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General Introduction 

 

The ability to observe and manipulate phenomena on ultrashort timescales has been a 

crucial matter for scientists. From the groundbreaking microsecond imagery captured by 

Harold "Doc" Edgerton in the early 20th century, which famously froze a bullet piercing an 

apple mid-flight, to the development of picosecond and then femtosecond lasers in the 1970s–

1980s thanks to the pioneering work of Erich Ippen and Herman Haus at MIT (Massachusetts 

Institute of Technology), and Chuck Shank at Bell Laboratories, each leap in temporal 

resolution has revealed new aspects of the physical world [1]. 

The cutting edge of this exploration now lies in attoscience, a field dedicated to studying 

events that unfold in attoseconds (10
-18 

s),which is the timescale of the most elementary 

electronic dynamics in atoms, molecules, but also solid state. According to the Bohr-model of 

hydrogen atom, an electron in the ground state moves in a circular classical orbit around the 

nucleus in approximately 150 as. Decades of technological advancements and extensive 

researches have now made it possible to generate pulses lasting less than 100 attoseconds. 

Last year, Anne L’Huillier, Pierre Agostini and Ferenc Krausz earned the Nobel Prize in 

Physics for their contributions to the study of electrons. Their approach involves using 

attosecond-long flashes of light to illuminate molecules, offering a unique perspective on the 

behavior and characteristics of electrons in molecules, and for understanding fundamental 

quantum mechanics and chemical reactions [2, 3]. 

Ultrashort laser pulses, such as femtosecond and attosecond pulses, interact with materials 

in a unique way due to the extremely brief duration of the energy deposition. When such a 

pulse illuminates a materiel, the energy from the laser is primarily absorbed by the free 

electrons, making them the main carriers of the thermal energy. The interaction time of the 

pulse is comparable to the electron relaxation time, leading to a scenario where the traditional 

heat conduction models, such as the Fourier equation, fail to accurately describe the thermal 

energy transfer. The Fourier equation assumes a continuous and gradual propagation of heat, 

which is appropriate for longer timescales. However, for ultrafast thermal pulses, the situation 

is different. The hyperbolic nature of thermal energy transfer becomes significant, meaning 

that the speed of heat propagation is finite and comparable to the speed of the energy carriers, 

i.e., the electrons. This leads to non-Fourier heat conduction behavior [4]. 
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Objective and Work plan: 

Our main objective is to investigate the interaction between matter and attosecond laser 

pulses to gain more insights into the behavior of electrons under the influence of these 

ultrashort pulses, we will follow a structured plan of work: 

In the first chapter, we have explored the different time scales from milliseconds to 

attoseconds, as well as the dynamics that occur during these time periods.  We have provided 

in detailed explanation, the nonlinear process of generating attosecond pulses (HHG), using a 

description based on a semi-classical model.  

In the second chapter, we have studied the interaction of an attosecond laser with matter, 

which leads to the propagation of thermal waves in the material that no longer follows 

Fourier's law.  Specifically: 

 We introduced the heat transfer model under the influence of attosecond pulses, which is 

described by the quantum heat transport equation (QHT) and the modified Schrödinger 

equation (MSE) to analyze the behavior of electrons under attosecond laser.  

 We have conducted a theoretical study, including the mathematical derivation of the 

modified Schrödinger equation (MSE). 

 The MSE was solved by separating variables leading to 2 equations: One is temporal 

differential equation of order 2 and the second is the classical and independent time 

Schrodinger equation.  

 We performed analytical solution of the differential temporal equation of MSE. 

In the third chapter: 

 We presented the principles of the numerical finite difference method. 

 We solved the radial equation of the modified Schrödinger equation describing a 

hydrogen atom, where the electron is under Coulomb potential. 

 We have transformed the problem on the Eigen values form matrix. 

 We presented the different scripts which we have written for solving the problem 

using Python language.  

 Wave functions and densities of probabilities are graphically represented for different 

states corresponding to different angular momentum quantum numbers l. 

 The radial solution obtained numerically by the finite difference scheme is associated 

to the analytical solution of temporal part for performing 2D and 3D representation, 

consistently demonstrate the significant impact of attosecond pulses. 

In this work, Python codes have been performed: Total electrical potential for Tunnel 

effect and Resolution of MSE by finite difference method. 



Chapter I: HIGH HARMONICS GENERATION
For Attoseconds (XUV) Laser



Chapter I

I Introduction

The evolution of laser technology from its inception in the late 1950s to its current
state represents a captivating journey through time, spanning a vast range of temporal
scales – from milliseconds to attoseconds1. The first pulsed lasers appeared in the 1960s
with durations of several hundreds of microseconds. Over time, advancements led to
the development of femtosecond2 lasers, with pulse durations in the order of femtosec-
onds by the year 2000. Subsequently, in 2001, a significant breakthrough occurred as
researchers successfully generated attosecond pulses. Isolated attosecond pulses were
first observed in 2001 by Ferenc Krausz and his team at the Technical University of
Vienna using light pulses lasting approximately 650 attoseconds [5]. In 2012, the world
record for the shortest light pulse generated by human technology was set at 43 attosec-
onds. Since then, attosecond technology has advanced quickly contributing to various
fields including materials science, biophysics and chemistry. In this chapter, we will
present different physical dynamics that can occur within different time scales. Sub-
sequently, we delve into the high harmonics generation (HHG), source of attosecond
pulses laser. We used the semi-classical model for describing the processes of the HHG.
Lastly, we’ll discuss some practical uses for these attosecond pulses in various fields.

Figure I.1: Ferenc Krausz and his team at the Vienna University of Technology
managed to produce attosecond light flashes for the first time in 2001. (Photo by
Thorsten Naeser) [5].

1Attoseconds(as) = 10−18seconds
2Femtoseconds(fs) = 10−15seconds
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II Time Scales

The concept of multiples and submultiples in distance and time of a given unit is
fundamental for adapting measurements to specific physical quantities. Temporal in-
tervals ranging from fractions of seconds to years align with human capabilities and
their perception. Also finer gradations such as milliseconds, microseconds, nanosec-
onds3 , picoseconds4 ,femtoseconds, attoseconds, and even zeptoseconds5 have been
defined to address specific dynamics within various contexts. Each unit finds relevance
in understanding and quantifying distinct phenomena at different temporal scales [6].

Figure I.2: Time scales for different processes in the plasma [7]

II.1 Millisecond

We cite some fields where the milliseconds are a time duration scale:

• Fluid dynamics : Some processes involving turbulence phenomena cause the fluid
to fragment into drops or bubbles within a few milliseconds [8].

• Cellular processes: Neural action potentials generally have duration of about 2
milliseconds.

• Photosynthetic Protein Dynamics: Research has revealed that dynamics within
photosynthetic proteins occur at very rapid timescales [9].

• Mechanical systems as example a camera shutter which capture images, opens
and closes within a fraction of a millisecond.

3Nanosecond(ns) = 10−9seconds
4Picoseconds(ps) = 10−12seconds
5Zeptoseconds(zs) = 10−21seconds
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II.2 Microsecond:

• Air vibrations: Acute sounds associated with explosions or high-frequency events,
have durations of the order of microseconds[10].

• Access time to electronic memories: The time delay between a request to an
electronic system and the returned data is of 10 microseconds [11].

II.3 Nanosecond

• Electronic Junctions: the switching time of transistors and other electronic com-
ponents often occurs within the nanosecond time, as example, 35 ns for the 2N3904
transistor [12].

• - Cycle Time of Computers: It represents the duration time for one instruction
to be executed. It is measured in nanoseconds.

• Molecular biology: Nanoseconds are a timescale for understanding the dynamics
and rearrangements of protein structures [13].

II.4 Picoseconds

• In semiconductor devices: the movement of electrons and holes within the material
is extremely fast, and this motion is governed by picosecond and femtosecond time
scales [14].

• Some chemical reactions can also take place on these short time scales.

II.5 Femtoseconds

• This timescale is typical for nuclei dynamics fundamental to chemistry. In a
molecule, atoms can move and turn in few fs. The fundamental mode of vibration
of molecular di-hydrogen has a period of 8 fs.

Some researchers at the FERMI investigated a photochemical reaction using high-
resolution photoelectron spectroscopy. They focused on acetylacetone (a stable molecule
with several applications). Their method allowed them to observe rapid changes in the
molecule’s electronic and geometric structure on a femtosecond timescale. This ap-
proach offers insights into fundamental photochemical processes like photosynthesis
and photovoltaic energy production [15]. High-energy X-ray pulses with femtosecond
duration could make it possible to obtain detailed images, and ultimately movies, of
the dynamics of complex protein molecules.

II.6 Attosecond

Attoseconds is the time scale of the most elementary electronic dynamics in atoms,
molecules, but also solid state. According to the Bohr-model of hydrogen atom, an
electron in the ground state moves in a circular classical orbit around the nucleus in
approximately 150 as. At the attosecond timescale, several key electronic dynamics
occur, including:
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• Electron Tunnelling: Electrons can tunnel through potential barriers, a phe-
nomenon fundamental to processes like quantum tunnelling microscopy and field
emission.

