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Abstract

This research delves into the realms of data-driven modeling, order reduction, and
control strategies within the context of Anaerobic Digestion (AD) processes. The
study is centered on addressing pivotal challenges in this domain and delivering
innovative contributions to the field. The primary objectives encompass streamlin-
ing the complexity of the Anaerobic Digestion Model No.1 (ADM1) for the specific
purpose of control, as well as the exploration of suitable data-driven techniques
to achieve precise modeling and prediction of AD systems. Furthermore, the re-
search endeavors to extract kinetics reactions from simulated time-series AD data,
develop robust predictive models for Chemostat dynamics under both Monod and
Haldane kinetics through data-driven methodologies, and employ the Koopman
Operator theory to enable data-driven modeling and control of the Chemostat
system, relying solely on substrate measurements.

By adopting a data-driven approach, this research aims to provide profound
insights into the intricacies of AD processes, thereby shedding light on their com-
plex dynamics and advancing our comprehension beyond conventional models. It
introduces an alternative modeling perspective exclusively grounded in data, aug-
menting our analytical capabilities within the realm of AD processes. The research
rigorously evaluates and tests a variety of data-driven techniques, yielding intrigu-
ing results. Notably, the application of the Koopman Operator theory represents
a significant contribution, particularly in scenarios where measurement resources
are limited. This innovation holds the potential to pave the way for robust con-
trol strategies within AD systems, ultimately enhancing their sustainability and
efficiency.

Keywords: Anaerobic Digestion, ADM1, Chemostat, AM2, ODE, Data-
Driven Modeling, Order Reduction, Model Predictive Control, SVD,
Koopman Operator, DMD.
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Chapter 1

General Introduction

1.1 Background Review

1.1.1 Anaerobic Digestion

Anaerobic digestion (AD), commonly referred to as methanization, stands out
as a robust and economically viable technique for waste recovery. Particularly
prominent in organic waste treatment and recovery within the agricultural and
industrial sectors, AD utilizes the effectiveness of microorganisms operating in an
oxygen-devoid environment to disintegrate complex organic matters. The remark-
able outcome of this microbial collaboration is the production of biogas, predom-
inantly composed of methane (CH4) in the range of 60-70 % and carbon dioxide
(CO2) at 30-40 % [6]. This biogas, in turn, finds multifaceted applications, ranging
from electricity and heat generation to being utilized as a biofuel.

The significance of AD transcends its waste management attributes, signaling
as a repository of clean and renewable energy. In contrast to conventional energy
sources that often contribute negatively to the environmental equilibrium, AD
provides a greener alternative. Moreover, the process yields digestate, residual
product with multiple uses. This digestate can serve as livestock bedding or
function as an organic amendment, essentially a fertilizer, benefiting agricultural
communities and farms [7].

Central to the optimization of the AD process is the sensible selection and
monitoring of indicators that influence biogas production. These indicators are
crucial for the functionality of the system. The evolving literature landscape
places emphasis on the mathematical modeling of the AD process. This endeavor
not only enhances our comprehension of the intricacies of process dynamics but
also presents opportunities for optimizing digester performance [8]. As such, the
endeavor of modeling not only furthers our grasp of the process intricacies but
also serves as a catalyst for refining the process towards efficiency.

Throughout the entire AD process, a community of anaerobic microorganisms
collaborates at each stage, working in harmony to degrade organic matter and
produce biogas. This AD process unfolds through four primary phases: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis [9].

In the hydrolysis stage, intricate compounds undergo a transformation into sol-
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uble constituents. This phase involves the enzymatic conversion of high-molecular-
weight elements like organic polymers and lipids into simpler units such as fatty
acids, monosaccharides, and amino acids, which are easily taken up by microbial
metabolism to serve as an energy source. After this, the fermentation process fol-
lows, encompassing the acidogenesis and acetogenesis stages. Acidogenesis marks
the transformation of the products generated from hydrolysis into intermediate
components with lower molecular weights. At this stage, simple volatile fatty
acids (VFAs) materialize from sugars and amino acids. In contrast, acetogenesis
pertains to the fermentation process in which VFAs and alcohol are converted to
acetate, hydrogen, and carbon dioxide. Lastly, a cluster of archaea microorgan-
isms, known as methanogens, orchestrates the bacterial conversion of intermediate
components into various simplified end products, primarily composed of CH4 and
CO2 [6], [9].

