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Introduction

In statistics, a chronological series, or time series, designs the modeling of a sequence random
and sequentially observed events, usually on a time scale. In other words, time series is a
sequence of data points indexed in time order i.e. at different points in time. These data
points typically consist of successive measurements made from the same source over a time
interval and are used to track change over time. Therefore, a time series can be defined as
a collection of observations x; where the index t represents a unit of the time (a year, a day,
an hour...). Time series can be found everywhere, since time is a constituent of everything
that is observable. They numerous applications across various fields. One may put this in
context through the example of electrical activity in the brain, rainfall measurements, stock
prices, number of sunspots, annual retail sales, Heartbeats per minute monthly air passengers

(Figure:1)" and so on.
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Figure 1: Monthly Airline Passenger Numbers 1949-1960

!Data are available in the software R and the plot can be obtained by the command ts.plot(AirPassengers)



The objective of studying time series is to forecast the series evolution. The concept
behind the forecasts or prediction is to use previous data points to calculate the future points.
For that a non-exhaustive list of mathematical models have been developed such as regression
in the case of dependant observations. The mathematical model of a time series is called a
stochastic process. It is a mathematical description of a distribution of time series and some
time series are not but a realisation of stochastic processes ( in term of simulation for instance).
From a historical point of view, it is in astronomy that the first time series appear voluntarily for
analytical purposes [6]. Systematic observation of the sky dates back to antiquity. For example,
the Romans already knew that the year lasts approximately 365 and a quarter days(Julian
calendar). According to Kendall (1973), the oldest known graph of a time series (at less in
the Western world) is found in a manuscript of the tenth (or eleventh) century and illustrates
a commentary on Cicero’s Dream of Scipio (De Republica, 6, 14) taken from Saturnalia of
Macrobius (395). The graph represents the inclination of the orbits of seven planets as a

function of time
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Figure 2: A tenth century chart Source: Funkhauser (1936) and Tufte (1983, p. 28)

However, this graph appears to be an isolated event. Time series charts have reap-
peared scientific written only during the 18th century (Lambert, Playfair)[6].
From a mathematical point of view, the theory of stochastic processes was settled around 1950.
Since then, stochastic processes have become a common tool for mathematicians, physicists,
engineers, and the field of application of this theory ranges from the modeling of stock pricing,
to a rational option pricing theory, to differential geometry.
However the theoretical developments in time series analysis started early with stochastic pro-

cesses. The first actual application of autoregressive models (to whom we are interested in
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this thesis) to data can be brought back to the work of G. U Yule and J. Walker in the 1920s
and 1930s. Autoregressive processes AR are a representative and classical model in time series
analysis and it has broad applications in nature, science, and economics. AR can describe
certain time-varying processes with a linear relationship in univariate time series.

In statistics, an autoregressive (AR) model is a statistical time series linear model which can
be used to predict future values based on previous observations. AR models use regression
techniques and rely on autocorrelation in order to make accurate predictions. The autoregres-
sive model AR(p) said of order p determines the value of a process at an arbitrary time step ¢
using a linear combination of the p-last values and superimposed by a so called white noise and
assumed to be a sequence of uncorrelated with each other in time and identically distributed,
with an expected value of zero and finite variance. The weights of the linear combination are the
model parameters. They are considered to be constant. However, when dealing with economic
data modelling, Kendall (1953) [10] has recognised that it is more reasonable to generalize the
constant coefficient in models to ones changing through time as the economy changes. At-
tention has been restricted to non-linear autoregressive models with random coefficients. For
instance, Garbade (1977) [8] has dealt with regression models estimation where the coefficients
are assumed to follow a simple random walk.

So an obvious variation of autoregressive processes are the random coefficient autoregressive
RC A models with whom we are in fact concerned in this work. This late is organised as follows:
In chapter 1, we give preliminary results on general stochastic process. Then, we introduce real
autoregressive processes with deterministic coefficients in chapter 2. Followed by Chapter 3
which is devoted to the random coefficients autoregressive processes. In both chapter 2 and 3,
we give conditions of stationarity of the process and we deal with its parameters estimation
parameters estimation as well as future predictions. Results are illustrated by simulations. In
chapter 4, we compare the two processes by applied the two models to simulated an realistic

data.



Chapter 1

(Generalities on Real Stochastic Processes

1.1 Definitions and existence

Stochastic processes are used to describe random phenomena which depend on time. Before

introducing them let enunciate (without proof) the following result:

Theorem 1.1 (Kolmogorov Theorem). [11]
Let T a set of parameters. We denote by R the set of applications defined on T with values
i R and let X be the set of finite parts of T. Let o € X, we denote by ©, the projection on
[Le, R of R”, we have

7 : R - R and m,(RT) =R’

We equip RT respectively R by the o-algebra ST generated by (m,,0 € X) and the Borel o-

algebra B, respectively. Let (iy)qsex a family of probabilities such that:
O pe s a probability on (R7,B,) Vo X

oolfo < (0,7) €X? and 1), denote the projection of R on R we have i, = piy 0 -}

Then, It exists a unique probability P on (RT,S”) such that

fo = pir © Vrgtle = pir 0 T, Vo e X



Definition 1.1.

We define a stochastic process by a triplet ((2, A, P), (X, t € T),(E,§)) such that

a) (Q,A, P) is a probability space called the basic space,

b) (E,€) is a measurable space called the space of states,

c) (Xy,t €T) is a family of random variables defined on (Q, A, P) with values in (E,§)

d) and T is an arbitrary set of parameters (usually chosen to be set of times).

@& The stochastic process will be denoted simply by (X;,t € T') where (X;)er are such

that:
X, : (A P) — (E

w = Xi(w) = X(tw)
For a fixed w, the application ¢t — X;(w) = X (¢,w) is said to be the path.

@ If T'= N or Z, the process Xr is said to be a discrete-time process and if T" is an

interval in R, it is said to be a continuous-time process

A If (F &) = (R, Bg) where By is the Borel o-algebra of R, Xt is said to be a real

process.

& Using precedent notations with those of Kolmogorov theorem, (X;,t € T') can be

considered as a random variable X7 with values in (R”, S7):

Xr : (Q,4,P) — (RT S
w = Xr(w) = (X(t,w),t€T)

This can be schematised by

X
(Q,4,P) ——— (RT, ")

Xi
Tt

(Rv BR)



1.1.1 Process Law

The distribution law L(X7) of the process is a probability Py, on (R”, ) defined by
Vsc ST Px.(s) = P(X;'(s))

this law is completely defined by the finite dimensional laws (those of the vectors (X, -+, X;,)

where ¢y, - ,t, are separate elements of T').

1.1.2 Gaussian Process

A real process Xr is said to be gaussian if all its finite dimensional laws are gaussian i.e. if
each finite linear combination of X;,¢ € T is a real gaussian random variable.
The law of such a process is completely determined by the given of the mean function and the

covariance function:
m(t) = E(X,), teT

c(s,t) =Cov(Xs, Xy), s,teT

Example 1.1.

e White Noise: a simple stochastic process which is a collection of uncorrelated real random

2

variables (e¢,t € T') with zero mean E(g;) = 0 and finite variance Var(e;) = o2

o Strong White Noise: a particular useful white noise is strong if the ¢, are independent and
wdentically distributed normal random variables. It is a gaussian process

o White noise is of great interest because the stochastic behavior of almost time series could be
explained in terms of the white noise especially those modeled by an autoregressive process (see

chapter 2).

1.2 Stationarity

Stationary processes are those for whom the finite dimensional laws do not change with time.