• Photoionization: When atoms or molecules absorb photons, electrons can be
ejected from the system in a process known as photoionization. We can observe
this phenomenon at attosecond timescales

• Attosecond Charge Migration:In molecules, charge migration processes can occur
on the attosecond timescale, where electrons redistribute due to the influence of
the laser field or other environmental factors [16].

• Ultrafast Energy Transfer:In complex systems such as biomolecules or solid-state
materials, energy transfer processes can occur on attosecond timescales.

• Coherent Electron Motion:Attosecond pulses of light can induce coherent motion
of electrons within atoms or molecules. This includes processes such as the gener-
ation of high-harmonic radiation or the coherent control of electronic wave pack
[17].

III Generation of attosecond pulses

In 1988, physicists at CEA-Saclay discovered that by exciting atoms of rare gases with
short and intense laser pulses, a large number of frequencies, all multiples of the ini-
tial laser frequency, known as harmonic frequencies, were emitted. Using an infrared
laser, (TiSaphire) they were able to generate radiation covering a broad spectrum of
frequencies, from visible light to X-rays.

At that time, the synchronization of these harmonic frequencies remained an open
question as no technique existed to measure it. In 1993, Paul Corkum proposed a model
where the production of these harmonics was associated with the emission of ultra-short
pulses. This process can be very well understood in the framework of the semi classical
three step model.

III.1 Three Step Model

The generation of attosecond pulses involves using intense lasers (Femtosecond pulses,
see Figure I.2) to ionize a medium, leading to the emission of high-energy photons in
the extreme ultraviolet (XUV) or X-ray range through a process called high harmonic
generation (HHG) (Figure I.3). These XUV pulses are sub-femtosecond in duration.
The energy required for this process is quantified by the ponderomotive energy of the
laser. Although HHG produces sub-femtosecond pulses, specific techniques are needed
to isolate individual attosecond pulses, often used for high-resolution temporal experi-
ments.
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Figure I.3: Femtosecond pulses computed by Python code [Annex 1] Source laser gen-
erating the HHG

Figure I.4: Schematic of a High Harmonic Generation (HHG) setup along with a typical
harmonic spectrum. The abscises is labelled in terms of multiples of the energy of the
initial photon used for driving, indicating different harmonic orders.(Spectrum of a neon
HHG source driven by a Ti-sapphire laser [18]

If we irradiate an atom with an intense oscillating laser field weakly bound electrons
may tunnel into the continuum. The guided electronic wave packet may recombine with
the ion,emitting kinetic energy as photons. In summary, the three steps involve:

• Tunnelling

• Excursion in the continuum,
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• and potential recombination with photon emission.

a.Tunnel ionization

When a femtosecond laser pulse is directed towards a gas target, its peak intensity
typically falls within the range of 1013 and 1015 W/cm2. Under such conditions, the
Coulomb potential affecting the outer-shell electrons undergoes significant alteration
due to the intense laser electric field. This alteration results in the formation of a
potential barrier, enabling electron tunneling to occur.

Figure I.5: Three step model of high harmonic generation (HHG). Step one represents
tunnel ionization, two represents propagation and three is the recombination. Emax=
0.1 (u.a)

• In this step, we consider the potential of the ionic core as a coulomb potential in
the form of:

V =
Zeff

|x|
(I.1)

• The electric field of the laser:E(t) = E0 cos(ωt) is supposed to be homogeneous
on the relevant size scales around the atom. The associated potential is E0.x

• The total electric potential (we put Zeff = 1) seen by the electron is :

V (x) = −1

x
+ E0 · x (I.2)
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Figure I.6: Total electric potential seen by electron, for E0 = 0, E0 > 0 and E0 < 0 
from Python Code we performed [Annex 2]

When the electric field is null, the electron remains bound to the ionic c ore. However, 
as the electric field o f t he l aser i ncreases, i t c reates a  b arrier whose h eight decreases 
with the increasing the laser electric field, facilitating electron e scape. The value of the 
maximum of the barrier is noted Vxm, thus if Vxm < Ionization Potential Ip, the electron 
can directly escape (tunnel) the potential and the atom gets ionized.

If Ip < Vxm < 0, classically, an electron would be confined w ithin t he p otential of 
the ionic core and unable to escape. However, in the realm of quantum mechanics, 
there exists the possibility of tunnelling, whereby the electron can surpass the potential 
barrier and ionize. The rate of this tunnelling depends on the width of the barrier, and 
its height [19].

Let’s take the case where the barrier is lowered on the x>0 and by deriving eq. (I.1), 
we get:

dV

dt
=

1

x2
+ E0 (I.3)

xm =
1√
−E0

(I.4)

When xm = lp , we have what we call Barrier suppression ionization, this directly leads
tothe field strength and corresponding intensity of

EBS =
I2p
4
, IBS =

I4p
16
, IBS

[
W

cm2

]
= 4× 109 · I4p · [eV] (I.5)

Once these intensities are reached, the rate of tunnel ionization becomes notable. The
table below represents ionization potential and barrier suppression intensities of noble
gases [19]. The table indicates lighter elements with higher ionization potential can
stand more laser Intensity.
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Gas Ip (eV) IBS × 1014 W/cm2 EBS × 1010 V/m
He 24.58 14.6 10.49
Ne 21.55 8.62 8.06
Ar 15.75 2.46 4.31
Kr 14.00 1.53 3.40
Xe 12.13 0.87 2.55

Table I.1: Gas ionization potentials and related parameters

The Keldysh parameter is introduced as an adiabaticity parameter called “γ”, giving
an additional criterion for the existence of a tunnel regime. This parameter is defined as
the ratio of the time the electron would need to cross the barrier and the laser period:

γ =
τ

T0
=

√
Ip
2Up

(I.6)

where Up is the ponderomotive potential,which represents the average kinetic energy
of a free electron oscillating in the field. If the laser field exhibits high amplitude and
low frequency, the potential barrier remains relatively low for an extended period, and
γ ≪ 1 as long as the laser field’s intensity remains below EBS. Conversely, when the
laser field is weak and has a high frequency,γ becomes significantly larger than 1. In
such conditions, tunnel ionization is not efficient [20].

b. Propagation

The ejected electron is accelerated in the continuum, the propagation of this electron
can be described classically since we can ignore the coulomb force excreted by the ion,
thus the electron’s movement can be studied using the classical model of a free electron
accelerated in the presence of the electric field of the laser pulse.

We consider the initial conditions: v(t0) = 0 and x(t0) = 0

m
dv

dt
= −eE0 cos(ωt) (I.7)

v(t) = −eE0

mω
(sinωt− sinωt0) (I.8)

x(t) =
eE0

mω2
(cos(ωt)− cos(ωt0)) + (t− t0)

eE0

mω
sin(ωt0) (I.9)
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Figure I.7: The electron’s position over time varies for different “Ionization times”.
The term ”most energetic trajectory” pertains to the solution in which the electron
approaches the nucleus with the highest kinetic energy [21]

c. Recombination

A comprehensive understanding of the recombination stage necessitates a quantum
mechanical analysis of the re-scattering6 and the accompanying radiation emission,
through the Schrodinger equation of a single active electron in dipole approximation,

i
d

dt
|ψ⟩ = H|ψ⟩ − r⃗.E(t)|ψ⟩ (I.10)

H = −1

2
∇2 + V (r) (I.11)

H is the atomic Hamiltonian, V (r) the effective atomic potential confining the electron
to the atom. The energy liberated during recombination can plausibly be equivalent
to the sum of the kinetic gained by the electron and the ionization potential, as the
electron transitions from the continuum to a state with energy of −Ip. In particular,
the maximum energy released during the collision can be anticipated to be,

ωmax = Ip + 3.17Up (I.12)

This process is repeated periodically every half cycle of the external laser field, and
this periodicity corresponds to the emission of the odd harmonics of the fundamental
driving wavelength in the spectral domain. Correspondingly, in the temporal domain,
harmonics are emitted as a train of attoseconds pulses eparated by half the period of
the driving field [21].

6The re-scattering problem refers to the phenomenon in quantum mechanics where an electron,
after being ionized from an atom or molecule, is subsequently scattered back towards the ion from
which it originated.
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IV Quantum Description of High-order Harmonic

Generation

The semi classical model offers a convenient framework for understanding experimental
observations, but its reliance on classical physics is not fully justified. Instead of envi-
sioning an electron as a point particle following a trajectory and emitting light upon
bouncing off its parent ion, the more accurate description involves considering the elec-
tron as a wave function confined within an atom or molecule.
When subjected to a strong laser field, this wave function undergoes significant de-
formation.Portions of the wave function are pulled away from the binding potential,
traversing classically forbidden barriers. Eventually, these separated parts of the wave
function interfere with each other, leading to complex interference patterns. This de-
scription better captures the quantum mechanical nature of electron behavior in the
presence of strong external fields, contrasting with the simplistic classical trajectory
model. In this case we will have the following equation:

i
∂

∂t
ψ(r, t) =

(
−1

2
∇2 + V0(r) + r · E(t)

)
ψ(r, t) (I.13)

where E(t) is the external electric field (the laser source) and V0(r) represents the in-
teraction of the electron with the nucleus shieldedby the remaining bound electrons.
Lowenstein et al. proposed an approximate solution build upon the strong-field approx-
imation (SFA) of the Time-Dependent Schrödinger Equation (TDSE), as introduced by
Keldysh. This approach simplifies the problem by making several key assumptions [20]:

• Only the ground state of the atom or molecule is taken into account. Any other
bound states are disregarded. This simplification reduces the complexity of the
system under consideration.

