

People's Democratic Republic of Algeria

Abou Bekr Belkaid University - Tlemcen

Faculty of Sciences

Department of Computer Science

Final study thesis for obtaining a Master's degree in Computer
Science

Option: Software Engineering

Subject

Viral Campaign Blockchain-Powered Ads:

Design & Implementation

Prepared by:

Baba Bendermel Houssam Eddine

Presented on June 25, 2024 before the jury composed of

Prof. Azeddine CHIKH President (University of Tlemcen)

Dr. Amine BELHOCINE Examiner (University of Tlemcen)

Dr. Salim ZIANI CHERIF

Mrs. Asma Ismail

Supervisor (University of Tlemcen)

Guest (Punchword)

Academic Year: 2023 - 2024

 بسم الله الرحمان الرحيم

وَأنََّ سَعْيهَُ سَوْفَ يرُى لِلِإنسَانِ إِلاَّ مَا سَعىَ وَأنَ لَّيْسَ “ ”

[41-38النجم:]

First of all, I am thankful to God Almighty for granting me the health, strength, and patience to

complete my graduation project. I am profoundly grateful to Almighty Allah for guiding me

through this journey.

Acknowledgments

This work was made possible thanks to Punchword and the opportunity they provided me to be

part of the team. I am grateful for the chance, experience, and their trust.

I would like to express my deep gratitude and warmest thanks to my supervisor Mr. Ziani-Cherif

Salim, for his guidance, and advice, and for the time he devoted to me during the development of

this work

Additionally, I would like to express my sincere gratitude to our CTO, Asma Smail, for all the

support, guidance, and knowledge that I have gained from her mentorship.

I am honored by the presence of Prof. Azeddine CHIKH Professor, who gave me the great honor

of accepting the presidency of my dissertation jury

I also thank Dr. Amine BELHOCINE for agreeing to examine this work and being part of the Jury.

Dedication
Glory to my dear parents for their patience and support during these years of study, and to my

dear brothers and my sister for their encouragement.

Thanks to my friends who stood beside me, and to those with whom I spent countless hours.

Finally, to anyone who has contributed to this memoir directly or indirectly, to all, I say

THANK YOU…

I

Table of Contents
Table of Figures... IV

List of Tables……………………………………………………………………………………VI

I. General Introduction .. 1

I.1. Project Context ... 2

I.2. Thesis Organization .. 2

II. Blockchain Basics .. 4

II.1. Introduction ... 5

II.2. Definition .. 5

II.3. Brief history of blockchain Development ... 5

II.4. Difference between blockchain and traditional database .. 6

II.5. How Blockchain Works .. 7

II.6. Components of Blockchain ... 11

II.6.1. Nodes .. 11

II.6.2. Blocks ... 12

II.6.3. Transactions ... 12

II.6.4. Wallets .. 13

II.6.4.1. public keys... 13

II.6.4.2. Private keys ... 13

II.6.4.3. Hardware Wallet ... 14

II.6.4.4. Software Wallet ... 14

II.6.5. Smart Contracts .. 15

II.6.6. Token .. 16

II.6.6.1. NFTs .. 16

II.6.6.2. ERC-20 Tokens ... 16

II.6.6.3. ERC-721 Tokens ... 17

II.7. Conclusion ... 18

III. Project Conception.. 19

III.1. Introduction .. 20

II

III.2. Use-case diagram ... 20

III.3. Sequence diagrams... 21

III.3.1. Create a challenge ... 21

III.3.2. Create a team... 23

III.3.3. Accept a team invitation ... 24

III.3.4. Participate in a challenge .. 26

III.4. Class diagram ... 28

III.5. Conclusion ... 28

IV. Project Implementation .. 29

IV.1. Introduction.. 29

IV.2. Tools and technologies used .. 30

IV.2.1. Android Studio.. 30

IV.2.2. Remix Ide.. 30

IV.2.3. Github ... 30

IV.2.4. FireBase .. 31

IV.2.5. Kotlin .. 31

IV.2.6. Jetpack Compose .. 31

IV.2.7. Solidity .. 31

IV.3. System Architecture... 31

IV.3.1. Android Application ... 32

IV.3.1.1. Clean Architecture ... 32

● Data Layer ... 32

● Domain Layer .. 33

● Presentation/UI Layer ... 33

IV.3.1.2. Multi-module architecture ... 34

IV.3.2. Smart Contacts .. 34

IV.3.3. Connecting Android App to Blockchain .. 35

IV.3.4. FireBase .. 35

IV.4. User Experience ... 36

IV.4.1. Create Challenge ... 36

IV.4.1. Create Team .. 39

III

IV.4.1. Accept team Invitation .. 41

IV.4.1. Participate in a challenge .. 42

General Conclusion ... 44

References .. 46

IV

Table of Figures

I. General Introduction .. 1

II. Blockchain Basics .. 4

FIGURE II.1 - Comparison between a blockchain and a traditional database [6] 7

FIGURE II.2 - Comparison between a POS and POW .. 9

FIGURE II.3 - Add a new block to the blockchain .. 10

FIGURE II.4 - How do blockchain transactions work? .. 11

FIGURE II.5 - Blocks hashes in the Blockchain .. 12

FIGURE II.6 - The difference between a normal transaction and a transaction in the

blockchain ... 13

FIGURE II.7 - Smart wallet types ... 15

III. Project Conception.. 19

FIGURE III.1 - Use-case diagram .. 21

FIGURE III.2 - Sequence diagram - Create a challenge .. 23

FIGURE III.3 - Sequence diagram - Create a team .. 24

FIGURE III.4 - Sequence diagram - Accept a team invitation 25

FIGURE III.5 - Sequence diagram - Participate in a challenge 27

FIGURE III.6 - Class diagram .. 28

IV. Project Implementation .. 29

FIGURE IV.1 - Used Technologies .. 30

FIGURE IV.3 - Web3j connection between the blockchain and the Java app 35

FIGURE IV.4 - Cloud Tasks with Firebase Cloud Function\ 36

FIGURE IV.5 - Create challenge, Profile screens .. 37

FIGURE IV.6 - Create Challenge, data input screens .. 37

FIGURE IV.7 - Post creation screen... 38

FIGURE IV.8 - Create a Challenge, transaction, and feed screens 38

FIGURE IV.9 – Feed Screen .. 39

FIGURE IV.10 - Profiles team, profile screens .. 39

FIGURE IV.11 - Create a Challenge, team data input screens 40

V

FIGURE IV.12 - Create a challenge, transaction screens ... 40

FIGURE IV.13 - Accept team invitation, notification, and team presentation screens

... 41

FIGURE IV.14 - Accept team invitation, transaction screens 41

FIGURE IV.15 - participate in a challenge, feed, and participation type selection

screens ... 42

FIGURE IV.16 - Participate in a challenge, select a team screen 42

FIGURE IV.17 - participate in a challenge, create an NFT screen 43

FIGURE IV.18 - participate in a challenge transaction ... 43

VI

List of Tables

TABLE II.1 - Comparison between private and public keys.. 14

1

I. General Introduction
CONTENT

I.1. Project Context ... 2

I.2. Thesis Organization ... 2

2

I.1. Project Context

This master's thesis explores an innovative application of blockchain technology within the context

of a social media platform called Punchword. Developed by the company Punchword, where I

currently work as an Android developer, this platform merges the classic features of social media

with the unique capabilities of blockchain. Punchword is not just another social media platform; it

includes an NFT marketplace and leverages blockchain to enhance user engagement and digital

content ownership.

