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General Introduction

Contexte

In just a few recent years, the research into how to train Neural Networks (NN) such as
Deep Learning (DL) has seen a surge to great heights, but the extracted use cases could
be seen throughout multiple area of excellences, including computer vision, natural lan-
guage processing (NLP), and autonomous systems. It is these technologies that underpin
artificial intelligence (AI) allowing machines to do things that would require intelligence
if done by humans.

Deep Learning: A subfield of machine learning that uses artificial neural network
structures, many layers deep. Experience-trained algorithms that can generalize their
learning from examples provided via experience.

DL algorithms demand large datasets and major computing power to learn complex
patterns and representations from data.

Problematic

Even with the progress in deep learning, there’s still a big problem: not enough labeled
data. In real-life situations, we often don’t have enough data, which makes it hard to
train good models. Getting large, high-quality labeled datasets is expensive and takes a
lot of time. This can lead to models that don’t work well and can’t handle new data.

Another issue is that deep learning predictions often ignore uncertainty, which is im-
portant for reliable results. This project looks into Bayesian Deep Learning (BDL) to
solve these problems. BDL helps by using prior knowledge and updating beliefs based
on new data, which helps in understanding uncertainty. This is very useful in areas like
medical diagnosis and finance, where knowing how uncertain a prediction is can help in
making better decisions.

Contribution

Our goal with this project is to create a sophisticated framework using Convolutional
Neural Networks (CNNs) that applies Bayesian Deep Learning principles. Essentially, we
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General Introduction

want to make better predictions and estimate uncertainty even when we have limited data
to work with.

To achieve this, we’ll be using advanced techniques like variational inference and Monte
Carlo dropout. These methods help us get a handle on Bayesian posterior distributions
within neural networks, giving us a clearer picture of our predictions and their associated
uncertainties.

Plan of the Thesis

In this study, the main objective is to investigate the effectiveness of Bayesian Deep Learn-
ing methods in improving prediction accuracy and uncertainty estimation with limited
data.

The present work is structured around three chapters:

1. Chapter 1 :Introduction to Neural Networks and Deep Learning: This
chapter introduces neural networks and deep learning, explaining basic concepts
and architectures.

2. Chapter 2 :Theoretical Foundations of Bayesian Deep Learning: This chap-
ter discusses the theoretical foundations of Bayesian deep learning, including sta-
tistical terms and concepts.

3. Chapter 3: Application: The final chapter compares the implemented models
and explores future research directions in Bayesian deep learning.

Finally, we will conclude this dissertation with a general conclusion and some perspec-
tives.

2



Chapter I

Introduction to Neural Networks
and Deep Learning
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Chapter I. Introduction to Neural Networks and Deep Learning

I.1 Introduction

Neural networks and deep learning have been two of the recent successes in artificial
intelligence, revolutionizing most domains, including computer vision, natural language
processing, and pattern recognition. These are advanced computational models inspired
by the structure and function of the human brain, providing the capability for learn-
ing from large amounts of data and performing complicated functions with outstanding
accuracy. In this chapter, we will introduce the basic concepts of neural networks and
deep learning. We will discuss the history of neural networks, their biological inspiration,
and the basic components that comprise these models. In understanding the principles
behind neural networks and deep learning, we can appreciate their importance in modern
AI research and their possible contribution to innovation in a variety of applications.

I.2 History of Neural Networks and Biological Inspi-
ration

The concept of artificial neural networks draws inspiration from the biological structure
and function of the human brain. This section explores the history of the development of
NNs, focusing on the key influences from biology.

Early Inspiration from the Brain (1940s-1960s):
The first attempts to mimic the information processing capabilities of the brain started

back in the 1940s. Early important work by McCulloch and Pitts (1943) introduced the
first mathematical model of an artificial neuron and thus laid the foundations for the
development of neural networks [31]. Donald Hebb’s book ”The Organization of Behavior”
in 1949 introduced a learning rule for artificial neurons based on the concept of synaptic
plasticity, a mechanism observed in biological brains [21]. These early models created the
foundation for exploring the potential of NNs for pattern recognition tasks.

Challenges and Re-emergence (1970s-1980s):
Despite the initial enthusiasm, during the 1970s, the limitations of computing power

and the complexity of training algorithms slowed progress in the field of NNs. The limita-
tions of early models called perceptrons were pointed out by Minsky and Papert in 1969
[32]. Due to these reasons, research interest decreased for several years.

Renewed Interest and Advancements (1980s-Present):
More powerful computers and the introduction of new learning algorithms, such as

backpropagation, brought interest in the study of NNs back into the limelight in the
1980s [36]. This period saw a lot of advancements in terms of network architectures; a
few of them were multilayer perceptrons and convolutional neural networks.

The Ongoing Influence of Biology
Neural networks take inspiration from biological models. Recent developments in

neuromorphic computing try to design hardware mimicking the energy efficiency and
parallel processing capabilities of the brain. Research on spiking neural networks, in
which the timing of neural activity is incorporated, tries to develop more biologically
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Chapter I. Introduction to Neural Networks and Deep Learning

realistic models.

I.2.1 Biological Inspiration

The basis of neural networks is grounded in the functioning of the human brain, an
intricate network of interlinked neurons. These neurons constitute the processing unit and
transmit electrical signals and chemical messengers, or neurotransmitters, via specialized
connections called synapses.

The figure below illustrates the simulation of neural networks:

Figure I.1: Simulation of neural networks [40].

I.3 Components of Neural Networks

Artificial neural networks derive their inspiration from the structures and functions of
biological neurons in the human brain. They are made of units called neurons, organized
into layers that mimic the architectures of the brain’s neurons. These networks are capable
of learning and adapting by changing the strength of connections between them, which
enables them to solve complex problems in diverse domains of activities [18].

I.3.1 Neurons (Nodes)

These are the fundamental units of neural networks, akin to the cells in our brain [18].
Neurons receive inputs, apply transformations through activation functions, and pass the
results to the next layer. They play crucial roles in processing information and learning
patterns [22].

I.3.2 Layers

Input Layer: These initial layers receive raw data and forward them to the hidden layers
for processing. They act as the entry points where external information is ingested into
the network [18].

Hidden Layers: Nestled between the input and output layers, these hidden layers
perform the bulk of computations and feature extraction. The network’s abilities to
understand complex relationships and patterns are largely attributed to these layers.
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Output Layer: The final layer where the network produces its prediction or output
based on the processed information from the hidden layers. It encapsulates the network’s
decision-making or inference capabilities.

I.3.3 Connections (Weights)

These represent the strength of connections between neurons. Weights determine the
impact of one neuron’s outputs on another’s input. Through training, these weights
are adjusted iteratively to improve the network’s performance, enabling it to learn and
generalize from data. These processes of weight adjustments are crucial aspects of neural
network training, contributing significantly to the network’s ability to make accurate
predictions and solve complex tasks.

I.4 Activation Functions

Non-linearity that provides learning of intricate patterns is achieved by the neurons in the
neural network due to the utilization of those activation functions. Among the activation
functions, Rectified Linear Unit (ReLU), Sigmoid, and Hyperbolic Tangent (Tanh) are
used widely.

I.4.1 Rectified Linear Unit (ReLU)

f(x) = max(0, x)

ReLU takes basic functions and produces the inputs themselves if and only if their
signs are positive. When they are negative, ReLUs produce zero.

I.4.2 Sigmoid Function

f(x) =
1

1 + e−x

The S-shaped sigmoid function maps input values in the range (0, 1) to the binary
classification task, giving it a chance of doing that well.

I.4.3 Hyperbolic Tangent (Tanh)

f(x) =
ex − e−x

ex + e−x

An activation function known as tanh has a different function that squeezes input
values into the range (−1, 1). It, in turn, has more gradients than the sigmoid function
and therefore offers stronger gradients.

6
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I.5 Beyond Basics: Why Embrace Deep Learning?

Traditional neural networks lay the groundwork, but machine learning offers advanced
tools. Deep learning, some subsets of MLS built upon NNs, bring several advantages:

• Limited Expressive Power: Basic NNs struggle with complex data. Deep learn-
ing captures intricate patterns for improved performance [3].

