramatically, marking the beginning of a global

pandemic. Meanwhile, extensive research efforts were launched to develop

treatments and a vaccine. Although early vaccine trials generated hope, the

11



12 CHAPTER 1. BIOLOGICAL CONTEXT

high variability and rapid mutation rate of HIV have so far prevented the cre-

ation of an effective preventive vaccine.

Today, while no definitive cure exists, antiretroviral therapies (ART) have

transformed HIV infection into a manageable chronic condition, especially in

developed countries. However, global disparities remain. According to UN-

AIDS, approximately 39 million people were living with HIV in 2023.

In Algeria, the prevalence is relatively low compared to global figures, but

sustained efforts in prevention, diagnosis, and treatment are still necessary to

control the epidemic [23].

1.1.2 Introduction to HIV

HIV is the human immunodeficiency virus. It is classifiedas an STI, i.e. an

infection that can be transmitted during sexual relations, it can be transmitted

by blood too.

What makes HIV so special is that it attacks immune system cells, in particular

CD4 T lymphocytes. These are the cells that protect the body against diseases

and other infections [10].

Figure 1.1: HIV under electron microscope [38].

Types of HIV:

There are two types of HIV: ”HIV-1” and ”HIV-2”. These two viruses

share about 42% of their genome. HIV-1 is the most common virus in the

world, accounting for over 98% of infections, particularly in Europe and North

America. In contrast, HIV-2 is mainly concentrated in West Africa, with a

significant presence in countries such as Senegal, Côte d’Ivoire, Mali, Guinea-

Bissau, Burkina Faso and Cape Verde. In Europe, HIV-2 is also present in

France and Portugal, due to historical links with the region.
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HIV-2 is less virulent and less transmissible than HIV-1, which explains its

more limited prevalence.

1.1.3 Transmission of the virus

There are three ways of transmitting it [28].

• Sexual transmission: HIV is mainly transmitted through unprotected

sex, accounting for 70− 80% of infections.

• BTransmissionlood transmissiong: During blood transfusions, sy-

ringe exchanges, or accidents, HIV can spread through the blood. The

systematic screening of blood donors has significantly decreased this risk,

which is estimated to be 1 in 500,000.

• Transmission: HIV can spread from mother to child during pregnancy

or breastfeeding. HIV-1 rates are 15-45% without therapy, while HIV-2

rates are 4-8%. With preventative therapy, fewer than 1,000 babies are

born infected.

1.2 Biological and immunological basics

1.2.1 The HIV Structure

The retrovirus HIV has a genotype made up of two identical RNA molecules.

It does retrotranscription by integrating its DNA into the host cell’s thanks to

the transcriptase inverse. The virus has a diameter of 150 nm and is encased

in a lipidic envelope of the infected cellule, which contains the glycoproteins

gp120 and gp41. The RNA viral molecules and essential enzymes integrase,

protease, and inverse transcriptase are found inside the apside conique.

• Glycoproteins: Are a type of conjugated proteins composed of proteins

and carbohydrates [6].

• RNA: A molecule present in all living cells and certain viruses (ribonu-

cleic acid) that allows for the creation of proteins.

• DNA: A molecule in all living cells (deoxyribonucleic acid) that carries

the genetic information for an organism’s development.

• Inverse transcriptase: An enzyme promoting the transcription of

RNA to DNA, often of viral origin.
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Figure 1.2: Structural representation of a virion HIV [29].

1.2.2 Replication Cycle

HIV primarily infects CD4 T lymphocytes, key cells of the immune system.

It binds to these cells via the protein gp120, facilitated by co-receptors.

1. Viral entry: HIV fuses with the membrane of the target cell and releases

its viral RNA.

2. Retrotranscription: The viral RNA is converted to cDNA by reverse

transcriptase.

3. Integration: The cDNA is integrated into the host cell genome by in-

tegrase.

4. Expression and replication: The cell uses its own mechanism to pro-

duce new viral proteins.

5. Assembly and release: New virions form and bud out of the cell, ready

to infect other cells.

The viral cycle relies entirely on the host’s cellular machinery to replicate.

Once infected, the cell overwhelmed by the replication process performs a

biological suicide called apoptosis, leading to the release of all presomal viruses

inside the cell.
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Figure 1.3: Simplified diagram of the HIV-1 replication cycle [13],[37].

1.2.3 Symptoms of HIV infection

The natural evolution of HIV infection can be broken down into three main phases.

• Primary infection: In the first days after the infection by the virus,

the HIV rapidly grows and induces a drop in T-CD4+ cells. A few weeks

later, grippiness symptoms start to show up.

• The asymptomatic phase: The immune system controls HIV after

stabilization, but it gradually kills T cells. The rate of CD4+/CD8+ and

viral charge track the evolution.

• The AIDS stage: When viral charge exceeds 10,000 copies/mL and

CD4+ is less than 200 cell/mm3, AIDS occurs. Each patient progresses

differently; some develop in 8–10 years, while others remain asymp-

tomatic for more than 20 years.

Note: A very small percentage of people spontaneously suppress the

HIV [38].
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Figure 1.4: Evolution of HIV infection [33].

1.2.4 Epidemic

Today, it is known that a well-monitored HIV-positive individual has a very

low risk of transmitting HIV after sexual activity under specific conditions:

• The treatment is administred regularly.

• The viral charge is undetectable, or below the threshold of 50 copies/ml

in the plasma for over six months, according to most recent test.

• The viral charge is measured on a regular basis, at least every three or

four months.

There is currently no cure for HIV or AIDS. Even if the virus becomes

undetectable in tests, this doesn’t mean the infection is gone from the body.

A person who is HIV-positive can live a long life with proper treatment, and

HIV is now considered a chronic illness. As long as they are not properly

treated, HIV-positive individuals are still at risk of transmitting the

virus. AIDS is caused by untreated HIV infection, which can ultimately lead

to death. HIV infection is still spreading, and some vulnerable groups are

abandoning their defenses.

1.3 Therapeutic strategies for HIV control

HIV infection requires appropriate therapeutic management to maintain pa-

tient health and limit the progression of the infection. Although many an-

tiretroviral drugs are available today, in our work we focus only on certain
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targeted strategies applied at different stages of the viral life cycle.

The therapeutic approaches studied in our model are as follows :

1. Increasing the viral clearance rate: This can be achieved using

antiretroviral drugs that inhibit the HIV protease enzyme, thereby pre-

venting the cleavage and proper assembly of viral polyproteins. As a

result, only immature and non-infectious viral particles are produced.

Furthermore, bee venom nanoparticles have shown the ability to directly

disrupt the viral envelope and inhibit protease activity, providing an in-

novative approach to neutralize free virions without damaging host cells

[1], [12].

2. Preventing integration of the virus into the host cell: This in-

cludes blocking the viral integrase enzyme to stop the insertion of viral

cDNA into the host genome. Additionally, CCR5-modified cells are ge-

netically engineered to lack the CCR5 receptor, making them resistant

to HIV entry. Other promising approaches include antiviral gels (topi-

cal microbicides) and cannabis extracts, which have shown potential to

reduce local viral replication at mucosal surfaces [2], [8].

3. Reducing apoptosis of infected cells: By inhibiting the reverse tran-

scriptase enzyme of HIV which blocks the conversion of viral RNA into

DNA the replication cycle is interrupted at an early stage [9]. As a result,

the infected cells are kept alive longer, which helps reduce the occurrence

of the apoptosis process.

1.4 Prevention and Future

Additionally, future research is focusing on the development of effective HIV

vaccines using mRNA-based and viral vector platforms and on long-acting an-

tiretroviral formulations to improve adherence and reduce dosing frequency.

Cutting edge strategies such as therapeutic vaccines, broadly neutralizing an-

tibodies, and gene editing techniques (e.g. CRISPR/Cas9) are under investi-

gation with the aim of achieving sustained viral remission or a functional cure.

If successful, these advances could transform HIV prevention and treatment in

the coming decades.



Chapter 2

Mathematical model

presentation and study

2.1 Introduction

Recent advances in the development of potent antiviral drugs have greatly

improved our understanding of viral infections such as HIV. In addition to

paving the way for more effective treatments, these advances have provided

essential quantitative data on viral dynamics in vivo. However, interpreting

and analyzing these data requires mathematical tools capable of modeling the

complex interactions between viruses and host cells.

To this end, both deterministic and stochastic mathematical models have

been developed to describe these dynamics. These models are based on or-

dinary differential equations, both linear and non-linear, and can incorporate

various biological factors such as immune responses, resistance to antiviral

treatments, and the evolution of viral populations. In-depth analysis of these

models allows us not only to better understand the spread of the virus and the

effect of treatments, but also to assess the conditions under which eradication

of the infection could be envisaged. In this chapter, we will analyze a math-

ematical model in detail, highlighting its construction, its basic assumptions

and their relevance to the study of viral infections.

2.1.1 The basic model

During an HIV infection, the virus attaches itself to T CD4+ cells and trav-

els through the bloodstream, converting its RNA into DNA and causing the

inverted enzyme transcriptase to break down. With the help of the enzyme

integrase, the viral DNA then identifies the DNA of the host cell, which facil-

itates the growth and assembly of new viral particles known as virions, which

are then released, see first chapter, or [24].

18



2.1. INTRODUCTION 19

T-cell proliferation in the HIV environment is still poorly understood. The

mathematical models that describe how the HIV-1 virus interacts with the im-

mune system include the use of a source constant, which indicates how many

CD4+T cells are present in the blood, decreased by the natural mortality rate

that these cells have. Some models use a logistic approach [32] to limit the

growth of healthy cells, which is represented by a kind of equation:

Ṡ = δ − αS + bS

(
1− S

K

)
Other models [31] take into account the saturation of the immune system by

both healthy and infected cells, giving, equation of the form:

Ṡ = δ − αS + bS

(
1− S + I

K

)
In our research, we simulate the development of healthy cells, taking into

account their regenerative capacity, rather than assuming a fixed number. To

do so, we prefer a logistic expansion approach that shows the function of the

thymus and the bone marrow in producing new cells based on the body’s

needs. This model offers a better illustration of the interaction between the

HIV-1 virus and the immune system, integrating the biological processes that

influence the course of the infection. We then consider the mathematical model

that describes the interaction between the immune system and the HIV-1 virus,

as described by: 

Ṡ(t) = αS(t)
(

1− S(t)
K

)
− βS(t)V (t)

İ(t) = −µI(t) + βS(t)V (t)

V̇ (t) = −σV (t) + γµI(t)

(2.1)

With the positive initial condition:

S(0) = S0, I(0) = I0, V (0) = V0, (2.2)

where: t ∈ [0, T ] and T > 0.

Interpreting the system :

∗ S(t) : is the quantity of non-infected T-CD4+ cells at time t, by blood

unit.