More precisely:

Definition 1.2 (strong stationarity).

10



A process Xr is said to be strictly stationary if for each finite part (t1,--- ,t,) of T and for all
h > 0 we have:

L<Xt1+hv T 7th+h) = L(tha T 7th)
where L(Y) is the law of the variable Y.
Example 1.2. The white noise is the simplest example of stationary processes

Before given a less rigid definition for stationarity let define second order process.

Definition 1.3.

A real process Xr is said to be a second ordered process if

sup F(X}) < +o0
teT

Definition 1.4 (weak stationarity).

Let X to be a second ordered process. It is said to be weakly stationary if

E(X,))=m VteT

Cov(Xs, Xy) = Cov(Xsin, Xean) Vs, t, h

Remark 1.1. It is obvious that for a real gaussian process the strictly stationarity coincide

with the weak stationarity.

Example 1.3.

The process of second order (Xy,t € Z) defined by

X, = Acosft + Bsin6t, 0 € [—m, 4]

where X, are centered reduced independent random variables. We have

E(X)=0 VteT

11



Cov(Xs, X;) = cosOh
So the process is weakly stationary

Remark 1.2. [t is obvious that a strictly second order process is weakly stationary. However,
the reciprocal is not true. Indeed, let the discrete process (X;,t € N) of independent variables
that obey to the normal law N(1,1) if t is even and to the exponential law £(1) if t is odd. It
is clear that L(Xo) # L(Xaty1), So the process is not strictly stationary. But it is easy to see
that Cov(Xy, X;) = 1 and that Cov(Xyyp, Xy) =0, h # 0, so the covariance does not depend

on h. That is to say that the process is weakly stationary.

Remark 1.3.
& For a weakly stationary process Cov(Xp, Xo) = Cov(Xiyn, Xi) =: vx(h)
& Cov(X,, Xy) = f(s—1)

Remark 1.4.
It is possible to construct a weakly stationary process from an arbitrary one. Indeed, let (Zy)ier
an arbitrary process of independent centred random variables with variance Var(Z;) = a%t. We
put

Xe =2+ 074,

hence
E(X;) =0 and E|X}?| < +o0
(1+6%)0% if h=0
Cov(Xpsn, Xi) = 007, if |hl=1
0 if [pl#1

Proposition 1.1. [11] If a process (X;,t € T) is weakly stationary and gaussian, then it is

strictly stationary.

12



1.3 Autocovariance Function and Autocorrelation Func-
tion

Let (Xy,t € (7)) a weakly stationary process

Definition 1.5.

The autocovariance function of the process (X, t € (Z)) is defined by

R(h) = CO’U(X,H_]“ Xt)

Definition 1.6.

The autocorrelation function of the process (X;,t € Z) is defined by

Proposition 1.2.
1°/ R(0) = ox,.
2°/ |R(h)| < R(0) and R(h) = R(—h).

3°/ R is of positive type; that is to say Yay, -+ ,am € R and Yty -+ [ t,, € ZL;

i i asa;R(s —t) >0

s=1 t=1

.47/ p(0)=1; p(h) <1; pis of positive type

Proof.
let consider the process (X, t € (Z)) to be centred; E(X;) =0
10/ R(O) = CO’U(Xt,Xt) = 0X,-

13



2°/Using the definition of the covariance and the Holder inequality, we get

R(h) = Cov(Xypn, Xy)
= B(Xu X)) — E(Xi) E(X)

= BE(XynXy)

[NIES

< E(X},)7E(X7)
= COU(Xt+h,Xt+h)%CO’U(Xt,Xt)%

= R(0)2R(0)% = R(0)

Which proof the first part of 2°. Now to prove the second one we need to introduce the variable

changing s =t 4 h in the definition of R(h):
R(h) = E(XinXe) = B(X,X;,) = E(X:Xop(,)) = R(=h)

3°/ Let ay, -+ ,a,, € Rand ty,--- ,t,, € Z, we have

ZZatiath(ti—tj) = ZZatiatjCov(Xti,th)

i=1 j=1 i=1 j=1
= Z a; Cov(Xy,, Xy,) + Z Z ay,ar, Cov(Xy,, Xy,)

=1 =1 j=1

Y]

Z afiCov(Xti, Xi,)

i=1
m

= Z a; Var(Xy,)

i=1

= Z Var(a, Xy,)
i=1

= Var(z ay, X;)
i=1

> 0

14



Now, for m = 2 we have:

Var(ai Xy, + a2 Xy,) = ElaiX] + axX})

= Var(z Xt,)
> 0 -
4°/ p(0) = % =1; plh)= % < % =1; pis of positive type since R(h) is

1.4 Linear Process

Definition 1.7.

A Process Xy, is said to be linear if it can be written in the form

+o0
Xt:ﬂ+ Z A;€t—j VteT

j=—00

+oo
where [, a; are real parameters such that g la;| < oo and er is a weak white noise,

j=—00
Proposition 1.3.

A linear process is strictly stationary

Proof. Let (Xz) be a linear process. Notice that it is a zero mean process

BE(Xy) =p+ Z a;E(e—j) = p

Jj=—00
and that
+00 +oo
Var(X;) = Z a’Var(e,—;) = o? Z ai < oo
j=—00 j=—00

15



Let now calculate the autocovariance function

“+00 —+o00
Cov(Xpin, Xy) = Cov(p+ Z Qj€rrn—j, fb+ Z ajer—j)

j=—00 j=—00

“+00 —+00

= Z Z ajakE(€t+h—j5t—k)

j=—00 k=—00

however,

o ift+h—j=t—1
E(Xt-i-h—jaXt—k‘) =
0 if not

Hence we find that

“+oo “+oo
Cov(Xiyn, Xy) = Cov(p+ Z QjEith—j, fb+ Z ajer—;)

j=—o00 Jj=—00

+oo “+oo

= Z Z ajakE(gtJrhfjgtfk)

j=—00 k=—00

—+o00
2
= 0 E Ap+nQE

j=—00
= R(h)
O

Remark 1.5. .

Yoo Rh Z @j+ha;
RO =0k =2 3 and plh) = ) =

j=—00 Z a?

Jj=—00

Example 1.4.

Let the process Xy, = g, — Og;_1 with (Et)te(z) 1s a white noise. It is a linear one. It is easy to

see that
0 if7<0andj <2

Clj: 1 Zf]ZO )
—0 ifji=1

R(0) =c%(1+6%), R(1)=020, R(h) =0 for h > 1. and the autocorrelation function is given

16



1 ifh=0
p(h) =< 2= iflh=1
0 if |h] > 1

1.5 Moving Average Processes

A pth-order moving average process, or M A(p) process, is defined by the equation
Xy = a1&¢ + a1 + - + Qg€

where (g,);ez is a white-noise process. A moving-average process is clearly stationary since

any two elements X; and X, represent the same function of identically distributed vectors

(er,€4-1, -+ ,€1—p) and (e5,€5-1, - ,€s—p). The autocovariance function of a MA(p) process
such that

Xy =& — Qo1 — -+ — At—gEt—p,
is given by

R(h) =02(1+ai+a3+---+al),|h| <p

Example 1.5. The first-order moving-average process Xy = €, + 0g,_1 has the following auto-

covariance function:
o2(1+ 6?) if h =0,
R(h) = —o20 if h =1,
0 if h > 1.

17



Chapter 2

Real Autoregressive Process

2.1 Definitions

Let Xr = (X;,t € Z) to be a second order centred real process [F(X? < +o00,Vt € Z)]. Let

recall the definition of a white noise.