The focus of this thesis is on introducing and evaluating a novel feature within Punchword, termed

"Punchword Viral Campaigns." This feature combines the creation of advertisements with Non-

Fungible Tokens (NFTs), leveraging blockchain to facilitate transparent and secure viral marketing

campaigns. Companies can launch a Viral Campaign by creating challenges on the Punchword

platform, prompting users to submit their ad designs as NFTs. These challenges foster a

competitive environment where users can earn rewards in the platform's native cryptocurrency,

Punchy. The "Punchword Viral Campaigns" feature acts like an Influencer's Marketplace, enabling

advertisers to set challenge rules through smart contracts, which automatically enforce reward

distribution based on predefined criteria. Influencers participate by creating and minting NFTs,

with winners selected based on engagement metrics such as likes, comments, and shares. This

integration ensures a transparent, secure, and engaging platform for both advertisers and

influencers, leveraging blockchain's capabilities to revolutionize digital marketing.

I.2. Thesis Organization

This thesis is organized into several chapters. The first chapter, Blockchain Basics, lays the

foundation by introducing blockchain, defining its key concepts, and tracing its historical

development. It also contrasts blockchain with traditional databases, explaining the distinct

advantages and functionalities of each. This chapter further delves into the mechanics of how

blockchain operates, covering essential components such as nodes, blocks, transactions, wallets

(including public and private keys), smart contracts, and tokens, with specific attention to ERC-20

and ERC-721 standards. This foundational knowledge sets the stage for the detailed exploration

of the project.

The second chapter focuses on the Project Conception and Design. It will elaborate on the

development and integration of the "Punchword Viral Campaigns" feature within the Punchword

platform. This chapter includes detailed diagrams and models illustrating the system architecture,

workflow, and interactions between various components.

In the third chapter, "Implementation of the Punchword System," we first present the various tools

and technologies chosen for realizing our system with the desired outcomes (Android, Solidity,

etc.). We then describe the overall architecture used to develop the app (MVVM), and also how to

3

connect the mobile app with the blockchain smart contract using the web3j library, and how that

works. Finally, we show screenshots that demonstrate the user experience of each part of the "Viral

campaigns.".

4

II. Blockchain Basics

CONTENT

II.1. Introduction ... 5

II.2. Definition .. 5

II.3. Brief history of blockchain Development ... 5

II.4. Difference between blockchain and traditional database .. 6

II.5. How Blockchain Works .. 7

II.6. Components of Blockchain ... 11

II.6.1. Nodes .. 11

II.6.2. Blocks ... 12

II.6.3. Transactions ... 12

II.6.4. Wallets .. 13

II.6.4.1. public keys... 13

II.6.4.2. Private keys ... 13

II.6.4.3. Hardware Wallet ... 14

II.6.4.4. Software Wallet ... 14

II.6.5. Smart Contracts .. 15

II.6.6. Token .. 16

II.6.6.1. NFTs .. 16

II.6.6.2. ERC-20 Tokens ... 16

II.6.6.3. ERC-721 Tokens ... 17

II.7. Conclusion ... 18

5

II.1. Introduction

Blockchain technology has emerged as a revolutionary force in the world of digital transactions

and data management. Originally conceptualized as the underlying architecture for Bitcoin,

blockchain has since evolved far beyond its initial use-case.

This chapter aims to provide a comprehensive overview of blockchain technology, setting the stage

for a deeper exploration of its components, functionalities, and implications.

II.2. Definition

Blockchain is a distributed network technology that securely records transactions across a network

of computers, making it difficult to alter, hack, or manipulate the system. It’s most commonly

associated with Bitcoin, a popular cryptocurrency that uses blockchain technology, for data

storage, validation, and security. It consists of a series of blocks, each containing transaction data,

a timestamp, and a cryptographic hash of the previous block, forming a chain of data. Once a

transaction is recorded on a block, it cannot be retroactively changed without altering all

subsequent blocks, ensuring the immutability of the data. [1] [2]

Key characteristics of blockchain include decentralization, transparency, and cryptographic

security. Participants in the network collectively maintain and validate the blockchain, eliminating

the need for a central authority. Transactions are added to the blockchain through a consensus

mechanism, where network participants agree on the validity of new blocks.[1] [2]

In summary, blockchain is a revolutionary technology that enables secure, transparent, and

decentralized recording and verification of digital transactions, offering a new level of trust and

efficiency in various sectors.

II.3. Brief history of blockchain Development

Blockchain technology has a rich history that spans several decades. The concept of blockchain

was first described in 1991 by research scientists Stuart Haber and W. Scott Stornetta, who aimed

to introduce a computationally practical method for timestamping digital documents. However,

the blockchain as we know it today was launched in January 2009 along with the associated

cryptocurrency, Bitcoin, by the anonymous person or group known as Satoshi Nakamoto. [3]

Before Nakamoto's work, there were decentralized databases and blockchain-like systems. For

instance, David Chaum, a doctoral candidate at the University of California at Berkeley, outlined

a blockchain database in 1982. Chaum's work was not specifically designed to support digital

currencies, but it provided the groundwork for future advancements. [3]

6

Nakamoto's innovation was the addition of the Bitcoin proof-of-work consensus mechanism for

validating data blocks, which was outlined in the Nakamoto research paper. This mechanism

allowed for the creation of a decentralized, peer-to-peer electronic cash system. [4]

The early years of blockchain were closely tied to the development of Bitcoin, with the two terms

often being used interchangeably. However, as the technology evolved, blockchain began to

separate from Bitcoin, and its potential uses expanded beyond digital currency. In 2014, Ethereum

was established, introducing the concept of smart contracts, which will be explained in detail later

[II.6.5], and further expanding the possibilities of blockchain technology. [3]

Today, blockchain is known for its security, immutability, traceability, and transparency, making

it a viable alternative to traditional methods of conducting business and individual transactions. Its

applications have grown, and more applications using blockchain technology are entering the

public domain. Examples include the Brave browser and Ethlance, a freelancing platform.

II.4. Difference between blockchain and traditional database

A blockchain differs significantly from a traditional database in several key aspects. Blockchains

are decentralized, meaning no single authority controls the data; instead, network participants

collectively maintain and validate the blockchain. In contrast, traditional databases are centralized,

with a designated authority controlling access and modifications to the data. One of the features of

a blockchain is its immutability: once data is added to the chain, it cannot be altered or deleted.

Conversely, data in traditional databases can be modified or deleted by authorized parties, such as

the database administrator. Transparency is another distinguishing feature; blockchains are highly

transparent, with all transactions visible to network participants, whereas traditional databases

have lower transparency, with access and visibility controlled by the central authority. Data

integrity is inherently strong in blockchains due to their cryptographic underpinnings, ensuring

that data remains secure and unaltered once recorded. In traditional databases, while data integrity

can also be high, it relies heavily on access controls and management policies to maintain security.

[5]

However, blockchains tend to have slower transaction speeds due to the consensus mechanism

required to add new blocks, whereas traditional databases are faster as they don't require consensus

for every transaction. When it comes to cost, blockchains often incur higher costs, particularly due

to the significant energy consumption required for mining and maintaining the network. This

energy consumption is a notable problem, raising concerns about the environmental impact of

blockchain technology. Cryptography plays a crucial role in both systems, but it is fundamental to

blockchain, providing security and trust without a central authority. [6]

That comparison would help us better understand the upcoming points that we'll discuss later in

the thesis.