• The effect of the core-potential V0(r) on the electron in the continuum is assumed
to be negligible. In other words, the interaction between the electron and the
laser field r.E(t) is considered dominant compared to the influence of the core
potential.

V Attosecond laser applications

The attosecond pulses have found extensive applications across diverse scientific disci-
plines due to their ability to probe ultrafast dynamics at the atomic and molecule level
as we have seen before. We can encounter attosecond laser in many applications such
as:
- Attosecond movies of electrons, created through pump-probe spectroscopy, capture
electron motion inside atoms. A ”pump” pulse initiates movement, while a ”probe”
pulse illuminates’ electrons at various intervals, acting as frames in a conventional
movie. Sophisticated detectors gather data on electron behavior, which is then stitched
together to form movies. These insights aid in understanding fundamental electronic
behavior on attosecond scales, offering potential for controlling electric currents at the
molecular level [22].
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Figure I.8: Experimental setup for attosecond-pump attosecond-probe spec-
troscopy.Image Credit: Max Born Institute [23]

Gaining a fundamental understanding of a process typically leads to control that
process, and such control paves the way for the development of innovative technologies.
- Ultrafast Switches: The capability to modify electron behavior at attosecond timescales
could lay the foundation for next-generation ultrafast switches, enabling electronics to
operate at speeds far beyond current limits. This has the potential to revolutionize
information processing and communication technologies, leading to faster and more ef-
ficient devices.
- Chemical Reactions Control: By understanding and controlling electron behavior, re-
searchers can manipulate chemical reactions; this could lead to the creation of novel
molecules with unique properties, advancing fields such as materials science, drug dis-
covery, and catalysis.
- One of the very promising applications is attosecond-scale magnetism, where spin
dynamics are induced by ultrafast lasers in magnetized materials. This field emerged
initially in the femtosecond regime (ultrafast data storage) and is now being pursued
towards attosecond regimes. These applications, along with the attosecond precision
now achievable, have led to very fundamental questions, such as understanding the
non-trivial connections between delays, time, and phase shifts.
- In EUV (Extreme Ultraviolet) lithography, attosecond pulses enable the production
of smaller, more advanced electronic chips, enhancing device performance [24].
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Chapter II

I Introduction

Laser pulses interact with materials through multiple mechanisms, leading to a variety
of phenomena ranging from electromechanical effects to photothermal processes. For
example, femtosecond laser pulses exhibit unique dynamics when interacting with ma-
terials compared to longer pulse durations.

In femtosecond laser excitation, fundamental processes like energy deposition, melt-
ing, and ablation occur in distinct temporal phases due to the short duration of the
pulses. Initially, the laser pulse rapidly deposits a significant amount of energy into a
small volume of the material within femtoseconds, leading to localized heating and ex-
citation of electrons. This energy deposition results in fast melting of the material, but
due to the short pulse duration, heat diffusion into the bulk is minimal, confining the
melting to a thin layer near the surface. Subsequently, before significant heat transfer
to the surrounding material can occur, intense energy absorption leads to rapid vapor-
ization or ablation of the material within femtoseconds to picoseconds. This temporal
separation allows for precise control over material processing, facilitating applications
such as laser micromachining, surface structuring, and ultrafast spectroscopy techniques
for studying material properties [1].

Figure II.1: Ultrafast laser–matter interaction pathways for different materials [2]
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The development of femtosecond and attosecond laser technology has reshaped the
study of laser-material interactions. However, it also presents obstacles to conventional
models relying on the Fourier law of heat conduction.

In addressing these challenges, the Quantum heat equation emerges as a powerful
tool for modeling the propagation of thermal waves induced by ultrafast laser pulses.
Unlike traditional diffusion models, which assume equilibrium conditions, the hyper-
bolic nature of this equation captures the transient behavior of heat transport in ma-
terials subjected to ultrafast laser irradiation [3].

This chapter explores how attosecond laser pulses interact with matter, enabling the
study of electron dynamics using the Modified Schrödinger Equation (MSE). The MSE
is a valuable tool for investigating electron behavior in these conditions, by applying
the MSE, we aim to gain deeper insights into how electrons behave in atomic systems
under attosecond laser influence.

II Quantum Heat Transport Equation (QHT)

The wave model of heat transfer offers a different perspective compared to classical
heat diffusion theory by recognizing that heat doesn’t instantly spread through solids
but rather moves at a finite speed. This understanding changes how we think about
heat transfer, mathematically rendering the energy equation hyperbolic in nature. In
this model, the speed at which thermal waves move is crucial, acting like the speed of a
traveling wave, while thermal diffusivity acts as a damping factor in the propagation of
thermal waves. The balance between these two factors is measured using the concept
of relaxation time within the wave theory framework.

The classical diffusion theory is considered a special case where the relaxation time
is zero, implying immediate response to changes in temperature. Conversely, the wave
theory accounts for the relaxation behavior in the history of thermal wave propagation.
Both temperature and flux waves exhibit a common characteristic of sharp wave fronts
when traversing through a solid medium. This phenomenon leads to the formation of
thermal shocks, which is a notable aspect addressed by the wave theory [4].

According to the constitutive relation in the thermal wave model, heat flux q⃗ obeys
the relation [5]:

q(r, t+ τ) = −k∇T (r, t) (II.1)

Where τ is the relaxation time, represents the timescale over which an atom or molecule
typically returns to its equilibrium state following an external perturbation, and k
represent the thermal conductivity.
The temperature gradient at time t causes a heat flux at a later time t+τ due to delayed
response. To incorporate this into the energy equation, all involved physical quantities
must correspond to the same time instant. We apply the Taylor’s series expansion to
the heat flux in Eq. (II.1):

q(r, t) + τ
∂q(r, t)

∂t
+
τ 2

2

∂2q(r, t)

∂t2
+ . . . = k∇T (r, t) (II.2)
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The relaxation time is assumed to be small, thus we can neglect the higher order terms
of τ , eq. (II.2) becomes:

q(r, t) + τ
∂q(r, t)

∂t
= k∇T (r, t) (II.3)

The energy equation:

−∇q+ S = ρCp
∂T

∂t
(II.4)

Where S represents the laser source energy, which serves as the heat source, ρ is the
mass density, and Cp is the heat capacity.
We combine eq. (II.3) with eq. (II.4) by eliminating q⃗ from the two equations and we
applythe divergence operator to eq. (II.3):

∇ · q(r, t) + τ∇∂q(r, t)

∂t
= k∇2T (r, t) (II.5)

Then, we derive eq. (II.4) with respect to time we get:

− ∂

∂t
∇q+

∂S

∂t
= ρCp

∂2T

∂t2
(II.6)

We get from eq. (II.4):

∇q = S − ρCp
∂T

∂t
(II.7)

And from eq. (II.6):
∂

∂t
∇q =

∂S

∂t
− ρCp

∂2T

∂t2
(II.8)

By replacing eqs. (II.7) and (II.8) in eq. (II.5) we obtain:

DT∇2T +

(
1

ρCp

)(
S +

DT

vh2
∂S

∂t

)
=
DT

vh2
∂2T

∂t2
+
∂T

∂t
(II.9)

DT∇2T − DT

vh2
∂2T

∂t2
− ∂T

∂t
= −

(
1

ρCp

)(
S +

DT

vh2
∂S

∂t

)
(II.10)

DT∇2T − DT

vh2
∂2T

∂t2
− ∂T

∂t
= f(t) (II.11)

If we consider a medium without a source (we ignore the second term of (II.10) noted
f(t) ), the eq. (II.11) becomes:

1

vh2
∂2T

∂t2
+

1

DT

∂T

∂t
= ∇2T,DT = τvh2 (II.12)

with DT representing the thermal diffusion coefficient, and vh the thermal wave velocity.
We can also write eq. (II.12) in the following form:

∂2T

∂t2
+

1

τ

∂T

∂t
=
DT

τ
∇2T (II.13)

The eq. (II.13) is called the quantum heat transport equation (QHT) [6].
The QHT derives its quantum nature primarily from the intrinsic presence of Planck’s
constant in the relaxation time that represents a cornerstone in quantum mechanics.
Quantum heat transport equation describes the quantum limit of heat transport when
the pulse duration ∆t of source laser is of the order or smaller than the relaxation time
τ .
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III Modified Schrodinger Equation

The conventional Schrödinger equation has been highly successful in describing the
behavior of atoms, molecules, and solids under normal conditions. However, its appli-
cability diminishes when confronted with phenomena occurring at the attosecond scale,
where ultrafast dynamics unfold.