∗ I(t) : is the quantity of T-CD4+ cells infected by the virus at time t, by

blood unit.
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∗ V (t) : is the quantity of free virus circulating in the blood at time t, by

blood unit.

2.1.2 Identification of system parameters

The following parameters characterise the model (2.1):

∗ α : Growth rate of healthy cells.

∗ K : Capacity of the system (maximum number of immune cells that can

be present in the blood at any time).

∗ β : Infection rate.

∗ µ : Mortality rate of infected cells.

∗ σ : Virus mortality rate.

∗ γ : The number of viruses produced by an infected cell during its lifetime.

The initial conditions are set assuming that S0 ≤ K, and that α < K, while

considering that γ � 1 for reasons of realism. All system parameters are

positive and are summarised in the following table:

Parameters Value Unit References

α 0.03 cells per day [8]

K 103 cells per mm3 Estimated

µ 0.24 cells per day [8]

β 2.4× 10−5 mm3 per day [8]

σ 2.4 viruses per day [16]

γ 3000 number of virions [16]

Table 2.1: Identification of system (2.1) parameters.

The system (2.1) can be schematised as follows:

Figure 2.1: HIV model counting (diagram).
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2.2 Mathematical tools

In this section we present the main mathematical tools to be used to perform

the formal model study.

Definition 2.1 (Spectral Radius)

The spectral radius of a matrix A ∈ Mn(R) is defined as the maximum

absolute value of its eigenvalues, that is:

ρ(A) = max
λ∈Sp(A)

|λ|

where Sp(A) denotes the set of all eigenvalues of A.

Dynamical System:

We consider an autonomous dynamical system in Rn of the form:

ẋ(t) = f
(
x(t)

)
, x(t) ∈ Rn,

where

f : Rn −→ Rn

is continuously differentiable.

In this framework:

• x(t) denotes the state vector at time t.

• f(x) is the vector field that governs its evolution.

• Solution x(t) exists and is unique by the Cauchy–Lipschitz theorem, see

thoerem 2.2

Cauchy–Lipschitz Theorem [17]

Consider the following initial value problem:{
ẋ(t) = f(x(t))

x(t0) = x0
(?)

Let f : Rn → Rn be a function that is continuous on Rn and locally

Lipschitz with respect to the second variable.

Then, for any initial condition (t0, x0) ∈ I × Rn, the problem (∗) admits a

unique local solution x(t), defined on an interval [t0, Tmax] ⊆ I.
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Proposition 2.1 (Global existence of the solution)

Let x(t) be the unique local solution to the Cauchy problem (?), (2.2). If

the solution remains bounded on its maximal interval of definition [0, Tmax[,

then it can be extended beyond Tmax. In particular, if it stays in a compact

subset of Rn, then Tmax = +∞ and the solution is global.

Definition 2.2 (Positively Invariant Set)

A set Γ ⊂ Rn is said to be positively invariant for a dynamical system

if every solution starting in Γ remains in Γ for all future times, that is, if

x(0) ∈ Γ, then x(t) ∈ Γ for all t ≥ 0.

Definition 2.3 (Dissipativity)

A dynamical system is said to be dissipative if there exists a bounded

subset Γ ⊂ Rn which is positively invariant and attracts all trajectories starting

in Rn
+. In other words, all solutions eventually enter and remain in a bounded

region of the phase space.

Equilibrium Point [36]

An equilibrium point x∗ of a dynamical system is defined as a solution where

the derivative of the state is zero:

f(x∗) = 0

Stability [36]

The equilibrium point x∗ is said to be stable if, for every ε > 0, there exists

δ > 0 such that, if ‖x0 − x∗‖ < δ, then ‖x(t) − x∗‖ < ε for all t ≥ 0, where

x(t) is the solution of the system initialized at x0.

Asymptotic Stability:[17]

The equilibrium point x∗ is said to be asymptotically stable if:

1. It is stable (see the previous definition).

2. There exists δ′ > 0 such that, if ‖x0 − x∗‖ < δ′, then:

lim
t→∞

x(t) = x∗

Remark: Asymptotic stability means not only that the solutions stay close

to x∗ for large enough t, but that they actually converge to this equilibrium

point.
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Theorem 2.1 (Routh Hurwitz )

The Routh-Hurwitz criterion is an algebraic criterion used to assess the

stability of linear dynamical systems. It based on the characteristic polynomial

P (λ) whose roots are all strictly real [11].

We consider the following polynominal of order n:

P (λ) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an

We say that P is Hurwitz iff all its roots are negative.

According to the Routh-Hurwitz criterion:

1- If n=2:

P (λ) = λ2 + a1λ+ a2

a1 > 0, a2 > 0 ⇔ P is Hurwitz.

2- If n=3:

P (λ) = λ3 + a1λ
2 + a2λ+ a3

We say that P is Hurwitz iff:a1 > 0, a2 > 0, a3 > 0

a3.a2 > a1

2- If n¿3: See [11]

Definition 2.4 (Positive Definite Function)

A function f : Rn → R is said to be positive definite if:

f(0) = 0 and f(x) > 0 for all x ∈ Rn \ {0}.

Definition 2.5 (Negative Definite Function)

A function f : Rn → R is said to be negative definite if:

f(0) = 0 and f(x) < 0 for all x ∈ Rn \ {0}.

Definition 2.6 [21]

Let Ω ⊂ Rn be an open neighborhood of an equilibrium point x∗ ∈ Rn. A

function V : Ω→ R is called a Lyapunov function for the dynamical system

ẋ = f(x) (2.3)

if:

• V ∈ C1(Ω).
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• V is positive definite over Ω i.e: V (x∗) = 0 and V (x) > 0 for all x ∈
Ω \ {x∗},

• The derivative along trajectories, V̇ (x) = ∇V (x) · f(x) is negative semi-

definite definite over Ω i.e: satisfies V̇ (x) ≤ 0 for all x ∈ Ω.

Theorem 2.2 (Lyapunov’s Theorem) [14]

• If the lyapunov function V is positive definite and V̇ is negative semi-

definite over Ω, then the equilibrium point x∗ of the system (2.3) is stable.

• If the function V is positive definite and V̇ is negative definite over Ω,

then the equilibrium point x∗ of the system (2.3) is asymptotically stable.

LaSalle’s Invariance Principle

Theorem 2.3 (LaSalle’s Invariance Principle) [14]

Let Ω ⊂ Rn be a compact, positively invariant set. Suppose V : Ω → R is

continuously differentiable for the system (2.3) and satisfies

V̇ (x) ≤ 0 for all x ∈ Ω.

with,

E = {x ∈ Ω | V̇ (x) = 0},

and let M be the largest invariant set contained in E. Then every trajectory

starting in Ω approaches M as t→ +∞.

Corollary 2.1

If V is positive definite with respect to an equilibrium point x∗ ∈ Ω and V̇

is negative definite on Ω, then x∗ is asymptotically stable.

Rung-Kutta of order 4:[15]

The Runge-Kutta algorithm is a numerical analysis method for approximating

the solution of the Cauchy problem such that:

{
.
y = f(t, y)

y(t0) = y0

The Runge-Kutta algorithm of order 4, is given by [15] :

yn+1 = yn +
h

6
(k1 + k2 + k3 + k4)
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Where:

k1 = f(tn, yn)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
k4 = f (tn + h, yn + hk3)

2.3 Qualitative study of the model

a/ Existence and Uniqueness

It is essential to use Theorem (?) to investigate the consistency and unique-

ness of the solution to our model (2.1)

Theorem 2.4 [36]

For any initial conditions S0 > 0, I0 > 0 and V0 > 0 the problem (2.1)

admits a unique solution (S(t), I(t), V (t)) defined for any t ≥ 0.

Proof.

Put

x(t) =

S(t)

I(t)

V (t)

, x(0) =

S0

I0

V0

 , f(x(t)) =

f1(x(t))

f2(x(t))

f3(x(t))

, with:


f1(x(t)) = αS(t)

(
1− S(t)

K

)
− βS(t)V (t)

f2(x(t)) = −µI(t) + βS(t)V (t)

f3(x(t)) = −σV (t) + γµI(t)

Thus, the problem (2.1) takes the following form as a Cauchy problem:{
ẋ(t) = f(x(t))

x(t0) = x0
(2.4)

where x ∈ R3
+. Since f1, f2, f3 belong to C1(R3

+), this implies that f(x(·)) is of

class C1(R3
+), and hence locally Lipschitz. According to the Cauchy–Lipschitz

theorem, the problem (2.4) admits a unique local solution, i.e., there exists

Tmax > 0 such that the solution exists and is unique on the interval [0, Tmax[.

To prove that the solution is globally defined for all t ≥ 0, it is sufficient

to show that the solution remains within a bounded and positively invariant

region of R3
+.
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This will be established in the following steps through the proofs of posi-

tivity and boundedness.

Therefore, the local solution provided by the theorem extends globally

(2.1).

Positivity:

Proposition 2.2 The positive cone is positively invariant by (2.1).

Proof.

Let’s call the positive cone N , so: N is defined as follows:

N = R3
+ =

{
(S, I, V ) ∈ R3 | S ≥ 0, I ≥ 0, V ≥ 0

}
.

In which, the following inequalities are verified:

dS

dt
| S=0 = 0

dI

dt
| I=0 = βSV ≥ 0

dV

dt
| V=0 = γµI ≥ 0

This indicates that the vector field is directed towards the interieur of R3
+,

∀t ≥ 0. As a result, any trajectory starting in R3
+ stays in N regardless of the

initial positive value.

Boundedness:

Proposition 2.3 Model (2.1) is dissipative.

Proof.

Since βS(t)V (t) ≥ 0, ∀t ≥ 0, then, according to the first equation of the

system (2.1), we get:

dS(t)

dt
≤ αS(t)

(
1− S(t)

K

)
. (2.5)

The solution to the equation
·
S = αS(t)

(
1− S(t)

K

)
is given by:

S(t) =
S0K

S0 + (K − S0) e−αt
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This shows that the population density of this model tends towards K, when

t −→ +∞, and by comparison, we find:

lim sup
t→∞

S(t) ≤ K

Then, summing the first two equations of our model (2.1), we obtain:

Ṡ + İ = αS

(
1− S

K

)
− µI

The logistic function has a maximum M = αK
4

, so :

Ṡ + İ ≤M − µI (2.6)

Or: (
Ṡ + İ

)
+ µ(S + I) ≤M + µS

This implies: (
Ṡ + İ

)
+ µ(S + I) ≤M + µK

We put: m′ = M + µK > 0 and W = S + I, hence:

·
W + µW ≤ m′

After resolution, we find that:

∀t ≥ 0, W (t) ≤ m′

µ
+

(
W0 −

m′

µ

)
e−µt

This means that:

lim
t→∞

sup W (t) ≤ m′

µ

So ( S + I) is bounded, which implies the boundedness of I. This gives:

∃m1 > 0 , ∀t ≥ 0, I(t) ≤ m1.

