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 ملخص

 

 

 

 

( مع توزيع المسامية التي أجريت  FGMتقدم هذه الأطروحة تحليل اهتزاز حر لألواح شطيرة المواد المتدرجة وظيفيا ) 

النسخة   العناصر المحدودة، والتي تعتمد على نظرية تشوه القص من الدرجة الأولى. تتكون لوحة   pباستخدام  من طريقة 

الساندويتش من طبقتين من صفائح الوجه المصنوعة من مواد متدرجة وظيفيًا وطبقة أساسية متجانسة. تم افتراض وتحليل  

يا. استكشفت هذه الدراسة بشكل منهجي تأثير نسبة السُمك،  خمسة نماذج لتوزيع المسامية لألواح شطيرة المواد المتدرجة وظيف

ألواح شطيرة المواد المتدرجة والظروف الحدودية، وأسس كسر الحجم، ومعاملات المسامية للطبقات العلوية والسفلية من  

وظيفيًا على التردد الطبيعي. يمثل هذا العمل أول تحليل شامل لهذه العوامل في ظل ظروف حدودية مختلفة للوحة شطيرة  

متدرجة وظيفيا، مما يوفر رؤى قيمة حول ديناميكياتها الاهتزازية. تم وضع النتائج في سياق الأدبيات الموجودة وإظهار دقة 

 .النموذج، مما يجعله أداة رقمية قوية لدراسة تحليل الاهتزاز الحر لألواح شطيرة المواد المتدرجة وظيفيًا ذات المسامية  وكفاءة

 

من طريقة العناصر المحدودة؛   pلوحة شطيرة المواد المتدرجة وظيفيا؛ تحليل الاهتزاز الحر. النسخة   : مفتاحيةالكلمات 

 توزيع المسامية.

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IV 

 

Abstract 

 

 

 

 

This thesis presents a free vibration analysis of functionally graded material (FGM) 

sandwich plates with porosity distribution conducted using the p-version of the finite element 

method, which is based on the first-order shear deformation theory. The sandwich plate 

consisted of two FGM face sheet layers and a homogeneous core layer. Five porosity 

distribution models of FGM sandwich plates were assumed and analyzed. This study 

systematically explored the impact of the thickness ratio, boundary conditions, volume fraction 

exponents, and porosity coefficients of the top and bottom layers of FGM sandwich plates on 

the natural frequency. This work marks the first comprehensive analysis of these factors under 

various boundary conditions for a functionally graded sandwich plate, providing valuable 

insights into their vibrational dynamics. The findings are contextualized within the existing 

literature and demonstrate the accuracy and efficiency of the model, establishing it as a robust 

numerical tool for studying the free vibration analysis of FGM sandwich plates with porosity. 

 

Keywords: FGM sandwich plate; free vibration analysis; p-version of finite element method; 

porosity distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

V 

 

Résumé 

 

 

 

 

Cette thèse présente une analyse de vibration libre des plaques sandwich en matériau à 

gradient fonctionnel (FGM) avec une distribution de porosité en utilisant la méthode des 

éléments finis de la p-version, basée sur la théorie de la déformation en cisaillement du premier 

ordre. La plaque sandwich se composait de deux couches de feuilles FGM et d'une couche 

centrale homogène. Cinq modèles de distribution de porosité des plaques sandwich FGM ont 

été supposés et analysés. Cette étude a exploré systématiquement l'impact du rapport 

d'épaisseur, des conditions aux limites, des exposants de fraction volumique et des coefficients 

de porosité des couches supérieure et inférieure des plaques sandwich FGM sur la fréquence 

naturelle. Ce travail marque la première analyse complète de ces facteurs sous différentes 

conditions aux limites pour une plaque sandwich à gradient fonctionnel, offrant des 

perspectives précieuses sur leur dynamique vibratoire. Les conclusions sont contextualisées 

dans la littérature existante et démontrent l'exactitude et l'efficacité du modèle, l'établissant 

comme un outil numérique robuste pour l'étude de l'analyse de vibration libre des plaques 

sandwich FGM avec porosité. 

 

Mots-clés : plaque sandwich FGM ; analyse de vibration libre ; p-version de la méthode des 

éléments finis ; distribution de porosité. 
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Nomenclature 

 

Abbreviations 

FGM                    Functionally Graded Material  

FEM                    Finite Element Method   

P-FEM                 P-version Finite Element Method 

SIFs                     Stress Intensity Factors 

TDFGPP              Two-Directional Functionally Graded Porous Plates  

FSDT                   First-order Shear Deformation Theory  

CVD                    Chemical Vapor Deposition  

PVD                     Physical Vapor Deposition  

EPD                     Electrodeposition Methods  

PM                       Powder Metallurgy  

AM                      Additive Manufacturing  

WAAM               Wire and Arc Additive Manufacturing  

FSAM                  Friction Stir Additive Manufacturing  

FSW                     Friction Stir Welding  

LB                        Langmuir-Blodgett  

P-FGM                 Power-law Functionally Graded Material 

S-FGM                 Sigmoid law Functionally Graded Material  

E-FGM                 Exponential law Functionally Graded Material  

CPT                      Classical Plate Theory  

ESL                       Elasticity-based Structural Load  

HSDTs                  Higher-order Shear Deformation Theories  

SCFs                      Shear Correction Factors  

SCSDT                  Second-order Shear Deformation Theories  

TSDT                    Third order Shear Deformation Theory  

SSDT                     Sinusoidal Shear Deformation Theory  

HSDPT                  Hyperbolic Shear Deformation Plate Theory  

ESDPT                   Exponential Shear Deformation Plate Theory  

RPT                        Refined Plate Theory  

DQM                      Differential Quadrature Method 
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Greek Symbols 

𝜔                     Natural Frequency 

𝜃𝑖                     Rotation Vector 

𝜀𝑖𝑗                     Strain Tensor 

𝜎𝑖𝑗                     Stress Tensor 

x, y                   Cartesian Coordinates 

ξ, η                   Local Coordinates 

𝑃(𝑙)                  The Effective Material Properties 

Ω̅                      Fundamental Frequencies  

Ω                      Frequency Parameters 

𝐸(i)                  Young’s Modulus 

𝜈(i)                   Poisson’s Ratio 

𝜌(i)                   Mass Density 

𝑉(i)                  Volume Fraction 

𝑁𝑖(𝜉, 𝜂)            Shape Functions  

𝑔𝑖(𝜉, 𝜂)             Uni-dimensional Hierarchical Shape Functions  

𝑃𝑖(𝜏)                 Shifted Legendre Polynomials 

 

Latin Letters 

[𝐾𝑒]                 Stiffness Matrices 

[𝑀]                  Mass Matrix 

�̅�𝑗𝑘
𝑖                   Elasticity Constants 

{q̅j}                 Vector of Generalized in-plane Displacements 

{qj}                 Vector of Generalized Transverse Displacement and Rotations 

a, b                  Plate length and width 

h                     Plate Thickness 

k                     Shear Correction Factors 

 Aij                   Extensional Stiffness Coefficients 

Bij                            Bending-Extensional Coupling Stiffness 

Dij                            Bending Stiffness Coefficients 

Sij                    Shear Stiffness Constants 

Ii,j                      The Inertia Constants 

U                     Strain Energy  
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T                      kinetic Energy  

𝑢1, 𝑢2, 𝑢3         Displacement Field 

(𝑢, 𝑣, and w)   Displacements of the Middle Surface 

𝑛1, 𝑛2              Volume Fraction Exponents 

ξ1, ξ2                Porosity Coefficients 

P                      Polynomial Order 
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General Introduction 

 

Scientific advancements in material technology and the evolution of modern industries have 

spurred the demand for increasingly advanced materials tailored to specific properties. This 

demand has catalyzed the transformation of materials from their basic states into composites, 

where the combination of different materials confers superior properties. Composite materials, 

typically composed of a matrix with embedded reinforcement, offer enhanced properties, such 

as stiffness, fatigue resistance, and weight reduction. However, conventional composite 

materials often suffer from issues such as discontinuity of properties and stress concentrations 

at interfaces, which lead to structural vulnerabilities, particularly in high-temperature 

environments. 

     One innovative solution to these challenges is the utilization of Functionally Graded 

Materials (FGM), where the material properties vary continuously with the thickness. By 

eliminating sharp interfaces and introducing gradient transitions, FGM offer improved 

structural integrity and tailored performance, reminiscent of those of natural materials such as 

bones and teeth. Originally conceptualized in the 1980s for aerospace and fusion reactor 

applications, FGM have been widely used in various engineering sectors including aerospace, 

power generation, and machinery. The increasing application of FGM underscores the 

importance of understanding their complex behavior and performance characteristics. 

     In this context, this thesis focuses on the application of FGM in sandwich structures. 

Sandwich structures consisting of lightweight cores sandwiched between strong face sheets 

offer unique advantages in engineering applications. By integrating FGM into sandwich 

structures, we aim to enhance their mechanical and functional properties while addressing the 

current limitations in weight and strength. 

     One specific challenge addressed in this study is the impact of porosity on the mechanical 

behavior of FGM sandwich plates. Porosity can lead to reduced strength and stiffness as well 

as increased susceptibility to fatigue and failure. Investigating the effects of porosity on FGM 

sandwich plates is a critical aspect of our research as it allows the development of strategies to 

mitigate these effects and optimize the performance of these structures. 
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     The motivation behind this research stems from the need to advance materials science and 

engineering, particularly in areas where lightweight and high-strength materials are critical, 

such as the aerospace and automotive industries. By studying the behavior of FGM sandwich 

structures, including the effects of porosity, we seek to contribute to the development of 

innovative solutions to real-world engineering challenges. 

     FGM sandwich structures exhibit complex behaviors that require sophisticated numerical 

tools for analysis. The finite element method is a powerful and efficient method that is widely 

used in the analysis of the complex behavior of these materials. The objectives of this thesis are 

to investigate the mechanical behavior and manufacturing techniques of FGM sandwich 

structures, with a specific focus on understanding the effects of porosity on their performance. 

     In general, the behavior of structural elements made of FGM sandwiches, for instance plates, 

can be described by three-dimensional (3D) or two-dimensional (2D) theories. Although the 

3D approach is more accurate, it is difficult to implement. Therefore, the 2D approach is widely 

used owing to its simplicity and low computational costs. For decades, classical and first-order 

shear deformation theories have been used to analyze FGM structural component behaviors. 

     By addressing these objectives, including the study of porosity effects, we aim to contribute 

to a broader understanding of FGM and their applications in engineering, paving the way for 

the development of advanced materials with tailored properties and enhanced performance. 

Aims and objectives 

The overall aim of this thesis is to advance the understanding of the linear behavior of FGM 

sandwich plates with porosity using the p-version of the finite element method. This was 

accomplished by achieving four main objectives: 

• Verify p-version of the FEM numerical model based on the first-order shear deformation 

theory. 

• Investigate the linear free-vibration behavior of isotropic and FGM sandwich plates with 

different parameters. 

• We further explored the linear free vibration behavior of the FGM sandwich plate. 

• Effect of porosity distribution on free vibration of functionally graded sandwich plate. 
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Thesis Organization 

 

The present work deals with the free vibrations of an FGM sandwich plate with porosity, which 

is organized into six chapters as follows: 

 

• Chapter I, presents a brief literature review related to the mechanical behavior of FGM 

sandwich plates, considering the influence of porosity distribution within the layers and 

focusing on various aspects of FGM sandwich plates, with particular attention to their 

vibration characteristics. Special emphasis is placed on investigating the effects of the 

material gradient distribution, structural composition, and porosity distribution on the 

vibration response of the FGM sandwich plates. 

 

• Chapter II, provides an overview of the key concepts and methodologies relevant to 

modeling sandwich structures and FGM. In Section II.1, we delve into the mechanical 

properties of sandwich structures, encompassing different assembly types, modes of 

damage, adhesive requirements, and material advantages and drawbacks, while 

surveying various modeling techniques. section II.2, offers an examination of FGM, 

including diverse manufacturing approaches, with a particular emphasis on the solid 

freeform fabrication method owing to its inherent advantages and manufacturing 

adaptability. Furthermore, it elucidates the multiple application domains. 

 

• Chapter III, we present the main plate theories frequently employed to model FGM 

sandwich plates, alongside a layered approach aimed at elucidating the interfacial 

influences observed in conventional composite materials. Additionally, was introduced 

to describe the particularities of the p-version of the finite element method for modeling 

the free vibration of plates. 

 

• Chapter IV addresses several key aspects that are essential for our investigation. In 

Section IV.1, we scrutinized the geometric layout of the FGM sandwich plate model. 

Subsequently, we delve into the mathematical formulation of the first-order shear 

deformation theory. In addition, we amalgamate and elaborate on the element 

description, displacement interpolation, and shape functions pertinent to the P-version 
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of the finite element method. Moving forward, we elucidate the derivation of equations 

for strain, kinetic energy, and motion, contributing to a thorough delineation of the plate 

behavior. Moreover, we discuss the validation study conducted to ascertain the accuracy 

and dependability of our numerical approach. In Section IV.2, computer implementation 

and computational considerations are employed to efficiently conduct calculations on 

the machines. We then embark on a parametric study in section IV.3, aimed at exploring 

the effects of varying parameters, such as the volumetric fraction of layers, on the free 

vibration analysis of functionally graded sandwich plates. 

 

• Chapter V, the effect of porosity distribution on free vibration of functionally graded 

sandwich plate is investigated. In Section V.1, we define five porosity distribution 

models and study the convergence and comparison of the FGM sandwich plate with 

porosity with results in the literature to verify the accuracy of the model for intact FGM 

plates. In Section V.2, we present a comprehensive parametric study to investigate the 

influence of key factors, including the effect of the thickness ratio, boundary conditions, 

volume fraction exponents, and porosity coefficients of the top and bottom layers of the 

FGM sandwich plates on the natural frequency. 

 

• Chapter VI, the conclusions and potential further work are discussed. 
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Chapter I 

 

Literature Review 

 

In this chapter, a brief literature review is presented, focusing on two key points: the mechanical 

behavior of functionally graded material sandwich plates and the effects of porosity distribution 

on the vibration response of the FGM sandwich plates.



Literature Review 

  

8 

 

I.1 Vibration of FGM plates 

In recent years, the study of the mechanical behavior of FGM plates has emerged as a focal 

point in materials science and engineering. Researchers have turned to sophisticated analytical 

and computational methods to unravel the complexities of mechanical performance. The 

analysis of FGM plates has become increasingly important in materials science and engineering 

because of their spatial variations in material composition and properties, offering diverse 

applications across industries. This introduction sets the stage for exploring the mechanical 

intricacies and performance of FGM plates using atomistic methods. 

 

 

Figure I-1: Historical overview of relevant milestones in the research and development of 

FGM [1] 

Several studies have been conducted on the vibration of FGM plates. Swaminathan et al. [2] 

provided a comprehensive review encompassing various analytical and numerical methods 

employed for this purpose, focusing on the stress, vibration, and buckling characteristics of 

FGM plates. For example, analytical methods such as the classical plate theory and numerical 

techniques such as finite element analysis have been utilized to predict the behavior of FGM 

plates under different loading conditions. 

Similarly, Swaminathan et al. [3] used thermal analysis to discuss mathematical 

idealizations, modeling techniques, and solution methods pertinent to FGM plates subjected to 

thermal loads. They explored various temperature profiles and their effects on the mechanical 

response of the FGM plates. For instance, linear and nonlinear temperature gradients across the 

thickness of a plate have been investigated to understand thermal stresses and deformation 

behaviors. 

Alimoradzadeh et al. [4] extended this study by exploring the nonlinear dynamic responses 

of FGM composite beams on nonlinear viscoelastic foundations under moving mass loads and 
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temperature variations. They conducted numerical simulations to analyze the influence of the 

temperature rise, material distribution parameters, and moving mass characteristics on the 

dynamic behavior of FGM beams. Their study highlighted the importance of considering 

material nonlinearity and dynamic loading conditions in the design of FGM. 

Another facet of research, elucidated by Thai et al. [5], involved a comprehensive review of 

various theories for modeling and analyzing functionally graded plates and shells, emphasizing 

single-layer theories and three-dimensional elasticity solutions. They provided examples of 

theoretical models, such as first-order shear deformation theory, which has been widely used to 

predict the global responses of functionally graded plates and shells under mechanical and 

thermal loadings. 

Furthermore, Gupta and Talha [6] presented an extensive review of the structural response 

of FGM and structures, offering insights into thermo-electro-mechanical loadings and 

fabrication procedures. They discussed case studies of FGM plates and shells subjected to 

combined thermal and mechanical loading conditions, highlighting the importance of 

considering material heterogeneity and environmental effects in the design and analysis. 

 

Figure I-2: The annual number of publications using the search titles “functionally graded 

materials”. (Based on the Web of Science search system in the duration) 

 

Kanu et al. [7] focused on fracture analysis of FGM materials, highlighting computational 

advances such as multiscale simulations and extended finite element methods. They provided 

examples of crack propagation studies in FGM structures using advanced numerical techniques, 

demonstrating the utility of these methods in predicting the fracture behavior and structural 

integrity. 
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Additionally, Toudehdehghan et al. [8] provided an overview of FGM applications, 

manufacturing processes, and mathematical idealizations, underscoring the need for simplified 

homogenization schemes for efficient analysis. They discussed examples of homogenization 

techniques used to model FGM microstructures and predict macroscopic material properties, 

highlighting the importance of accurate material characterization and modeling assumptions. 

The reviewed literature underscores the multifaceted exploration of FGM plates, 

encompassing various analytical, numerical, and experimental approaches. These 

investigations have significantly contributed to the understanding of the mechanical, thermal, 

and dynamic responses of FGM structures, paving the way for advancements in material science 

and engineering applications. 

 

I.2 Vibration of FGM sandwich plates 

 In recent years, the study of vibrations in FGM plates has become a focal point of research. 

Research on the vibration behavior of FGM sandwich plates has been extensively explored by 

scholars aiming to enhance our understanding of these complex structures in various 

applications. Garg et al. [9] conducted a thorough literature review on sandwich FGM structures 

and explored analysis methods and theories across plates, beams, and shells, considering factors 

such as porosity and hygrothermal loading, to set a benchmark for future research. 

Dat et al. [10] investigated the free vibration of functionally graded sandwich plates with 

stiffeners using the finite element method. They employed a power-law distribution for the 

material properties in the thickness direction and conducted a parametric study to analyze the 

influence of the material distribution and stiffener parameters on the plate vibration 

characteristics. Wang [11] aims to develop a robust algorithm for analyzing the free vibration 

of moderately thick circular cylindrical shells under various conditions, crucial for applications 

in structural, rock, and aerospace engineering. By proposing an adaptive finite element method, 

they sought to enhance the accuracy and reliability of solutions compared to conventional finite 

element methods for such analyses. Wang et al. [12] address the dynamic behavior of 

moderately thick circular cylindrical shells commonly used in engineering applications, 

emphasizing the impact of micro-crack damage on vibration characteristics. They highlighted 

the importance of accurately capturing free vibration frequency and mode changes due to 

stiffness weakening in damaged regions and proposed improvements to conventional finite 

element methods for better precision in local oscillation solutions. 

Belalia examined the free vibrations of FGM sandwich plates using von Karman’s 

assumptions and a geometrically nonlinear formulation [13]. The p-version of the FEM was 
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used for the geometrically nonlinear free vibration of the bi-FGM sandwich plates [14]. The bi-

FGM sandwich elliptic plates’ linear and geometrically nonlinear free vibrations was explored 

by Belalia [15] using a curved hierarchical finite element. Wang [16] tackles precision 

challenges in eigensolutions and buckling load predictions for curved beams with crack 

damage, introducing a finite element method and advocating for adaptive mesh refinement to 

enhance solution accuracy. Wang et al. [17] proposed an hp-version adaptive finite element 

method for precise eigensolutions in moderately thick circular cylindrical shell vibrations, 

integrating error homogenization and higher-order interpolation to efficiently achieve high-

precision results. Burlayenko et al. [18] developed a three-dimensional modeling approach to 

understand the free vibrations and static responses of FGM sandwich plates. Their work utilized 

the finite element method within the ABAQUSTM code, incorporating a 3-D brick graded finite 

element for an accurate representation. Parametric studies were conducted by varying the 

volume fraction profile and ceramic volume fraction, providing insights into material behavior. 