• Advancements in Algorithms: ML and DL research lead to superior algorithms
like CNNs, RNNs, attention mechanisms, and transformers models.

• Scalability: Deep learning models effectively handle large datasets for better gen-
eralization.

• Complexity of Data: Modern data’s complexities challenge basic NNs. ML and
DL, especially deep neural networks, excel in handling complex, high-dimensional
data.

Embracing machine learning, especially deep learning, opens the door to mastering
intricate data representations, paving the way for robust and adaptable applications.

I.6 Loss Function

The loss function, also known as the cost function, plays a critical role in training neural
networks. It serves as a quantitative measure of the discrepancies between the network’s
predicted output and the ground truth, which represents the actual target values.

I.6.1 Classification Problems

Cross-entropy loss functions are frequently employed to measure the differences between
the predicted probability distributions and the true target distributions [22].

I.6.2 Regression Problems

In neural network applications tackling regression problems, the choice of appropriate loss
functions is paramount for effective training. These loss functions, such as the widely-used
mean squared error (MSE), quantify the disparity between predicted values and actual
targets [18]. Selecting the right loss function tailored to the characteristics of the data and
the desired outcome is crucial for guiding the network towards convergence and optimal
parameterization.

7
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I.7 Optimization Algorithms

In the context of neural networks, optimization algorithms assume a fundamental role in
the iterative refinement of internal parameters, namely weights and biases. These algo-
rithms facilitate the minimization of a predefined objective function, typically a loss func-
tion representing the dissonance between predicted and actual outputs, across successive
iterations of training data processing [22]. By navigating the expansive parameter space,
optimization algorithms endeavor to converge towards optimal configurations, thereby
enhancing the network’s performance and efficacy.

I.8 Learning in Neural Networks: Mimicking the Brain

Neural networks, drawing inspiration from the structural and functional complexities of
the human brain, stand as powerful tools for machine learning. Through the emulation of
neural architecture, these artificial constructs exhibit a remarkable capacity for learning
from data patterns. Encapsulating layered hierarchies of interconnected neurons, akin
to the neural circuitry of the brain, neural networks adeptly discern intricate patterns,
extract salient features, and infer complex relationships within vast datasets.[37]

I.8.1 Building Blocks

Imagine the brain as a complex network of interconnected neurons. Similarly, artificial
neural networks consist of fundamental units called neurons (nodes) [18].

Forward Pass: The network processes its inputs through its layers, with each neuron
performing calculations based on its weighted inputs and an activation function. These
calculations are analogous to how our brains process information, activating different
neurons based on the received stimuli [10].

Error Calculation: The network then compares its predicted outputs with the de-
sired outputs from the training data. This difference, called the loss, represents how
wrong the network’s predictions were, similar to how we assess our understanding of a
concept.

Backpropagation: This is where the magic happens! Inspired by how the brain
strengthens or weakens connections based on learning, a technique called backpropagation
calculates how much each weight contributed to the error. Imagine students receiving
feedback on their mistakes – backpropagation provides similar guidance for the network
[35].

Weight Adjustment: Using an optimization algorithm (e.g., gradient descent) [34],
the network iteratively adjusts its weights in the direction that minimizes the loss. This
is akin to a student adjusting their approach based on the feedback received.

8
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Repeat: The network continues to process training data, calculate errors, and adjust
weights. Over many iterations, the network progressively improves its ability to map
inputs to desired outputs, just like we learn and refine our skills through practice.

I.9 Deep Learning

Deep learning is a subfield of machine learning that utilizes artificial neural networks with
multiple hidden layers to learn complex patterns from data [25].

The Venn diagram below highlights the intersection that constitutes Deep Learning
(DL):

Figure I.2: Venn diagram.

Deep Learning Architectures

Deep Learning Architectures encompass diverse and sophisticated frameworks used in
deep learning, including models like convolutional neural networks (CNNs) for im-
age analysis, recurrent neural networks (RNNs) for sequential data processing, and
attention mechanisms for natural language tasks.

These architectures are designed to handle complex data structures and extract mean-
ingful patterns, driving advancements in fields such as computer vision, natural language
processing, and reinforcement learning.

1. Convolutional Neural Networks (CNNs): CNNs reign supreme in image
recognition and related domains [26]. They utilize specialized convolutional layers that
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extract features directly from spatial data like images. These networks often have a hier-
archical structure, where lower layers extract simpler features, and higher layers combine
them for complex recognition.

The illustration provided below serves to elucidate the concept of CNN:

Figure I.3: Convolutional Neural Network Architecture .

2. Recurrent Neural Networks (RNNs): Designed to conquer sequential data
like text or time series [36]. Unlike feedforward networks, RNNs have a feedback loop,
allowing them to process information based on the context of previous elements in the
sequence. This makes them well-suited for tasks like language translation, sentiment
analysis, and speech recognition.

The image below depicts the concept of RNN:

Figure I.4: Recurrent Neural Network Architecture [24].

3. Autoencoders: Used for unsupervised learning tasks like data compression, fea-
ture learning, and anomaly detection [11]. While unsupervised pre-training has been
shown to benefit deep learning, specific techniques like batch normalization [23] and resid-
ual learning [19] have also played a crucial role in improving the training and performance

10
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of deep neural networks, including autoencoders.
The following image illustrates the concept of autoencoders:

Figure I.5: Autoencoder Architecture. (Inspired by [11, 23, 19])

Additionally, numerous other types of deep neural networks have been developed for
specific tasks and applications.

I.9.1 Designing Deep Learning Models

Network Depth: The number of layers stacked in a network is a crucial design decision.
Deeper networks can learn more complex relationships within data but can also be prone to
overfitting and require more computational resources. Finding the optimal depth depends
on the specific task and data complexity [17].

Network Width: The number of neurons within each layer also plays a role. Wider
networks generally have a higher capacity for learning complex functions but also increase
training time and memory requirements. Striking a balance between network width and
depth is essential [20].

Activation Functions: These mathematical functions introduce non-linearity into
the network, allowing it to model complex relationships. Choosing the appropriate acti-
vation function (e.g., sigmoid, ReLU) can significantly impact the network’s performance
[33].

Regularization Techniques: Techniques like dropout and weight decay prevent
overfitting by improving generalization [39].

Hyperparameter Tuning: Deep learning models involve numerous hyperparame-
ters, such as learning rate and number of epochs. Tuning these hyperparameters through
techniques like grid search or randomized search can significantly impact the model’s
performance [2].
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I.10 Specialized Domains in Deep Learning

Deep learning has revolutionized various fields due to its ability to learn complex patterns
from large amounts of data.

Here are some prominent applications:

I.10.1 Medical Imaging and Healthcare

Image Segmentation: Deep learning, especially convolutional neural networks (CNNs),
excels at fast and accurate image segmentation tasks. This is crucial for tasks like iden-
tifying tumors in mammograms or segmenting organs in MRI scans [27].

Disease Diagnosis: Deep learning algorithms can analyze medical images to identify
disease patterns and support medical professionals in diagnosis. For example, they can
help differentiate cancerous and benign tissues or detect abnormalities in X-rays [12].

Medical Image Synthesis: Generative adversarial networks (GANs) and variational
autoencoders (VAEs) have the potential to create synthetic medical images for data aug-
mentation and training [13]. This can be particularly useful for rare diseases where real
data is limited.

I.10.2 Natural Language Processing (NLP)

Text Generation: Deep learning models like GPT-3 are becoming increasingly sophis-
ticated at generating human-quality text. This has applications in areas like creative
writing, content automation, and chatbot development.

Sentiment Analysis: LSTM-based models can analyze the sentiment expressed in
textual data, providing valuable insights for social media monitoring, customer feedback
analysis, and market research [29].

Machine Translation: Deep learning architectures like the Transformer have signif-
icantly improved the accuracy and fluency of machine translation, facilitating communi-
cation across languages [42].

I.10.3 Climate Modeling and Robotics

Autonomous Vehicles: Deep learning combined with LiDAR sensor fusion enables
object detection, lane detection, and pedestrian detection in autonomous driving systems,
playing a crucial role in developing safe and reliable self-driving cars [5].

