auldly y8 gii dRola «3}%

UNIVERSITY OF TLEMCEN ¥

People's Democratic Republic of Algeria
Abou Bekr Belkaid University - Tlemcen

Faculty of Sciences

Department of Computer Science

Final study thesis for obtaining a Master's degree in Computer
Science

Option: Software Engineering

Subject

Viral Campaign Blockchain-Powered Ads:
Design & Implementation

Prepared by:
Baba Bendermel Houssam Eddine

Presented on June 25, 2024 before the jury composed of

Prof. Azeddine CHIKH President (University of Tlemcen)
Dr. Amine BELHOCINE Examiner (University of Tlemcen)
Dr. Salim ZIANI CHERIF Supervisor (University of Tlemcen)
Mrs. Asma Ismail Guest (Punchword)

Academic Year: 2023 - 2024

R DU T
“ o Grdnn G () ks b V) gladl ol iy

[41-38:21]
First of all, I am thankful to God Almighty for granting me the health, strength, and patience to

complete my graduation project. | am profoundly grateful to Almighty Allah for guiding me
through this journey.

Acknowledgments

This work was made possible thanks to Punchword and the opportunity they provided me to be
part of the team. | am grateful for the chance, experience, and their trust.

I would like to express my deep gratitude and warmest thanks to my supervisor Mr. Ziani-Cherif

Salim, for his guidance, and advice, and for the time he devoted to me during the development of
this work

Additionally, 1 would like to express my sincere gratitude to our CTO, Asma Smail, for all the
support, guidance, and knowledge that | have gained from her mentorship.

| am honored by the presence of Prof. Azeddine CHIKH Professor, who gave me the great honor
of accepting the presidency of my dissertation jury

| also thank Dr. Amine BELHOCINE for agreeing to examine this work and being part of the Jury.

Dedication

Glory to my dear parents for their patience and support during these years of study, and to my
dear brothers and my sister for their encouragement.

Thanks to my friends who stood beside me, and to those with whom | spent countless hours.
Finally, to anyone who has contributed to this memoir directly or indirectly, to all, | say

THANK YOU...

Table of Contents

QL= L] (o) i T U Tl O S S T PTR v
List 0f Tables..couiiiuiiiieiiiiiiiiiieiiieiiieeiereiornresstosasossstssssossscsssssssssssssssssosssssnnss VI
. General INTrOAUCTIONooiiee ettt e st e neeereenreenee e 1
I (0 =Tod A @0 1 (= AU PRUUSPPSRTRSRS 2
1.2, TheSIS OrganiZatiON..........c.civeiiiiieiieeie ettt aa e te e sraesteenaesneenne s 2

L O = ool 1ol o Fo T[T = -] o SRR 4
I O o [o4 £ o TSR UPPRRTRPTS 5
[1.2. DETINITION ..ottt bbbttt et e b bbbt b e neene e 5
[1.3. Brief history of blockchain Development ..o 5
I1.4. Difference between blockchain and traditional databaseccooeveveviieicieniceeee, 6
[1.5. HOW BIOCKCN@IN WOTKSocuiiiiiiiiiiieiec et 7
11.6. Components of BIOCKCNAINcouoiviiiiiiiiiicee s 11

L G0 N (oo TS PSSO SO TSP 11
G T =] (oo <SPS 12
TR T I =1 572 o £ o] OSSR 12
F1.6.4. WaAHIEES. ... bbbttt bbbt 13
[1.6.4. 1. PUDIIC KBYS.....oeieiitiieieieeee bbbt 13
[1.6.4.2. PIIVALE KBYS ...ttt ittt ettt sttt e be e nae e te e nne e 13
11.6.4.3. Hardware Walletccoiiiiiiee s 14
11.6.4.4. SOTtWare Wallet...........oovoieie e 14

[1.6.5. SMAIT CONIIACESeiiiieiieiie e enree s 15
[1.8.6. TOKEN ...ttt bbbt bbbt b et e bbb bt ens 16
G0t O AL I SRRSO 16
11.6.6.2. ERC-20 TOKENScouiiiiiirieiesieieit sttt sttt nne e 16
[1.6.6.3. ERC-721 TOKENSccueiiieeieeiieiieeiiesiee st e st ste et este e sreesteeeeaneessaensesneesseenee e 17

L7, CONCIUSION. ...ttt b ettt b et e e se e s bt et e e ntesreenbeenee e 18
L1 O o o] T=Tod a @0 g Tor=T o £ o] o SR 19
1 O 1 o T [T) o OSSR 20

[11.2. USE-CASE QIAGIAMeevieiiiiieeiteeie et e ste e et e te et e s s te e re e s e s beesteeseesseesbeaseesaeesaeeneesreesseenee e 20

[11.3. SEQUENCE QIAQIAIMS. ...c.viieieiieeite e eiee et te et e st e ae e e sreesteeseesseesaeeneesneenreenee e 21
[11.3.1. Create a Challengecc.ooiiiiie e e 21
T11.3.2. Create @ tEAM......couiiiiieiee e r et e e e neesnneenneens 23
[11.3.3. Accept a team INVITATIONooviiiiiiiiiic e 24
[11.3.4. Participate in @ challenge ... 26

L O - TSiS 3 L= To | - o RSP S 28

1 IR T O o) o 11 o o OSSPSR 28

IV. Project IMplementation............cccooiiiiiiiiii et 29

V. L, INEFOTUCTION. 1.t bbbttt bbbttt 29

IV.2. Tools and teChNOIOGIES USEA...........ccueiiiiiiiiiiiieieeee s 30
IV.2.1. ANAIOIA STUIO.oviiiiiiiiiieiee ettt 30
Y = o 11 Gl [[P 30
IV.2.3. GIENUD .ttt bbb 30
[V 2.4, FITEBASEcveivieie ettt bbb bbbttt b e bbbttt ne e 31
Y T] 1 1SS SPR 31
IV.2.6. JEtPACK COMPOSEcviiiiie ittt et e e saeesnaeenree s 31
Y 1o 1 To [TSP 31

V.3, SYSEEM ATCNITECIUIE. .. .ottt sre e re e e 31
AV 00 AN g Vo [{0 o I AN o] o] [oF: 14 o] SR 32

[V.3.1.1. Clean ArCIITECTUIEcc.eeieiie et 32

° DALA LAYETeeieeee ettt 32

° DOMAIN LAYET.....c.eiiieiieeie ettt et sta et e e sreenaeaneesnaenne s 33

° Presentation/Ul LAYETcooiiiiiiiiiisieeeiee e 33
1V.3.1.2. Multi-module architeCtureccoueiieiiie e 34
IV.3.2. SMAIT CONTACES ..ottt 34
IV.3.3. Connecting Android App to Blockchain ..., 35
[V 3.4, FITEBASEcveeeieie ettt bbbttt b ettt ettt e s be b et neene e 35

[V .4, USEI EXPEIIEINCE ...ttt ettt b e bbbt 36
IV.4.1. Create Chall@NQe.......covo it 36
V4.1, CrEate TOAIM ...ttt ettt b e s s e e n e e s e e e beeanneenreens 39

IV.4.1. Accept team INVITALION.........cccoviiieii e

IV.4.1. Participate in @ Challengecovooviie e

General Conclusion

References...............

V.

Table of Figures

General INTFOQUCTIONcoiiiiiiieiee ettt sttt re e e 1
BIOCKCNAIN BASICS......eeivieieeieiiiee ettt e et e s e sreenae e e sneenaeeneeereenreenee e 4
FIGURE 11.1 - Comparison between a blockchain and a traditional database [6] 7
FIGURE 11.2 - Comparison between a POS and POWcccccoveiviiciecve e 9
FIGURE 11.3 - Add a new block to the blockchainccccoovveviiiiieniiiicnccee 10
FIGURE 11.4 - How do blockchain transactions WOrk?............ccccvevvveneiinncnnnne. 11
FIGURE 11.5 - Blocks hashes in the Blockchain ..o 12
FIGURE I1.6 - The difference between a normal transaction and a transaction in the
DIOCKCRNEAIN ... e 13
FIGURE 11.7 - Smart Wallet tyPesc.covviiieiieiisic e 15
PrOJECt CONCEPTION.....cuiiiiiiieiieieeete ettt nb bbbt 19
FIGURE 1.1 - USe-Case dIagramccccveeiieeiieiiieeiieesieesieesieesive et sineesaessnneennees 21
FIGURE I111.2 - Sequence diagram - Create a challengeccccccooveveieivccvcnene. 23
FIGURE 111.3 - Sequence diagram - Create a teamcocvvvveieienenenesese e 24
FIGURE 111.4 - Sequence diagram - Accept a team invitation.............c.ccccevevvvenenne. 25
FIGURE 111.5 - Sequence diagram - Participate in a challenge.............ccccocviinenns 27
FIGURE 1.6 - Class diagramcccocueieiienieiinie e 28
Project IMplementation............cccooiiiiiiieie e 29
FIGURE 1V.1 - Used TeChNOIOGIES.cciiiiieiiieieseseee e 30
FIGURE IV.3 - Web3j connection between the blockchain and the Java app......... 35
FIGURE 1V .4 - Cloud Tasks with Firebase Cloud Function\.............c.ccccvvvninnnnns 36
FIGURE V.5 - Create challenge, Profile SCreens..........ccccceoevivveeieeneece e 37
FIGURE 1V.6 - Create Challenge, data input SCreenscccccvevvevveveiieieesie e 37
FIGURE V.7 - POSE Creation SCIEEN........ccviieieieiesiesie sttt 38
FIGURE 1V.8 - Create a Challenge, transaction, and feed screens............cccccccvnee. 38
FIGURE 1V.9 — FEEA SCIEENviveie et 39
FIGURE 1V.10 - Profiles team, profile SCreens.........c.cccevevveiesceinecese e 39
FIGURE IV.11 - Create a Challenge, team data input SCreens..........cccccvevveiveerinns 40