To describe the behavior of matter under the irradiation of attosecond laser pulses,
a modified Schrödinger equation is proposed. This modified equation would account
for the ultrafast dynamics and short time periods involved. It may include additional
terms or modifications to the original equation to accurately capture the behavior of
particles under such extreme conditions[7] .
The Fourier equation for τ = 0 and the Schrödinger equation are both parabolic equa-
tions [8]:

1

DT

∂T

∂t
= ∇2T (II.14)

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ (II.15)

We apply the following complex transformation : t↔ it, Ψ ↔ T
It was proven in [9] that when applying this complex transformation, fundamental
equations in physics exhibit invariant behavior.
We can rewrite Fourier equation as:

iℏ
∂ψ

∂t
= −DTℏ∇2ψ (II.16)

By identification with the Schrödinger equation, we obtain:

DT = − ℏ
2m

(II.17)

Since DT = τv2h ,we obtain the form of the relaxation time for quantum thermal pro-
cesses directly from (II.17) :

τ =
ℏ

2mv2h
(II.18)

Now let’s take the case where the particle with mass m is in potential V, the Schrödinger
equation becomes:

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + V ψ (II.19)

And by using the previous substitutions, we get:

∂T

∂t
=

ℏ
2m

∇2T − V

ℏ
T (II.20)

For τ ̸= 0 , the eq. (II.20) becomes:

τ
∂2T

∂t2
+
∂T

∂t
+
V

ℏ
T =

ℏ
2m

∇2T (II.21)

With the same substitutions eq. (II.21) can be rewritten as,

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + V (r)ψ − τℏ

∂2ψ

∂t2
(II.22)
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The eq. (II.22) represents the modified Schrödinger equation (MSE).
As a conclusion, the quantum heat transport equation (QHT) leads to the modified
Schrödinger equation.

To solve the MSE, we often adopt spherical coordinates. This choice stems from
the prevalent symmetry in atomic and molecular systems, thus eq (II.22) takes the
following form:

iℏ
∂ψ(r⃗, t)

∂t
= − ℏ2

2m
∇2ψ + V (r)ψ(r⃗, t)− τℏ

∂2ψ(r⃗, t)

∂t2
(II.23)

The wave function ψ(r⃗, t) can be written as the product of two functions, as the fol-
lowing:

ψ(r⃗, t) = ψ(r⃗)φ(t) (II.24)

Substituting (II.24) into eq. (II.23), we obtain:

iℏψ(r⃗)
∂φ(t)

∂t
= − ℏ2

2m
φ(t)∇2ψ + V (r)φ(t)ψ(r⃗)− τℏψ(r⃗)

∂2φ(t)

∂t2
(II.25)

iℏψ(r⃗)
∂φ(t)

∂t
=

(
− ℏ2

2m
∇2ψ + V (r)ψ(r⃗)

)
φ(t)− τℏψ(r⃗)

∂2φ(t)

∂t2
(II.26)

The time independent Schrodinger equation [Annex 3] can be written as:

− ℏ2

2m
∇2ψ + V (r)ψ(r⃗) = Eψ(r⃗) (II.27)

Substituting eq. ( II.27) in eq. (II.26), we obtain:

iℏψ(r⃗)
∂φ(t)

∂t
= Eψ(r⃗)φ(t)− τℏψ(r⃗)

∂2φ(t)

∂t2
(II.28)

Dividing by ψ(r⃗) :

iℏ
∂φ(t)

∂t
+ τℏ

∂2φ(t)

∂t2
= Eφ(t) (II.29)

∂2φ(t)

∂t2
+
i

τ

∂φ(t)

∂t
− E

τℏ
φ(t) = 0 (II.30)

Now to solve the time dependent equation (II.30), we set: φ(t) = eyt

∂φ(t)

∂t
= yeyt;

∂2φ(t)

∂t2
= y2eyt (II.31)

Substituting the previous first and second derivatives in eq. (II.30):

y2 +
i

τ
y − E

τℏ
= 0 → τℏy2 + iℏy − E = 0 (II.32)

Calculating the discriminan ∆ :

∆ = (iℏ)2 + 4Eτℏ (II.33)

∆ = ℏ2
(
4τE

ℏ
− 1

)
(II.34)
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y1,2 =
−iℏ±

√
4τE
ℏ − 1

2τℏ
(II.35)

y1,2 =
1

2τ

(
−i±

√
4τE

ℏ
− 1

)
(II.36)

With E = ℏω , τ = ℏ
2mv0ℏ2 y1 and y2 represent the roots of the quadratic equation

(II.32).We set:

α =

√
4τE
ℏ − 1

2τ
(II.37)

The general solution of eq. (II.23) is found:

Ψ(r⃗, t) = ψ(r⃗)e−i t
2τ (Aeαt +Be−αt) (II.38)

α can be either be a real number or a complex number:

4τ
E

ℏ
− 1 > 0 =⇒ 4τ

E

ℏ
> 1 =⇒ 4τω > 1 =⇒ ω >

1

4τ
(II.39)

If ω > 1
4τ

then α is a real number;
If ω < 1

4τ
then α is a complex number.

We can arrive to a similar solution obtained in [10], when 4τ E
ℏ ≪ 1 , α ≈ i

2τ

(
1− 2τ E

ℏ

)
Ψ(r⃗, t) = ψ(r⃗)e−i t

τ

(
Ae−i(Et

ℏ − t
τ ) +Bei

E
ℏ t
)

(II.40)

Interpretation:

The general solution of the MSE is different of the solution of the classical Schrodinger
equation.

We observe the presence of common term e−i t
τ function of the relaxation time τ

and characterizing the interaction of electrons with their environment within atoms
during the irradiation by attosecond laser. This additive term could be considered
as a frictional force suggesting that electrons move within a highly viscous medium,
this force remains undetectable for long time pulses ∆t >> τ , but can be probed
using attosecond laser pulses. The modified Schrödinger equation (MSE (eq. II.22)) is
reduced to the standard Schrödinger equation, in the limit where the relaxation time
approaches zero. This limit implies that for non-zero mass, the velocity → ∞ This
behavior is in agreement with the nonrelativistic nature of the Schrödinger equation,
where information can propagate with infinite velocity (eq. II.18). In contrast, the MSE
allows for the transfer of information with a finite velocity v = αc , where v < c .This
limitation on the velocity of information propagation is a consequence of the presence
of the frictional term and the associated relaxation time [10].

IV Modified Klein-Gordon Equation

In the early 20th century, Schrödinger’s equation emerged as a powerful tool for un-
derstanding atomic physics, providing a comprehensive framework to describe vari-
ous phenomena. However, Einstein’s theory of special relativity necessitated a unified
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framework that could integrate quantum mechanics and relativity. While Schrödinger’s
equation is adept at describing the behavior of non-relativistic particles, its utility di-
minishes as particle velocities approach the speed of light.

To address this limitation, the Klein-Gordon equation was introduced, named af-
ter physicists Oskar Klein and Walter Gordon [10]. Unlike Schrödinger’s equation, the
Klein-Gordon equation seamlessly merges quantum mechanics with special relativity.
It maintains relativistic invariance, making it essential for accurately describing high-
energy phenomena .
This equation is indispensable for analyzing relativistic quantum systems, such as
mesons, where conventional approaches fall short.

Through careful analysis, it becomes evident that the hyperbolic quantum heat
equation (QHT) can lead to the modified Klein-Gordon equation.
Starting from the eq. (3.9) and considering a one-dimensional case [11]:

τ
∂2T

∂t2
+
∂T

∂t
+
V

ℏ
T − ℏ

2m

∂2T

∂x2
= 0, τ =

ℏ
2mv2h

(II.41)

The general solution of eq. (II.1) can be written as:

T (x, t) = e−
t
2τ u(x, t) (II.42)

∂T (x, t)

∂t
= e−

t
2τ

(
∂u

∂t
− 1

2τ
u(x, t)

)
(II.43)

∂2T (x, t)

∂t2
= e−

t
2τ

(
∂2u

∂t2
− 1

τ

∂u

∂t
+

1

4τ 2
u(x, t)

)
(II.44)

∂2T

∂x2
= e−

t
2τ
∂2u

∂x2
(II.45)

By replacing eqs. (II.41), (II.42), (II.43) and (II.44) in eq. (II.40), we obtain the
following:

1

v2h

∂u2

∂t2
− ∂u2

∂x2
+

(
m2v2h
4ℏ2

+
V

ℏ

)
u(x, t) = 0 (II.46)

In the absence of any external potentials, for a relativistic electron, the eq. (II.45)
becomes:

1

v2h

∂u2

∂t2
− ∂u2

∂x2
−
(mvh

2ℏ

)2
u(x, t) = 0 (II.47)

Eq. (11.46) represents the modified Gordon-Klein equation which can be rewritten as:

u (x, t)−
(mv
2ℏ

)2
u(x, t) = 0 (II.48)

Where □ is the d’alembert operator defined as:

□ =
1

vℏ2
∂2

∂t2
− ∂2

∂x2
(II.49)

For ultrashort attoseconds pulses, the QHT equation leads directly to the modified
KleinGordon equation. It was proven in [11] that heatons, which are thermal wave
packets created by the interaction of attosecond laser pulses with matter, are described
by the solution derived from the modified Klein-Gordon equation. The study showed
that heatons are non-dispersive when the duration of the laser pulses is on the order of
attoseconds.
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V Conclusion

In conclusion, the study of the interaction of attosecond pulses with matter has revealed
complexities that conventional physical models, such as the Fourier law and Schrödinger
equation, are unable to describe. To address these challenges, new equations have been
developed, such as the QHT equation, the modified Schrödinger equation, and the mod-
ified Klein-Gordon equation. These equations provide a more comprehensive framework
for understanding the dynamics of attosecond laser pulses interacting with matter, ad-
dressing the importance of relaxation time in governing quantum heat transport within
atoms, and the significance of probing electron dynamics on extremely short timescales.
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I. Introduction  

In the second chapter, we established the modified Schrödinger equation, 

successfullyseparating time and position variables. This separation enabled us to derive an 

analytical solution for the time-dependent Schrödinger equation. With the analytical solution 

in hand, we now turn our attention to solving the radial part of the time-independent 

Schrödinger equation numerically. 