In AD, microorganism communities are notably influenced by various factors,
including shifts in key monitoring parameters such as pH, alkalinity, VFAs, as well
as pivotal operational parameters like temperature, hydraulic retention time, sub-
strate composition, and organic loading rate (OLR) [10]. These monitoring and
operational parameters are pertinent in both the liquid and gas phases. Tempera-
ture has a considerable impact on microbial metabolic activities during fermenta-
tion [11], consequently influencing the rate of digestion and methane production
[6]. The operational spectrum for AD encompasses three temperature ranges:
psychrophilic (4 − 15oC), mesophilic (20 − 40oC), and thermophilic (45 − 70oC).
Among these, OLR assumes a central role as an operational parameter in AD
systems along with the concentrations in the input and the dilution rate. The
generation rate of biogas is closely linked to OLR, maintaining it within a suit-
able range promoting favorable biogas yields. However, a significant OLR surge
beyond the appropriate threshold emerges as a primary catalyst for VFAs accu-
mulation, ultimately leading to reduced biogas production. The significance of
pH in AD cannot be overstated; it dictates the prevalence of microorganisms at
each fermentation stage. Throughout the AD process, pH generally resides within
the range of 6.0-8.0, its fluctuations contingent on the evolution of organic mat-
ter fermentation. Crucially, pH’s role in the methanogenic phase is pivotal; a
drop in pH triggers process inhibition [10]. The concentration of VFAs, acting
as the principal methanogenic intermediate, serves as a widely suggested control
and monitoring parameter for anaerobic digesters, given its reliable correlation
with process imbalance in reactor accumulation. VFAs are valuable indicators for
gauging system stress levels and diagnosing process issues. The measurement of
biogas flow and composition holds paramount importance as they offer insight into
overall digester performance [10],[12]. A low CH4 content in biogas could signal
methanogenic bacteria inhibition; hence, maintaining CH4 concentration above 50
% is vital for efficient operation. Similarly, elevated hydrogen sulfide (H2S) con-
centration in biogas can lead to AD inhibition, emission concerns, and corrosion
problems [13]. Furthermore, recognizing that single indicators lack universality
across digesting systems, a combination of factors such as VFA concentration,
the ratio of bicarbonate alkalinity to total alkalinity, and the ratio of VFA to to-
tal alkalinity can collectively offer rapid, dependable, and complementary insights
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into system metabolism, promoting early warnings [14]. Regular process monitor-
ing is indispensable for comprehending system status and performance, enabling
timely detection and response to substantial imbalances and disruptions [15]. De-
tecting process imbalances early on is critical, facilitating timely intervention to
prevent process failure. Hence, meticulous monitoring and consistent control of
AD parameters are pivotal to ensure a seamless process flow and maximize biogas
production [6].

At both laboratory and industrial scales, the AD process unfolds within spe-
cialized anaerobic digesters. These digesters harbor a group of anaerobic bacteria
responsible for managing the degradation of organic materials. The dynamics, be-
havior, and interplay among these bacteria have been extensively explored within
the literature. The exploration of these intricacies serves a dual purpose: initially,
to comprehend the intricacies of the process itself and subsequently, to fine-tune
it for optimization and global adoption.

A chance to enhance the efficiency and performance of the AD process in-
volves the careful design and upscaling of appropriate reactors [6],[7],[8],[16],[17].
The configuration of the reactor and the surrounding environmental conditions,
encompassing factors such as retention time, temperature, feedstock, and stirring,
exert a profound influence on the behavior and composition of the distinct bacte-
rial groups accountable for the degradation of organic materials. The AD process,
as we already explained in this work, is a multi-step procedure. The subsequent
stages of this journey exhibit a direct correlation with the solids retention time
(SRT) within the digester [16],[18], as well as the mechanisms governing the re-
tention of microorganisms within it [19],[16],[18]. Consequently, the selection of
appropriate technologies depends on objectives, initial investments, and the char-
acteristics of the biodegradable waste in question, including factors like its solids
content and texture (high/low solids, pumpable/wet or stackable/dry substrate).
Among the plethora of technologies, several reactors are presented below which
are commonly cited in the literature. For an in-depth exploration of the tech-
nologies employed for AD applications, spanning thermophilic, mesophilic, and
more, along with their respective performances, readers are directed to references
[6],[7],[8],[16],[17],[18].