In other words:

lim
t→∞

sup I(t) ≤ m1

By replacing in the third equation of the system (2.1), we find:

V̇ + σV ≤ γµm1.
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We obtain:

∀t ≥ 0, V (t) ≤ γµm1

σ
+
(
V0 −

γµm1

σ

)
e−σt

It follows that:

lim
t→∞

sup V (t) ≤ γµm1

σ

Let: m2 = γµm1

σ
, then:

lim
t→+∞

sup S(t) ≤ K, lim
t→+∞

sup I(t) ≤ m1 and lim
t→+∞

sup V (t) ≤ m2

Now we define the set:

Γ =
{

(S, I, V ) ∈ R3 : 0 ≤ S ≤ K, 0 ≤ I ≤ m1, 0 ≤ V ≤ m2

}
.

All solutions of (2.1) which lie in R3
+ are confined in Γ . The set Γ is compact

and positively invariant with respect to the system (2.1). So it is attractive,

which implies that model (2.1) is dissipative.

Conclusion:

Problem (2.1) with the initial condition S0 > 0, I0 > 0 and V0 > 0 has a

unique solution defined for t ≥ 0.

b/ Determining Equilibrium Points

To determine the equilibrium points of (2.1), we need to solve the following

system: 

αS(1− S
K

)− βSV = 0

−µI + βSV = 0

−σV + γµI = 0

(1)

(2)

(3)

According to the first equation (1), we have: S = 0 or α

(
1− S

K

)
−βV = 0.

• If S = 0, from (2), (3) we have I = 0 and V = 0,

which gives the origin as an point equilibrium, E0(0, 0, 0) .
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• If α(1− S
K

)− βV = 0, then:

S = K

(
1− β

α
V

)
. (2.7)

Pulling I from (3), we find:

I =
σ

γµ
V. (2.8)

By replacing S and I respectively by (2.7) and (2.8) in (2), we get :

V = 0 or
−σ
γ

+ βK

(
1− β

α
V

)
= 0

• If V = 0, replacing in (2.7) and (2.8) , gives I = 0, S = K. The second

equilibrium point E1(K, 0, 0) .

• If V =
α

β

(
1− σ

γβK

)
, replace in (2.7) and (2.8), we find :

I =
σα

µγβ

(
1− σ

µβK

)
.

Then S =
σ

γβ
, which gives the third equilibrium point E∗:

E∗ (S∗, I∗, V ∗)

where:

S∗ =
σ

γβ

I∗ =
σα

µγβ

(
1− σ

γβK

)
V ∗ =

α

β

(
1− σ

γβK

)
In summary, (2.1) has three equilibria:

1. E0(0, 0, 0) the trivial equilibrium, it represents the extinction of all

populations.

2. E1(K, 0, 0) the healthy equilibrium that represents a healthy, unin-

fected body.

3. E∗(S∗, I∗, V ∗) the positive equilibria, exists if and only if:
γβK

σ
> 1

and it represents a cohabitation between the different populations cells

in the body.
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c/ Basic reproduction rate

The basic reproduction number, denoted by R0, represents the average

number of secondary infections produced by a single infected individual during

their entire infectious period in a fully susceptible population. It is a key

threshold parameter that determines whether an infectious disease can invade

and persist in a population [4].

We compute the basic reproduction number R0 via the next-generation matrix

method, applied to system (2.1). First, we rewrite the model in the form

ẋ = F (x) − V (x)

where: x = (S, I, V )>, F (x) =

 0

βSV

0

 and V (x) =

βSV − αS
(
1− S

K

)
γI

σV − γµI


The jacobian of F, V:

∂F

∂x
=

 0 0 0

βV 0 βS

0 0 0

 and
∂V

∂x
=

βV − α(1− 2S
K

) 0 βS

0 µ 0

0 −γµ σ

 .

Evaluating the Jacobian matrices at the disease-free equilibrium E1 = (K, 0, 0)

yields:

∂F

∂x
|E1=

 0 0 0

0 0 βK

0 0 0

 ,
∂V

∂x
|E1=

 α 0 βK

0 µ 0

0 −γµ σ



The inverse of V is:

(
∂V

∂x
|E1

)−1
=


1
α

−γβK
ασ

−βK
ασ

0 1
µ

0

0 γ
σ

1
σ


The next generation matrix K is then:

K =
∂F

∂x
|E1 ×

(
∂V

∂x
|E1

)−1

K =

 0 0 0

0 γβK
σ

βK
σ

0 0 0


Now, we calculate the eigenvalues of the matrix K, to do so, calculate the
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characteristic polynome:

Q(λ) = −λ2
(
λ− γβK

σ

)
.

And the associates eigenvalues are:

λ1,2 = 0, λ3 =
γβK

σ

The spectral radius of the following generation matrix K, is given by
γβK

σ
.

From this, we can deduce the basic reproduction number R0 for the model

(2.1)

R0 =
γβK

σ

d/ Local stability of equilibrium points

We calculate the Jacobian matrix around the equilibrium points to investigate

their local stability. System (2.1) Jacobian matrix may be found as follows:

J(x) =

 α− 2α
K
S − βV 0 −βS
βV −µ βS

0 γµ −σ


Proposition 2.4

Consider system (2.1) and let:

R0 =
γβK

σ
.

1. The disease–free equilibrium E0 = (0, 0, 0) is an unstable saddle: its

Jacobian at E0 has eigenvalues λ1 = α > 0, λ2 = −µ < 0, λ3 = −σ < 0.

2. The “healthy” equilibrium E1 = (K, 0, 0) is

• locally asymptotically stable if R0 < 1.

• a saddle (one positive, two negative eigenvalues) if R0 > 1.

Proof. At E0, the Jacobian is:

J(E0) =

α 0 0

0 −µ 0

0 γµ −σ


a lower-triangular matrix whose diagonal entries are its eigenvalues α > 0,

−µ < 0, −σ < 0, hence E0 is an unstable saddle.
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At E1, the Jacobian is:

J(E1) =

−α 0 −βK
0 −µ βK

0 γµ −σ


Its characteristic polynomial factors as:

−(λ+ α)
[
λ2 + (µ+ σ)λ+ (µσ − γµβK)

]
.

The root λ = −α < 0 is always negative. The remaining quadratic:

λ2 + (µ+ σ)λ+ (µσ − γµβK)

has all roots with negative real parts if and only if its coefficients:

a1 = µ+ σ > 0, a2 = µσ − γµβK > 0,

which is equivalent to γβK < σ, i.e. γβK
σ

< 1. When R0 > 1, one of the

roots becomes positive, so E1 is a saddle.

Proposition 2.5

E∗ ( R0 > 1), is a locally asymptotically stable if and only if 1 < R0 < D

where:

D =
2α(µ+ σ)

−
[
(µ+ σ)2 + µσ

]
+

√[
(µ+ σ)2 + µσ

]2
+ 4βµγ(µ+ γ)

. (2.9)

Proof. The Jacobian matrix at E∗ is given by:

J(E∗) =


−ασ
γβK

0 −σ
γ

α
(

1− σ
γβK

)
−µ σ

γ

0 γµ −σ


Replacing σ

γβK
by 1

R0
, we find:

J(E∗) =


−α
R0

0 −σ
γ

α
(

1− 1
R0

)
−µ σ

γ

0 γµ −σ


The characteristic polynomial is given by:

P (λ) = −
[
λ3 +

(
µ+ σ +

α

R0

)
λ2 +

α(µ+ σ)

R0

λ+ µσα

(
1− 1

R0

)]
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As R0 > 1, all these coefficients are negative, so to conclude the local stability

of E∗ it is sufficient to apply the Routh-Hurwitz theorem(2.1).

According to this theorem the positive point is locally asymptotically stable if

and only if the following inequality:(
µ+ σ +

α

R0

)
α(µ+ σ)

R0

> µσα

(
1− 1

R0

)
.

Since the real α is positive, consider:

∆ =

(
µ+ σ +

α

R0

)
(µ+ σ)

R0

− µσ
(

1− 1

R0

)
.

Let’s study its sign as a function C of, such that: C = 1
R0

.

Let’s put : A = µ+ σ, B = µσ, we find:

∆ = αAC2 + (A2 +B)C −B (2.10)

∆ is a polynomial of degree 2 in C, with a strictly positive discriminant :

N = (A2 +B)2 + 4α(AB)

And the two roots of (2.10)

C1 =
−(A2 +B)−

√
N

2αA
and C2 =

−(A2 +B) +
√
N

2αA

C1 is strictly negative, on the other hand, C2 is strictly positive.

Since: αA > 0, the parabola opens upward, hence

∆(C) > 0 ⇐⇒ C < C1 or C > C2.

But C1 < 0, and biologically C lies in (0, 1). Therefore the only relevant

interval where ∆(C) > 0 is:

C > C2.

Finally, requiring C < 1 as well, we obtain the necessary and sufficient condi-

tion.

C2 < C < 1.

This provides
1

C2

> R0 > 1
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Let’s say:

D =
1

C2

, then:

D =
2αA

−(A2 +B)−
√

(A2 +B)2 + 4α(AB)

=
2α(µ+ σ)

−((µ+ σ)2 + (µσ))−
√

((µ+ σ)2 + (µσ))2 + 4α((µ+ σ)(µσ))

Conclusion: If D > R0 > 1, than E∗ is a locally asymptotically stable, and

if D < R0, it is unstable.

e/ Global stability

In this section we will have a look at the global stability of the healthy equilib-

rim point E1, which we will investigate by means of the following proposition.

Proposition 2.6

The healthy equilibrium point E1(K, 0, 0) is globally asymptotically stable

in Γ if R0 <
1
γ
≤ 1 .

Proof.

For this demonstration we will use Lyapunov’s theorem (2.2). Let’s consider

at the domain:

Γ =
{

(S, I, V ) ∈ R3 : 0 ≤ S ≤ K, 0 ≤ I ≤ m1, 0 ≤ V ≤ m2

}
.

Before analyzing the stability of the endemic equilibrium E1, we recall the

notion of persistence.

Definition 2.7

We say that the system is uniformly persistent in Γ if there exists a con-

stant η > 0 such that for all solutions with initial conditions S(0), I(0), V (0) >

0, we have:

lim inf
t→∞

I(t) ≥ η, lim inf
t→∞

V (t) ≥ η.

A sufficient condition for persistence is R0 > 1, which guarantees the existence

of a stable endemic equilibrium and the non-extinction of the disease.