FIGURE 1V.12 - Create a challenge, transaction SCreens............cccevvevueeveseerueenenne 40

FIGURE V.13 - Accept team invitation, notification, and team presentation screens

... 41
FIGURE V.14 - Accept team invitation, transaction SCreens............cccoceevevveennenne. 41
FIGURE IV.15 - participate in a challenge, feed, and participation type selection
o (=TT KT TSRS U PP OPPPPPPTN 42
FIGURE IV.16 - Participate in a challenge, select a team screenc.cccoceevveeriene 42
FIGURE IV.17 - participate in a challenge, create an NFT screencccccveveenee. 43
FIGURE 1V.18 - participate in a challenge transaction...........cccccooevenieiinncennne. 43

List of Tables

TABLE 1.1 - Comparison between private and public keys

VI

|. General Introduction

CONTENT

I o (0 =Tt O] 11 (=) SRR
I BT T @ o1 4= L1 [

I.1. Project Context

This master's thesis explores an innovative application of blockchain technology within the context
of a social media platform called Punchword. Developed by the company Punchword, where 1
currently work as an Android developer, this platform merges the classic features of social media
with the unique capabilities of blockchain. Punchword is not just another social media platform; it
includes an NFT marketplace and leverages blockchain to enhance user engagement and digital
content ownership.

The focus of this thesis is on introducing and evaluating a novel feature within Punchword, termed
"Punchword Viral Campaigns.” This feature combines the creation of advertisements with Non-
Fungible Tokens (NFTs), leveraging blockchain to facilitate transparent and secure viral marketing
campaigns. Companies can launch a Viral Campaign by creating challenges on the Punchword
platform, prompting users to submit their ad designs as NFTs. These challenges foster a
competitive environment where users can earn rewards in the platform's native cryptocurrency,
Punchy. The "Punchword Viral Campaigns" feature acts like an Influencer's Marketplace, enabling
advertisers to set challenge rules through smart contracts, which automatically enforce reward
distribution based on predefined criteria. Influencers participate by creating and minting NFTs,
with winners selected based on engagement metrics such as likes, comments, and shares. This
integration ensures a transparent, secure, and engaging platform for both advertisers and
influencers, leveraging blockchain's capabilities to revolutionize digital marketing.

I.2. Thesis Organization

This thesis is organized into several chapters. The first chapter, Blockchain Basics, lays the
foundation by introducing blockchain, defining its key concepts, and tracing its historical
development. It also contrasts blockchain with traditional databases, explaining the distinct
advantages and functionalities of each. This chapter further delves into the mechanics of how
blockchain operates, covering essential components such as nodes, blocks, transactions, wallets
(including public and private keys), smart contracts, and tokens, with specific attention to ERC-20
and ERC-721 standards. This foundational knowledge sets the stage for the detailed exploration
of the project.

The second chapter focuses on the Project Conception and Design. It will elaborate on the
development and integration of the "Punchword Viral Campaigns" feature within the Punchword
platform. This chapter includes detailed diagrams and models illustrating the system architecture,
workflow, and interactions between various components.

In the third chapter, "Implementation of the Punchword System," we first present the various tools
and technologies chosen for realizing our system with the desired outcomes (Android, Solidity,
etc.). We then describe the overall architecture used to develop the app (MVVM), and also how to

connect the mobile app with the blockchain smart contract using the web3j library, and how that
works. Finally, we show screenshots that demonstrate the user experience of each part of the "Viral
campaigns.”.

1. Blockchain Basics

CONTENT

L L. INEFOTUCTION ...ttt b e bbb e et e e nbesbe e b s 5
2 = 1 T AT o SRRSO 5
[1.3. Brief history of blockchain Development ..o 5
I1.4. Difference between blockchain and traditional databaseccooeveveviieicieniceeeen, 6
[1.5. HOW BIOCKCNAIN WOTKS ...t 7
11.6. Components of BIOCKCHAINcoviiiiii e 11
LT N[0T 1 RSOOSR PRSP 11
F1.6.2. BIOCKS. ...ttt e sttt ettt re e e 12
TR T I =1 572 o £ o] 3 OSSPSR 12
F1.6.4. WaAHIEES. ... bbbttt bbb 13
[1.6.4. 1. PUDIIC KBYS.....ceeiiiieiiieeeee ettt bbb 13
[1.6.4.2. PrIVALE KEYSveiiiieieceie ettt ettt et st teete e teeaeene e re e e e 13
11.6.4.3. HArdware Walletcoooeiiiiieeciesie e 14
11.6.4.4. SOFtWare Wallet...........oooiiiie e 14
[1.6.5. SMAIT CONIIACESeeiiiieieeiie et nneene e 15
G I OSSR 16
LI 00 T AN ISP ST 16
[1.6.6.2. ERC-20 TOKENScoviitiieiisiesieieie sttt 16
[1.6.6.3. ERC-721 TOKENSecueiiieeieeiiesieeiesteeste e e siee e eee st e ste e e sneesta e neessaeneeeneenseenee e 17

A 4 Tod 111 o] o SRR 18

I1.1. Introduction

Blockchain technology has emerged as a revolutionary force in the world of digital transactions
and data management. Originally conceptualized as the underlying architecture for Bitcoin,
blockchain has since evolved far beyond its initial use-case.

This chapter aims to provide a comprehensive overview of blockchain technology, setting the stage
for a deeper exploration of its components, functionalities, and implications.

I1.2. Definition

Blockchain is a distributed network technology that securely records transactions across a network
of computers, making it difficult to alter, hack, or manipulate the system. It’s most commonly
associated with Bitcoin, a popular cryptocurrency that uses blockchain technology, for data
storage, validation, and security. It consists of a series of blocks, each containing transaction data,
a timestamp, and a cryptographic hash of the previous block, forming a chain of data. Once a
transaction is recorded on a block, it cannot be retroactively changed without altering all
subsequent blocks, ensuring the immutability of the data. [1] [2]

Key characteristics of blockchain include decentralization, transparency, and cryptographic
security. Participants in the network collectively maintain and validate the blockchain, eliminating
the need for a central authority. Transactions are added to the blockchain through a consensus
mechanism, where network participants agree on the validity of new blocks.[1] [2]

In summary, blockchain is a revolutionary technology that enables secure, transparent, and
decentralized recording and verification of digital transactions, offering a new level of trust and
efficiency in various sectors.

11.3. Brief history of blockchain Development

Blockchain technology has a rich history that spans several decades. The concept of blockchain
was first described in 1991 by research scientists Stuart Haber and W. Scott Stornetta, who aimed
to introduce a computationally practical method for timestamping digital documents. However,
the blockchain as we know it today was launched in January 2009 along with the associated
cryptocurrency, Bitcoin, by the anonymous person or group known as Satoshi Nakamoto. [3]

Before Nakamoto's work, there were decentralized databases and blockchain-like systems. For
instance, David Chaum, a doctoral candidate at the University of California at Berkeley, outlined
a blockchain database in 1982. Chaum's work was not specifically designed to support digital
currencies, but it provided the groundwork for future advancements. [3]

Nakamoto's innovation was the addition of the Bitcoin proof-of-work consensus mechanism for
validating data blocks, which was outlined in the Nakamoto research paper. This mechanism
allowed for the creation of a decentralized, peer-to-peer electronic cash system. [4]

The early years of blockchain were closely tied to the development of Bitcoin, with the two terms
often being used interchangeably. However, as the technology evolved, blockchain began to
separate from Bitcoin, and its potential uses expanded beyond digital currency. In 2014, Ethereum
was established, introducing the concept of smart contracts, which will be explained in detail later
[11.6.5], and further expanding the possibilities of blockchain technology. [3]

Today, blockchain is known for its security, immutability, traceability, and transparency, making
it a viable alternative to traditional methods of conducting business and individual transactions. Its
applications have grown, and more applications using blockchain technology are entering the
public domain. Examples include the Brave browser and Ethlance, a freelancing platform.

I1.4. Difference between blockchain and traditional database

A blockchain differs significantly from a traditional database in several key aspects. Blockchains
are decentralized, meaning no single authority controls the data; instead, network participants
collectively maintain and validate the blockchain. In contrast, traditional databases are centralized,
with a designated authority controlling access and modifications to the data. One of the features of
a blockchain is its immutability: once data is added to the chain, it cannot be altered or deleted.
Conversely, data in traditional databases can be modified or deleted by authorized parties, such as
the database administrator. Transparency is another distinguishing feature; blockchains are highly
transparent, with all transactions visible to network participants, whereas traditional databases
have lower transparency, with access and visibility controlled by the central authority. Data
integrity is inherently strong in blockchains due to their cryptographic underpinnings, ensuring
that data remains secure and unaltered once recorded. In traditional databases, while data integrity
can also be high, it relies heavily on access controls and management policies to maintain security.

[5]

However, blockchains tend to have slower transaction speeds due to the consensus mechanism
required to add new blocks, whereas traditional databases are faster as they don't require consensus
for every transaction. When it comes to cost, blockchains often incur higher costs, particularly due
to the significant energy consumption required for mining and maintaining the network. This
energy consumption is a notable problem, raising concerns about the environmental impact of
blockchain technology. Cryptography plays a crucial role in both systems, but it is fundamental to
blockchain, providing security and trust without a central authority. [6]

That comparison would help us better understand the upcoming points that we'll discuss later in
the thesis.

