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Abstract 
 

With the rapid advancement and widespread adoption of city monitoring systems, surveillance 
videos have become increasingly prevalent. Traditional video analysis methods require 
constant human supervision to identify abnormal events, a process that is both arduous and 
time-consuming. Consequently, the development of automatic video anomaly detection 
systems holds substantial practical significance, offering a means to significantly reduce the 
human resources necessary for video monitoring. This thesis introduces an innovative deep 
learning method aimed at enhancing video anomaly detection through the use of a spatial 
autoencoder combined with convolutional Long Short-Term Memory (ConvLSTM) networks. 
Additionally, it explores a potential framework for the application and expansion of this method 
to various video sources. 

Video anomaly detection involves identifying and classifying unusual events or emergencies 
that deviate from standard, normal, and expected behaviour. The core challenge in this task lies 
in effectively extracting spatial and temporal features. The proposed method in this thesis 
utilizes a spatiotemporal autoencoder to capture both spatial and temporal features within a 
unified framework. The autoencoder is trained to reconstruct normal video frames accurately, 
and anomalies are detected based on significant reconstruction errors. 

For capturing temporal dynamics, the model employs ConvLSTM networks, which are well-
suited for learning temporal dependencies in video data. This combination allows the model to 
learn intricate patterns and dependencies within the video sequences. Although these 
enhancements increase model complexity, potentially complicating the training process, this 
issue is addressed by implementing a clip-based video processing method. This approach 
enhances training efficiency and mitigates computational demands. 

Overall, the proposed deep learning method and the innovative spatiotemporal autoencoder 
with ConvLSTM present a significant advancement in automatic video anomaly detection, 
promising more efficient and accurate surveillance solutions. This thesis contributes to the 
development of robust, automated systems capable of handling diverse and complex video 
data, paving the way for improved social monitoring and security applications.  
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Chapter 1 

Introduction 
This chapter commences by providing an overview of the foundational background and 
underlying motivations that form the basis of the thesis. Following this, it articulates the aims 
and objectives pursued within the study, further elaborating on the outlined contributions. 
Finally, the chapter concludes with a succinct summary of the thesis components, offering a 
clear delineation of its overarching scope and structure.   

1.1 Background 
The use of surveillance cameras for the early detection of anomalous human behaviours is 
critical for crime prevention, counterterrorism, and ensuring public safety. These systems are 
essential in various environments, from public places to private institutions, where timely 
human intervention is necessary. However, this task is inherently challenging due to the labour-
intensive and continuous attention required, which can lead to human errors and inefficiencies. 
According to[1], abnormal events occur only 0.01% of the time, meaning that 99.9% of 
surveillance time is wasted on monitoring normal activities, leading to unnecessary storage 
costs and significant human oversight burdens.  

Surveillance videos contribute substantially to the realm of big data, characterized by their 
unstructured nature and the sheer volume of data generated. As [2] point out, manual 
surveillance is tedious and time-consuming, especially in crowded public places where various 
forms of security threats, such as theft, violence, and potential explosions, must be monitored. 
The detection of anomalous activities in such environments is particularly complex due to real-
world constraints like occlusion, varying lighting conditions, and the dynamic nature of 
crowds. 

The primary challenge in human anomaly detection within surveillance footage lies in the 
massive volume of data produced, making it difficult to identify rare abnormal events. 
Furthermore, defining what constitutes an anomaly is inherently subjective and context 
dependent. For instance, behaviour considered normal in one setting, such as walking on a 
subway platform, might be perceived as suspicious in another, such as loitering in a shopping 
mall. This variability in human perception complicates the development of universally 
applicable anomaly detection algorithms. 

Machine learning methods have shown promise in recognizing actions within labelled datasets 
but often struggle in highly occluded or crowded scenes. The high cost and impracticality of 
labelling every possible event further limit the effectiveness of supervised approaches in real-
world applications. Successful anomaly detection requires models that can identify patterns 
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and irregularities with minimal supervision. Figure 1.1 highlights various anomalies observed 
in society, emphasizing the importance of detecting deviations from usual behaviour patterns. 

Recent advancements have explored treating anomaly detection as a binary classification 
problem, achieving notable success despite the scarcity of abnormal event footage. Alternative 
methods leveraging spatiotemporal features, dictionary learning, and autoencoders have been 
developed to address these challenges.  

 

 

 
Figure 1.1 Examples of Anomalies in Societal Behaviour  

 
 

 
Deep learning methods have emerged as powerful tools for video anomaly detection, 
leveraging their ability to automatically extract relevant features from raw data and generalize 
well to diverse surveillance scenarios. As illustrated in Figure 1.2, deep learning consistently 
outperforms traditional approaches as data volume increases, offering superior performance 
and scalability [3]. Recent advancements have further enhanced anomaly detection by treating 
it as a binary classification problem and utilizing minimally supervised models with 
spatiotemporal features, dictionary learning, and autoencoders. These approaches enable 
efficient surveillance systems to handle large data volumes with minimal supervision and adapt 
to diverse contexts for effective threat detection and response.  
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Figure 1.2 Comparison of Performance between Deep Learning and Traditional Methods with 
Increasing Data Size [3] 

 

 

1.2 Motivation 
The motivation for this research stems from the growing need for efficient and scalable 
automated surveillance systems due to the increasing amount and complexity of video data. 
Traditional manual monitoring is labour-intensive and prone to errors, emphasizing the need 
for advanced systems that can accurately detect anomalies in real-time. The main aim is to 
enhance security and safety across various public and private areas, from preventing threats in 
public transportation to ensuring smooth operations in industrial settings. Recent advancements 
in CNNs and LSTM networks show great potential in addressing these challenges. CNNs have 
proven successful in image recognition and video analysis [4]. LSTMs are good at 
understanding patterns over time, making them useful for analysing video data. 

Furthermore, effective anomaly detection has significant economic and societal benefits, such 
as cost savings and improved quality of life. It can prevent incidents and ensure operational 
efficiency, leading to substantial cost savings [5]. Enhanced security and safety measures also 
contribute to a better quality of life [6]. 

Developing advanced anomaly detection systems not only meets current security needs but 
also prepares surveillance infrastructure to handle future threats. 
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1.3 Problem Statement 
The current state of anomaly detection in surveillance videos presents a significant gap between 
existing methods and the desired goal of accurate and efficient identification of abnormal 
human behaviour. Existing approaches often struggle to effectively capture nuanced patterns 
indicative of anomalies, leading to suboptimal detection accuracy and increased false positives. 
This discrepancy hampers the effectiveness of surveillance systems in ensuring public safety 
and security [7]. Therefore, there is a pressing need to develop an advanced anomaly detection 
framework that leverages cutting-edge deep learning techniques, such as Autoencoders and 
LSTM networks. These techniques have shown promise in enhancing the ability to accurately 
discern subtle deviations from normal behaviour in surveillance videos [8] [9] [10]. 
Specifically, deep-anomaly networks and spatiotemporal autoencoders can capture intricate 
patterns in video data, improving anomaly detection performance [8] [9]. Additionally, LSTM 
networks can model temporal dependencies, making them well-suited for identifying 
anomalies over time [10] [11]. By addressing these gaps, the proposed framework aims to 
provide a robust solution that can be implemented across various surveillance scenarios and 
environments, thereby improving the overall efficacy and reliability of surveillance systems. 

 

1.4 Objective of Study 
The objective of this study is to devise and implement an innovative anomaly detection system 
for surveillance videos, utilizing spatial autoencoder and convolutional LSTM architectures. 
The primary goal is to construct a robust deep learning framework capable of accurately 
detecting abnormal events in surveillance videos. By leveraging the capabilities of spatial 
autoencoders for feature extraction and ConvLSTMs for capturing temporal dependencies, the 
system aims to achieve superior anomaly detection performance. Furthermore, the study 
intends to evaluate the efficacy of the developed framework across diverse surveillance 
datasets, assessing its ability to detect anomalies effectively in various scenarios and 
environments. Through comprehensive experimentation and analysis, the objective is to 
establish the practical viability and effectiveness of the proposed anomaly detection system for 
deployment in real-world surveillance applications. 

 

1.5 Scope and Limitations 
This study aims to develop a sophisticated framework for anomaly detection in video sequences 
using deep learning techniques. Our proposed architecture integrates a spatial autoencoder for 
extracting spatial features and a temporal encoder-decoder to capture and analyse temporal 
patterns. This approach is designed to enhance anomaly detection in video streams, with 
applications in video surveillance, security, and monitoring systems. 
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However, the scope of this study is limited by several factors. The model is trained exclusively 
on normal scenes, which may limit its ability to detect a diverse range of anomalies not present 
in the training data. Additionally, the model's performance is dependent on the quality and 
variety of the training dataset, and may be affected by changes in lighting, occlusions, and 
camera angles. Despite these limitations, the proposed model provides a strong basis for future 
research and advancements in automated anomaly detection. 

 

1.6 Organisation of Thesis 
Chapter 2 offers a literature review centred on anomaly detection in surveillance videos. It 
begins with an overview of anomaly detection, discussing its significance and applications. 
Section 2.1 delves into techniques and algorithms frequently employed for anomaly detection, 
followed by Section 2.2, which reviews previous research specifically related to human 
anomaly detection in surveillance videos. The chapter wraps up with Section 2.3, discussing 
datasets commonly utilized in anomaly detection studies, highlighting their characteristics and 
suitability for research purposes. 
 
Chapter 3 details the methodology proposed for human anomaly detection in surveillance 
videos. It begins with an overview of the proposed approach in Section 3.1, outlining its main 
objectives and components. Section 3.2 discusses the preprocessing of surveillance videos, 
while Section 3.3 explores various feature extraction techniques employed in the methodology. 
Anomaly detection algorithms are covered in Section 3.4, followed by a discussion on 
evaluation metrics used to assess the performance of the proposed approach in Section 3.5. 
 