Let υ be a function defined in Γ by:

υ(S, I, V ) = a(S −K)− aK ln

(
S

K

)
+ bI + cV,
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with a, b, c > 0 are positive constants to be determined.

The Lyapunov function ν(S, I, V ) is positive definite in a neighborhood of the

equilibrium point E1, that is:

ν(S, I, V ) > 0 for all (S, I, V ) 6= E1,

and

υ(E1) = υ(K, 0, 0) = 0.

In fact, since S ≤ K, then the first terms of υ are written as follows:

a(S −K)− aK ln

(
S

K

)
= aK

(
S

K
− 1− ln

(
S

K

))
Let us study the sign of the function: φ(τ) = τ − 1− ln(τ) , where : τ ≤ 1 .

1. Domain of Definition:

The function φ(τ) is well-defined when ln(τ) exists, i.e., for τ > 0. Since

the study is restricted to τ ≤ 1, we consider the interval 0 < τ ≤ 1.

2. Derivative of φ:

We compute the derivative of φ(τ) = τ − 1− ln(τ):

φ′(τ) = 1− 1

τ
.

3. Sign of the Derivative : We analyze the sign of φ′(τ) = 1− 1
τ
.

• For τ = 1 :

φ′(1) = 1− 1 = 0

• For 0 < τ < 1 :
1

τ
> 1 ⇒ 1− 1

τ
< 0

Hence, φ′(τ) < 0 for all 0 < τ < 1.

Remark 1:

φ(τ) is strictly decreasing on (0, 1]. The function is strictly decreasing

and tends to +∞ as τ → 0+, then reaches the value 0 at τ = 1.

τ 0 1 +∞
Φ′(τ) − 0 +

Φ(τ) +∞ ↘ 0 ↗ +∞



36CHAPTER 2. MATHEMATICALMODEL PRESENTATION AND STUDY

Thus, the function φ(τ) is positive on (0, 1] and decreases to 0.

Remark 2: υ is therefore a positive definite function on Γ.

Then, calculate the derivative of υ with respect to t:

dυ

dt
= υ̇ = a

.

S − aK
.
S
S

+ b
.

I + cV̇

= a
.
S
S

(S −K) + bİ + cV̇

= a
[
α
(
1− S

K

)
− βV

]
(S −K) + b [−µI + βSV ] + c [−σV + γµI]

= a
[
− α
K

(S −K) 2
]
− aβV (S −K) + bβSV − bµI + cγµI − cσV

= − α
K
a (S −K) 2 − aβV S + aβV K + bβSV − bµI + cγµI − cσV

= − α
K
a (S −K) 2 − (a− b) βV S − (cσ − aβK)V − µ (b− cγ) I

We have:

υ̇ < 0 iff :


(a− b) ≥ 0

(cσ − aβK) ≥ 0

(b− cγ) ≥ 0

⇒


a ≥ b

a ≤ σ
βK
c

b ≥ cγ

Or:

0 ≤ cγ ≤ b ≤ a ≤ σ

βK
c. This inequality is only true if : γ ≤ σ

βK

1 ≤ 1
R0
, ⇐⇒ R0 ≤ 1 .

So, ν̇ is negative definite if and only if: R0 ≤ 1
γ

Now, by applying Lyapunov’s theorem (2.2), we conclude that

E1 = (K, 0, 0) is globally asymptotically stable (GAS) when R0 < 1. In-

deed, since the Lyapunov function V is positive definite and its time derivative

along the trajectories of the system is negative definite, the largest invariant set

in {V̇ = 0} is reduced to the equilibrium {E1}. Consequently, all trajectories

converge to E1, establishing its global asymptotic stability.

In this section, rely on [26], to demonstrate the overall stability of positive

equilibrium E∗ see [25]. The result is that:

Proposition 2.7

• For 1 ≤ R0 ≤ D, the endemic equilibrium point E∗ from model (2.1) is

globally asymptotically stable with respect to the solutions that do not lie
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in the set:

L = {(S, I, V ) | S = 0 or (I = 0 and V = 0)}

• When R0 > D, the endemic equilibrium point E∗ becomes unstable. How-

ever, there exists at least one trajectory that is orbitally asymptotically

stable.

2.4 Numerical simulations

Using the Matlab software, model (2.1) is simulated thanks to the Runge

Kutta algorithm (2.2). As demonstrated in the theoretical analysis of stability

in the previous section, three scenarios are identified based on R0 values.

According to our theoretical analysis of stability, we consider three cases

depending on the value of R0, taking into account the chosen initial conditions:

S0 = 1000/mm3, I0 = 10/mm3, V0 = 100/mm3. [26]

• 1st case : Figure 2.2 shows the behaviour of healthy cells in red, infected

cells in blue, and the virus in green.

The parameters are chosen so that R0 = 0.96 : σ = 5, γ = 200, µ =

0.24, β = 0.000024, α = 0.03 and K = 1000. Figure 2.3 shows the

corresponding phase portrait.

Figure 2.2: The dynamics of model (2.1) when R0 = 0.96.
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Figure 2.3: The corresponding phase portrait when R0 = 0.96.

• 2nd case : In figure 2.4, the parameters are chosen so that:

1 < R0 = 6 < D = 15.90 :

σ = 2.4, γ = 600, µ = 0.24, β = 0.000024, α = 0.3 and K = 1000.

Figure 2.5 shows the corresponding phase portrait.

Figure 2.4: The dynamics of the model (2.1) when R0 = 6.
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Figure 2.5: The corresponding phase portrait when R0 = 6.

• 3rd case : Figure 2.6 shows the dynamics when the parameters are cho-

sen so that: 1 < D = 15.90 < R0 = 22 : σ = 2.4, γ = 2200, µ = 0.24, β =

0.000024, α = 1.3 and K = 1000. Figure 2.7 shows the corresponding

phase portrait.

Figure 2.6: The dynamics of the model (2.1) when R0 = 22.
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Figure 2.7: The phase portrait corresponding to R0 = 22.

2.5 Conclusion

In this chapter, we have explored a mathematical model describing HIV

transmission. We analyzed the model by identifying its equilibrium points,

computing the basic reproduction number R0, and investigating the stability

of the equilibria. Finally, we performed numerical simulations, which provided

the following results:

• If 0 < R0 < 1, we have two equilibria, the origin (E0) unstable and the

second (E1) locally asymptotically stable.

• If R0 > 1 the first equilibrium point (E0) is unstable, the second equilib-

rium point (E1) is unstable and we have the existence of a locally asymp-

totically stable third equilibrium point (E∗), which is locally asymptoti-

cally stable as long as 1 < R0 < D.

• If R0 > D, the third equilibrium point (E∗) is unstable.



Chapter 3

Study of the controlled model

3.1 Introduction

Optimal control is a method that aims to define a control law to optimize

a given criterion, such as minimizing a cost or enhancing the effectiveness of

a treatment. In the context of infectious diseases, particularly HIV, optimal

control plays a crucial role in designing therapeutic strategies that balance

treatment efficacy with its associated constraints.

Among the various optimal control approaches, bang-bang control stands

out due to its extreme nature: the treatment is either applied at full intensity

or completely halted. This method, grounded in Pontryagin’s maximum

principle, optimizes the administration of antiretroviral therapies by alter-

nating between periods of treatment activation and interruption.

The objective of this chapter is to apply the bang-bang control method to

the dynamic model of HIV studied in chapter 2. We begin by reviewing the

key concepts of controllability and optimal control, followed by a detailed

exploration of how bang-bang control can be applied on our model. Finally,

we present numerical simulations to illustrate the results and analyze the

impact of optimal control on the viral dynamics.

3.2 Controllability Notion

Controllability refers to the ability of a system to reach a final state x1 ∈ Rn

from an initial state x0, within a finite time T , using an admissible control

u(t) ∈ Rm.

41
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Figure 3.1: Controllability problem.

3.2.1 Accessible Set

The accessible set represents the set of points that can be reached from

an initial state x0 within a finite time T > 0, using admissible controls. It is

defined as:

Acc(x0, T ) := {xu(T ) | u ∈ L∞([0, T ],Ω)} ,

where Ω ⊂ Rm is the set of admissible controls and xu(t) is the trajectory

(solution) of the system associated with the control u. In other words, the

accessible set gathers all possible end-points of the system’s trajectories at

time T , as the control u varies.

3.2.2 Controllability

A system is said to be controllable over a time horizon T > 0 if it is possible

to drive it from any initial state x0 ∈ Rn to any desired final state x1 ∈ Rn

within the time interval [0, T ], using an admissible control u(t).

Formally, this means that the reachable set satisfies:

Acc(x0, T ) = Rn.

That is, for any pair of states x0 and x1, there exists a control u such

that the solution to the following Cauchy problem meets the final condition

x(T ) = x1: 
ẋ(t) = f(x(t), u(t)),

x(0) = x0,

x(T ) = x1.

We now define the notion of local controllability around an equilibrium

point.
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3.2.3 Linearized System

Nonlinear systems are more complex than linear systems, which makes

studying their controllability more difficult. A common approach is to linearise

the system around its equilibrium points, which makes it easier to analyse the

controllability of the linearised system. In this way, the controllability of non-

linear systems is generally studied locally around these points.[35]

The nonlinear system is written in the following form:ẋ(t) = f(x(t), u(t)),∀t ∈ [t0, T ]

x(t0) = x0
(M)

x(t) ∈ Rn is the state, u ∈ L2([0, T ],Rm) is the control, and f : Rn×Rm 7−→ Rn

a map of class C1. Suppose that for any x0 ∈ Rn and any measurable control

u(t) ∈ L2([0, T ],Rm), there is a unique solution of (M), defined for all

∀t ∈ [t0, T ] by:

x(t, x0, u) = x0 +

∫ t

t0

f(x(ν), u(ν)) dν.

It is assumed that the system (M) has an equilibrium point (xe, ue), i.e.:

f(xe, ue) = 0.

To linearise the system (M) around this equilibrium point.

It is sufficient to take:

A =
∂f

∂x
(xe, ue) and B =

∂f

∂u
(xe, ue)

As a result, the system (M) is locally controllable in time [t0, T ] if and only if

the linearized system around the equilibrium point is controllable in the same

time interval: {
ẋ(t) = Ax(t) +Bu(t), ∀t ∈ [t0, T ]

x(t0) = x0
(M ′)

Theorem 3.1 (Kalman criterion for local controllability) [35]

The autonomous linear system (M ′) is controllable if and only if the con-

trollability matrix C(A,B) is of maximum rank, hence :

rang C(A,B) = n.

This is called the Kalman criterion, and:

C(A,B) =
[
B AB A2B · · · An−1B

]
is called the Kalman matrix.