7

FIGURE II.1 - Comparison between a blockchain and a traditional database [6]

II.5. How Blockchain Works

Blockchain is a decentralized, distributed digital ledger that records transactions across many

computers in a network. When a user or node initiates a new transaction, such as a cryptocurrency

transfer or execution of a smart contract, the transaction request is broadcasted to all nodes in the

peer-to-peer network. These nodes, often called miners or validators, perform checks to verify that

the transaction is valid according to the blockchain's predetermined rules and consensus protocol.

This validation process prevents invalid transactions from being added to the blockchain. [7]

8

Once validated, the transaction is grouped together with other valid transactions into a new block

of data. This block also contains a reference to the previous block in the chain, known as the

"previous block hash," creating an immutable link between them. To add this new block to the

existing blockchain, the nodes must reach consensus on its validity through a consensus

mechanism like Proof-of-Work (PoW) or Proof-of-Stake (PoS). [7]

In PoW, used by Bitcoin, miners/validators compete to solve a complex cryptographic puzzle, with

the winner getting to add a new block and earn rewards. In PoS, used by Ethereum

implementations, validators stake/lock/hold their coins. Unlike Proof-of-Work, which requires

solving complex puzzles, PoS relies on validators' stakes to decide who gets to add the next block.

The more coins a validator stakes, the higher their chances of being selected. [8]

This method (POS) is better, especially when it comes to energy efficiency, because not all nodes

will be working and only one will get the reward, but rather one will be selected and will get it

reward. This reward is also called gas fees, and they are calculated based on the computational

effort required and the user's willingness to pay. These fees help regulate network activity and

incentivize validators to maintain the blockchain. [8]

9

FIGURE II.2 - Comparison between a POS and POW [8]

After consensus is reached, the new validated block is appended to the existing blockchain across

all nodes in an irreversible and immutable manner. The block's data cannot be altered retroactively

without redoing the work for all subsequent blocks and gaining consensus from the network again.

The updated blockchain, with the new block added, is then propagated and synchronized across

10

all nodes in the network, ensuring each node maintains a full copy of the blockchain, creating a

decentralized, distributed ledger. [7]

FIGURE II.3 - Add a new block to the blockchain

The transparency and immutability of the blockchain are key security features. Any node or user

can independently verify the validity of transactions and the state of the blockchain by following

the chain of cryptographic hashes from the latest block all the way back to the first (Genesis) block.

A cryptographic hash serves as a unique identifier for each block in a blockchain. It's like an "ID"

or a "fingerprint" of the block's data. This hash is generated using a cryptographic hash function,

which takes the block's data as input and produces a fixed-size string of characters as output. [10]

This combination of decentralization, cryptographic hashing, consensus mechanisms, and an

immutable ledger allows blockchain networks to operate in a trustless manner without a central

authority, while maintaining data integrity and transparency across the distributed system.

11

FIGURE II.4 - How do blockchain transactions work? [9]

II.6. Components of Blockchain

In the evolving landscape of digital technology, blockchain operates through a complex interplay

of various components, each playing a crucial role in maintaining its integrity and functionality.

Understanding these components is essential to grasping how blockchain technology works and

the diverse applications it supports.

II.6.1. Nodes

Nodes are individual computers that participate in the blockchain network, each playing various

roles in maintaining and securing the system and performing functions various, and they can be

categorized into 4 main types: [11]

● Full nodes store the entire blockchain, verify all transactions and blocks, and ensure the

network's security and integrity.

● lightweight nodes store only a subset of the blockchain, typically just the block headers,

and rely on full nodes for transaction validation.

● Mining nodes participate in the creation of new blocks by solving complex cryptographic

puzzles (proof of work) or validating transactions (proof of stake).

● validator nodes, specific to proof-of-stake networks, validate transactions and propose new

blocks.

12

In summary, nodes validate transactions and blocks, maintain the blockchain, and participate in

consensus mechanisms to add new blocks.

II.6.2. Blocks

Blocks, on the other hand, are the building units of the blockchain, containing a set of verified

transactions and forming the immutable ledger (a blockchain).

Each block contains The data stored inside the block depending on the type of the blockchain. The

bitcoin’s blockchain for example stores the details about the transaction here such as the sender,

the receiver, and the amount of coins. A block also has a hash man can think of it like a fingerprint.

It identifies a block and all of its contents and it’s always unique just like a fingerprint. The third

element inside each block is the hash of the previous block. This effectively creates a chain of

blocks. And it's this technique that makes a blockchain so secure. [12]

FIGURE II.5 - Blocks hashes in the Blockchain

II.6.3. Transactions

Transactions represent the fundamental interactions within a blockchain network, such as

transferring digital assets, recording data, or executing smart contracts.

Each transaction contains information like the sender's address, recipient's address, amount,

timestamp, and a digital signature for authentication. [13]

13

FIGURE II.6 - The difference between a normal transaction and a transaction in the blockchain

II.6.4. Wallets

Wallets are used to store cryptocurrency and interact with the blockchain network.

They use public and private key pairs for security and privacy. [14]

II.6.4.1. public keys

A public key is a cryptographic code that allows users to receive cryptocurrency transactions. It is

shareable and acts as an address for sending funds to a wallet.

Public keys are used to receive transactions and are visible to all users in the network. They are

like an account number that uniquely identifies a wallet.

Public keys can be freely shared without compromising security, as they only allow others to send

funds to the wallet. [15]

II.6.4.2. Private keys

A private key is a secret code that grants ownership and control over the funds associated with a

public address. It should be kept confidential at all times.

Private keys are used to prove ownership and spend cryptocurrency funds. They are crucial for

signing transactions and accessing wallet balances securely.

14

Private keys should never be shared with anyone, as they provide total control over the associated

funds. Losing a private key can result in the loss of access to the wallet and its contents. [15]

Criteria Public Key Private Key

Ownership Publicly owned Privately owned

Accessibility Open to everyone Restricted access

Security Impossible to lose as it is in

the public domain

Easy to lose if carelessly

stored

Low risk if lost, as they are

meant to be shared.

Low risk if lost, as they are

meant to be shared.

High risk if lost, as it results

in the loss of access to the

wallet and its contents.

usage Used to receive transactions

and uniquely identify a

wallet.

Used to sign transactions and

access wallet balances

securely.

TABLE II.1 - Comparison between private and public keys

Smart wallets came in 2 types mainly, hardware and software wallets:

II.6.4.3. Hardware Wallet

Hardware wallets, also known as cold wallets, provide offline storage for your cryptocurrency

keys. They often resemble USB devices, although paper-based versions also exist, where the

public and private keys are printed on paper. These wallets are highly regarded by investors for

their security, as being offline minimizes hacking risks. However, they are not without their own

risks, such as physical loss or theft.

You may ask, "If it's offline, how would a person be able to access the blockchain?" When we say

"offline," we mean that the private key is stored offline inside the hardware. When a user wants to

perform a transaction, it typically comes with companion software or applications that allow users

to interact with the blockchain and authorize transactions. That software will then use the private

key to sign the transaction, and the transaction will not be stored anywhere else online by any

means. [14]

II.6.4.4. Software Wallet

Software wallets, also known as hot wallets, work like online bank accounts and are usually linked

to a cryptocurrency exchange, offering user-friendly interfaces. Their introduction has played a

significant role in making cryptocurrency accessible to the general public. There are different types

of software wallets, each with distinct usage methods.

15

Desktop wallets involve downloading software to your computer. Alternatively, mobile

applications are available for accessing your wallet on a smartphone or directly through the web.