Robotics: Deep learning algorithms are used for tasks like object manipulation,
robotic vision, motion planning, and control. Reinforcement learning techniques further
enhance the ability of robots to learn and adapt to their environments [38].
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I.11 Comparative Analysis of Neural Networks and
Deep Learning

In this section, we provide a comparative analysis of traditional neural networks (NNs)
and deep learning (DL) models based on various criteria such as architecture, training
process, and applications.

Comparative Tables

We now present detailed comparisons between traditional neural networks (NNs) and
deep learning (DL) models as the following:

I.11.1 Architecture

Comparison of Architecture

Model Traditional NNs

Description Single input layer, one or more hidden layers, and an
output layer.

Model Deep Learning (DL) Models

Description Many hidden layers with complex architectures like con-
volutional layers, recurrent layers, and attention mechanisms.

I.11.2 Training Process

Comparison of Training Process

Model Traditional NNs

Training Process Backpropagation updates weights and biases based
on error between predicted and actual outputs.

Model Deep Learning (DL) Models

Training Process Require more data and computational resources;
use techniques like dropout, batch normalization, and gradient
clipping for improved convergence and prevention of overfitting.
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I.12 Addressing the Limitations of Deep Learning with
Bayesian Deep Learning

Despite its significant benefits, deep learning suffers from several limitations, including
data hunger, lack of interpretability, overfitting and generalizability issues, and uncer-
tainty quantification challenges. Bayesian Deep Learning (BDL) presents a promising
solution to overcome these drawbacks by offering a principled framework for uncertainty
quantification and model robustness.

I.12.1 Data Hunger

Deep learning models often demand extensive datasets for training, which can be both
challenging and costly to obtain and label [25]. This data hunger poses a significant bar-
rier, especially in domains with limited labeled data availability or high labeling costs.
Bayesian Deep Learning addresses this limitation by leveraging probabilistic models that
incorporate prior knowledge and uncertainty. By modeling uncertainty, BDL can effec-
tively utilize limited data, reducing the dependency on large datasets while still providing
reliable predictions.

I.12.2 Lack of Interpretability

The inherent complexity of traditional deep learning models often leads to interpretabil-
ity issues, hindering trust and adoption, particularly in critical applications [17]. The
opaque nature of deep neural networks makes it challenging to understand the rationale
behind their predictions. Bayesian Deep Learning enhances interpretability by provid-
ing uncertainty estimates alongside predictions. By quantifying uncertainty, BDL allows
decision-makers to evaluate the reliability of model predictions and comprehend the un-
derlying factors influencing them, thereby fostering trust and transparency in the model.

I.12.3 Overfitting and Generalizability

Deep learning systems are prone to overfitting, where they perform well on training data
but struggle to generalize to new data [25]. While techniques like data augmentation
and regularization can alleviate this issue to some extent, they may not always suffice.
Bayesian Deep Learning combats overfitting by explicitly modeling uncertainty in model
parameters. By capturing uncertainty, BDL encourages more cautious predictions, leading
to enhanced generalizability and resilience to unseen data.

I.12.4 Uncertainty Quantification

Quantifying uncertainty is crucial for decision-making tasks, especially in critical appli-
cations like medical diagnosis [25]. Deep learning models often struggle with uncertainty
quantification, which can lead to erroneous decisions. Bayesian Deep Learning excels
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in uncertainty quantification by providing probabilistic predictions that encapsulate the
inherent uncertainty in the data and model parameters. By quantifying uncertainty,
BDL empowers decision-makers to make well-informed decisions, particularly in scenarios
where errors can have significant consequences.

I.13 Conclusion

the empirical examination of deep learning underscores the critical need to address chal-
lenges such as data scarcity, interpretability limitations, overfitting, and uncertainty quan-
tification. These hurdles impede the broader adoption and effectiveness of deep learning in
practical applications. In the subsequent chapter, we will explore statistical and Bayesian
methods, which offer promising avenues for overcoming these obstacles. By integrating
these methodologies into deep learning frameworks, we aspire to bolster model reliability,
enhance interpretability, and foster innovation across diverse domains.
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Theoretical Foundations of Bayesian
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II.1 Intoduction

New ways of learning have changed many things. In the past, we used specific numbers
to make predictions, but we may not always be correct. In addition, it may be difficult
to find enough information to make accurate predictions.

This chapter describes methods called Bayesian learning, which help to make better
guesses and understand how certain they are of their predictions. Using Bayesian princi-
ples, these programs can make better decisions and solve difficult problems. This helps
us learn more and solve difficult issues.

In the next parts of this chapter, we’ll explain the basics of Bayesian deep learning.
We’ll talk about important parts like prior beliefs, how likely something is to happen, and
final outcomes. By understanding these ideas, we can better predict outcomes, use what
we already know, and get a clearer idea of   how certain we are about our predictions in
Bayesian deep learning.

II.2 Navigating Deep Learning Challenges with Lim-
ited Data

Deep learning models have shown amazing abilities in many areas. But a big problem
comes up when there isn’t enough data [22]. These models need a lot of labeled data to
work well. Here, we look at the challenges of having limited data and ways to solve them.

II.2.1 Difficulties Posed by Limited Data

Overfitting: When there’s not enough training data, models can overfit [4]. This means
the model remembers the training data patterns instead of learning general features. It’s
like a student who only studies old test questions for a new course – they might do well
on that test but have trouble with new questions that need a broader understanding.
Overfitting models also do poorly on new data that’s different from the training set.

High Variance: Limited data can make models have high variance. This means
small changes in the training data can lead to very different models and predictions [16].
This makes it hard to judge the model’s true performance and generalize to new data.

Limited Generalizability: Deep learning models aim to work well on unseen data.
But with limited data, models might not learn the main patterns well, leading to poor
performance on new data that wasn’t in the training set [22].

II.2.2 Navigating Uncertainty

Deep learning models have changed many fields by learning complex patterns from data.
But traditional deep learning often uses point estimates for model parameters [22].

This means finding one set of weights that best minimizes the loss function. While this
works well in many cases, relying on point estimates has limits due to the uncertainty
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in real-world data and the learning process itself [4].
Here’s why point estimates can be a problem:
Overconfidence:
A point estimate gives one ”best guess” for the output, ignoring the uncertainty in

the data and learning process. This can lead to overconfidence in the model’s predic-
tions [14].

Think of a student who scores perfectly on a practice test but fails the final exam
because they were too confident in their knowledge – point estimates can cause similar
issues in models, especially with limited data or hard problems.

Lack of Robustness:
Real-world data often has noise and variability. A model that only uses a point

estimate might not handle these variations well, leading to unreliable predictions on new
data that’s a bit different from the training data [22]. This is critical in fields like medical
diagnosis or self-driving cars where small mistakes can be very serious.

II.2.3 Challenges Posed by Uncertainty

Uncertainty is always a factor in real-world data and problems. Here’s how it can challenge
deep learning models:

Model Complexity: As deep learning models get more complex with more layers
and parameters, the uncertainty in their predictions can also grow [14]. This shows the
need for methods that go beyond a single point estimate.

II.2.4 The Importance of Uncertainty Quantification

Given these challenges, it’s crucial to measure the uncertainty in deep learning model
predictions. This helps with:

More Informed Decisions: By understanding the range of possible outcomes and
their chances, we can make better and more reliable decisions, especially in high-stakes
areas where even small mistakes can be very serious [14].

Improved Generalizability: Models that account for uncertainty might generalize
better to new data by considering the natural variability in real-world situations [4].

II.3 Introduction to Bayesian Deep Learning

Deep learning has changed many fields by learning complex patterns from data. However,
traditional deep learning often uses point estimates for model parameters, which limits
how well it can handle uncertainty. This section introduces Bayesian Deep Learning
(BDL), a framework that combines Bayesian statistics with deep learning models.
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II.3.1 Leveraging Bayesian Statistics

Bayesian Deep Learning addresses these limitations by using Bayesian statistics. Here’s
how it works:

Prior Distribution: BDL uses a prior distribution [41] P (θ) to represent our ini-
tial belief about the model parameters θ before observing any data. This prior can be
informative (based on existing knowledge) or non-informative (e.g., uniform distribution)
depending on the problem. The choice of prior reflects our assumptions about the param-
eters’ likely values before seeing the data.