Definition 2.1. We say that a process (e, t € Z) is a weak white noise if
1°/ E(g) =0

1 ifs=t

0 if s #t

The process (ey,t € Z) is a strong white noise if the variables (e;) are i.i.d (independent iden-

2°/ E(gies) = 002 where 0y =

tically distributed)

Definition 2.2. A process (X;,t € Z) is called to be an autoregressive process of order p, and
then denotes AR(p) if there exists ay,--- ,a, € R with a, # 0 and a weak white noise (e, t € 7)
such that

Xt = alXt_l + -+ apXt_p + &4, teZ

This relation can be written as:

ANL)X: =& where AL)=14+aL+---+a,L”.

18



2.2 Infinite Moving Average expression

The definition above of autoregressive process does not implies necessarily that this equation
has a unique stationary solution. Consequently, such a problem must be related to the question

of the invertibility of the polynomial A(L).

e If A(L) has its roots of module different than 1, we can inverse A(L) and the equation

possesses a unique solution expressed as an infinite moving average:

+oo +oo
X, = A(L)_l(gt) = Z bjgt—ja with Z |b]| < 400

j=—o0 j=—o0
Here we recognise that the value of X; can depends on past present and future values of
Et.

e In the case when the roots of A(L) are greater than 1 and then A(L)~! have only positive

powers of L, the value of X; depends only on past values of &;.

“+00 “+o00
Xo=AL) () =) bery,  with ) |bj| < 400 and by =1
j=0

J=0

We see that X; does not linearly depend but on &, 1,&; 9, -+ and since (g, € Z) is a white

noise, X; is then non correlated to &;.

2.3 Stationarity

Let define the polynomial associated with the autoregressive process of order p, X;,t € Z by:

k

m(z) = 2F — Z a; 2"

=0

Theorem 2.1. A necessary and sufficient condition for the existence of a weakly stationary
autoregressive process of order p; AR(p) is that the roots of the polynomial associated must be

of module less than one.

19



Proof. First, let’s prove the theorem for an AR(1)
Xt = aXt_l + &¢.
Suppose that |a| < 1, we have

Xt = &+ ClXt,1
= g tale1 +aXio)

2
= g tag_1+a" X9

2 1
= gtagq+a s ot + s+ a”T X (541

That is to say that
Xt = aSHXt,(sH) + Z aiet_i.

i=0

Hence

E(X; — Z a'ep;)? = az(SH)E(th—(sH)) P 0.

i=0
So
Xt = Z aif‘:t_z‘
i=0

and then

In addition

E(XiXin) = ZZaiajE(st_ieHh_j)

which prove the weakly stationarity of (X3).

20



Now suppose that X; = aX;_1 + ¢; is weakly stationary. At the order h — 1, we have

h—1
Xt = Z aii‘:t_i + ahXt_h.
=0
And
h—1
R(h) = B(X, Xyup) = Y d'E(e,_iXip) +a"E(X2,).
1=0
So

R(h) = a"R(0), and p(h) = a",

which means that |a| < 1. However, |a| # 1. Indeed, If we suppose the contrary, for instance

a =1, we get

E(X, X)) = E() &)

On the other hand, we have

BE(X, — Xyn)? = B(X?)+ BE(X2,) — 2B(X, Xe4)

= 2R*(0) — 2R(h)

h—1
- Y By
=0

This gives

which is absurd since it led to |R(h)| < R(0) with o2 > 0.
Secondly, Let show the result for an autoregressive process of order two AR(2). Let (X, t € Z)

such that X, = a1 Xy 1 + a2 Xy o+, € 7Z, ag # 0. It associated polynomial is given by

21



m(z) = 22 — a1z — ay.

We set
Xt Xt—l €t
Y;f - a}/;—l - and ey =
X1 X9 0
We get
a; Qs Et
)/;f - }/;f—l + )
1 0 0

or Y; = AY, 1 + e¢; which is called the markovian representation of (X;,t € Z). We obtain then
an autoregressive process of order one in R2,

Now, if we suppose that (X;,t € Z) is weakly stationary. We have

YY) = (AY, 1 + &) (AYioy +ep) = (AY, g + &) (Y A+ €)).

Hence

I'y = ATy A" + T,

where I'y and I'. are covariance matrixes. We state that the roots of m(z) are the eigenvalues
of the matrix A.

So, let v to be the eigenvector of A" associated to the eigenvalue A. We get

Av= s vA=\.

Then, we can write

VI = vTyv— v Ay Av
= vTyv— M 0'Tyv

= (1 — )\Q)U/Fyv.

Notice that v'T';v > 0. Indeed,

22



So

, o 0
E(eie;) =
0 0
And then
of 0 v o2v v
'U/Fe’U - ( V1 V2 ) ! ' = ' ! = 0_82?]% > 0
0 0 (%) 0 V2

Consequently, 1 — A\ > 0= [\ <1= |\ < 1.

Suppose, now that the eigenvalues of A are of module less than one. We have

Y, = AV, +e
= A(AY, s+ ei1) + e
= A%, o+ Ae 1+ e
= A%(AY, 3+ e o)+ Aes1 + e

= A%, 3+ A’e; o)+ Aer 1+

= AY, (o) + A% )+ + Aeror + e

= As+1}/;5_(5+1) + Z Ajet_j.

j=0
Then, we get
E[(Y, =Y AYi ) (Yo=Y AYiy)] = BATY )Y ()[4
j=0 J=0

AB(Vic )Y (o)A

— AerlFY [As+1]/.

Since |\ < 1, we get ATy [AST]) = 0. And we obtain then
S—r+00

Y=Y Ag_;,  tel
=0

23



Hence
X, = ij&g_j, teZ
§=0
with

X)) =Y bjE(s_;) =0, teL

and

E(X: X)) = Z Z bibjrnE(et—i€1rh—j) Z bjbj+h0§ does not depend on t.
§=0

=0 7=0

Which proves the weak stationarity of (X;,¢t € Z). Finally and for a general autoregressive

process of order p, we use the same techniques as in the order two case. O

2.4 Yule-Walker Equations

Let (Xy,t € Z) be a real weakly stationary autoregressive process of order p, AR(p) and let R
and p be its autocovariance and autocorrelation functions.

In the proof above, we have seen that X; can be written as

p
Xt:5t+zcj6t—jv tEZ

j=1
which leads to
p
E(Xi&) = E(}) + ) ¢;E(zie1-5) = o7
j=1
since
E(e?) =02 and E(gg ;) = 0.
Hence

M@

XtXt CJE XtXt —j +E(Xt€t)

J=1

That is to say

iS]

0) = chR(j) + o2 (2.1)



We have also

p
E(Xt_,_hXt) = Z CjE(XH_hXt_j) + E(Xt+h6t).
j=1
That is to say
p
R(h) = c;R(h—j). (2.2)
j=1

The equations (2.1) and (2.2) are known as Yule-Walker equations.

The following result is derived directly

Proposition 2.1. The autocorrelation of an AR(p) is given by
p

p(h) = ciplh—j).

J=1

2.5 Estimation of an AR(p) Parameters

Let X; = a1 X¢—1+---+a,X;—p+¢; be a real autoregressive process of a known order p, AR(p),

where the coefficients a;,--- ,a, and o, are unknown.

2.5.1 Least Squares Method

Since the elements €, of the white noise are not correlated to the random variables (X;_;);j=1.... »,
the ordinary least-square method can be applied to estimate the coefficients a4, - -, a,.

Let X, Xy, -+, Xy be N observations of the process (X;) with N > 2p.