While software wallets provide convenience and easy access, they are connected to the internet,

making them susceptible to hacking and private key theft. This connectivity raises the risk of

exposure to cyber threats.[14]

FIGURE II.7 - Smart wallet types [14]

II.6.5. Smart Contracts

Smart contracts are self-executing digital contracts stored on a blockchain that automatically

enforce the terms of an agreement between parties. They are computer programs that run when

predetermined conditions are met, eliminating the need for intermediaries and manual processing.

Smart contracts are similar to real-world contracts, but they are completely digital. In fact, a smart

contract is a small computer program that is stored within a blockchain. Smart contracts can help

you exchange money, property, or anything of value in a transparent and conflict-free way, all

while avoiding the services of a middleman. [16]

16

For example, if a renter were to rent an apartment from a landlord, the transaction could be

conducted using blockchain technology by paying in cryptocurrency. The renter would receive a

receipt, which is stored in a virtual contract. The landlord would then provide a digital entry key

by a specified date. If the key doesn't arrive on time, the blockchain releases a refund to the renter.

If the landlord sends the key before the rental date, the system holds it, releasing both the payment

to the landlord and the key to the renter when the rental date arrives. The system operates on an if-

then premise and is verified by hundreds of nodes in the blockchain, ensuring a faultless delivery.

In this scenario, if the landlord gives the key, the landlord is sure to be paid, and if the renter sends

a certain amount of cryptocurrency, they receive the key. The document is automatically canceled

after the paid-for time has elapsed, and of course, the code cannot be changed because it is on the

blockchain.

II.6.6. Token

A token in the context of blockchain and cryptocurrency is a digital asset that represents value or

utility on a blockchain network. Created through smart contracts on platforms like Ethereum,

tokens have defined properties, functionalities, and distribution rules, such as name, symbol, and

total supply. These tokens can be transferred between addresses, facilitating peer-to-peer

transactions. They serve various purposes, including payments, access to services, voting rights,

and ownership representation. Tokens also interact with decentralized applications (dApps) and

other smart contracts, enhancing their utility within the blockchain ecosystem. Notable standards

for tokens include ERC-20 and ERC-721, which specify how tokens should function and interact

on the Ethereum network. [17]

Before we get into the details of both tokens it’s essential to first explain what an NFT

II.6.6.1. NFTs

An NFT, or non-fungible token, is a type of digital asset that represents ownership or proof of

authenticity of a unique item or piece of content. Unlike cryptocurrencies such as Bitcoin or

Ethereum, which are fungible and can be exchanged on a one-to-one basis, NFTs are distinct and

cannot be exchanged on a like-for-like basis due to their unique attributes. Each NFT contains

metadata that distinguishes it from other tokens, including information about the asset it represents,

such as its title, creator, and characteristics. This uniqueness and verifiable ownership make NFTs

particularly valuable for digital collectibles, art, gaming assets, and other unique creations in the

digital realm. [19]

II.6.6.2. ERC-20 Tokens

ERC-20 tokens are fungible tokens that follow a specific standard on the Ethereum blockchain. As

mentioned earlier, a token is created as a smart contract, and by following this standard, it adheres

17

to specific functions and properties. Man can think of it as an interface containing specific variables

and functions.

the main and most important variables in that interface are:

● Name: The name of the token (e.g., "PunchyToken").

● Symbol: The symbol representing the token (e.g., "PNCH").

● Total Supply: The total number of tokens that will ever exist.

The most important functions are:

● BalanceOf: A function that provides the number of tokens held by a specific address.

● Transfer: A function that allows the transfer of tokens from one address to another.

● TransferFrom: A function that allows a smart contract to transfer tokens on behalf of the

token owner.

● Approve: A function that allows a token owner to approve another address to spend tokens

on their behalf.

● Allowance: A function that provides the number of tokens that an owner allows another

address to spend on their behalf.

When you create an ERC-20 token, you inherit from this interface and set specific variables. You

can also modify some functions inherited from the interface. This standardization allows different

ERC-20 tokens to work together seamlessly since they operate in the same way. ERC-20 tokens

are compatible with each other and can be managed by the same wallet, traded on the same

exchanges, and interact with the same decentralized applications (dApps) and smart contracts. This

interoperability is a key advantage of the ERC-20 standard, enabling a cohesive environment for

various digital assets and utilities. They are commonly used for cryptocurrencies, utility tokens,

and other fungible digital assets. Each ERC-20 token is interchangeable and equal in value to

another token of the same type, much like regular coins that are all the same and can be divided

into smaller pieces. These tokens can interact with various applications and smart contracts on the

blockchain, enhancing their utility and integration within the Ethereum ecosystem. [18]

II.6.6.3. ERC-721 Tokens

ERC-721 tokens, again it's also standard but unlike their fungible counterpart ERC-20, they are

used to represent non-fungible assets on the Ethereum blockchain, adhering to a distinct standard.

Each ERC-721 token is unique and indivisible, making it ideal for representing ownership or

uniqueness of digital or physical assets such as digital collectibles, real estate, artwork, or in-game

items. Before proceeding further.

when creating an ERC-721 token, same thing as the ERC-20 there is an interface that is the

standard, that should be inherit, and it’s main components are:

Variables:

● name: A descriptive name for a collection of NFTs in this contract (e.g., "Punchy NFT").

● symbol: An abbreviated name for NFTs in this contract (e.g., "PNCH_NFT").

18

● totalSupply: The total number of NFTs tracked by this contract.

● ownerOf: Mapping from token ID to the owner's address.

● balanceOf: Mapping from owner address to the number of tokens they own.

● tokenURI: A mapping from token ID to a URL or other identifier for the token's metadata.

Function:

● balanceOf: Returns the number of NFTs owned by a given address.

● ownerOf: Returns the owner of the specified token ID.

● safeTransferFrom: Safely transfers the ownership of a given token ID to another address.

If the target address is a contract, it must implement onERC721Received to accept the

transfer.

● transferFrom: Transfers the ownership of a given token ID to another address. The caller

is responsible to confirm that the recipient is capable of receiving NFTs or else they may

be permanently lost.

● approve: Approves another address to transfer the given token ID, on their behalf.

● getApproved: Gets the approved address for a single NFT.

● setApprovalForAll: Approves or removes an operator. Operators can transfer any token

owned by the sender.

● isApprovedForAll: Returns if the operator is allowed to manage all of the assets of the

owner.

Unlike ERC-20 tokens, which are interchangeable and equal in value, ERC-721 tokens have

distinct characteristics, allowing for differentiation between individual tokens. While ERC-20

tokens are commonly used for transactions and utility within the Ethereum ecosystem, ERC-721

tokens excel in representing ownership and uniqueness, opening up new possibilities in gaming,

digital art, and asset tokenization. These tokens can be stored in compatible Ethereum wallets and

traded on platforms supporting non-fungible tokens (NFTs), enabling collectors and creators to

buy, sell, and showcase unique digital assets with verifiable ownership on the blockchain.