Irfan et al. [19] reviewed finite element formulations developed after 2000 for analyzing 

sandwich plates, covering theories such as first-order shear deformation, higher-order shear 

deformation, and mixed solid-shell elements. Their comprehensive review addressed emerging 

areas, including piezoelectric structures, and reflected the evolution of analytical methods for 

understanding the behavior of complex sandwich structures. Yaylacı et al. [20] tackled the 

continuous and discontinuous contact problems of functionally graded layers on rigid 

foundations. The study involved analytical and finite-element solutions, demonstrating the 

compatibility between the two approaches. Their work emphasized the importance of material 

properties and loading conditions in understanding the contact behavior of FGM layers. Zhang 

et al. [21] delved into stress intensity factors (SIFs) in linear elastic fracture mechanics, 

extracting SIFs for various crack configurations using the p-version finite element method (P-

FEM). Their study verified the effectiveness and accuracy of P-FEM in comparison with other 

numerical methods, highlighting its significance in assessing structural and material damage. 

Recent studies by Ghazwani and Van Vinh introduced novel theories for the bending and 

free vibration analysis of bifunctionally graded sandwich plates. Ghazwani's [22] study focused 

on establishing an nth-order shear deformation theory and simplifying the analysis by 

incorporating only four unknown displacement functions. Van Vinh [23] proposed a hybrid 

quasi-3D theory, combining polynomial and trigonometric functions to capture the distribution 

of transverse shear strains and thickness stretching effects. Both studies contributed to 

advancing the understanding of complex sandwich plate structures. 
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Kumar et al. [24] conducted a comprehensive review of the literature on buckling and free 

vibration analysis of shear deformable isotropic and laminated composite sandwich plates and 

shells. Their article covered various theories, finite-element models, and experimental methods. 

Meksi et al. [25] introduced a new shear deformation plate theory for illustrating the bending, 

buckling, and free vibration responses of functionally graded material sandwich plates. Their 

theory involves a displacement field with integrals, accounting for a quasi-parabolic 

distribution of the transverse shear stress. The proposed model was validated through analytical 

solutions and the influence of critical parameters on the behavior of functionally graded 

sandwich plates. 

In summary, the culmination of these research endeavors to understand the dynamics and 

behavior of functionally graded material sandwich plates and lay a solid foundation for future 

investigations in the field of structural mechanics. Areas ripe for exploration include the 

development of advanced analytical and computational methods to more accurately model the 

complex behaviors exhibited by FGM sandwich plates under various loading conditions. 

Furthermore, there is a growing need to explore novel materials and manufacturing techniques 

that can further enhance the performance and functionality of FGM sandwich plates, 

particularly in demanding applications, such as aerospace, automotive, and civil engineering. 

Additionally, future research could delve deeper into the optimization of the porosity 

distribution patterns and material compositions to tailor the mechanical properties of FGM 

sandwich plates for specific applications, thereby maximizing their efficiency and 

effectiveness. 

 

I.3 Vibration of FGM sandwich plates with porosity 

In the fabrication process of FGM sandwich plates, the constituent materials have different 

solidification temperatures, which causes the creation of porosities or microscopic voids. Many 

studies have been conducted that have considered the impact of porosity on the free vibration 

of FGM sandwich plates. Hadji et al. [26] investigates the effect of porosity distribution pattern 

on the free vibration analysis of porous FG plates, considering various boundary conditions and 

material variations. Heshmati and Jalali [27] explored the free vibration behavior of sandwich 

circular and annular plates with a core made of materials with functionally graded porosity and 

analyzed different porosity distributions in the radial direction. 
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Figure I-3: A top view of a radial cross-section of a cylinder showing graded porosity 

distribution in the radial direction [27] 

 

Daikh and Zenkour [28] propose a new porosities distribution for bending analysis of FGM 

sandwich plates, while Daikh and Zenkour [29] study the free vibration and mechanical 

buckling of porous functionally graded sandwich plates, utilizing a new and simple higher-

order shear deformation theory. 

Zhang et al. [30] presented a comprehensive analysis of the free vibration and damping 

properties of porous FG sandwich plates by considering a modified Fourier-Ritz method and 

investigating the effects of evenly and unevenly distributed porosities within the face layers.  

Tran et al. [31] utilizes an edge-based smoothed finite element method to investigate the static 

bending and free vibration of functionally graded porous plates, examining the influence of 

geometric parameters and material properties on plate behavior. 

Quan et al. [32] focused on the nonlinear vibration of porous FG sandwich plates under blast 

loading by employing an analytical approach to study the effects of volume fraction index, 

porosity coefficient, and type of porosity distribution. 

Van Vinh and Huy [33] establish a finite element model to study the static bending, free 

vibration, and buckling of functionally graded sandwich plates with porosity, considering the 

effects of various parameters on plate response. Kumar Sah and Ghosh [34] analyze the free 

vibration and buckling of multi-directional porous FGM sandwich plates, investigating the 

influence of porosity models and geometric parameters. Hirannaiah et al. [35] investigate the 

effects of thermo-mechanical load coupling and porosity distributions on the vibration and 
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buckling characteristics of FGSPs with cutouts, employing a Finite Element (FE) formulation 

to study plate behavior under different loading conditions. 

Belkhodja et al. [36] analyzed the thermal buckling and thermomechanical bending 

responses of sandwich plates with FGM face layers, considering the effects of thermal loads 

and porosity distributions on plate behavior. Karakoti [37] develop a finite element formulation 

for the nonlinear transient response of porous FGM sandwich plates and shell panels, examining 

the effects of volume fraction index, porosity model, and blast load parameters. Merdaci et al. 

[38] examined the free vibration response of functionally graded plates with different porosity 

distributions, and evaluated the influence of material properties and porosity volume fractions 

on plate behavior. Shivaramaiah et al. [39] investigate the nonlinear behavior of two-directional 

functionally graded porous plates (TDFGPP) using various porosity distributions and material 

properties, exploring the effects of volume fraction gradation profiles on plate response. 

These studies collectively contribute to advancing our understanding of the mechanical 

behavior and vibrational characteristics of functionally graded porous materials, offering 

insights for engineering applications. 

 

I.4 Gaps in existing literature 

FGM sandwich structures are subjected to non-symmetric charges in many engineering 

fields and industries. However, in the manufacturing process, the constituent materials of the 

two thin face sheets have different solidification temperatures, leading to the generation of two 

different microvoids or porosities inside the layers on the top and bottom face sheets of the 

FGM sandwich plates. However, a notable research gap emerges from the absence of 

comprehensive studies dedicated to investigating the free vibration of FGM sandwich plates 

with various porosity coefficients and volume fraction exponents in the top and bottom layers. 

To the best of our knowledge, there are no publications in the available literature that address 

this specific aspect. This conspicuous void underscores the need for further research in this area. 

Addressing this gap is imperative, and prompts the scientific community to conduct rigorous 

inquiries. Delving into this unexplored territory will help scientists avoid problems associated 

with different porosity coefficients for the top and bottom layers, thereby advancing our 

understanding and contributing to the enhancement of FGM sandwich plate design and 

performance. Through comprehensive analysis, this research contributes to the advancement of 

FGM technology and lays the groundwork for future studies in this field. 
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I.5 Summary 

This chapter provides a comprehensive and in-depth review of the vibration behavior of 

FGM sandwich plates, specifically focusing on the impact of varying porosity distributions. It 

traces the historical evolution of research in this domain, incorporating recent advancements 

and identifying critical avenues for further exploration, notably emphasizing the role of 

porosity. With clearly delineated objectives aimed at bridging existing research gaps, this 

chapter provides a comprehensive framework for targeted and purposeful investigations, laying 

a strong foundation for subsequent studies. In the ensuing chapter, we will delve into diverse 

theories, development methods, and methodologies employed in modeling sandwich structures 

and FGM, expanding upon the insights gleaned from this examination. 
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Chapter II 

 

Preliminaries 

 

This chapter focuses on the synergistic potential of sandwich structures and FGM, which are two 

advanced composite materials known for their unique properties and applications. Sandwich 

structures, composed of lightweight cores sandwiched between high-strength face sheets, offer 

exceptional stiffness-to-weight ratios and customizable performance attributes. In contrast, FGM 

exhibit gradient compositions and properties, allowing for precise control over their mechanical, 

thermal, and electrical characteristics. By exploring the characteristics and applications of both 

sandwich structures and FGM, this chapter aims to elucidate their combined potential in innovative 

engineering solutions across diverse industries and applications. 
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II.1 Sandwich structures 

Sandwich panels have been successfully utilized for many years in the aviation and 

aerospace industries as well as in marine, mechanical, and civil engineering applications. This 

is attributed to their high rigidity and strength-to-weight ratio [40]. The use of sandwich 

construction in aerospace structures can be traced back to World War II, when the British 

bomber de havilland mosquito employed such construction [41]. 

Initially, the sandwich structure was a simple assembly featuring basic coverings made of 

fabric, thin metal, and soft wood used as the core. The classical sandwich construction 

comprises a relatively thick core and low-density material that separates the relatively thin yet 

rigid upper and lower faceplates. The materials employed in sandwich constructions have been 

diverse, but recently there has been increased interest owing to the introduction of novel 

materials for use in facings and cores [42]. 

The advancement of modern technologies demands the utilization of materials possessing 

specific high mechanical properties tailored to their applications, while maintaining low 

densities. This aim primarily targets a reduction in the structural mass. Composite materials 

fulfill these criteria, offering low density, high strength, significant rigidity, and excellent 

durability.  Sandwich materials are among the most commonly used composite materials and 

occupy a significant niche in the construction of composite components. 

 

II.1.1 Definition 

A sandwich material consists of a core, which is typically lightweight with poor mechanical 

characteristics, sandwiched between two skins made of a material possessing strong mechanical 

properties. Thin, rigid, and resilient skin adheres to a core composed of soft, lightweight 

materials. This configuration provides sandwich materials with an excellent bending strength 

and remarkable lightness. The overall performance of sandwich structures depends on their 

constituent material properties (face sheets, adhesive, and core), geometric dimensions, and 

loading type. The effective design and application of sandwich construction necessitate 

thorough characterization and understanding of not only the constituent sandwich materials but 

also the overall structure under quasi-static and dynamic loads [43]. 

 

II.1.2 Sandwich ingredients 

The sandwich concept is a well-established construction technique that combines 

lightweight properties with rigidity and strength. Essentially, a sandwich structure comprises a 
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low-density material onto which two thin layers of stronger and more rigid materials are 

adhered. 

The skin (or layers) must withstand bending moments and can vary in nature, for example, 

metal, laminate, wood (plywood), or even thermoplastic sheets. The core, which is the central 

element of a sandwich structure, typically exhibits poor mechanical characteristics. Its role 

involves resisting shear stresses resulting from skin sliding under a load and maintaining 

separation. Figure II-1 illustrates the various constituent elements of a composite material used 

in sandwich construction. 

 

 

Figure II-1: Diagram of a sandwich plate 

 

II.1.2.1 The skins 

Generally, thin skins can be made of any material that can be obtained in a layered form, 

including wood, metal, or composite materials. The choice of the material nature and sequence 

depends on the use of composite materials. Skins aim to withstand bending forces, which are 

reflected in the normal stresses (tension or compression). Quoting Allen [44], 'Nearly all 

structural materials available in thin sheet form can be used to form the faces of a sandwich 

panel,' offering a wide variety in material selection. This flexibility allows for efficient design 

that enables the use of each material component to its utmost potential. The key properties 

crucial for the skin include the following: 

• Impact resistance 

• Surface finish 

• Wear resistance 

• High stiffness providing elevated flexural rigidity 

• High tensile and compressive strength 

• Environmental resistance (chemical, UV, heat, etc.) 
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Commonly used skin materials can be categorized into two main groups: metallic and non-

metallic. The first group comprises steel, stainless steel, and aluminum alloys, which offer a 

wide variety of alloys with different strength properties, while exhibiting limited stiffness 

variation. The larger of the two groups is the latter, encompassing materials such as plywood, 

cement, veneers, reinforced plastics, and fiber composites. 

The most significant nonmetallic materials are fiber composites, which have had a 

substantial impact on sandwich construction since their introduction. This is because most 

composites offer strength properties similar or even superior to those of metals, although their 

stiffness is often lower. Hence, to achieve the required stiffness, composites are frequently 

sandwiched between lightweight cores [45]. 

 

II.1.2.2 The core 

The core, which is typically lightweight, generally has very low bending strength. The 

fundamental function of a sandwich structure is to transmit mechanical actions from one skin 

to another through transverse shear. The cores used in load-bearing sandwich constructions can 

be categorized into four groups: corrugated cardboard, honeycomb, balsa wood, and foams. 

First, the core must have a low density to add minimal weight to the total sandwich. The key 

properties of interest for the core include the following. 

• Density 

• Shear modulus 

• Shear strength 

• Stiffness perpendicular to faces 

• Thermal insulation 

• Sound insulation 

There are two types of cores: 

• Solid cores [46] encompassing the: 

➢ Balsa or cellular wood (Figure II-2a) 

➢ Various cellular foams (Figure II-2b) 

➢ Resins filled with hollow glass microspheres are referred to as syntactic foam. This 

solid or cellular core was considered isotropic. 
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Figure II-2: Solid core sandwich materials 

 

• Hollow cores [46], primarily honeycomb in type (Figure II-3), comprising the 

following: 

➢ Lightweight metallic alloys 

➢ Kraft papers 

➢ Polyamide papers, such as Nomex paper. 

 

Figure II-3: Hollow core sandwich materials: (a) honeycomb; (b) corrugated core 

 

The core can be made from the following materials: 

• Foams: Lightweight, inexpensive, easily machinable, yet with very poor mechanical 

properties. 
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• Balsa: Known for its various uses and qualities, including lightness, high thermal and 

acoustic insulation, and resistance to thermal variation. 

• Honeycomb: Typically made from thin-plate materials (aluminum alloy, polyamide 

paper). 

II.1.2.3 The interface 

Sandwich structures can be assembled through bonding, welding, or brazing. Numerical 

simulations typically assume a flawless bond between components, irrespective of the layer 

assembly method. This component is of crucial importance because it bonds the core and skin 

together. It must enable solid assembly of the structure by forming a continuous, nonporous, 

and uniform thickness bond. 

 

Figure II-4: Adhesion mechanisms 

 

II.1.3 Type of sandwich structures 

Currently, a wide variety of sandwich cores are employed in structural engineering, as 

depicted in Figure II-5. 

 

II.1.4 Applications for sandwich materials 

The use of sandwich structures continues to increase rapidly for various applications, 

including satellites, aircraft, ships, automobiles, railcars, wind turbines, and bridge 

construction. The sandwich method finds extensive application in naval and maritime 

construction, with new markets on the horizon. 
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Figure II-5: Variety of cellular networks configured as cores of sandwich panel structures 

 

Contemporary land designs mostly limit the use of concrete, steel, and a few aluminum 

alloys. Sandwich materials assembled through bonding also find applications in automotive and 

railway construction. In this study, glass/polyester laminate skins and expanded polystyrene 

foam cores were used. 

Sandwich materials are in demand for metro and tramway systems, which require frequent 

starts. Access doors made of sandwich panels with composite glass/polyester or aluminum skins 

adhered by internal adhesives are prevalent, utilizing cores of aluminum honeycombs or 

Nomex. 

Aerospace construction involves the use of sandwich panels and co-cured composite 

laminates (carbon/epoxy, kevlar/epoxy) for landing gear doors and various fairings (between 

fuselage wings, engine pylons, flap tracks). 

Engine cowls are commonly constructed using carbon/epoxy skins that adhere to aluminum 

honeycomb cores. Numerous helicopter parts are either monolithic or sandwiched, featuring 

composite skins bonded to honeycomb cores [47]. 

In astronautics and defense sectors, where heat and thermal variations are critical, solar 

reflectors use carbon/epoxy skins and Nomex honeycomb cores. In the future, the sandwich 

concept may serve as a substitute material for various modules constituting these structures. 
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II.1.5 Manufacturing processes 

In many cases, the manufacturing of sandwich structures involves standard composite 

processing technologies, such as contact molding, vacuum bag molding, resin injection 

molding, press molding, filament winding, and centrifugation. These methods enable 

integration of a core within the thickness of the manufactured structure. This section highlights 

the most commonly used process for developing a sandwich structure. 

 

II.1.5.1 Wet process technologies (direct impregnation) 

Traditionally, sandwiches are obtained through implementation processes known as 'wet lay-

up,” in which dry reinforcements are impregnated with thermosetting resin during shaping. This 

can be achieved through contact molding, simultaneous spraying, resin injection, or filament 

winding. Structures produced via contact or simultaneous spraying exhibit average mechanical 

properties, particularly if the skins are made from chopped fibers. The resin content, porosity 

rate, and overall laminate quality depend on the molder skill. Those generated by filament 

winding or resin injection (vacuum or pressure) showcase higher mechanical properties due to 

the potential use of continuous fiber reinforcements (unidirectional, fabrics) and achieving 

higher fiber content. 

 

II.1.5.2 Dry process technologies (indirect impregnation) 

Dry lay-up methods or indirect impregnation processes involve the creation of sandwich 

structures with skins obtained from a pre-impregnated material. Implementation occurs under 

vacuum in an oven, heated press, or vacuum autoclave. The use of pre-impregnated materials 

ensures uniform and high-quality reinforcement impregnation, granting the sandwich 

component good mechanical properties owing to the high fiber content. Excess resin in the pre-

impregnated material, which is extracted through appropriate pressure and temperature 

applications, can be used for core-to-skin bonding. 

• Bonding Assembly: Bonding remains a prevalent method for assembling 

sandwiches, involving the joining of preformed cores and skins using adhesives. The 

shaping and assembly phases were distinct. Surface preparation is crucial to ensure 

high-quality bonding. 

➢ Cleaning to eliminate grease or dust and enhance the surface roughness. 

➢ Priming via chemical treatment of metallic skin adhesives tailored to the constituent 

materials of the sandwich must be uniformly applied. The stack (core + adhesive + 
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skin) is heated and placed under pressure, which can be applied using a press, vacuum 

autoclave, or vacuum bag molding. 

II.1.6 Designing sandwich structures 

Although primarily intended to withstand bending forces, sandwich structures are also 

engineered to meet other requirements, such as thermal and acoustic insulation. The choice of 

the sandwich type depends predominantly on its intended application. The key goals for a 

'sandwich' designer include selecting appropriate materials constituting the structure and 

determining the respective thicknesses of the skin and core to withstand bending moments, 

shear, and axial stresses induced by applied forces. Generally, the design is based on sandwich 

theory (homogeneous beam theory) and the selection of materials possessing the requisite 

properties. 

 

II.1.7 Geometric characteristic of sandwiches 

Owing to the fabrication of sandwiches, the mechanical properties are tailored by varying 

the nature of the skin (whether identical or not), core, and thickness of each phase. Generally, 

the skins have the same thickness, tf, and the ratio tf / hc (where hc is the core thickness) falls 

between 0.01 and 0.1, sandwiches are classified into three categories based on the value of the 

d/tf ratio [42], where d represents the distance between the neutral axes of the sandwich skins:  

• For a d/tf ratio below 5.77, the sandwich is termed as thick-skinned.  

• For a d/tf ratio between 5.77 and 100, the sandwich is termed thin-skinned. 

• For a d/tf ratio above 100, the sandwich is termed very thin-skinned.  

These limits were defined in relation to the contribution of each constituent to the bending 

and shear stiffness of the sandwich. 

 

Figure II-6: Diagram of a sandwich 
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II.1.8 Sandwich materials plates 

A sandwich material consists of a low-density material (core) bonded to high-stiffness and 

high-strength layers (skins). The primary function of the core is to transmit mechanical action 

from one skin to another through transverse shear. The skins can be made of laminates or 

metallic materials with thicknesses h1 (lower skin) and h2 (upper skin). The core thickness was 

denoted as hc, and the total sandwich thickness was H (H = h1 + hc + h2). At each point in the 

sandwich structure, the coordinate system is selected such that the (x, y) plane represents the 

mid-plane [48]. 

The assumptions underlying the theory of sandwich materials are as follows [48]. 

• Core thickness was greater than that of the skin (hc > > h1, h2). 

• The core displacements uc and vc in the x- and y-directions are linear functions of the 

z-coordinate. 

• The displacements u and v in the x- and y-directions were uniform within the skin 

thickness. 