In this chapter 3, our primary focus will be on the numerical solution of the radial 

Schrödinger equation using the finite difference method. This approach will allow us to 

discretize the equation and solve it iteratively, providing us with the radial component of the 

wave function. Additionally, we will incorporate the analytical temporal solution into our 

numerical program to observe the time evolution and visualize the full wave function as 

governed by the modified Schrödinger equation 

II. Finite Difference Methods 

The finite difference method (FDM)dates back to Euler in the late 18th century and was 

extended to multiple dimensions by Runge in the early 20th century. It became widely used in 

the 1950s with the development of computers, enabling the solution of complex scientific and 

technological problems. Over the past five decades, significant theoretical progress has been 

made in understanding its accuracy, stability, and convergence for partial differential 

equations [1]. 

II.1 General principle 

FDM allows us to transform continuous problems into discrete ones by discretizing both 

the spatial and temporal domains. This approach consists on replacing derivatives with finite 

difference approximations, which leads to a system of algebraic equations that can be easily 

solved numerically. 

This method consists on the following steps: 

1. Subdivision of the domain as a grid line on which the equation is defined. 

2. Approximate the derivatives at each grid point using values from neighboring grid points. 

3. Solve the resulting system of equations. 
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To illustrate the methodology of FDM, we take an example of a simple function and we 

approximate its first and second derivatives: 

𝑓: 𝑥 ⟶ 𝑓(𝑥)                                                                 (III. 1) 

We subdivide the axis of variables into a number of n points, and in the grid given in Figure 

III.1, the position x becomes 𝑥𝑖  and thus corresponds to the index i: 

𝑓 𝑥 = 𝑓 𝑥𝑖    ⟶     𝑓𝑖                                                      (III. 2) 

 

Figure III.1: One-dimensional grid (subdivision), h the step of subdivision 

The main idea of finite difference method is to approximate derivatives in the partial 

differential equations (PDA) by difference quotients, thus we use the formal definition of 

derivative: 

𝑑𝑓(𝑥𝑖)

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
                                                (III. 3) 

For small values of h, the following quotient is a good approximation of the derivative: 

𝑑𝑓(𝑥𝑖)

𝑑𝑥
≈

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
                                                    (III. 4) 

For the second derivative, we use the Taylor expansion, we obtain: 

𝑑2𝑓(𝑥𝑖)

𝑑𝑥2
≈

𝑓 𝑥 + ℎ − 2𝑓 𝑥 + 𝑓 𝑥 − ℎ 

ℎ2
                               (III. 5) 

Now using the notation in eq. (III.2), we get the following formula: 

𝑑𝑓(𝑥𝑖)

𝑑𝑥
=

𝑓𝑖+1 − 𝑓𝑖

ℎ
                                                        (III. 6)  

𝑑2𝑓(𝑥𝑖)

𝑑𝑥2
=

𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

ℎ2
                                           (III. 7) 

We call eq. (III.6) and eq. (III.7) central difference scheme of the first and the second 

derivatives of the function 𝑓, respectively. 

                            h 

i-1            i                  i+1x 
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II.2 Common numerical schemes 

Forward difference scheme: 

This scheme approximates the derivative at a point by using the function values at that point 

and a nearby point ahead of it. It can be expressed as: 

𝑑𝑓(𝑥)

𝑑𝑥
=

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
                                            (III. 8) 

Forward differences are useful in solving ordinary differential equations through single-step 

predictor-corrector methods such as Euler and Runge-Kutta methods [2].  

Backward difference scheme: 

Similar to the forward difference scheme, but it uses a nearby point behind the point of 

interest. It can be expressed as 

𝑑𝑓(𝑥)

𝑑𝑥
=

𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ
                                            (III. 9) 

Backward differences become valuable when approximating derivatives in cases where future 

data remains unavailable. 

First and second order central difference schemes: 

This is the quotient we have seen before; it is commonly favored for its accuracy in 

comparison to backward and forward schemes. This scheme uses points both ahead and 

behind the point of interest to approximate the first and the second derivative. 

Central differences are useful in solving partial differential equations. 

Five-Point Stencil: 

It is a more accurate scheme, often used in two-dimensional problems [3]. It consists on using 

four adjacent points in addition to the point of interest. Theses approximations are expressed 

as: 

𝑑𝑓

𝑑𝑥
=

−𝑓 𝑥 + 2ℎ + 8𝑓 𝑥 + ℎ − 8𝑓 𝑥 − ℎ + 𝑓 𝑥 − 2ℎ 

12ℎ
                  (III. 10) 

𝑑2𝑓

𝑑𝑥2
=

−𝑓 𝑥 + 2ℎ + 16𝑓 𝑥 + ℎ − 30𝑓 𝑥 + 16𝑓 𝑥 − ℎ − 𝑓(𝑥 − 2ℎ)

12ℎ2
      (III. 11) 
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III. The hydrogen Atom Model 

The significance of studying the hydrogen atom extends far beyond its historical roots. 

Though its spectra had a big impact in the early quantum theory, research involving the 

hydrogen remains at the cutting edge of science and technology. Investigations into hydrogen 

transitions have provided insights into fundamental constants across cosmic timescales. 

Additionally, it stands out as one of the rare realistic systems that can be solved analytically 

[4]. 

In this chapter we will use the hydrogen as a model to solve the time independent MSE for 

a single electron interacting with a nucleus containing only one proton, which acts as a central 

potential.  

 

Figure III.2: The hydrogen model 

Potential energy of the electron-proton system in hydrogen atom is basically the coulombic 

potential: 

𝑉 𝑟 = −
𝑒2

4𝜋𝜀0𝑟
                                                        (III. 12) 

The time independent MSE, which we have obtained in the second chapter, was written as: 

𝐻 𝜓 = 𝐸𝜓                                                                 (III. 13) 

The wave function of the hydrogen atom,  in spherical coordinates  𝑟, 𝜃, 𝜙 , is expressed as: 

𝜓(𝑟 ) = 𝜓 𝑟, 𝜃, 𝜙                                                          (III. 14) 

By separating the radial part 𝑅 𝑟 from the angular part (due to the spherical symmetry of the 

problem), we can simplify the equation and focus only on solving for the radial component 

independently:  
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𝜓 𝑟  = 𝑅 𝑟 𝑌𝑙
𝑚 𝑙 𝜃, 𝜙                                               (III. 15) 

where 𝑌𝑙
𝑚 𝑙 𝜃, 𝜙 represents the spherical harmonics and −𝑙 ≤ 𝑚𝑙 ≤ +𝑙 

The well known radial Schrodinger equation is expressed in the following form [4]: 

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅(𝑟)

𝑑𝑟
 +

2𝑚𝑟

ℏ2
 

𝑒2

4𝜋𝜀0

1

𝑟
−

𝑙 𝑙 + 1 

2𝑚𝑟2
ℏ2 + 𝐸 𝑅(𝑟) = 0                   III. 16  

The radial part 𝑅(𝑟) depends on land n, the orbital angular momentum quantum number and 

the principal quantum number, respectively. 

IV. Resolution of the Radial Schrodinger Equation  

In this section, we will proceed to solve the radial Schrodinger equation numerically with 

finite difference scheme. 