There many configurations of bioreactors for AD including Batch reactors,
Semi-Continuous Fermenters (Fed/Sequencing Batch Reactors), and Continuous
Bioreactors. Continuous Bioreactors further divide into Free Cells digesters (like
Continuous Stirred Tank Reactors (CSTR)), Contact digesters (addressing limi-
tations of CSTR), Biofilm and Granules digesters (including Fixed Bed reactors,
Upflow Anaerobic Sludge Blanket (UASB) reactors, and Mobile Support reactors),
and Two-Stage Reactors [20],[16]. These systems vary in feeding modes, biomass
retention, and efficiency. Batch Reactors fill and empty, while Semi-Continuous
fermenters manage gradual filling and decantation. Continuous bioreactors oper-
ate with constant feeding, categorized by different biomass-substrate interactions.
Biofilm and Granules digesters excel in handling shocks, and Two-Stage reactors
optimize methane production through separate stages. These bioreactors cater to
different needs and challenges in AD processes, offering options for various scale
and efficiency requirements.
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As indicated in [20],[16] , irrespective of the specific type of reactor chosen, a
crucial factor that demands the attention of designers in biogas facilities is the
dilution rate (D) given by:

D =
The feed rate of the bioreactor (F )

volume of the digester (V )
(

1

day
)

This value also stands as the reciprocal of HRT and should be adequate to facilitate
the growth of various bacterial species.

1.1.2 Modeling and Optimizing Anaerobic Digestion Sys-
tems

Modelling and optimizing AD processes is crucial for designing wastewater treat-
ment and biogas plants, studying how the plant’s behavior responds to opera-
tional parameters, monitoring performance, and assessing the viability of utilizing
diverse substrates under varying conditions. In the literature, numerous models
exist, tailored for specific applications or fermenters that use particular substrates.
These models can be broadly classified into two categories: mechanistic models,
which are grounded in biological, physical, and chemical principles, and empirical
machine learning models, which employ mathematical and statistical equations
to establish relationships between input and output variables based on measured
process data [21], [22], [23].

Mechanistic AD models

Mechanistic models represent a category of models that utilize a defined set of
differential equations to elucidate the biological and physico-chemical principles
governing a given process [22], [23]. These models which will be described in
details in the following chapters aim to characterize the behavior of bacteria in
response to the substrate, particularly focusing on their growth and inhibition
dynamics. The development of a mechanistic model involves three key elements.
Firstly, a deep understanding of the interplay between process variables is essen-
tial. Secondly, model parameters are determined through empirical data collected
from experiments. Lastly, data collected during the actual process are crucial for
validation. If the model falls short of efficiency, it undergoes revisions informed by
process knowledge[22], [24], [23]. Mechanistic models can be broadly categorized
into three groups based on complexity.

The simplest mechanistic models involve single-step processes with a solitary
bacterial population and a sole limiting substrate. These models offer limited
descriptions of inhibition effects, similar to chemostat models employing specific
bacterial growth functions like Monod or Haldane [25], [26], [23]. Models of inter-
mediate complexity, such as the AM2 model by Bernard et al. [5], encompass a
higher number of processes and bacterial populations while providing more accu-
rate descriptions of inhibition factors. Complex models, exemplified by Batstone
et al. [1] and Stemann et al. [27], account for numerous processes, specific bacte-
rial populations, and offer in-depth descriptions of inhibition effects and relevant
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chemical equilibria. Among these, the Anaerobic Digestion Model no. 1 (ADM1),
initially developed by the IWA Task Group for Mathematical Modelling [1], stands
out. It can describe the anaerobic degradation of various substrates, with a signif-
icant complexity that makes it challenging to use for design and control purposes.
ADM1 involves estimating a large number of parameters, approximately a hun-
dred, which becomes particularly challenging in complex plant operations due to
limited available data in the literature.

Hence, researchers have explored simpler models, some focused on fewer pro-
cesses or tailored for specific substrates. Notably, the AM2 model by Bernard et
al. [5] strikes a balance between simplicity and accuracy, primarily serving as a
tool for monitoring and controlling AD processes, rather than precise numerical
simulations [21].