Chapter 4 focuses on the implementation of the proposed methodology. It begins with an 
overview of the Avenue Dataset and the Dataset in Sections 4.1 and 4.2, respectively, detailing 
their characteristics and relevance to the research. Section 4.3 discusses the data preprocessing 
steps undertaken to prepare the datasets for analysis, while Section 4.4 provides a description 
of the hardware and software used in the implementation process. The setting for anomaly 
detection algorithms is covered in Section 4.5, followed by a detailed explanation of the 
training and testing procedure in Section 4.6. 
 
Chapter 5 presents case studies, results, and discussions derived from the implementation of 
the proposed methodology. It starts with the presentation of experimental results in Section 5.1, 
followed by a comparison of different algorithms in Section 5.2. Section 5.3 delves into the 
discussion of findings, analysing the outcomes of the experiments conducted. Challenges faced 
during the implementation process are examined in Section 5.4, followed by a discussion on 
the real-world applications of human anomaly detection in Section 5.5. The chapter concludes 
with case studies showcasing the use of anomaly detection in surveillance systems in Section 
5.6. 
 
Chapter 6 serves as the conclusion of the thesis, summarizing the key findings and 
contributions of the study. It discusses possible enhancements to the proposed methodology in 
Section 6.1 and potential research directions in human anomaly detection in Section 6.2. 
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Section 6.3 explores emerging technologies and trends in the field, while Section 6.4 provides 
a summary of key findings. The chapter concludes with a discussion on the contributions of 
the study and its implications for future research and practical applications in Section 6.5.
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Chapter 2 

Literature Review 
 

 2.1 Overview of Anomaly Detection 
Anomaly detection involves identifying deviations from expected data patterns, often called 
anomalies or outliers, across various domains. The importance of anomaly detection is 
paramount, as anomalies in data often signify critical actionable information in a wide variety 
of application domains. The statistical community has been investigating outlier and anomaly 
detection since the 19th century [5], laying the foundation for subsequent advancements in the 
field. Over time, various research communities, including machine learning, data mining, and 
computer vision, have contributed to the development of a diverse range of anomaly detection 
techniques. While some of these methods are tailored to specific application domains, such as 
finance or cybersecurity, others exhibit broader applicability across different fields, 
underscoring the interdisciplinary nature of anomaly detection research [12]. 

 

2.1.1 What are anomalies?  

Anomalies are essentially patterns within data that deviate from the expected or well-defined 
notion of normal behaviour, often indicating unusual or unexpected occurrences that may 
warrant further investigation or attention. 

In Figure 2.12, we observe a simple example of anomaly detection, where normal regions are 
marked as N and anomalies as O. Anomalies are evidently situated outside the bounds of 
normal behaviour. However, it's important to note that anomalies such as O2 may appear to be 
close to normal regions. 
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Figure 2.1 A case of Anomaly Detection [5] (Chandola et al., 2009) 

 

 

 

2.1.2 Types of Video Anomalies 

Distinguishing types of anomalies can vary in difficulty depending on factors such as the 
complexity of the scene, the quality of the video, and the specific characteristics of the 
anomalies themselves. Some anomalies may be relatively easy to spot, especially if they 
involve drastic changes or actions that are clearly out of the ordinary. However, others may be 
more subtle and require careful observation and analysis to differentiate from normal 
behaviour. Additionally, the presence of noise or other confounding factors in the video can 
further complicate the task of distinguishing between different types of anomalies. [13] 
attempts to specify the different types of anomalies in benchmark datasets and practical 
scenarios. 

1. Appearance Anomalies: These anomalies involve unusual objects appearing in a scene, like 
a cyclist on a pedestrian walkway or a boulder on a road. Detecting them only requires 
examining a local area of a single video frame. 

2. Short-term Motion Anomalies: These anomalies involve unusual object movements within 
a scene, such as a person running in a library or lingering around foreign embassies. Detecting 
them typically only requires observing a short segment of video in a local region. Appearance-
only and short-term motion-only anomalies can also be referred to as local anomalies due to 
their distinct characteristics. 
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3. Long-term Trajectory Anomalies: These anomalies involve unusual object paths or 
movements over an extended period, like individuals walking in a zig-zag pattern on a sidewalk 
or a car weaving in and out of traffic. Detecting trajectory anomalies necessitates examining 
longer video segments. 

4. Group Anomalies: Group anomalies involve unusual interactions between objects in a 
scene, such as a group of people walking in a formation like a marching band. Detecting these 
anomalies involves analysing the relationships between two or more regions of the video. 

5. Time-of-Day Anomalies: Time-of-day anomalies are unique in that they are defined by 
when certain activities occur rather than what they entail. For instance, when people enter a 
movie theatre during the early hours of dawn. Detecting these anomalies usually requires using 
different models of normal behaviour tailored to different times of the day.  

 

2.1.3 Anomaly Detection Methods 

1. Trajectories-based Methods  

Trajectory-based methods in anomaly detection operate on the principle that anomalies 
typically manifest as sudden deviations from regular patterns within a video stream. By 
analysing a large corpus of videos, these methods can effectively learn the typical trajectories 
of normal events. When an event occurs that diverges significantly from these learned 
trajectories, it is flagged as anomalous [14]. Enhancing the efficacy of clustering, two distinct 
models can be constructed to address spatial changes and dynamic movements within the video 
[15], thereby improving the accuracy of anomaly detection. 

 

2. Low-level Feature Extraction Methods  

Traditional clustering methods encounter complexities when attempting to derive learning 
trajectories from normal events. Furthermore, clustering-based approaches often exhibit a high 
dependency on moving objects, which can pose challenges. To address these issues, low-level 
feature extraction methods emphasize capturing nuanced details within videos, such as changes 
in grayscale, motion vectors [16], and textures [17]. This approach enables a more 
comprehensive understanding of the underlying dynamics, facilitating more effective trajectory 
analysis and prediction. 

 

3. Deep Learning Methods 

With the surge in video data due to the advancement of smart cities, traditional methods 
struggle to handle the scale and identify outliers effectively. Consequently, deep learning 
approaches have gained popularity for such tasks. Among these, utilizing reconstruction error 
stands out as a prevalent direction for video anomaly detection [18] and [9]. This method 
involves learning a model of normal videos, where abnormal events exhibit higher 
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reconstruction errors compared to normal events, as they deviate further from the learned 
normal patterns. Drawing inspiration from image-based models like CNNs, models for video 
anomaly detection integrate temporal feature processing methods such as LSTM, 3DCNN, and 
Two-Stream Models. In addition to reconstruction error, some models employ autoencoders 
for future frame prediction [19] and [20]. By generating anomalous frames, these autoencoders 
leverage the notion that anomalies diverge from expected patterns, aiding in outlier detection. 
This approach, exemplified by GANs [21] distinguishes anomalies based on their deviation 
from predicted frames. 

 

 

 

Figure 2.2  Deep-Learning Based Anomaly Detection 

 
 

2.2 Autoencoder (AE) 
Autoencoders, are neural network architectures designed to organize, compress, and extract 
high-level features from data [21]. They are essential for building hierarchical models, 
facilitating unsupervised learning, and extracting non-linear features [22]. Unlike generative 
models like RBMs or BMs, which are fully connected, autoencoders are feed-forward neural 
networks that encode input data into a compressed, semantically meaningful form and then 
decode it to reconstruct the original input data [23]. 

The core components of autoencoders include an encoder, a latent feature representation, and 
a decoder [22]. The encoder compresses the input into a more compact representation, while 
the decoder reconstructs the original input from this encoding, aiming to learn an informative 
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representation of the data in an unsupervised manner [23]. Specifically, the problem is 
formulated as finding functions  

𝐴 : R𝑛 → R 𝑝 (encoder) and 𝐵 : R 𝑝 → R𝑛 (decoder) that minimize the reconstruction loss 
function, typically the ℓ2-norm, over the distribution of the input data.  

In its vanilla form, an autoencoder comprises an input layer, one or more hidden layers, and an 
output layer. However, variations and complexities can be introduced, such as convolutional 
autoencoders or denoising autoencoders, which enhance the model's capabilities. Training an 
autoencoder involves finding the encoder and decoder functions that minimize the discrepancy 
between the input and output data, preventing the model from learning the identity function. 
Strategies such as creating a bottleneck and adding regularization are employed to ensure that 
the learned representation is both compact and meaningful.  

Hyperparameters play a crucial role in the performance of autoencoders. These parameters 
include the number of hidden layers, the number of neurons in each layer, the size of the latent 
space, the activation function, and the objective function. Proper selection and tuning of these 
hyperparameters are essential to optimize the model's performance for a given task. 

 

Figure 2.3 Autoencoder Diagram by [24] 

 
  

The capacity to capture intricate features in an unsupervised manner. With careful design and 
parameter tuning, they hold promise for various applications in machine learning and data 
analysis. 
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2.2.1 Regularized AutoEncoders (RAE)   

Regularized autoencoders are a class of autoencoders that incorporate regularization techniques 
during training to impose constraints on the model's learning process. These constraints help 
prevent overfitting, encourage the learning of meaningful representations, or impose specific 
structures on the learned latent space. Here are some common types of regularized 
autoencoders: 

 

2.2.2 Sparse AutoEncoder (SAE)  

Sparse Autoencoder (SAE) is known for its focus on learning a sparse representation of input 
data by constraining the number of active neural nodes simultaneously. Its primary goal is to 
minimize the difference between input data and reconstructed data, all while imposing 
limitations on the sparsity of the latent representation. In an SAE, the loss function consists of 
two key components: the reconstruction loss and the sparsity loss. 