• The transverse displacement w is independent of the variable z, and strain εzz is 

neglected. 

• The core only transmits transverse shear stresses σxz, σyz; stresses σxx, σyy, σxy, and 

σzz are neglected. 

• The transverse shear stresses τxz and τyz were neglected within the skin. 

• Finally, the theory addresses elasticity problems in small deformations. 

II.1.9 Assembling techniques for sandwich materials 

II.1.9.1 The bonding of skin on the soul 

For sandwich structures to fulfill their roles effectively, it is crucial to ensure perfect bonding 

between the core and skin to distribute the loads evenly between them. Assembly was achieved, 

as depicted in Figure II-7, through bonding using resins compatible with the materials involved. 

 

II.1.9.2 Folding technique 

After the implementation, sandwich panels can be formed by folding, as illustrated in Figure 

II-8. The process begins by stripping a strip of one of the coverings along the folding axis and 

to a width determined by the plate thickness and the desired folding angle. The material was 

then folded and the angle was held in the chosen position. 
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Figure II-7: panels made by gluing from various profiles 

 

 

Figure II-8: Folding sandwich panels 

 

II.1.10 Advantages of sandwich structures 

The primary advantage of sandwich structures over traditional monolithic composites is their 

exceptionally high specific stiffnesses. Core density typically ranges from approximately 100 

kg/m-3. By altering the nature and thickness of the skin and/or core, the structure can be tailored 

to suit the specific requirements. Enhancing the stiffness, which is indicative of the material's 

bending behavior, is achieved by increasing either the core thickness, leading to an increase in 

its moment of inertia, or the elastic modulus of the skin. Because the core possesses a low 

density, the mass of the composite does not significantly increase. 
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Composite sandwich materials offer significant advantages over conventional materials. 

They provide various functional benefits such as lightweight, mechanical and chemical 

resistance, reduced maintenance, and design flexibility. They can prolong the equipment 

lifespan owing to their mechanical and chemical properties, contributing to enhanced safety 

through better impact and fire resistance. In addition, they offer superior thermal or acoustic 

insulation, and in some cases, good electrical insulation. These materials expand design 

possibilities by enabling lightweight structures and complex forms capable of fulfilling multiple 

functions. Across diverse application markets (automotive, construction, electrical, industrial 

equipment, etc.), these remarkable performances have driven innovative technological 

solutions. 

 

II.2 Functionally graded materials 

FGM represent one of the latest developments in revolutionizing material design in the 21st 

century. They have extensive application in various fields. Enhancing the structural part 

performance often leads to seeking different, often conflicting, but locally optimized properties 

within the same material. The development of composite materials has enabled the combination 

of the specific properties of different materials within a single piece. Locally optimizing these 

properties, for instance, combining a high-hardness material on the surface with a tough 

material, poses challenges, such as addressing interface issues. For example, adhering a ceramic 

layer to a metallic structure forms a thermal barrier coating for high-temperature applications. 

Sudden transitions in the material properties across discrete material interfaces can lead to 

interlaminar stress or high stress concentrations, resulting in plastic deformation or cracking. 

FGM have been employed to mitigate these adverse effects. In recent years, FGM have been 

developed owing to their excellent mechanical properties, high performance, and heat 

resistance. Initially designed as barrier materials in reactors and high-temperature applications, 

FGM have expanded into the military, automotive, biomedical, and semiconductor industries, 

and various high-temperature environments. 

 

II.2.1 FGM concept 

A material with gradient properties is a type of composite material composed of two or more 

materials with varying volume fractions and a microstructure designed to have a spatial 

continuity of variables. An FGM was created by continuously changing the volume fractions 

throughout its thickness to achieve a specific profile. 
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FGM are typically made from a blend of metals and ceramics (Figure II-9) using a powder 

metallurgy process. The metal-rich side is usually placed in regions where mechanical 

properties such as hardness need to be high. Conversely, the ceramic-rich side, which has lower 

conductivity and higher temperature resistance, is positioned in regions with significant 

temperature gradients. 

 

Figure II-9: type of ceramic and metal FGM material 

 

The concept of FGM was developed by a group of scientists in Japan at the in 1984. The 

idea was to create materials that could be used as thermal barriers in space structures and fusion 

reactors [49], [50], [51]. An example of such a material is shown in Figure II-10 [52], in which 

spherical or nearly spherical particles are embedded in an isotropic matrix. 

 

Figure II-10: FGM with the volume fractions of the constituent phases graduated in a 

single direction [52] 
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By gradually varying the volume fraction of the constituent materials, their material 

properties showed minimal and continuous changes from one point to another, addressing 

interface issues and alleviating thermal stress concentrations. This is because the ceramic 

components of FGM can withstand high temperatures, resulting in better thermal resistance, 

whereas the metallic constituents provide stronger mechanical strength and reduce the 

likelihood of catastrophic failure. Therefore, a typical FGM is a nonhomogeneous compound 

composed of different material phases (usually ceramic-metal), enabling a continuous transition 

of desired properties through a composition gradient. 

Most FGM consist of ceramics and metals with specific mechanical properties: 

• High-temperature side for ceramics 

➢ Good thermal resistance 

➢ Resistance to oxidation 

➢ Low thermal conductivity 

• Low-temperature side for metals 

➢ Good mechanical strength 

➢ High thermal conductivity 

➢ Very good toughness 

• Intermediate layers for material continuity 

➢ Addressing interface issues 

➢ Alleviating thermal stress 

The continuous change in composition, and thus in the microstructure of an FGM material, 

is illustrated in Figure II-11, resulting in a gradient that determines the properties of the FGM. 

 

Figure II-11: Concept of materials with graded properties [54] 
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II.2.2 FGM development methods 

Our literature review revealed the various fabrication methods employed to create FGM. 

These techniques are briefly described below: 

 

Figure II-12: Contribution of manufacturing methods in the production of FGM 

(Based on the Web of Science search system in the duration of 1990–12/2019) 

 

II.2.2.1 Deposition based methods 

a. Chemical Vapor Deposition (C.V.D) and Physical Vapor Deposition (P.V.D) 

Chemical and physical vapor deposition techniques involve the deposition of atoms from the 

source material onto the substrate surface. C.V.D. and P.V.D. techniques can be employed to 

prepare FGM on complex-shaped substrates [53]. 

 

Figure II-13: Classifications of Vapor Deposition Methods used to produce FGM [54] 
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Figure II-14: Chemical Vapor Deposition (CVD) process [55] 

 

 

Figure II-15: Physical Vapor Deposition (PVD) process [54] 

 

b. Electrodeposition methods (EPD) 

Electrophoretic deposition is a process in which a stable colloidal suspension is placed in a 

cell that contains two electrodes. It involves the movement of charged particles within the 

solution towards either the cathode or anode based on the charge of the particles, owing to an 

applied electric field [56]. 
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Figure II-16: (a) Schematic diagram of EPD process, and (b) Concept of EPD process for 

produced FGM [57] 

 

c. Thermal spray method 

The thermal spray technique is fundamental for producing FGM and generating thin surface 

coatings via spraying. These coatings provide vital protection against corrosion, wear, and 

thermal and electrical factors, which are crucial for components enduring diverse service 

conditions. Various processes under thermal spray coating were employed to fabricate FGMs 

with graded properties, as illustrated in Figure II-17 [58]. 

 

 

Figure II-17: Types of thermal spray coating processes [58] 
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II.2.2.2 Solid state methods 

a. Powder metallurgy (PM) 

In this technique, the powders were successively poured into a steel mold. Slight 

compression was applied upon pouring each powder. Subsequently, all layers are compacted. 

Typically, this process is followed by isostatic pressure and lubrication. Densification is the 

final stage [59]. 

 

Figure II-18: Fabrication process of the FGM by powder Metallurgy [59] 

 

b. Additive manufacturing methods 

Recently, additive manufacturing (AM) methods have emerged as influential tools for 

advancing FGM development, shifting from conventional metal production models to 

sophisticated layer-by-layer fabrication, as depicted in Figure II-19 [60]. This transition 

replaced the traditional approach of using intricate machinery with a simpler mold-based 

process. 

 

Figure II-19: Concept of functionally graded additive manufacturing method [60] 
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c. Hybrid methods with additive manufacturing 

Owing to the high costs and time associated with additive manufacturing (AM) for producing 

FGMs, researchers have sought alternative methods while retaining the key properties achieved 

by AM [61], such as the Wire and Arc Additive Manufacturing (WAAM) method and the 

Friction Stir Additive Manufacturing (FSAM) method. FSAM, a new technique for FGM 

production, leverages the benefits of Friction Stir Welding (FSW) and offers improved 

manageability and advantages over traditional approaches [62]. 

 

Figure II-20: (a) Concept of WAAM process for produced FGM, (b) double-wire feeding 

units [54] 

 

 

Figure II-21: Concept of FSAM process for manufactured FGM [54] 

 

II.2.2.3 Liquid state methods 

a. Centrifugal force methods 

Numerous methods, including centrifugal force techniques, slip casting, tape casting, and 

infiltration, fall under the liquid-state principle for producing FGM with gradient properties. 

While these methods offer cost advantages and can generate materials with continuous 

properties [63], challenges include difficulties in controlling the gradation and wettability 

between materials, as well as issues related to molten metal [1]. 
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Figure II-22: Centrifugal force methods for producing FGM (a) centrifugal casting method, 

(b) centrifugal slurry method, and (c) centrifugal pressurization method [54] 

 

b. Slip casting method 

Slip casting involves pouring a suspension into a porous mold that drains liquid owing to 

capillary forces, leaving a compacted powder layer on the surface of the mold. A green body 

was obtained upon drying. Slip casting comprises two essential stages: 

• Formation of the layer or 'setting.' 

• Consolidation of the layer or 'solidification'. 

Filtration, which occurs during casting, is a process in which a portion of the water in the 

slip is eliminated. This water migrates through the already formed layer as follows: 

• Suction capability of plaster [64] (conventional casting). 

• Pressure is applied to slip (pressure casting). 

In the case of manufacturing multilayers, after the formation of the first layer, deposition of 

the second layer occurs such that the slip does not penetrate the formed layer. This process was 

repeated sequentially for subsequent layers. 

 

c. Tape casting method 

Tape casting involves pouring a slurry of fine powders in an aqueous or nonaqueous 

suspension onto a flat support in thin and uniform layers. The resulting products were sheets 

with controlled thicknesses (25-1000 µm). After the paste solidified, the sheets were demolded 

and cut. The solvent used must have a very low boiling point and viscosity. It should be soluble 

with the binder, plasticizer, and other additives but should not be soluble or reactive with the 

ceramic powder. The binder provides high mechanical strength to the green product, allowing 

handling. Typically, a plasticizer is added to a binder to reduce its viscosity. The binder, 

plasticizer, and deflocculant were completely removed during the drying process. The tape-

casting process is widely used to produce laminated composite materials using two methods: 

either by directly creating multilayered tapes through a system of multiple blades, as in the case 
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of tri-layers developed by [65], or by stacking separately prepared layers, which are then bonded 

through a thermocompression step [66]. 

 

Figure II-23: Schematic illustration of tape casting process [67] 

 

d. Infiltration method 

Infiltration is a liquid-state process for producing FGM, wherein a molten matrix fills the 

space between the dispersed stages containing preformed ceramic particles [68]. This method 

can be conducted with or without pressure, utilizing capillary action or gaseous/mechanical 

pressure, as shown in Figure II-24. This process involves chemical interactions at the interface, 

resulting in the formation of the FGM structure, offering advantages such as rapid preparation. 

 

Figure II-24: Schematic illustration of infiltration process (a) squeeze casting method, (b) 

pressure method [54] 
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e. Langmuir-Blodgett method 

In recent years, the Langmuir-Blodgett (LB) film method has garnered increasing interest 

among researchers and engineering communities for producing graded structures. This process 

facilitates the deposition of uniform film materials with high precision down to a single-

molecular-layer thickness [54]. LB films, utilized as active layers or passive insulators in 

electronic applications, offer the advantages of precisely controlled internal layer structures at 

the molecular level and precise regulation of film thickness. 

 

 

Figure II-25: Schematic illustration of the Langmuir-Blodgett method [54] 

 

II.2.3 Physical and mechanical properties of FGM 

The FGM material chosen for this work is (Aluminium-Ceramic). The Physical and 

mechanical properties of Aluminium and Ceramic are presented in Table II-1. 

 

II.2.4 Applications of FGM 

In the present era, with the adaptable production of composite materials to meet specific 

application needs and functional requirements, the use of FGM spans across an extensive range. 

Figure II-26 outlines diverse application domains for FGM, which holds significant potential 

for applications facing severe operational conditions or requiring precise sensitivity [55]. These 

applications span aerospace, automotive, biomedical, defense, energy, marine, and civil 

engineering, as detailed in the subsequent subsections. 
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Table II-1: Physical and mechanical properties of Aluminium and Ceramic 

properties Aluminium Ceramic 

Physical • Aluminum's melting 

temperature: Around 

660°C, facilitating 

foundry operations. 

• Highly ductile, allowing 

easy shaping. 

• Density: 2700 kg/m³. 

• Fusion advantage in foundry 

operations. 

• Density: 3800 kg/m3. 

• Utilization across various sectors: 

housing, design, ceramic and 

metallurgical industries, 

aerospace, medical, and coatings. 

mechanical • Tensile strength. 

• Penetration resistance 

(hardness). 

• Malleability (forming 

into sheets). 

• Ductility (forming into 

wires). 

• High Young's Modulus (covalent 

and ionic bonding). 

• High hardness (abrasives, cutting 

tools, friction surfaces requiring 

wear resistance, high mechanical 

strength, heat resistance, high 

rigidity). 

• Excellent compressive strength, 

not suitable for tension 

(Compression strength = 200 

MPa). 

 

 

 

 

 

 

 

 

 

 

Figure II-26: Areas of practical applications for FGM [54] 
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II.2.4.1 Aerospace applications 

Initially utilized in spacecraft to mitigate thermal stresses between external and internal 

surfaces, FGM have found applications in diverse aerospace applications. Presently, a multitude 

of aircraft and spacecraft components leverage FGM, including rocket nozzles, heat exchange 

panels, solar panels, turbine wheels, spaceplane noses, protective layers for combustion 

chambers, structural elements, rocket engine parts, reflectors, camera housings, caps, and the 

leading edges of missiles and space shuttles, as shown in Figure II-27 [54]. Moreover, FGM 

serve as thermal barriers, lining the walls of planes (such as spaceplane frames) and offering 

resistance against heat generated from air friction on the aircraft's exterior. 

 

 

Figure II-27: FGM parts in Aerospace applications [54] 

 

II.2.4.2 Automotive applications 

Because of their high cost [69], FGM have limited applications in the automotive sector, 

primarily in critical components such as diesel engine pistons, cylinder liners, combustion 

chambers, racing car brakes, driveshafts, and flywheels, as depicted in Figure II-29. 

Additionally, FGM can be used in coatings for automotive bodies [54]. 
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Figure II-28: FGM parts in automotive applications [54] 

 

II.2.4.3 Biomedical applications 

Human tissues such as bones and teeth exhibit natural FGM properties. In instances where 

damage occurs and necessitates replacement, a compatible material that fulfills the original 

function of the tissue is needed. Functionally graded materials are ideal for this purpose. FGM 

have diverse applications in the dental [70] and orthopedic fields, specifically in tooth and bone 

replacement [71]. Figure II-29 illustrates a schematic view of an FGM dental implant featuring 

a graded material composition [72]. 

 

Figure II-29: Schematic view of the FGM dental implant with graded material composition 

[72] 
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II.2.4.4 Defense applications 

The capability of FGM to impede crack propagation is crucial, especially in defense 

applications. They serve as effective penetration-resistant materials used in armor plates and 

bulletproof vests [73]. Additionally, FGM have significant applications in the construction of 

bulletproof vehicle bodies. 

 

II.2.4.5 Energy applications 

FGM play a crucial role in the energy sector by providing efficient thermal barriers and 

protective coatings for blades in gas turbine engines. They are also instrumental in applications 

such as thermoelectric generators, energy-conversion devices, solar cells, and sensors [74]. 

 

II.2.4.6 Electrical/electronic applications 

FGM are used in the electrical and electronics industries in many ways, including field stress 

relaxation in the electrode and field-spacer interface, diodes, semiconductors, insulators, and 

sensors. Thermal-shielding elements in microelectronics are also made from functionally 

graded carbon nanotube materials [69]. 

 

II.2.4.7 Marine applications 

FGM play a role in the marine and submarine industries and are applied in propeller shafts, 

diving cylinders, sonar domes, composite piping systems, and cylindrical pressure hulls [69]. 

 

II.2.4.8 Civil engineering applications 

The functional grading of concrete elements aligns their internal compositions with their 

distinct structural and thermal performance requirements. This alignment involves continuously 

altering material traits, such as porosity, strength, or rigidity, across up to three dimensions, 

aiming to minimize mass and achieve multifunctional properties. A lower porosity enhances 

structural traits, whereas a higher porosity improves heat insulation. Figure II-30 depicts curves 

illustrating the characteristics of hardened concrete with varying porosities [75]. 
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Figure II-30: Curves of hardened concrete characteristics depending of the porosity [75] 

 

II.2.4.9 Other miscellaneous applications 

FGM find applications in cutting tool insert coatings, heat exchangers, tribology, fire 

retardant doors, and defense pads to prevent crack propagation. The scope of their application 

is poised to grow further if future advancements lead to reduced production costs for these 

materials. 

 

II.2.5 Material properties of the FGM structures 

Materials with property gradients can be created by continuously altering the constituents of 

materials with non-uniform microstructures, resulting in spatially graduated macro properties. 

An FGM can be defined by the variation in the volume fractions. Most researchers utilize 

power, exponential, or sigmoid functions to describe volume fractions [76]. 

Researchers commonly employ the power, exponential, and sigmoid laws to describe the 

volume fractions when designing the variation of the desired property in an FGM across any 

direction. 

 

II.2.5.1 Power-law (P-FGM) 

The power law for material gradation, has been extensively employed by researchers and is 

prevalent in the stress analysis of FGM [77]. For the analysis of an FGM plate with uniform 
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thickness 'h,' as depicted in Figure II-31, the effective material property P(z) in a specific 

direction (along z) can be determined according to this law. 

𝑃(𝑧) = 𝑃2 + (𝑃1 + 𝑃2) 𝑉(𝑧)                                                     (II.1) 

where n represents each effective material property. P1 and P2 correspond to the material 

properties at the topmost (z = + h/2) and bottommost (z = − h/2) surfaces of the plate, 

respectively. The material properties depend on the volume fraction V of the FGM, following 

the power law as follows: 

𝑉(𝑧) = (
1

2
+

𝑧

ℎ
)
𝑛

                                                                 (II.2) 

where (0 ≤ n ≤ ∞) is the volume fraction exponent (or power-law index). 

 

 

Figure II-31: Coordinate system for a gradient property FGM sandwich plate 

 

II.2.5.2 Sigmoid law(S-FGM) 

When a single FGM power law function is added to the multilayered composite, stress 

concentrations appear at one of the interfaces in which the material is continuous but changes 

rapidly. Therefore, Chung and Chi [78] developed another law called the sigmoid law, which 

is a combination of two power-law functions, to ensure the smooth distribution of stresses 

among all interfaces. This law is also used to reduce the stress intensity factors in cracked 

structures [79]. The two power law functions are defined as follows: 

𝑉1(𝑧) =
1

2
(
ℎ 2−𝑧⁄

ℎ 2⁄
)
𝑛

     For 0 ≤ z ≤ ℎ 2⁄                                       (II.3) 

𝑉2(𝑧) =
1

2
(
ℎ 2+𝑧⁄

ℎ 2⁄
)
𝑛

     For −ℎ 2⁄  ≤ z ≤ 0                                   (II.4) 

By using the rule of mixture, the effective properties of the S-FGM can be calculated by 
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𝑃(𝑧) = 𝑃2 + (𝑃1 − 𝑃2) (1 −
1

2
(
ℎ 2⁄ −𝑧

ℎ 2⁄
)
𝑛

)     For 0 ≤ z ≤ ℎ 2⁄                (II.5) 

𝑃(𝑧) = 𝑃2 + (𝑃1 − 𝑃2) (
1

2
(
ℎ 2⁄ +𝑧

ℎ 2⁄
)
𝑛

)        For −ℎ 2⁄  ≤ z ≤ 0                (II.6) 

II.2.5.3 Exponential law (E-FGM) 

The exponential law is commonly applied to address issues related to the fracture 

mechanisms of FGM. This law, introduced by Kim and Paulino [80] and further elaborated by 

Zhang et al. [81], defines the distribution of properties across the thickness of the FGM plates 

as follows: 

𝑃(𝑧) = 𝑃2𝑒 
1

ℎ
(𝑙𝑛

𝑃1
𝑃2
)(𝑧+

ℎ

2
)
                                                  (II.7) 

The effective mass density (ρ) was determined using the rule of mixtures, irrespective of the 

micromechanical model employed [82]. The impact of Poisson's ratio on deformation is 

considered significantly lower than that of Young's modulus, as reported by Delale and Erdogan 

[83]. Consequently, Poisson’s ratio of the plates was assumed to remain constant. 