In this case, system (M ′) is said to be locally controllable in (xe, ue).
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3.3 Some principles of non linear optimal con-

trol systems

A control problem consists in finding a control u(t) and the associated

trajectory that minimises or maximises a given objective C(u). In general, an

optimal control problem can be formulated as follows, let the control system:ẋ(t) = f(t, x(t), u(t)),∀t ∈ [t0, T ]

x(t0) = x0
(3.1)

where :

f : [t0, T ]× Rn × U 7−→ Rn. The set of admissible controls is defined as:

Uadm = L1([t0, T ], U) , and:

U = {u : [t0, T ]→ Rm |u is measurable, u(t) ∈ Uadm a.e. on [t0, T ]}

The objective is to find an optimal control u∗ that satisfies the following as-

sertion:

min
u∈U

C(u), with C(u) = ψ(T, x(T )) +

∫ T

t0

g(t, x(t), u(t)) dt.

where:
g : [t0, T ]× Rn × Rm → R,

ψ :]t0,+∞[×Rn → R

}
are two given functions. (3.2)

The fundamental assumptions that ensure the existence and uniqueness of

optimal controls are as follows: to guarantee the existence and uniqueness of a

solution to system (3.1), we first consider the hypothesis regarding the function

f .

• H1) f ∈ C1([t0, T ]× Rn × U,Rn).

• H2) ∃c > 0, ∀t ∈ [t0, T ], ∀y ∈ Rn, and v ∈ U , we have :

|f(t, y, v)|Rn ≤ c(1 + |y|Rn + |v|Rm).

• H3) ∀r > 0,∃Cr > 0,∀t ∈ [t0, T ],∀y ∈ B(0, r),∀v ∈ U,

|∂f
∂x

(t, y, v)|Rn ≤ Cr(1 + |v|Rm).

We assume that the hypotheses (H1, H2, H3) are satisfied. Then ∀u ∈
Uadm, there exists a unique solution of the problem (3.1) [35].
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• H4) ∀R > 0, ∃CR > 0,∀t ∈ [t0, T ],∀y ∈ B(0, R),∀v ∈ U,

|g(t, y, u)| ≤ CR(1 + |v|Rm).

• H5) The functions g and ψ are bounded below on [t0, T ]×Rn×Rm and

on [t0,+∞[×Rn, respectively.

The assumption (H4) ensures that the cost C(u) is well-defined, and the

assumption (H5) guarantees that the infimum of C(u) over Uadm is finite.

3.3.1 Pontryagin maximum principle (PMP)

Let’s recall the formulation of the control system:
ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [t0, T ],

x(t0) = x0,

C(u∗) = maxu∈Uadm
C(u).

(3.3)

with:

C(u) = ψ(T, x(T )) +

∫ T

t0

g(t, x(t), u(t)) dt.

and x(T ) free (i.e. non-specific) and T free or fixed,

Definition 3.1 (Hamiltonian) [35]

To facilitate the formulation of the maximum principle, we define the Hamil-

tonian:

H : [t0, T ]× Rn × Rn × Uadm → R such that:

H(t, x, λ, u) = 〈λ, f(t, x, u)〉+ g(t, x, u)

We assume that the functions f and g satisfy the following additional assump-

tions:

• H6) The function g satisfies: g ∈ C1([t0, T ]×Rn × Uadm;R) i.e. g is of

class C1 with respect to x and u, and the function ψ satisfies:

ψ ∈ C1([t0,+∞[×Rn;R).

• H7) For all R > 0, there exists a constant C̃R > 0 such that:

∀t ∈ [t0, T ],∀y ∈ B̄(0, R), ∀v ∈ Uadm,

∣∣∣∣∂g∂x(t, y, v)

∣∣∣∣ ≤ C̃R(1 + |v|Rm).

Theorem 3.2 (Pontryagin maximum principle )[35]

We consider the optimal control problem defined by equations,(3.3) assum-

ing that the hypotheses Hi (for i = 1, . . . , 7) are satisfied.
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Sufficient Conditions:

If u∗ is an optimal control and x∗ is the corresponding state trajectory, then

there exists an absolutely continuous function λ : [t0, T ] → Rn, called the

adjoint vector, such that:

• (a)



ẋ∗(t) =
∂H

∂λ
(t, x∗(t), λ(t), u∗(t)),

= f(t, x∗(t), u∗(t)), for a.e. t ∈ [t0, T ], x∗(t0) = x0.

λ̇(t) = −∂H
∂x

(t, x∗(t), λ(t), u∗(t)),

= −∂f
∂x

(t, x∗(t), u∗(t))>λ(t)− ∂g

∂x
(t, x∗(t), u∗(t)), for a.e. t ∈ [t0, T ]

λ(T ) =
∂ψ

∂x
(T, x∗(T )) (Transversality condition)

• (b)

u∗(t) ∈ arg max
v∈Uadm

H(t, x∗(t), λ(t), v), for a.e. t ∈ [t0, T ],

that is,

H(t, x∗(t), λ(t), u∗(t)) = max
v∈Uadm

H(t, x∗(t), λ(t), v), for a.e. t ∈ [t0, T ].

• (c) If the final time T is free, we have:

H(T, x∗(T ), λ(T ), u∗(T )) = −∂ψ
∂t

(T, x∗(T )).

A triplet (x∗, u∗, λ) that satisfies the above conditions is called an extremal

or a candidate for optimality.

Necessary condition:

On the other hand, if x∗(t) and u∗(t) are optimal state and control variables,

then they satisfy the following conditions:
λ̇(t) = −∂H

∂x
(t, x∗(t), λ(t), u∗(t))

λ(T ) = ∇ψ(T, x(T ))

∂H
∂u

= (t, x∗(t), λ(t), u∗(t)) = Hu(t, x
∗(t), λ(t), u∗(t)) = 0.
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3.3.2 Bang-bang control

In problems where the control appears linearly in the system dynamics or

in the cost functional, the optimal solution often exhibits discontinuities in

the control variable. This behavior naturally leads to the appearance of the

so-called bang-bang controls [7].

Consider the following problem:
ẋ(t) = f(t, x(t), u(t)) = f1(t, x(t), u(t)) + uf2(t, x(t), u(t)), ∀t ∈ [t0, T ],

x(t0) = x0,

u(t) ∈ [a, b],

max
u

∫ T

t0

g(t, x(t), u(t)) dt+ ψ(T, x(T ))

= max
u

∫ T

t0

[g1(t, x(t), u(t)) + u(t) · g2(t, x(t), u(t))] dt+ ψ(T, x(T ))

Definition 3.2 [19]

A bang-bang control is a type of optimal strategy in which the control u∗(t)

takes values only at the extrema of its admissible domain Uadm = [a, b], with

no intermediate values.

Theorem 3.3 (bang-bang control [19])

According to the Pontryagin Maximum Principle (PMP (3.2)), the optimal

control u∗(t) maximizes the Hamiltonian H :

H(t, x, u, λ) = 〈λ, f(t, x, u)〉+ g(t, x, u)

= λ>f(t, x, u) + g(t, x, u).

= λ[f1(t, x, u) + uf2(t, x, u)] + g1(t, x, u) + ug2(t, x, u)

= u[λf2(t, x, u) + g2(t, x, u)] + λf1(t, x, u) + g1(t, x, u).

We put : φ(t, x, λ) = [λf2(t, x, u) + g2(t, x, u)] , then we have:

H(t, x, u, λ) = uφ(t, x, λ) + λf1(t, x, u) + g1(t, x, u)

where φ is the switching function, and the objective is to maximize H with

respect to u, at the optimal control u∗.

u∗(t) =

a if φ(t, x, λ) < 0

b if φ(t, x, λ) > 0
,∀t ∈ [0, T ].
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• If φ(t, x, λ) 6= 0 the control is of bang-bang type for a given period of time.

• If φ(t, x, λ) = 0 over an interval of time, the value of u∗ is singular, It is

also called a singular arc.

Example 3.1 Consider the following problem:

ẋ(t) = x(t)u(t), t ∈ [0, T ],

x(0) = x0,

0 ≤ u(t) ≤ 1

maxu
∫ T
0

(1− u(t))x(t) dt

with: f(t, x, u) = x(t)u(t) and g(t, x, u) = (1− u(t))x(t).

The Hamiltonian for this problem is defined by:

H(t, x, u, λ) = λf(t, x, u) + g(t, x, u),

Thus, the Hamiltonian is written as:

H(t, x, u, λ) = λxu+ (1− u)x

According to Pontryagin’s maximum principle, if there exists an optimal control

u∗ and an optimal trajectory x∗, then:

ẋ∗(t) =
∂H

∂λ
= xu

λ̇(t) = −∂H
∂x

= −λu− (1− u)

x∗(0) = x0,

λ(T ) =
∂ψ

∂x
= 0 (Transversality condition)

(3.4)

The solution to the adjoint equation: λ̇ = −λu− (1− u) with, λ(T ) = 0.

Case 1: u(t) = 0

When u(t) = 0, the equation becomes:

λ̇(t) = −(1) = −1

The solution to this equation is:

λ(t) = −(t− T )

Thus, λ(t) is decreasing for u(t) = 0.

Case 2: u(t) = 1

When u(t) = 1, the equation becomes:
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λ̇(t) = −(λ(t) + 0) = −λ(t)

The solution to this equation is:

λ(t) = Ce−t

using λ(T ) = 0⇒ λ(t) ≡ 0, ∀t ∈ [t0, T ].

The first equation in (3.4) ẋ(t) = ux, ∀t ∈ [0, T ]:

x∗(t) =

x0 if u(t) = 0

x0e
t if u(t)=1

3.4 Study of the controlled model

We want to control the evolution of HIV by introducing three control

inputs, denoted by ui(t), for i = 1, 2, 3 at different stages of the process, and

applying them simultaneously.

• In the context of the HIV model, the objective of the first control u1 is

to increase the virus clearance rate. This may include therapies such as

protease inhibitors, nanoparticles containing bee venom, targeted anti-

bodies, or a combination of these methods [12].

Model (2.1) is written as follows when the effect of the first control ther-

apy is taken into account:
Ṡ(t) = αS(t)

(
1− S(t)

K

)
− βS(t)V (t)

İ(t) = −µI(t) + βS(t)V (t)

V̇ (t) = −σV (t)(1 + u1(t)) + γµI(t)

S(0) = S0, I(0) = I0, V (0) = V0

(3.5)

• The second control u2 aims to prevent viral entry into host cells, a crucial

step in the infection process. It involves the SV term in the model

and may include integrase inhibitors, therapies such as modified CD4+T

cells with dysfunctional CCR5, microbicide gels, the CXCL4 protein,

or cannabis-derived substances to slow HIV progression.(see [5] ,[2], [3],

[34])

The controlled model associated with (2.1) is then written as:
Ṡ(t) = αS(t)(1− S(t)

K
)− βS(t)V (t)(1− u2(t))

İ(t) = −µI(t) + βS(t)V (t)(1− u2(t))

V̇ (t) = −γV (t) + σµI(t)

S(0) = S0, I(0) = I0, V (0) = V0

(3.6)
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• The third control u3 aims to reduce the apoptosis of infected cells to limit

the release of new viruses. It may include reverse transcriptase inhibitors

and is applied to the term µI in the model (2.1).