We suppose that Xo=X_; =---=X_,_1) = 0.
Least square estimators are obtained by the regression of X; on its past X,_,---, X;_,; that
is to say

p

B(Xy/ X1, Xop) = > aiXy

i=1
So in order to find the least square estimator, one must minimise the quantity
N

Qla, -+ ay) = Y (X = (@ X + -+ a, X))

i=1
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We write
Y i i i i )
%Q(al,... ) =3 =X XD~ X~ a, X)) =0, =1, p,
J i=1
Thus, we obtain the following system
N

Z(alXt(i)lXt(i)j 4+ CLpX(l z) ZX t

i=1

]7 j:177p

whose matrix form is given by

7 7 7 7 i ~ N )
Zz lXt( 1 21 1Xt)2Xt()l Zz 1X( t)l a1 Z¢Z1X§)X()
7 7 7 7 ~ N )
Zl 1Xt 1 Zz 1 Xt )2Xt( )2 T Zi:l Xt(—)pXt(—)Q az - Zi:l Xt( )Xt( )2
N i i N i i N i i A N i i
Zi:l Xt(—)lXt(—)p Zi:l Xt(—)QXt(—)p e Ei:l Xt(—)pXt(—)p ap Zi:l Xt( )Xt(—)p

and here we recognise the Yule-Walker equations

it sufficient to see that since R(h) (respectively R(0)) is not but the expected value of X;X;

(respectively of X;X;) its estimator must be

N

1 . .

N E X Xi—j = R(i,j) and — E XiXi—j =t R(0,7) (respectively)
t=1

t=1

Now since E(g;) = 0, we have 02 = F(&7) and then
ol =FE[(X;— a1 Xy 1 — - —a,Xi )%

Consequently

N
2 1 % ~ 4 ~ %
L s

i=1
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2.5.2 Maximum Likelihood Method

Suppose that &;,t € Z are centered gaussian i.i.d. random variables with variance o2 and let
X1, Xa, -+, Xn be N observations of the process (X;) where N > 2p.
We suppose that Xog=X_1=---=X_,_1)=0.

Prestly (1981, p. 374) shows that for N > 2p, the likelihood function can be approched by [11]

1

Llar, oz, ;) = ~(N = p) log(o?V/3m) = —
g

N
(Xt — a‘lthl — e — CLpXt,p)2.

=1

™ N

We recognise that to maximise L(ai,as,- - ,a,) is equivalent to minimise Q(aq,---,a,). So

the maximum likelihood estimator is identical to the least square estimator.

2.6 Simulation and Application

2.6.1 A Strong White Noise Simulation

As it was defined above a strong white noise process is a sequence of centered independent
normal random variables. Hence, knowing that a random vector is normally distributed if and
only if its components are normal random variables and in order to simulate this kind of process,
it is sufficient to create a vector whose components are values derived from observations of a
normal random variable.

The function in Software R that permit to simulate a normal random variable N is
rnorm(n, mean, sd)

where n designs the number of observations, mean is the mean of N and sd is its standard
deviation.

In the figure below, we have simulated a real white noise with o2 = 0.01
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Simulation of 100 Observations of a Strong White Noise

o
o

0.1

0.0
!

rnorm(100, 0, 0.1)

0.2

-0.3
|

0 20 40 60 80 100

Index

Figure 2.1

2.6.2 An Order One Autoregressive Process Simulation

In order to simulate an autoregressive process of order one, we have created a function on
software R called AR1(N, a, sigma2) whose arguments are respectively the number of obser-
vations, the coefficient of autocorrelation and the variance of the white noise. The function is
writing as follows:

AR1<-function( N, a,sigma2)

{

E = rnorm(N+2,0,sqrt(sigma2))

X = numeric(N)

X[1] = E[1]

for (i in 2:N) X][i] = E[i] 4+ a*X]i-1]

plot(X] 1:N ], type="1", main="Example of a One Order Autoregressive",ylab="")
}

Below is plotted a one order autoregressive process with an autocorrelation coefficient of 0.12

and 02 = 0.1. The number of observations being 200 (see figure 2.2).
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Example of a One Order Autoregressive

0 50 100 150 200

Index

Figure 2.2

2.6.3 An Order Two Autoregressive Process Simulation

In the same way of creating the function that simulate a one order autoregressive process, we
give below a function which simulate a two order autoregressive process. The function was
named AR2(N,al,a2,sigma2) whose arguments are respectively the number of observations,
the two coefficients of autocorrelation and the variance of the white noise. The function is
writing as follows:

AR2<-function(N=100, a1=0.18828,a2—=0.05861,sigma2—=1)

{

E = rnorm(N+2,sqrt(sigma2))

X = numeric(N)

X[1] = E[3] + al*E[2] + a2*E[1]

X|[2] = E[4] + al*X][1] + a2*E[2]

for (i in 3:N) X][i] = E[i] 4+ a1*X[i-1]4+ a2*X]i-2]

plot(X] 1:N |, type="1", main="Example of a Two Order Autoregressive" ,xlab="",ylab="")

}

Below is plotted an autoregressive process of order two with autocorrelation coefficients a1=0.12

and a2=0.18 and ¢? = 1. The number of observations being 200 (see figure 2.3).
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Example of a Two Order Autoregressive

0 50 100 150 200

Figure 2.3

2.6.4 An Upper Order Autoregressive Process Simulation

Suppose that we want to simulate N observations of a real autoregressive process of order p. N
must be at least equal to 2p. Indeed, the p first observations will be linearly combined using the
p to create the p+ 1th observation X,;,. Coefficient are chosen from p realisations of a uniform

random variable on the interval [—1, 1] to assure the stationarity of the process. and then it

X

»+1, using the same coefficients will be linearly combined will with its p — 1 antecedents to

create the following observation. And so on, we repeat the same algorithm until the N obser-
vation. Notice that the p first observations are simulated using the truncated moving average
expression. We have written a function that illustrate this algorithm in the software R as fol-
lows:

ARp<-function( N=100, p=3,a=c¢(0.12,-0.11,0.18),sigma2=1)

{

E = rnorm(N+2,sqrt(sigma2))

a—=runif(p,-1,1)

ma<-matrix(0,p,p)

mal,1]<-a[1]*E[1:p]

for (j in 2:p)

mal,j]<-alj]*c(rep(0,j-1),E[1:(p-j+1)])

X <-matrix(0,N)
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for (i in 1:p)

X[i]<-sum(mali,])

for (i in (p+1):N)

X[i] =sum(a[1:p]*X[(i-p):(i-1)]) +EIi]

plot(X] 1:N |,main="Example of an Autoregressive of Order p", type="1", xlab="",ylab="")
return(X)

}

Below is plotted an autoregressive process of order 3 with autocorrelation coefficients al=0.12,

a2=-0.11 and a3=0.18 and 02 = 1. The number of observations being 200 (see figure 2.4).