" ¢ 101Blockchains | BLOCKCHAIN VS. RELATIONAL DATABASE

WHAT IS BLOCKCHAIN? WHAT IS RELATIONAL QO
DATABASE? Q@

o
oY

Blockchain is a distributed and A relational database (RDB)is a
decentralized ledger system combination of tables,
that also offers data integrity, transparency, columns, and records. More so, RDBs have
fast performance, and so on. well-defined relations between each
table of information.

RELATIONAL DATABASE VS. BLOCKCHAIN

o

QIE@;%) BLOCKCHAIN RELATIONAL DATABASE

Authority % Decentralized Centralized

T,L
Architecture Client-server model (=

Performance (S Relatively slower Fast

Cost Costly Cheap %

SEEEREEEEES
Data Handling Create, Read, Update, Delete

N
Data Integrity Has data integrity Doesn’t have data integrity

Transparency N Transparent Non-transparent A
EEEEEEREEN
Cryptography v X @

CREATED BY 101BLOCKCHAINS.COM

FIGURE 11.1 - Comparison between a blockchain and a traditional database [6]

[1.5. How Blockchain Works

Blockchain is a decentralized, distributed digital ledger that records transactions across many
computers in a network. When a user or node initiates a new transaction, such as a cryptocurrency
transfer or execution of a smart contract, the transaction request is broadcasted to all nodes in the
peer-to-peer network. These nodes, often called miners or validators, perform checks to verify that
the transaction is valid according to the blockchain's predetermined rules and consensus protocol.
This validation process prevents invalid transactions from being added to the blockchain. [7]

Once validated, the transaction is grouped together with other valid transactions into a new block
of data. This block also contains a reference to the previous block in the chain, known as the
"previous block hash," creating an immutable link between them. To add this new block to the
existing blockchain, the nodes must reach consensus on its validity through a consensus
mechanism like Proof-of-Work (PoW) or Proof-of-Stake (PoS). [7]

In PoW, used by Bitcoin, miners/validators compete to solve a complex cryptographic puzzle, with
the winner getting to add a new block and earn rewards. In PoS, used by Ethereum
implementations, validators stake/lock/hold their coins. Unlike Proof-of-Work, which requires
solving complex puzzles, PoS relies on validators' stakes to decide who gets to add the next block.
The more coins a validator stakes, the higher their chances of being selected. [8]

This method (POS) is better, especially when it comes to energy efficiency, because not all nodes
will be working and only one will get the reward, but rather one will be selected and will get it
reward. This reward is also called gas fees, and they are calculated based on the computational
effort required and the user's willingness to pay. These fees help regulate network activity and
incentivize validators to maintain the blockchain. [8]

@ Blockgeeks

Proof of Work Vs. Proof of Stake

Fan

must compete to solve a difficult creator is chosen by an algorithm
puzzle using their computers based on the user’s stake.

processing power.

- AL

In order to add a malicious block, In order to add a malicious block,
you'd have to have a computer more you'd have to own 51% of all the
powerful than 51% of the network. cryptocurrency on the network.

L & &

ot

The first miner to solve the puzzle There is no reward for making

is given a reward for their work. a block, so the block creator
takes a transaction fee.

FIGURE I1.2 - Comparison between a POS and POW [8]

After consensus is reached, the new validated block is appended to the existing blockchain across
all nodes in an irreversible and immutable manner. The block's data cannot be altered retroactively
without redoing the work for all subsequent blocks and gaining consensus from the network again.
The updated blockchain, with the new block added, is then propagated and synchronized across

all nodes in the network, ensuring each node maintains a full copy of the blockchain, creating a
decentralized, distributed ledger. [7]

New block!

2

J,is 0-0-0-¢

»
9-90-0-¢ ~No-0-9

9 <

FIGURE I1.3 - Add a new block to the blockchain

The transparency and immutability of the blockchain are key security features. Any node or user
can independently verify the validity of transactions and the state of the blockchain by following
the chain of cryptographic hashes from the latest block all the way back to the first (Genesis) block.

A cryptographic hash serves as a unique identifier for each block in a blockchain. It's like an "ID"
or a "fingerprint" of the block's data. This hash is generated using a cryptographic hash function,
which takes the block’s data as input and produces a fixed-size string of characters as output. [10]

This combination of decentralization, cryptographic hashing, consensus mechanisms, and an

immutable ledger allows blockchain networks to operate in a trustless manner without a central
authority, while maintaining data integrity and transparency across the distributed system.

10

How do Blockchain transactions work?

.9 2. %

A block that This block is sent Nodes receive a
transaction represents the to every node in Proof of Work
is requested transaction is created the network reward in crypto

\E
@ <« i &« i — @
The The update is This block is Nodes validate
transaction is distributed across ~added to the the transaction
complete the network existing Blockchain

FIGURE I1.4 - How do blockchain transactions work? [9]

11.6. Components of Blockchain

In the evolving landscape of digital technology, blockchain operates through a complex interplay
of various components, each playing a crucial role in maintaining its integrity and functionality.
Understanding these components is essential to grasping how blockchain technology works and
the diverse applications it supports.

11.6.1. Nodes

Nodes are individual computers that participate in the blockchain network, each playing various
roles in maintaining and securing the system and performing functions various, and they can be
categorized into 4 main types: [11]
e Full nodes store the entire blockchain, verify all transactions and blocks, and ensure the
network's security and integrity.
e lightweight nodes store only a subset of the blockchain, typically just the block headers,
and rely on full nodes for transaction validation.
e Mining nodes participate in the creation of new blocks by solving complex cryptographic
puzzles (proof of work) or validating transactions (proof of stake).
e validator nodes, specific to proof-of-stake networks, validate transactions and propose new
blocks.

11

In summary, nodes validate transactions and blocks, maintain the blockchain, and participate in
consensus mechanisms to add new blocks.

11.6.2. Blocks

Blocks, on the other hand, are the building units of the blockchain, containing a set of verified
transactions and forming the immutable ledger (a blockchain).

Each block contains The data stored inside the block depending on the type of the blockchain. The
bitcoin’s blockchain for example stores the details about the transaction here such as the sender,
the receiver, and the amount of coins. A block also has a hash man can think of it like a fingerprint.
It identifies a block and all of its contents and it’s always unique just like a fingerprint. The third
element inside each block is the hash of the previous block. This effectively creates a chain of
blocks. And it's this technique that makes a blockchain so secure. [12]

.
pr—— PR
N N

6BK1 Hash: 3H4G

y ~_
Previoﬁ—sm 1Z8F Previous hash:{ 6BK1

Genesis block

Hash: 1Z8F

Previous hash: ({0000

FIGURE I1.5 - Blocks hashes in the Blockchain

11.6.3. Transactions

Transactions represent the fundamental interactions within a blockchain network, such as
transferring digital assets, recording data, or executing smart contracts.

Each transaction contains information like the sender's address, recipient's address, amount,
timestamp, and a digital signature for authentication. [13]

12

Person A Person B
Person A Person B

Classic Centralized

% Blockchain -’
Transaction

Decentralized
Transaction

VS \; . \,_/

D —o— 4405

—o— |

‘BANK B

FIGURE I1.6 - The difference between a normal transaction and a transaction in the blockchain

11.6.4. Wallets

Wallets are used to store cryptocurrency and interact with the blockchain network.
They use public and private key pairs for security and privacy. [14]

11.6.4.1. public keys

A public key is a cryptographic code that allows users to receive cryptocurrency transactions. It is
shareable and acts as an address for sending funds to a wallet.

Public keys are used to receive transactions and are visible to all users in the network. They are
like an account number that uniquely identifies a wallet.

Public keys can be freely shared without compromising security, as they only allow others to send
funds to the wallet. [15]

11.6.4.2. Private keys

A private key is a secret code that grants ownership and control over the funds associated with a
public address. It should be kept confidential at all times.

Private keys are used to prove ownership and spend cryptocurrency funds. They are crucial for
signing transactions and accessing wallet balances securely.

13

Private keys should never be shared with anyone, as they provide total control over the associated
funds. Losing a private key can result in the loss of access to the wallet and its contents. [15]

Criteria Public Key Private Key
Ownership Publicly owned Privately owned
Accessibility Open to everyone Restricted access
Security Impossible to lose as it is in Easy to lose if carelessly
the public domain stored

Low risk if lost, as they are Low risk if lost, as they are High risk if lost, as it results
meant to be shared. meant to be shared. in the loss of access to the
wallet and its contents.

usage Used to receive transactions | Used to sign transactions and
and uniquely identify a access wallet balances
wallet. securely.

TABLE I1.1 - Comparison between private and public keys
Smart wallets came in 2 types mainly, hardware and software wallets:

11.6.4.3. Hardware Wallet

Hardware wallets, also known as cold wallets, provide offline storage for your cryptocurrency
keys. They often resemble USB devices, although paper-based versions also exist, where the
public and private keys are printed on paper. These wallets are highly regarded by investors for
their security, as being offline minimizes hacking risks. However, they are not without their own
risks, such as physical loss or theft.

You may ask, "If it's offline, how would a person be able to access the blockchain?" When we say
"offline,” we mean that the private key is stored offline inside the hardware. When a user wants to
perform a transaction, it typically comes with companion software or applications that allow users
to interact with the blockchain and authorize transactions. That software will then use the private
key to sign the transaction, and the transaction will not be stored anywhere else online by any
means. [14]

11.6.4.4. Software Wallet

Software wallets, also known as hot wallets, work like online bank accounts and are usually linked
to a cryptocurrency exchange, offering user-friendly interfaces. Their introduction has played a
significant role in making cryptocurrency accessible to the general public. There are different types
of software wallets, each with distinct usage methods.