Our third controlled model:
Ṡ(t) = αS(t)(1− S(t)

K
)− βS(t)V (t)

İ(t) = −µI(t)(1− u3(t)) + βS(t)V (t)

V̇ (t) = −σV (t) + γµI(t)(1− u3(t))

S(0) = S0, I(0) = I0, V (0) = V0

(3.7)

• In general, when all the controls are used at the same time, we get:
Ṡ(t) = αS(t)(1− S(t)

K
)− βS(t)V (t)(1− u2(t))

İ(t) = −µI(t)(1− u3(t)) + βS(t)V (t)(1− u2(t))

V̇ (t) = −σV (t)(1 + u1(t)) + γµI(t)(1− u3(t))

S(0) = S0, I(0) = I0, V (0) = V0

(3.8)

The objective is to analyze the model’s response to each control individ-

ually and then observe the effects when all controls are applied together.

Time-dependent treatments are incorporated through controls ui(t), where

i = 1, 2, 3. Values of ui = 0 or ui = 1 represent models with no control or full

treatment, while ui > 1 (for i = 2, 3) corresponds to cytotoxic treatments. u1

affects only viral particles and is bounded by a constant L > 1. Taking this

into account, consider the following set:

U =

{
ui(.) Lebesgue measurable for: i = 1, 3; a ≤ u1(t) ≤ L , (L > 1) ,

and 0 < a ≤ ui(t) ≤ b < 1 , for i = 2, 3, t ∈ [0, T ]

}

3.4.1 Local controllability

In this section we focus on studying the local controllability of our new

system (3.8) around all equilibrium points of system (2.1).

Proposition 3.1

The system (3.8) is uncontrollable around the trivial and healthy E0, E1

equilibrium points, regardless of the control applied ui ∈ U, where i = 1, 2, 3.

Proof. [25]

For the study of local controllability, we use Kalman’s criterion (3.1) .

We put:

F (t, S, I, V, u1(t), u2(t), u3(t)) =

 αS
(
1− S

K

)
− βSV (1− u2(t))

−µI (1− u3(t)) + βSV (1− u2(t))
−σV (1 + u1(t)) + γµI (1− u3(t))


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Let’s calculate :

Ac =
∂F

∂x
=

 α(1− 2S
K

)− βV (1− u2) 0 −βS(1− u2)
βV (1− u2) −µ(1− u3) βS(1− u2)

0 γµ(1− u3) −σ(1 + u1)

 ,

Bc =
∂F

∂ui
=

 0

0

−σV

βSV

−βSV
0

0

−µI
−γµI

 , i = 1, 2, 3

It is sufficient to note that Bc |E0 = Bc |E1 = 0, which, according to Kalman’s

criterion (see theorem (3.1)), leads to the result.

This result is easy to understand, since around the origin and the healthy

equilibrium point, there is no infection, and therefore nothing to control !

Proposition 3.2

If R0 > 1, the four models (3.5), (3.6), (3.7), and (3.8) are locally control-

lable around the equilibrium point E∗ if and only if R0 does not belong to the

set of critical values: {
2σ

σ + µ
,

2α

α + µ

}
.

Proof. [25]

The function F is written:

F (t, S, I, V, u(t)) =

f1(S, I, V, u(t))

f2(S, I, V, u(t))

f3(S, I, V, u(t))


For the study of the local controllability around the 3rd equilibrium point E∗

we have 4 cases:

i) For model (3.5) : We compute the matrices A1 and B1:

A1 =
∂f1
∂x


α

(
1− 2S

K

)
− βV 0 −βS

βV −µ βS

0 γµ −σ(1 + u1)

 , B1 =
∂f1
∂u1

 0

0

−σV



Put: X = α

(
1− 2S

K

)
, Y = βV, Z = βS, W = σ(1 + u1)

So:

A1 =

X − Y 0 −Z
Y −µ Z

0 γµ −W


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From Kalman’s criterion we calculate the Kalman’s matrix associated to

that case : Λ1 = (B1 A1B1 A2
1B1) is given by:

Λ1 = −σV

0 −Z −Z(X − Y ) + ZW

0 Z −Y Z − µZ −WZ

1 −W γµZ +W 2


Then, calculate the derminant of the matrix Λ1:

det(Λ1) = −σV Z2

∣∣∣∣∣−1 −(X − Y ) +W

1 −Y − µ−W

∣∣∣∣∣ = −σV Z2[X + µ]

det Λ1 = 0 ⇐⇒ X = −µ.

By replacing X = α

(
1− 2S

K

)
using the first coordinate of the chronic

equilibrium S∗, we obtain:

R0 6=
2α

α + µ
, then: det(Λ1) 6= 0 and rank(Λ1) = 3.

Therefore, the system is locally controllable around the chronic equi-

librium for any measurable bounded control u1 ∈ U .

ii) For model (3.6) : We campute the A2 and B2:

A2 =
∂f2
∂x


α

(
1− 2S

K

)
− βV (1− u2) 0 −βS(1− u2)

βV (1− u2) −µ βS(1− u2)
0 γµ −σ

 , B2 =
∂f2
∂u2

 βSV

−βSV
0



We put: X = α

(
1− 2S

K

)
, Y = βV (1− u2), Z = βS(1− u2)

So:

A2 =

X − Y 0 −Z
Y −µ Z

0 γµ −σ


From Kalman’s criterion we calculate Kalman’s matrix: Λ2 = (B2 A2B2 A2

2B2)

is given by:

Λ2 = −βSV

 1 X − Y (X − Y )2 + γµZ

−1 Y + µ Y (X − Y − µ)− µ(µ+ γZ)

0 −γµ γµ(Y + µσ)


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We calculate the derminant of the matrix Λ2:

det(Λ2) = γµSV
[
(Y + µ)(Y + µ+ σ) + Y (X − Y − µ)

− µ(µ+ γZ) + (X − Y )(Y + µ+ γ) + (X − Y )2 + γµZ
]

det(Λ2) = γµSV
[
(Y + µ+ σ) + Y (X − Y − µ)− µ2(X − Y )2

]
= γµSV

[
X2 + (µ+ σ)X + σµ

]
det Λ2 = 0⇐⇒ X = −µ or X = −σ.

By replacing X = α

(
1− 2S

K

)
and using the first coordinate of the

chronic equilibrium, we obtain two values of R0 : R0 =
2α

α + µ
and

R0 =
2σ

σ + µ
.

So, det(Λ1) 6= 0, iff R0 6=
2α

α + µ
and R0 6=

2σ

σ + µ
.

In that case: rank(Λ2) = 3.

Therefore, the system is locally controllable around the chronic equi-

librium for any measurable bounded control u2.

iii) For model (3.7):

We compute the matrices A3 and B3:

A3 =
∂f3
∂x

=


α

(
1− 2S

K

)
− βV 0 −βS

βV −µ(1− u3) βS

0 γµ(1− u3) −σ

 , B3 =
∂f3
∂u3

=

 0

µI

−γµI



We set:

X = α

(
1− 2S

K

)
, Y = βV, Z = βS, ν = µ(1− u3)

So:

A3 =

X − Y 0 −Z
Y −ν Z

0 γν −σ


According to Kalman’s criterion, we define the Kalman matrix:

Λ3 =
(
B3 A3B3 A2

3B3

)



54 CHAPTER 3. STUDY OF THE CONTROLLED MODEL

Λ3 = µI

 0 γZ γZ(−ν +X − Y − σ)

1 −ν − γZ ν2 + γνZ + γZ(Y + ν + σ)

−γ γ(ν + σ) −γ(ν2 + νσ + (γZν + σ2))


We calculate the derminant of the matrix Λ3:

det(Λ3) = µγ2IZ

∣∣∣∣∣∣∣
0 1 −ν +X − Y − σ
1 −ν − γZ ν2 + γνZ + γZ(Y + ν + σ)

−1 ν + σ − [ν2 − σν + (γZν + σ2)]

∣∣∣∣∣∣∣
det(Λ3) = µγ2IZ [X(σ − γZ)− Y σ]

By replacing with the chronic equilibrium coordinates, it is obtained

that: (σ − γZ) = 0 , so : det(Λ3) = −α2

β
σ3(1− 1

R0
)2.

In this case, the system (3.7) is locally controllable around the chronic

equilibrium for any measurable bounded control u3.

iv) For model (3.8) : We have already calculated :

Bc =

 0 βSV 0

0 −βSV µI

−σV 0 −γµI


thus: detBc = −σV (µβSV I) 6= 0

Since Bc is of rank(Λ) = 3, then the Kalman matrix associated to that

case, given by Λ = (Bc, AcBc, A
2
cB

2
c ) is of rank 3 too.

Based on these findings, all of our model (3.5) (3.6) (3.7) (3.8), are locally

controllable around E∗ if and only if R0 does not belong to the set containing

the two specific values:
{

2σ
σ+µ

, 2α
α+µ

}
.

3.4.2 Optimal control calculation

We consider four controlled versions of the HIV model, each with its own

cost functional. Since the optimal control procedure is similar for all cases, we

present in detail the derivation only for system (2.1) with its three controls u1,

u2, and u3, and associated costs.

1. Minimize the number of infected cells in the body for the system :

JI (u∗i ) = min
ui∈U

∫ T

0

I(t)dt , i = 1, 2, 3.
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2. Minimize the number of free viruses circulating in the blood for the

system:

JV (u∗i ) = min
ui∈U

∫ T

0

V (t)dt , i = 1, 2, 3.

3. Maximize the number of healthy cells for the system:

JS (u∗i ) = max
ui∈U

∫ T

0

S(t)dt , i = 1, 2, 3

3.4.3 Determining the control

We assume that:

1. 
ẋ(t) = f1(t, x(t), u1(t)) = A1(t)x(t) +B1(t)u1(t),

ẋ(t) = f2(t, x(t), u2(t)) = A2(t)x(t) +B2(t)u2(t),

ẋ(t) = f3(t, x(t), u3(t)) = A3(t)x(t) +B3(t)u3(t).

Where: x = (S, I, V ) , so the initial condition is: x0 = (S0, I0, V0).