 𝑳𝑺𝑨𝑬 = 𝑚𝑖𝑛( ||𝑋 − 𝑋′||ி
ଶ  + λ𝐾𝐿(𝑝 || 𝑞)) 

 

where 𝐾𝐿(𝑝 || 𝑞) calculates the Kullback–Leibler divergence between a target sparsity 
parameter (p) and the estimated average activation of each neuron (q) during training, defined 
as 

    ∑𝑝 𝑙𝑜𝑔 ቀ
௣

௤
ቁ + (1 − 𝑝)log ቀ

ଵି௣

ଵି௤
ቁ 

This combined penalty term encourages the model to acquire a sparse representation, wherein 
only a limited number of neurons are active for each input. 

The Kullback-Leibler (KL) divergence is a measure of the difference between two probability 
distributions. It quantifies how one probability distribution diverges from another. In the 
context of neural networks, KL divergence is often used as a regularization term to encourage 
certain properties in the learned representations, such as sparsity. 

   

2.2.3 Contractive AutoEncoder 

 CAE [24] is an autoencoder that aims to produce similar representations for similar input data 
by adding a penalty term to the loss function. This penalty term, based on the Frobenius norm 
of the Jacobian matrix of the encoder concerning the input data, encourages local stability in 
the learned representation. The primary objective of the CAE is to minimize the difference 
between the input data and the  
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reconstructed data while taking the penalty term into account, promoting similarity in 
representations for similar input data. The overall loss function of a SAE and a CAE include 
the reconstruction loss, and a penalty term as follows. 

𝑳𝑺𝑨𝑬 = 𝑚𝑖𝑛( ||𝑋 − 𝑋′||ி
ଶ  + λ𝐾𝐿(𝑝 || 𝑞)) (1) 

where ||𝑋 − 𝑋′||ி
ଶThis term represents the reconstruction error, which is the squared Frobenius 

norm measuring the difference between the original input 𝑋 and the reconstructed output 𝑋′.  

𝐾𝐿(𝑝 || 𝑞) enforces sparsity in the encoded representation by measuring the difference between 
the desired average activation 𝑝 and the actual average activation 𝑞. 

For the CAE: 

LCAE (X, X’) = min(||𝑋 − 𝑋ᇱ||ி
ଶ + 𝜆||𝛻௑𝐸(𝑋)||ி

ଶ )  (2) 

where ||𝑋 − 𝑋ᇱ||ி
ଶ  This term represents the reconstruction error, which is the squared Frobenius 

norm measuring the difference between the original input 𝑋 and the reconstructed output 𝑋′. 

||𝛻௑𝐸(𝑋)||ி
ଶ  This term represents the squared Frobenius norm of the Jacobian matrix of the 

encoded representation concerning the input data 𝑋. This norm measures the sensitivity of the 
encoded representation to small variations in the input data. 

 

 

2.3 Convolutional autoencoder (ConvAE) 
 ConvAE employs convolutional layers instead of fully connected layers in both the encoder 
and decoder. The encoder uses these layers to create a compact representation from input 
images, while the decoder employs deconvolution layers for image reconstruction. CAEs are 
particularly effective for image data, as they excel at capturing spatial dependencies, which 
refer to the patterns and relationships among pixels or locations within individual images or 
data frames. They find wide-ranging applications in tasks such as image denoising, inpainting, 
segmentation, and super-resolution. 

 

2.4 Recurrent Neural Network (RNN) 
Traditional feedforward neural networks operate under the assumption that all inputs (and 
outputs) are independent of one another. However, many tasks, especially those involving 
sequences, require learning temporal dependencies between inputs. For example, in language 
modelling, the prediction of a word should be informed by the preceding words. RNNs address 
this by allowing outputs to be influenced not only by the current input but also by the entire 
sequence of previous inputs. RNNs have shown success in various applications, such as speech 
recognition and natural language processing [25]. While RNNs theoretically can handle 
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dependencies over long sequences, in practice, they are often limited by the vanishing gradient 
problem, which restricts their ability to look back more than a few steps [26]. 

2.5 Long Short-Term Memory (LSTM) 
To mitigate the vanishing gradient issue inherent in RNNs, LSTM networks were introduced. 
LSTMs incorporate a mechanism known as the forget gate, which helps in maintaining a 
constant error that can be backpropagated through time and layers, thus preserving information 
over longer sequences. This architecture allows LSTMs to effectively capture long-term 
dependencies and stack layers to learn higher-level temporal features. The typical LSTM unit 
consists of several gates and operations summarized in the following equations: 

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 ∶  𝑓௧ = 𝜎൫𝑊௙[ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯   (3) 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 ∶  𝑖௧ = 𝜎൫𝑊௙[ℎ௧ିଵ, 𝑥௧] + 𝑏௜൯   (4) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 ∶  𝐶௧
෡ = 𝑡𝑎𝑛ℎ(𝑊௖[ℎ௧ିଵ, 𝑥௧] + 𝑏௖)  (5) 

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 ∶  𝐶௧ = 𝑓௧ ⊗ 𝐶௧ିଵ + 𝑖௧ ⊗ 𝐶መ௧  (6) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 ∶  𝑜௧ = 𝜎(𝑊௢[ℎ௧ିଵ, 𝑥௧] + 𝑏௢)   (7) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 ∶  ℎ௧ = 𝑜௧ ⊗ 𝑡𝑎𝑛ℎ(𝐶௧)   (8) 

 

In the equations, 𝑥௧ represents the represents the input at time step 𝑡, ℎ௧ is the hidden state, and 
𝐶௧ is the cell state. 𝑊 denotes the weight matrices, 𝑏 are the bias vectors, 𝜎 is the sigmoid 
function, and represents the Hadamard product. The forget gate (equation 3) determines what 
information to discard from the cell state. The input gate (equation 4) and the candidate cell 
state (equation 5) together decide what new information to store. The cell state (equation 6) 
combines old and new information, while the output gate (equation 7) and the final hidden state 
(equation 8) determine the output and what information to pass to the next time step. 

LSTMs have been extensively used in various applications requiring sequence modelling such 
as natural language processing, speech recognition, and video analysis, demonstrating their 
ability to handle complex temporal dependencies [27] [28] [29]. A variant of the LSTM, 
convolutional LSTM is used for this project and is discussed in Chapter 3. 
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Figure 2.4 The structure of a typical LSTM unit. 

 

The blue line indicates an optional peephole connection, enabling the internal state to reference 
the previous cell state 𝐶௧ିଵ for improved decision-making [9]. 

 

2.6 Techniques for Human Anomaly Detection in Video 
Surveillance 
Human anomaly detection in video surveillance has evolved significantly over the years, 
transitioning from traditional methods to sophisticated deep learning techniques. This literature 
review evaluates these various approaches, highlighting their strengths and limitations, and 
concludes by arguing in favour of spatiotemporal autoencoders as the most effective method. 

Traditional Methods 

Traditional methods for anomaly detection are primarily based on statistical and machine 
learning techniques, focusing on feature extraction and pattern recognition. 

Background Subtraction (BS) 

This is a foundational technique where each pixel of a video frame is compared against a 
background model to classify it as foreground or background. This method, while simple and 
effective in controlled environments, often struggles with dynamic backgrounds and 
illumination changes. 

Statistical Models, such as Hidden Markov Models (HMMs) and dynamic Bayesian networks, 
have been used to model normal behaviour patterns and detect deviations.  
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[16] implemented an HMM-based approach for unusual event detection. These models, while 
useful, often fail in real-world scenarios where normal behaviours are highly variable and 
unpredictable. 

Clustering techniques like k-means and DBSCAN can also be employed for anomaly detection 
by combining them with local motion features. While these methods can be effective, they are 
computationally intensive and sensitive to parameter selection, making them less practical for 
real-time applications. 

Deep Learning Methods 

Deep learning has revolutionized anomaly detection by enabling the automatic extraction of 
high-level features from raw video data, providing superior performance in handling complex 
and high-dimensional data. 

CNNs have been widely used for feature extraction and classification. [30] demonstrated that 
CNNs could detect anomalous events by learning spatiotemporal features. However, CNNs 
require large, labelled datasets for training, which can be a significant limitation. 

RNNs, particularly LSTM networks, are adept at modelling temporal dependencies in video 
sequences. [19] used predictive convolutional LSTMs for anomaly detection, showing 
improved performance over traditional methods. Despite their effectiveness, RNNs are 
computationally demanding and can suffer from vanishing gradient issues. 

Autoencoders have become powerful tools for unsupervised anomaly detection. By learning to 
reconstruct input data and identifying anomalies based on reconstruction errors, autoencoders 
offer a robust solution. Variations like convolutional autoencoders and denoising autoencoders 
enhance robustness [20] [24] introduced contractive autoencoders, which improve the 
robustness of learned representations, making them more effective for anomaly detection tasks. 

Hybrid approaches combine traditional and deep learning methods to leverage their 
complementary strengths. For instance, background subtraction can preprocess video frames 
before a deep learning model performs anomaly detection [31]. This combination can improve 
detection accuracy and reduce computational complexity. 

After reviewing various techniques, it is evident that each has its own set of advantages and 
challenges. Traditional methods are simple and fast but often fall short in complex, real-world 
scenarios. Deep learning methods, particularly autoencoders, offer superior performance and 
robustness but require extensive computational resources and large datasets. 

Among the deep learning methods, spatio-temporal autoencoders stand out for their ability to 
capture both spatial and temporal features of video data, making them particularly well-suited 
for anomaly detection. [9] demonstrated the effectiveness of spatio-temporal autoencoders in 
detecting abnormal events by simultaneously learning normal motion and appearance patterns. 

In conclusion, given their robust performance and ability to handle complex scenarios without 
requiring extensive labelled data, spatio-temporal autoencoders are the most effective 
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technique for human anomaly detection in video surveillance. Their ability to learn and adapt 
to new and unseen data makes them a superior choice compared to other methods. 