Example of an Autoregressive of Order p
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Figure 2.4

2.7 Prediction in an AR(p) Model

An autoregressive process evolves as a linear regression equation in which the current value

helps predict the next value. Recall that the model is written as follows
Xt = alXt,1 + -t apXt,p + &¢
Then the optimal prediction at the time 7"+ 1 viewing the time 7' is

Xip = E(Xpp1/Xp, Xpoq,--+)
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So

X;+1 = CL1XT + -+ CLpXT_p

Similary, we get

Xrin = Xpyp—1 + -+ apXT+h—p + Eer4n

and then X7, = E(Xpn/Xp, Xp_1,--+) is given by

. a7 Xpppy + ot a1 X +apXe + o+ apXrpp, A <p
T+h —
arrXpipqt++ ap,TX’ik"_A'_h_p ifh>p
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Chapter 3

Random Coefficient Autoregressive

Process

As linear models, autoregressive processes have large applications in time series data modeling
in several areas of the physical, biological, and behavioral sciences. However, there are fields
where they have become inappropriate and then a great interest has been given to the nonlinear
models for such applications. Since the late 1970s, there has been an ever-increasing interest
in the autoregressive model with random coefficients (RC'A) because of its ability to represent
a multitude of time series traits. Early contributions in this respect are due to (|3],[4]), Andel
[1] who introduced the model for p = 1 and highlighted the different sampling of the random
coefficients of the RC'A model of order p introduced by Nicholls and Quinn (1982) [12] from
that of Liu and Tiao (1980).

Before defining what is a random coefficients autoregressive process let recall some intersect

notions for the rest of the chapter.

3.1 Preliminary Results

Definition 3.1. [1}]
Given two matrices A and B of dimensions ma X na and mpg X ng respectively, one may define
the Kronecker product A® B of B with A as the mamp X nanpg matriz whose (i, j)th block is

the mp X ng matriz a;; B, where a;; is the (i, 7)th element of A.
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Definition 3.2.
Let A be an ma X na matriz. Then the mana-component vector vecA is obtained from A by
stacking the columns of A, one on top of the other, in order, from left to right. vecA has as its

elements the elements of A.

The results contained in the following theorem hold for any matrix products which are

defined.

Theorem 3.1. 1. vec(ABC) = (C'®)) A)vecB.
2. tr(AB) = (vec(B')) vecA = (vecB)'vec(A’).
3. (A® B)(C® D) = (AC) ® (BD).
4. (A@B)'=A"1®@ B!, (A@B)y=A®B

Definition 3.3. Let A be an n x n symmetric matriz. The n(n+1)/2-component vector vechA
(the "vector-half" of A) is obtained from A by stacking those parts of the columns of A, on and

below the main diagonal, one on top of the other in order from left to right.

For symmetric matrices A, it is possible to obtain by linear transformations the vector

vecA from the vector vechA, and vice versa, which is shown in the following theorem.

Theorem 3.2. There exists constant (n(n + 1)/2) x n? matrices K,, and H, for which
vechA = H,vecA

and

vecA = K'vechA

for any n x n symmetric matrizc A and H, K, = In11)/2

3.2 Definition and Stationarity

Definition 3.4.

Let (e4,t € Z) is a white noise process with mean zero and variance o2 and by, by, ..., b, be given
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numbers. A process Xy, t € 7) is said to be of random coefficient autoregressive of order p often

shortened to RC'A(p) if it satisfies the following formula

X(t) = (1 Xeo1 + oo + 0, Xe—p) + (a1 (6) Xeq + -+ + a,(0) Xi—p) + &4 (3.1)

where (at)iez = (a1(t), -+, ap(t))ez is a sequence of independent centred random p-

vectors that are independents from e;.

Example 3.1. RCA(1) Let X be a process defined by X; = (0.12 + £) X1 + &, where € is a

uniform [0, 1] distributed random variable and €; are i.i.d standard normal random variables.

3.3 Markovian Expression of a RC A(p)

the relation in (3.1) can be expressed in a matrix way. Indeed, if we put

Xt Et b1 cee bp aq (t) ce CLp<t)
Xt—l 0 1 --- 0 0 Ce 0
}/; = ,€E= 7B = and At = X
Xt7p+l 0 o --- 1 0 e 0
then we get
}/t = (B —|— At>}/;/,1 + €t. (32)

3.3.1 Conditions for Stationarity

In this section, we will investigate the conditions under which a random coefficient autoregres-

sive process is weakly stationary. For this purpose we state the following results from [1]

Lemma 3.3. A time series(Xy, -+, Xr) is stationary if and only if

Var(Xy, -, X,) =Var(Xa, -+, Xpi1) (3.3)
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Proof. Since (X,---,X,) and Var(Xs,--- , X,+1) have the same law ( due to stationarity), it is
obvious that Var(Xy,---,X,) = Var(Xs, -, Xp41), . Now, Suppose that Var(Xy,---,X,) =

Var(Xs, -+, X,+1). This implies that for k =p,p+1,--- ,T — 1, we have
Var(Xy, -, Xg) = Var(Xs, -+, Xpi1) (3.4)
Indeed, let p < k < T — 1 and let proof that for j =1,2,---  k we have
Cov(Xit1, Xj41) = Var(Xy, X;) (3.5)

For t = k + 1, we multiply the expression (3.1) by X4, then by applying the expectation to

its two sides we get

p
COU(Xk+1,Xj+1) = ZbiCOU<Xk+17ian+l) + E(€k+1Xj+1).

=1

And for t = k1, we multiply the expression (3.1) by X, and by applying again the expectation

to its two sides we get

P
Cov(Xy, X;) = ZbiCov(Xk,i, X;)+ E(exXj)

i=1

Notice that due to the fact that ¢, are centered and independent of ulterior X;, we have
E(ep1Xj11) = E(ex X;) = 0.
In addition,for i = 1,2,--- ,p and due to (3.4), we have Cov(Xyi1-i, Xj+1) = Cov(Xy_i, X;)

So (3.5) is proved for j < k. Let now j = k. In the same way we get

E(X}) = Zp: E(ci(k + 1) X1 Xi1-i) + E(epr1Xki1) (3.6)
E(X}) = i E(ci(k)Xp Xp—i) + E(ex Xy) (3.7)

=1

where ¢;(t) = b; + a;(t).
Fort =p+1,---,T and from (3.1), we have E(X;&;) = o2
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So, fort=p+1,---,T,s=1,2,--- ,t —1 we have

E(c() X X,—s) = ZE ci(t)e; () E(Xi—iXi—s)
j=1

3

= ZE 5lj+bb COU(Xt j7Xt S)
7=1

where ¢;; are the elements of the covariance matrix of the random vector c(t) = (c1(t), - - , ¢p(t))
Hence, for e =1,2,--- . p we get
p
E(c;i(k+ 1) X1 Xpp1-3) = Z E(6ij + bibj)Cov(Xpi1-j, Xiy1-4)-
j=1
and

p
E(Cz(l{?)Xka_z) = Z E<5U + bﬂ)j)COU(Xk_j, Xk—z)
j=1

Now, fort=1,2,--- ,pand j =1,2,--- ,p we have already supposed that
COU(Xk+1_j, Xk—l—l—i) = COU(Xk_j,Xk_Z‘).

So we can see that (3.6) and (3.7) implies that E(X7 ;) = E(X}). here we recognise (3.5) for
j = k. Hence, the formula (3.4) is proved and then by putting k£ = 7' — 1 we see that the time

series (X1, -+, Xr) is stationary. ]

Let V = Var(Xy,---,X,), W = Var(a(t),--- ,a,(t)) and J a p x p-matrix with
Jn:land J”:OfOI'Z%Lj?é]_

Lemma 3.4. The formula (3.3) is verified if and only if V satisfies
V =BVB + (o2 +Tr(WV))J (3.8)

Proof. let the p x p-matrix C; defined by C; = B+ A; fort =p+1,--- ,T. According to (3.2),
we have

Vo1 = Cp1Yp + 6pi1
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Applying variance to the two sides, we obtain
p p
VGT(Xl, cee ,Xp)/ = BVB/ + Z Z 6p+1—i,p+1—jcjiJ + U€2J
i=1 j=1
It is sufficient now to see that
p p

Z Z Opt1-ip+1-iCii = Tr(WV)

i=1 j=1

O
Lemma 3.5. If the following condition is satisfied
2P — Pt P — b, # 0, for|z| > 1,
then It exists a unique solution V to the equation
V =BVB +02] (3.9)

given explicitly by

oo
Vo =) B'(c2J)B".
i=0
Moreover, this solution is a positive definite matric.
Proof. Suppose that (3.3) is satisfied then the eigenvalues of the matrix B are inside the unit
circle (notice that 2P — by 2P~! — byzP™2 — - b, is not but the characteristic polynomial of the

matrix B.