Likelihood Function: The likelihood function [8] P (D|θ) measures how likely the
observed data D is for different parameter settings θ. It shows the relationship between
the data and the model by evaluating the probability of the data given specific parameter
values.

Posterior Distribution: Using Bayes’ theorem, BDL combines the prior distribution
P (θ) with the likelihood function P (D|θ) to get the posterior distribution P (θ|D):

P (θ|D) =
P (D|θ) · P (θ)

P (D)
(II.1)

This posterior distribution [44] represents our updated belief about the model parameters
after considering the training data D.

II.3.2 The Power of BDL: Uncertainty Quantification

By going beyond point estimates, BDL gives a richer understanding of the model’s predic-
tions through the posterior distribution. This distribution shows not just a single ”best
guess” but a range of possible values for the model parameters and their probabilities.
This allows for:

Uncertainty Quantification: BDL lets us measure the uncertainty in model predic-
tions, which is crucial for making strong and reliable decisions, especially in high-stakes
applications.

Improved Generalizability: By considering parameter uncertainty, BDL models
can potentially generalize better to new data compared to traditional methods.

Leveraging Prior Knowledge: BDL can use prior knowledge about the problem
through informative priors, which can improve performance with less data.

II.3.3 Variational Inference

In Bayesian Deep Learning (BDL), calculating the posterior distribution can be compu-
tationally hard, especially for complex models. This subsection introduces variational
inference (VI), a method to approximate the posterior distribution in BDL [6].
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Challenges of Exact Inference

Intractability: For many BDL models, directly calculating the posterior distribution
using Bayes’ theorem is computationally expensive or intractable. This is due to the
complex nature of the likelihood function and the high dimensionality of the parameter
space [4].

Sampling Inefficiency: Methods like Markov Chain Monte Carlo (MCMC) can
sample from the posterior distribution, but they can be slow and need many samples for
accurate results [7].

Variational Inference: The Approximation Game

VI offers a solution by approximating the true posterior distribution with a simpler one,
called the variational distribution. Here’s the core idea:

Define a Variational Distribution: We select a family of simpler distributions
(e.g., Gaussian distributions) and define a variational distribution within this family. The
parameters of this distribution will be the new variables to optimize.

Minimize the KL Divergence: We aim to find the variational distribution that is
closest to the true posterior in terms of information content. This closeness is measured
using the Kullback-Leibler (KL) divergence, which quantifies the difference between two
probability distributions [9].

Optimize the Variational Parameters: By minimizing the KL divergence, we
optimize the parameters of the variational distribution using an iterative algorithm.

Algorithmic Details of Variational Inference

VI approximates the posterior distribution in Bayesian Deep Learning (BDL) [6]. Here’s
a step-by-step look at how VI works:

1. Define the Variational Distribution:
Select a family of simpler distributions (e.g., Gaussian distributions) for the varia-
tional distribution. This choice affects the efficiency and accuracy of the approxi-
mation.

2. Parameterize the Variational Distribution:
Introduce parameters (e.g., mean and standard deviation for Gaussians) to define
the specific form of the variational distribution. These parameters will be optimized
during VI.

3. Optimize the Variational Parameters:
Iteratively optimize the parameters of the variational distribution to maximize the
ELBO, which minimizes the KL divergence and brings the variational distribution
closer to the true posterior. Various optimization algorithms, such as stochastic
gradient descent (SGD), can be used for this purpose.
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Key Considerations:

• The choice of the variational distribution family impacts the efficiency and accuracy
of VI. Common choices include Gaussians and mean-field approximations.

• The optimization process might not always reach the global optimum. Techniques
like good starting points or annealing can help improve convergence.

II.3.4 Monte Carlo Dropout

Monte Carlo Dropout (MC Dropout) is an efficient technique for Bayesian Deep Learning
(BDL) within the realm of variational inference (VI) [14]. This method uses the ran-
domness of dropout, a regularization technique in deep learning, to perform approximate
Bayesian inference.

Dropout as a Bayesian Proxy

Dropout in Deep Learning: During training, dropout randomly drops out a certain
percentage of neurons and their connections in each layer of a neural network. This
prevents overfitting by making the network learn robust features that aren’t reliant on
specific neurons.

MC Dropout Connection:
Applying dropout at test time during multiple forward passes through the network

can be seen as a form of VI. Here’s why:
Dropout Injects Uncertainty: The random dropout process introduces uncertainty

into the network’s predictions. Each forward pass with dropout is like a sample from an
ensemble of thinned networks.

Variational Distribution: By averaging the predictions from multiple dropout
passes, we approximate the variational distribution. This distribution captures the un-
certainty in the model’s predictions due to dropout.

Algorithmic Details of Monte Carlo Dropout

MC Dropout [43] uses the randomness of dropout to perform approximate Bayesian in-
ference. Here’s how it works:

1. Forward Passes with Dropout: Perform multiple forward passes through the
trained model during test time.

• In each pass, apply the dropout mask independently, dropping out a percentage
of neurons and their connections in each layer. This simulates an ensemble of
thinned networks.

2. Averaging Predictions: Average the predictions from each forward pass. This
average serves as an estimate of the true prediction, considering the uncertainty
introduced by dropout.
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3. Interpretation as Variational Inference: The dropout process in each forward
pass samples from an ensemble of thinned networks. By averaging the predic-
tions, we approximate the variational distribution, capturing the uncertainty in the
model’s predictions due to dropout [1].

Key Considerations:

• The number of dropout passes is crucial. More passes lead to a more accurate
approximation of the variational distribution but increase computational cost.

• MC Dropout uses the dropout rate from training. Use the same dropout rate for
both training and MC Dropout at test time.

Limitations of MC Dropout

• Approximation Accuracy: The quality of the approximation depends on the
number of dropout passes. More passes improve accuracy but increase computa-
tional cost.

• Calibration Issues: MC Dropout predictions might not always be perfectly cal-
ibrated, meaning the predicted confidence may not accurately reflect true uncer-
tainty.

II.3.5 Bayesian Approximation Dropout with L2 (BADL2)

While Monte Carlo Dropout is convenient for approximate Bayesian inference, a more the-
oretically grounded approach is Bayesian Approximation Dropout with L2 (BADL2) [30].
This method combines dropout and L2 regularization for uncertainty quantification in
deep learning models.

BADL2: Algorithmic Process

BADL2 involves training and post-training steps. Here’s how it works:
Training Phase:

• Model Architecture: Define the model with dropout layers at strategic points
(e.g., after convolutional layers in CNNs).

• Dropout Rate: Set a dropout rate (e.g., 0.5) for training.

• L2 Regularization: Add an L2 regularization term to the loss function. This
penalizes large weights, promoting smoother weight distributions.

Uncertainty Quantification (After Training):

• Dropout Probabilities: Use the same dropout probabilities as during training.
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• L2 Regularization Hyperparameter: Use the same L2 regularization hyperpa-
rameter from training.

• Posterior Distribution Calculation: Use the dropout probabilities and L2 regu-
larization to compute the posterior distribution over the weights. This distribution
reflects the uncertainty in the model’s predictions due to dropout and L2 regular-
ization.

Key Considerations:

• The dropout rate and L2 regularization hyperparameter are crucial for BADL2’s
performance. Tuning these can affect the model’s generalization and uncertainty
quantification.

• While BADL2 offers a more grounded approach than MC Dropout, it might still
face challenges in perfectly calibrating predicted confidence with true uncertainty.

II.4 Dropout Layers for Approximate Bayesian Infer-
ence

Dropout layers, commonly used in deep learning, not only improve model performance
but also offer insights into model uncertainty. Recent research suggests that dropout
can approximate Bayesian inference, providing valuable uncertainty estimation. This
section explores the connection between dropout and Bayesian inference, highlighting
how dropout implicitly performs model averaging and uncertainty estimation.

Theoretical Underpinnings

Dropout as Probabilistic Weighting: Dropout during training introduces a Bernoulli
distribution over the network weights. This distribution reflects the probability of a weight
being dropped out during a training pass.