 

2.7 Image Regularization 
Image regularization is a technique used in image processing and computer vision to improve 
the quality of images by reducing noise and other artifacts, enhancing important features, and 
restoring the underlying true image structure. The goal of regularization is to impose certain 
constraints or priors on the image to achieve a more desirable and stable solution. This is 
particularly useful in ill-posed problems where the solution may not be unique or stable without 
additional information. 

2.7.1 Key Concepts in Image Regularization 

1. Noise Reduction: 

Regularization methods help to suppress random noise present in images while preserving 
important details. Techniques like Gaussian smoothing and median filtering are simple forms 
of noise reduction. 

2. Feature Preservation: 

While reducing noise, regularization methods aim to retain important image features such as 
edges, textures, and structural details. Techniques like Total Variation (TV) regularization is 
designed to preserve edges while reducing noise. 

3. Posed Problems: 

Many image processing problems, such as image denoising, deblurring, and super-resolution, 
are ill-posed, meaning that there isn't a unique solution, or the solution is highly sensitive to 
input data. Regularization helps to stabilize these problems by incorporating prior knowledge 
or constraints. 

4. Priors and Constraints: 

Regularization methods incorporate priors (assumptions about the image) or constraints to 
guide the solution. For example, a common prior is that natural images tend to have smooth 
regions with sharp edges. 

2.7.2 Common Regularization Techniques 

Tikhonov Regularization: 

Also known as ridge regression in the context of statistical learning, Tikhonov regularization 
adds a penalty term to the loss function, typically the L2 norm of the image gradient. This helps 
to smooth the image and reduce noise. 
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Total Variation (TV) Regularization: 

TV regularization minimizes the total variation of the image, which is the L1 norm of the image 
gradient. This method is effective at preserving edges while smoothing out noise in flat regions. 

Laplacian Regularization: 

This technique involves using the Laplacian operator to penalize large variations in the image, 
leading to smoother results. It is commonly used in solving inverse problems like image 
deblurring. 

2.7.3 Applications of Image Regularization 

Image Denoising: Removing random noise from images while preserving important details. 

Image Deblurring: Restoring sharpness to images that have been blurred due to camera motion 
or out-of-focus capture. 

Super-Resolution: Enhancing the resolution of images by reconstructing high-resolution details 
from low-resolution inputs. 

Inpainting: Filling in missing or corrupted parts of an image by inferring the missing 
information from the surrounding context. 

 

2.7 Review of Datasets Used in Anomaly Detection 
The development and evaluation of systems that detect anomalies in videos depend on the 
availability of diverse and comprehensive datasets. These datasets provide essential data for 
training models to differentiate between normal and anomalous events. [32] provides an 
extensive review of prominent VAD datasets, categorizing them based on specific use cases 
and types of anomalies. This categorization aids researchers in selecting appropriate datasets 
that match their application requirements. Well-known datasets, such as the UCSD Pedestrian 
and CUHK Avenue datasets, are highlighted for their detailed annotations and diverse 
scenarios, making them pivotal for benchmarking and improving VAD models. 

Quality and variety in datasets are crucial, as they should encompass a wide range of normal 
activities and potential anomalies to ensure models can generalize well to real-world scenarios. 
A common limitation is that models trained on limited data may fail to recognize anomalies in 
different contexts or environments. Additionally, the temporal complexity of video data is 
essential for robust video anomaly detection models. Datasets like the ShanghaiTech Campus 
dataset, which include longer sequences and more complex scenes, challenge models to capture 
temporal dependencies effectively, a necessity for real-time surveillance tasks. 

[32] also discusses evaluation methods for VAD models, emphasizing frame-level and pixel-
level accuracy. These metrics measure how well models identify anomalies in both broad and 
fine contexts, ensuring comprehensive assessment of their reliability and robustness. 
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Despite the progress, the task of detecting anomalies in videos faces several challenges 
including but not limited to: 

1. Exploring Abnormality: Defining abnormal moments is difficult due to the lack of a clear 
distinction between normal and abnormal events. Anomalies in videos are irregular, rare, and 
can vary depending on the environment, leading to false alarms. 

2. Data Imbalance: Anomalies are rare compared to normal instances, leading to data 
imbalance. Collecting a large number of labelled abnormal instances is challenging. 

3. Noise: Distinguishing between noise and real anomalies is a significant challenge, as noise 
can affect the model's accuracy. 

4. Hardware Requirements: Real-time anomaly detection requires high computational power 
and infrastructure, posing a challenge in handling long and high-quality videos with the latest 
deep-learning models.  
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Figure 2.5 Popular Benchmark Datasets for Video Anomaly Detection [32] 

 

Diverse and high-quality datasets are vital for advancing systems that detect anomalies in 
videos, addressing these challenges is essential for developing robust and reliable models 
capable of effective real-time anomaly detection.
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Chapter 3  

Methodology 
In this methodology, the focus is on leveraging deep learning techniques to detect anomalies 
within video sequences. The approach revolves around the concept that abnormal occurrences 
induce significant deviations between recent frames and older frames within a video stream. 
To address this, a sophisticated architecture is crafted, comprising a spatial autoencoder for 
spatial feature extraction and an LSTM-based encoder-decoder for temporal analysis. This 
integrated setup empowers the model to effectively capture temporal dynamics embedded 
within the input frame sequence. During the training phase, only video volumes portraying 
normal scenes are utilized. The primary objective is to minimize the reconstruction error 
between the input video volume and the reconstructed output volume generated by the trained 
model. 

Once the model is sufficiently trained, it is expected that video volumes depicting normal 
scenarios will exhibit low reconstruction errors, while volumes containing abnormal events 
will manifest higher errors. By establishing a threshold on the reconstruction error for each 
testing input volume, the system becomes adept at identifying anomalous events within video 
streams. 

 

3.1 Preprocessing 
The objective of this stage is to preprocess the raw data into a standardized and model-
compatible format. Each frame is extracted from the raw videos and resized to 144 × 144 pixels. 
To ensure uniformity across input images, pixel values are scaled between 0 and 1. 
Additionally, each frame is normalized by subtracting it from a global mean image, calculated 
by averaging pixel values across all frames in the training dataset. Subsequently, the images 
are converted to grayscale, reducing dimensionality while preserving essential information. 

Furthermore, the processed images undergo normalization to achieve a zero mean and unit 
variance. The input to the model consists of video volumes, each comprising 10 consecutive 
frames with varying skipping strides. Given the model's substantial parameter count, a sizable 
training dataset is imperative. Following established practices, data augmentation in the 
temporal dimension is performed to augment the training dataset's size. 

To generate these volumes, frames are concatenated with stride-1, stride-2, and stride-3. For 
instance, the initial stride-1 sequence comprises frames {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, while the 
first stride-2 sequence includes frames {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}. Similarly, the first 
stride-3 sequence encompasses frames {1, 4, 7, 10, 13, 16, 19, 22, 25, 28}. With these 
preparations, the input is now primed for model training. 
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3.2 Data Augmentation 
Data augmentation in the temporal dimension is a vital technique employed to enrich datasets 
in the temporal dimension. By generating sequences of frames with varying strides, this 
augmentation method enhances dataset diversity and facilitates effective capture of temporal 
information. For each video sequence in the dataset, frames are sampled with different strides 
to construct input sequences. This strategic approach not only diversifies the training data but 
also aids in effectively encapsulating temporal dynamics, thereby bolstering model robustness 
and performance in tasks such as action recognition and anomaly detection. 

 

3.3. Autoencoders  
The structure of an autoencoder, revolves around the mapping of an input vector x to an output 
vector r = g(h) (reconstruction) via an internal representation - a latent space vector     h = f(x). 
It consists of two main components: the encoder mapping x to h and the decoder g mapping h 
to r The learning process aims to minimize a loss function L, where x represents an input of 
the autoencoder and g(f(x)) denotes reconstruction through an internal representation. 
Essentially, the objective is to reconstruct the original image after undergoing a generalized 
non-linear compression, as outlined in [33]. While a simple architecture of the autoencoder 
sufficed for our purpose, handling more complex datasets necessitates incorporating a more 
sophisticated autoencoder architecture. Autoencoders can be likened to principal component 
analysis (PCA) under a specific condition. When employing linear activation functions within 
the autoencoder, the resulting latent variables directly resemble the principal components 
obtained through PCA. However, it's essential to note that autoencoders typically utilize non-
linear activation functions, which are pivotal in enhancing their performance. These non-linear 
functions enable autoencoders to capture intricate data patterns and relationships more 
effectively, distinguishing them from the linear transformation approach of PCA.   

𝐿(𝒙, 𝑔(𝑓(𝒙))) 
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Figure 3.0-1 Scheme of an Autoencoder 

 

3.3.1 Spatial Autoencoder (SAE) 

The architecture comprises an encoder and a decoder, each containing multiple layers to 
process the input and generate the reconstructed output. 

The encoder starts with a convolutional layer (conv1) with a kernel size of 7x7, which applies 
128 filters to the input image, preserving its spatial dimensions. This is followed by a rectified 
linear unit (ReLU) activation function to introduce non-linearity. Subsequently, an average 
pooling layer is applied to downsample the feature maps by a factor of 2, reducing the spatial 
dimensions while preserving essential information. The process continues with additional 
convolutional layers (conv2 and conv3), each followed by ReLU activation and average 
pooling, further extracting hierarchical features from the input image and reducing its spatial 
dimensions progressively. 

On the decoder side, the architecture mirrors the encoder's structure, albeit with 
deconvolutional layers (deconv1 to deconv4) instead of convolutional layers. Each 
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deconvolutional layer upsamples the feature maps using nearest-neighbour spatial upsampling, 
gradually increasing the spatial dimensions to match those of the original input.  

The deconvolutional layers apply a ReLU activation function, similar to the encoder, to 
introduce non-linearity. Finally, a convolutional layer with a sigmoid activation function is 
applied to generate the final output, which represents the reconstructed image. The architecture 
effectively captures spatial information from the input image, compresses it into a latent 
representation through the encoder, and then reconstructs the original image through the 
decoder. 