Machine Learning AD Models

In contrast to the previously discussed models, machine learning models aim to
capture system behavior without relying on prior knowledge of underlying pro-
cesses. This approach integrates various fields, including mathematical modeling,
statistics, information theory, and data science [28],[22], [23]. Machine learning
tools prove valuable in uncovering the inherent structure of a process and exploring
correlations among its components, all without prior assumptions [29], [23].

The machine learning modeling journey starts with the accumulation of his-
torical data, forming a dataset consisting of examples, each characterized by a set
of attributes or variables. Leveraging this dataset during the training phase, the
model learns and evolves. Following training, a testing phase ensues, where the
model’s effectiveness is evaluated through classification, prediction, or clustering
of new examples, known as test data. The model’s performance is quantified us-
ing a performance measure, which advances as the model refines its understanding
during data training [29], [30], [31], [32], [33], [34], [35], [36], [37]. These studies
collectively demonstrate the diverse applications and effectiveness of different ma-
chine learning modeling techniques in optimizing AD processes and predicting bio-
gas production. Several practical challenges can be identified in machine learning
models, including the need for high-quality data, the opacity of machine learning
models, and model reliability. Machine learning relies on ample, high-quality data,
including explanatory metadata. Developing robust machine learning algorithms
and methods for interpreting neural network decisions is crucial. [23]

As a summuray, we highlight that while mechanistic models offer comprehen-
sive descriptions of AD processes, they come with notable weaknesses. These
include the need for precise knowledge of bioreactor kinetic and stoichiometric
parameters and the challenge of fully understanding AD microbial and physico-
chemical processes, making digital implementation complex. These limitations
hinder optimization and control law synthesis for fermentation using such mod-
els. In contrast, machine learning models prove more effective in revealing process
behavior and relationships among factors. They excel in estimating optimal con-
ditions when system dynamics are not explicitly known and in analyzing nonlinear
and complex interactions among process variables, [23].
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1.1.3 Data-Driven Dynamical Systems

Dynamical systems offer a mathematical framework that captures the intricate
interactions between evolving quantities over time. They involve the analysis,
prediction, and comprehension of systems described by differential equations or
iterative mappings, portraying how a system’s state evolves. This formulation
encompasses a vast array of phenomena, spanning classical mechanics, fluid dy-
namics, climate science, finance, social systems, and more. The genesis of modern
dynamical systems traces back to Poincaré’s work on planetary motion chaos,
building on centuries of mathematical modeling starting with Newton and Leib-
niz. Its history is extensive, captivating brilliant minds across fields for centuries,
and addressing numerous challenging problems [28].

Dynamical systems form a comprehensive field bridging linear algebra, differ-
ential equations, topology, numerical analysis, and geometry. They play a pivotal
role in engineering, physical, and life sciences, facilitating modeling and analy-
sis [28], [38]. Contemporary dynamical systems are embracing data-driven ap-
proaches, blending big data and machine learning. As governing equations remain
elusive for many complex problems, data-driven analysis gains importance. Clas-
sical fields like optics, turbulence and biology are also shifting towards data-driven
methods. Climate prediction, disease spread understanding, cognition study from
neural data, and turbulence control are areas to benefit from data-driven insights.

Beyond classical perspectives, the emerging Koopman operator theory [39] pro-
vides a new approach, based on evolving measurements of a system. This theory
capitalizes on increasing data availability from complex systems. Koopman theory
offers a way to represent nonlinear dynamics in a linear framework, revolutioniz-
ing prediction and control of strongly nonlinear systems. As data-driven discovery
progresses, dynamical systems are experiencing a renaissance, contributing signif-
icantly to scientific and engineering advancements.

Objectives and Obstacles in Recent Dynamical Systems

Given that dynamical systems typically serve as models for real-world occurrences,
several top-priority objectives are linked to the examination of these systems:

• Forecasting Future States: In various scenarios, like meteorology and
climatology, the aim is to forecast a system’s future state. However, making
predictions for extended periods remains a difficult task.

• Designing and Optimizing: We might aim to adjust system parameters
to enhance performance or stability, as seen in actions like adding fins to a
rocket for optimization.