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅(𝑟)

𝑑𝑟
 +

2𝑚𝑟

ℏ2
 

𝑒2

4𝜋𝜀0

1

𝑟
−

𝑙 𝑙 + 1 

2𝑚𝑟2
ℏ2 + 𝐸 𝑅 = 0                    (III. 17)  

We set𝝆 = 𝒓𝑹(𝒓)  ⟹ 𝑹(𝒓) =
𝝆

𝒓  and making a substitution in eq. (III.17), we consider only 

the first term: 

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅

𝑑𝑟
 =

𝑑

𝑑𝑟
 𝑟2

𝑑 
𝜌

𝑟  

𝑑𝑟
 =

𝑑

𝑑𝑟
 𝑟

𝑑𝜌

𝑑𝑟
− 𝜌 = 𝑟

𝑑2𝜌

𝑑𝑟2
 

𝑑

𝑑𝑟
 𝑟2

𝑑𝑅

𝑑𝑟
 = 𝑟

𝑑2𝜌

𝑑𝑟2
                                                             (III. 18) 

Substituting eq. (III.18) in eq. (III.17), we obtain: 

𝑟
𝑑2𝜌

𝑑𝑟2
+

2𝑚𝑟

ℏ2
 

𝑒2

4𝜋𝜀0

1

𝑟
−

𝑙 𝑙 + 1 

2𝑚𝑟2
ℏ2 + 𝐸 𝜌 = 0               (III. 19) 

Dividing eq. (III.19) by the variable r, we obtained the final form of radial SE (independent 

on time) as: 

𝑑2𝜌

𝑑𝑟2
+

2𝑚

ℏ2
 

𝑒2

4𝜋𝜀0

1

𝑟
−

𝑙 𝑙 + 1 

2𝑚𝑟2
ℏ2 + 𝐸 𝜌 = 0                         III. 20  
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IV.1 Finite difference method (FDM) 

As shown previously, we subdivide the axis of the variable r into a grid of n points 

(Figure III.3). The position r becomes 𝑟𝑖 : 

 

 

Figure III.3: One-dimensional grid, ∆𝑟 = 𝑟𝑖+1 − 𝑟𝑖 = ℎrepresents the step of subdivision 

 

We rewrite the eq. (III.20) in this way, 

−
ℏ2

2𝑚

𝑑2𝜌

𝑑𝑟2
−

𝑒2

4𝜋𝜀0

1

𝑟
𝜌 +

𝑙 𝑙 + 1 

2𝑚𝑟2
ℏ2𝜌 = 𝐸𝜌  

This previous equation can be written as: 

𝐻𝜌 = 𝐸𝜌                                                              (III. 21) 

Where H represents a matrix composed ofthree matrix, that we should compute: 

𝐻 = −
ℏ2

2𝑚
 𝑚𝑎𝑡1 − 𝑚𝑎𝑡3 − 𝑚𝑎𝑡2                        (III. 22) 

Computation of the Laplacian term (matrix called mat1): 

The first term in eq. (III.20) is noted: 

𝑡𝑒𝑟𝑚1 =
𝜕2𝜌

𝜕𝑟2
 

The application of the approximating the second derivative using the central difference 

quotient leads to: 

𝑑2𝜌𝑖

𝑑𝑟2
=

𝜌𝑖+1 − 2𝜌𝑖 + 𝜌𝑖−1

∆𝑟2
 

                            h 

ri-1 riri+1 r 
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We increment the index 𝑖 = 1, 𝑛   ⇒

 

 

 

 𝑖 = 1       
𝑑2𝜌1

𝑑𝑟 2 =
1

ℎ2
 𝜌2 − 2𝜌1 + 𝜌0 

 𝑖 = 2        
𝑑2𝜌2

𝜕𝑟 2 =
1

ℎ2
 𝜌3 − 2𝜌2 + 𝜌1 

𝑖 = 3      
𝑑2𝜌3

𝑑𝑟 2 =
1

ℎ2
 𝜌4 − 2𝜌3 + 𝜌2 

𝑖 = 4      
𝑑2𝜌4

𝑑𝑟 2 =
1

ℎ2
 𝜌5 − 2𝜌4 + 𝜌3 

⋮
⋮

   𝑖 = 𝑛    
𝑑2𝜌𝑛

𝑑𝑟 2 =
1

ℎ2
 𝜌𝑛+1 − 2𝜌𝑛 + 𝜌𝑛−1 

  

The final result is a matrix written as follows: 

𝑚𝑎𝑡1 =

 

 
 

−2 1 0 0 0 …
1 −2 1 0 0 …
0
…
0

1
…
0

−2
…

0 …

1
…
1

0 …
…
−2 

 
 

                                        (III. 23) 

 

The implementation of the first matrix in eq. (III.23) in Python code is given bellow: 

 

 

 

 

 

 

Computation of the potential term (matrix called mat2): 

𝑡𝑒𝑟𝑚2 =
𝑒2

4𝜋𝜀0

1

𝑟
𝜌   ⟶ 𝑡𝑒𝑟𝑚2 =

𝑒2

4𝜋𝜀0

1

𝑟𝑖
𝜌𝑖  

“mat2” has the form of the following matrix: 

𝑚𝑎𝑡2 =
𝑒2

4𝜋𝜀0

 

 
 
 

1
𝑟1

 0 0 0 0 …

0 1
𝑟2

 0 0 0 …

0
…
0

0
…
0

1
𝑟3

 
…

0 …

0
…
0

0 …
…

1
𝑟𝑛  

 
 
 

                             (III. 24) 

defcalcul_laplacian(n): 

 fori in range(n): 

 for j in range(n): 

if (i==j): 

   mat1[i][j] =-2/h**2 

elif (abs(i-j) ==1): 

  mat1[i][j] =1/h**2 

   else: 

  mat1[i][j] =0 

return mat1 
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The implementation of the second matrix in eq. (III.24) in Python: 

 

 

 

 

 

 

 

Computation of the angular term (mat3): 

𝑡𝑒𝑟𝑚3 =
𝑙 𝑙 + 1 

𝑟2
   ⟶    𝑡𝑒𝑟𝑚3 = 𝑙 𝑙 + 1 

1

𝑟𝑖
2
 

𝑚𝑎𝑡3 = 𝑙 𝑙 + 1 

 

 
 
 
 

1
𝑟1

2 0 0 0 0 …

0 1
𝑟2

2 0 0 0 …

0
…
0

0
…
0

1
𝑟3

2 
…

0 …

0
…
0

0 …
…

1
𝑟𝑛

2  

 
 
 
 

                          (III. 25) 

The implementation of the third matrix in eq. (III.25) in Python: 

 

 

 

 

 

Substituting (4.9), (4.10) and (4.11) in (4.8): 

 

 

defcalcul_potential(r): 

 fori in range(n): 

for j in range(n): 

if (i==j): 

mat2[i][j] =e**2/(4*pi*epsilon_0*r[i]) 

else: 

mat2[i][j] =0 

 return mat2 

defcalcul_angular(r): 

fori in range(n): 

        for j in range(n): 

            if (i==j): 

                mat3[i][j] =(l*(l+1.))/(r[i]**2) 

else: 

                mat3[i][j] =0 

 return mat3 
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Computation of the Hamiltonian term (H matrix): 

𝐻 = −
ℏ2

2𝑚

 

 
 
 
 
 

 

 
 

−2 1 0 0 0 …
1 −2 1 0 0 …
0
…
0

1
…
0

−2
…

0 …

1
…
1

0 …
…
−2 

 
 

− 𝑙(𝑙 + 1)

 

 
 
 
 

1
𝑟1

2 0 0 0 0 …

0 1
𝑟2

2 0 0 0 …

0
…
0

0
…
0

1
𝑟3

2 
…

0 …

0
…
0

0 …
…

1
𝑟𝑛

2  

 
 
 
 

 

 
 
 
 
 

−
𝑒2

4𝜋𝜀0

 

 
 
 

1
𝑟1

 0 0 0 0 …

0 1
𝑟2

 0 0 0 …

0
…
0

0
…
0

1
𝑟3

 
…

0 …

0
…
0

0 …
…

1
𝑟𝑛  

 
 
 

(III. 26) 

The implementation of the H matrix (Hamiltonian eq. (III.26)) in Python: 

 

 

 

 

 

The final step is the diagonalization of the matrix H to solve the eigen problem. Its 

eigenvalues directly correspond to the energy states E, while the associated eigenvectors ρ are 

linked to the radial part of the hydrogen wave function R through the simple substitution we 

adopted previously:  ρ=rR. 

We have used the following Python script to solve the eigen problem: 

 

 

 

 

We used the following Python script to calculate wave function and plot the densities of 

probabilities: 

defHamiltonian(r): 

    mat1 = calcul_laplacian(n) 

    mat2 = calcul_potentiel(r) 

    mat3 = calcul_angular(r) 

    H = -hbar**2 / (2.0 * m_e) * (mat1 - mat3) -mat2  # 

return H 

#solving the eigenproblem 

number_eigenvalues=10 

eigenvalues, eigenvectors = eigs(H, k=number_eigenvalues, which='SM') 

eigenvectors = np. array ([x for _, x in sorted (zip (eigenvalues, eigenvectors. T), 

key=lambda pair: pair [0])]) 

eigenvalues = np. sort(eigenvalues) 
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Remarks: some modules are required for Python3.4 (and more), numpy, scipy and matplotlib 

modules. 

V. Results and discussions  

In this section, we give first, the radial wave function computed numerically by the 

performed code written in Python and we add the temporal compound of MSE. In order to 

make a comparison, results obtained by classical SE are also presented. 