Now, let’s introduce the operator vec in the formula (3.9). We obtain
vec(Vy) = B¥?vec(Vp) + vec(a? )

where B®? is a p? x p*-matrix with eigenvalues \;\;. \; and ); are the eigenvalues of the matrix
B satisfying |\;| < 1 for all 4.

So, B®? eigenvalues are inside the unit circle. Then I, — B®? and hence the equation (3.9) got
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a solution given by

vec(Vy) = (I, — B®?) tvec(a?l]).

by expanding the matrix, we get

vec(Vy) = (L2 — B¥*) vec(o2])
= (I¥ 4+ B®* 4+ B®* + - )vec(o? J)
= ISvec(o?J) + B®vec(o?J) + B*vec(a2J) + - --
= wec(l,02JI)) + vec(B*02J B?) 4+ vec(Bo2 JB?) 4 - - -

= Z vec(B'o?JB")

=0

Consequently
Vo= B'(c2J)B"
i=0

0
Lemma 3.6. Suppose that
2P — Pl P — b, # 0, for|z| > 1.
If the following condition is satisfied
1—0o2Tr(WV) > 0,
Then (5.8) has a unique solution given by
V= (1-02Tr(WVp)) 'V (3.10)

Proof. According to the lemma (3.5), a solution of the equation (3.8) must satisfy the following

equality

V=>01+c2Tr(WV)V, (3.11)
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which has the form
V =alj (3.12)
where « is a real number. By combining (3.11) and (3.12), we get
a(l —o*Tr(Wlg)) =1 (3.13)
If 1 — o Tr(WV,) = 0, there will be no solution. Else
V=(1-0o2Tr(WVy) 'V, (3.14)

is a solution of (3.8) whose uniqueness is assured by (3.12) and (3.13).

However, the matrix given in (3.14) is a positive definite one if 1 — o 2Tr(W V) > 0 O

Lemmas 3.3 to 3.6 allow us to prove the following result

Theorem 3.7. The p-order time series Xy, --- , Xn 18 stationary if and only if all the roots
of the equation 2P — byzP~1 — by2P2 — --._b, # 0 are inside the unit circle and the matriz

Var(Xy,---,X,) is given by the formula (3.10)
Let A; be the o-algebra generated by {as, es),s < t}

Corollary 3.1. It exists a unique stationary A;-mesurable solution for (3.1) if and only if B
has all its eigenvalues in the unit circle and TA < 1 where I' = E(a; ® a}) and A is the last

column of (I — B® B)™!

Notice that from corollary (3.1), it follows that if ¥ = E(aja;), then it is easy to see

that

vee() ) = E(aj @ a;) = (E(a, ® ay)) =T’
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3.4 Parameters Estimation

Knowing that the matrix ) is symmetric, it follows that it is sufficient to estimate only the

v =wech(})).

First of all, we are going to estimate by, --- ,b,. The model (3.1 can be written as

X, =B'Y, 1 +u (3.15)

where B = (by,--- ,b,) and u; = a;Y;—1 + €.

We have
E(ut/At) = E(at)Y;_l) + E(€t> =0
and
E(ui/Ai1) = =E((aYi1)*/ A1) + 2B (aYiae/Avr) + E()
= E(Y_,aaY; /A1) + E(e) E(aY, 1 /Ai) + 02
= Y. B(aja;/Ai-1)Yio1 + 02
S 7 A
= (Y ®Y.)vec(X) + 03
= (vec(Yi1Y_))) K vech(E) + o2
So
E(ul/Ai 1) = Ziv+ 02 =07+ o? (3.16)
where Z; = K,vech(Y;—1Y/ ;).
Observing X, - , Xy, we give the least square estimator By of B = (by,---,by), that min-

41



N
imise Z u? with respect to B in relation (3.15)by:
i=1

A

N
> YiuX
_ =1

By ==~ (3.17)
Z Yt—lyz_l
i=1
and according to the relation (3.15), we get fori=1,--- /N
d; = Xi1 = ByYi
N
Now, to estimate § and 02 we must minimise the quantity Z(“? — 02 — Z]§)* with respect to
i=1
§ and o2 and then obtain
N
> (Z=7Z)(2 - 2)
2 i=1
by == (3.18)
> (2~ 2)
i=1
and
1 X
~2 2} =
0t =+ ;u —onZ (3.19)

It is shown in [11] that By converge almost sure to B and if F(X} < oo,

VN(By — B) = N(0,E)

with 2 = 02A + AFE(X;, 1 X[ 18'Z)A where A = [E(X, 1 X, )]}
Also it shows that both (§ — &) and (62 — 02) converge to zero almost sure and if E(X} < oo,

VN (6 — 6) and v N (62 — 02) converge in probability to zero
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3.5 Simulation of Random Coefficient Autoregressive

3.5.1 An Order One Autoregressive Process Simulation

A random coefficient autoregressive of order one RC'A(1) process (X;,t € Z) is said to be of p

often shortened to if it satisfies the following formula
X(t) = bXt—l + CLtXt_l + &¢ (320)

where (a;);cz is a sequence of independent identically distributed centred random variables with
variance o2 and which are independents from the white noise (g;) of variance o2 and b is a given
number.

In order to simulate a random autoregressive process of order one, let see that It can be written

also
Xt)=0+a) X1 +e=aXiq+e (3.21)

where the random variable c¢; is of mean b and variance 2. So, we have created a function on
software R called RCA1(N, b, sigma2, sigma2a) whose arguments are respectively the num-
ber of observations NV, the given constant b, the variance of the white noise and variance of a.
The function is writing as follows:

RCA1<-function( N, b=0.8,sigma2=0.1,sigma2a—0.1)

{

E = rnorm(N,;sqrt(sigma?2))

¢ = rnorm(IN,b,sqrt(sigma2a)) # c=runif(,Nb-1,b+1)

X = numeric(N)

X[1] = E[1]

x[2]<-(c[2])*x[1]+-e[2]

for (i in 3:N) X[i] = E[i] -c[i|*X]i-1]

plot(X] 1:N ], type="1", main="Example of a Random Coefficient One Order Au-

toregressive",ylab="")
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}

Below is plotted a one order random coefficient autoregressive process with ¢ centered gaussian
random variables respectively [b — 1, b+ 1]-uniform random variable (see figure 3.1 respectively
3.2). Other choices of random variables with mean b are possible.

Notice that to ensure the stationarity of the simulated process one may choose b and o2 such

that b* + o2 < 1.

Example of a One Order Random Coefficient Autoregressive
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3.5.2 An Order Two Autoregressive Process Simulation

In the light of the principle of simulation given in [11] that generate a random coefficients
autoregressive processes, where the two sequences a(t) and g, are gaussian, we follow the current

steps:

1. Calculate the eigenvalues \;;2 = 1,--- ,p of the matrix B which must be less than one in

module.

2. Calculate the parameters b;;2=1,--- ,p of

i=1

i=1
and then calculate the square matrix M such as vec(M) is the last collone of (I—M&@M)~'.

