
Abstract:

1. Introduction

et al.

In recent years, an increasing amount of robotic rese-
arch has focused on the problem of map building, naviga-
tion and executing task motion autonomously, i.e. with-
out human guidance. Such ability is essential for robotic
systems in tile emerging field of service robotics, which
includes security guarding, waste management, clean-
ing, and others. To reach a reasonable degree of auto-
nomy, two basic requirements are sensing and reasoning.
Sensing is provided by an on board sensory system that
gathers information about the robot itself and the
surrounding environment. Reasoning is accomplished by
developing algorithms that exploit this information in
order to generate appropriate commands for the robot.

The reasoning system is the central unit in an auto-
nomous robot. According to the environment state, it
must allow the robot to localize itself in the environ-
ment and seek for free paths. To accomplish these two

This paper presents a vision-based navigation system
for mobile robots. It enables the robot to build a map of its
environment, localize efficiently itself without use of any
artificial markers or other modifications, and navigate
without colliding with obstacles.

The Simultaneous Localization And Mapping (SLAM)
procedure builds a global representation of the environ-
ment based on several size limited local maps built using
the approach introduced by Davison [1]. Two me-
thods for global map are presented; the first method con-
sists in transforming each local map into a global frame
before to start building a new local map. While in the
second method, the global map consists only in a set of
robot positions where new local maps are started (i.e. the
base references of the local maps). In both methods, the
base frame for the global map is the robot position at
instant .

Based on the estimated map and its global position,
the robot can find a path and navigate without colliding
with obstacles to reach a goal defined the user. The moving
objects in the scene are detected and their motion is
estimated using a combination of Gaussian Mixture Model
(GMM) background subtraction approach and a Maximum
a Posteriori Probability Markov Random Field (MAP-MRF)
framework [2].

Experimental results in real scenes are presented to
illustrate the effectiveness of the proposed method.
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tasks, it bases its reasoning on a model or a description of
the environment. The environment model is not always
available and hence the robot should have the means to
build such a model over time as it explores its environ-
ments. This latest problem is known as mapping problem.

If the robot's pose (spatial position and orientation) is
known all long, building a map would be quite simple.
Conversely, if a map of the environment exists already, it
will be very easy to determine accurately the robot's pose
at any time. In combination, however, the problem is
much harder. The literature refers to the mapping pro-
blem often in conjunction with the localization problem
named as Simultaneous Localization and Mapping (SLAM)
[3, 4] or Concurrent Mapping and Localization (CML)
[5, 6, 7]

Mapping and localization are interlinked problems:

.
In this study, we focus on monocular vision-based

SLAM where a single camera is moving through the scene.
This is interesting because it offers a low-cost and real-
time approach to SLAM in unprepared environments. The
camera identifies natural features in the scene and uses
these as landmarks in its map. The proposed approach is
an extension to a real-time SLAM approach, proposed by
Davison et al. [1], which recovers the 3D trajectory of
a monocular camera, moving through previously un-
known room-size indoor domains. The role of the map in
[1] is primarily to permit real-time localization rather
than serve as a complete scene description of the scene.

This method is however not suitable in large environ-
ments [1], and particularly in case of perceptual aliasing,
which refers to situations where several places are per-
ceptually similar enough to be confused by the robot.
There-fore, currently observable features alone may not
be sufficient to uniquely identify the robot's true loca-
tion. To overcome these problems, we propose the use of
a 'history memory', which accumulates sensory evidence
over time to identify places with a stochastic model of
the correlation between map features. This also will allow
obtaining a complete description of the scene organized
as global map composed of several small local maps.

An other problem for SLAM methods is change over
time of the environment. Some changes may be relatively
slow, such as the change of appearance of a tree across
different seasons, or the structural changes that most
office buildings are subjected to over time. Others are
faster, such as the change of door status or the location
of furniture items, such as chairs. Even faster may be the
change of location of other agents in the environment,
such as cars or people. To deal with this problem of dyna-
mic scenes (with moving objects) we use an algorithm for
motion segmentation [2] to remove the outliers features
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which are associated with moving objects.
Based on the estimated global map, the robot can

fined a path to reach a user defined goal and it uses
a procedure based on fuzzy logic control to navigate and
avoid unplanned obstacles in the SLAM procedure and the
detected moving obstacles. To predict the position of the
detected moving objects, Kalman filter tracking proce-
dure is applied to the output object mask of the motion
detection process. The fuzzy logic controller for obstacle
avoidance is equipped with reinforcement learning algo-
rithm, which consists of a scalar reinforcement signal as
a performance feedback from the environment enabling
the navigator to tune itself.