14

Desktop wallets involve downloading software to your computer. Alternatively, mobile
applications are available for accessing your wallet on a smartphone or directly through the web.
While software wallets provide convenience and easy access, they are connected to the internet,
making them susceptible to hacking and private key theft. This connectivity raises the risk of
exposure to cyber threats.[14]

TYPES OF CRYPTO WALLETS

Cold Wallets

Paper Wallets
Hardware Wallets

¢ 101 Blockchains

FIGURE I1.7 - Smart wallet types [14]

11.6.5. Smart Contracts

Smart contracts are self-executing digital contracts stored on a blockchain that automatically
enforce the terms of an agreement between parties. They are computer programs that run when
predetermined conditions are met, eliminating the need for intermediaries and manual processing.

Smart contracts are similar to real-world contracts, but they are completely digital. In fact, a smart
contract is a small computer program that is stored within a blockchain. Smart contracts can help
you exchange money, property, or anything of value in a transparent and conflict-free way, all
while avoiding the services of a middleman. [16]

15

For example, if a renter were to rent an apartment from a landlord, the transaction could be
conducted using blockchain technology by paying in cryptocurrency. The renter would receive a
receipt, which is stored in a virtual contract. The landlord would then provide a digital entry key
by a specified date. If the key doesn't arrive on time, the blockchain releases a refund to the renter.
If the landlord sends the key before the rental date, the system holds it, releasing both the payment
to the landlord and the key to the renter when the rental date arrives. The system operates on an if-
then premise and is verified by hundreds of nodes in the blockchain, ensuring a faultless delivery.

In this scenario, if the landlord gives the key, the landlord is sure to be paid, and if the renter sends
a certain amount of cryptocurrency, they receive the key. The document is automatically canceled
after the paid-for time has elapsed, and of course, the code cannot be changed because it is on the
blockchain.

11.6.6. Token

A token in the context of blockchain and cryptocurrency is a digital asset that represents value or
utility on a blockchain network. Created through smart contracts on platforms like Ethereum,
tokens have defined properties, functionalities, and distribution rules, such as name, symbol, and
total supply. These tokens can be transferred between addresses, facilitating peer-to-peer
transactions. They serve various purposes, including payments, access to services, voting rights,
and ownership representation. Tokens also interact with decentralized applications (dApps) and
other smart contracts, enhancing their utility within the blockchain ecosystem. Notable standards
for tokens include ERC-20 and ERC-721, which specify how tokens should function and interact
on the Ethereum network. [17]

Before we get into the details of both tokens it’s essential to first explain what an NFT

11.6.6.1. NFTs

An NFT, or non-fungible token, is a type of digital asset that represents ownership or proof of
authenticity of a unique item or piece of content. Unlike cryptocurrencies such as Bitcoin or
Ethereum, which are fungible and can be exchanged on a one-to-one basis, NFTs are distinct and
cannot be exchanged on a like-for-like basis due to their unique attributes. Each NFT contains
metadata that distinguishes it from other tokens, including information about the asset it represents,
such as its title, creator, and characteristics. This uniqueness and verifiable ownership make NFTs
particularly valuable for digital collectibles, art, gaming assets, and other unique creations in the
digital realm. [19]

11.6.6.2. ERC-20 Tokens

ERC-20 tokens are fungible tokens that follow a specific standard on the Ethereum blockchain. As
mentioned earlier, a token is created as a smart contract, and by following this standard, it adheres

16

to specific functions and properties. Man can think of it as an interface containing specific variables
and functions.
the main and most important variables in that interface are:
e Name: The name of the token (e.g., "PunchyToken").
e Symbol: The symbol representing the token (e.g., "PNCH").
e Total Supply: The total number of tokens that will ever exist.
The most important functions are:
BalanceOf: A function that provides the number of tokens held by a specific address.
Transfer: A function that allows the transfer of tokens from one address to another.
TransferFrom: A function that allows a smart contract to transfer tokens on behalf of the
token owner.
e Approve: A function that allows a token owner to approve another address to spend tokens
on their behalf.
e Allowance: A function that provides the number of tokens that an owner allows another
address to spend on their behalf.

When you create an ERC-20 token, you inherit from this interface and set specific variables. You
can also modify some functions inherited from the interface. This standardization allows different
ERC-20 tokens to work together seamlessly since they operate in the same way. ERC-20 tokens
are compatible with each other and can be managed by the same wallet, traded on the same
exchanges, and interact with the same decentralized applications (dApps) and smart contracts. This
interoperability is a key advantage of the ERC-20 standard, enabling a cohesive environment for
various digital assets and utilities. They are commonly used for cryptocurrencies, utility tokens,
and other fungible digital assets. Each ERC-20 token is interchangeable and equal in value to
another token of the same type, much like regular coins that are all the same and can be divided
into smaller pieces. These tokens can interact with various applications and smart contracts on the
blockchain, enhancing their utility and integration within the Ethereum ecosystem. [18]

11.6.6.3. ERC-721 Tokens

ERC-721 tokens, again it's also standard but unlike their fungible counterpart ERC-20, they are
used to represent non-fungible assets on the Ethereum blockchain, adhering to a distinct standard.
Each ERC-721 token is unique and indivisible, making it ideal for representing ownership or
uniqueness of digital or physical assets such as digital collectibles, real estate, artwork, or in-game
items. Before proceeding further.

when creating an ERC-721 token, same thing as the ERC-20 there is an interface that is the
standard, that should be inherit, and it’s main components are:
Variables:
e name: A descriptive name for a collection of NFTs in this contract (e.g., "Punchy NFT").
e symbol: An abbreviated name for NFTSs in this contract (e.g., "PNCH_NFT™).

17

totalSupply: The total number of NFTs tracked by this contract.
ownerOf: Mapping from token ID to the owner's address.
balanceOf: Mapping from owner address to the number of tokens they own.
e tokenURI: A mapping from token ID to a URL or other identifier for the token's metadata.
Function:

e balanceOf: Returns the number of NFTs owned by a given address.

e ownerOf: Returns the owner of the specified token ID.

e safeTransferFrom: Safely transfers the ownership of a given token ID to another address.
If the target address is a contract, it must implement onERC721Received to accept the
transfer.

e transferFrom: Transfers the ownership of a given token ID to another address. The caller
is responsible to confirm that the recipient is capable of receiving NFTs or else they may
be permanently lost.
approve: Approves another address to transfer the given token ID, on their behalf.
getApproved: Gets the approved address for a single NFT.
setApprovalForAll: Approves or removes an operator. Operators can transfer any token
owned by the sender.

e isApprovedForAll: Returns if the operator is allowed to manage all of the assets of the
owner.

Unlike ERC-20 tokens, which are interchangeable and equal in value, ERC-721 tokens have
distinct characteristics, allowing for differentiation between individual tokens. While ERC-20
tokens are commonly used for transactions and utility within the Ethereum ecosystem, ERC-721
tokens excel in representing ownership and uniqueness, opening up new possibilities in gaming,
digital art, and asset tokenization. These tokens can be stored in compatible Ethereum wallets and
traded on platforms supporting non-fungible tokens (NFTSs), enabling collectors and creators to
buy, sell, and showcase unique digital assets with verifiable ownership on the blockchain.
Additionally, ERC-721 tokens can interact with decentralized applications (dApps) and smart
contracts, allowing for innovative use-cases such as decentralized marketplaces, tokenized assets,
and provably rare digital collectibles. [18]

11.7. Conclusion

In this chapter, we provided an introduction to blockchain technology, defining its core principles
and exploring its historical development. We compared blockchain with traditional databases,
highlighting the key differences in decentralization, immutability, transparency, speed, data
integrity, cost, and cryptography. We also introduced the main components of a blockchain system,
including nodes, blocks, transactions, wallets, smart contracts, and tokens, detailing their roles and
functionalities within the network. This foundational understanding sets the stage for deeper
exploration of blockchain's applications and implications in the subsequent chapters

18

I11. Project Conception

CONTENT
1 1o oo L1 i £ o) o PSPPI 20
[11.2. USE-CASE GIAGIAIMeevieiieiieeiteeiesteeste et st e teete e e ste e e e s e s seesaeeseesseesbeaseesseesseeneesneenseanee e 20
[11.3. SEQUENCE TIAGTAMS.eviiiiiiieiieiee ettt bbbt 21
[11.3.1. Create a Challengeccooo i 21
[11.3.2. Create @ tEAM......couieiii ettt e et snn e nneesnneennee s 23
[11.3.3. Accept a team INVITATIONcoviiiiiiiiiceeee e 24
111.3.4. Participate in @ ChallenNgecoveii i 26
I O P TSES 3 L = To |- o OSSR 28
IR T O] T [0 o] o ISP 28

19

I11.1. Introduction

This chapter delves into the project's conceptualization, outlining the core functionalities and
system interactions. We begin by exploring the use-case diagram to visualize the actors and their
interactions with the system. Following this, sequence diagrams illustrate specific scenarios:
creating a challenge, forming a team, and participating in a challenge. Finally, a class diagram will
be presented to illustrate the system's objects and their relationships.

[11.2. Use-case diagram

The Use-case diagram describes the interdependence between our Punchword application and the
actor by identifying the user's needs and everything the app must do for the user specifically in in
the viral Campaign functionality. Below is the use-case diagram defining the main actions
performed by the user in our system.

Use-cases:

Create a challenge: In order to create a challenge or launch a viral campaign, a user must be a
punchy token holder, which means they need to have a minimum amount of punchy tokens in their
wallet. Once this requirement is met, the user can proceed to create the challenge.

Creating a team: Users can initiate the creation of a team and invite people to join their team, and
the one who creates the team will be set as an admin.

Accepting a team invitation: Once a user creates a team, the invited members will receive a
notification to confirm their joining and become official members of the team.

Explore the Challenges: Any user can browse through the challenges available on the platform,
either in their feed or by using the explore feature.

View Participations: Users can check out the participations published on the platform by other
users, either in the feed or through the explore feature.