2. And the objective function is:

g(t, ui(t)) =

 JI (u∗i )

JV (u∗i )

JS (u∗i )

 i=1,2,3

• Case (3.5) :

JI (u∗1) = min
u1∈U

∫ T

0

I(t)dt

The Hamiltonian H associated with the system (1) is:

H(t, x(t), λ(t), u1(t)) = λf1(t, x(t), u1(t)) + g(t, x(t), u1(t))

H(t, x(t), λ(t), u1(t)) = −I(t) + λ1(t)

[
αS(t)

(
1− S(t)

K

)
− βS(t)V (t)

]
+λ2(t) [−µI(t) + βS(t)V (t)] + λ3(t)

[γµI(t)− σV (t)(1 + u1(t))]
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Proposition 3.3

If there exists an optimal control u∗ and an associated optimal trajec-

tory x∗, then the pair (x∗, u∗) satisfies the sufficient conditions of Pon-

tryagin’s Maximum Principle. In particular, x∗ is an optimal trajectory

under this principle.

Proof. There exists an adjoint vector :

λi : [0, T ]→ R, i = 1, 2, 3

So that:

(a)

λ̇1(t) = −∂H
∂S

= −λ1(t)
[
α
(

1− 2S(t)
K

)
− βV (t)

]
− λ2(t)βV (t)

λ̇2(t) = −∂H
∂I

= 1 + µλ2(t)− γµλ3(t)

λ̇3(t) = −∂H
∂V

= βS(t)λ1(t)− βS(t)λ2(t) + σ(1 + u1(t))λ3(t)

λ1(T ) = λ2(T ) = λ3(T ) = 0 (transversal conditions)

(b)

H(t, x∗(t), λ(t), u∗1(t)) = max
u1∈U

H(t, x∗(t), λ(t), u1).

σV (t)λ3(t)u
∗
1(t) = max

u1∈U
σV (t)λ3(t)u1(t).

Switching Function and Bang-Bang Control for u1(t):

We define the switching function:

φ(t) = σV (t)λ3(t)

We compute its time derivative:

∂φ

∂t
= σV̇ (t)λ3(t) + σV (t)λ̇3(t)

Using the system dynamics:

V̇ (t) = −σV (t)(1 + u1(t)) + γµI(t)

λ̇3(t) = βS(t)(λ1(t)− λ2(t)) + σ(1 + u1(t))λ3(t)
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Substituting:

φ̇(t) = σ [−σV (t)(1 + u1(t)) + γµI(t)]λ3(t)

+ σV (t) [βS(t)(λ1(t)− λ2(t)) + σ(1 + u1(t))λ3(t)]

Simplifying:

φ̇(t) = σγµI(t)λ3(t) + σβS(t)V (t)(λ1(t)− λ2(t))

By analyzing φ̇(t), and considering by the transversality that φ(T ) =

φ̇(T ) = 0, it follows that φ̇(t) vanishes at least once on the interval [0, T ].

Thus, φ(t) changes sign at least once, which excludes the existence of a

singular arc. This confirms that the optimal control is of bang-bang

type.

We now determine the form of the optimal bang-bang control:

u∗1(t) =


umin if φ(t) < 0

undefined if φ(t) = 0

umax if φ(t) > 0

Since σ > 0 and V (t) > 0, the sign of φ(t) depends solely on λ3(t).

Therefore:

u∗1(t) =


a if λ3(t) < 0

undefined if λ3(t) = 0

L if λ3(t) > 0

Remark 1:

To reduce the concentration of free viruses in the blood, the cost func-

tional,

JV (u2) = min
u2∈U

∫ T

0

V (t) dt

is used. Similarly, to increase the number of healthy cells,

JS(u1) = max
u1∈U

∫ T

0

S(t) dt

a corresponding cost functional is considered. In both cases, the expres-

sion of the optimal control for system (3.5) remains unchanged. Only

the forms of the associated Hamiltonians and the corresponding adjoint

systems are modified, and are therefore not detailed here for brevity.
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• Cases (3.6) and (3.7):

JI (u∗1) = min
u1∈U

∫ T

0

I(t)dt

Proposition 3.4

If an optimal control u∗ exists, then the associated trajectory x∗ neces-

sarily satisfies the conditions of Pontryagin’s Maximum Principle.

Proof.

Using the same principle of maximum Pontryaguin, we calculate the al

control for the systems (3.6) and (3.7), summarized in what follows:

u∗2(t) =


a if λ2(t)− λ1(t) < 0

undefined if λ2(t)− λ1(t) = 0

b if λ2(t)− λ1(t) > 0

Since the Hamiltonian is linear with respect to the control variable u∗2,

we have ∂2H(t)

∂u22
= 0. This implies that no singular control arises in this

case:

u∗3(t) =


a if γλ3(t)− λ2(t) < 0

undefined if γλ3(t)− λ2(t) = 0

b if γλ3(t)− λ2(t) > 0

Remark 2 :

The optimal controls u∗2 and u∗3 are consistent across the cases of mini-

mizing free virus levels and maximizing healthy cells, though the corre-

sponding Hamiltonians and adjoint systems change with each case.

• Case (3.8) :

In this part we will study the optimal u = (u∗1, u
∗
2, u
∗
3) control model (3.8)

for the 3 controls simultaneously .

Put :

F (t, x(t), ui(t))


f1(t, x(t), u(t))

f2(t, x(t), u(t))

f3(t, x(t), u(t))

, i=1,2,3

We also have : ψ(x(T )) = ψ(S(T ), I(T ), V (T )) = 0 , or : x = (S, I, V ).
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And the objective function is :

g(t, ui(t)) =

 JI (u∗i )

JV (u∗i )

JS (u∗i )

 i=1,2,3

The Hamiltonian associated with system (3.8) is:

H(t, x, λ, u) = g(t, u(t))

+ λ1(t)
[
αS(t)

(
1− S(t)

K

)
− βS(t)V (t)(1− u2(t))

]
+ λ2(t)

[
−µI(t)(1− u3(t)) + βS(t)V (t)(1− u2(t))

]
+ λ3(t)

[
γµI(t)(1− u3(t))− σV (t)(1 + u1(t))

]

Proposition 3.5

For each case, there exists a unique optimal control u∗i , i = 1, 2, 3 and

an associated adjoint function λi, i = 1, 2, 3, satisfying the conditions of

Pontryagin’s Maximum Principle, and verifiyin:λ̇i(t) = −∂H
∂x

, x = (S, I, V )

λi(T ) = 0, i = 1, 2, 3. transversality conditions .

Proof.

• The adjoint system corresponding to the minimization of the infected

cell population (1) is given by:

λ̇1(t) = −∂H
∂S

=

[
βV (t)(1− u2(t))− α

(
1− 2S(t)

K

)]
λ1(t)

− [βV (t)(1− u2(t))λ2(t)]

λ̇2(t) = −∂H
∂I

= [µ(1− u3(t))]λ2(t)− [γµ(1− u3(t))]λ3(t) + 1,

λ̇3(t) = −∂H
∂V

= [βS(t)(1− u2(t))]λ1(t)− [βS(t)(1− u2(t))]λ2(t)

+ [σ(1 + u1(t))]λ3(t),

λ1(T ) = λ2(T ) = λ3(T ) = 0.

• The adjoint system associated with the objective of minimizing the
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viral load is (2) expressed as:

λ̇1(t) = −∂H
∂S

=

[
βV (t)(1− u2(t))− α

(
1− 2S

K

)]
λ1(t)

− [βV (t)(1− u2(t))]λ2(t),

λ̇2(t) = −∂H
∂I

= [µ(1− u3(t))]λ2(t)− [γµ(1− u3(t))]λ3(t),

λ̇3(t) = −∂H
∂V

= [βS(t)(1− u2(t))]λ1(t)− [βS(t)(1− u2(t))]λ2(t)

+ [σ(1 + u1(t))]λ3(t) + 1

λ1(T ) = λ2(T ) = λ3(T ) = 0.

• And , when maximizing the healthy cells populations, one gets:

λ̇1(t) =

[
βV (t)(1− u2(t))− α

(
1− 2S

K

)]
λ1(t)− [βV (t)(1− u2(t))λ2(t)]− 1,

λ̇2(t) = [µ(1− u3(t))]λ2(t)− [γµ(1− u3(t))]λ3(t),

λ̇3(t) = [βS(t)(1− u2(t))]λ1(t)− [βS(t)(1− u2(t))]λ2(t) + [σ(1 + u1(t))]λ3(t),

λ1(T ) = λ2(T ) = λ3(T ) = 0.

Using Pontryagin’s maximum principle (3.3) to determine the optimal

control.

We obtain:

u∗1(t) =


a if λ3(t) > 0,

undefined if λ3(t) = 0,

L if λ3(t) < 0.

u∗2(t) =


a if λ2(t)− λ1(t) < 0,

undefined if λ2(t)− λ1(t) = 0.

b if λ2(t)− λ1(t) > 0,

u∗3(t) =


a if γλ3(t)− λ2(t) < 0,

undefined if γλ3(t)− λ2(t) = 0.

b if γλ3(t)− λ2(t) > 0,
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3.5 Numerical simulations

This section is dedicated to the numerical analysis of the optimality system,

highlighting the optimal controls obtained. The results, illustrated by curves,

are obtained by solving a system of 6 ODEs representing both the state dy-

namics and the corresponding adjoint equations.

The solution is obtained by an iterative method: the state equations are

integrated with an initial control using a Runge-Kutta 4 forward schema,

and then the adjoint equations are solved backwards using an implicit Euler

schema, taking into account the final boundary conditions.

The controls are updated on the basis of their analytical characterisation.

This process is repeated at each iteration and stops when the solutions are suf-

ficiently close to those of the previous iteration, thus ensuring the convergence

of the system.

The initial conditions for this are as follows: S0 = 1000, I0 = 10 and V0 = 100.

In all situations the adjoint state variables are zero, with a = 0.01, b = 0.9

and L = 5 (estimated value)[25].

1) Minimization of infected cells

i) Minimization of infected cells under first control (1):

Figure 3.2: Minimizing I, system (3.5) with control u1 , R0 = 22 .

Interpretation of results:

The optimal control u1(t) shows limited effectiveness: it helps reduce

the number of infected cells I and the viral load V , but it does not fully

eradicate the virus. The healthy cell population S increases slightly, but

does not recover to its initial level.
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Figure 3.3: Minimizing I, system (3.6) with control u2 , R0 = 22.

Interpretation of results:

The control u2(t), which targets the prevention of new infections,

proves to be highly effective when applied alone. It significantly reduces

the viral load and the number of infected cells while promoting the re-

covery of healthy cells. These results highlight the crucial role of this

mechanism in interrupting the infection cycle and demonstrate that tar-

geting virus entry into cells is a powerful therapeutic strategy.