 

II.3 Summary 

In this chapter, we provide an overview of the key concepts and methodologies relevant to 

modeling sandwich structures and FGM. Initially, we delved into the mechanical properties of 

sandwich structures, encompassing different assembly types, modes of damage, adhesive 

requirements, and material advantages and drawbacks, while surveying various modeling 

techniques. Subsequently, the chapter offers an examination of FGM, including diverse 

manufacturing approaches, with a particular emphasis on the solid freeform fabrication method 

owing to its inherent advantages and manufacturing adaptability. Furthermore, it elucidates 

multiple application domains and explores avenues for enhancing and broadening these 

domains by means of cost-reduction strategies tied to optimizing the most promising 

manufacturing technique. Given the broad applicability of sandwich structures and FGM, a 

thorough investigation of their behavior is imperative. Accordingly, the succeeding chapter 

elaborates on the array of theories utilized for analyzing FGM sandwich structures. 
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Chapter III 

 

Modeling of FGM sandwich plates 

 

The utilization of FGM in engineering applications, such as plates, beams, and shells, has 

surged owing to their tailored material properties, which are often achieved by blending two 

distinct materials such as ceramics and metals. FGM effectively mitigate thermal stresses, 

withstand high temperatures, and resist corrosion. In the realm of FGM sandwich plates, two 

common configurations exist: sandwich plates with FGM cores and isotropic skins and those 

with isotropic cores and FGM skins. To harness their benefits, a comprehensive understanding 

of their vibration, bending, dynamic, and buckling behaviors is imperative. Typically, the 

behavior of FGM plates is elucidated using either three-dimensional (3D) or two-dimensional 

(2D) theories. Although the former boasts superior accuracy, its implementation is challenging, 

leading to the popularity of the latter owing to its simplicity and computational efficiency. 

The prevalent 2D plate theories are as follows: 

• The Classical Plate Theory (CPT) is ideal for thin plates but disregards transverse shear 

effects. 

• First-order shear deformation theory (FSDT) caters to moderately thick plates by 

incorporating transverse shear effects. 

• Higher-Order Shear Deformation Theories (HSDTs), tailored for thicker plates. 

These models rely on assumptions regarding the strains or stresses through the thickness of the 

plate, thereby facilitating the reduction of 3D complexities to 2D formulations. Given their 

extensive application in modeling FGM plates, this chapter briefly outlines these theories and 

examines the particularities of the p-version of the finite element method in order to use them 

to model freely vibrating plates using a quadrilateral p-element. 
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III.1 Different plate theories for FGM sandwich modeling 

A plate is characterized as a solid object enclosed by two parallel flat surfaces, known as 

faces, with substantial lateral dimensions (width and length for rectangular plates or diameter 

for circular plates) compared to the thickness of the plate.  

Plates are categorized into thin and thick groups, where a plate is considered thin when the 

ratio of thickness to side length is less than 1/20 [84]. 

 

III.1.1 Classical plate theory (CPT) 

The Classical Plate Theory (CPT) is based on the Love-Kirchhoff assumptions, asserting 

that a normal to the plate's mid-plane remains perpendicular after deformation, effectively 

neglecting the transverse shear deformation effects. This theory, deemed the simplest among 

Elasticity-based Structural Load (ESL) theories, is suitable only for thin plates, where the 

deflection caused by transverse shear deformations is negligible compared with that induced by 

the curvature of the plate. For a homogeneous isotropic plate, the shear contribution to 

deflection is directly linked to the slenderness ratio (L/h) [85], [86]. In the vast majority of thin-

plate scenarios, Classical Plate Theory (CPT) provides accurate results that closely align with 

those derived from the 3D theory of elasticity. Given the aforementioned assumptions, the 

displacement field of CPT can be represented as follows [83], [87]. 

 

𝑢 (𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0

𝜕𝑥
                                        (III.1a) 

𝑣 (𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0

𝜕𝑦
                                        (III.1b) 

                                                   𝑤 (𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                    (III.1c) 

 

Where (𝑢0, 𝑣0, 𝑤0) represents the displacement field components on the mid-plane of the 

plate (𝑧 = 0). 

In Classical Plate Theory, the following assumptions are considered, as established by [88]: 

• No deformation occurred in the midplane of the plate. 

• The normal stress 𝜎z is negligible compared to other components. 

• Normal to the mid-plane before deformation remained normal to the mid-plane after 

deformation. 

• The effect of the rotational inertia is negligible. 

 



Modeling of FGM sandwich plates 

49 

 

Let's consider an FGM plate with length "a" and width "b," having a thickness "h." Here, u 

(x, y, z), v (x, y, z), and w (x, y, z) represent the displacements of the plate, while u₀, v₀, and w₀ 

are the components of the displacement field on the mid-plane of the plate (see Figure III-1). 

 

Figure III-1: Undeformed and deformed geometry of a plate under Kirchhoff’s 

hypotheses [86] 

 

Given the neglect of transverse shear effects in the Classical Plate Theory, the obtained 

results are inaccurate for thick plates, particularly those composed of advanced composites. To 

address this limitation, the First-Order Shear Deformation Theory has been developed. 

 

III.1.2 First-order shear deformation theory (FSDT) 

The First-order shear deformation theory, also known as the Mindlin-Reissner theory [89], 

[90], or the Mindlin plate theory, expanded upon the classical plate theory by incorporating the 

effects of transverse shear strains. In accordance with this theory, transverse straight lines 

maintain their straightness after deformation but may not necessarily be normal to mid-plane 

post-deformation (see Figure III-2 [83]). Consequently, the transverse shear strain remained 

uniform throughout the thickness. In addition, this theory assumes a zero value for transverse 

normal stress σz. 

The displacement field of FSDT is expressed as follows [83], [87]: 

𝑢 (𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧∅𝑥 (𝑥, 𝑦)                                    (III.2a) 

𝑣 (𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧∅𝑦(𝑥, 𝑦)                                     (III.2b) 

                                               𝑤 (𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                            (III.2c) 
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In this formulation, u0 , 𝑣0, and 𝑤0 represent the displacements of a point on the plane 𝑧 =

0 ,while ∅𝑥 and ∅𝑦 denote the rotations about the y and x axes, respectively. 

 

Figure III-2: Undeformed and deformed geometries of a plate under the assumptions of the 

FSDT [86] 

 

Owing to the constancy of the transverse shear strains throughout the plate thickness, the 

transverse shear stress also remains constant. However, in practice, the shear stress typically 

varies parabolically with the plate thickness. Therefore, the FSDT requires a shear correction 

factor to account for this parabolic variation and ensure adherence to the shear stress-free 

boundary conditions on the plate surfaces, where the shear stress must be zero at the top and 

bottom surfaces of the plate. 

 

III.1.3 Higher-order shear deformation theories (HSDTs) 

To address the drawbacks of CPT and FSDT, such as achieving a realistic variation of 

transverse shear strains and stresses across the plate thickness and avoiding the necessity of 

Shear Correction Factors (SCFs), numerous higher-order shear deformation theories have been 

devised [91], [92], [93], [94], [95], [96], [97]. These models operate on the premise of nonlinear 

stress distribution throughout the thickness and can depict section warping in the deformed 

state, as depicted in Figure III-3 [86]. 
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Figure III-3: Undeformed and deformed geometry of a plate according to the CPT, FSDT 

and HSDT [86] 

 

The most advanced HSDT rely on Taylor series expansions of displacement fields to 

approximate the 3D theory [98]. The displacement is thus assumed to follow the form: 

 

            𝑢𝑖(𝑥, 𝑦, 𝑧) = 𝑢𝑖(𝑥, 𝑦) + 𝑧∅𝑖
(1)(𝑥, 𝑦) + 𝑧2∅𝑖

(2)(𝑥, 𝑦)+. . . . . . +𝑧𝑗∅𝑖
(𝑗)(𝑥, 𝑦)             (III.3) 

Where i = 1,2,3, and j defines the order used in the theory. 

The Reissner-Mindlin first-order theory corresponds to the Taylor series expansion up to the 

order j=1 and ∅3
(1)
= 0. When a first-order model fails to adequately address a specific problem, 

it becomes necessary to transition to a higher-order model (2nd order, 3rd order, or beyond) in 

the series expansion of displacements. 

 

III.1.3.1 Second-order shear deformation theories (SCSDT) 

Second-order shear deformation theories (SCSDT) [99] generally produce slightly improved 

results compared to FSDT but encounter similar limitations, necessitating correction factors. In 

these theories, the displacement field is typically described as follows: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧∅𝑥(𝑥, 𝑦) + 𝑧
2𝛹𝑥(𝑥, 𝑦)                         (III.4a) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧∅𝑦(𝑥, 𝑦) + 𝑧
2𝛹𝑦(𝑥, 𝑦)                         (III.4b) 

                                     𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) + 𝑧∅𝑧(𝑥, 𝑦) + 𝑧
2𝛹𝑧(𝑥, 𝑦)                            (III.4c) 

where the parameters 𝛹𝑥, 𝛹𝑦and 𝛹𝑧 are the second order functions. 
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III.1.3.2 Third order shear deformation theory (TSDT) 

Numerous Third-order Shear Deformation Theories (TSDT), also known as Parabolic Shear 

Deformation Theory, have been proposed by various researchers [94], [95], [96]. The 

displacement field according to Reddy's TSDT is as follows: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧∅𝑥(𝑥, 𝑦) + 𝑧
2𝛹𝑥(𝑥, 𝑦) + 𝑧

3𝜁𝑥(𝑥, 𝑦)                     (III.5a) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧∅𝑦(𝑥, 𝑦) + 𝑧
2𝛹𝑦(𝑥, 𝑦) + 𝑧

3𝜁𝑦(𝑥, 𝑦)                     (III.5b) 

                                            𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                                (III.5c) 

where the parameters 𝛹𝑥, 𝛹𝑦 , 𝜁𝑥 , 𝜁𝑦 are the high order functions. 

 

As the order of expansion increases, the number of additional parameters also increases, 

often making the interpretation challenging. To mitigate this complexity, simplifications were 

devised to reduce the displacement parameters. These simplifications involve truncating the 

latter terms of the Taylor series through the introduction of a "shear function." Subsequently, 

the proposed displacement field form is expressed as follows: 

 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0

𝜕𝑥
+ 𝑓(𝑧)𝜃𝑥(𝑥, 𝑦)                            (III.6a) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0

𝜕𝑦
+ 𝑓(𝑧)𝜃𝑦(𝑥, 𝑦)                            (III.6b) 

                                      𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                                      (III.6c) 

 

In the provided expression, 𝑓(𝑧) represents the shear function, dictating the distribution of 

transverse shear strains and stresses throughout the plate's thickness, denoted by ℎ. 

Furthermore, 𝑤𝑥𝑥 and 𝑤𝑦𝑦 are given by 
𝜕𝑤

𝜕𝑥
 and 

𝜕𝑤

𝜕𝑦
 , respectively, where ∅𝑥 and ∅𝑦 represent 

rotations about the y and x axes, respectively. 

In accordance with equation (III-6), the displacement field of the CPT is derived by setting 

𝑓(𝑧) = 0, while that of the FSDT is derived by setting 𝑓(𝑧) = 𝑧. Furthermore, the displacement 

field of Reddy's TSDT [86], [96] is obtained by utilizing the following function: 

                                                 𝑓(𝑧) = 𝑧 −
4𝑧3

3ℎ2
                                                                   (III.7) 

This theory facilitates a parabolic distribution of the transverse shear stress and ensures 

compliance with the shear stress-free surface conditions at the top and bottom surfaces of the 

plate. Consequently, it offers a favorable approximation of transverse shear stresses in 

comparison to solutions derived from three-dimensional elasticity. 
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III.1.3.3 Sinusoidal Shear Deformation Theory (SSDT) 

Another variant of HSDT, known as Sinusoidal Shear Deformation Theory (SSDT), was 

introduced by Touratier [100]. This theory uses a sinusoidal trigonometric function and 

represents a significant example within the family of trigonometric HSDT. This was 

implemented in the following setting: 

                                                 𝑓(𝑧) =
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
)                                                              (III.8)  

 

III.1.3.4 Hyperbolic Shear Deformation Plate Theory (HSDPT) 

An HSDPT was introduced by Soldatos [101] and derived using the following expression: 

                               𝑓(𝑧) = ℎ 𝑠𝑖𝑛 ℎ (
𝑧

ℎ
) − 𝑧 𝑐𝑜𝑠 ℎ (

1

2
)                                                          (III.9) 

 

III.1.3.5 Exponential Shear Deformation Plate Theory (ESDPT) 

The ESDPT developed by Karama et al. [102] was formulated using the following 

expression: 

                               𝑓(𝑧) = 𝑧𝑒−2(𝑧 ℎ⁄ )2                                                                              (III.10) 

 

III.1.3.6 Refined Plate Theory (RPT) 

Although HSDT eliminates the need for SCF, their equations of motion are more intricate 

than those of the FSDT. Thus, Shimpi [103] devised a simplified plate theory called the RPT, 

which decomposes the transverse displacement into bending and shear components. Notably, 

Shimpi's theory involves fewer unknowns (four) and governing equations than the FSDT, and 

it does not require SCF, providing a parabolic shear distribution across the plate thickness. 

Moreover, the RPT shares many similarities with the CPT concerning the equations of motion, 

boundary conditions, and stress resultant expressions. The displacement field of the RPT is 

expressed as follows: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏(𝑥,𝑦)

𝜕𝑥
+ 𝑓(𝑧)

𝜕𝑤𝑠(𝑥,𝑦)

𝜕𝑥
                          (III.11a) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏(𝑥,𝑦)

𝜕𝑦
+ 𝑓(𝑧)

𝜕𝑤𝑠(𝑥,𝑦)

𝜕𝑦
                          (III.11b) 

                                𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦)                                                    (III.11c) 

 

Where wb and ws are the bending and shear components of transverse displacement, 

respectively. 
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III.1.3.7 quasi-3D theory 

It is important to acknowledge that the aforementioned plate theories neglect the thickness 

stretching effect (i.e., 𝜀𝑧 =0) by assuming a constant transverse displacement throughout the 

thickness. This effect becomes notable in moderately thick and thick plates and warrants further 

consideration. Quasi-3D theories, which are HSDT, incorporate a higher-order variation of both 

in-plane and transverse displacements through the thickness, thereby accounting for both shear 

deformation and thickness stretching effects [104]. The displacement field of quasi-3D theory 

is represented as follows: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0

𝜕𝑥
+ 𝑓(𝑧)𝜑𝑥(𝑥, 𝑦)                           (III.12a) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0

𝜕𝑦
+ 𝑓(𝑧)𝜑𝑦(𝑥, 𝑦)                          (III.12b) 

                                      𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) + 𝑔(𝑧)𝜑𝑧(𝑥, 𝑦)                                          (III.12c) 

 

Where 𝑢0, 𝑣0, 𝑤0, 𝜑𝑥, 𝜑𝑦 and 𝜑𝑧 are six unknown displacements of the midplane of the plate, 

and g(z) and f (z) are shear functions with 

                                            𝑔(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
                                                                            (III.13) 

 

All the previously mentioned theories have been widely utilized by numerous researchers to 

precisely forecast the behavior of FGM sandwich plates. 

 

III.2 Layered approach 

These approaches are specifically aimed at describing the interfacial effects of conventional 

composite materials. Various models based on layered approaches have been proposed [96], 

[105], [106]. The multilayer approach is subdivided into substructures (corresponding to each 

layer or group of layers). An FSDT or HSDT model was applied to each substructure, imposing 

a displacement field that satisfied the continuity at the interfaces between different layers. 

Models of this type are relatively costly (the order of the behavior equations depends on the 

number of layers), but they allow for more accurate results, particularly concerning out-of-plane 

stress calculations. In general, models derived from the layered approach can be classified into 

two groups: discrete layer models, in which each layer is considered as a plate, imposing 

continuity conditions in displacements or stresses at the interfaces, and zigzag models, in which 

the kinematics inherently satisfy contact conditions and are independent of the number of layers 

(Figures. III-4 and III-5). 
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Figure III-4: Displacement fields of discrete layer models, kinematic approach [107] 

 

 

Figure III-5: Displacement fields of zig-zag models, kinematic approach [107] 

 

III.2.1 Zigzag models 

To reduce the number of unknown parameters, Di Sciuva was the first to propose a first-

order zigzag model [108]. In this model, membrane displacements result from the superposition 

of the overall displacement field of the FSDT and a zigzag function (using the Heaviside 

function). The zigzag function contributes to membrane displacements that are continuous in z; 

however, its first derivative is discontinuous at the interface (see Figure III-6).     
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Figure III-6: Displacement fields of first order zig-zag models [107] 

 

Thus, the transverse deformations were discontinuous, ensuring continuity of the transverse 

shear stresses at the interfaces. Building on this concept [109], several authors have made 

significant improvements to the zigzag model. The primary enhancement was the introduction 

of a nonlinear displacement distribution. The zigzag field (piecewise linear) was superimposed 

on a higher-order displacement field (often cubic) (see Figure III-7).   

 

Figure III-7: Displacement fields of higher order zig-zag models [107] 

 

The compatibility conditions were satisfied on the upper and lower surfaces of the plates to 

reduce the number of parameters. In the works of Ossadzow [110] and Karama [111], the zigzag 

function was added to the "sin" displacement function [100] to refine shear effects. The zigzag 

model ensures a good compromise between the solution accuracy and computational cost. 
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However, as the slenderness decreases, the calculation of transverse shear stresses becomes less 

precise [109]. 

 

III.3 P-version of the finite element method 

The p-version of the finite element method originated from the work of Babuška [112], [113] 

and Szabó [114]. While maintaining the initial mesh, it involves introducing new degrees of 

freedom by increasing the degree of interpolation of shape functions in certain areas. The 

history of the p-version of the finite element method has been marked by significant milestones, 

including the proposal of hierarchical shape function concepts and use of high-degree Lagrange 

functions. Additionally, hierarchical functions were introduced into finite elements to detect the 

emergence of an efficient p-version [115], the study of p-version convergence [112]. 

The p-version requires simpler meshing, a solid theoretical foundation, and a reputation for 

providing robust and accurate solutions that converge exponentially to various problems. 

 

III.3.1 Mesh adaptation 

Modification of the discretization parameters is necessary to enhance the accuracy of a finite 

element solution for a linear elasticity problem. Thus, the mesh can be refined, and the 

interpolation degree used on the elements can be increased or both simultaneously. Various 

procedures exist for refining finite-element solutions. Broadly speaking, these are divided into 

two categories. H-refinement, in which the same class of elements continues to be used but with 

changes in size, enlarging, and reducing size in certain areas to allow for maximum economy 

in seeking the desired solution. P-refinement, where we continue to use the same element size 

and simply increase, usually hierarchically, the polynomial order used in their definition. 

To solve a physical problem using the finite element method, the engineer must make a series 

of assumptions and approximations to transform a real object into a numerical model. The 

discretization thus obtained, defined by a mesh and the approximation degrees of the elements, 

allows us to obtain an approximate solution. Based on the above, we determine the displacement 

field of the element and the corresponding vibration equation. 

Each element has a continuous displacement field expressed by approximation functions and 

displacements at selected points in the space of the element. These points are often the corner 

nodes. According to the simplest linear form of the approximation function, the displacement 

field{u}of the element can be expressed as follows [113]: 

{u} =  ∑ Ni di = [𝑁𝑖]{𝑑𝑖}
𝑛
𝑖=1                                                       (III.14) 
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where [Ni] comprise the shape functions of the first-order element, {di} is the vector of 

unknown nodal displacements, and i indicates the node number and number of corner nodes, 

respectively. 