Additionally, ERC-721 tokens can interact with decentralized applications (dApps) and smart

contracts, allowing for innovative use-cases such as decentralized marketplaces, tokenized assets,

and provably rare digital collectibles. [18]

II.7. Conclusion

In this chapter, we provided an introduction to blockchain technology, defining its core principles

and exploring its historical development. We compared blockchain with traditional databases,

highlighting the key differences in decentralization, immutability, transparency, speed, data

integrity, cost, and cryptography. We also introduced the main components of a blockchain system,

including nodes, blocks, transactions, wallets, smart contracts, and tokens, detailing their roles and

functionalities within the network. This foundational understanding sets the stage for deeper

exploration of blockchain's applications and implications in the subsequent chapters

19

III. Project Conception
CONTENT

III.1. Introduction .. 20

III.2. Use-case diagram ... 20

III.3. Sequence diagrams... 21

III.3.1. Create a challenge ... 21

III.3.2. Create a team... 23

III.3.3. Accept a team invitation ... 24

III.3.4. Participate in a challenge .. 26

III.4. Class diagram ... 28

III.5. Conclusion ... 28

20

III.1. Introduction

This chapter delves into the project's conceptualization, outlining the core functionalities and

system interactions. We begin by exploring the use-case diagram to visualize the actors and their

interactions with the system. Following this, sequence diagrams illustrate specific scenarios:

creating a challenge, forming a team, and participating in a challenge. Finally, a class diagram will

be presented to illustrate the system's objects and their relationships.

III.2. Use-case diagram

The Use-case diagram describes the interdependence between our Punchword application and the

actor by identifying the user's needs and everything the app must do for the user specifically in in

the viral Campaign functionality. Below is the use-case diagram defining the main actions

performed by the user in our system.

Use-cases:

Create a challenge: In order to create a challenge or launch a viral campaign, a user must be a

punchy token holder, which means they need to have a minimum amount of punchy tokens in their

wallet. Once this requirement is met, the user can proceed to create the challenge.

Creating a team: Users can initiate the creation of a team and invite people to join their team, and

the one who creates the team will be set as an admin.

Accepting a team invitation: Once a user creates a team, the invited members will receive a

notification to confirm their joining and become official members of the team.

Explore the Challenges: Any user can browse through the challenges available on the platform,

either in their feed or by using the explore feature.

View Participations: Users can check out the participations published on the platform by other

users, either in the feed or through the explore feature.

Participate in a Challenge: Users can join any challenge published on the platform, either as a

team or individually. To participate, they first need to create an NFT of the piece of art they want

to enter.

View Teams in the Profile: Users can access the teams they're part of, either as a member or as

an admin, in their profile.

Note: To avoid repetition, we have not included the 'authenticate' use-case in this diagram, but it

is still used in our software solution.

21

FIGURE III.1 - Use-case diagram

III.3. Sequence diagrams

III.3.1. Create a challenge

In order for a user to create a challenge or launch a viral campaign, they must first be a holder of

punchy tokens, meaning they should have a minimum amount of punchy tokens in their wallet. If

not we redirect the user to the main screen, Once this condition is met, the user can enter all the

22

required information to create a challenge, including the number of winners, the prize for each

position (which can be specified individually or by range, for example, between 1st and 5th place

will get 100 PUNCH and the rest will get 50 PUNCH), as well as the registration deadline and the

announcement date. and then present it in a post. After that, the user will need to perform two

transactions. The first transaction allows the smart contract to use the total prize amount provided

by the user so that when it's time to select the winner, the smart contract can automatically send

the money to the winners from the challenge creator, this transaction will be a call for the Allow

function in the Punchytoken smart contract. The second transaction involves calling the

createChallenge function from the smart contract, this transaction will be the call to the function

CreateChallenge in the Challenge smart contract.

Once the challenge is created, we'll have a Firebase Cloud Function running in the background

that gets triggered each time when a new challenge is created in the Firestore database. This

function will schedule another function to be called at the announcement date to carry out the

transactions. This scheduled function will then call the endChallenge function from the Challenge

smart contract, which is responsible for selecting the winners, sending the prizes, and closing the

challenge.

We need the Firebase Cloud Function because the interactions with the teams are not directly

available in the blockchain, but rather in the Firestore database. Therefore, this cloud function will

retrieve the interactions for each post of each participant in the specific challenge and send it to

the blockchain within the transaction to pick a winner.

23

FIGURE III.2 - Sequence diagram - Create a challenge

III.3.2. Create a team

Users have the ability to create teams for participating in challenges. To do this, they first select

the members to invite and then determine the share of the winnings that each member will receive.

These shares will be used for any future challenge that the team participates in. For example, one

user may receive 40% of the prize while another receives 30%. Once the shares are decided, the

24

transaction that called the function CreateTeam from the team smart contract is performed on the

blockchain. After the team is successfully created, invite notifications are sent to all selected users.

FIGURE III.3 - Sequence diagram - Create a team

III.3.3. Accept a team invitation

Once a user creates a team, all the selected members will receive a notification asking them to

confirm their acceptance to the team. This confirmation will be recorded in the blockchain. When

a user accepts an invite, they will need to perform a transaction by calling the acceptTeam function

from the Teams smart contract.

25

FIGURE III.4 - Sequence diagram - Accept a team invitation

26

III.3.4. Participate in a challenge

Once the user finds a challenge that interests them, they have two options: they can participate

individually or with a team.

When the user decides to participate with a team, the system will only display the teams of which

they are an admin and where all members have accepted the invitation.

In both cases, whether individually or as a team, the user must first create an NFT for the piece of

art they intend to use, and that by performing the transaction to mint the NFT.

Next, they'll need to perform a transaction that allows the smart contract to transfer the NFT on

their behalf. So that at the end if they will be one of the winners, the smart contract will transfer

their NFT to the challenge creator, making them the owner.

Finally, they can use the NFT to execute the transaction required to participate in the specific

challenge. By calling one of two functions, either "participateIndividually" or

"participateAsTeam" from the Challenge smart contract.

27

FIGURE III.5 - Sequence diagram - Participate in a challenge

28

III.4. Class diagram

Here we display each element of the Viral Campaign feature as a class with attributes that help

them work together. It includes a total of 5 classes. Each of these classes has attributes that allow

each instance to be identified or categorized.

FIGURE III.6 - Class diagram

III.5. Conclusion

Throughout this chapter, we have presented the design of our project using all necessary UML

diagrams to help us better understand the feature and how it works. In the next chapter (Project

Implementation), we will describe the tools and technologies used, explain the code architectures,

demonstrate how the entire system works together, and showcase the interfaces of our feature.

29

IV. Project Implementation
CONTENT

IV.1. Introduction.. 29

IV.2. Tools and technologies used .. 30

IV.2.1. Android Studio.. 30

IV.2.2. Remix Ide.. 30

IV.2.3. Github ... 30

IV.2.4. FireBase .. 31

IV.2.5. Kotlin .. 31

IV.2.6. Jetpack Compose .. 31

IV.2.7. Solidity .. 31

IV.3. System Architecture... 31

IV.3.1. Android Application ... 32

IV.3.1.1. Clean Architecture ... 32

● Data Layer ... 32

● Domain Layer .. 33

● Presentation/UI Layer... 33

IV.3.1.2. Multi-module architecture ... 34

IV.3.2. Smart Contacts .. 34

IV.3.3. Connecting Android App to Blockchain .. 35

IV.3.4. FireBase .. 35

IV.4. User Experience ... 36

IV.4.1. Create Challenge ... 36

IV.4.1. Create Team .. 39

IV.4.1. Accept team Invitation .. 41

IV.4.1. Participate in a challenge .. 42

30

IV.1. Introduction

Our project involved two key components: developing the Viral Campaign functionality for the

Punchword Android app and creating smart contracts.

This chapter will delve into each element of the viral campaign, explaining its purpose and

responsibilities.

IV.2. Tools and technologies used

FIGURE IV.1 - Used Technologies

IV.2.1. Android Studio

An integrated development environment (IDE) specifically designed for building Android apps. It

includes tools for coding, debugging, testing, and deploying apps. Think of it as a workbench with

all the tools you need to build an Android house. [20]

IV.2.2. Remix Ide

From writing to deployment, Remix is a one-stop shop for building Ethereum smart contracts.