 

1. Encoder (E): 
- The output of each convolutional layer can be represented as:  

𝑐𝑜𝑛𝑣(𝑥) = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑥 + 𝑏) 

Where W denotes convolutional filter weights, b represents the biases and (*) denotes 
the convolution operation. 

- The average pooling operation reduces the spatial dimensions by a factor of 2, such 
that;  

𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥) =
1

2
෍ ෍ 𝑥(2𝑖, 2𝑗)

ଵ

௝ୀ଴

ଵ

௜ୀ଴
 

 

 

2. Decoder (D): 

The upsampling operation increases the spatial dimensions by a factor of 2, effectively 
repeating each element:  

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑥) =  ൥𝑥(
𝑖

2
,

𝑗

2
) 0

0 0
൩ 

 
 
Where x(i/2, j/2) denotes the (i/2, j/2) element of x 
 

- The output of each deconvolutional layer can be represented similarly to the encoder’s 
convolutional layer. 

𝐷𝑒𝑐𝑜𝑛𝑣(𝑥) = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑥 + 𝑏) 
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3. Final Output:  
The final convolutional layer with sigmoid activation generates the reconstructed 
image:  

𝑂𝑢𝑡𝑝𝑢𝑡(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 ∗ 𝑥 + 𝑏) 

 
 

4. Mathematical Notation 
   - Let x represent the input image tensor. 

   - The output of the encoder E can be represented as: 

𝐸(𝑥) = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑥))) 

   - Similarly, the output of the decoder D can be represented as: 

𝐷(𝑥) = 𝐷𝑒𝑐𝑜𝑛𝑣 ቀ𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒൫𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑥))൯ቁ 

  - The final reconstructed output can be represented as: 

               𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑൫𝐶𝑜𝑛𝑣(𝑥)൯ 

 

3.4 Convolutional LSTM (ConvLSTM) 
While spatial features extracted by the SAE provide valuable insights into the static content of 
individual frames, they fall short in capturing the dynamic temporal nuances inherent in videos. 
Spatial features alone lack the necessary temporal context for understanding scene evolution 
and detecting anomalies effectively. This is where the ConvLSTM layers come into play. By 
integrating ConvLSTM layers into the architecture, the model gains the ability to learn and 
encode temporal dependencies within the video sequence. The ConvLSTM layers complement 
the SAE by infusing the model with temporal insight, enabling it to capture temporal patterns, 
dynamics, and abnormalities inherent in the video data. Together, the SAE and ConvLSTM 
layers form a symbiotic relationship, with the SAE focusing on extracting spatial features and 
the ConvLSTM layers specializing in learning temporal dependencies. By combining spatial 
and temporal features, the model achieves a holistic understanding of the video data, enhancing 
its ability to detect anomalies accurately and robustly. Thus, while spatial features provide a 
foundation for understanding the content of individual frames, temporal features are 
indispensable for capturing the temporal context and dynamics essential for effective anomaly 
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detection in videos. Additionally, a variant of the LSTM architecture, namely ConvLSTM 
model, was introduced by [34]. ConvLSTM has its matrix operations replaced with 
convolutions, resulting in fewer weights and yielding better spatial feature maps. The 
formulation of the ConvLSTM unit can be summarized with equations (7) through (12). 

 
 

𝐴 = 𝜎൫𝑊௙ ∗  [ℎ௧ିଵ, 𝑥௧, 𝐶௧ିଵ] + 𝑏௙൯    (9) 

 
 

𝑖௧ = 𝜎(𝑊௜ ∗  [ℎ௧ିଵ, 𝑥௧, 𝐶௧ିଵ] +  𝑏௜)    (10) 

 

𝐶መ௧ = tanh (𝑊௖ ∗ [ℎ௧ିଵ, 𝑥௧, 𝐶௧ିଵ] + 𝑏௖    (11) 

 

𝐶௧ = 𝑓ଵ ⊗ 𝐶௧ିଵ + 𝑖௧  ⊗ 𝐶መ௧     (12) 

𝑜௧ = 𝜎(𝑊௢ ∗  [ℎ௧ିଵ, 𝑥௧ , 𝐶௧ିଵ] + 𝑏௢)                                 (13)  

 

ℎ௧ = 𝑜௧ ⊗ 𝑡𝑎𝑛ℎ(𝐶௧)      (14) 

 

 

In this approach, although the equations resemble those numbered (3) through (8) of chapter 2, 
the inputs are images, and the weight matrices for each connection are substituted with 
convolutional filters, indicated by the symbol ∗ representing convolution operations. This 
modification enables ConvLSTM to perform more effectively with images compared to 
traditional FC-LSTM networks. The key advantage of ConvLSTM lies in its ability to maintain 
and transfer spatial information over time through each ConvLSTM state, thereby enhancing 
its suitability for image-based tasks. 

 

3.5 Model Architecture 
The architecture takes a sequence of t frames as input. Initially, a spatial encoder processes 
each frame individually. After t frames, the features from these frames are concatenated and 
passed to a temporal encoder for motion analysis. The decoders then reverse this process to 
reconstruct the original video sequence. See Figure 3.2 for a visual representation. 



 
Chapter 3. Methodology Anomaly Detection in Video Surveillance 
 
  

27 
 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

3.6 Regularity Score 
In the pursuit of evaluating model performance, ensuring reliability and effectiveness remains 
paramount.  How do we ascertain if our model meets the task requirements? This question 
underscores the crucial need for robust evaluation metrics extending beyond mere accuracy 
assessments. Assessing consistency and stability across diverse scenarios is pivotal. Once the 
model is trained, its capability to detect abnormal events while maintaining a low false alarm 
rate is tested using testing data. As a way computing the regularity score, the reconstruction 

Figure 3.2 Representation of the architecture of the model 
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error of all pixel values I in frame t of the video sequence is taken as the Euclidean distance 
between the input frame and the reconstructed frame utilizing learned weights from the 
spatiotemporal model as discussed in. 

𝑒(𝑡) = ‖𝑥(𝑡) − 𝑓௪(𝑥(𝑡))‖ଶ  (15) 

where  𝒇𝒘 is the learned weights by the spatiotemporal model. The abnormality score  
𝑺𝒂(𝒕)  is computed by scaling between 0 and 1. Subsequently, regularity score 𝑺𝒓(𝒕) 
can be simply derived by subtracting abnormality score from 1. 
 

 

3.7 Thresholding 
The simplicity and effectiveness of determining whether a video frame is normal or anomalous 
using reconstruction error are remarkable. By comparing the reconstruction error of each frame 
to a predefined threshold, the system can efficiently classify frames as normal or anomalous. 
The threshold plays a pivotal role in determining the sensitivity of the detection system: a lower 
threshold makes the system more sensitive to scene dynamics, potentially triggering more 
alarms. As a common practice, to quantitatively assess the performance of the detection system, 
analysing the true positive and false positive rates across different error thresholds to calculate 
the area under the ROC (AUC). The EER provides a valuable metric, indicating the threshold 
at which the false positive rate equals the false negative rate, signifying a balanced trade-off 
between sensitivity and specificity. This comprehensive evaluation framework enhances our 
understanding of the detection system's performance, enabling fine-tuning and optimization for 
specific application requirements. 
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Chapter 4  

Experimental Walkthrough  
  

This chapter details the datasets utilized, the experimental setup, the model parameters, and the 
hardware and software employed. An overview of the datasets used to train and test the 
proposed method is provided. Additionally, the model parameters are detailed, along with the 
specifications of the hardware and software used in the experiments.  

  

4.1 Datasets  
This section outlines the datasets used for training and testing the proposed architecture. Three 
widely recognized benchmarking datasets were utilized to evaluate the method 
comprehensively: UCSD Ped1 and Ped2 datasets, CUHK Avenue. All videos in these datasets 
are captured from fixed positions. The training videos exclusively contain normal events, while 
the testing videos include both normal and abnormal events, allowing for robust evaluation of 
the model's anomaly detection capabilities. These datasets are discussed briefly as follows.  

  

1. UCSD Pedestrian 1 (Ped1)  

The UCSD Ped1 dataset features video clips from pedestrian walkways, capturing 
anomalies involving unknown objects such as bikes and small cars. It comprises 6,800 
training frames and 7,200 testing frames at a resolution of 238×158 pixels and is available 
only in grayscale. Acquired with stationary cameras mounted at an elevation overlooking 
pedestrian walkways, the dataset captures variable crowd densities ranging from sparse to 
crowded, with normal settings showcasing only pedestrians. Anomalies arise from non-
pedestrian entities circulating in walkways or anomalous pedestrian motion patterns, 
including bikers, skaters, small carts, and pedestrians traversing grassy areas. The naturally 
occurring dataset, without staging, is divided into subsets representing distinct scenes, with 
video footage segmented into clips of around 200 frames. Ped1 clips depict groups of 
people walking towards and away from the camera, often with perspective distortion, and 
include 34 training and 36 testing video samples. Ground truth annotation for each clip 
includes binary flags per frame indicating anomaly presence, with some clips accompanied 
by manually generated pixel-level binary masks identifying anomaly regions to facilitate 
algorithmic performance evaluation regarding anomaly localization. Figure 4.1 shows a 
type of anomaly in the UCSD Ped1 dataset.   
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Figure 4.1 Anomaly (cart) in UCSD Ped1 

  

2. UCSD Ped2  

The UCSD Ped2 dataset consists of 2,550 training frames and 2,010 testing frames with a resolution 
of 360×240 pixels and is also available only in grayscale. Similar to Ped1, the video footage is 
captured using stationary cameras mounted at an elevation, overlooking pedestrian walkways, and 
captures variable crowd densities ranging from sparse to crowded. Normal settings showcase only 
pedestrians, while anomalies are characterized by non-pedestrian entities in walkways or 
anomalous pedestrian motion patterns, such as bikers, skaters, small carts, and pedestrians 
traversing grassy areas. The dataset is naturally occurring, without staging, and is divided into 
subsets representing distinct scenes, with video footage segmented into clips of around 200 frames. 
Ped2 scenes feature pedestrian movement parallel to the camera plane and comprise 16 training 
and 12 testing video samples. Ground truth annotation for each clip includes binary flags per frame 
indicating anomaly presence, with a subset of clips accompanied by manually generated pixel-level 
binary masks identifying anomaly regions to facilitate algorithmic performance evaluation 
regarding anomaly localization.  