 

III.3.2 Implementation of the p-version 

III.3.2.1 Legendre polynomials 

The orthogonal Legendre polynomial Pi(ξ) for a domain defined between [-1, +1] is defined 

as 

𝑃0(ξ) = 1                                                               (III.15) 

𝑃𝑛(ξ) =
1

2𝑛n!

𝑑𝑛

𝑑𝑥𝑛
[(𝑥2 − 1)], for n = 1, 2, 3, ...                                 (III.16) 

 

These are solutions of the following differential equation for n = 0, 1, 2, ...: 

(1 − 𝑥2)𝑦// −  2𝑥𝑦/ + 𝑛(𝑛 + 1)𝑦 = 0                                               (III.17) 

 

III.3.2.2 Shifted legendre polynomials 

The shape functions used were constructed from shifted Legendre polynomials [116]. 

Shifted Legendre polynomials form a set of functions analogous to Legendre polynomials but 

are defined on the interval [a, b]: 

𝑃𝑛
∗(ξ) = 𝑃𝑛 (

2ξ − a − b

b − a
)                                                        (III.18) 

They are orthogonal to interval [a, b]. 

Unlike the Legendre polynomials defined in [-1, 1], the shifted Legendre polynomials are 

defined in [0, 1]. Therefore, Equation (III-18) becomes 

𝑃𝑛
∗(ξ) = 𝑃𝑛(2ξ −  1)                                                         (III.19) 

 

III.3.2.3 P-version and hierarchical interpolation functions 

Since the inception of the finite element method, high interpolation degrees have been tested 

with varying degrees of success. A finite element approximation, 

𝑢ℎ = ∑ 𝑁𝑖𝑎𝑖
𝑛
𝑖=1                                                                 (III.20) 

 

is said to be hierarchical if the transition from n to n+1 does not alter the shape functions. 

Among the advantages of the p-version, the hierarchical formulation is as follows: 

• Allows for the utilization of an 'industrial' mesh with consistent element sizes 

throughout computations, 
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• Provides solutions less sensitive to numerical inaccuracies, 

• Maintains a favorable convergence rate most of the time, 

• Offers an economic error indicator necessary for the implementation of an 

automated computational procedure. 

a. One-dimensional elements 

Linear elasticity and other problems can be formulated and solved by using simple element 

shapes. Once the element and corresponding shape functions have been determined, the 

following operations follow a well-defined standard path. To interpolate the problem for each 

element, a basis must be established for each element. Several choices are possible, but 

generally, the base functions used for finite elements interpolate, meaning that the nodal values 

are the values of the unknowns at the nodes, and interpolation is performed based on these 

values. The simplest method involves using displaced Legendre polynomials. In this method, 

the characteristics of the displaced Legendre polynomials are employed to obtain hierarchical 

shape functions for a one-dimensional element. 

𝑁1(𝜉) = 1 − 𝜉                                                               (III.21a) 

𝑁2(𝜉) = 𝜉                                                            (III.21b) 

𝑁𝑖+1(𝜉) = √2𝑖 − 1∫ 𝑃𝑖−1
∗ (𝑡)𝑑𝑡

𝜉

0
           𝑖 ≥ 2                         (III.21c) 

 

Figure III-8: One-dimensional elements 

where N1 and N2 are the nodal or external shape functions of nodes (1 and 2) of the one-

dimensional p-element, respectively. Ni (i = 3, 4, ...) are internal shape functions. The internal 

shape functions are termed 'hierarchical' because the set of shape functions of degree p includes 

those of lower degrees p-1, p-2, ..., 1. The nodal shape functions connect with other elements 

to ensure the continuity of displacements, whereas the hierarchical shape functions enrich the 



Modeling of FGM sandwich plates 

60 

 

displacement field within the element. Figure III-9 illustrates the hierarchical structure of a 

stiffness matrix corresponding to a polynomial degree p=3. 

 

Figure III-9: Hierarchical structure of a stiffness matrix corresponding to the polynomial 

degree p=3 

 

b. Two-dimensional p-elements 

• Polynomial spaces 

For a square domain Π = {0 ≤ 𝜉, 𝜂 ≤ 1}, three commonly used two-dimensional 

polynomial spaces exist [117]. 

• Serendipity family space SP (Π) 

This corresponds to the set of monomials ξi ηj with 𝑖, 𝑗 = 0,1, . . . . . . , p where 𝑖 + 𝑗 =

0,1, . . . . . . , p including the monomial ξ η if p =  1 and the monomials ξp η and ηp ξ if p ≥  2.  

 

By using Pascal's triangle for a hierarchical quadrilateral element, this polynomial space can 

be represented as follows: 
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Figure III-10: Serendipity Family [118] 

 

• Lagrange family space Sp,q (Π) 

This corresponds to the set of monomials ξi ηj with 𝑖 = 0,1, . . . . . . , p and 𝑖, 𝑗 = 0,1, . . . . . . , q. 

Polynomial space is represented as follows: 

 

Figure III-11: Lagrange Family [118] 

 

• Mixed family space S̃p,q 

It consists of the set of monomials common to both the aforementioned polynomial spaces; 

formally, S̃
𝑝,𝑞
= 𝑆𝑝 ∩ 𝑆𝑝,𝑞. Côté and Charron [117] compared the Lagrange and Serendipity 

families in the case of plate vibrations using the p-version of FEM. They concluded a better 

convergence of the Lagrange family compared to the Serendipity family, and they developed 

another polynomial family derived from the Serendipity family, called the enriched Serendipity 

family. 
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c. Quadrilateral element-p 

The intersection of four one-dimensional elements in different directions forms a square 

element containing four corner nodes, four sides, and one face (Figure III-12). The combination 

of shape functions from two one-dimensional elements with two different directions (ξ and η) 

yields shape functions for the quadrilateral element, which are divided into three groups 

corresponding to the geometry of the element, as follows: 

 

Figure III-12: Quadrilateral element 

 

• Corner node shape functions 

Each corner node of the quadrilateral element contains a bilinear function. 

Node 1:  𝑁𝑛1(𝜉, 𝜂) = 𝑁1(𝜉)𝑁1(𝜂)                                     (III.22a) 

Node 2:  𝑁𝑛2(𝜉, 𝜂) = 𝑁2(𝜉)𝑁1(𝜂)                                     (III.22b) 

Node 3:  𝑁𝑛3(𝜉, 𝜂) = 𝑁2(𝜉)𝑁2(𝜂)                                     (III.22c) 

Node 4:  𝑁𝑛4(𝜉, 𝜂) = 𝑁1(𝜉)𝑁2(𝜂)                                     (III.22d) 

as shown in Figure III-13. 
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Figure III-13: Shape functions on the quadrilateral element [118] 

• Shape Functions on the Sides 

There are (p-1) shape functions for each side of the element, as shown in Figure III-14. 

Side 1:  𝑁𝑠1(𝜉, 𝜂) = 𝑁𝑖+2(𝜉)𝑁1(𝜂)                                          (III.23a) 

Side 2:  𝑁𝑠2(𝜉, 𝜂) = 𝑁2(𝜉)𝑁𝑖+2(𝜂)                                          (III.23b) 

Side 3:  𝑁𝑠3(𝜉, 𝜂) = 𝑁𝑖+2(𝜉)𝑁2(𝜂)                                          (III.23c) 

Side 4:  𝑁𝑠4(𝜉, 𝜂) = 𝑁1(𝜉)𝑁𝑖+2(𝜂)                                          (III.23d) 

where i=1, …., p 

 

Figure III-14: Quadratic shape functions on the sides of the quadrilateral element [118] 
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• Internal Shape Functions 

There are (p-1) and (p-1) internal shape functions corresponding to the element face, as 

shown in Figure III-15. 

Face:  𝑁𝑖𝑛𝑡(𝜉, 𝜂) = 𝑁𝑖+2(𝜉)𝑁𝑖+2(𝜂)                                      (III.24) 

where 𝑖, 𝑗 = 0,1, . . . . . . , p ; 𝑖 + 𝑗 = 0,1, . . . . . . , p 

 

Figure III-15: Quadratic internal shape function on the quadrilateral element [118] 

 

III.4 Summary 

In this chapter, we introduce the primary plate theories commonly used for modeling FGM 

sandwich plates. The earliest and simplest theory, known as CPT, lacks consideration of 

transverse shear deformation effects, thus effectively describing only the behavior of thin plates. 

The FSDT assumes a uniform transverse displacement field across the plate thickness, leading 

to constant transverse shear stress throughout. However, the actual transverse shear stresses 

exhibit a parabolic distribution through the thickness, necessitating a shear correction factor for 

accurate characterization, which is contingent upon factors such as the end conditions, material 

properties, and thickness profile. In HSDTs, the in-plane displacement field is expanded with 

respect to the thickness coordinate to capture the intricate variations. A layered approach is 

introduced to describe the interfacial effects of conventional composite materials. Finally, a was 

introduced to describe the particularities of the p-version of the finite element method to use 

them to model free vibration plates. 
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Chapter IV  

 

Vibration Analysis of FGM Sandwich Plates Using p-version of The Finite 

Element Method 

 

In this chapter, we address several key aspects that are essential to our investigation. Initially, 

we examined the geometric configuration of the model FGM sandwich plate to provide a 

foundational understanding of its structural layout. Following this, we delve into the 

mathematical formulation of first-order shear deformation theory, elucidating its principles and 

significance within our analytical framework. Additionally, we integrate and detail the element 

description, displacement interpolation, and shape functions relevant to the p-version of the 

finite element method, which serve as fundamental components of the numerical analysis. 

Moving forward, we present the derivation of equations for strain, kinetic energy, and motion, 

contributing to a comprehensive characterization of plate behavior. Furthermore, we discuss 

the validation study conducted to ensure the accuracy and reliability of our analytical approach. 

This chapter includes a detailed implementation of the code used to analyze the vibration of the 

system. Finally, we embark on a parametric study aimed at exploring the effects of varying 

parameters, such as the volumetric fraction of layers, on the free vibration analysis of 

functionally graded sandwich plates. 

 

 

 

 

 

 

 

 

 



Vibration analysis of FGM sandwich plates using p-version of the FEM 

67 

 

IV.1 Geometric configuration 

Figure IV-1 presents an illustration of a rectangular FGM sandwich plate with uniform 

thickness depicted within a rectangular coordinate system (X, Y, Z). In this configuration, the 

top and bottom face sheets of the sandwich plates are situated at z = ±h/2, whereas the vertical 

positions of the bottom, the two interfaces, and the top are denoted as h0 = -h /2, h1, h2, and h3 

= h /2, respectively. 

 

Figure IV-1: Geometry of sandwich plate with FGM skins and homogeneous core 

 

The stress-strain relationships for each layer in x, y directions under plane stress conditions 

are related by 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}

 
 

 
 
𝑖

=

[
 
 
 
 
 
�̅�11
𝑖 �̅�12

𝑖 0 0 0

�̅�22
𝑖 0 0 0

�̅�66
𝑖 0 0

𝑠𝑦𝑚 �̅�44
𝑖 0

�̅�55
𝑖 ]
 
 
 
 
 
𝑖

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 
𝑖

                          (IV.1) 

where, (𝜎𝑥𝑥, 𝜎𝑦𝑦 , 𝜏𝑥𝑦 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧) and (𝜀𝑥𝑥, 𝜀𝑦𝑦 , 𝛾𝑥𝑦, 𝛾𝑥𝑧 , 𝛾𝑦𝑧) represent the stress and strain 

components, respectively. 

The elasticity constants �̅�𝑗𝑘
𝑖  are expressed as a function of the effective material properties, 

such as Young’s modulus 𝐸(i)(𝑧) and Poisson’s ratio 𝜈(i)(z), and are defined as follows: 

�̅�11
𝑖 = �̅�22

𝑖 =
𝐸(𝑖)(𝑧)

1−(𝜈(𝑖)(𝑧))
2                                                    (IV.2a) 

�̅�12
𝑖 = 𝜈(𝑖)(𝑧) �̅�11

𝑖                                                               (IV.2b) 

�̅�44
𝑖 = �̅�55

𝑖 = �̅�66
𝑖 =

𝐸(𝑖)(𝑧)

2(1+𝜈(𝑖)(𝑧))
                                         (IV.2c) 
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The effective material characteristics of the FGM layers, such as mass density 𝜌(i)(z), are 

considered to be graded in the thickness direction according to a power-law distribution and 

can be written as [15]. 

 

[

𝐸𝑖(𝑧)

𝜈𝑖(𝑧)

𝜌𝑖(𝑧)

] = [

𝑉(𝑖)(𝑧) 0 0

0 𝑉(𝑖)(𝑧) 0

0 0 𝑉(𝑖)(𝑧)

] [
𝐸𝑐 − 𝐸𝑚
𝜈𝑐 − 𝜈𝑚
𝜌𝑐 − 𝜌𝑚

] + [
𝐸𝑚
𝜈𝑚
𝜌𝑚

]                     (IV.3) 

 

where, the indices (c) and (m) denote ceramic and metal materials, respectively. 

𝑉(i)(z) denotes the volume fractions of the FGM sandwich for the (i) layer (i = 1, 2, 3) and 

assumes they are as follows: 

𝑉(1)(𝑧) = (
𝑧−ℎ0

ℎ1−ℎ0
)
𝑛1
, 𝑧 ∈ [ℎ0, ℎ1]                                              (IV.4a) 

𝑉(2)(𝑧) = 1,                 𝑧 ∈ [ℎ1, ℎ2]                                               (IV.4b) 

𝑉(3)(𝑧) = (
𝑧−ℎ3

ℎ2−ℎ3
)
𝑛2
, 𝑧 ∈ [ℎ2, ℎ3]                                              (IV.4c) 

where 𝑛1 and 𝑛2 denotes the volume fraction exponents of the bottom and top layers, 

respectively, (0 ≤ 𝑛1, 𝑛2 ≤ +∞).  

 

IV.2 Mathematical formulation 

IV.2.1 Displacement field 

According to the FSDT, the displacement field 𝑢1, 𝑢2 and 𝑢3 at point (𝑥, 𝑦, 𝑧) are defined 

as [86]. 

               𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡)                             (IV.5a) 

                    𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧𝜃𝑥(𝑥, 𝑦, 𝑡)                             (IV.5b) 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡)                                                    (IV.5c) 

 

This theory uses three displacements of the middle surface and five variables to characterize 

the deformation (𝑢, 𝑣, and w) and two rotations (𝜃𝑥and 𝜃𝑦) of transverse normal to the midplane 

about the x and y axes, respectively. However, the Mindlin plate theory approach fails to fulfill 

the transverse shear boundary conditions at the top and bottom surfaces because of its 

assumption of a constant shear angle throughout the thickness, maintaining the plane sections 

as a plane after deformation. Consequently, shear correction factors (k) are necessary for the 

equilibrium considerations. Mindlin suggests that these factors are linearly dependent on 

Poisson’s ratio (ν), providing two estimations based on comparisons with the more precise 
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solution of three-dimensional elasticity. The initial estimation yields 0.75 ≤ k ≤ 0.91 for                 

0 ≤ ν ≤ 0.5, while the second estimation, derived from shear wave velocity, results in k ≈ 0.86 

when ν = 0.3, aligning well with the commonly assumed value of k = 5/6 [119]. 

 

The Green strain tensor can be expressed in terms of displacement gradients by [120]. 

εxx =
∂𝑢1

∂x
                                                                   (IV.6a) 

εyy =
∂𝑢2

∂y
                                                                  (IV.6b) 

εzz =
∂𝑢3

∂z
                                                                  (IV.6c) 

γxy =
∂𝑢1

∂y
+
∂𝑢2

∂x
                                                        (IV.6d) 

γxz =
∂𝑢1

∂z
+
∂𝑢3

∂x
                                                        (IV.6e) 

γyz =
∂𝑢3

∂y
+
∂𝑢2

∂z
                                                        (IV.6f) 

 

Using the Mindlin plate theory and inserting Eq. (IV.5) into Eq. (IV.6), the strain-

displacement [120] relationships are expressed as. 

εxx =
∂𝑢

∂x
                                                                   (IV.7a) 

εyy =
∂𝑣

∂y
                                                                   (IV.7b) 

γxy =
∂𝑢

∂y
+
∂𝑣

∂x
                                                           (IV.7c) 

γxz = θy +
∂𝑤

∂x
                                                          (IV.7d) 

γyz = −θx +
∂𝑤

∂y
                                                       (IV.7e) 

χx =
∂θy

∂x
                                                                   (IV.7f) 

χy = −
∂θx

∂y
                                                               (IV.7g) 

χxy =
∂θy

∂y
−
∂θx

∂x
                                                       (IV.7h) 

 

IV.3 P-version of the finite element method  

IV.3.1 Element description 

A rectangular, four-node finite element based on first-order shear deformation theory, with 

five degrees of freedom per node, was used to perform free vibration of the FGM sandwich 
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plates. Figure IV-2 shows the geometry and the corresponding nodal variables of the finite 

element. 

 

Figure IV-2: Geometry and corresponding nodal variables of the element finite 

 

IV.3.2 Displacement interpolation and shape functions 

The in-plane displacements (u, v) and out-of-plane displacements (w, 𝜃𝑥 and 𝜃𝑦) are denoted 

as 

{
𝑢
𝑣
} = ∑ N̅jq̅j

r
j=1                                                          (IV.8) 

where 

N̅j = [
Nj(ξ, η) 0

0 Nj(ξ, η)
], and            q̅j = {

q̅2j−1
q̅2j

}                                (IV.9) 

and 

{

𝑤
𝜃𝑦
𝜃𝑥

} = ∑ Njqj
r
j=1                                                           (IV.10) 

where 

Nj = [

N(ξ, η) 0 0

0 N(ξ, η) 0

0 0 N(ξ, η)
], and               qj = {

q3j−2
q3j−1
q3j

}                           (IV.11)  

 

where q̅j is the vector of generalized in-plane displacements, qj represents the vector of 

generalized transverse displacement and rotations, respectively, and 𝑁(𝜉, 𝜂) are the shape 

functions of rectangular finite p-element. 