3. Calculate tr(I'*M) for a positive defined matrix I'*.

4. Calculate the diagonal positive lower triangular matrix L such that LL' =T

5. Generate a vector (vq,vs,- - ,vp4+1) of random numbers normally distributed.
Taking e, = o.v; where 02 = E(e and V/ = L(vy,vq,- -+ ,vp11)" to insure that e, and a(t)

are theoretically independents with zero means and that F(a(t)'a(t)) = LL' =T.
6. Calculate X; = >7  (b; + a;(t))X;—; where X; =0 for t <0

7. Repeat step 5 and 6 for N + k times where N is the length of the desired sample and

ignore the k first produced values to ensure the stability of X,.

We give below a function which simulates a two order random coefficient autoregressive pro-
cess. The function was named RCA2(N,lamndal,lambda2,sigma2) whose arguments are
respectively the number of observations, the two eigenvalues of B and the variance of the white
noise. The function is writing as follows:
RCA2<-function(N=2500,lambdal=0.2,lambda2=0.3,sigma2=0.1)

{

bl<-lambdal-+lambda?2

b2<-lambdal*lambda2
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M <-matrix(c(0,b2,1,b1),nrow=2)

D <-matrix(c(1,0,0,(-b2)2,0,1,(-b2),(-b1*b2),0,(-b2),1,(-b2*b1),-1,-b1,-b1,1-b12) ,nrow=4)
S<-solve(D)

V <-matrix(S[,4],nrow=2)

J=matrix(c(1,0,0,1),nrow=2)

T<-Y %*% V

c<-sum(diag(T))

r—=0.9

K<-Y*(r/c)

L<-chol(K)

X <-rep(0,N)

v<-rnorm(3)

X[1]<-v[1]*sqrt(sigma?2)

v<-rnorm(3)

A<-L%*% v[2:3]

X[2]<-(b1+A[1])*X[1]4sqrt(sigma2)*v|[1]

for(i in 3:N)

{

v<-rnorm(3)

A=L%*% v|2:3]
X[i]=(b1+A[1])*X][i-1]+(b2+ A[2]) *X[i-2] +sqrt(sigma2) *v[1]
}

plot(X,type="1",main="Example of a Random Coefficient Autoregressive Process
of Order Two")

}

Below is plotted a random coefficient autoregressive process of order two (see figure 3.3).
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Example of a Random Coefficient Autoregressive Process of Order Two
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Figure 3.3

3.6 Prediction in RC'A(p) Model

According to its definition (3.1) it seems that the best predictor in the sense of least squares for
a random coefficient autoregressive process (X;) knowing X; 1, Xy o, - is X, = E(X/A; 1) =
B'Y;_1. However, this predictor is linear and cannot match with the nonlinear nature of (3.1)
which does not allow to the process (X;) to be normal or even to be near. Since E(X?/A; 1) =

(B'Y;_1)? 4+ 02 + §'Z;, the natural predictor of (X;) knowing X; 1, X; o, is
X; = sgn(BY, 1)(BY,1)* + 02 + 8'Z,)>

1 if x>0
where sgn(x) =
—1 ifrx <0
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Chapter 4

Comparison and Application

According to the simulations above one can see that there is a certain similarity between a RC' A
model and an AR one. Indeed, a RC' A model can be seen as an AR model to whom is added a
random perturbation to its coefficients. To illustrate such similarity we have create a function
that simulate and plot an autoregressive process of order one (in red) and an random coefficient
autoregressive process of order one (in blue) where the same autocorrelation coefficient in the
first was perturbed by a normal ( respectively a uniform) random variable ( see figure 4.1 and

figure 4.2 respectively).

— RCA(1)
— AR(1)

T T T T T T T
0 200 400 600 800 1000 1200

Index

Figure 4.1
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T T T T T T T
0 200 400 600 800 1000 1200

Index

Figure 4.2

The function that gives the above plot is given by:
RCA1lvsAR1<-function(N=1200,b=0.9,sigma2=0.1,sigma2a=0.1)
{
e<-rnorm(N,0,sqrt(sigma2))

X = numeric(N)

X[1] = e[1]

for (i in 2:N) X][i] = e[i] + b*X[i-1]
x<-rep(0,N)

a<-rnorm(1200,0,sigma2a) #a<-runif(-1,1)
x[1]<-e[1]

x[2]<-(al2])*x[1]-+e[2]

for( i in 3:1200)

x[i] <-(b+-ali])*x[i-1]+-eli]

plot(x,, main="",ylab="",col="blue",type="1")

lines(X, col="red")

legend(x = "topright",legend = c("RCA(1)", "AR(1)"),lty = c(1, 1),
col=c("blue","red"),lwd = 2)

}

From Figure 4.1, it can be seen that there is no significant fluctuation throughout the
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series of the AR(1) process. The process seems to have no systematic change in the mean and

variance.

On the other hand, the maximal behavior of ARC (1) in Figure 4.2, (3.3) is significantly different

from AR(1). It is clear that the additive random perturbation caused some amplitude jumps

in the series.

4.0.1 Application to Simulated Data

First of all, we simulate N observations of an order one random coefficient autoregressive process

with parameters b = 0.9, 02 = 1 and o2 = 0.25:

RCA1(IN=600,b=0.9,sigma2=1,sigma2a—=0.1)

Recall that these parameters estimators are respectively given by [memoire master p28,29|:

N

> XiXio

and
N N
2 7 A 212
E :Xz 1<X2 - lefl) - Oe Xz 1
A2 i=1 =1
Oqg — N

Then we write a function that has as output in the software R the estimations of those

parameters using the least square method:
RCA1lesimation<-function(x)

{

n<-length(x)

MCE<-rep(0,n)

hatb<-sum(x[2:n]*x[1:(n-1)]) /sum((x[1:(n-1)])?)
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MCE<-x[2:n]-hatb*x|[1:(n-1)] hatsigma2a<-sum((MCE?)*((x[1:(n-1)])*-mean((x|1:(n-
1])?)))/sum(((x[1:(n-1)])*-mean((x[1:(n-1)])*)
hatsigma2<-mean(MCE?)-hatsigma2a*mean((x[1:(n-1)])?)
return(list("hatb"=hatb,"hatsigma2a" =hatsigma2a,"hatsigma2" =hatsigma?2))

}

we get for instance

RCAlestimation(RCA1(600,0.3,1,0.25))

$ hatb # b

0.3000723

$ hatsigma2a # ¢.°

0.3600764

$ hatsigma2 # 7,>

0.822556

Now, we give a function that takes the m first observations, models them with both random
coefficient autoregressive process of order one RC'A(1) and ordinary autoregressive process of
order one AR(1) and calculates their respective quadratic errors when predicting the last N — M
observations using the both RC'A(1) and AR(1) models/ The function is given by:
RCA1lvsAR1Prediction<-function(x,n=600,m=200)

{

n<-length(x)

if (n<m)

stop("'n must be greater than m")

else

MCE<-rep(0,m)

hatb<-sum(x[2:m]*x[1:(m-1)]) /sum((x[1:(m-1)])2)

MCE<-x[2:m]-hatb*x[1:(m-1)]
hatsigma2a<-sum((MCE2)*((x[1:(m-1)])2-mean((x[1:(m-1)])2)))/sum(((x[1:(m-1)])2-
mean((x[1:(m-1)])2))2)
hatsigma2<-mean(MCE2)-hatsigma2a*mean((x[1:(m-1)])2)

hatx1<-rep(0,n)
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for(i in 1:(n-m-1))

hatx1[i]=x]i]

for(i in (n-m):n)
hatx1[i]=sign(hatb*x[i-1])*sqrt((hatb*x[i-1])2+hatsigma2-+hatsigma2a*(x[i-1]2))
QR1<-sqrt(sum((hatx1-x)2))

e<-rnorm(n,0,(1/m)*sum(MCE2))

hatx2<-rep(0,n)

for(i in 1:(n-m-1))

hatx2[i]=x[i]

for(i in (n-m):n)

hatx2[i]=hatb*x[i-1]+e]i]

QR2<-sqrt(sum((hatx2-x)2))

return(list("RCA1-quadratic-error"=QR1," AR1-quadratic-error"=QR?2))

}

RCA1lvsARPrediction(RCA1())

We get

$ RCA1l-quadratic-error

5.97764

$ AR1-quadratic-error

5.980647

We remark that the quadratic error corresponding to the RC'A(1) model is less than the
quadratic error corresponding to the AR(1) model. Within the same function we can plot
the predicted future values.