The rest of the paper is organized as follows: Section 2
describes the different parts of the proposed approach.
Experimental results are shown in section 3, followed by
conclusions in section 4.

2. Method overview

The SLAM problem is tackled as a stochastic problem
using an Extended Kalman Filtering to maintain the state
vector, , consisting of the robot state, , and map
feature states, . It also maintains a covariance matrix

, which includes the uncertainties in the various states
as well as correlations between the states.

In [1], feature states are the 3D position vectors
of the locations of point features and the (robot) camera
state vector comprises a metric 3D position vector ,
orientation quaternion , velocity vector , and
angular velocity vector relative to a fixed world frame

and 'robot' frame carried by the camera (13
parameters):

(1)

Features are image patches with a size of 11 × 11
pixels. The patches are supposed locally as planar sur-
faces perpendicular to the vector from the feature to the
camera at initialization. When making measurements of a
feature from new camera positions, each patch can be
projected from 3D to the image plane to produce a tem-
plate for matching with the real image. This template will
be a warped version of the original square template
captured when the feature was first detected.

To avoid using outlier features, the moving object
mask detected by the motion segmentation procedure
intro-duced in [2] is used. Subsequently, during map
building, the detected features on the moving parts are
excluded.

The coordinate frame is chosen at the starting posi-
tion and the system is helped at the beginning with an
amount of prior information about the scene. A shape of
a known target is placed in front of the camera, which
provides several features with known positions and
known appearance. This will help to know the scaling of
the estimated map and an initialization of the map as
with only a single camera, the features cannot be initia-

2.1. Vision-based simultaneous localization
and mapping

lized on the map based only on one measurement beca-
use of their unknown depth. The system starts with zero
uncertainty.

A constant velocity model is considered and the robot
(camera) state update is produced by:

(2)

where is the transition function and is a random
vector describing the unmodelled aspects of the vehicle.

and are respectively the impulse of velocity and the
angular velocity caused by unknown acceleration and an-
gular acceleration processes of zero mean and Gaussian
distribution. denotes the quaternion
trivially defined by the angle-axis rotation vector

.
Feature matching is carried out using straightforward

normalization cross-correlation search for the template
patch projected into the current camera estimate. The
image is scanned at each location until a match is found.
This searching for match is computationally expensive.

Considering a perspective projection, the position
at which the feature would be expec-

ted to be found in the image is found using the standard
pinhole model:

(3)

where and are the standard camera calibra-
tion parameters

is the 3D position of the feature relative to the camera.

The EKF consists in prediction and update steps. At
each time step of the filter we obtain the predicted state

and covariance using the state transition function.
The Jacobian , which appears as a result of the lineari-
zation process of the transition function , is used to
transfer the map covariance, with the addition of the
process noise covariance .

(4)

(5)

The covariance of the state, , is therefore in block
form, containing the vehicle covariance , the feature
covariances, , the cross-covariances between featu-
res, , and the cross-covariances between the featu-
res and the vehicle, .

The state transition function does not alter the
feature states. A result of this is that its Jacobian is very
simple:
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tions has two important limitations when mapping large
environments. First, the computational cost of updating
the map grows with ( = number_of_features +
size_of_robot_stat). Second, as the map grows, the esti-
mates obtained by the EKF equations quickly become
inconsistent due to linearization errors [8].

To overcome these limitations, we use the previous
algorithm to build small independent local maps of
limited size and join them in global one. For joining the
local maps we propose two approaches, the first method
consists in transforming each local map into a global
frame before to start building a new local map. While in
the second method, the global map consists only in a set
of robot positions where new local maps are started (i.e.
the base references of the local maps). In both methods,
the base frame for the global map is the robot position at
instant , .

Each local map can be built as follows: at a given
instant , a new map is initialized using the current ve-
hicle as base reference
is the local map order. Then, the vehicle performs a
limited motion acquiring sensor information about the
neighbouring environment features . The EKF-based
technique presented in the previous section is used to
obtain a local map:

(15)

where is the coordinate vector in the base reference
of the detected features and is their covariance

matrix estimated in .

The robot decides to start a new local map when
the number of mapped features reaches a pre-defined
threshold.