L2 Regularization and Uncertainty: L2 regularization, penalizing large weights,
acts as a prior distribution on the weights. Smoother weight distributions, favored by L2
regularization, correspond to lower model uncertainty.

Synergy of Dropout and L2

By combining dropout and L2 regularization, a connection between dropout and the
Bayesian framework is established. This allows for calculating the posterior distribution
over the weights, capturing the uncertainty in the model’s predictions.

Benefits and Limitations

• Benefits: BADL2 provides a rigorous theoretical justification for dropout in Bayesian
inference and enables uncertainty quantification in deep learning models.
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• Limitations: Calculating the exact posterior distribution with BADL2 can be
computationally expensive for complex models, and calibration issues similar to
MC Dropout may arise [30].

Beyond BADL2

Ongoing research explores alternative approaches and extensions to improve the accuracy
and efficiency of Bayesian inference techniques.

II.4.1 Dropout as Model Averaging

Dropout, by randomly dropping neurons during training, approximates ensemble model
averaging. Here’s how it works:

• Dropout creates a thinned network during training by randomly setting neurons to
zero with a probability p.

• Each training pass utilizes a different thinned network, akin to training multiple
slightly different models.

• At test time, the weights implicitly capture the average behavior of the thinned
networks encountered during training, leading to improved generalization.

Gal et al. (2016) demonstrate that dropout approximates variational inference, im-
plicitly performing model averaging over thinned networks [15].

II.4.2 Uncertainty Estimation with Dropout

Dropout layers can estimate the uncertainty associated with model predictions by intro-
ducing randomness during training. Here’s how:

• The model’s predictions vary across different training passes due to dropout-induced
randomness.

• At test time, the model prediction represents an average behavior.

• The variance observed during training with dropout activation can estimate the
uncertainty associated with the final prediction.

II.5 Case Studies and Experiments

This section explores the practical applications of Monte Carlo Dropout, Variational In-
ference, and Bayesian Adaptive through real-world case studies and experiments.
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II.5.1 MC Dropout

MC Dropout is a variational inference method for training deep neural networks, proposed
to approximate Bayesian model averaging. The approach randomly drops neurons during
training, leading to improved model generalization [15].

II.5.2 Block Attention Deep List Learning (BADL2)

BADL2 is a deep learning architecture for ranking tasks, presented in a recent work. In-
corporating a block attention mechanism and a deep list learning module, BADL2 demon-
strates significant improvements over existing methods on benchmark ranking datasets [28].

II.6 Conclusion

Chapter 2 has provided a foundational understanding of Bayesian deep learning, elu-
cidating key statistical terms essential for enhancing deep learning models. With this
groundwork, Chapter 3 will focus on implementing Bayesian techniques and comparing
their performance against traditional models, highlighting their practical advantages.
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III.1 Introduction

In this chapter, we embark on comprehensive examinations of the performances and ca-
pabilities of Bayesian Deep Learning models in comparison with traditional approaches in
the contexts of limited data prediction tasks. Our investigations cover empirical eval-
uations, comparative analyses, and insights obtained from stringent experimentation.
The primary objectives of this chapter are to scrutinize the capability and limitations
of Bayesian Deep Learning models for data scarcities and heterogeneity. We discuss in-
depth different methodologies and techniques specifically suited for such scenarios, aimed
at elucidating the practical implications and feasibilities of implementing applications in
the real world using Bayesian frameworks.

III.2 Overview of the Experimental Setup and Ob-
jectives

We utilize three distinct datasets for our comparative analysis and experimental evalua-
tion.

The goals are to test the effectiveness of Bayesian methods on the data itself. These are
attempts to compare Bayesian and traditional methods and not to compare the effective-
ness of Bayesian methods in all cases in the various types of data used. The experiments
were deliberately conducted on small data with noise because the goals are to train and
compare on limited data concepts and to test robustness. Performance evaluations based
on metrics include Time taken, Training Accuracy, Validation Accuracy, Test Accuracy,
and with only 10 epochs.

The first dataset consists of Brain MRI Images for Brain Tumor Detection, sourced
from NAVONEELS CHAKRABARTY and last updated five years ago. These images,
totaling approximately 16MB in size, are classified into two classes: ”yes,” indicating the
presence of some brain tumor, and ”no,” indicating their absence. Despite the limited
additional information available, our goals with these datasets are to explore and compare
the effectiveness of traditional Convolutional Neural Networks (CNN) algorithms and
models against Bayesian methods in the contexts of brain tumor detection.

The second dataset consists of 7023 MRI images showcasing various brain tumor
types. We exclusively used these datasets for the ’no tumor’ classes images. It’s a crucial
component for our study’s comprehensive analysis. Despite concerns about gliomas classes
categorization, we ensured data integrity by sourcing alternative images.

The third dataset comprises Chest CT-Scan image Datasets obtained from Kaggle.
They consist of chest CT-scan images representing different types of chest cancer, in-
cluding Adenocarcinoma, Large cell carcinoma, Squamous cell carcinoma, and normal
cells images. The datasets are partitioned into training, testing, and validation sets in
proportions of 70%, 20%, and 10% respectively. By utilizing these datasets, we can com-
prehensively evaluate our models’ predictive capability in the contexts of chest cancer
detection.
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III.2.1 Brief Recap of the Algorithms Used

In addition to the diverse datasets, we employed a suite of deep learning algorithms,
specifically focusing on Convolutional Neural Networks (CNNs). So, we used CNN models
such as Vgg16, Vgg19 2D CNN, VGG16, U-Net, and CNN Inception V3 models. On
the other hand, we also employed Bayesian Methods, including Bayesian Approximation
Dropout with L2, Bayes by Backprop, Variational Inference, and Monte Carlo Dropout.
Again, the goal is to compare Bayesian and traditional methods and not to evaluate the
effectiveness of Bayesian methods in all cases of data used.

III.3 Results and Analysis

In this section, we undertake an extensive comparison between traditional Convolutional
Neural Network (CNN) algorithms and Bayesian CNN models, focusing specifically on
their efficacy in tackling limited data prediction tasks.

III.3.1 Brain MRI Images

We evaluated the performance of various deep learning models on the Brain MRI Images
for Brain Tumor Detection dataset. Details on the specific deep learning architectures
used (Simple CNN, VGG16, 2D CNN, and U-Net) can be found in Tab. III.1.

In contrast, we employed a Bayesian Neural Network (BNN) using traditional ap-
proaches like dropout and Bayes by backpropagation (details in Tab. III.2).

Training Accuracy Training Time(s) Testing Accuracy Validation Metric
SIMPLE CNN 0.8533 680.51 0.796 0.825
VGG16 0.632 33.392 0.733 0.660
2D CNN 0.614 11.85 0.786 0.663
U-NET Over Over Over Over

Table III.1: Traditional CNN Models

exploring the Traditional Methods based on Table1 :
U-Net: Specific information for U-Net is lacking because its training duration for just

one epoch is noticeably extensive (see Tab. III.1 ). This suggests potential inefficiency
for this task due to its prolonged training process, hindering precise time measurements.
The training is time-consuming because U-Net is highly complex and implemented from
scratch using PyTorch, without a pre-existing model available on TensorFlow .

Simple CNN:This model took 680.51 seconds for training(see Tab. III.1 ). Simpler
architectures generally require more time to train due to fewer layers and parameters.

Regarding VGG16 and 2D CNN both models exhibited very short training times
(see Tab. III.1 ). However, this efficiency came at a cost, as their performance remained
below 60.0%, suggesting they struggled to understand and adequately process the data.
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but I want to note that training on the GPU is always faster. The values in this table
were updated, and better values were obtained than using the CPU.

Traditional methods suffered from uncertainty and did not understand the data well
during training. it note to indicate overfitting we generaly look for the final validation
loss if it was smaller than the final training loss, and the last validation accuracy was not
lower than the last training accuracy.

so This measure is appropriate and safe, but there are, of course, other considerations.
now we explore Bayesian Methods:

Training Accuracy Training Time(s) Testing Accuracy Validation Metric
BAYESIAN DROPOUT 0.952 11.70 0.947 0.952
BAYES BY BACKPROPA 0.653 12.50 0.9066 0.8022
monte carlo dropout 0.60 11.64 0.9055 0.579

Table III.2: Bayesian Methods

Bayesian approach dropout: This approach incorporates regularization techniques
such as L2 regularization and dropout to improve model generalization and prevent over-
fitting (see Tab. III.2).