Participate in a Challenge: Users can join any challenge published on the platform, either as a
team or individually. To participate, they first need to create an NFT of the piece of art they want
to enter.

View Teams in the Profile: Users can access the teams they're part of, either as a member or as
an admin, in their profile.

Note: To avoid repetition, we have not included the 'authenticate’ use-case in this diagram, but it
is still used in our software solution.

20

see the Challenges in
the feed

the user should be
a token holder Create a challange

Create a team

Participate ina Create an NFT
challenge
<<l nelude==

User

Accept a team invitation

Look at my teams

see at participations as
a feed

FIGURE I11.1 - Use-case diagram

[11.3. Sequence diagrams

[11.3.1. Create a challenge

In order for a user to create a challenge or launch a viral campaign, they must first be a holder of
punchy tokens, meaning they should have a minimum amount of punchy tokens in their wallet. If
not we redirect the user to the main screen, Once this condition is met, the user can enter all the

21

required information to create a challenge, including the number of winners, the prize for each
position (which can be specified individually or by range, for example, between 1st and 5th place
will get 100 PUNCH and the rest will get 50 PUNCH), as well as the registration deadline and the
announcement date. and then present it in a post. After that, the user will need to perform two
transactions. The first transaction allows the smart contract to use the total prize amount provided
by the user so that when it's time to select the winner, the smart contract can automatically send
the money to the winners from the challenge creator, this transaction will be a call for the Allow
function in the Punchytoken smart contract. The second transaction involves calling the
createChallenge function from the smart contract, this transaction will be the call to the function
CreateChallenge in the Challenge smart contract.

Once the challenge is created, we'll have a Firebase Cloud Function running in the background
that gets triggered each time when a new challenge is created in the Firestore database. This
function will schedule another function to be called at the announcement date to carry out the
transactions. This scheduled function will then call the endChallenge function from the Challenge
smart contract, which is responsible for selecting the winners, sending the prizes, and closing the
challenge.

We need the Firebase Cloud Function because the interactions with the teams are not directly
available in the blockchain, but rather in the Firestore database. Therefore, this cloud function will
retrieve the interactions for each post of each participant in the specific challenge and send it to
the blockchain within the transaction to pick a winner.

22

User : System : Frebase : Blockchain :

request the challenges screenin
the profile screen

Displaythe challenges screen

requestihe screeenfo add a new
challenge

check if the user is a punchy holder

regpond

[if us e is not a punchy holder]

redirect to home page and display
an error

&

|
[else] dizplaythe create challange screen

input the required data

send the trans aclion

respond
ﬁi-t-he frans action failed]
digplay an emor
[else] upload the challenge object

and the postfor the
challange to the firestore
database

send an event when its done

redirect to the feed screen witha
SUCCesSs message

&

FIGURE I11.2 - Sequence diagram - Create a challenge

111.3.2. Create a team

Users have the ability to create teams for participating in challenges. To do this, they first select
the members to invite and then determine the share of the winnings that each member will receive.
These shares will be used for any future challenge that the team participates in. For example, one
user may receive 40% of the prize while another receives 30%. Once the shares are decided, the

23

transaction that called the function CreateTeam from the team smart contract is performed on the
blockchain. After the team is successfully created, invite notifications are sent to all selected users.

User: Firebase : Blockchain :

requestthe challanges screenin H
the profile screen i

[}

Displaythe challanges screen

request the screeen to add a new
challange

check ifthe user is a3 punchy holder

regpond

|_:IFI:ISE is not 2 punchy holder]

redirect to home page and display
an error

F 3

else;
!] displaythe create challange screen

input the required data

send the fransaction

res pond
fif the trans action failed]
display an ermor
[else] upload the challange object

and the postfor the
challange io the firestore
database

send an eventwhen it's done

redirect to the feed screen witha
SUCCesS Message

F 3

FIGURE I11.3 - Sequence diagram - Create a team

I11.3.3. Accept a team invitation

Once a user creates a team, all the selected members will receive a notification asking them to
confirm their acceptance to the team. This confirmation will be recorded in the blockchain. When
a user accepts an invite, they will need to perform a transaction by calling the acceptTeam function

from the Teams smart contract.

24

User:

send a nofificalion

System :

firebase :

request the acceptance
screen

displaythe accept screen

zelect between accept/
refuse

blockchain :

%‘ser

decline the invitation]

navigate back fo the
home screen

-
|

send a nofification to the admin
that the us er declinedthe
invitation to the team

&

[2lzg]

send the rans aclion

returmn the res pond

[if trans acfion failed]

display an error

i
%

[else]

send a nofification to the admin
thatthe user accepted the
invitation to the team

-
-

update the the team
object as sef the member
as confirmed

P

send an event when it's
done

requesifosend a
notification to the admin

display a success
message to the user who
” accepted the imite

FIGURE I11.4 - Sequence diagram - Accept a team invitation

25

I11.3.4. Participate in a challenge

Once the user finds a challenge that interests them, they have two options: they can participate
individually or with a team.

When the user decides to participate with a team, the system will only display the teams of which
they are an admin and where all members have accepted the invitation.

In both cases, whether individually or as a team, the user must first create an NFT for the piece of
art they intend to use, and that by performing the transaction to mint the NFT.

Next, they'll need to perform a transaction that allows the smart contract to transfer the NFT on
their behalf. So that at the end if they will be one of the winners, the smart contract will transfer
their NFT to the challenge creator, making them the owner.

Finally, they can use the NFT to execute the transaction required to participate in the specific

challenge. By calling one of two functions, either "participatelndividually” or
"participateAsTeam" from the Challenge smart contract.

26

user :

request the participation screen from 2
challange in the feed

system :

-

dizplay the participation screen

selection how to paricipat

L ¥

ﬁi_ﬁaﬂci pate as ateam]

select ateam

input all the nft required data

firebase :

upload the nft art and it metadata fo the
ipfs

blockchain :

send the nft creation trans action

respond
n failed] display an error message
<t
[else]
send the pasticipation frans acion
-
getihe respond

|ﬂ -ans aclion failed]

display an error message

[else]

redirect fo the feed and display a team
created successfullymessage

eate the parlicipation in the firestoré

-

send an event when i's done

o}

FIGURE I11.5 - Sequence diagram - Participate in a challenge

27

I11.4. Class diagram

Here we display each element of the Viral Campaign feature as a class with attributes that help
them work together. It includes a total of 5 classes. Each of these classes has attributes that allow
each instance to be identified or categorized.

+ challenge

Challenge

+id : integer

+ creator : string

+ description : siring

+ registrationDeadline : date

=

Participation

+id : integer

1| +announcemeniDeadline : date
+ prizeAmount - double

+ winnersPariicipationlds : string
+ prizeDistribution - string

+ participants Count : integer
+isCompleted : boolean

+user

User

+ challengeld : integer |-
+ individual : siring

+teamld : integer
+ niftid : integer =

0.1

+nFT

0.1

+team

+ fullname : string
+ gender : string
+ imageURL : sfring

+ uid : sfring 4
+ useremail - string N
+usemame : string

+ \WalletAddress - string

Team

NFT

+ confractAddress : siring
+ Tokenld : string
+ owner : string

I11.5. Conclusion

-

+ title : string
+ description : string
+ imageUn : string

0.1

FIGURE I11.6 - Class diagram

+ id : integer

+ admin : siring

+ members - sfring

+ memberls Confirmed : siring
+ percentages - sfring

+team

Throughout this chapter, we have presented the design of our project using all necessary UML
diagrams to help us better understand the feature and how it works. In the next chapter (Project
Implementation), we will describe the tools and technologies used, explain the code architectures,
demonstrate how the entire system works together, and showcase the interfaces of our feature.

28

V. Project Implementation

CONTENT
Y00 I 11 oo [0 Tod 1 o PRSPPI 29
IV.2. Tools and teChNOIOGIES USEA..........c.couiiiiiieiieie et 30
Y N 4 To [£ o IS (8 o | o SR 30
V. 2.2, REMIX TAB. ...t b bbb 30
IV.2.3. GIENUD .t 30
IV, 2.4, FITEBASEeeuveieie ittt ettt ettt et e s e s te e e sre e teenaeeseenneeneeereenreenee e 31
IV . 2.5, KON 1.ttt b ettt se bt reane e 31
IV.2.6. JEIPACK COMPOSEveieieiieeie ettt enbe e e nneenre e e e 31
Y 1o T [S PSPRPS 31
V.3, SYSEEM AFCNITECIUIE. ... ecviiiieecie ettt e st et re e re e e 31
IV.3.1. ANdroid APPHICALIONoouiiiiiieiee e 32
[V.3.1.1. Clean ArChITECTUIEc.eeiiiie ettt 32
° DALA LAYEK ..ottt 32
° DOMAIN LAYET ...ttt bbbt 33
° Presentation/Ul LAYer.........ccoveiiiiiieiie ettt 33
1V.3.1.2. Multi-module architeCtUrecooiiiiiiiiee s 34
IV.3.2. SMAIT CONTACES.......eiiiiiiiieiieeie ettt s sbe e nbeenree s 34
IV.3.3. Connecting Android App to BIOCKChaINcoovviiiiiiiii e 35
IV.3.4. FITEBASEeeuieieie ittt sttt et et e e r e ste e e sre e teenteeseenneeneeeneenreenee e 35
Y U T g (0T =] [0 PRSPPI 36
IV.4.1. Create ChallENQe........cvoovieieie e 36
Y O (T L (=T =T o PR RURTOPRRPRN 39
IV.4.1. Accept team INVITALION..........cciiiiiiiic e 41
IV.4.1. Participate ina ChalleNgecooi i 42

29

IV.1. Introduction

Our project involved two key components: developing the Viral Campaign functionality for the
Punchword Android app and creating smart contracts.