In the p-element, shape functions are classified into three categories. Firstly, the shape 

functions of the nodes at the vertices of the element, secondly the shape functions of the four 
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sides of the element and finally the functions of the internal shapes. The shape functions used 

in the present p-element are given as: 

• Four shape functions of vertex 

 𝑁1(𝜉, 𝜂) = 𝑔1(𝜉)𝑔1(𝜂)                                                       (IV.12a) 

 𝑁2(𝜉, 𝜂) = 𝑔2(𝜉)𝑔1(𝜂)                                                       (IV.12b) 

 𝑁3(𝜉, 𝜂) = 𝑔2(𝜉)𝑔2(𝜂)                                                       (IV.12c) 

 𝑁4(𝜉, 𝜂) = 𝑔1(𝜉)𝑔2(𝜂)                                                       (IV.12d) 

 

• (𝑝 − 1) hierarchical shape functions on each side 

 𝑁𝑆𝑖𝑑𝑒 1(𝜉, 𝜂) = 𝑔𝑖+2(𝜉)𝑔1(𝜂)                                                       (IV.13a) 

 𝑁𝑆𝑖𝑑𝑒 2(𝜉, 𝜂) = 𝑔2(𝜉)𝑔𝑖+2(𝜂)                                                       (IV.13b) 

 𝑁𝑆𝑖𝑑𝑒 3(𝜉, 𝜂) = 𝑔𝑖+2(𝜉)𝑔2(𝜂)                                                       (IV.13c) 

 𝑁𝑆𝑖𝑑𝑒 4(𝜉, 𝜂) = 𝑔1(𝜉)𝑔𝑖+2(𝜂)                                                       (IV.13d) 

 

• (𝑝 − 1)2 internal hierarchical shape functions 

 𝑁𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙(𝜉, 𝜂) = 𝑔𝑖+2(𝜉)𝑔𝑖+2(𝜂)                                                    (IV.14) 

 

where 𝑔𝑖(𝜉) 𝑎𝑛𝑑 𝑔𝑖(𝜂) are the uni-dimensional hierarchical shape functions and are given 

as: 

𝑔1(𝜉) = 1 − 𝜉, 𝑔2(𝜉) = 𝜉, 𝑔𝑖+1(𝜉) = √2𝑖 − 1 ∫ 𝑃𝑖−1(𝜏)
𝜉

0
𝑑𝜏     𝑖 ≥ 2 (IV.15a) 

𝑔1(𝜂) = 1 − 𝜂, 𝑔2(𝜂) = 𝜂, 𝑔𝑖+1(𝜂) = √2𝑖 − 1 ∫ 𝑃𝑖−1(𝜏)
𝜂

0
𝑑𝜏     𝑖 ≥ 2 (IV.15b) 

and 𝑃𝑖(𝜏) is shifted Legendre polynomials and are given as: 

       𝑃0(𝜏) = 1,   𝑃1(𝜏) = 2𝜏 − 1  (IV.16a) 

𝑃𝑗+1(𝜏) =
1

𝑗+1
[(−2𝑗 − 1 + (4𝑗 + 2)𝑗)𝑃𝑗(𝜏) − 𝑗𝑃𝑗−1(𝜏)],    𝑗 = 1,2, …  (IV.16b) 

 

IV.4 Strain, Kinetic Energy, and Motion Equations 

The strain energy U and kinetic energy T of the functionally graded moderately thick plate 

can be written as follows: 

𝑈 =
1

2
∬[𝐴11𝜀𝑥𝑥

2 + 𝐴22𝜀𝑥𝑥
2 + 2𝐴12𝜀𝑥𝑥𝜀𝑦𝑦 + 𝐴66𝛾𝑥𝑦

2

+ 2(𝐵11𝜀𝑥𝑥𝜒𝑥 + 𝐵12𝜀𝑥𝑥𝜒𝑦 + 𝐵12𝜀𝑦𝑦𝜒𝑥 + 𝐵22𝜀𝑦𝑦𝜒𝑦 + 𝐵66𝜒𝑥𝑦
2 ) 

   +(𝐷11𝜒𝑥
2 + 𝐷22𝜒𝑦

2 + 2𝐷12𝜒𝑥𝜒𝑦 + 𝐷66𝜒𝑥𝑦
2 ) + (𝑆44𝛾𝑥𝑧

2 + 𝑆55𝛾𝑦𝑧
2 )]𝑑𝑥𝑑𝑦      (IV.17) 
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𝑇 =
1

2
∬[𝐼1 ((

𝜕𝑢

𝜕𝑡
)
2

+ (
𝜕𝑣

𝜕𝑡
)
2

+ (
𝜕𝑤

𝜕𝑡
)
2
) + 𝐼3 ((

𝜕𝜃𝑥

𝜕𝑡
)
2

+ (
𝜕𝜃𝑦

𝜕𝑡
)
2

)] 𝑑𝑥𝑑𝑦                    (IV.18) 

where Aij, Bij, Dij, and Sij are extensional, bending-extensional, bending and shear stiffness 

constants and I1,3 are the inertia constants of the FGM plate and are given by 

 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗) = ∑ ∫ �̅�𝑗𝑘
(𝑖)(1, 𝑧, 𝑧2)𝑑𝑧

ℎ𝑖
ℎ𝑖−1

3
𝑖=1    (𝑗, 𝑘 = 1,2,6)                           (IV.19a) 

(𝑆𝑖𝑗) = ∑ 𝑘 ∫ �̅�𝑗𝑘
(𝑖)
𝑑𝑧

ℎ𝑖
ℎ𝑖−1

3
𝑖=1    (𝑗, 𝑘 = 4,5)                                                       (IV.19b) 

(𝐼1, 𝐼3) = ∑ ∫ 𝜌(𝑖)(𝑧)(1, 𝑧²)𝑑𝑧
ℎ𝑖
ℎ𝑖−1

3
𝑖=1                                                               (IV.19c) 

where k is a shear correction factor of FSDT (𝑘 = 5/6) [119], �̅�𝑗𝑘
(𝑖)

 are the coefficients of the 

elasticity matrix. 

Lagrangian of the system is given by 

𝐿 = 𝑇 − 𝑈                                                                   (IV.20) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) − (

𝜕𝐿

𝜕𝑞𝑖
) = 0                                                          (IV.21) 

 

We obtain the following motion equation 

[𝐾𝑒]{𝑄} + [𝑀]{�̈�} = 0                                                   (IV.22) 

The substitution of {�̈�} = −𝜔2{𝑄} in the above equation leads to 

 

([𝐾𝑒] − 𝜔
2[𝑀]){𝑄} = 0                                                 (IV.23) 

Using Eqs. (IV.17)– (IV.18) in conjunction with Lagrange's equations, the final equation of 

motion yields. 

[𝐾 − 𝐾2
𝑇𝐾1

−1𝐾2 − 𝜔
2𝑀]{𝑄} = 0                                           (IV.24) 

 

Where {𝑄} =  {𝑄𝑤 𝑄𝜃𝑦  𝑄𝜃𝑧} in the vector of generalized amplitudes and [𝐾𝑒] = [𝐾 −

𝐾2
𝑇𝐾1

−1𝐾2]. 

Where [𝐾1] is the submatrix of internal degrees of freedom, [𝐾2] is the submatrix of the 

coupling terms, and [𝐾] is the submatrix of the main degrees of freedom. 

 

The element mass matrix 𝑀, and element stiffness matrices 𝐾,𝐾1and 𝐾2 are given as 
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𝑀 = ∫ ∫ [

𝐼1𝑁𝑖𝑁𝑗 0 0

0 𝐼3𝑁𝑖𝑁𝑗 0

0 0 𝐼3𝑁𝑖𝑁𝑗

] 𝑎𝑏𝑑𝜉𝑑𝜂
1

0

1

0
                             (IV.25) 

𝐾

= ∫∫

[
 
 
 
 
 
 
 
 
 
 
 𝑆44

𝜕𝑁𝑖
𝜕𝜉

𝜕𝑁𝑗

𝜕𝜉
+

    𝑆55
𝜕𝑁𝑖
𝜕𝜂

𝜕𝑁𝑗  

𝜕𝜂

,       −𝑆44
𝜕𝑁𝑖
𝜕𝜂

𝑁𝑗 , 𝑆55
𝜕𝑁𝑖
𝜕𝜉

𝑁𝑗

−𝑆44𝑁𝑖
𝜕𝑁𝑗

𝜕𝜂
,

𝐷66
𝜕𝑁𝑖
𝜕𝜉

𝜕𝑁𝑗

𝜕𝜉
+ 𝐷22

𝜕𝑁𝑖
𝜕𝜂

𝜕𝑁𝑗

𝜕𝜂
+

             𝑆44𝑁𝑖𝑁𝑗

, −𝐷12
𝜕𝑁𝑖
𝜕𝜂

𝜕𝑁𝑗

𝜕𝜉
− 𝐷66

𝜕𝑁𝑖
𝜕𝜉

𝜕𝑁𝑗

𝜕𝜂

𝑆55𝑁𝑖
𝜕𝑁𝑗

𝜕𝜉
, −𝐷12

𝜕𝑁𝑖
𝜕𝜉

𝜕𝑁𝑗

𝜕𝜂
− 𝐷66

𝜕𝑁𝑖
𝜕𝜂

𝜕𝑁𝑗

𝜕𝜉
,

𝐷66
𝜕𝑁𝑖
𝜕𝜂

𝜕𝑁𝑗

𝜕𝜂
+ 𝐷11

𝜕𝑁𝑖
𝜕𝜉

𝜕𝑁𝑗

𝜕𝜉
              +𝑆55𝑁𝑖𝑁𝑗 ]

 
 
 
 
 
 
 
 
 
 
 

𝑎𝑏𝑑𝜉𝑑𝜂

1

0

1

0

 

  (IV.26) 

𝐾1 = ∫ ∫ [
𝐴11

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜉
+ 𝐴66

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜂
, 𝐴12

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜂
+ 𝐴66

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜂

𝐴21
𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜉
+ 𝐴66

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜉
, 𝐴22

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜂
+ 𝐴66

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜉

] 𝑎𝑏𝑑𝜉𝑑𝜂
1

0

1

0
 (IV.27) 

 

𝐾2 = ∫ ∫ [
0, 𝐵12

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜂
− 𝐵66

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜉
, 𝐵11

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜂
+ 𝐵66

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜉

0, 𝐵22
𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜂
− 𝐵66

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜉
, 𝐵12

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑁𝑗

𝜕𝜉
+ 𝐵66

𝜕𝑁𝑖

𝜕𝜉

𝜕𝑁𝑗

𝜕𝜂

] 𝑎𝑏𝑑𝜉𝑑𝜂
1

0

1

0
 (IV.28) 

 

IV.5 Code implementation 

The final section of this chapter focuses on code implementation to determine the natural 

frequencies of the FGM sandwich plate. Based on the first-order plate theory and formulation 

using the quadrilateral p-element, the Fortran 90 code. First, we introduce the programming 

environment, software, and hardware used, followed by a program flowchart to explain the 

development steps. A general description of parameter dictionaries, data files, and output files 

is provided in this section. The final section includes a detailed explanation of each subroutine’s 

task of executing the calculation code. 

IV.5.1 Programming environment 

Building upon the detailed mathematical formulas from the preceding chapter, a FORTRAN 

90 program was developed based on the p-version of the finite element method to determine 

the natural frequencies of a plate under various physical and geometric parameters and 

boundary conditions. 
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The software utilized in this study includes Origin 9.0, for graph plotting and mode analysis, 

and MATLAB for the symbolic computation of shape functions and their derivatives. The 

program was executed on a PC equipped with a Core i5 processor (2.30 GHz) and 8 GB of 

RAM. 

The calculation program comprises three main components. 

• Input files 

• Calculation program 

• Output file. 

IV.5.2 Main program 

The various stages involved in developing a calculation program are illustrated in the 

flowchart (Figure IV-3). 

IV.5.3 Program description 

IV.5.3.1 Data file 

All the necessary data for implementing the calculation program are contained within the 

data file. The data can be divided into four categories. 

a. Geometric Parameters 

The parameters required to define the geometry of the plate were as follows: 

• H: Plate thickness. 

• X(i), Y(i): Coordinates of the nodes at the vertices of the elements, where they are 

utilized in blending functions (refer to Chapter III). 

b. Physical Parameters 

The physical parameters utilized in the program include the following. 

• PRm: Poisson's ratio. 

• SC: Shear correction factor. 

• Em: Young's modulus of the metal. 

• Ec: Young's modulus of the ceramic. 

• ROm: Surface mass density of the metal. 

• ROc: Surface mass density of the ceramic. 

• EN1: Volume fraction (bottom layer). 

• EN2: volume fraction (top layer). 

• XCI1: Porosity coefficient (bottom layer). 

• XCI2: Porosity coefficient (top layer) 
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Figure IV-3: Flowchart of the developed program 

 

c. Element Parameters 

All necessary parameters that identify the p-element are stored in the data file. 

• NTE: Total number of elements. 

• NTN: Total number of nodes. 

• NTC: Total number of sides. 

• NNR: Number of restrained nodes. 

• NCR: Number of restrained sides. 

• NMH: Degree of p-element polynomial. 

• NMODE: Specific mode number. 

 

d. Boundary Conditions 

To facilitate the solution of the generalized eigenvalue problem, it is crucial to consider the 

significance of boundary conditions. To solve the system of equations, it is sufficient to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assembling the global matrices 

[Ke] and [M] 

Calculation of eigenvalues and 

eigenvectors of the equation system 

[𝑀]{𝑞 ̈} + [𝐾]{𝑞} = 0 using the Jacobi 

method. 

S/P JACOBI 

Generation of the results file to 

display the natural frequencies 

End 

1 
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incorporate the imposed (zero) values of the boundary-node displacements into these equations. 

The quadrilateral p-element depicted in Figure IV-4 contains four nodes at the vertices and four 

sides, with each node having three degrees of freedom: 

• w: displacement along the z-axis. 

• θx: rotation of the cross section around the x-axis. 

• θy: rotation of cross-section around the y-axis 

 

Figure IV-4: Numbering of nodes and sides of the p-element 

 

In the subroutine (S/P INPUT), a numbering order for nodes and sides of the quadrilateral 

p-element exists to ensure the accurate assignment of boundary conditions. 

The boundary conditions for the plate element in the data file are introduced following the 

layout indicated in Tables IV-1 and IV-2. 

In the tables below, the value (0 or 1) defines the state of freedom of the nodes and sides of 

the p element. A value of '1' indicates that the degree of freedom is restricted, whereas '0' 

signifies that the degree of freedom is free. In the context of applying boundary conditions in 

the calculation program, the rows and columns of the stiffness and mass matrices corresponding 

to the restricted degrees of freedom were removed. 
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Table IV-1: Introduction of node boundary conditions 

nodes 𝓾 𝓿 ω θx θy 

1 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

2 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

3 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

4 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

 

Table IV-2: Introduction of side boundary conditions 

side 𝓾 𝓿 ω θx θy 

1 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

2 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

3 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

4 1 Or 0 1 Or 0 1 Or 0 1 Or 0 1 Or 0 

 

IV.5.3.2 Programming  

The calculation program developed in this study allows for the analysis of the linear free 

vibration of plates with arbitrary geometric shapes using a quadrilateral p-element. This enables 

the determination of frequencies and eigenvectors. The flowchart in Figure IV-3 illustrates the 

main subroutines and development steps of this program. The following subroutines are deemed 

essential for executing the calculation program: 

 

a. Geometric description of the plate by the p-element 

The subroutine ELEM performs the task of geometric description of the plate using Cartesian 

coordinates (x, y) of the nodes at the vertices, and parametric functions of the sides describing 

the plate boundaries and their derivatives with respect to local coordinates (ξ, η). 

 

b. Jacobian Matrix 

The subroutine JMATRIX calculates the determinant and components of the Jacobian matrix 

to be used in the calculation of element stiffness and mass matrices. 

 

c. Execution of boundary conditions 

The INPUT subroutine is responsible for executing the two main tasks. 
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• The first task involved generating a global list of nodes (real and fictitious). The first 

list is dedicated to real vertex nodes. The second is reserved for fictitious nodes on 

the sides, whereas the third contains all nodes within the p-element. In addition, the 

node lists are designed based on the degree of interpolation polynomial p. 

• The second task performed by the S/P INPUT is the assignment of the degrees of 

freedom for the restrained nodes. 

d. Numerical integration 

Using the Gauss-Legendre quadrature, the integrals presented in the element stiffness and 

mass matrices were numerically calculated because of the inability to compute these integrals 

analytically. The GAUSS subroutine calculates the abscissas of the Gauss points and the 

corresponding weights required for the numerical integration. 

 

e. Lists of degrees of freedom 

After ensuring node and side connectivity, assignments of degrees of freedom lists are 

performed by the CONNECT subroutine to achieve a hierarchy of degrees of freedom. These 

lists of degrees of freedom were identified earlier by S/P INPUT. 

 

f. Formation of element matrices 

Element stiffness and mass matrices were calculated using the S/P MATRIX subroutine. 

g. Calculation of eigenvalues and eigenvectors by the jacobi method 

 

Once the element matrices were formed, they were assembled into global matrices by 

neglecting the rows and columns corresponding to the restrained nodes and sides that were 

previously read from the data file. Thus, the equation of motion for global free vibration can be 

expressed as 

([𝐾𝑒] − 𝜔
2[𝑀]){𝑄} = 0                                                   (IV.29) 

In the JACOBI subroutine, a system of equations is solved using the Jacobi algorithm to 

obtain the corresponding eigenvalues and eigenvectors. 

h. Shape functions and their derivatives 

The hierarchical shape functions for the quadrilateral p-element are given in terms of shifted 

Legendre orthogonal polynomials. In our calculation program, the shape functions and their 

derivatives with respect to the local coordinates (ξ, η) were computed using the GFUNCT 

subroutine. 
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IV.5.3.3 Output file 

All the parameters calculated by the developed program are stored in an output file, including 

• NMH: Degree of p-element polynomial. 

• NEQ: Number of equations in the system. 

• NMODE: Specific mode number. 

• OMLOC: Local frequency parameter. 

• TE: Execution time (seconds). 

IV.6 Validation study 

The validity of the results was confirmed through comparisons with existing literature. In 

the first case, we compared the fundamental frequency parameters of isotropic rectangular and 

square plates as functions of the thickness ratio (h/b), as presented in Table IV-3 and Table 

IV-4, respectively. 

 

Table IV-3: Fundamental frequencies Ω̅ = (𝜔𝑎2/2𝜋)√𝜌ℎ/𝐷 of an isotropic simply supported 

rectangular plate   (𝑏 = 2𝑎) 

h/b Present TSDT [122]  SSDT [123]  DQM [121]  

0.005 1.96305 1.96305 1.96305 1.96299 

0.01 1.96171 1.96171 1.96171 1.96179 

0.02 1.95639 1.95639 1.95640 1.95667 

0.1 1.80970 1.80974 1.80993 1.81513 

0.2 1.51803 1.51230 1.51294 1.53118 

 

The present results using the p-version of the FEM are in excellent agreement obtained by 

isotropic plates with those analytical [121] and semi-analytical solutions [122], [123]. 

Six types of simply supported FGM sandwich plates with homogenous ceramic cores were 

considered, as listed in Table IV-5. The designation (1-0-1) indicates an absence of the core, 

signifying that the plate solely consists of two equally thick face layers made of FGM sandwich; 

(1-1-1) in this type, the plate comprises three layers of equal thickness; (1-2-1) here, the core 

thickness equals twice the thickness of each face layer; (2-1-2), the core thickness equates to 

half the thickness of each face layer; (2-1-1) is a non-symmetric sandwich plate where the core 

thickness aligns with one face thickness and is half the thickness of the other; and (2-2-1) is a 
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non-symmetric sandwich plate where the core thickness equals the thickness of one face and 

twice the thickness of the other. 

 

Table IV-4: Fundamental frequencies Ω̅ = (𝜔𝑎2/2𝜋)√𝜌ℎ/𝐷 of an isotropic simply supported 

square plate 

h/b Present TSDT [122] SSDT [123] DQM [121] 

0.1 3.03428 3.03433 3.03445 3.03828 

 7.23879 7.23897 7.23973 7.26053 

 11.10811 11.10688 11.10867 11.15740 

 13.53498 13.52929 13.53217 13.60580 

0.2 2.77703 2.77669 2.77717 2.78935 

 6.07210 6.04919 6.05177 6.12471 

 8.77740 8.67383 8.67960 8.87880 

 10.36847 10.17716 10.18547 10.50360 

 

Table IV-5: FGM sandwich model 

Thickness 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1 

h0 -h/2 -h/2 -h/2 -h/2 -h/2 -h/2 

h1 0 -h/6 -h/4 -h/10 -h/10 0 

h2 0 h/6 h/4 h/10 3h/10 h/4 

h3 h/2 h/2 h/2 h/2 h/2 h/2 

 

The properties of metal (Aluminum- 𝐴𝑙) and ceramic (Alumina-𝐴𝑙2𝑂3) mixture are shown 

as 

• Alumina-𝐴𝑙2𝑂3:𝐸𝑐 = 380𝐺𝑝𝑎, 𝜈𝑐 = 0.3, 𝜌𝑐 = 3800𝐾𝑔 𝑚−3. 

• Aluminum- 𝐴𝑙:𝐸𝑚 = 70𝐺𝑝𝑎, 𝜈𝑚 = 0.3, 𝜌𝑚 = 2707𝐾𝑔 𝑚−3. 

 

For convenience, the following dimensionless variables are applied to graphically illustrate 

some numerical results. 
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The frequency parameters: 

Ω = (𝜔𝑎2/ℎ)√𝜌0/𝐸0                                                  (IV.30) 

 

where Young’s modulus and material density, denoted as 𝐸0 = 1 GPa and  𝜌0 = 1 𝑘𝑔/𝑚
3, 

respectively. 

 

Table IV-6 provides a comprehensive comparison of the fundamental frequency parameters 

of square FGM sandwich plates with those predicted by alternative theories, exhibiting 

convergence among these values, as noted in the studies by Zenkour [123] and Van Vinh and 

Huy [33]. By incrementally increasing the polynomial order from two to eight, the desired level 

of accuracy in the numerical results for simply supported configurations is attained. The 

tabulated data clearly illustrate a pronounced trend of rapid convergence with an escalating 

polynomial order. In particular, a significant convergence pattern becomes increasingly 

conspicuous as the polynomial order surpasses and reaches p =6, underscoring the efficacy and 

stability of the convergence process, and affirming its robustness in achieving precise solutions 

with higher polynomial orders. 