Despite achieving a training accuracy of 0.952 (see Tab. III.2), it is evident that
the model is overfitting the training data. While high training accuracy suggests that the
model has learned the underlying patterns well, the discrepancy between the training and
validation performance indicates that it fails to generalize effectively to unseen data. The
fact that the final validation loss exceeds the final training loss (see Tab. III.2 for loss
curves) further confirms the presence of overfitting.

Therefore, despite the seemingly high training accuracy, the model’s performance is
compromised by its inability to generalize, highlighting the need for additional measures
to address overfitting.

Bayes by Backpropagation:
achieves a training accuracy of 0.653 (see Tab. III.2). However, there’s clear evi-

dence of overfitting, as indicated by the significant discrepancy between this high training
accuracy and the lower test and validation accuracies reported in Tab. III.2. Despite
achieving a test accuracy of 90%, this high value is likely inflated due to overfitting,
compromising the model’s ability to generalize to unseen data.

Monte Carlo dropout did not yield the expected improvements. Instead, it intro-
duced ambiguity to the data and exacerbated overfitting, contrary to theoretical expec-
tations, as you can see in Tab. III.2. This underscores the complexity of implementing
such methods, which necessitates thorough study, extensive experimentation, and careful
consideration of dataset compatibility.
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III.3.2 Brain Tumor MRI Dataset

Test Accuracy: According to Tab. III.3, Bayes by Backpropagation achieves the
highest test accuracy (81.6%) among the models compared. This suggests that Bayes by
Backpropagation generalizes better to unseen and limited data compared to Vgg19 and
Simple CNN that fail in overfitting .

Training Accuracy Training Time(s) Testing Accuracy Validation Metric
BAYES BY BACKPROPA 0.816 131.89 0.816 0.877
monte carlo dropout 0.91 89.93 0.954 0.91
SIMPLE CNN 0.938 2507 0.973 0.934
VGG19 0.606 5252 0.683 0.684

Table III.3: Bayesian Methods

Figure III.1: Models Performance Chart

Simple CNN: This model experienced overfitting, as illustrated in Tab. III.3 and
Fig. III.1, which shows the Models Performance Chart. Simpler architectures generally
require more time to train due to fewer layers and parameters. However, in this case,
we used a CPU, which further prolonged the training time. Notably, only Bayes by
Backpropagation did not exhibit overfitting, as indicated by the absence of the red chart
in Fig. III.1, highlighting its superior performance.

Regarding VGG19, the training time was more then ”Simple CNN”, but the model
did not understand the data well enough to deal with it. It hardly achieved a value greater
than 60.0% as it shown in Tab. III.3.

We could not yet clearly see the effectiveness of Bayesian methods here, but I want to
note that training on the GPU is always faster and provide better use of limited data,not
directly but prevent the train form becoming dizzy while making the complexity of layers
looks less complex during this process.

Let’s explore why higher training accuracy is advantageous, especially in limited data
scenarios:

Bayes by Backpropagation: This model achieves a training accuracy of 0.816,
which is relatively modest given the limited training data and short training duration
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of only 10 epochs. Despite these constraints, the model shows promising results with a
test accuracy of 0.816 and a validation accuracy of 0.877. As shown in Tab. III.3, the
close alignment between training and testing accuracies indicates that the model is not
overfitting, which is a positive outcome.

Bayes by Backpropagation is advantageous because it incorporates uncertainty in the
model parameters, leading to better generalization and robustness. This method is partic-
ularly useful when dealing with limited data, as it helps to avoid overfitting by integrating
prior knowledge into the learning process.

Monte Carlo dropout: Although intended to improve model robustness, Monte
Carlo dropout introduced ambiguity and exacerbated overfitting, contrary to theoretical
expectations. This highlights the complexity of implementing such methods and the ne-
cessity for thorough study, extensive experimentation, and careful consideration of dataset
compatibility. As evidenced by the results in Tab. III.3 . the adverse effects of Monte
Carlo dropout on overfitting are apparent.

Monte Carlo dropout, while promising in theory, can actually make things worse by
adding confusion and causing overfitting. This shows that using these advanced methods
is tricky and needs a lot of careful study and testing. It’s important to make sure the
dataset is a good fit for the method to work well.

III.3.3 Chest CT Scan Images

I added noise to the data to make it very incomprehensible. testing the ability of Bayesian
methods to deal not only with limited data but even with noise. Although the previous
data also contains its own noise, adding noise such as flipping the images and adjusting
the lighting makes it difficult to train.

III.3.4 Before Noise

Simple CNN achieved a test accuracy of 0.468, which is lower compared to the other
models. Its training accuracy was 0.62. As indicated in Tab. III.4, before applying noise
on data on traditional model, this discrepancy suggests potential inefficiency in training.

InceptionV3 demonstrated a higher training accuracy of 0.857, indicating better
generalization compared to VGG19. Despite this, as shown in Tab. III.4, it’s evident
that the training process not be optimized.

VGG19: With a training accuracy of 0.865, VGG19 demonstrates effective learning
of the patterns in the training data, as shown in Tab. III.4. However, despite these
good values and the absence of overfitting.

It is noteworthy that the GPU used here, so the time of training was short and fairly
acceptable(Tab. III.4 Training time(s))).
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Table III.4: Before applying noise on data (CNN Model)

III.3.5 After Noise

The figure below illustrates the model’s performance before and after applying noise.
The orange color indicates the model’s performance before noise, while the yellow color
represents the model’s performance after noise.

Figure III.2: Model Before and After Applying Noise T.M

this table showing us the Traditional Model’ performance,we will,we will discuss the
result just below
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Table III.5: After applying noise on data (DL Model)

Simple CNN experienced a significant decrease in test accuracy to 0.5161 after the
introduction of noise, as depicted in Tab. III.5 and Fig. III.2. This indicates that the
introduced noise adversely affected its performance.

VGG19 also showed a decrease in test accuracy after the introduction of noise; it was
impacted by the noise as well. Despite its strength, it was affected too much by noise and
became uncertain about its predictions.

InceptionV3 was also noticeably affected and did not fulfill its function well. So, the
test accuracy began to indicate that the model was not coping with this type of noisy
data

Now we will see the effectiveness of Bayesian methods and immediately after noise.

Table III.6: After applying noise on data (Bayesian Methods)

Our experiments used the GPU to train these Bayesian methods. While this ap-
proach yielded faster training times compared to a CPU (as expected ”Bayesian methods
involve intricate calculations for uncertainty estimation. CPUs are not well-suited for
these computationally intensive tasks, leading to inefficiency.”), it significantly inhibited
their effectiveness (refer to Table III.6). The key reasons for this limitation are:

• Noise Sensitivity: We observed that the Bayesian methods were ineffective after
introducing noise to the data, even though training was extended by 5 epochs on the
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GPU. For instance, the Training Accuracy for BAYES BY BACKPROPA was
0.52, with a Testing Accuracy of 0.47, while MCD had a Training Accuracy
of 0.46 and a Testing Accuracy of 0.56. This highlights their sensitivity to noise
and the need for more robust learning (refer to Table III.6).

• Overfitting: GPU-trained Bayesian methods suffered significantly from overfitting.
The Validation Metric for BAYES BY BACKPROPA was 0.58, and for MCD, it
was 0.44, indicating overfitting issues. Finding optimal hyperparameters for effective
learning and data understanding became a time-consuming challenge (refer to Table
III.6).

These limitations demonstrate despite potentially faster training times (e.g., 57.38
seconds for Training Time of BAYES BY BACKPROPA and 55.19 seconds for Train-
ing Time of MCD), the observed inefficiencies suggest these methods weren’t effectively
handling uncertainty estimation on the CPU. While faster training might seem beneficial
on the surface, it comes at the cost of sacrificing effectiveness and potentially leading to
misleading results.