This chapter will delve into each element of the viral campaign, explaining its purpose and
responsibilities.

IV.2. Tools and technologies used

¥ @O/
KOY%

FIGURE IV.1 - Used Technologies

IV.2.1. Android Studio

An integrated development environment (IDE) specifically designed for building Android apps. It
includes tools for coding, debugging, testing, and deploying apps. Think of it as a workbench with
all the tools you need to build an Android house. [20]

IV.2.2. Remix Ide

From writing to deployment, Remix is a one-stop shop for building Ethereum smart contracts.
This versatile toolset caters to both learners and experienced developers. [21]

IV.2.3. Github

A popular version control system and hosting platform for software development projects. It
allows developers to track changes, collaborate on code, and share projects publicly or privately.
Think of it as a central storage unit for your project files with version control. [22]

30

IV.2.4. FireBase

A platform from Google that provides backend services for mobile and web apps. It offers features
like authentication, databases, cloud storage, cloud functions, and analytics. Imagine it as a set of
pre-built tools you can integrate into your app to handle things like user logins and data storage.

We chose Firebase because, on top of being easy to use, it offers a comprehensive set of tools for
backend development. Here are the main ones we used in our project:

e Firebase Authentification: This service manages user authentification and supports
various sign-in methods, such as email/password and Google sign-in. It ensures secure user
access and management. [24]

e Firebase Firestore: This real-time NoSQL database stores user data, campaign details,
and engagement metrics. [25]

e Firebase Storage: We use this service to securely store media files in the cloud. It
integrates seamlessly with Firestore, allowing efficient data management and retrieval. [26]

e Cloud Functions: These serverless functions handle backend logic, such as triggering
events based on database changes or managing complex workflows that require interaction
between the Android app and the blockchain. [27]

IV.2.5. Kotlin

A modern programming language specifically for Android development, Kotlin is known for being
concise, safe, and interoperable with Java. Created by Google, the same company that owns the
Android Operating System, Kotlin is the best technology to use if your goal is to build a scalable,
fast, and well-optimized Android app. [28]

IV.2.6. Jetpack Compose

A new Ul framework for building user interfaces in Android apps, created and officially supported
by Google. It uses a components style for composing Ul elements, making it easier to create
complex, reusable, and dynamic layouts. [29]

IV.2.7. Solidity

A programming language specifically designed for writing smart contracts, which are self-
executing contracts stored on a blockchain. [30]

IV.3. System Architecture

we delve into the system architecture of the Punchword platform, detailing the frameworks and
architecture utilized in its development. The architecture is divided into three primary components:

31

the Android application, the blockchain integration, and the backend services managed through
Firebase.

IVV.3.1. Android Application

The Android part of the Punchword employs a multi-module architecture combined with Clean
Architecture principles. This structure enhances the scalability and maintainability of the
application by clearly separating concerns into distinct layers and modules, let’s explain each one
of those in detail.

IVV.3.1.1. Clean Architecture

The goal of using this Architecture is to divide our code into 3 layers, these layers are Data, Doain,
and Presentation/UI. So let’s go through these step by step and understand what these layers
actually contain.

(~ N

The Clean Architecture

Controllers

| | Enterprise Business Rules

Use Cases || Application Business Rules

|| Interface Adapters

| | Frameworks & Drivers

I
Presenter |[—> o‘:.:u%':n

f

Use Case
Interactor

v

I
Use Case
Input Port

Controller =

FIGURE IV.2 - The Clean Architecture [31]

e Data Layer

Let's start with the Data layer, which is the easiest to understand because its name clearly indicates
its contents. It includes database implementations, APl implementations, preferences, local

32

databases, and third-party providers that communicate with remote services. In our case, we have
Firebase and Web3j, both of which we'll discuss shortly. These are the types of things that belong
in our data layer.

Another job of the data layer is what is called mappers, mappers are a key concept of clean
architecture. They take database entities (objects saved in the database) and DTO objects (Kotlin
representation of a JSON response, obtained from an API), and transform them into a unified data
class. This unified class will be explained in more detail when we discuss the domain layer, making
it easier to work with these classes.

e Domain Layer

The Domain Layer serves as the middle layer of the architecture, with two primary responsibilities.
Firstly, it houses the business logic, in the form of "Use-Cases.” A Use-Case is essentially a class
that performs a single function. For example, the use-case for creating a team would involve
actions such as retrieving the wallets of the selected members, executing the team creation
transaction, creating the team object in Firebase, and sending each member an invitation
notification. It's important to note that calls to Firebase and blockchain transactions or any kind of
remote services are defined in the data layer as functions in the repository class.

Secondly, the Domain Layer contains the Model classes, which are a combination of entities and
DTO classes, or other types of classes. These model classes do not necessarily need to originate
directly from our data layer. Another way to think about a model is as a class that represents a data
type, for example, we have Team, Challenge, User, etc. so it’s a class that holds data that we can
also easily later use in our presentation layer to show the data that we need to show

e Presentation/Ul Layer

This will be the final layer in our clean architecture, the Presentation layer. It is used to present
something to the user in the form of a user interface (Ul). In the end, it will contain our composable
if we use Jetpack Compose, and if we use XML, it will contain fragments and activities, and in
both cases, we’ll have viewModels.

The ViewModel is considered the presenter. Its job is not to contain the business logic but to call
the use-cases from the domain layer and map the result to the Ul state. The Ul will then observe
that state.

Why do we use these Use-Cases and call them from the ViewModel instead of directly writing the
business logic in the ViewModel? There are two reasons for that. First, it ensures that we don’t
have huge viewModels containing excessive business logic and code, which can make them hard
to read. Typically, we have a single ViewModel per screen, so this approach helps prevent them
from becoming overly complex. Second, it makes our code a lot more readable because we usually
give those use-cases very natural names. For example, a use-case class name would be

33

"SearchUser." You don’t have to be a genius to understand what this class does. If there is a new
member in the team and they take a look at the use-case packages, they'll quickly understand what
these classes contain and what kind of things a user is able to do in an app.

And one important note here, In the clean architecture, every layer can access the domain layer,
but the domain layer is the only one that connects the presentation and data. The presentation layer
should not have access to the data layer, and vice versa. [31]

1VV.3.1.2. Multi-module architecture

This approach involves dividing the app into multiple Gradle modules using a "Layered-Feature
Modularization" strategy. For example, in the case of a social media app, we would have modules
for Messaging, Feed, and Viral Campaigns. Each of these modules would be further divided into
three sub-modules following the clean architecture (Data, Domain, Presentation). This approach
allows for easy reuse of a single feature and helps in work management by enabling separate teams
to work on different features without interfering with each other's work. Additionally, it helps keep
our modules smaller as we don't have all the feature code in a single module. This multi-module
architecture also leads to faster build times due to multi-threading in Gradle and the ability to
rebuild only the modules that have actually changed. Furthermore, it promotes code reusability,
allowing for easy export and implementation of modules in other projects.

So the project will contain the following modules:

e App Module: The entry point of the application, containing the main application logic and

ul.

e Feature Modules: Separate modules for each major feature (e.g., user profile, NFT

marketplace).

e Core Module: Contains shared utilities, base classes, and common resources.
Additionally, we will implement Clean Architecture Sub-Modules, consisting of three modules:
data, domain, and presentation. Each feature module will contain these sub-modules, following
the clean architecture principles we discussed earlier. [32]

1VV.3.2. Smart Contacts

To develop the smart contracts, we used the Foundry framework. It's a comprehensive solution
for smart contract development using Solidity. With Foundry, you can manage your dependencies,
compile your project, run tests, and even deploy your smart contract directly using command lines.
Additionally, it allows you to interact with the chain from the command line and via Solidity

scripts. [33]

34

IV.3.3. Connecting Android App to Blockchain

We need to figure out how to interact with our smart contracts deployed on the blockchain. To do
this, we are using Web3j, which is a comprehensive Java library for working with Ethereum. Since
Kotlin can interact with Java, we have no issues in that regard. This library enables communication
between our Android application and the Ethereum blockchain, allowing the app to interact with
smart contracts and perform blockchain operations. It establishes a connection to an Ethereum
node, which can be a local node (like Ganache or Anvil) or a remote node (like Infura or a private
node). Then, it allows us to load and interact with deployed smart contracts by providing their
addresses and Application Binary Interface (ABI) definitions. [34]

& cihereum

v
Network
Ethereum Ethereum | . _ , Ethereum | _ .,
Client Client Client
— ‘ €—JSON-RPC=3 Etgﬁreenl:m (] (I
Java |V
Application web3j Pt
Ethereum Ethereum Ethereum
Client Client ("®" Clent **®°
| Miner | | Miner | Miner

FIGURE IV.3 - Web3j connection between the blockchain and the Java app [34]

IV.3.4. FireBase

We initially planned to create a social media platform based on the Blockchain. However, we
realized that not all functionalities should be fully decentralized. For example, it doesn't make
sense for users to pay gas fees for actions like posting an image or sending a message. To address
this, we decided to use a combination of Blockchain and a database. This also allows us to quickly
access data, as reading from the Blockchain can be slow at times. Additionally, data written to the
Blockchain cannot be edited or deleted. Therefore, when a user creates a team, we store that
information in our Firestore database. This way, we can retrieve the team information quickly,
providing a better user experience.