Notice that the model is better predicted by the random coefficient autoregressive model than

the ordinary one (see figure 4.3 below):
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Figure 4.3

4.0.2 Application to Realistic Data

The Southern Oscillation Index (SOI) is a measure of the intensity or strength of the Walker
Circulation. Tt is one of the key atmospheric indices for gauging the strength of El Nifo and
La Nina events and their potential impacts on the Australian region. Where El Nino and La
Nina events are a natural part of the global climate system. They occur when the Pacific
Ocean and the atmosphere above it change from their neutral ('normal’) state for several
seasons. El Nino events are associated with a warming of the central and eastern tropical
Pacific, while La Nina events are the reverse, with a sustained cooling of these same areas (see
http : | Jwww.bom.gov.au/climate/enso/history/ln — 2010 — 12/SOI — what.shtml).

The Southern Oscillation Index is defined as the standardized difference between barometric
readings at Darwin, Australia and Tahiti. We have chosen the index through the month of
January from 1951 to 2022. So, we have n = 72 observations. We used m = 50 observations
to be modeled consecutively by an AR(1) and a RCA(1) and then make predictions about

the reminded 22 observation for both models and compare their quadratic errors. Data was

! n.n

registered in an excel file named soijanvier of extension ".csv" separator ";" ( data are given

in appendix A). The file was imported to the console R using the command:

soi<-read.csv2("soijanvier.csv")
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and the object soi was attached:

attach(soi)

and target data were structured in R as follows:

data<-as.double(data).

Then we applied the function RCAlvsAR1Prediction to the argument data.

We get

$ RCA1l-quadratic-error

18.16607

$ AR1-quadratic-error

28.93774

We remark that the quadratic error corresponding to the RCA(1) model is less than the

quadratic error corresponding to the AR(1) model.

Remark 4.1. For both simulated data and realistic one the quadratic error when modeling and
predicting using a random coefficients autoregressive model is less than the quadratic error when
modeling and predicting using a deterministic coefficients autoregressive model and then it is
more convenient to predict the future using RC' A model rather than AR ones (see figure 4.4
and figure 4.5 ).
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Figure 4.4
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Figure 4.5
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Conclusion and Perspectives

The autoregressive model AR is a tool used in time series analysis to describe and model time
series data. Its main structure is a linear equation using the previous values to compute the
next time step; i.e., the short time relationship is the core component of the autoregressive
model. Therefore, short-term effects can be modeled in an easy way, but the global structure of
the model is not obvious. In addition, classical autoregressive model is not always suitable for
modeling all temporal data, especially in certain fields such as climatology and biology, where
there are disturbances random, as well as in finance where the presence of heteroscedasticity
and then the necessity of the emergence of other forms of models such as random coefficients
autoregressive models RC A.

In this work, we presented some probabilistic properties of classical autoregressive process as
well as those with random coefficient. According to the proposed model and the conditions
imposed on the coefficients of the model, we have made some statistical inference in these
models by applying the ordinary least squares method and then obtain good properties of such
estimators. We find that the root mean square error of the modeling by the ordinary autore-
gressive model is superior to that by the random coefficients autoregressive model for both
simulated and realistic data so that we consider that modeling data using random coefficients
autoregressive process is much better than a deterministic coefficients ones.

In last decay, several scientific researches have been elaborated about random coefficients au-
toregressive processes to model a large number of time series data. Yet, this class of modeling
is now the object of in-depth research by many researchers where we the subject can be ap-
proached from many aspects, including statistical inference by finding other more efficient
statistical methods such as the use of non-parametric estimation methods. We can mention

also that so far, we have assumed that the order of the autoregressive model is known. However,
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in practice, this quantity is generally unknown, and we then seek to estimate its value from the
observations, which is commonly referred to as the model selection problem. Moreover, a gen-
eralization of these processes to the Functional case, where the coefficient of the representation

is a random operator is also a very interesting research topic.
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Appendix

Appendix

Year;;data
1951;:2,5;
1952;:-1,5;
1953;;0,5;
1954;:1,1;
1955;;-0,9;
1956;;2,2;
1957;;1;
1958;:-3,1;
1959;:-1,5;
1960;;0,2;
1961;:-0,4;
1962;;3,3;
1963;;1,7;
1964;:-0,6;
1965;;-0,7;
1966;:-2,2;
1967;;2,8;
1968;;0,9;
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1969;:-2,4;
1970::-1,9;
1971;;0,6;
1972::0,8;
1973;:-0,5;
1974;:4;
1975::-0,8;
1976;;2,3;
1977::-0,7:
1978::-0,5;
1979;:-0,7;
1980::0,7;
1981;;0,6;
1982;;2;
1983;:-5,8;
1984;:0,3;
1985;:-0,5;
1986;;1,6;
1987;:-1,1;
1988;:-0,2;
1989;;2.5;
1990;:-0,1;
1991;:1;
1992;:-4,7;
1993;:-1,5;
1994;:-0,2;
1995;:-0,7;
1996;:1,6;
1997;;0.8;
1998;:-4.4:
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1999;:3;
2000;:1,1;
2001;;1,6;
2002;:0,7;
2003;;-0,3;
2004;:-2,2;
2005:;0,6;
2006;;2,7;
2007;:-1,3;
2008::2,9;
2009;:1,8;
2010::-1,8;
20115;3,8;
2012;:1,8;
2013;:-0,1;
2014;;2,4;
2015;:-1,4;
2016;;-3,6;
2017;;0,3;
2018::1,8;
2019::-0,1;
2020;;0,3;
2021:;3,2;
2022;;0,8;
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ABSTRACT

Abstract

In this thesis, we provide a comparative study where an autoregressive process with a
random coefficient of order p, RCAR(p) is compared to an autoregressive process with a
deterministic coefficient of order p, AR(p) knowing that RCAR models are obtained by
introducing random coefficients to an AR(1). For that and after checking conditions of
stationarity for both of them, we have conducted corresponding simulations which afterward
and when applied to real data allow us to make a comparison between them in terms of

prediction.

Résumé

Dans cette thése nous proposons une étude comparative ou un processus autorégressif
a coefficient aléatoire d'ordre p, RCAR(p) est comparé a un processus autorégressif a
coefficient déterministe d'ordre p, AR(p) sachant que les modéles RCAR sont obtenus en
introduisant des coefficients aléatoires a ceux AR. Pour cela et aprés vérification des
conditions de stationnarit¢ pour l'un et l'autre, nous avons procédé a des simulations
correspondantes qui par la suite et lors de l'application a des données réelles nous permettent

de faire une comparaison entre elles en termes de prévision.
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