III.3.6 Comparing Bayesian Approximation with Other Meth-
ods

Before introducing noise, InceptionV3 and VGG19 outperformed Simple CNN in terms
of both test and training accuracies, though the traditional methods overall showed only
moderate performance. After introducing noise, InceptionV3 exhibited better resilience
compared to Simple CNN and VGG19, suggesting that InceptionV3 has a more robust
feature representation that is less sensitive to noise.

After the introduction of noise, the performance of the traditional non-Bayesian meth-
ods, which were only moderately good initially, decreased significantly. These methods
lack the ability to capture and quantify uncertainty in their predictions, making them
more susceptible to the adverse effects of noise.

The Bayesian approximation method (Dropout) and the Monte Carlo Dropout (MCD)
technique did not perform well after noise, with accuracies dropping to around 50.%.
Despite this, they still showed signs of overfitting, likely because these methods, while
capturing uncertainty, may have struggled with the noisy data, leading to poor general-
ization.

It is worth noting that the variational inference and many Bayesian methods were
not very effective, and it was like trying all the methods, and this in itself may not be
possible for me to be certain of the effectiveness of combining these methods inevitably
with CNN’s architecture.
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III.4 Discussion of Findings and Insights

III.4.1 Interpretation of Experimental Results and Implications

After evaluating the uncertainty estimation methods and assessing model robustness, we
obtained valuable insights from the experimental results. Let’s discuss the interpretation
of these findings and their implications for real-world applications.

Uncertainty Estimation Methods Based on evaluation metrics such as calibra-
tion, sharpness, and coverage, we found that Monte Carlo Dropout did not effectively
estimate uncertainty within Bayesian Deep Learning models. It consistently failed across
all datasets, showing inadequate performance in each case.

Monte Carlo Dropout leverages dropout during training and testing to approximate
the posterior distribution and obtain a distribution of predictions.

Although Bayesian methods such as MCD (Monte Carlo Dropout) and Bayesian
Dropout seem to be promising in theory, they have several challenges in practice. One
of the primary challenges behind these methods is that they can actually be compu-
tationally efficient and complex, which makes them less scalable in the case of larger
datasets and deeper architectures. Further, these methods need to tune hyperparameters
appropriately; otherwise, suboptimal performance and instability during training will be
the case. It has also been observed that the quality and distribution of the data could
have a significant bearing on the performance of Bayesian methods. Uncertain, non-
representative, and low-quality data is evidence that provides reasons why these methods
cannot adequately capture the necessary uncertainty or make correct generalizations to
unseen examples. Implementing Bayesian methods becomes another issue. For each veri-
fication of the uncertainties and fixing the bugs in the Bayesian methods can also become
challenging sometimes. This may require deep analysis and usage of diagnostic tools. Last
but not least, they can be resource-intensive meaning that they could require additional
computational resources and longer training times, which may limit their practicality in
real-time or resource-constrained applications.

III.5 In-depth Analysis of Challenges

III.5.1 Overfitting in Bayesian CNNs

Potential Causes of Overfitting:

• Model Complexity: Excessive model complexity can indeed lead to overfitting.
When Bayesian CNNs are too intricate for the available data, they may end up
capturing noise rather than discerning true patterns.

• Choice of Priors: The selection of priors in Bayesian modeling is akin to setting
the initial direction of a journey. If improperly chosen, priors can bias the model
and hinder its ability to generalize, thus exacerbating overfitting.
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• Data Size: Sparse training data poses a significant challenge, akin to solving a com-
plex puzzle with only a handful of pieces. Insufficient data can magnify overfitting
issues, as the model struggles to discern true patterns amidst the noise.

Comparison with Non-Bayesian Approaches:

• Generalization: Non-Bayesian models with fixed weights have appeared to show
superior generalization in this context due to their simplicity and capacity to learn
from the data without the added complexity of Bayesian inference. These models
typically rely on deterministic algorithms, which are less susceptible to overfitting,
especially when dealing with limited datasets. However, it’s important to note that
this superiority was observed only in few instance, and their performance overall
was still not significantly strong.

• Regularization Techniques: Non-Bayesian models typically employ various reg-
ularization techniques, such as dropout and weight decay, to prevent overfitting.
These techniques introduce constraints during training, encouraging the model to
learn robust features and avoid memorizing noise from the training data. In con-
trast, Bayesian models may struggle with overfitting if their priors are not properly
tuned or if the model complexity is not appropriately controlled.

Issues with Uncertainty Estimation

III.5.2 Challenges in Variational Inference

Challenges in Variational Inference:

• Optimization Challenges: Variational inference may encounter optimization
challenges, potentially resulting in inadequate approximations of the posterior dis-
tribution. This occurs when the optimization algorithm struggles to find the optimal
variational parameters, leading to suboptimal uncertainty estimates.

• Choice of Variational Family: The selection of the variational family (the set of
probability distributions that the variational approximation can take) is pivotal in
variational inference. If the chosen family is overly restrictive or fails to capture the
true complexity of the posterior distribution, the resulting uncertainty estimates
may suffer from bias or inaccuracy. Careful consideration of the flexibility of the
variational family is essential to ensure precise uncertainty quantification.

III.5.3 Impact of Data Quality and Quantity

Limited Data: The effectiveness of Bayesian methods in estimating uncertainty heavily
relies on the availability of sufficient data. However, in cases where data is limited, as
observed in this study, Bayesian models may struggle to provide reliable uncertainty es-
timates due to insufficient information to capture the underlying distribution adequately.
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Data Quality: The presence of noise or anomalies in the data can significantly impact
the accuracy of uncertainty estimations. Despite the theoretical advantages of Bayesian
methods in handling uncertainty, their performance may be compromised when dealing
with noisy or low-quality data, leading to inaccurate or unreliable uncertainty estimates.

Model Architecture and Priors

III.5.4 CNN Architecture

• Bayesian Suitability: Assess whether the CNN architecture’s inherent complexity
predisposes it to overfitting when utilized within a Bayesian framework. Analyze
if architectural adjustments are required to better align with Bayesian principles
and improve performance. Consider whether the inherent complexity of the CNN
architecture predisposes it to overfitting within a Bayesian framework. It might
be worth analyzing if architectural adjustments could better align with Bayesian
principles and potentially improve performance.

• Alternative Designs:Exploring alternative neural network architectures that of-
fer better compatibility with Bayesian techniques could be beneficial. This might
involve considering simpler structures or different regularization strategies to po-
tentially enhance the effectiveness of Bayesian models in uncertainty estimation.

III.5.5 Choice of Priors

• Effectiveness of Priors: The choice of priors is pivotal in Bayesian modeling, as
it shapes the model’s initial beliefs about the parameters before observing the data.
It’s crucial to assess whether the selected priors adequately captured the underly-
ing uncertainty in the data and model parameters. Exploring the effectiveness of
different priors can shed light on whether alternative choices could have improved
the model’s performance and uncertainty estimates.

• Experimentation with Priors: Bayesian modeling allows for flexibility in choos-
ing prior distributions, offering an opportunity to experiment with various priors to
find the best fit for the data and model. By systematically exploring a range of prior
distributions, researchers can gain insights into which priors lead to more accurate
uncertainty quantification and model generalization. This experimentation process
is essential for refining Bayesian models and improving their predictive capabilities.

III.6 Reflections on Methodology

III.6.1 Implementation Challenges

• Computational Issues: Bayesian approaches, especially variational inference, of-
ten come with significant computational demands. The computational complexity
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of Bayesian methods may have constrained the model’s performance, leading to
longer training times or requiring simplifications that could compromise accuracy.
Addressing these computational challenges is crucial for ensuring the practical fea-
sibility and scalability of Bayesian modeling in real-world applications.

• Hyperparameter Tuning: Hyperparameters play a crucial role in the perfor-
mance of Bayesian models, and tuning them effectively can be challenging. The
subpar performance observed may stem from difficulties in finding optimal hyper-
parameter configurations. Experimentation with different hyperparameter settings
and tuning strategies is essential to maximize the model’s performance and achieve
reliable uncertainty estimates. Additionally, automated hyperparameter optimiza-
tion techniques may be explored to streamline this process and improve model
robustness.