Figure 3.4: Minimizing I, system (3.7) with control u3 , R0 = 22.
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Interpretation of results:

The optimal control u3(t) reaches its maximum almost immediately

and remains constant, effectively reducing the population of infected

cells. However, healthy cells stabilize at a low level, and the viral load

remains relatively high. This suggests that while u3(t) is effective in

targeting infection, it does not achieve full recovery. Its limited efficacy

in a high R0 context highlights the importance of early treatment and

the implementation of combined therapeutic strategies, particularly for

chronic infections such as HIV.

Figure 3.5: Minimizing I, system (3.8) with all controls, R0 = 22.

Interpretation of results:

The applied controls manage to stabilize the infection without com-

pletely eliminating the virus. The viral load decreases and healthy cells

are preserved to a certain extent. This highlights the limits of single or

partially applied controls and supports the need for optimized combined

strategies.

ii) Minimizing viruses (2):
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Figure 3.6: Minimizing V, system(3.5) with control u1, R0 = 22.

Interpretation of results:

Although the control limits the progression of the infection, the in-

terplay between healthy cell growth, viral transmission, and high viral

production (γ = 2200) prevents the complete elimination of the virus.

Figure 3.7: Minimizing V, system (3.6) with control u2, R0 = 22.

Interpretation of results:

The figures show the effectiveness of optimal u2 control, which aims

to maintain the healthy cell population over time while significantly

reducing the viral load and the number of contaminated cells.

The intensity of control indicates the therapeutic effort required to

achieve these goals.
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Figure 3.8: Minimizing V, system (3.7) with control u3, R0 = 22.

Interpretation of results:

The effectiveness of u3 control is very limited. In fact, the oscillations

observed and the maintenance of high viral levels indicate that it does

not provide adequate infection control.

Figure 3.9: Minimizing V, system (3.8) with all controls, R0 = 22.

Interpretation of results:

The combined use of the three controls u1, u2, u3 effectively manages

the infection by reducing both the viral load and the number of infected

cells, while preserving healthy cells. This multimodal approach proves

to be particularly effective within the model.
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iii) Maximization of healthy cells (3):

Figure 3.10: Maximizing S, system (3.5) with control u1, R0 = 22.

Interpretation of results:

Control u1 control (enhanced viral clearance) initially suppresses

infection and protects healthy cells. However, subsequent recrudescence

suggests limited long-term efficacy or an optimisation strategy that

tolerates brief viral reactivation to maximise overall healthy cells.

Combined strategies may be needed.

Figure 3.11: Maximizing S, system (3.6) with control u2, R0 = 22.

Interpretation of results:

As in the previous cases, the control u2 is very effective.
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Figure 3.12: Maximizing S, system (3.7) with control u3, R0 = 22.

Interpretation of results:

Although some control over infected cells and virus production

is observed, this single control strategy remains insufficient and unstable.

It fails to sustainably reduce infection and does not effectively preserve

healthy cells. A combined control approach appears to be essential for

optimal results.

Figure 3.13: Maximizing S, system (3.8) with all controls , R0 = 22.

Interpretation of results:

The combined use of the three controls proved highly effective in

stabilising healthy cells and suppressing infection. However, the insta-

bility of the u2 control makes its practical application difficult. Although

promising, this optimal strategy will require solutions to overcome the

challenges of u2 implementation.



68 CHAPTER 3. STUDY OF THE CONTROLLED MODEL

Conclusion

Numerical simulations carried out on all scenarios have demonstrated a

strong superiority of the control u2(t), which aims to block the infection of

healthy cells. This control not only reduced the number of infected cells signif-

icantly but also preserved the population of healthy CD4+ T-cells and lowered

the viral load in the bloodstream. Its biological effectiveness lies in its abil-

ity to prevent the virus from entering host cells, thereby halting the infection

process at its source.

On the other hand, the isolated application of the controls u1(t) and u3(t)

proved inefficient, and even counterproductive in some cases. The control u1(t),

acting on viral clearance, was quickly overwhelmed by the high rate of viral

production, rendering it insufficient on its own. The control u3(t), targeting

the infected cells, led to unintended consequences: by eliminating infected cells

without preventing new infections, it indirectly promoted a depletion of all

immune cells, including healthy ones, thereby reinforcing the infection rather

than suppressing it.

These findings are consistent with several studies on Highly Active An-

tiretroviral Therapy (HAART), where treatment success strongly depends on

patient adherence and the balance between efficacy and side effects. A treat-

ment strategy that could reduce the number of drugs or dosing intensity while

maintaining viral suppression would not only enhance patient adherence but

also limit drug resistance and toxicity.

The comparative analysis suggests that the best approach is to combine all

three controls u1, u2, and u3, each acting on a distinct stage of the infection

cycle. This coordinated strategy ensures better long-term management of the

disease by acting simultaneously on virus entry, replication, and infected cells.

In conclusion, the bang-bang control approach, especially when combin-

ing all controls, appears to be a powerful mathematical strategy to optimize

HIV-1 treatment. It provides a promising direction for designing therapeutic

protocols that are both biologically effective and clinically viable.

In the following, we provide a summary table comparing the effectiveness of

the different control strategies studied in this work:

Criterion / Control u1 u2 u3 All controls

min I maximum maximum moderate maximum

min V minimum maximum minimum maximum

max S moderate maximum minimum maximum

Table 3.1: Control efficiency by criterion
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General Conclusion

This work has focused on the within-host dynamics of HIV infection

through the mathematical modeling of viral propagation and the implemen-

tation of optimal control strategies particularly of the bang-bang type. The

main objective was to better understand the impact of targeted therapeutic

interventions on viral load suppression and immune cell preservation, within a

deterministic SIV (Susceptible–Infected–Virus) framework.

In the first part of our study, we began by revisiting the biological founda-

tions of HIV infection, its transmission modes, and the mechanisms involved

in viral replication. This overview allowed us to define and justify the struc-

ture of the mathematical model used, built on differential equations describing

the interactions between healthy cells, infected cells, and viral particles. We

analyzed the system’s equilibrium points, calculated the basic reproduction

number R0, and studied the local and global stability of the infection-free

and endemic equilibria. These theoretical results laid the foundation for the

numerical simulations that followed.

The second part of the study was devoted to the application of control

theory, using the Pontryagin Maximum Principle (PMP) and the bang-bang

control principle to identify optimal treatment strategies. Three types of con-

trols were considered:

• u1 targeting viral clearance.

• u2 acting on the healthy cells infection prevention.

• u3 acting on the mortality of infected cells.

Summary of findings: Numerical simulations confirmed that the combined

application of the three controls yields the best outcome in terms of viral

suppression and healthy cell preservation. Among individual strategies, the

control u2 which blocks new infections was the most effective, while the isolated

use of u1 or u3 showed limited or even counterproductive results.

Future perspectives: Several research directions could be explored to build

upon this work:

• Introduce time delays in the model to account for biological lags in

immune response or drug effects.

• Extend the framework to a stochastic model, better capturing vari-

ability in patient response or viral mutation.

• Couple the system with pharmacokinetic and pharmacodynamic

models (PK/PD) to simulate more realistic drug action and resistance.
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• Investigate adaptive or feedback controls, where treatment depends

dynamically on the current viral load or cell count.

• Incorporate a cost benefit analysis (e.g., economic or toxicological cost

functions) to evaluate therapeutic strategies more comprehensively.

These extensions would allow for a more faithful representation of clinical re-

ality and could contribute to designing robust, patient-specific HIV treatment

protocols grounded in both biological insight and mathematical rigor.

Another natural extension of this work would be to analyze the system’s

behavior at the critical threshold R0 = 1. This case is mathematically deli-

cate, as classical linear stability analysis fails to conclude. In such situations,

the application of the center manifold theorem becomes relevant. It allows

for a reduction of the system’s dimensionality near the bifurcation point and

enables a deeper understanding of the local dynamics. Studying this critical

regime could offer new insights into the transition between eradication and

persistence of infection.
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alterações vocais na infância. Revista da Sociedade Brasileira de Fonoau-

diologia, 9(3), 168–178 .
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ligne : https://fr.wikipedia.org/wiki/Virus_de_l%27immunod%C3%

A9ficience_humaine

https://www.i2m.univ-amu.fr/perso/thierry.gallouet/licence.d/edo.d/EDO.pdf
https://www.i2m.univ-amu.fr/perso/thierry.gallouet/licence.d/edo.d/EDO.pdf
https://fr.wikipedia.org/wiki/Virus_de_l%27immunod%C3%A9ficience_humaine
https://fr.wikipedia.org/wiki/Virus_de_l%27immunod%C3%A9ficience_humaine


Abstract : 

       This work focuses on the study of a mathematical model describing the within-host 
dynamics of HIV infection while incorporating a Bang-Bang type control strategy. We 
first analyzed the qualitative properties of the system, including positivity, 
boundedness, and stability. Then, Pontryagin's Maximum Principle was applied to 
derive the optimal control, and numerical simulations were performed to demonstrate 
the effectiveness of the proposed strategy. The results show that the Bang-Bang control 
effectively reduces the number of infected cells and the viral load. 

Keywords: HIV, mathematical model, optimal control, Bang-Bang control, stability. 

Résumé : 

       Ce travail porte sur l’étude d’un modèle mathématique décrivant la dynamique de 
l’infection par le virus VIH à l’intérieur de l’hôte, en intégrant une stratégie de contrôle 
de type Bang-Bang. Nous avons d’abord analysé les propriétés qualitatives du système, 
notamment la positivité, la bornitude et la stabilité. Ensuite, le principe du maximum de 
Pontryagin a été appliqué pour dériver le contrôle optimal, et des simulations 
numériques ont été réalisées afin d’illustrer l’efficacité de la stratégie proposée. Les 
résultats obtenus montrent que le contrôle Bang-Bang permet de réduire efficacement 
le nombre de cellules infectées ainsi que la charge virale. 

Mots clés :  VIH, modèle mathématique, contrôle optimal, contrôle Bang-Bang, 
stabilité. 

 :الملخص 

البشرية المناعة نقص فيروس انتشار  ديناميكية يصف  رياضي نموذج دراسة إلى العمل هذا يهدف  (VIH) جسم داخل 
نوع من تحكم استراتيجية تأثير  الاعتبار  بعين الأخذ مع       الإنسان  Bang-Bang. للنظام النوعية الخصائص بتحليل قمنا 

 إجراء وتم للتحكم، الأمثل الشكل على للحصول بونترياغين مبدأ  تطبيق تم ثم. الحلول وحدود والإيجابية الاستقرارية مثل
نوع من التحكم استراتيجية أن النتائج تظهر . المقترحة الاستراتيجية فعالية لتوضيح عددية محاكاة  Bang-Bang في تساهم 

بفعالية  الفيروسي والحمل المصابة الخلايا عدد تقليل . 

الاستقرار ، تحكم الأمثل، التحكم الرياضي، النموذج البشرية، المناعة نقص فيروس:  مفتاحية كلمات  
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