 

Figure 4.2 Anomaly (cart) in UCSD Ped2 
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3. CUHK Avenue  

The CUHK Avenue dataset presents a pedestrian-centric focus, emphasizing unexpected 
pedestrian behaviour and the presence of unknown objects like bicycles as anomalies. With a 
resolution of 640 x 360 pixels, it comprises 15,328 training frames and 15,324 testing frames 
across 16 training and 21 test videos. Anomalies in this dataset are primarily characterized by 
aberrant pedestrian actions such as scrambling, running, and instances involving unidentified 
objects. The dataset encompasses normal scenes depicting pedestrian movement between 
staircases and subway entrances, juxtaposed with abnormal events like running, walking in 
opposite directions, and loitering. Challenges within Avenue include camera shakes, outliers in 
the training data, and infrequent appearances of certain normal patterns. Despite these 
challenges, it serves as a valuable resource for developing algorithms capable of detecting and 
analysing pedestrian behaviour in complex urban environments.  

  

 
 

Figure 4.3 Anomaly in CUHK Avenue (bicycle) 

  

 
Table 1 Characteristics of Benchmark Datasets Used 

Dataset  Year  #Training  #Testing  #Scenario  Source  Resolution  

UCSD Ped1  2010  34  36  1  Surveillance  238 x158  
UCSD Ped2  2010  16  12  1  Surveillance  238 x 158  
CUHK Avenue  2013  16  21  1  Surveillance  640 x 360  

 

4.2 Data Preprocessing  
This section outlines the systematic approach adopted to preprocess the datasets, encompassing 
frame extraction, image regularization, tensor storage, and data augmentation.  
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4.2.1 Frame Extraction  

The datasets under consideration are predominantly presented in video (.avi) and also .tif 
format. To facilitate anomaly detection at the frame level, frames were extracted from the 
videos using OpenCV, aligning with the spatio-temporal nature of the autoencoder architecture. 
The OpenCV module's video reader was employed for efficient extraction, maintaining the 
original frames-per-second (fps) rate of both UCSD and CUHK avenue datasets, as detailed in 
Table 4.2.   

  
Table 2 FPS rate of Datasets 

Dataset  FPS  

UCSD Ped1 and Ped 2  10  

Avenue  15  

  

4.2.2 Image Regularization  

To ensure uniformity and compatibility across datasets with varying frame dimensions, 
extracted frames were resized to a consistent resolution of 144x144 pixels. This regularization 
process not only standardizes the input dimensions but also aligns with the requirements of the 
model architecture, which operates optimally with uniform-sized inputs.  

  

4.2.3 Data Augmentation  

In pursuit of refining model performance, data augmentation techniques were employed, 
including the introduction of noise into the training data. This augmentation strategy serves a 
dual purpose: enhancing dataset variability to better represent real-world scenarios and 
mitigating overfitting by exposing the model to a wider range of situations. By integrating noise 
augmentation, the architecture’s, demonstrates improved efficacy in identifying anomalies 
within surveillance videos, thereby advancing the anomaly detection.  
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4.2.3 Tensor Storage  

Following image regularization, frames were transformed into tensors, a data storage format 
optimized for GPU computation. Leveraging the parallel processing capabilities of GPUs, 
tensors facilitate expedited model training and inference while minimizing memory overhead. 
This streamlined data format empowers researchers to tackle complex anomaly detection tasks 
with enhanced computational efficiency.  

  

 

 

Figure 4.4 Pipeline of the Proposed Architecture 

  

 

4.3 Model Parameters  
The model is trained to minimize the reconstruction error of input volumes. We utilize the Adam 
optimizer, allowing it to dynamically adjust the learning rate based on the model's weight update 
history. Training is performed using mini batches of 64, with each training volume undergoing a 
maximum of 50 epochs. Alternatively, training halts if the reconstruction loss of validation data 
fails to decrease for 10 consecutive epochs. The hyperbolic tangent function is chosen as the 
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activation function for both the spatial encoder and decoder. We refrain from using the RELU 
activation due to its unbounded activated values, which could disrupt the symmetry between the 
encoding and decoding functions.  

  

4.4 Hardware and Software Specifications  
The machine used for experimentation was equipped with 16GB of RAM and operated on  
Windows 12 with an Intel Evo processor. Due to the large number of frames and the limitations of 
the machine's CPU, which was unable to handle the processing load and would crash, Google 
Colab was utilized to take advantage of the T4 GPU. The entire codebase was written and tested 
using the TensorFlow framework. The datasets were organized into two folders: the training 
folder, containing only normal images, and the testing folder, containing the test videos. The 
complete code was developed and tested using the TensorFlow framework. The datasets were 
extracted and organized into two folders: the training folder, comprising solely of normal 
images, and the testing folder, housing the test videos. Following training, the models were 
saved and exported in the .h5 format. Chapter 5 will delve into the analysis of results, 
accompanied by an exploration of the chosen hyperparameters.  

4.5 Hyperparameter Tuning 
Hyperparameter tuning is one important aspect of developing an effective machine learning 
model, as it involves selecting the optimal set of hyperparameters that govern the learning 
process and model architecture. In this study, hyperparameter tuning was performed 
systematically to enhance the performance of the ConvLSTM network and the Spatial AE used 
for video anomaly detection. The primary hyperparameters considered for tuning included the 
number of ConvLSTM layers, the number of filters in each layer, the filter size, the stride size, 
the type of activation function, the learning rate, the batch size, and the dropout rate. An 
extensive grid search approach was employed to explore the hyperparameter space, testing 
various combinations to identify the configuration that yields the best performance on the 
validation set. 

The tuning process involved: 

1. Layer Configuration: Experimenting with different numbers of ConvLSTM layers and AE 
layers to determine the optimal depth for capturing spatial and temporal features. [34] highlight 
that deeper networks can capture more complex patterns but also risk overfitting. 

2. Filter Parameters: Adjusting the number of filters and filter sizes in ConvLSTM layers to 
balance model complexity and computational efficiency. Filters determine the level of detail 
the model can capture; more filters can capture finer details but increase computational load, 
as discussed by [35]. 

3. Activation Functions: Evaluating the performance of different activation functions, with a 
particular focus on the tanh activation function for ConvLSTM layers. Activation functions 
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like tanh help in controlling the flow of information and maintaining the stability of gradients 
during training, as noted by [4]. 

4. Learning Rate: Fine-tuning the learning rate to ensure stable and efficient convergence of 
the model. The learning rate impacts how quickly the model learns; too high can lead to 
instability, too low can result in slow convergence, as illustrated by [36]. 

5. Batch Size: Testing various batch sizes to optimize training time and model accuracy. Batch 
size affects the model's ability to generalize; larger batches provide more stable updates, but 
smaller batches can offer better generalization, as explained by [37]. 

6. Dropout Rate: Introducing dropout layers and adjusting dropout rates to prevent overfitting 
and improve generalization. Dropout regularizes the model by preventing co-adaptation of 
neurons. 

The hyperparameter tuning was guided by performance metrics such as accuracy, precision, 
recall, and F1-score on the validation set. The final set of hyperparameters was selected based 
on achieving the best trade-off between model complexity and performance. 

 

4.6 Model Optimization 
Model optimization focuses on refining the trained model to achieve optimal performance and 
efficiency in detecting anomalies in video data. In this study, several optimization techniques 
were employed to enhance the ConvLSTM and Spatial AE models' performance. 

1. Regularization Techniques: Regularization methods, such as L2 regularization and 
dropout, were applied to prevent overfitting. Dropout layers were incorporated at various points 
in the network to randomly deactivate neurons during training, encouraging the model to 
develop more robust and generalized features. 

2. Learning Rate Schedulers: Adaptive learning rate schedulers, such as 
ReduceLROnPlateau, were utilized to dynamically adjust the learning rate based on the model's 
performance during training. This approach helped in achieving faster convergence and 
avoiding local minima, as shown by [36]. 

3. Early Stopping: Implementing early stopping criteria based on validation loss allowed the 
training process to halt when the model's performance ceased to improve, thus preventing 
overfitting and saving computational resources. 

4. Gradient Clipping: To address the issue of exploding gradients often encountered in deep 
recurrent networks, gradient clipping was employed. By capping the gradients during 
backpropagation, the model maintained stable and efficient learning. 

5.Batch Normalization: Batch normalization layers were added to the model to normalize the 
input features of each layer, which helped in accelerating the training process and improving 



 
Chapter 4. Experimental Walkthrough Anomaly Detection in Video Surveillance 
 
  

37 
 

overall model stability. Batch normalization reduces internal covariate shift and stabilizes 
learning, as discussed by [38]. 

6. Data Augmentation: Data augmentation techniques, such as random cropping, flipping, and 
rotation, were applied to the training data to artificially increase the dataset size and diversity, 
thus improving the model's ability to generalize to unseen data. 

7. Optimization Algorithms: Advanced optimization algorithms, including Adam and 
RMSprop, were utilized to optimize the model's weights. These algorithms adaptively adjusted 
the learning rate for each parameter, ensuring efficient convergence, as illustrated by [36]. 