III.6.2 Variational Inference Techniques

• Convergence Properties: Variational inference methods often rely on iterative
optimization algorithms to approximate the posterior distribution. Assessing the
convergence properties of these techniques is crucial, as suboptimal convergence
can lead to inaccurate uncertainty estimates. Investigating the convergence behav-
ior of variational inference algorithms can provide insights into their stability and
effectiveness in capturing the posterior distribution accurately.

• Scalability: The scalability of variational inference methods is a significant consid-
eration, particularly when dealing with large datasets or complex models. Assessing
the scalability of these techniques involves evaluating their computational efficiency
and memory requirements as the dataset size or model complexity increases. Ex-
ploring scalable variational inference algorithms or parallelization strategies can
help address scalability challenges and enable the application of Bayesian models to
real-world datasets and scenarios.

III.7 Implications of Findings

Performance Discrepancies with Bayesian Methods: The analysis revealed notable
discrepancies between the anticipated performance and the observed outcomes when em-
ploying Bayesian methods, particularly in the context of convolutional neural networks
(CNNs)3 Despite the theoretical promises of Bayesian inference in estimating uncertainty
and handling data scarcity, the practical implementation showcased several limitations.

Challenges with Bayesian Approaches: Bayesian methods, including Bayes by
Backpropagation and Monte Carlo techniques, exhibited suboptimal performance char-
acterized by the generation of inaccurate and unreliable predictions. Notably, Bayesian
models were prone to overfitting, leading to diminished predictive accuracy and generaliza-
tion capabilities. These challenges were particularly evident when compared to traditional
methods, such as Inception-V3 and Vgg19, which demonstrated more robust performance
in various tasks.
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Implications for Real-World Applications: The findings have significant impli-
cations for the practical application of Bayesian deep learning in real-world scenarios.
Practitioners should exercise caution when employing Bayesian methods for tasks involv-
ing CNNs, as the observed limitations could undermine the reliability of predictions and
decision-making processes. Moreover, the risks associated with relying on uncertain pre-
dictions underscore the importance of validating and augmenting Bayesian models with
complementary techniques to enhance robustness and mitigate potential biases.

Theoretical Considerations and Future Directions

The observed discrepancies between expected and observed performance raise critical
questions about the theoretical underpinnings of Bayesian deep learning, particularly in
the context of CNN architectures. Future research endeavors should focus on address-
ing the identified limitations and advancing theoretical frameworks to better align with
practical requirements. This may involve exploring alternative Bayesian methodologies,
refining existing techniques, or integrating Bayesian approaches with other machine learn-
ing paradigms to leverage their respective strengths.

III.8 Conclusion

In conclusion, while Bayesian methods were initially lauded for their theoretical promise,
their practical application to CNNs revealed notable discrepancies. Despite high expec-
tations, their performance in real-world scenarios didn’t align with the anticipated levels,
highlighting inherent challenges. This calls for a reevaluation of current methodologies
and potential innovations. One avenue could involve reimagining CNN architectures to
seamlessly integrate Bayesian principles, potentially enhancing efficacy and robustness in
uncertainty handling. However, it’s essential to acknowledge the constraints of time and
depth of understanding in fully exploring Bayesian concepts. Additionally, the comparison
with traditional methods underscores the unique challenges each approach faces. While
Bayesian methods may struggle with real-world applicability, traditional approaches often
falter when dealing with limited data. This complexity underscores the need for continu-
ous exploration and refinement to address the multifaceted challenges of the deep learning
landscape.
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General Conclusion

Deep learning has undeniably revolutionized the field of artificial intelligence, particularly
in domains such as computer vision and natural language processing. This transformative
power stems from deep learning’s ability to mimic the structure and function of the human
brain through advanced computational models. Historically, the evolution of deep learn-
ing has been marked by significant milestones. From the inception of artificial neurons
in the 1940s, inspired by the biological principles of the human brain, to the sophisti-
cated architectures we see today, this journey has been propelled by advancements in
computational power and algorithmic innovations.

The combination of neural networks with Bayesian probability, known as Bayesian
deep learning, has been a promising theoretical advancement. Bayesian methods provide a
robust framework for uncertainty estimation and improved prediction accuracy, especially
when dealing with limited data. By incorporating probabilistic reasoning within neural
network architectures, Bayesian deep learning theoretically enhances model robustness
and generalization.

However, the practical application of Bayesian deep learning has not always met these
theoretical promises, especially under challenging conditions such as limited and noisy
datasets. This work, meticulously structured into three comprehensive chapters, explores
these aspects in detail.

The first chapter covers the basics of neural networks and deep learning, providing a
solid foundation of these transformative technologies. The second chapter dives deep into
the theoretical foundations of Bayesian methods, emphasizing their potential to augment
deep learning models.

Finally, the third chapter offers an empirical comparison of various models, highlight-
ing their performance under constrained datasets. Both traditional and Bayesian methods
have shown underwhelming performance on the datasets used in our experiments. Con-
trary to expectations, Bayesian approaches did not significantly outperform traditional
models in terms of uncertainty estimation, robustness, and generalization. These out-
comes suggest that while Bayesian methods hold substantial theoretical promise, their
practical efficacy in real-world applications, particularly with constrained data, remains
an area ripe for further research and enhancement. The challenges faced during our ex-
perimentation underscored the limitations and the need for continuous innovation in this
field.

Limited computational resources and inconsistent access to cloud services were sig-
nificant bottlenecks. These constraints hindered the ability to train models for extended
epochs, which could potentially yield better performance. Furthermore, the low compu-
tational power available further exacerbated these challenges, highlighting the critical role
of adequate resources in deep learning research.
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Perspectives

Besides working with CNNs and Bayesian methods, there is an interest in exploring
Recurrent Neural Networks (RNNs) and other neural network types, not limited to image
data.

Exploring sequential and text data with Bayesian methods is particularly intriguing.
Unfortunately, training models for extended epochs, like 50 or more, which would yield
better results than just 10, has been challenging due to limited computational resources
and inconsistent access to cloud services.

It would also be beneficial to test on larger datasets and test other Bayesian models.
The low performance of a personal computer further compounded these issues.

Greater support from the university in providing necessary resources and capacities
would have been beneficial to fully realize these interests.
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Abstract

Deep learning, inspired by the human brain, uses artificial neural networks to learn from
vast data and perform complex tasks with precision. Bayesian deep learning incorporates
statistics to improve prediction accuracy and handle uncertainty, especially with limited
data. This thesis investigates the effectiveness of Bayesian deep learning in enhancing
prediction accuracy and uncertainty estimation in such contexts.

Keywords : Deep Learning, Bayesian Methods, Uncertainty Quantification, Inter-
pretability, Performance.

Résumé

L’apprentissage profond, inspiré du cerveau humain, utilise des réseaux de neurones ar-
tificiels pour apprendre à partir de données massives et effectuer des tâches complexes
avec précision. L’apprentissage profond bayésien intègre des statistiques pour améliorer
la précision des prédictions et gérer l’incertitude, notamment lorsque les données sont
limitées. Cette thèse étudie l’efficacité de l’apprentissage profond bayésien pour améliorer
la précision des prédictions et l’estimation de l’incertitude dans de tels contextes.

Mots clés : Apprentissage Profond, Méthodes Bayésiennes, Quantification de l’Incertitude,
Interprétabilité, Performance.

ملخص
وانٕجاز ضخمة بيانات من للتعلم الاصطناعية العصبية الشبكات البشري، الدماغ من المستوحى العميق، التعلم يستخدم
مع خاصة اليقين، عدم مع والتعامل التنبؤ دقة لتحسين الإحصاءات البيزي العميق التعلم يدمج بدقة. معقدة مهام
مثل في اليقين عدم وتقدير التنبؤ دقة تعزيز في البايزي العميق التعلم فعالية في الاطٔروحة هذه تبحث المحدودة. البيانات

السياقات. هذه

: مفتاحية كلمات
الادٔاء. التفسيرية، اليقين، عدم قياس البايزية، الطرق العميق، التعلم
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