This versatile toolset caters to both learners and experienced developers. [21]

IV.2.3. Github

A popular version control system and hosting platform for software development projects. It

allows developers to track changes, collaborate on code, and share projects publicly or privately.

Think of it as a central storage unit for your project files with version control. [22]

31

IV.2.4. FireBase

A platform from Google that provides backend services for mobile and web apps. It offers features

like authentication, databases, cloud storage, cloud functions, and analytics. Imagine it as a set of

pre-built tools you can integrate into your app to handle things like user logins and data storage.

We chose Firebase because, on top of being easy to use, it offers a comprehensive set of tools for

backend development. Here are the main ones we used in our project:

● Firebase Authentification: This service manages user authentification and supports

various sign-in methods, such as email/password and Google sign-in. It ensures secure user

access and management. [24]

● Firebase Firestore: This real-time NoSQL database stores user data, campaign details,

and engagement metrics. [25]

● Firebase Storage: We use this service to securely store media files in the cloud. It

integrates seamlessly with Firestore, allowing efficient data management and retrieval. [26]

● Cloud Functions: These serverless functions handle backend logic, such as triggering

events based on database changes or managing complex workflows that require interaction

between the Android app and the blockchain. [27]

IV.2.5. Kotlin

A modern programming language specifically for Android development, Kotlin is known for being

concise, safe, and interoperable with Java. Created by Google, the same company that owns the

Android Operating System, Kotlin is the best technology to use if your goal is to build a scalable,

fast, and well-optimized Android app. [28]

IV.2.6. Jetpack Compose

A new UI framework for building user interfaces in Android apps, created and officially supported

by Google. It uses a components style for composing UI elements, making it easier to create

complex, reusable, and dynamic layouts. [29]

IV.2.7. Solidity

A programming language specifically designed for writing smart contracts, which are self-

executing contracts stored on a blockchain. [30]

IV.3. System Architecture

we delve into the system architecture of the Punchword platform, detailing the frameworks and

architecture utilized in its development. The architecture is divided into three primary components:

32

the Android application, the blockchain integration, and the backend services managed through

Firebase.

IV.3.1. Android Application

The Android part of the Punchword employs a multi-module architecture combined with Clean

Architecture principles. This structure enhances the scalability and maintainability of the

application by clearly separating concerns into distinct layers and modules, let’s explain each one

of those in detail.

IV.3.1.1. Clean Architecture

The goal of using this Architecture is to divide our code into 3 layers, these layers are Data, Doain,

and Presentation/UI. So let’s go through these step by step and understand what these layers

actually contain.

FIGURE IV.2 - The Clean Architecture [31]

● Data Layer

Let's start with the Data layer, which is the easiest to understand because its name clearly indicates

its contents. It includes database implementations, API implementations, preferences, local

33

databases, and third-party providers that communicate with remote services. In our case, we have

Firebase and Web3j, both of which we'll discuss shortly. These are the types of things that belong

in our data layer.

Another job of the data layer is what is called mappers, mappers are a key concept of clean

architecture. They take database entities (objects saved in the database) and DTO objects (Kotlin

representation of a JSON response, obtained from an API), and transform them into a unified data

class. This unified class will be explained in more detail when we discuss the domain layer, making

it easier to work with these classes.

● Domain Layer

The Domain Layer serves as the middle layer of the architecture, with two primary responsibilities.

Firstly, it houses the business logic, in the form of "Use-Cases." A Use-Case is essentially a class

that performs a single function. For example, the use-case for creating a team would involve

actions such as retrieving the wallets of the selected members, executing the team creation

transaction, creating the team object in Firebase, and sending each member an invitation

notification. It's important to note that calls to Firebase and blockchain transactions or any kind of

remote services are defined in the data layer as functions in the repository class.

Secondly, the Domain Layer contains the Model classes, which are a combination of entities and

DTO classes, or other types of classes. These model classes do not necessarily need to originate

directly from our data layer. Another way to think about a model is as a class that represents a data

type, for example, we have Team, Challenge, User, etc. so it’s a class that holds data that we can

also easily later use in our presentation layer to show the data that we need to show

● Presentation/UI Layer

This will be the final layer in our clean architecture, the Presentation layer. It is used to present

something to the user in the form of a user interface (UI). In the end, it will contain our composable

if we use Jetpack Compose, and if we use XML, it will contain fragments and activities, and in

both cases, we’ll have viewModels.

The ViewModel is considered the presenter. Its job is not to contain the business logic but to call

the use-cases from the domain layer and map the result to the UI state. The UI will then observe

that state.

Why do we use these Use-Cases and call them from the ViewModel instead of directly writing the

business logic in the ViewModel? There are two reasons for that. First, it ensures that we don’t

have huge viewModels containing excessive business logic and code, which can make them hard

to read. Typically, we have a single ViewModel per screen, so this approach helps prevent them

from becoming overly complex. Second, it makes our code a lot more readable because we usually

give those use-cases very natural names. For example, a use-case class name would be

34

"SearchUser." You don’t have to be a genius to understand what this class does. If there is a new

member in the team and they take a look at the use-case packages, they'll quickly understand what

these classes contain and what kind of things a user is able to do in an app.

And one important note here, In the clean architecture, every layer can access the domain layer,

but the domain layer is the only one that connects the presentation and data. The presentation layer

should not have access to the data layer, and vice versa. [31]

IV.3.1.2. Multi-module architecture

This approach involves dividing the app into multiple Gradle modules using a "Layered-Feature

Modularization" strategy. For example, in the case of a social media app, we would have modules

for Messaging, Feed, and Viral Campaigns. Each of these modules would be further divided into

three sub-modules following the clean architecture (Data, Domain, Presentation). This approach

allows for easy reuse of a single feature and helps in work management by enabling separate teams

to work on different features without interfering with each other's work. Additionally, it helps keep

our modules smaller as we don't have all the feature code in a single module. This multi-module

architecture also leads to faster build times due to multi-threading in Gradle and the ability to

rebuild only the modules that have actually changed. Furthermore, it promotes code reusability,

allowing for easy export and implementation of modules in other projects.

So the project will contain the following modules:

● App Module: The entry point of the application, containing the main application logic and

UI.

● Feature Modules: Separate modules for each major feature (e.g., user profile, NFT

marketplace).

● Core Module: Contains shared utilities, base classes, and common resources.

Additionally, we will implement Clean Architecture Sub-Modules, consisting of three modules:

data, domain, and presentation. Each feature module will contain these sub-modules, following

the clean architecture principles we discussed earlier. [32]

IV.3.2. Smart Contacts

To develop the smart contracts, we used the Foundry framework. It's a comprehensive solution

for smart contract development using Solidity. With Foundry, you can manage your dependencies,

compile your project, run tests, and even deploy your smart contract directly using command lines.

Additionally, it allows you to interact with the chain from the command line and via Solidity

scripts. [33]

35

IV.3.3. Connecting Android App to Blockchain

We need to figure out how to interact with our smart contracts deployed on the blockchain. To do

this, we are using Web3j, which is a comprehensive Java library for working with Ethereum. Since

Kotlin can interact with Java, we have no issues in that regard. This library enables communication

between our Android application and the Ethereum blockchain, allowing the app to interact with

smart contracts and perform blockchain operations. It establishes a connection to an Ethereum

node, which can be a local node (like Ganache or Anvil) or a remote node (like Infura or a private

node). Then, it allows us to load and interact with deployed smart contracts by providing their

addresses and Application Binary Interface (ABI) definitions. [34]

FIGURE IV.3 - Web3j connection between the blockchain and the Java app [34]

IV.3.4. FireBase

We initially planned to create a social media platform based on the Blockchain. However, we

realized that not all functionalities should be fully decentralized. For example, it doesn't make

sense for users to pay gas fees for actions like posting an image or sending a message. To address

this, we decided to use a combination of Blockchain and a database. This also allows us to quickly

access data, as reading from the Blockchain can be slow at times. Additionally, data written to the

Blockchain cannot be edited or deleted. Therefore, when a user creates a team, we store that

information in our Firestore database. This way, we can retrieve the team information quickly,

providing a better user experience.