An important use case involved the use of Firebase cloud functions and cloud tasks to automate
the conclusion of a challenge. We couldn't finish the challenge directly from the smart contract
because the posts are saved in the Firestore database. This meant that in order for the smart contract
to choose a winner when the announcement date arrived, it needed to access our Firestore database

35

to retrieve the posts from the participants of a specific challenge, which is not possible. To work
around this, we created a Firebase cloud function that will be triggered each time a new challenge
document is created. This function will then retrieve the announcement date of the challenge
document and schedule an HTTP trigger using the cloud tasks. This would involve another HTTP
function being called automatically at a specific time, in our case, at the announcement date. This
last function would then retrieve all the participations of the challenge id, get the interactions (likes,
comments, shares) for each post from each participation, and then send this data along with the
challenge id to the blockchain by executing a transaction and calling the "endChallenge” function
from our challenge smart contract. This "endChallenge™ function would then determine the winner
based on the reach and send the prize to each winner.

) Cloud
Schedule the deletion of a Tasks

document in Firestore with Cloud
Functions and cloud Tasks

invoke schedule
HTTP HTTP
trigger trigger
Edit
‘ Document
create
document
3 trigger
Firestore function Cloud
Functions

FIGURE IV.4 - Cloud Tasks with Firebase Cloud Function\

IV.4. User Experience

IV.4.1. Create Challenge

- From the profile screen, the user can access the general viral campaign from the bottom
navigation bar

36

9:41 wll T =.

.
o @ :
Beauty & Bio
Beauty_&_Bio
1,3M | 808.2k | 28.6k
Funch Followers Tollawng
@ vaster
Cosmetic products 100% natural -
Homemade
(@ ox7504..346F
Ao Viral campaign 0 Hidden 0

it 2

Settings
] 9

@ My offers

¥ My favorites

A saved

&1 Viral campaign

& Help center

@ About

O Logout

&« Viral Campaign

Launch viral campaign

Teams

FIGURE IV.5 - Create challenge, Profile screens

0014 9:33

After that, the user will need to enter the required information: the number of winners, the

prize for each position, as well as the registration deadline, and the announcement date.

o il T mm
< Viral campaign
Number of winners

Enter number of winners
50

Set winners prices
Choose setting method

Specify your winners' ranges and set the NFT price for each

range.

Wwinners 1-10

Enter NFT price for this range

1000 PUNCH

Winners 11- 50

)

Enter NFT price for this range

700 PUNCH

@41
4 Viral campaign
Number of winners

Enter number of winners

Ex: 100

Set winners prices
Choose setting method

By range ° Individually
Set the NFT price for sach winner
Winner 01

Ex: 700 PUNCH

Winner 02

Ex: 700 PUNCH

Winner 03

Ex: 700 PUNCH

all F =

941 all T =-
4 Viral campaign
Duration

7Days -
Starting

05/02/2023-10:30 AM

Ending

Gz/ozlzoza—m:ao AM

Day Month Hour
n Jan 9
12 Feb 10
13 mar I

Minutes
29
30
31

AM

FIGURE IV.6 - Create Challenge, data input screens

37

Then the user must create a post that will be displayed in the feed.

@41 ail T mme 241 il T o=
< < o
Beauty & Bio Beauty & Bio
are your thoughts Share your thoughts.
B @
=] GIF o 7] e, & CB

QWERTY U I'dPF
A'SDFGHJKL
ZXCVBNMGE

. © . B [y @

FIGURE IV.7 - Post creation screen

As a last step, the transaction price screen will be displayed. The user will need to
confirm the transaction by entering their wallet password.

9:41 Al T mm G4] all T -

< Confirm transaction 4 Confirm transaction

Almost there!

To lunch this viral campaign you must confirm
this transaction. Enter password

Amount XXX X

Viral campaign 1000 000 PUNCH

1 2 3
Fees
Gas fee SHELLL
4 5 6
Service fee 2.5 % $ 0.04787 USD
7 8 9
Total to pay
$ 8 000.09697 a 0

REJECT CONFIRM

FIGURE IV.8 - Create a Challenge, transaction, and feed screens

38

- Once the transaction is successfully completed, they will be redirected to the main screen.

O Beauty & Blo

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore.

X 00471314 @

Angel_Morris o<l 254

Q 300 = REU <
Conditions Contract
Buy top 50 NFTs

1-10 1000 PUNCH

FIGURE IV.9 — Feed Screen

IVV.4.1. Create Team

- You can access all your teams and create a new team on the viral campaign screen.

A = i Al = 1494

< Viral Campaign Teams
Launch viral campaign > 10

>
Teams >

Avocado team

Hosusam Eddine Baba
Bendermel

Sammar Khaled

FIGURE 1V.10 - Profiles team, profile screens

39

The user will need to enter a name and upload an image for the team's identity. After that,
they can select the members they want to invite and specify the share for each of them.

el I L 3 061 9:26 el I L 3 308 9:26 e Ml 308 9:27
<« Set Team Identity <« New group <« Viral Campaign

- <
41\ User12 @ User 6 Decide on shares

tage of shares specified in each group will be

Q Who would you like to add?

. Hosusam Eddine B.. gqq,
Contacts el

Team Name * i‘q User 12 g" Usgr12 25%
68 P N
EX: Legends
Q User 10 & User 6 25
& User 8
&
User 6
‘ User 5
U User 13

FIGURE IV.11 - Create a Challenge, team data input screens
As a final step, they’ll have to complete the transaction by entering their password.

9:41 wll F -

€ Create Team L4 Confirm transaction

Almost there!
Confirm to create team

Entor password

Fees
Gaa fee 0.0010831872 PUNCH
i 1 2 3
Total to pay
4 5 6
$ 0,00072286
7 8 9
a 0

FIGURE IV.12 - Create a challenge, transaction screens

40

IV.4.1. Accept team Invitation

When invited, users can accept by clicking "join group" after receiving a notification.

9:41 all F w941 il T .

< Notifications < Team invite

The Beauty & Bio viral campaign has ended,
thank you for your participation

Your team requires your approval

to submit this NFT for the Beauty &
e Bio viral campaign

DECLINE APPROVE

Christina Hodland invites you to join their team 6 Members (2

for the Beauty & Bio viral campaign
" paig Your share :15%

O = Team creator : Christina Hodland
@ Invitate expires in 40h 3amin

Mumin Xasakim started
following you. FOLLOW,
Accept the invite to join this team and

Disenkomi, Ghiles Ham and § participate in the Beauty & Bio viral
others liked your post.

campaign.

Lindsey Bris made an offer of
0.03 ETH on your NFT.

Angel Morris commented on
your video

ol

FIGURE 1V.13 - Accept team invitation, notification, and team presentation screens

As a final step, they’ll have to complete the transaction by entering their password.

9:41 Wl S w941 il S w941 il & -

< Confirm transaction 4 Confirm transaction

Almost there!

You need to confirm this transaction, to join the

team Enter password
- eecccocoe
Gas fee 9"2 FTM

Total to pay
You've been added to the team!

$ 0.0491 4 5 6 Thanks for accepting the invite. You've now been

added to the team with a share of 15%

REJECT CONFIRM BONE

FIGURE 1V.14 - Accept team invitation, transaction screens

41

IV.4.1. Participate in a challenge

Once a user finds a challenge that interests them, they can click on the participate button and
begin by selecting the participation type (Individual or Team).

9:41 all T =
O Beauty & Blo :
< Participate
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore.
How would you like to participate?
) o
-
Individual
°
damd O
Team
X 00471314 @
Angel_Morris 254
o aw <
Conditions Contract
Buy top 50 NFTs
10 1000 PuNcH

FIGURE IV.15 - participate in a challenge, feed, and participation type selection screens

If they choose to participate, they must select a team to join. The screen will only display
teams for which the user is an admin, and all invited members have accepted the invitation.

9:41 il T -

¢ e €

Beauty & Bio

e Nike

Dove

FIGURE IV.16 - Participate in a challenge, select a team screen

42

Then the user has to enter the NFT information (the piece of art, its title, and the
description).

9:41 all T =.

4 Create NFT

Name *

ADVANCED OPTIONS »

SUBMIT

FIGURE IV.17 - participate in a challenge, create an NFT screen

As a final step, they’ll have to complete the transaction by entering their password.

9:41 Wl S w941 il & -

< Confirm transaction Explore P

Almost there!
To submit your NFT you must confirm this 2
1
Yowstory UndseyBrs AngelMors Mod Jocob Mo

transaction.
Pomela Tyt

Fees

0.12FTM

Gas fee

Total to pay

$ 0.0491

Pink Entity Q 24

Multiple owner

[e)
REJECT) CONFIRM ‘ -

FIGURE 1V.18 - participate in a challenge transaction

43

General Conclusion

44

This thesis explored the integration of blockchain technology into the Punchword social media
platform, where | work as an Android developer. The focus was on the "Punchword Viral
Campaigns" feature, which combines NFTs with viral marketing campaigns. Companies can
create challenges on Punchword, where users submit NFT ads and compete for rewards in Punchy,
the platform's cryptocurrency. This setup uses smart contracts to automate reward distribution
based on engagement metrics like likes and shares, enhancing transparency and security for
advertisers and influencers.

The first chapter covered blockchain basics, defining key concepts and contrasting blockchain with
traditional databases. It detailed blockchain components such as nodes, blocks, transactions,
wallets, smart contracts, and tokens, including ERC-20 and ERC-721 standards.

The second chapter detailed the design and development of the "Punchword Viral Campaigns"
feature, with diagrams illustrating the system architecture and workflows.

The third chapter discussed the tools and technologies used (Android, Solidity), the app’s
architecture (MVVVM), and the integration of the mobile app with blockchain using the web3j
library. It also showcased the user experience with screenshots of the Viral Campaigns feature.

At the conclusion of this project, | have gained valuable expertise in blockchain and mobile
development. We are satisfied with the results, and as a future development task, we plan to include
transaction sponsorship. This means that users will not have to pay the gas fees; instead, the fees
will be sponsored and paid directly by us.