 

Through these optimization techniques, the ConvLSTM and Spatial AE models were fine-
tuned to achieve superior performance in detecting anomalies in video data. The combination 
of hyperparameter tuning and model optimization resulted in a robust and efficient model 
capable of capturing both spatial and temporal features essential for accurate anomaly 
detection.
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Chapter 5 

Experimental Results and Discussion 
 

This section discusses the results of the model and tests against other modern video anomaly 
detection models using a quantitative approach. The chosen evaluation metrics are explained, 
and a detailed overview of the experimental setup is provided, including the constants and 
learning parameters used to obtain the results. 

 

5.1 Performance Evaluation Metrics 
The anomaly detection performance of the model was assessed using a frame-level criterion. 
The evaluation metrics employed, namely the AUROC score and the EER, offer 
comprehensive insights into the model's classification capabilities, regardless of specific 
threshold settings. The analysis began with the visualization of the ROC curve, which entails 
examining the TPR and FPR at different threshold levels. Higher AUC and lower EER are 
better. 

 

𝑇𝑃𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝐹𝑃𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

5.1.1 AUROC 

The AUROC score serves as a valuable measure for assessing a classifier's ability to distinguish 
between different classes. Visualized as the area under the ROC curve, this metric offers 
insights into the classifier's performance. A higher AUROC score, approaching 1.0, signifies a 
strong classifier that effectively separates classes. Conversely, a score close to 0.5 indicates 
that the classifier performs no better than random guessing, while a score nearing 0.0 suggests 
that the classifier predicts results opposite to the actual outcome. These distinctions are vividly 
illustrated in ROC plots, offering a clear understanding of the classifier's predictive capabilities. 
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5.1.2 EER 

This measure offers a comprehensive overview of the model's classification prowess. It focuses 
on the ratio of misclassified frames within the model. Specifically, in terms of frame-level 
evaluation, this corresponds to the point where TPR = I- FPR. The determination of this score 
involves interpolation techniques. Typically, a lower Equal Error Rate (EER) is favoured as it 
indicates greater accuracy. 

 

5.2 Experimental Configuration 
Employing a spatiotemporal autoencoder architecture for model training, we utilized the Adam 
optimizer with hyperparameters including a learning rate of  1x10ିସ, a decay of 1x10ିହ, and 
an epsilon of 1x10ି଺ to optimize the training process. To assess the model's performance on 
test data, a sliding window technique with a sequence length of 10 was applied. Subsequently, 
the reconstruction of these sequences was predicted using the trained model, and the 
reconstruction cost of each sequence was computed. Regularity scores were then derived based 
on the deviation of each sequence's reconstruction cost from the norm, facilitating the 
identification of anomalies within the test data. Figure 5.1 gives an overview of how it all 
works.  

 

Figure 5.1 Sliding Window Technique 
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5.3 Regularity Score 
At the testing phase, each testing video consists of 200 frames in the case of ped1 and 150 in 
ped 2. Unlike ped1, in the testing phase for, videos from the dataset undergo processing to 
extract consecutive 10-frame sequences using the sliding window technique. Each video is 
assessed individually. If a video comprises fewer than 150 frames, the frames are padded by 
repeating the last frame until there are 150 frames. Conversely, if a video contains more than 
150 frames, the frames are truncated to the first 150 frames. Notably, some videos may consist 
of 150 frames, while others may have 180 frames. The sliding window technique is employed 
the extract all consecutive 10-frame sequences. Specifically, for each time step 

 𝒕 ranging from 0 to 190, we calculate the regularity score 𝑺𝒓(𝒕) for the sequence starting at 
frame 𝒕 and ending at frame 𝒕 + 9. The regularity score is calculated as follows. 

1. Pixel-wise Reconstruction Error 
The reconstruction error for a pixel’s intensity value I at the location (𝑥, 𝑦) in frame 𝑡 
of the video is computed using the L2 norm: 
 

𝐴 = ฮ𝐼(𝑥, 𝑦, 𝑡) − 𝐹௪൫𝐼(𝑥, 𝑦, 𝑡)൯ฮ
ଶ
 

 
Here 𝐹௪  represents the learned model by the LSTM convolutional autoencoder.  
 

2. Frame-wise Reconstruction Error: 
The reconstruction error for frame t is calculated by summing up all the pixel-wise 
errors: 

𝑒(𝑡) = ෍ 𝑒(𝑥, 𝑦, 𝑡)

௫,௬

 

 

3. Sequence Reconstruction Cost: 
The reconstruction cost for a 10-frame sequence starting at t is obtained by summing 
the frame-wise errors for the sequence: 
 

𝑠𝑒𝑞_𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡(𝑡) = ෍ 𝑒(𝑡′)

௧ାଵ଴

௧ᇲୀ௧
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4. Normalization of Reconstruction Costs: 

To normalize the reconstruction costs, we compute the normalized abnormality score 
𝑆௔(𝑡) :  
 

𝐴 =
𝑠𝑒𝑞_𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡(𝑡)   −   min (𝑠𝑒𝑞_𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡) 

max (𝑠𝑒𝑞_𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡)
 

 
5. Regularity Score: 

The regularity score (t) is derived by subtracting the normalized abnormality score from 
1: 

𝑆௥(𝑡) = 1 −  𝑆௔(𝑡) 
 
 
After computing the regularity score  𝑺𝒓(𝒕) for each t in the range [0, 190], we visualize 
𝑺𝒓(𝒕) to identify and analyse anomalies. A higher regularity score indicates a  
sequence that closely follows normal patterns, while a lower score highlights potential 
anomalies. This approach enables effective real-time anomaly detection by leveraging 
the spatiotemporal autoencoder’s ability to reconstruct sequences and identify 
deviations from the norm. 
 
 
 

 

Figure 5.2 Anomaly Detection in UCSD Ped1 (cart) by model 
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Figure 5.3 Anomaly Detection in UCSD Ped2 (bicycle) by model 

 

 

5.4 Visualisation 
The figures below show the plot of the anomaly score (S(t)) across some testing videos in the 
ped1 and ped2 dataset. Figure 5.4 has a person on a bike at the beginning of the video and 
hence a drop in the regularity score, it then gets to normal and drops again as in when another 
person enters the scene on a bicycle as well. In Figure 5.5 a skater is seen during the early part 
of the video. Towards the end, a person is seen walking on the grass hence the drop in regularity 
score. Figure 5.6 is a graph of a video from the UCSD ped2 dataset. A person is seen riding a 
bicycle. Even though he enters the scene around frame 40, There is a drop in regularity score 
at the very beginning, till the anomaly is evidently seen between frame 60 and 80. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 5.4 Frame level anomaly UCSD ped1 (bicycle) 
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Figure 5.5 Frame level anomaly UCSD ped1 (skateboard) and (walking on the grass) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Frame level anomaly UCSD ped 2 (bicycle) 
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5.5 Quantitative Analysis 
The comparison study, detailed below, demonstrates that our model performs better compared 
to other models, highlighting its efficiency and capability in real-time anomaly detection tasks. 
Notably, our model achieves a good performance in ped1 dataset and does considerably well 
against other methods. Table 5.1: and 5.2 Comparison of the AUROC score for both ped 1 and 
ped2 dataset.  

 

 

Table 3 Comparison of the AUROC score for ped1 and other methods. 

Method AUROC (%) EER 

 Ped1 

(Adam et al.) [16] 77.1 38.0 

HOFME (Wang et al.) [44] 72.7 33.1 

(Mehran et al.) [45]   96.0 - 

(Chong et al.) [9]  89.9 12.5 

ConvAE (Hasan et al.) [11] 81. 0 27.9 

Ours (proposed model) 84.5 19.5 
 

 

 

Table 4 Comparison of the AUROC score for ped2 and other methods. 

Method AUROC (%) EER  

 Ped2  

ConvAE (Hasan et al.) [11] 90.0 21.7  

HOFME (Wang et al.) [44] 87.5 20.0  

(Chong et al.) [9] 87.4 12.0  

(Adam et al.) [16] - 42.0  

(Nawarante et al.) [46] 91. 1 8.9  

Ours (proposed model) 74.9 27.2  
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Table 5 Comparison of the AUROC score for CUHK Avenue and other methods. 

Method AUROC (%) EER  

 CUHK  

ConvAE (Hasan et al.) [11] 70.2 25.1  

(Chong et al.) [9] 80.3 20.7  

(Liu et al.) [20] 85.1 -  

Ours (proposed model) 72.4 29.2  
 

 

5.6 Analysis of Challenges Faced 
In the development and implementation of the spatiotemporal autoencoder for anomaly 
detection, several challenges were encountered. These challenges spanned across data 
preprocessing, model architecture design, training, and evaluation. Here is a detailed analysis 
of these challenges: 

1. Data Preprocessing: 
Ensuring high-quality and consistent data was a significant challenge. Variability in 
video frames, such as differences in lighting, resolution, and background noise, 
impacted the model's performance. Standardizing the input data through normalization 
and resizing was essential but challenging due to the diverse nature of the datasets. 
 

2. Hyperparameter Tuning:  
Selecting optimal hyperparameters, such as learning rate, decay, epsilon, and sequence 
length, was a time-consuming process. Hyperparameter tuning required extensive 
experimentation and validation to ensure the model’s robustness and accuracy. 
 

3. Computational Resources:  
Training the model on large video datasets required substantial computational 
resources. Efficiently utilizing these resources while maintaining high training speed 
and accuracy was a persistent challenge. Specifically, the system's 12.7 GB of RAM 
and the T4 GPU with 15.0 GB of memory on Google Colab often reached full capacity 
due to the high volume of frames and the intensive processing demands. To mitigate 
session crashes, techniques such as reducing the resolution of input frames and using 
smaller batch sizes were employed. Despite these measures, the model's performance 
could have been significantly enhanced with sufficient resources, allowing for larger 
batch sizes, higher resolution frames, and more complex model architectures. 
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Specifically, the LSTM convolutional autoencoder, due to its sophisticated architecture, 
required substantial computational resources for both training and inference. 