An important use case involved the use of Firebase cloud functions and cloud tasks to automate

the conclusion of a challenge. We couldn't finish the challenge directly from the smart contract

because the posts are saved in the Firestore database. This meant that in order for the smart contract

to choose a winner when the announcement date arrived, it needed to access our Firestore database

36

to retrieve the posts from the participants of a specific challenge, which is not possible. To work

around this, we created a Firebase cloud function that will be triggered each time a new challenge

document is created. This function will then retrieve the announcement date of the challenge

document and schedule an HTTP trigger using the cloud tasks. This would involve another HTTP

function being called automatically at a specific time, in our case, at the announcement date. This

last function would then retrieve all the participations of the challenge id, get the interactions (likes,

comments, shares) for each post from each participation, and then send this data along with the

challenge id to the blockchain by executing a transaction and calling the "endChallenge" function

from our challenge smart contract. This "endChallenge" function would then determine the winner

based on the reach and send the prize to each winner.

FIGURE IV.4 - Cloud Tasks with Firebase Cloud Function\

IV.4. User Experience

IV.4.1. Create Challenge

- From the profile screen, the user can access the general viral campaign from the bottom

navigation bar

37

FIGURE IV.5 - Create challenge, Profile screens

- After that, the user will need to enter the required information: the number of winners, the

prize for each position, as well as the registration deadline, and the announcement date.

FIGURE IV.6 - Create Challenge, data input screens

38

- Then the user must create a post that will be displayed in the feed.

FIGURE IV.7 - Post creation screen

- As a last step, the transaction price screen will be displayed. The user will need to

confirm the transaction by entering their wallet password.

FIGURE IV.8 - Create a Challenge, transaction, and feed screens

39

- Once the transaction is successfully completed, they will be redirected to the main screen.

FIGURE IV.9 – Feed Screen

IV.4.1. Create Team

- You can access all your teams and create a new team on the viral campaign screen.

FIGURE IV.10 - Profiles team, profile screens

40

- The user will need to enter a name and upload an image for the team's identity. After that,

they can select the members they want to invite and specify the share for each of them.

FIGURE IV.11 - Create a Challenge, team data input screens

- As a final step, they’ll have to complete the transaction by entering their password.

FIGURE IV.12 - Create a challenge, transaction screens

41

IV.4.1. Accept team Invitation

- When invited, users can accept by clicking "join group" after receiving a notification.

FIGURE IV.13 - Accept team invitation, notification, and team presentation screens

- As a final step, they’ll have to complete the transaction by entering their password.

FIGURE IV.14 - Accept team invitation, transaction screens

42

IV.4.1. Participate in a challenge

- Once a user finds a challenge that interests them, they can click on the participate button and

begin by selecting the participation type (Individual or Team).

FIGURE IV.15 - participate in a challenge, feed, and participation type selection screens

- If they choose to participate, they must select a team to join. The screen will only display

teams for which the user is an admin, and all invited members have accepted the invitation.

FIGURE IV.16 - Participate in a challenge, select a team screen

43

- Then the user has to enter the NFT information (the piece of art, its title, and the

description).

FIGURE IV.17 - participate in a challenge, create an NFT screen

- As a final step, they’ll have to complete the transaction by entering their password.

FIGURE IV.18 - participate in a challenge transaction

44

General Conclusion

45

This thesis explored the integration of blockchain technology into the Punchword social media

platform, where I work as an Android developer. The focus was on the "Punchword Viral

Campaigns" feature, which combines NFTs with viral marketing campaigns. Companies can

create challenges on Punchword, where users submit NFT ads and compete for rewards in Punchy,

the platform's cryptocurrency. This setup uses smart contracts to automate reward distribution

based on engagement metrics like likes and shares, enhancing transparency and security for

advertisers and influencers.

The first chapter covered blockchain basics, defining key concepts and contrasting blockchain with

traditional databases. It detailed blockchain components such as nodes, blocks, transactions,

wallets, smart contracts, and tokens, including ERC-20 and ERC-721 standards.

The second chapter detailed the design and development of the "Punchword Viral Campaigns"

feature, with diagrams illustrating the system architecture and workflows.

The third chapter discussed the tools and technologies used (Android, Solidity), the app’s

architecture (MVVM), and the integration of the mobile app with blockchain using the web3j

library. It also showcased the user experience with screenshots of the Viral Campaigns feature.

At the conclusion of this project, I have gained valuable expertise in blockchain and mobile

development. We are satisfied with the results, and as a future development task, we plan to include

transaction sponsorship. This means that users will not have to pay the gas fees; instead, the fees

will be sponsored and paid directly by us.

46

References

[1] Blockchain Facts: What is it, How it Works, and How It Can Be Used. consulted on 13/06/2024.

URL: https://www.investopedia.com/terms/b/blockchain.asp

[2] What is blockchain? consulted on 25/05/2023. URL: https://www.ibm.com/topics/blockchain

[3] A timeline and history of blockchain technology. consulted on 25/05/2024. URL:

https://www.techtarget.com/whatis/feature/A-timeline-and-history-of-blockchain-technology

[4] Bitcoin: A Peer-to-Peer Electronic Cash System. consulted on 13/05/2024. URL:

https://bitcoin.org/bitcoin.pdf

[5] Blockchain vs Database: Understanding The Difference. consulted on 24/05/2024. URL:

https://101blockchains.com/blockchain-vs-database-the-difference/

[6] Blockchain Vs Relational Database: What’s The Difference? Consulted on 24/05/2024/ URL:

https://101blockchains.com/blockchain-vs-relational-database/

[7] How Blocks Are Added to a Blockchain, Explained Simply. Consulted on 26/05/2024. URL:

https://www.coindesk.com/learn/how-blocks-are-added-to-a-blockchain-explained-simply/

[8] Proof of Work vs Proof of Stake: Basic Mining Guide. Consulted on 08/06/2024. URL:

https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/

[9] Was ist eine Blockchain-Brieftasche und wie funktioniert sie. Consulted on 13/06/2024. URL:

https://www.cropty.io/blockchain-wallet

[10] Blockchain Blocks Explained: How Blocks Are Added To A Blockchain . consulted on 13/06/2024.