45

References

[1] Blockchain Facts: What is it, How it Works, and How It Can Be Used. consulted on 13/06/2024.
URL: https://www.investopedia.com/terms/b/blockchain.asp

[2] What is blockchain? consulted on 25/05/2023. URL.: https://www.ibm.com/topics/blockchain

[3] A timeline and history of blockchain technology. consulted on 25/05/2024. URL.:
https://www.techtarget.com/whatis/feature/A-timeline-and-history-of-blockchain-technology

[4] Bitcoin: A Peer-to-Peer Electronic Cash System. consulted on 13/05/2024. URL.:
https://bitcoin.org/bitcoin.pdf

[5] Blockchain vs Database: Understanding The Difference. consulted on 24/05/2024. URL.:
https://101blockchains.com/blockchain-vs-database-the-difference/

[6] Blockchain Vs Relational Database: What’s The Difference? Consulted on 24/05/2024/ URL.:
https://101blockchains.com/blockchain-vs-relational-database/

[7] How Blocks Are Added to a Blockchain, Explained Simply. Consulted on 26/05/2024. URL.:
https://www.coindesk.com/learn/how-blocks-are-added-to-a-blockchain-explained-simply/

[8] Proof of Work vs Proof of Stake: Basic Mining Guide. Consulted on 08/06/2024. URL.:
https://blockgeeks.com/quides/proof-of-work-vs-proof-of-stake/

[9] Was ist eine Blockchain-Brieftasche und wie funktioniert sie. Consulted on 13/06/2024. URL.:
https://www.cropty.io/blockchain-wallet

[10] Blockchain Blocks Explained: How Blocks Are Added To A Blockchain . consulted on 13/06/2024.
URL: https://droomdroom.com/blockchain-blocks-explained/

[11] Types of blockchain nodes explained. Consulted on: 29/05/2024. URL.:
https://polymesh.network/blog/types-of-blockchain-nodes-explained

[12] What are the 3 Key Components Of The Blockchain Network? Consulted on 29/05/2024. URL.:
https://iglu.net/key-components-of-the-blockchain-network/

[13] Blockchain Explained. Consulted on 01/06/2024. URL.: https://www.web3labs.com/blockchain-
explained-what-is-a-blockchain-transaction

[14] Know Everything about Crypto Wallet. Consulted on 09/06/2024/ URL.:
https://101blockchains.com/crypto-wallets/

46

https://www.investopedia.com/terms/b/blockchain.asp
https://www.ibm.com/topics/blockchain
https://www.techtarget.com/whatis/feature/A-timeline-and-history-of-blockchain-technology
https://bitcoin.org/bitcoin.pdf
https://101blockchains.com/blockchain-vs-database-the-difference/
https://101blockchains.com/blockchain-vs-relational-database/
https://www.coindesk.com/learn/how-blocks-are-added-to-a-blockchain-explained-simply/
https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/
https://www.cropty.io/blockchain-wallet
https://droomdroom.com/blockchain-blocks-explained/
https://polymesh.network/blog/types-of-blockchain-nodes-explained
https://iglu.net/key-components-of-the-blockchain-network/
https://www.web3labs.com/blockchain-explained-what-is-a-blockchain-transaction
https://www.web3labs.com/blockchain-explained-what-is-a-blockchain-transaction
https://101blockchains.com/crypto-wallets/

[15] What Are Public and Private Keys? Consulted on 03/06/2024. URL.:
https://www.gemini.com/cryptopedia/public-private-keys-cryptography#section-what-does-it-mean-to-
digitally-sign-a-transaction

[16] Key Components of a Blockchain Network. Consulted on 03/06/2024/ URL.:
https://www.identity.com/key-components-of-a-blockchain-network/

[17] What is a token?. Consulted on 01/06/2024. URL.: https://www.bitcoin.com/get-started/what-is-a-
token/#what-is-a-token

[18] What is a token? Consulted on 02/06/2024. URL.: https://www.coinhouse.com/learn/blockchain-
technology/what-is-a-token/

[19] What is an NFT? (Non Fungible Tokens Explained). Consulted on 02/06/2024/ URL.:
https://whiteboardcrypto.com/what-is-a-nft/

[20] Meet Android Studio. Consulted on 20/05/2024. URL.: https://developer.android.com/studio/intro

[21] REMIX PROJECT JUMP INTO WEB3. Consulted on 20/05/2024. URL.: https://remix-
project.org/?lang=en

[22] About GitHub and Git. Consulted on 20/05/2024. URL.: https://docs.github.com/en/get-started/start-

your-journey/about-github-and-git

[23] Make your app the best it can be with Firebase and generative Al. Consulted on 20/05/2024/ URL.:
https://firebase.google.com/

[24] Firebase Authentication. Consulted on 20/05/2024. URL.: https:/firebase.google.com/docs/auth

[25] Cloud Firestore. Consulted on 20/05/2024. URL.: https:/firebase.google.com/docs/firestore

[26] Cloud Storage for Firebase. Consulted on 20/05//2024. URL.: https://firebase.google.com/docs/storage

[27] Cloud Functions for Firebase. Consulted on 20/052024. URL.:
https:/firebase.google.com/docs/functions

[28] Get started with Kotlin. Consulted on 20/05/2024. URL.: https://kotlinlang.org/docs/getting-
started.html

[29] Build better apps faster with Jetpack Compose. Consulted on 20/05/2024. URL.:
https://developer.android.com/develop/ui/compose

[30] Solidity. Consulted on 20/05/2024. URL.: https://docs.soliditylang.org/en/v0.8.26/

[31] The Clean Architecture. Consulted on 21/05/2024. URL.: https://blog.cleancoder.com/uncle-
bob/2012/08/13/the-clean-architecture.html

47

https://www.gemini.com/cryptopedia/public-private-keys-cryptography#section-what-does-it-mean-to-digitally-sign-a-transaction
https://www.gemini.com/cryptopedia/public-private-keys-cryptography#section-what-does-it-mean-to-digitally-sign-a-transaction
https://www.identity.com/key-components-of-a-blockchain-network/
https://www.bitcoin.com/get-started/what-is-a-token/#what-is-a-token
https://www.bitcoin.com/get-started/what-is-a-token/#what-is-a-token
https://www.coinhouse.com/learn/blockchain-technology/what-is-a-token/
https://www.coinhouse.com/learn/blockchain-technology/what-is-a-token/
https://whiteboardcrypto.com/what-is-a-nft/
https://developer.android.com/studio/intro
https://remix-project.org/?lang=en
https://remix-project.org/?lang=en
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://firebase.google.com/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/functions
https://kotlinlang.org/docs/getting-started.html
https://kotlinlang.org/docs/getting-started.html
https://developer.android.com/develop/ui/compose
https://docs.soliditylang.org/en/v0.8.26/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

[32] Guide to Android app modularization. Consulted on 21/05/2024. URL.:
https://developer.android.com/topic/modularization

[33] Foundry Book. Consulted on 22/05/2024. URL.: https://book.getfoundry.sh/

[34] Web3j. Consulted on 22/05/2024. URL.: https://docs.web3j.i0/4.11.0/

48

https://developer.android.com/topic/modularization
https://book.getfoundry.sh/
https://docs.web3j.io/4.11.0/

gaidla

Jual g Gubd a5 Punchword ks A "Viral Campaigns" 5 e anis 26 e piualdl 138 3 5 cualy
Gl bl il ae (NFTS) Jaindd allall e 5ge)ll 8 50all 038 medi Blockchain (e aainy claial
Il () susdliy s (NFT (e it cilidle) oLl () saxdinall o 5y Cum s ($3Ua) (e S 30 Ry sgd (ons 5 adll
oulie e 2Ly S a5 dial e ASA 5 gial) Jaad diaiall 40aY1 5 ddall dleall <Punchy & <lila e
Solidity s Android s sk <l saf alasiuly 3l 5 Juadil) CLESILYT OMA a5 AN (paay Laa S Ll

ASA 3 gl

ski (ERC-721 ¢ERC-20 ¢ 2 siall 83 (NFT ¢ elaia¥l dual sill s 5 ¢lii€ L1 s Aualidal) cilalsl)
web3j «Solidity uwigh 4y el MVVM ¢ 25,39

Abstract

This master's focus is on the implementation and evaluation of the " Viral Campaigns"
feature into the Punchword Application, a social media App based on the Blockchain. This
feature merges Non-Fungible Tokens (NFTs) with viral marketing strategies.

It enables companies to launch challenges where users create NFT-based advertisements,
competing for rewards in Punchy, the platform’s native cryptocurrency. Smart contracts
automate reward distribution based on engagement metrics, ensuring transparency and security.
Through detailed exploration and implementation using Android development tools, and Solidity
for smart contracts.

Keywords: Blockchain, Social Media, NFTs, Smart Contracts, ERC-20, ERC-721, Android
Development, MVVM Architecture, Solidity, web3;j.

Résumé

Ce mémoire de master se concentre sur la mise en ceuvre et I'évaluation de la fonctionnalité
"Viral Campaigns" dans I'application Punchword, une application de médias sociaux basée sur la
blockchain. Cette fonctionnalité fusionne les jetons non fongibles (NFT) avec des stratégies de
marketing viral. Elle permet aux entreprises de lancer des défis ou les utilisateurs créent des
publicités basées sur des NFT, en compétition pour des récompenses en Punchy, la cryptomonnaie
native de la plateforme. Les contrats intelligents automatisent la distribution des récompenses en
fonction des métriques d'engagement, assurant transparence et sécurité. A travers une exploration
détaillée et une implémentation utilisant des outils de développement Android et Solidity pour les
contrats intelligents.

Mots-clés : Blockchain, Plateforme de Medias Sociaux, NFT, Contrats Intelligents, ERC-20,
ERC-721, Développement Android, Architecture MVVVM, Solidity, web3j.