 

IV.7 Parametric study 

The contour plots of the linear frequency parameters of the symmetric FGM sandwich plates 

are shown in Figure IV-5. This contour was plotted for the calculated values of the linear 

frequency parameters as functions of the volume fraction exponents of layers 1 (𝑛1) and 3 (𝑛2). 

The two volume fraction exponents varied from 0 to 10. As can be seen in the figure, the 

increase in the volume fraction exponents in the direction of (𝑛1) or (𝑛2) produces a reduction 

in the frequency parameters. Symmetric FGM plates produce plots for plates with geometrical 

and physical symmetries. 
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Table IV-6: The convergence and comparison of fundamental frequencies parameters of FGM 

sandwich plate with other theories (h/a=0.1) 

n  Methods p 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0.0 Present 2 1.93283 1.93283 1.93283 1.93283 1.93283 1.93283 

 4 1.82470 1.82470 1.82470 1.82470 1.82470 1.82470 

 6 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442 

 8 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442 

TSDT [123]               1.82445 1.82445 1.82445 1.82445 1.82445 1.82445 

SSDT [123]          1.82452 1.82452 1.82452 1.82452 1.82452 1.82452 

HypSDT [33]   1.82563 1.82563 1.82563 1.82563 1.82563 1.82563 

0.5 Present 2 1.52837        1.57066        1.60105       1.60809       1.64303       1.66709 

 4 1.44191        1.48182        1.51004       1.51719       1.54982       1.57298 

 6 1.44168        1.48159        1.50981       1.51695       1.54958       1.57274 

 8 1.44168        1.48159        1.50981       1.51695       1.54958       1.57274 

TSDT [123]                 1.44424        1.48408        1.51253       1.51922       1.55199       1.57451 

SSDT [123]                 1.44436        1.48418        1.51258       1.51927       1.55202       1.57450 

HypSDT [33]  1.44513        1.48500        1.50735       1.52017       1.54813       1.57553 

1.0 Present 2 1.31531        1.37575        1.42765       1.43234       1.49032       1.52388 

 4 1.24051        1.29749        1.34520       1.35093       1.40468       1.43745 

 6 1.24032        1.29729        1.34500       1.35072       1.40446       1.43722 

 8 1.24032        1.29729        1.34500       1.35072       1.40446       1.43722 

TSDT [123]                 1.24320        1.30011        1.34888       1.35333       1.40789       1.43934 

SSDT [123]                1.24335        1.30023        1.34894       1.35339       1.40792       1.43931 

HypSDT [33]  1.24393        1.30089        1.33421       1.35415       1.39652       1.44024 

5.0 Present 2 0.99965        1.03836        1.13666       1.10538       1.21424       1.24286 

 4 0.94271        0.97886        1.06771       1.04200       1.14135       1.17177 

 6 0.94256        0.97870        1.06755       1.04183       1.14118       1.17159 

 8 0.94256        0.97870        1.06755       1.04183       1.14118       1.17159 

TSDT [123]                 0.94598        0.98184        1.07432       1.04466       1.14731       1.17397 

SSDT [123]                 0.94630        0.97207        1.07445       1.04481       1.14741       1.17399 

HypSDT [33]  0.94650        0.98240        1.03120       1.04527       1.10963       1.17468                
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Figure IV-5: Contour plot of frequency parameters for symmetric FGM sandwich plates 

 

Figure IV-6 illustrate the contour plots of the frequency parameters for the non-symmetric 

FGM sandwich plates. This contour was plotted as a function of the volume fraction exponent 

for the calculated values of the linear frequency parameters. the increasing of the volume 

fraction exponents (𝑛1) and (𝑛2) produces a reduction of frequency parameters. Non-symmetric 

FGM plates produced non-symmetric plots. The greatest variation is in the direction of bottom 

layers (𝑛1), which reflects the influence of the mixture of the bottom layers on the frequency 

parameters of the FGM sandwich plates. 
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Figure IV-6: Contour plot of frequency parameter for FGM sandwich non-symmetric plates 

 

IV.8 Summary 

In this chapter, we define the model, analyze, and integrate the p-version of the finite element 

method and FSDT. We discuss the practical implementation of the solutions in the 

computational code. The validity of the results was confirmed through comparisons with 

existing literature, and the results obtained using the p-version of the FEM were in excellent 

agreement with those obtained by isotropic and FGM sandwich plates with analytical and semi-

analytical solutions. For a degree of polynomials of order six, the convergence investigation 

conducted in this study provides the stability of the results with a precision of six digits. To test 

the quality and precision of the proposed p-element, a comparative study was conducted 

between the present results and those obtained using other methods (TSDT, SSDT, DQM, 

HypSDT, and HSDT). Excellent agreement was found between the two results, with an order 

of precision of five digits. Finally, the non-symmetric FGM plates produced the greatest 

variation in the direction of the bottom layers, reflecting the influence of the mixture of the 

bottom layers on the frequency parameters of the FGM sandwich plates.
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Chapter V 

 

 Effect of Porosity Distribution on FGM Sandwich Plates 

 

The distribution of porosity within FGM sandwich plates presents a notable challenge, as it 

affects various mechanical properties, such as stiffness, strength, and durability, impacting the 

structural integrity and overall performance of the plates. Understanding and managing this 

porosity distribution is crucial for optimizing the design and manufacturing processes of FGM 

sandwich structures. 

In this final chapter, we aim to explore the effect of porosity distribution on FGM sandwich 

plates using the p-version of the FEM and FSDT.  Our study commences with the definition of 

five porosity distribution models and model validation against the existing literature, ensuring 

the reliability of our findings. Subsequently, we conducted a comprehensive parametric study 

to investigate the influence of key factors, including the effect of the thickness ratio, boundary 

conditions, volume fraction exponents, and porosity coefficients of the top and bottom layers 

of the FGM sandwich plates on the natural frequency. 
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V.1 Porosity distribution models 

 
Figure V-1: FGM sandwich plate with porosity model 

 

Researchers have presented several models of porosity distribution to calculate the useful 

material properties of porous FGM plates [34]. Five even and uneven porosity models were 

considered in the current work to account for the porosity in each FGM layer of the sandwich 

plates: 

V.1.1 FGM model with even porosities (Imperfect I) 

The porosities are evenly distributed across the FGM sandwich layers in this model, whereas 

the core layer is nonporous (perfect). Having porosities equally distributed (imperfect I), the 

effective material properties 𝑃(𝑙) of FGM layers 𝑙 ( 𝑙 = 1, 2, 3) are expressed as [34]: 

{
 

 𝑃
1(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉

(1)(𝑧) −
𝜉1

2
(𝑃𝑐 + 𝑃𝑚),

𝑃2(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧),

𝑃3(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉2

2
(𝑃𝑐 + 𝑃𝑚),

                                                   (V.1) 

 

𝑃𝑚 and 𝑃𝑐 are the equivalent characteristics of the metal and ceramic, respectively. 

ξ1, ξ2 denote the porosity coefficients (ξ1, ξ2 "1). 

The nonporous FGM sandwich plate is indicated by ξ1 = ξ2 = 0. 

 

V.1.2 FGM model with uneven porosities (Imperfect II) 

The porosities of the FGM sandwich plate expanded along the thickness direction. by the 

following formulae: 
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{
 
 

 
 𝑃1(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉

(1)(𝑧) −
𝜉1

2
(𝑃𝑐 + 𝑃𝑚) [1 −

|2𝑧−(ℎ0+ℎ1)|

ℎ1−ℎ0
] ,

𝑃2(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧),

𝑃3(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉2

2
(𝑃𝑐 + 𝑃𝑚) [1 −

|2𝑧−(ℎ3+ℎ2)|

ℎ3−ℎ2
] ,

                              (V.2) 

 

V.1.3 FGM model with logarithmic-uneven porosities (Imperfect III) 

A logarithmic function is used in the third model of porosity distribution, and it is expressed 

as: 

{
 
 

 
 𝑃1(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉

(1)(𝑧) − 𝑙𝑜𝑔 (1 +
𝜉1

2
) (𝑃𝑐 + 𝑃𝑚) [1 −

|2𝑧−(ℎ0+ℎ1)|

ℎ1−ℎ0
] ,

𝑃2(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧),

𝑃3(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) − 𝑙𝑜𝑔 (1 +

𝜉2

2
) (𝑃𝑐 + 𝑃𝑚) [1 −

|2𝑧−(ℎ3+ℎ2)|

ℎ3−ℎ2
] ,

              (V.3) 

 

V.1.4 FGM model with linear-uneven porosities (Imperfect IV) 

In this model, the density of porosity changes linearly across the FGM layers and is low at 

the sandwich's outer surfaces and high at its two interfaces. 

{
 
 

 
 𝑃1(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉

(1)(𝑧) −
𝜉1

2
(𝑃𝑐 + 𝑃𝑚) [1 −

𝑧−ℎ1

ℎ0−ℎ1
] ,

𝑃2(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧),

𝑃3(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉2

2
(𝑃𝑐 + 𝑃𝑚) [

𝑧+ℎ3

ℎ2−ℎ3
] ,

                                      (V.4) 

 

V.1.5 FGM model with sinusoidal-uneven porosities (Imperfect V) 

     The fifth porosity distribution model, which is based on a sinusoidal function, is written 

as: 

{
 
 

 
 𝑃1(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉

(1)(𝑧) −
𝜉1

2
𝑠𝑖𝑛 (

𝜋

4
+
𝑧ℎ

2
) (𝑃𝑐 + 𝑃𝑚) [1 −

|2𝑧−(ℎ0+ℎ1)|

ℎ1−ℎ0
] ,

𝑃2(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧),

𝑃3(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉2

2
𝑠𝑖𝑛 (

𝜋

4
+
𝑧ℎ

2
) (𝑃𝑐 + 𝑃𝑚) [1 −

|2𝑧−(ℎ3+ℎ2)|

ℎ3−ℎ2
] ,

           (V.5) 

 

 

V.2 Convergence and Comparison 

 

To verify the accuracy of the proposed model for FGM sandwich plates with porosity, a 

Convergence and Comparison was performed for the linear free vibration of the results 

available in the literature. 
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Table V-1 provides a comprehensive comparison of the nondimensional frequencies of the 

square FGM sandwich plates as a function of the porosity model (imperfect I) with those 

predicted by alternative theories, exhibiting convergence among these values, as highlighted in 

studies by Daikh and Zankour [28] and Van Vinh and Huy [33]. By gradually increasing the 

polynomial order from 2 to 8, the numerical results achieved the desired accuracy for the simply 

supported configurations. The tabulated data distinctly reveal a rapid convergence trend with 

increasing polynomial order, which is particularly evident beyond p = 6, emphasizing the 

effectiveness and stability of the convergence process in yielding precise solutions. 

 

Table V-1: The convergency and comparison of porosity on the non-dimensional frequencies 

of FGM square sandwich plate (a/h=10, n=2) 

ξ 𝑝 Methods 1-0-1       1-1-1        1-2-1        2-1-2         2-2-1        2-1-1 

0 2 

4 

6 

8 

Present 1.12263 

1.05862 

1.05855 

1.05855       

1.25777  

1.18595 

1.18591 

1.18591   

1.37901 

1.30045    

1.30040        

1.30040                   

1.18754  

1.11974        

1.11965        

1.11965              

1.34199 

1.26338 

1.26310     

1.26310             

1.26450 

1.18971 

1.18951      

1.18951      

 

 

HSDT [28] 

HypSDT [33] 

1.06155 

1.05205 

1.18847 

1.18913 

1.30244        

1.30326       

1.12248        

1.12305        

1.24391 

1.24464          

1.16529 

1.16595 

0.1 2 

4 

6 

8 

Present 1.03963 

0.98015 

0.97007 

0.97007    

1.18668    

1.11867 

1.11856      

1.11856             

1.32321        

1.24760        

1.24758        

1.24758        

1.10846  

1.04486        

1.04478        

1.04478              

1.28682     

1.21031     

1.21010     

1.21010     

1.20212 

1.12950 

1.12937     

1.12937     

 HSDT [28] 

HypSDT [33] 

0.98258  

0.98307   

1.12071      

1.12134 

1.24933        

1.25012        

1.04712  

1.04766              

1.18195 

1.18265       

1.09355 

1.09417 

0.2 2 

4 

6 

8 

Present 0.93047 

0.87685 

0.87684 

0.87684    

1.10396 

1.04040  

1.04036      

1.04036          

1.26253        

1.19015        

1.19014        

1.19014        

1.01157   

0.95329  

0.95317        

0.95317             

1.22558 

1.15118     

1.15094     

1.15094         

1.12930 

1.05883 

1.05860 

1.05860 

 HSDT [28] 

HypSDT [33] 

0.87867 

0.87912    

1.04201      

1.04260      

1.19156        

1.19231    

0.95491  

0.95542           

1.11054     

1.11120    

1.00557 

1.00616 

 

The non-dimensional frequencies of the square FGM sandwich plates as a function of four 

porosity models (imperfect I, …., IV) are considered with two values of porosity coefficients 
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𝜉1 = 𝜉2 = 𝜉 = 0.1 and 0.2, and the volume fraction exponents 𝑛1 = 𝑛2 = 𝑛 = 2 are presented 

in Table V-2, and compared with the dose of Daikh and Zankour [29]. We note that in the four 

porosity models, these findings closely matched those of the analysis. 

 

Table V-2: The comparison of the non-dimensional frequencies of square FGM sandwich 

plate with porosity distribution (a/h=10) 

Porosity ξ Methods 1-0-1       1-1-1        1-2-1        2-1-2         2-2-1        2-1-1 

Perfect    0 Present 1.05855    1.18591    1.30040    1.11965    1.26310    1.18951 

 HSDT [29] 1.06155    1.18847    1.30244    1.12248    1.24391    1.16529 

Imperfect I 0.1 Present 0.98007    1.11856    1.24758    1.04478    1.21010    1.12937 

 HSDT [29] 0.98258    1.12071    1.24933    1.04712    1.18195    1.09355 

0.2 Present 0.87684    1.04036    1.19014    0.95317    1.15094    1.05860 

 HSDT [29] 0.87867    1.04201    1.19156    0.95491    1.11054    1.00557 

Imperfect II 0.1 Present 1.02932    1.15520    1.27528    1.08732    1.23895    1.16414    

 HSDT [29] 1.03235    1.15768    1.27723    1.09008    1.21572    1.13481 

0.2 Present 0.99729    1.12290    1.24953    1.05262    1.21398    1.13740 

 HSDT [29] 1.00033    1.12524    1.25140    1.05528    1.18609    1.10199 

Imperfect III 0.1 Present 1.03006    1.15597    1.27589    1.08813    1.23954    1.16477 

 HSDT [29] 1.03308    1.15844    1.27785    1.09089    1.21642    1.13558 

0.2      Present 1.00044    1.12599    1.25198    1.05599    1.21637    1.13998 

 HSDT [29] 1.00347    1.12837    1.25386    1.05867    1.18894    1.10519 

Imperfect IV 0.1 Present 1.02190    1.15354    1.27464    1.08408    1.24395    1.16975 

 HSDT [29] 1.05559    1.17079    1.28422    1.10840    1.22699    1.15122 

0.2 Present 1.03187    1.11935    1.24820    1.04566    1.22430    1.14914 

 HSDT [29] 1.05213    1.15260    1.26581    1.09394    1.20966    1.13763 

 

V.3 Parametric Study 

After verifying the accuracy of the current formulation, a parametric investigation was 

conducted. The influences of the thickness ratio, boundary conditions, two-volume fraction 

exponents (𝑛1, 𝑛2) and two porosity coefficients (𝜉1, 𝜉2) of the top and bottom layers of the 

FGM sandwich plate on the natural frequencies were investigated. 
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Table V-3 shows the non-dimensional frequencies of a square FGM sandwich plate with two 

different face’s porosities. Five models are considered. The table illustrates that when ξ1 = ξ2 =

0 for different imperfect porosity models, the non-dimensional frequencies remain consistent, 

indicating what is termed the "perfect model." The 1-2-1 model shows higher non-dimensional 

frequency values compared to the 1-0-1 model, which, in contrast, shows the smallest 

frequencies. The higher the porosity coefficient, the lower non-dimensional frequencies are 

observed. 

 

 

Table V-3: non-dimensional frequencies of square FGM sandwich plate with two porosities 

distribution (𝑎/ℎ = 10, 𝑛1 = 2, 𝑛2 = 0.5) for different Imperfect model 

Porosity ξ1 ξ2 1-0-1       1-1-1        1-2-1        2-1-2         2-2-1        2-1-1 

Imperfect I 0.0 0.0 1.27162 1.36589 1.44579 1.31866 1.39920 1.35396 

 0.1 1.25113 1.34233 1.42468 1.29523 1.37679 1.32836 

 0.2 1.23056 1.31894 1.40408 1.27177 1.35494 1.30305 

0.1 0.0 1.25204 1.34431 1.42669 1.29692 1.38179 1.33931 

 0.1 1.22914 1.31883 1.40428 1.27123 1.35787 1.31181 

 0.2 1.20588 1.29338 1.38234 1.24529 1.33445 1.28450 

0.2 0.0 1.23090 1.32236 1.40775 1.27432 1.36382 1.32348 

 0.1 1.20525 1.29480 1.38399 1.24613 1.33826 1.29388 

 0.2 1.17886 1.26709 1.36061 1.21740 1.31313 1.26434 

Imperfect II 0.0 0.0 1.27162 1.36589 1.44579 1.31866 1.39920 1.35396 

 0.1 1.26413 1.35461 1.43530 1.30810 1.38795 1.34127 

 0.2 1.25698 1.34364 1.42514 1.29782 1.37704 1.32888 

0.1 0.0 1.26478 1.35586 1.43654 1.30918 1.39173 1.34929 

 0.1 1.25692 1.34415 1.42574 1.29815 1.38015 1.33620 

 0.2 1.24940 1.33275 1.41528 1.28740 1.36889 1.32342 

0.2 0.0 1.25795 1.34594 1.42748 1.29975 1.38436 1.34466 

 0.1 1.24970 1.33380 1.41637 1.28824 1.37242 1.33118 

 0.2 1.24179 1.32194 1.40560 1.27699 1.36082 1.31800 

Imperfect III 0.0 0.0 1.27162 1.36589 1.44579 1.31866 1.39920 1.35396 

 0.1 1.26430 1.35488 1.43555 1.30835 1.38822 1.34157 

 0.2 1.25764 1.34466 1.42608 1.29877 1.37805 1.33003 
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0.1 0.0 1.26495 1.35610 1.43676 1.30941 1.39191 1.34940 

 0.1 1.25728 1.34469 1.42623 1.29865 1.38061 1.33664 

 0.2 1.25027 1.33407 1.41648 1.28865 1.37013 1.32474 

0.2 0.0 1.25859 1.34687 1.42832 1.30063 1.38505 1.34510 

 0.1 1.25057 1.33506 1.41751 1.28944 1.37343 1.33197 

 0.2 1.24323 1.32405 1.40749 1.27901 1.36265 1.31973 

Imperfect IV 0.0 0.0 1.27162 1.36589 1.44579 1.31866 1.39920 1.35396 

 0.1 1.24892 1.34784 1.43174 1.29816 1.38562 1.33731 

 0.2 1.22599 1.32994 1.41798 1.27766 1.37233 1.32089 

0.1 0.0 1.27414 1.36114 1.43949 1.31637 1.39838 1.35790 

 0.1 1.25102 1.34266 1.42513 1.29540 1.38453 1.34098 

 0.2 1.22764 1.32432 1.41106 1.27441 1.37098 1.32429 

0.2 0.0 1.27693 1.35658 1.43342 1.31426 1.39776 1.36213 

 0.1 1.25340 1.33767 1.41875 1.29282 1.38365 1.34494 

 0.2 1.22957 1.31888 1.40437 1.27133 1.36984 1.32797 

Imperfect V 0.0 0.0 1.27162 1.36589 1.44579 1.31866 1.39920 1.35396 

 0.1 1.26627 1.35787 1.43832 1.31114 1.39119 1.34493 

 0.2 1.26110 1.35001 1.43103 1.30378 1.38337 1.33607 

0.1 0.0 1.26679 1.35879 1.43924 1.31196 1.39392 1.35065 

 0.1 1.26126 1.35056 1.43162 1.30421 1.38574 1.34143 

 0.2 1.25590 1.34248 1.42417 1.29661 1.37774 1.33237 

0.2 0.0 1.26198 1.35177 1.43279 1.30530 1.38869 1.34739 

 0.1 1.25626 1.34332 1.42502 1.29731 1.38035 1.33797 

 0.2 1.25071 1.33502 1.41741 1.28948 1.37217 1.32871 

 