URL: https://droomdroom.com/blockchain-blocks-explained/

[11] Types of blockchain nodes explained. Consulted on: 29/05/2024. URL:

https://polymesh.network/blog/types-of-blockchain-nodes-explained

[12] What are the 3 Key Components Of The Blockchain Network? Consulted on 29/05/2024. URL:

https://iglu.net/key-components-of-the-blockchain-network/

[13] Blockchain Explained. Consulted on 01/06/2024. URL: https://www.web3labs.com/blockchain-

explained-what-is-a-blockchain-transaction

[14] Know Everything about Crypto Wallet. Consulted on 09/06/2024/ URL:

https://101blockchains.com/crypto-wallets/

https://www.investopedia.com/terms/b/blockchain.asp
https://www.ibm.com/topics/blockchain
https://www.techtarget.com/whatis/feature/A-timeline-and-history-of-blockchain-technology
https://bitcoin.org/bitcoin.pdf
https://101blockchains.com/blockchain-vs-database-the-difference/
https://101blockchains.com/blockchain-vs-relational-database/
https://www.coindesk.com/learn/how-blocks-are-added-to-a-blockchain-explained-simply/
https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/
https://www.cropty.io/blockchain-wallet
https://droomdroom.com/blockchain-blocks-explained/
https://polymesh.network/blog/types-of-blockchain-nodes-explained
https://iglu.net/key-components-of-the-blockchain-network/
https://www.web3labs.com/blockchain-explained-what-is-a-blockchain-transaction
https://www.web3labs.com/blockchain-explained-what-is-a-blockchain-transaction
https://101blockchains.com/crypto-wallets/

47

[15] What Are Public and Private Keys? Consulted on 03/06/2024. URL:

https://www.gemini.com/cryptopedia/public-private-keys-cryptography#section-what-does-it-mean-to-

digitally-sign-a-transaction

[16] Key Components of a Blockchain Network. Consulted on 03/06/2024/ URL:

https://www.identity.com/key-components-of-a-blockchain-network/

[17] What is a token?. Consulted on 01/06/2024. URL: https://www.bitcoin.com/get-started/what-is-a-

token/#what-is-a-token

[18] What is a token? Consulted on 02/06/2024. URL: https://www.coinhouse.com/learn/blockchain-

technology/what-is-a-token/

[19] What is an NFT? (Non Fungible Tokens Explained). Consulted on 02/06/2024/ URL:

https://whiteboardcrypto.com/what-is-a-nft/

[20] Meet Android Studio. Consulted on 20/05/2024. URL: https://developer.android.com/studio/intro

[21] REMIX PROJECT JUMP INTO WEB3. Consulted on 20/05/2024. URL: https://remix-

project.org/?lang=en

[22] About GitHub and Git. Consulted on 20/05/2024. URL: https://docs.github.com/en/get-started/start-

your-journey/about-github-and-git

[23] Make your app the best it can be with Firebase and generative AI. Consulted on 20/05/2024/ URL:

https://firebase.google.com/

[24] Firebase Authentication. Consulted on 20/05/2024. URL: https://firebase.google.com/docs/auth

[25] Cloud Firestore. Consulted on 20/05/2024. URL: https://firebase.google.com/docs/firestore

[26] Cloud Storage for Firebase. Consulted on 20/05//2024. URL: https://firebase.google.com/docs/storage

[27] Cloud Functions for Firebase. Consulted on 20/052024. URL:

https://firebase.google.com/docs/functions

[28] Get started with Kotlin. Consulted on 20/05/2024. URL: https://kotlinlang.org/docs/getting-

started.html

[29] Build better apps faster with Jetpack Compose. Consulted on 20/05/2024. URL:

https://developer.android.com/develop/ui/compose

[30] Solidity. Consulted on 20/05/2024. URL: https://docs.soliditylang.org/en/v0.8.26/

[31] The Clean Architecture. Consulted on 21/05/2024. URL: https://blog.cleancoder.com/uncle-

bob/2012/08/13/the-clean-architecture.html

https://www.gemini.com/cryptopedia/public-private-keys-cryptography#section-what-does-it-mean-to-digitally-sign-a-transaction
https://www.gemini.com/cryptopedia/public-private-keys-cryptography#section-what-does-it-mean-to-digitally-sign-a-transaction
https://www.identity.com/key-components-of-a-blockchain-network/
https://www.bitcoin.com/get-started/what-is-a-token/#what-is-a-token
https://www.bitcoin.com/get-started/what-is-a-token/#what-is-a-token
https://www.coinhouse.com/learn/blockchain-technology/what-is-a-token/
https://www.coinhouse.com/learn/blockchain-technology/what-is-a-token/
https://whiteboardcrypto.com/what-is-a-nft/
https://developer.android.com/studio/intro
https://remix-project.org/?lang=en
https://remix-project.org/?lang=en
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://firebase.google.com/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/functions
https://kotlinlang.org/docs/getting-started.html
https://kotlinlang.org/docs/getting-started.html
https://developer.android.com/develop/ui/compose
https://docs.soliditylang.org/en/v0.8.26/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

48

[32] Guide to Android app modularization. Consulted on 21/05/2024. URL:

https://developer.android.com/topic/modularization

[33] Foundry Book. Consulted on 22/05/2024. URL: https://book.getfoundry.sh/

[34] Web3j. Consulted on 22/05/2024. URL: https://docs.web3j.io/4.11.0/

https://developer.android.com/topic/modularization
https://book.getfoundry.sh/
https://docs.web3j.io/4.11.0/

 ملخص

 تواصل، وهو تطبيق Punchword" في تطبيق Viral Campaignsينصب تركيز هذا الماجستير على تنفيذ وتقييم ميزة "

على اجتماعي الميزة Blockchainيعتمد هذه تدمج .(للاستبدال القابلة غير التسويق NFTsالرموز استراتيجيات مع)

، ويتنافسون للحصول NFTالفيروسي. فهو يمكّن الشركات من إطلاق تحديات حيث يقوم المستخدمون بإنشاء إعلانات تعتمد على

ع المكافآت بناءً على مقاييس ، العملة المشفرة الأصلية للمنصة. تعمل العقود الذكية على أتمتة توزيPunchyعلى مكافآت في

 Solidityو Androidالمشاركة، مما يضمن الشفافية والأمان. من خلال الاستكشاف التفصيلي والتنفيذ باستخدام أدوات تطوير

 للعقود الذكية.

 تطوير، ERC-20 ،ERC-721، الذكية العقود، NFT، وسائل التواصل الاجتماعي، البلوكتشاين الكلمات المفتاحية:

 .MVVM ،Solidity ،web3j المعمارية الهندسة، الاندرويد

Abstract

 This master's focus is on the implementation and evaluation of the " Viral Campaigns"

feature into the Punchword Application, a social media App based on the Blockchain. This

feature merges Non-Fungible Tokens (NFTs) with viral marketing strategies.

It enables companies to launch challenges where users create NFT-based advertisements,

competing for rewards in Punchy, the platform’s native cryptocurrency. Smart contracts

automate reward distribution based on engagement metrics, ensuring transparency and security.

Through detailed exploration and implementation using Android development tools, and Solidity

for smart contracts.

Keywords: Blockchain, Social Media, NFTs, Smart Contracts, ERC-20, ERC-721, Android

Development, MVVM Architecture, Solidity, web3j.

Résumé

Ce mémoire de master se concentre sur la mise en œuvre et l'évaluation de la fonctionnalité

"Viral Campaigns" dans l'application Punchword, une application de médias sociaux basée sur la

blockchain. Cette fonctionnalité fusionne les jetons non fongibles (NFT) avec des stratégies de

marketing viral. Elle permet aux entreprises de lancer des défis où les utilisateurs créent des

publicités basées sur des NFT, en compétition pour des récompenses en Punchy, la cryptomonnaie

native de la plateforme. Les contrats intelligents automatisent la distribution des récompenses en

fonction des métriques d'engagement, assurant transparence et sécurité. À travers une exploration

détaillée et une implémentation utilisant des outils de développement Android et Solidity pour les

contrats intelligents.

Mots-clés : Blockchain, Plateforme de Médias Sociaux, NFT, Contrats Intelligents, ERC-20,

ERC-721, Développement Android, Architecture MVVM, Solidity, web3j.