The fundamentals constants used in our program are: 

  

ℏ = 1.054571817 × 10−34  J. s

𝑚𝑒 = 9.1093837 × 10−31  kg 

𝜀0 = 8.854188 × 10−12Fm−1

𝑒 = 1.60217662 × 10−19C

  

The relaxation time is of value 𝜏 = 1.208 × 10−17s   

For the angular momentum quantum number l=0, we exanimate the hydrogen s states 

(1s, 2s, 3s, ...). The corresponding energies obtained align with the expected values of the first 

3 states which are: 

E1 = −
13.6eV

12
= −13.6 eV 

E2 = −
13.6eV

22
= −3.4 eV 

E3 = −
13.6eV

32
= −1.51 eV 

The following graph (figure III.4) represents the function 𝜌(𝑟) which we previously set as  

𝜌(𝑟) = 𝑟𝑅(𝑟). 

densities = [np. absolute (eigenvectors [i, :]) **2 for i in range(len(eigenvalues))] 

#PLOT 

energies = ['E = {: >5.2f} eV’. format(eigenvalues[i]. real / e) for i in range (3)] 

plt.plot(r * 1e+10, densities [0], color='green’, label=energies [0]) 

plt.plot(r * 1e+10, densities [1], color='red', label=energies [1]) 

plt.plot(r * 1e+10, densities [2], color='blue',label=energies [2]) 

plt.xlabel('r') 

plt.ylabel('probability density') 

plt.legend() 

plt.show() 
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Figure III.4: 𝜌 𝑟  for l=0, and for 3 different states 

 

Figure III.5: variation of  radial part R(r) of wave function of the hydrogen atom 

for l=0and for 3 different states 

 

In following and for analysis, we combined the analytical temporal solution obtained in the 

second chapter with the numerical radial solutions obtained from our numerical computations. 

By doing so, we were able to plot the results to visualize the electron behavior over time. 

1s 

2s 

3s 

1s 

2s 

3s 
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Specifically, we compared the standard Schrödinger equation with the MSE, allowing us to 

observe the differences in the system's dynamics.  

The graphs in Figure III.6 illustrate these comparisons, highlighting the effects of the 

ultrashort pulses on the system. 

 

Figure III.6: The evolution of the real part of the 𝑅 𝑟 𝜑(𝑡)for several times, forl=0, E=-13.60eV.  

The black curve represents the results of MSE and the red curve represents the results of the classical 

SE 

The probability of finding particle in a volume 𝑑𝑣 = 𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜙, is defined by the 

following relation:  

𝑃𝑛𝑙  𝑟 𝑑𝑟 =    𝜓𝑛𝑙𝑚 (𝑟 ) 2𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜙
𝜋

0

2𝜋

0

                          (III. 26) 

The probability of density is illustrated in the figure III.7 for several values of time. 

Modified Schrodinger equation 

Classical Schrodinger equation 
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Figure III.7: Density of probability for several values of times and for l=0, E=-13.6 eV.  

The black curve represents the results of MSE and the red curve represents the results of the classical 

SE. 

Figure III.8:  | 𝑅(𝑟)𝜑(𝑡)|2  for several values of times and for l=0, E=-13.6 eV.

The black curve represents the results of MSE and the red curve represents the results of the classical 

SE. 

Interpretation: 

42 

Modified Schrodinger equation 

Classical Schrodinger equation 

Modified Schrodinger equation 

Classical Schrodinger equation 
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The figure III.6, III.7 and III.8 displays a comparative analysis of the results from the 

classical Schrodinger equation and its modified version. The graph in figure III.8 shows that 

the probability density for the MSE exhibits significant enhancements compared to the 

classical equation. This indicates that the presence of attosecond pulses provides a clearer, 

more detailed visualization of electron positions and movements. 

For 𝑙 = 1, the first three states correspond to the first three possible values of n (the 

principal quantum number) which are 2p, 3p and 4p, the corresponding energies obtained in 

figure (III.7) also align with the expected values of the first 3 states which are: 

E2 = −
13.6 eV

22
= − 3.4  eV 

E3 = −
13.6 eV

32
= − 1.51 eV 

E4 = −
13.6 eV

42
= − 0.85 eV 

Figure III.9: 𝜌 𝑟  for 𝑙 = 1, and for 3 different modes (states) 
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Figure III.10: Radial wave function R(r) of the hydrogen atom for 𝑙 = 1 and for 3 different states 

Figure III.11: The radial wavefunction evolution for several times for 𝑙 = 1, 𝐸 = −3.40 eV. The 

black curve represents the results of MSE and the red curve represents the results of the classical SE 

Modified Schrodinger equation 

Classical Schrodinger equation 
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Figure III.12:   𝑅(𝑟)𝜑(𝑡)|2 for several times and for 𝑙 = 1, 𝐸 = −3.40 eV.
The black curve represents the results of MSE and the red curve represents the results of the 

classical SE  

Interpretation: 

The Figures III.11 and III.12 presents a comparative analysis of the classical Schrödinger 

equation and its modified version for a higher energy state, providing a clearer observation of 

the distinction between the two results. That validates the fact that under the influence of 

attosecond pulses, the probability density exhibits a significant improvement. 

To complement our study, the following figures present three-dimensional representations 

of the wave functions and probability densities derived from both the standard and modified 

Schrödinger equations. These visualizations offer a more comprehensive view of the spatial 

characteristics and differences between the two models. 

45 

Modified Schrodinger equation 

Classical Schrodinger equation 
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Figure III.13: Three-Dimensional visualizations of classical Schrodinger and modified Schrodinger 

equations for 𝐸 = −13.60 eV: wave functions 

 

Figure III.14:Three-Dimensional visualizations of classical Schrodinger and modified Schrodinger 

equations for 𝐸 = −13.60 eV: Probability densities  

 

VI. Conclusion  

In this chapter, we successfully solved the Radial Schrödinger equation numerically using 

the finite difference method. Building on this, we integrated the Temporal Solution, derived 

analytically in the previous chapter, with our numerical results. 

Our results, plotted for various wave functions and probability densities corresponding to 

different angular momentum quantum numbers l, consistently demonstrate the significant 

impact of attosecond pulses. The probability densities are notably enhanced under the 

modified Schrödinger equation, validating its effectiveness in capturing electron behavior on 

the attosecond timescale. 

Modified Schrodinger equation 

Classical Schrodinger equation 

Modified Schrodinger equation Classical Schrodinger equation 
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General Conclusion : 

 

In this study, we have explored the interaction between attosecond laser pulses and matter, 

employing both theoretical approaches and numerical simulations to understand and visualize 

electron dynamics at an unprecedented temporal resolution. 

We started by presenting the generation of attosecond pulses through the process of high 

harmonic generation (HHG). Using the semi-classical model, we analyzed this phenomenon, 

providing insights into both the classical and quantum descriptions of HHG. We also 

highlighted various applications of attosecond pulses, demonstrating its significance in 

advancing our understanding of ultrafast phenomena. 

 

In the second chapter, we focused on the theoretical frameworks that describe the 

interaction of attosecond lasers with matter. We started with the quantum heat equation, an 

essential tool for describing the heat transfer in the context of ultrashort pulses, where 

traditional Fourier laws fail. Additionally, we derived the modified Schrödinger equation from 

the quantum heat equation and solved it using the method of separation of variables. This 

allowed us to handle both temporal and spatial components, solving the temporal part 

analytically. 

We further explored the modified Klein-Gordon equation, offering another model for 

describing the temperature of electron under the influence of attosecond pulses. 

 

In third chapter, we addressed the numerical solutions of the modified Schrödinger 

equation (MSE). Using the finite difference method in python, we solved the radial position 

component and integrated our analytical temporal solution. Our results, plotted for various 

wave functions and probability densities corresponding to different angular momentum 

quantum numbers l, consistently demonstrate the significant impact of attosecond pulses. We 

have observed a notable increase in density within the modified Schrödinger equation 

compared to the classical one. This heightened density validated the efficacy of attosecond 

pulses in providing clearer visualizations of electron motion, aligning with the fundamental 

principle that these ultrafast pulses are well-suited to capture elementary electron dynamics. 
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Annex 1 

 

The python script for generating a femtosecond pulse train (intensity) 

 

##### 

import numpy as np 

import matplotlib.pyplot as plt 

fr=20.e12 

omega=2*np.pi*fr   #frequence de répétition 

N=20     #number of iterations 

Fichier=open("Femto.dat","w")  

y = lambda x: (np.sin((N-1)*omega*x/2))**2/(np.sin(omega*x/2))**2 

t = np.arange(-120, 120, 0.01)  #  commande de partage (debut, fin, pas) 

t=t*1.e-15 

for i in range (0,len(t)): 

Fichier.write("%f      %s     \n" % (t[i]*1e15, y(t[i]))) 