In this method the first local map is used as global
map. Each finalized local map is transferred to the global
map before starting a new one, by computing the state
vectors and the covariance matrix. The goal of map join-
ing is to obtain one full stochastic map:

where is a concatenation of all features
from local maps

The location of feature from the local map is given
in the frame as follows:

where is the feature location

t0

location,

(16)

(17)

(18)

2.2.1. First method for global map building

0, 1, 2...

(6)

and the process noise

(7)

The update to include a new measurement incorpo-
rates the innovation , which is the difference between
the measurement and its prediction.

(8)

(9)

Where

(10)

(11)

(12)

and are block-diagonal matrices obtained
empirically defining the error covariance matrices cha-
racterizing the noise in the model and the observations
respectively.

A measurement of feature is not related to the
measurement of any other feature so

(13)

where is the measurement model for the 'th feature
and then

which depends only on the measurements of the feature
and the vehicle state.

After identification of the first measurement a new
feature is to initialize a 3D line into the map along which
the feature must lie. This is a semi-infinite line, starting
at the estimated camera position and heading to infinity
along the feature viewing direction. All possible 3D
locations of the feature point lie somewhere along this
line. To estimate the correct location (its depth), a set of
discrete depth hypotheses is uniformly distributed along
this line, which can be thought of as a one-dimensional
probability density over depth represented by a 1D par-
ticle distribution or histogram. The observations of the
new feature in the next few time-steps will provide infor-
mation about its depth coordinate.

The SLAM algorithm presented in the previous sec-

(14)

2.2. Global mapping for large environment
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in the local map and

is the frame reference in the global frame .

The same way, the location of feature from local map
is given in the frame as follows:

where

is the feature location in the local map and

is the frame reference in the global frame :

(20)

The covariance of the joint map is
obtained from the linearization of the state transition
function . As the local maps are independent, the
Jacobian (from linearization) is then applied separately
to the local map covariance:

In this method, the global map is limited to the set of
the coordinates of the local maps frame origins.

where are the instants when the robot de-

(19)

(21)

(22)

2.2.2. Second method for global map building

cides to build a new local map.

and

If at instant , the robot decides to build a new local
map and its location in the base frame of the

In this case, for feature matching at instant , the
robot uses the local map with closest base frame to its
current location:

A path planning system is used then by the robot to
navigate in its environment and avoid unplanned obsta-
cles by the SLAM procedure and the detected moving
obstacles. The position of the detected moving objects is
predicted by a Kalman filter tracking procedure applied to
the output object mask from the motion detection
process [2] and the used sensors for static obstacles
detection are infrared and ultrasound sensors.

The local path planning procedure is based on two
fuzzy logic controllers: a goal seeking controller and an
obstacle avoidance controller. The goal seeking control-
ler tries to find the optimal path to the intermediate
goals (defined by the global path planning), while the
obstacle avoidance controller has the mission to avoid
obstacles. A command fusion scheme based on a condi-
tioned activation for each controller arbitrates between
the two behaviours.

Simple fuzzy control for the obstacle avoidance beha-
viour is suitable to design autonomous mobile robots.
However, it is difficult to maintain the correctness, con-
sistency, and completeness of the fuzzy rule base for
obstacle avoidance constructed and tuned by a human
expert. Therefore, a fuzzy system able to evolve and auto-
matically improve its performance is recommended.
Several learning algorithms have been proposed to con-
struct fuzzy systems automatically, such as back-propa-
gation algorithm [10], table-lookup scheme [10], evolu-
tionary algorithm [13], and reinforcement learning [11,
12]. In our application we used reinforcement learning as
it is an unsupervised method which does not need train-
ing data. This learning method requires only a scalar rein-
forcement signal as a performance feedback from the en-
vironment enabling the navigator to tune itself [12].

According to requirements in present robotic soft-
ware architectures, being object-oriented component

local map , is

then:

(23)

(24)

2.3. Path planning
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based reusable software patterns, we developed such
a framework, named Controlling Robots with CORBA [14]
(CoRoBa), written in C++ and based on CORBA, a standa-
rdized and popular middleware. CoRoBa relies on well-
known Design Patterns [15] and provides a component
based development model. Concerning the tuning and
simulation of navigation algorithms, a Java based multi
mobile robot simulator (MoRoS3D) exists, and integrates
seamlessly in the framework as described in detail in
[16].

Given the polar coordinates of the target in the robot
frame, a Sugeno type fuzzy controller calculates the turn
angle allowing the robot to reach the target.