 

To address the issues and improve the system's stability and performance in my specific case, 
several strategies were implemented. For data management, downsampling the resolution of 
input frames significantly reduced memory usage without drastically impacting performance, 
and frame skipping was employed to lower the computational load by processing a subset of 
frames instead of every frame. Model optimization involved model pruning to remove 
redundant neurons and connections, reducing complexity and resource requirements, and 
parameter tuning to optimize hyperparameters such as batch size, learning rate, and sequence 
length, balancing performance and resource utilization. Efficient resource usage was enhanced 
by implementing incremental learning techniques to prevent memory overload and using data 
generators to load data in smaller batches, effectively managing memory usage. Leveraging 
the T4 GPU on Google Colab significantly sped up processing and reduced the strain on CPU 
and RAM. However, with sufficient resources, the model could have been further improved by 
allowing for larger batch sizes, higher resolution frames, and more complex model 
architectures, ultimately enhancing its performance.
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Chapter 6 

Conclusion 
 

6.1 Possible Enhancements to the Proposed Methodology 
The proposed spatiotemporal autoencoder methodology has demonstrated considerable 
efficacy in anomaly detection within video sequences. However, there are several potential 
enhancements that could further improve the performance and robustness of the model: 

Incorporation of Attention Mechanisms:  Attention mechanisms have proven effective in 
improving the performance of various neural network architectures by allowing the model to 
focus on relevant parts of the input data [47]. 

Multi-Scale Feature Extraction: Incorporating multi-scale feature extraction techniques can 
allow the model to capture anomalies occurring at different scales, enhancing the sensitivity of 
the model to various types of anomalies [39]. 

Adversarial Training: Utilizing generative adversarial networks (GANs) for training the 
autoencoder can help in generating more realistic reconstructions, thus improving the anomaly 
detection performance [21]. 

Hybrid Models: Combining the strengths of different architectures, such as CNNs for spatial 
feature extraction and RNNs for temporal feature learning, can potentially improve the model’s 
performance [40]. 

Enhanced Regularization Techniques: Implementing advanced regularization techniques 
such as dropout, batch normalization, and L2 regularization can help in preventing overfitting, 
thereby improving the generalization capabilities of the model. 

Data Augmentation: Employing advanced data augmentation techniques can help in 
generating a more diverse training dataset, which can improve the model’s robustness and 
performance [41]. 

 

6.2 Potential Research Directions in Human Anomaly Detection 
Human anomaly detection is a rapidly evolving field with numerous research opportunities. 
Some potential research directions include: 

Real-Time Anomaly Detection: Developing models that can detect anomalies in real-time 
with minimal latency is crucial for applications such as surveillance and safety monitoring. 
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Cross-Dataset Generalization: Ensuring that models trained on one dataset generalize well 
to other datasets is a significant challenge. Research could explore transfer learning techniques 
and domain adaptation strategies to improve cross-dataset generalization. 

Integration with IoT Devices: Integrating anomaly detection models with IoT devices could 
enable widespread deployment of real-time monitoring systems. This integration poses 
challenges related to computational constraints and energy efficiency, which need to be 
addressed [42]. 

Explainable AI: Developing models that not only detect anomalies but also provide 
explanations for their decisions is essential for gaining user trust and improving the 
interpretability of the models [43]. 

Robustness to Adversarial Attacks: Ensuring that anomaly detection models are robust to 
adversarial attacks is critical for their deployment in security-sensitive applications [21]. 

 

6.3 Emerging Technologies and Trends 
Several emerging technologies and trends are poised to influence the field of human anomaly 
detection: 

Edge Computing: Incorporating edge computing in anomaly detection systems can enable 
real-time analysis and decision-making [42]. 

5G Networks: The advent of 5G technology promises higher data transfer speeds and lower 
latency, facilitating the deployment of real-time anomaly detection systems. 

Advanced Sensor Technologies: Advanced sensor technologies can provide richer data for 
anomaly detection models, potentially improving their accuracy and reliability. 

Quantum Computing: Research in quantum machine learning could lead to the development 
of more powerful anomaly detection models. 

Blockchain Technology: Blockchain technology can enhance the security and transparency of 
anomaly detection systems. 

 

6.4 Summary of Key Findings 
The key findings of this study are summarized as follows: 

Effectiveness of Spatiotemporal Autoencoder: The spatiotemporal autoencoder 
demonstrated significant efficacy in detecting anomalies within video sequences. 

Impact of Regularization and Optimization: Implementing advanced regularization 
techniques and optimizing hyperparameters were important in improving the model’s 
performance. 
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Challenges in Computational Resources: The study highlighted the importance of sufficient 
computational resources for training complex models on large datasets. 

Potential for Real-Time Applications: The model shows potential for real-time anomaly 
detection applications. 

 

6.5 Contributions of the Study 
This study makes several contributions to the field of human anomaly detection: 

1. Novel Methodology: The study presents a novel spatiotemporal autoencoder methodology 
for detecting anomalies in video sequences. 

2. Comprehensive Evaluation: The methodology was evaluated on multiple benchmark 
datasets, demonstrating its efficacy and robustness across different scenarios and types of 
anomalies. 

3. Practical Insights: The study provides practical insights into the challenges and solutions 
related to computational resource constraints. 

 

6.6 Implications for Future Research and Practical Applications 
The findings and contributions of this study have several implications for future research and 
practical applications: 

1. Enhanced Model Development: Future research can build upon the proposed methodology 
by incorporating advanced techniques and optimizing for deployment in real-world scenarios. 

2. Scalability and Deployment: Optimizing the model for deployment in resource-constrained 
environments such as IoT devices and edge computing platforms. 

3. Cross-Domain Applications: Adapting the proposed methodology to various domains 
beyond human anomaly detection. 

4. Interdisciplinary Collaboration:  Advancing the field of anomaly detection will benefit 
from interdisciplinary collaboration. 

5. Ethical Considerations: Addressing ethical considerations such as privacy, fairness, and 
transparency in anomaly detection systems. 

 

In conclusion, the proposed spatiotemporal autoencoder methodology represents a significant 
advancement in the field of human anomaly detection within video sequences. By combining 
deep learning techniques with innovative model architectures, this research has demonstrated 
promising results in detecting anomalies and offers valuable insights for future research and 
practical applications. The study's contributions, including the novel methodology, 
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comprehensive evaluation, and practical insights, underscore its significance in advancing 
anomaly detection technology. Moving forward, continued exploration of enhancements, 
integration with emerging technologies, and interdisciplinary collaboration will further propel 
the field towards more efficient, accurate, and scalable anomaly detection solutions.
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Abstract 

To complete my Master's degree in Intelligent and Decision-Making Models, a deep learning 
method was developed for video anomaly detection using a spatial autoencoder combined with 
Convolutional Long Short-Term Memory (ConvLSTM) networks. In a unified framework, this 
approach captures both spatial and temporal features for detecting anomalies based on 
significant reconstruction loss. ConvLSTM networks learn the temporal dependencies in video 
data, while a clip-based video processing method enhances training efficiency. This 
combination detects unusual patterns and dependencies in video sequences, making it effective 
for identifying anomalies across diverse video sources. 

Keywords: Anomaly Detection, Deep Learning, Spatial Autoencoder, ConvLSTM, Temporal 
Dependencies, Video Surveillance, Clip-Based Processing, Spatiotemporal Features 

 

Résumé 

Pour compléter mon Master en Modèles Intelligents et Décision, une méthode d'apprentissage 
profond a été développée pour la détection d'anomalies vidéo en utilisant un autoencodeur 
spatial combiné avec des réseaux de mémoire à long court terme convolutifs (ConvLSTM). 
Dans un cadre unifié, cette approche capture à la fois les caractéristiques spatiales et 
temporelles pour détecter les anomalies basées sur une perte de reconstruction significative. 
Les réseaux ConvLSTM apprennent les dépendances temporelles dans les données vidéo, 
tandis qu'une méthode de traitement vidéo par clips améliore l'efficacité de l'entraînement. 
Cette combinaison permet de détecter des schémas et des dépendances inhabituels dans les 
séquences vidéo, la rendant efficace pour identifier les anomalies à travers diverses sources 
vidéo. 

Mots-clés : Détection d'anomalies, Apprentissage profond, Autoencodeur spatial, ConvLSTM, 
Dépendances temporelles, Surveillance vidéo, Traitement par clips, Caractéristiques 
spatiotemporelles 

 

 خلاصة

الفيديو شذوذ عن للكشف عميقة تعلم طريقة تطوير تم القرار، صنع ونماذج الذكية النماذج في الماجستير درجة لإكمال  
المدى طويلة التلافيفية الذاكرة شبكات مع جنب إلى جنباً "autoencodeur spatial SAE" باستخدام  (ConvLSTM). 

إعادة في كبيرة خسارة على بناءً  الشاذة الحالات عن للكشف والزمانية المكانية الميزات النهج هذا يلتقط موحد، إطار في  
شبكات تتعلم. الإعمار  ConvLSTM ىعل القائمة الفيديو معالجة طريقة تعمل بينما الفيديو، بيانات في الزمنية التبعيات  

فعالاً  يجعله مما الفيديو، تسلسلات في العادية غير والتبعيات الأنماط المزيج هذا يكتشف. التدريب كفاءة تحسين على المقاطع  
المتنوعة الفيديو مصادر عبر الشاذة الحالات تحديد في . 

الدالة الكلمات : 

المكاني التلقائي التشفير العميق، التعلم الشذوذ، اكتشاف ، ConvLSTM، المعالجة بالفيديو، المراقبة الزمنية، بعياتالت  
المكانية الزمانية الميزات المقاطع، على القائمة  