Fichier.close()    

plt.plot(  t*1.e15,y(t),'k',linewidth= 2) 

plt.title('signal impusionnel ') 

plt.xlabel('t  fs') 

plt.ylabel('  Intensité (u.a) ') 

plt.show() 
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Annex 2 

The python script Plotting potential Tunnel Effect 
import matplotlib.pyplot as plt 
import numpy as np 
def V(x,E): 
    V=-Zeff/x+x*E 
    return V 
def V1(x,E): 
    V1=Zeff/x+x*E 
    return V1 
x1=np.linspace(-15,-0.1,60) 
x2=np.linspace(0.1,15,60) 
x=[ ] 
for i in range(len(x1)): 
    x.append(x1[i])    
for i in range(len(x2)): 
    x.append(x2[i]) 
Zeff=1 
E=0., E1=0.1, E2=-0.1 
y=[ ] 
#second tableaux E positif 
w=[ ] 
#second tableaux E négatif 
u=[ ] 
for i in range(len(x1)): 
    z=V1(x1[i],E) 
    y.append(z) 
for i in range(len(x2)): 
    z=V(x2[i],E) 
    y.append(z) 
# 
for i in range(len(x1)): 
    z=V1(x1[i],E1) 
    w.append(z) 
for i in range(len(x2)): 
    z=V(x2[i],E1) 
    w.append(z) 
# 
for i in range(len(x1)): 
    z=V1(x1[i],E2) 
    u.append(z)     
for i in range(len(x2)): 
    z=V(x2[i],E2) 
    u.append(z) 
filename = "graphe" 
# 
fig, ax = plt.subplots() 
ax.plot(x,y, 'k',linewidth=3) 
ax.plot(x,w,'r--',linewidth=3) 
ax.plot(x,u, 'b:',linewidth=2) 
plt.legend(['E=0' ,'E= 0.1','E= - 0.1'],loc='lower right', fontsize=11,frameon=True) 
plt.ylim(-4,1.5) 
plt.xlim(-11,11) 
plt.xlabel("x (u.a)") 
plt.ylabel(" Potentiel  V(x)   (u.a)") 
plt.tick_params(labelsize=12) 
plt.savefig(filename+'.png') 
plt.show() 
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ANNEX 3 

Derivation of the Standart Schrodinger equation (SE) 

 

Starting with the Helmholtz equation  

 ∆ +
𝑛𝜔2

𝑐2
 𝜓 𝑟  = 0             𝑤𝑒 𝑠𝑒𝑡 𝑡ℎ𝑎𝑡  𝑘2 =

𝑛𝜔2

𝑐2
 

We set  𝜆 = 2𝜋
𝑘         then : 

 ∆ +
4𝜋2

𝜆2
 𝜓 𝑟  = 0                             (𝐴. 1) 

According to the de Broglie relation, the impulse is written as: 𝑝 = 𝑚𝑣     ,     𝜆 = ℎ
𝑝  

⟹    𝜆 =
ℎ

𝑚𝑣
    ⟹    

1

𝜆2
=
𝑚2𝑣2

ℎ2
           (𝐴. 2) 

Substituting (2) in (1): 

 ∆ + 4𝜋2
𝑚2𝑣2

ℎ2
 𝜓 𝑟  = 0                        𝐴. 3  

The total energy E can be expressed as:  

𝐸 =
1

2
𝑚𝑣2 + 𝑉 𝑟     ⟹        𝑚𝑣2 = 2 𝐸 − 𝑉 𝑟     (𝐴. 4)  

Substituting (4) in (3) : 

 ∆ +
8𝜋2𝑚

ℎ2
 𝐸 − 𝑉(𝑟)  𝜓 𝑟  = 0                        

ℏ =
ℎ

2𝜋
      ⟹   ∆ +

2𝑚

ℏ2
 𝐸 − 𝑉 𝑟   𝜓 𝑟  = 0         (𝐴. 5)  

Eq. (A.5) represents the time independent Schrodinger equation. 

The general solution of the time dependent Schrodinger equation has the following form: 

𝛹 𝑟 , 𝑡 = 𝜓 𝑟    𝑒−𝑖
𝐸

ℏ
𝑡                       (𝐴. 6) 

𝜕𝛹 𝑟 , 𝑡 

𝜕𝑡
= −𝑖

𝐸

ℏ
𝜓 𝑟  𝑒−𝑖

𝐸

ℏ
𝑡     ⟹   𝐸𝜓 𝑟  = 𝑖ℏ

𝜕𝛹 𝑟 , 𝑡 

𝜕𝑡
𝑒𝑖

𝐸

ℏ
𝑡     (𝐴. 7) 

Replacing (A.6) and (A.7) in (A.5), we obtain the time dependent Schrödinger equation: 

𝒊ℏ
𝝏𝜳(𝒓  , 𝒕)

𝝏𝒕
= −

ℏ𝟐

𝟐𝒎

𝝏𝟐𝜳(𝒓  , 𝒕)

𝝏𝒓𝟐
+ 𝑽 𝒓 𝜳 𝒓  , 𝒕                       (𝐴. 8) 



Abstract:We have studied the interaction of attosecond laser pulses with matter and the significance of these 

ultrashort pulses in capturing electron dynamics. We introduced the generation of attosecond pulses through the 

process known as high harmonic generation (HHG), described using the three-step semi-classical model. We 

discussed theoretical models that serves as the main pillars of understanding the interaction of ultrashort pulses 

with mattersuch as the quantum heat transfer equation (QHT) and the modified Schrödinger equation (MSE), to 

describe the interaction of attosecond lasers with matter. Analytical and numerical solutions of the modified 

Schrödinger equation demonstrate the impact of attosecond pulses on electron motion, validating the efficacy of 

these pulses in providing clearer visualizations of electron dynamics. Overall, our study shows the significance 

of attosecond pulses in advancing our understanding of ultrafast processes, aligning with the fundamental 

principle that these ultrafast pulses are well-suited to capture elementary electron dynamics. 

Key words:Interaction of attosecond pulses with matter, high harmonic generation, Quantum heat equation, 

modified Schrodinger equation, Hydrogen atom. 

 

ا ددّيُنا ثيايتىدّا.اا يُنيثكثناا لإنكتسَٔنا صٕيسأأًْثياْرِا نُنبناافنئقيا نقصسافياةا زرُنا تأثساَنبناا نهثيزا ا ٕأنَثيةهلا نًن دّانقد:ملخّص

َن شُنا.اا نتيا ىأصفٓنابنرتخد وا نًُٕذجاشنّا نكلارثكيا نثلاأيا نخطٕ ا،اَنبناا ا ٕأنَثيايٍاخلالاةًهثيا عسفابتٕنثدا نتٕ فقثناا نعننثي ٕنثد

 لاَتقنلا نحس زياافنئقيا نقصساةهلا نًن دّة،ايثمايعن نياا تأثسا نُنبن نًُنذجا نُظسييا نتدّيا عتنسا نس نئيا ارنرثيانفٓىا

انًعن نياشسٔ َغسا نًعدنيا تأثسااحسنبتٓناةٍاطسيقا ننسيجيا نس ًثياا نتيا ىدّاأظٓساا نحهٕلا نتحهثهثيأ نعد يي.ا نًعددّني نكًثئيعن نيشسٔ يُغس

بشكماةنو،ا ظُٓسا.ا نُنبناا ا ٕأنَثياةهلاحس يا لإنكتسَٔنا،ايًنايؤ دافعننثياْرِا نُنبناافيا ٕفثسا صٕز ااأٔضحانديُنيثكثناا لإنكتسَٔنا

افنئقيا نسسةي،ابًنايتًنشلايعا نًندأا ارنريابتٌاْرِا نُنبناافنئقيا نسسةيايُنرنيا ًنيًناظٕ ْس ز رتُناأًْثيا نُنبناا ا ٕأنَثيافيا قدوافًُٓنانم

.لانتقنطا نديُنيثكثناا ارنرثيانلإنكتسَٔنا  

ةا لاَتقنلا نحس زيااَنبناا ا ٕأنَثيايعا نًن دّة،ا ٕنثدا نتٕ فقثناا نعننثي،ايعن نيا تأثس: الكلمات المفتاحية  نكًثي،ايعن نياشسٔ َغسا نًعدني،اذزدّ

. نٓثدزٔجثٍ  

 

Resumé:Nous avons étudié l'interaction des impulsions laser attosecondes avec la matière et l'importance de ces 

impulsions ultra-courtes dans la capture de la dynamique des électrons. Nous avons introduit la génération 

d'impulsions attosecondes par le processus connu sous le nom de génération d'harmoniques élevés (GHE), décrit 

à l'aide du modèle semi-classique en trois étapes. Nous avons discuté des modèles théoriques qui servent de 

principaux piliers pour comprendre l'interaction des impulsions ultra-courtes avec la matière, tels que l'équation 

de transfert de chaleur quantique (QHT) et l'équation de Schrödinger modifiée (MSE), pour décrire l'interaction 

des lasers attosecondes avec la matière. Les solutions analytiques et numériques de l'équation de Schrödinger 

modifiée démontrent l'impact des impulsions attosecondes sur le mouvement des électrons, validant l'efficacité 

de ces impulsions pour fournir des visualisations plus claires de la dynamique des électrons. Dans l'ensemble, 

notre étude montre l'importance des impulsions attosecondes pour faire progresser notre compréhension des 

processus ultrarapides, en accord avec le principe fondamental selon lequel ces impulsions ultrarapides sont bien 

adaptées pour capturer la dynamique élémentaire des électrons. 

Mots-clés : Interaction des impulsions attosecondes avec la matière, génération d'harmoniques élevés, équation 

de transfert de chaleur quantique, équation de Schrödinger modifiée, atome d'hydrogène. 
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