Table V-4 shows the non-dimensional frequencies of a square FGM sandwich plate with 

diverse volume fraction exponents across various models of imperfect porosity. This 

demonstrates that higher volume fraction exponents result in lower non-dimensional 

frequencies across all imperfect porosity models. 
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Table V-4: non-dimensional frequencies of square FGM sandwich plate with two different 

face’s volume fraction exponents and different coefficients of porosity(𝑎/ℎ = 10, ξ1 =

0.1, ξ2 = 0.2)   

Porosity n1 n2 1-0-1       1-1-1        1-2-1        2-1-2         2-2-1        2-1-1 

Imperfect I 0.0 0.0 1.84368 1.80545 1.79465 1.81887 1.80077 1.81031 

 0.1 1.79069 1.76332 1.76037 1.77170 1.77177 1.77568 

 0.2 1.74662 1.72802 1.73162 1.73227 1.74744 1.74663 

0.1 0.0 1.79001 1.76273 1.75987 1.77107 1.75400 1.75762 

 0.1 1.73407 1.71887 1.72449 1.72167 1.72371 1.72120 

 0.2 1.68740 1.68205 1.69477 1.68027 1.69826 1.69058 

0.2 0.0 1.74541 1.72696 1.73070 1.73114 1.71496 1.71388 

 0.1 1.68687 1.68157 1.69435 1.67977 1.68354 1.67588 

 0.2 1.63788 1.64342 1.66379 1.63663 1.65711 1.64388 

Imperfect II 0.0 0.0 1.83901 1.81652 1.81021 1.82428 1.81378 1.81966 

 0.1 1.78835 1.77581 1.77682 1.77892 1.78552 1.78615 

 0.2 1.74645 1.74182 1.74888 1.74117 1.76187 1.75812 

0.1 0.0 1.78818 1.77562 1.77663 1.77873 1.76863 1.76911 

 0.1 1.73486 1.73330 1.74219 1.73133 1.73916 1.73394 

 0.2 1.69063 1.69792 1.71335 1.69179 1.71446 1.70446 

0.2 0.0 1.74614 1.74146 1.74853 1.74082 1.73106 1.72731 

 0.1 1.69048 1.69775 1.71318 1.69162 1.70053 1.69068 

 0.2 1.64418 1.66114 1.68356 1.65051 1.67492 1.65993 

Imperfect III 0.0 0.0 1.83834 1.81678 1.81073 1.82422 1.81423 1.81994 

 0.1 1.78777 1.77613 1.77738 1.77894 1.78601 1.78648 

 0.2 1.74596 1.74220 1.74948 1.74126 1.76239 1.75849 

0.1 0.0 1.78762 1.77595 1.77721 1.77877 1.76915 1.76948 

 0.1 1.73439 1.73371 1.74281 1.73144 1.73972 1.73435 

 0.2 1.69025 1.69839 1.71401 1.69198 1.71505 1.70492 

0.2 0.0 1.74567 1.74187 1.74915 1.74093 1.73164 1.72775 

 0.1 1.69011 1.69822 1.71385 1.69182 1.70115 1.69117 

 0.2 1.64391 1.66168 1.68426 1.65079 1.67557 1.66048 

Imperfect IV 0.0 0.0 1.82450 1.80987 1.80643 1.81482 1.81474 1.81935 

 0.1 1.77423 1.76966 1.77348 1.76995 1.78694 1.78638 
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 0.2 1.73255 1.73602 1.74586 1.73253 1.76364 1.75874 

0.1 0.0 1.77289 1.76861 1.77264 1.76877 1.76950 1.76866 

 0.1 1.71993 1.72680 1.73865 1.72185 1.74051 1.73405 

 0.2 1.67590 1.69178 1.71013 1.68264 1.71617 1.70499 

0.2 0.0 1.73016 1.73415 1.74435 1.73041 1.73185 1.72673 

 0.1 1.67484 1.69094 1.70946 1.68170 1.70181 1.69068 

 0.2 1.62872 1.65469 1.68016 1.64091 1.67657 1.66037 

Imperfect V 0.0 0.0 1.83426 1.81860 1.81419 1.82402 1.81670 1.82080 

 0.1 1.78430 1.77838 1.78112 1.77925 1.78870 1.78765 

 0.2 1.74300 1.74482 1.75346 1.74201 1.76528 1.75993 

0.1 0.0 1.78417 1.77824 1.78099 1.77911 1.77207 1.77090 

 0.1 1.73161 1.73645 1.74690 1.73235 1.74288 1.73612 

 0.2 1.68805 1.70153 1.71835 1.69337 1.71843 1.70699 

0.2 0.0 1.74277 1.74455 1.75320 1.74175 1.73494 1.72965 

 0.1 1.68794 1.70139 1.71823 1.69325 1.70472 1.69346 

 0.2 1.64237 1.66528 1.68891 1.65274 1.67937 1.66309 

 

The effect of the thickness ratio (h/a) on the nondimensional natural frequency parameters 

is presented in Figs. V-2-V-3. Four porosity models (imperfect I …., IV) were considered with 

two values of the porosity coefficients 𝜉1 = 𝜉2 = 𝜉 = 0.1 and 0.2. A six-layer FGM-sandwich 

plate was used. It can be seen from the figures that for the model with imperfect porosity IV, 

the fundamental frequency parameters decrease with an increase in the thickness ratio. For the 

first model 𝜉 = 0.1 and 𝜉 = 0.2 for the second model of porosity. However, the frequency 

parameters of the third model (imperfect III) increased from h/a=0.05. A similar behavior is 

observed for the first model with  𝜉 = 0.2, and the second model with 𝜉 = 0.1.  
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(d) Imperfect II, ξ=0 2.

 

Figure V-2: Effect of thickness ratio index of fundamental frequency parameters for FGM 

sandwich models with porosity (n=2; imperfect I and II) 
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(c) Imperfect IV, ξ=0 1.
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Figure V-3: Effect of thickness ratio index of fundamental frequency parameters for FGM 

sandwich models with porosity (n=2; imperfect III and IV) 

 

The nondimensional frequencies as a function of the thickness ratio (h/a) for perfect and five 

porosity distributions are presented in Figure V-4. When the thickness ratio increased from 0 

to 0.2, and the porosity coefficient ξ = 𝜉1 = 𝜉2 = 0.2, two behaviors were observed. In the first 

case, the frequency parameters decrease as the models become perfect, imperfect I, and 

imperfect IV. However, in the second case, they increased after decreasing in models imperfect 

II, imperfect III, and imperfect V. A similar behavior was observed for the symmetric and non-

symmetric FGM sandwich plates. 
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Figure V-4: effect of thickness ratio index of the linear frequency parameters for perfect and 

porosity distribution of FGM sandwich plates (n=2; ξ=0.2) 

 

The influence of the boundary conditions is presented in Figure V-5, fully clamped (CCCC), 

clamped at two opposite edges and simply supported at two opposite edges (CSCS), simply 

supported at two continuous edges and clamped at next two edges (SSCC), and fully simply 

supported (SSSS) are considered. It can be observed from the figure that the frequencies 

decrease as the porosity coefficient increases. The highest values of the frequency parameters 

were obtained under the CCCC boundary conditions. However, SSSS yields the smallest value. 

Similar behavior was observed for the five porosity distributions. This is due to the increase in 

edge constraints. 

 



Effect of porosity distribution on FGM sandwich plates 

99 

 

Ω

0 0.1 0.2 0.3

1.2

1.4

1.6

1.8

2.0

2.2

ξ

SSSS 

CCCC 

SSCC
 

CSCS

(a) Imperfect I

0 0.1 0.2 0.3

1.4

1.6

1.8

2.0

2.2

Ω

ξ

 

 

 

(b) Imperfect II

 

SSSS 

CCCC 

SSCC
CSCS

Ω

0 0.1 0.2 0.3

1.4

1.6

1.8

2.0

2.2

ξ

(c) Imperfect III

SSSS
CCCC
SSCC
CSCS

ξ

SSSS 

CCCC 

SSCC
 

CSCS

0 0.1 0.2 0.3

1.4

1.6

1.8

2.0

2.2

Ω

 

 

 

(d) Imperfect IV

0 0.1 0.2 0.3

1.4

1.6

1.8

2.0

2.2

Ω

ξ

(e) Imperfect V

SSSS
CCCC
SSCC
CSCS

 

Figure V-5: effect of the porosity coefficient on frequency parameters for different boundary 

condition of square FGM sandwich plates (n=2; 1-2-1) 
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Figure V-6 shows the influence of the volume fraction exponent (𝑛 = 𝑛1 = 𝑛2 = 0,… , 5) 

on the frequency parameters of the SSSS square FGM sandwich plate with a porosity coefficient 

of  ξ = 0.2. It can be observed from this figure that imperfect I (even porosity model) is obtained 

from the separated curve of the other models. The curves of the uneven models (imperfections 

II, ...., V) are indistinguishable. Increasing the volume fraction exponent value causes a more 

significant separation of the first model (even the porosity model). 
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Figure V-6: the effect of the volume fraction exponent and porosity models on the frequency 

parameters of SSSS square FGM sandwich plates (ξ=0.2)  
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Figure V-7 plots the influence of the porosity coefficient on the vibration frequency 

parameters of the square porous FGM sandwich plates for the five imperfect types. The types 

of FGM sandwich plates considered in this example are (1-0-1, 1-2-1, 1-1-1, and 2-1-1), and 

the values of the volume fraction exponent taken are (n=𝑛1=𝑛2=0.5). For the first two cases 

where n=0.5 the variation curves are straight lines; that is, the variation is linear between the 

frequency parameters and the porosity coefficient. For this volume fraction value, the dominant 

physical properties of the FGM sandwich plate were the properties of the ceramic. However, 

for the last two cases, the increase in the porosity coefficient values decreases with a non-linear 

curve, which can result in the fact that in these two cases, the dominant physical properties of 

the plate are the properties of the metal. Therefore, the influence of the porosity coefficient on 

the vibration behavior of an FGM sandwich plate depends on the rate of mixing of the layers 

of this plate. 
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Figure V-7: the influence of the porosity coefficient models on the free vibration frequencies 

of square FGM sandwich plates 
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Figures V-8-V-9 illustrate the contour plot of the linear frequency parameters as a function 

of the volume fraction exponent for the SSSS square FGM sandwich plate with porosity. This 

contour was plotted for the calculated values of the frequency parameters as a function of the 

two-volume fraction exponents, (𝑛1) of the bottom, and (𝑛2) of the top layers. An increase in 

the volume fraction exponents 𝑛1 and 𝑛2 from 0 to 10 reduces the frequency parameters. The 

maximum frequency is denoted by red and is associated with lower values of  (𝑛1)  and (𝑛2), 

whereas the minimum frequency is indicated in purple. If we take the 1st case of Figure 5.8, 

the red color represents the maximum values of the frequency parameters (Ω ≥ 1.711), whereas 

the purple color represents the smallest values of the frequency parameters in this contour (Ω ≤ 

0.9344); for example, the green color represents the values of the frequency parameters (1.322 

≤ Ω ≤ 1.452). For the other colors (yellow, orange blue, and sky blue), each color represents a 

range of frequency parameter values. 
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Figure V-8: Contour plot of linear frequency parameter of the volume fraction exponent for 

SSSS square FGM sandwich plate with porosity (ξ=0.1; Imperfect I) 



Effect of porosity distribution on FGM sandwich plates 

103 

 

 

0 2 4 6 8 10

2

4

6

8

10

n 2

n1

0.8300

0.9569

1.084

1.211

1.337

1.464

1.591

1.718

1.845

1-0-1(a)

0 2 4 6 8 10

2

4

6

8

10

n2

n1

0.8950

1.010

1.125

1.240

1.355

1.470

1.585

1.700

1.815

1-1-1(b)

0 2 4 6 8 10

2

4

6

8

10

n2

n 1

1.030

1.128

1.226

1.324

1.422

1.520

1.618

1.716

1.814

2-2-1(c)

0 2 4 6 8 10

2

4

6

8

10

n2

n 1

0.9540

1.063

1.172

1.281

1.390

1.499

1.608

1.717

1.826

2-1-1(d)

 

Figure V-9: Contour plot of linear frequency parameter of the volume fraction exponent for 

SSSS square FGM sandwich plate with porosity (ξ=0.2; Imperfect II) 

 

 

The effect of the porosity coefficient on the frequency parameters of the SSSS square FGM 

sandwich plates is plotted in Figures V-10, V-11. 
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Figure V-10: Contour plot of linear frequency parameter of porosity coefficient for FGM 

sandwich plates. (n=0.5; Imperfect II) 

 

The frequency parameters decreased when the porosity coefficients 𝜉1  and 𝜉2  increased. This 

can be observed from the figures. V-8, V-11 that the geometrical and physical symmetric plates 

produced symmetric plots. The most significant variations are in the directions of (𝑛1) and 

(𝜉1). This illustrates the effect of the bottom layer mixture on the frequency parameters of the 

porous FGM sandwich plates. The maximum results of the frequency parameter values for the 

symmetric plates were obtained for small values of (𝜉1, 𝑛1) or (𝜉2, 𝑛2) and for large values of 

(𝜉1, 𝑛1) or (𝜉2, 𝑛2). For the other types (non-symmetric), the maximum values of the frequency 

parameters can only be obtained by increasing the values of the bottom layers and decreasing 

those of the top layers. 
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Figure V-11: Contour plot of linear frequency parameter of porosity coefficient for FGM 

sandwich plates. (n=2; Imperfect III) 

 

Figure. V-12 shows a contour plot of the frequency parameters for simply supported FGM 

sandwich plates as a function of the porosity coefficient and volume fraction exponent. It can 

be observed that the frequency decreased as the porosity coefficient increased from 0 to 0.3, 

and the volume fraction increased from 0 to 10. This type of graph is new in the literature, 

which varies the porosity coefficient and exponent of the volume fraction at the same time. This 

variation gives contour plots for the frequency parameters for four types of FGM sandwich 

plates (1-0-1, 1-1-1, 2-2-1 and 2-1-1). The black curves indicate the same frequency parameter 

values. Note that for the values of (0≤n≤1), where the mixture contains more ceramic, we 

obtained straight curves from which the variation is linear of the frequency parameters as a 

function of the porosity coefficient. On the other hand, in the zone where the mixture contains 
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the most metal (1≤n≤10), if ξ is changed while n is fixed, the trajectory will cross several 

contour curves. This provides a nonlinear variation in the frequency parameters as a function 

of the porosity coefficient. According to these results, the porosity coefficient and mixing rate 

of the layers influence the rigidity or flexibility of the porous FGM sandwich plate. 
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Figure V-12: Contour plot of linear frequency parameter of porosity and the volume fraction 

exponent for FGM sandwich plates (Imperfect I) 
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V.4 Summary 

In this concluding chapter, the effect of porosity distribution on FGM sandwich plates was 

investigated using the p-version of FEM and FSDT. The study demonstrated accuracy 

compared to the literature results and explored the effects of various parameters on the natural 

frequency. The stability of the results with a precision of six digits for polynomials of order six, 

excellent agreement with other methods, nonlinear frequency parameter trends influenced by 

plate thickness and porosity type, and significant impacts of volume fraction exponents and 

porosity coefficients on frequency parameters lead to insights into vibrational behavior and 

material properties. This work has opened the way to an in-depth discussion of the parameters 

influencing the free vibration behavior of FGM sandwich plates with unequal layer porosities 

for the first time. 
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Chapter VI 

 

General Conclusion and Future Directions 

 

This thesis presents the linear free vibrations of an FGM sandwich plate with a porosity. First-

order shear deformation theory has been applied to derive equations of motion describing the 

free vibrations of plates. A p-version of the FEM model was developed to handle the above-

mentioned problems accurately and efficiently. Several parametric studies have been conducted 

on the subject of linear free vibrations of FGM sandwich plates with porosity, and detailed 

conclusions have been drawn at the end of each chapter. In the following sections, some 

important conclusions are summarized with respect to the numerical model, its implementation 

and results of parametric studies mentioned in previous chapters, and recommendations for 

future work. 
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VI.1 Conclusions 

Our study successfully validated the combined use of first-order shear deformation theory and 

the p-version of the FEM. When applied to plates, these theories have demonstrated accuracy 

and reliability in capturing the mechanical behavior of the system. 

For a degree of polynomials of order six, the convergence investigation conducted in this work 

provides stability of the results with a precision of six digits. To test the quality and precision 

of the proposed p-element, a comparative study was conducted between the present results and 

those obtained by other methods (TSDT, SSDT, DQM, HypSDT, and HSDT). 

     Excellent agreement was found between the two results, with an order of precision of five 

digits. The effect of the plate thickness on the frequency parameters is not governed by a linear 

law; sometimes, there is a decrease followed by an increase in the values of the frequency 

parameters. The FGM sandwich plates that exhibit this behavior are Imperfects II, III, and V.      

     This type of imperfect is a model of FGM sandwich plates with uneven porosities, 

logarithmic-uneven porosities, and sinusoidal-uneven porosities. Thus, we conclude that there 

is an interaction between the effect of the thickness and type of imperfection on the vibrational 

behavior of the FGM sandwich plate with porosity. 

     An increase in the porosity coefficient led to a decrease in the frequency parameters for all 

the five types of imperfections. The largest values were obtained for the clamped plate with a 

sinusoidal-uneven type of porosity. This results in the fact that this plate is more rigid than other 

plates. This influence is especially focused on the values of (0 ≤ 𝑛1, 𝑛2 ≤ 2), and these values 

represent a change in physical properties from ceramic to metal. This decrease in the frequency 

parameter makes the sandwich plate more flexible. The influence of the porosity coefficients 

on the frequency parameters decreases almost linearly when the values of (𝜉1𝑎𝑛𝑑 𝜉2) increase. 

By increasing the values of (𝜉1𝑎𝑛𝑑 𝜉2) ,  the values of the physical properties of the plate and 

its mass decrease, making the plate less rigid.  

     This work has opened the way to an in-depth discussion of the parameters influencing the 

free vibration behavior of FGM sandwich plates with unequal layer porosities for the first time. 

 

VI.2 Suggestions for potential future work 

The work in this thesis is limited and future improvements should be considered: 

• Extension to Include Nonlinear Effects: Investigate the effects of nonlinearities on the 

free vibration behavior of FGM sandwich plates with porosity. This could involve 

incorporating material nonlinearity, geometric nonlinearity, or both, to provide a more 
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comprehensive understanding of the structural response under varying loading 

conditions. 

• Consideration of temperature effects: The influence of temperature variations on the 

free vibration characteristics of the FGM sandwich plates with porosity was explored. 

Incorporating thermal effects into the analysis can help assess the structural stability and 

performance of the FGM sandwich plates in real-world operating environments. 

• Optimization Studies for Performance Enhancement: Conduct optimization studies to 

maximize the free vibration characteristics of the FGM sandwich plates with porosity. 

This could involve optimizing the material distribution, porosity levels, or geometric 

configurations to achieve the desired vibration modes or enhance the structural 

performance while considering the manufacturing constraints. 

• Experimental validation and verification: Numerical models developed for the free 

vibration analysis of porous FGM sandwich plates were experimentally validated and 

verified. Experimental testing can provide crucial insights into the accuracy and 

reliability of numerical predictions, thereby ensuring confidence in the analytical 

results. 

• Exploration of Advanced Material Models: Explore advanced material models beyond 

first-order shear deformation theory (FSDT) to capture more complex behaviors 

exhibited by porous FGM sandwich plates. We consider higher-order theories and 

models that account for material microstructures or nonlocal effects to improve the 

accuracy of the analysis. 

• Dynamic stability and response: The dynamic stability and response of the FGM 

sandwich plates with porosity subjected to external excitations or dynamic loading 

conditions were investigated. Phenomena such as flutter, resonance, and dynamic 

buckling were analyzed to assess the structural integrity and resilience of FGM 

sandwich plates in dynamic environments. 

• The presented model can be further extended to nanostructures (e.g., shells, 3D solids...) 
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