The transfer function of the goal seeking controller
representing the dependency of the turn angle on the
goal distance and the goal angle (polar coordinates) is
shown in Fig. 1. We can see that the turn angle to apply to
the robot to reach the target is directly proportional to
the goal angle and inversely proportional to the goal
distance with more importance to the goal coordinates.

The goal distance and goal angle are fuzzified into
4 and 11 Gaussian fuzzy sets, respectively. The turn angle
can take 11 crisp value in the interval [-180°,180°].

The 0-order Takagi-Sugeno fuzzy controller used for ob-
stacle avoidance is based on the distances to the obstacle
detected by the sonar and infrared sensors as well as the
estimated distance to the detected moving obstacles.

The front ultrasonic and infrared sensors of the robot
are grouped in 7 groups as depicted in Fig. 2. The sensor
data from groups G1 to G5 and the goal angle are used as
inputs to the obstacle avoidance controller. Where as the
data from the sensors of the groups G6 and G7 are used
only in the mediation process. The output of the control-
ler is the turn angle, which ranges between [-180°,180°].

The distance measured by the sensor group is
expressed as:

For

(25)

where is the distance measured by the sensor of the
sensor group . The distance measured by each sensor
group is fuzzified into three Gaussian fuzzy sets.

2.3.1. Goal seeking controller

Fig. 1. The transfer function of the goal seeking controller.

2.3.2. Obstacle avoidance controller
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Fig. 2. Diagram of the arrangement of the robot sensors.

2.3.3. Reinforcement learning for the obstacle
avoidance controller

Reinforcement learning is a control strategy in which
the robot embedded in an environment attempts to
maximize total reward in pursuit of a goal [12]. At any
time step, the robot should take a decision to avoid the
obstacles or to reach it goal. When the decision is taken
and the action performed, the decision process receives
a feedback in the form of a reward from the environment
which indicates if a good or bad decision to take in
attempting to achieve the goal.

As the learning concerns only the obstacle avoidance
controller, the action corresponds to the possible scalar
outputs of the controller and the states correspond to the
different combinations of the input fuzzy variables of the
controller.

The learning algorithm used in our application is as
follows:
1. Initialize to 0 for all state and action
2. Perceive current state
3. Choose an action according to action value function
4. Carry out action in the environment. Let the next

state be and the reward be .
5. Update action value function from , and :

where is a learning rate parameter and is a fixed
discounting factor between 0 and 1.

6. Return to 2.

( )

3. Experimental results
Figure 3 shows an example of SLAM using the

proposed algorithm with the second method for global
map building. Black squares describe the positions where
the feature matching has passed from a local frame to an
other. The ellipses around the features on the original
frame represent the estimated covariance. The ellipses
are drowning in straight around non matched feature
and in dots for matched features.

The simulation of the robot navigational behaviour is
done with simulator MoRoS3D. A simulator as such in-
creases safety when developing and testing algorithms.
In MoRoS3D a robot can be placed in a 3D environment
and interact with that environment in a manner similar to
that of the robot in the real physical situation. Although
MoRoS3D visualizes the entire surroundings of the robot,
the robot software only ”sees” the information it collects
through its sensors, just like with a physical robot. The
MoRoS3D simulator provides simple interaction with the
user and offers different virtual cameras including on-

line
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board and tracking ones. Simple distance sensors, such as
Laser, US and IR, are simulated.

Figure 4 shows the training of the path planning
system in a realistic environment and Figure 5 shows
some results of the developed path planning system in
some realistic cases.

Fig. 3. Example of Mapping and localization in a real scene.

Fig. 4. Diagram of the arrangement of the robot sensors.
Fig. 5. Results of the navigation strategy, presented in the
MoRoS3D multi robot simulator.

VOLUME 2,     N° 4     2008



Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 7

4. Conclusion
We presented a monocular-based EKF SLAM method.

The proposed approach for SLAM is an extension to the
method introduced by Davison [1] to the cases of
large environments with possible perceptual aliasing. For
this, the proposed approach uses a history memory which
accumulates sensory evidence over time to identify
places with a stochastic model of the correlation between
map features. This has allowed also building a complete
description of the scene as a global map composed of
several size limited local maps.

Based on the estimated map and its global position,
the robot can fined a path and navigate without colliding
with obstacles to reach a user defined goal using
a control system based on adaptive fuzzy logic.
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