• Estimating and Controlling: In many instances, dynamic systems can
be actively controlled through feedback, utilizing system measurements to
guide adjustments that alter behavior. Here, it’s crucial to estimate the
complete system state from limited measurements for effective control.
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• Physical Understanding and Interpretability: A core objective of
dynamical systems is to offer intrinsic comprehension and meaningful inter-
pretation of a system’s behavior by studying trajectories and solutions to its
governing equations.

Real-world systems often display nonlinearities and multifaceted behavior across
various scales. There’s inherent uncertainty in equations of motion, parameter
specifications, and measurements. Certain systems are more vulnerable to this
uncertainty, requiring probabilistic methods. Additionally, deriving basic equa-
tions from first principles is increasingly challenging and indeterminate in some
cases.

In the initial chapter of this thesis, some recent data-driven methods for identi-
fying and studying dynamical systems will be presented. The outlined data-driven
approaches primarily tackle two fundamental obstacles encountered in modern dy-
namical systems:

1. Nonlinearity: The presence of nonlinearity remains a fundamental obsta-
cle in the examination and management of dynamical systems, leading to
intricate global dynamics. Unlike linear systems which can be comprehen-
sively characterized through spectral decomposition of matrix A, nonlinear
systems lack a comparable unified framework for prediction, estimation, and
control. This pursuit for a general nonlinear framework stands as a signif-
icant mathematical challenge in the twenty-first century [28]. A prevalent
approach to nonlinear dynamical systems revolves around the geometry of
subspaces near fixed points and periodic orbits. This geometric theory, pio-
neered by Poincaré, has revolutionized complex systems of modeling, aided
by theoretical underpinnings like the Hartman–Grobman theorem [40]. This
allows for the application of linear analysis techniques in proximity to fixed
points or periodic orbits. Nonetheless, while the geometric perspective of-
fers local linear models, global analysis remains predominantly qualitative
and computational, thereby constraining the theory of nonlinear prediction,
estimation, and control beyond fixed points and periodic orbits [28], [41].

2. Unknown Dynamics: A significant challenge stems from the absence
of established governing equations for numerous contemporary systems. As
researchers delve into intricate realms like neuroscience, epidemiology, and
ecology, the scarcity of fundamental laws obstructs equation derivation. This
extends even to systems with known equations, such as turbulence, AD and
protein folding, where identifying patterns in high-dimensional systems for
revealing core behaviors remains elusive. While classical analysis involved
ideal approximations and Newtonian equations, complex systems necessitate
a shift towards data-driven techniques for equation discovery. As models be-
come more intricate, their accuracy falters, demanding automated model dis-
covery to unveil underlying mechanisms. Latent variables further complicate
matters, posing a major challenge in data-driven approaches by concealing
pertinent dynamics [42], [28].
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Unveiling unknown dynamics through data analysis and acquiring intrinsic co-
ordinates to linearize nonlinear systems stand as vital objectives in recent dynami-
cal systems research. Surmounting the obstacles posed by unknown dynamics and
nonlinearity holds the potential to revolutionize our comprehension of intricate
systems, offering significant advantages across diverse scientific and engineering
disciplines.

Throughout this thesis, we will delve into these concerns and elucidate several
emerging methodologies aimed at tackling these complexities. Notably, two pivotal
strategies are shaping contemporary data-driven dynamical systems exploration:

• Operator-theoretic representations: To grapple with nonlinearity, operator-
theoretic approaches are gaining prominence. We will demonstrate that
it’s feasible to portray nonlinear dynamical systems using linear, infinite-
dimensional operators like the Koopman operator featured in Chapter 2,
which leverages measurement functions.

• Data-driven regression and machine learning: In the face of bur-
geoning data availability and the study of systems resistant to conventional
analysis, regression and machine learning emerge as indispensable tools for
unraveling dynamical systems from data. This underpins several techniques
expounded in this thesis, including Dynamic Mode Decomposition (DMD)
in Section 2.3, Extended Dynamic Mode Decomposition (EDMD) in Section
2.4, data-driven Koopman methods for control in Section 2.5.

It’s worth highlighting that numerous methods and viewpoints presented in this
thesis are interconnected, and the ongoing research endeavors focus on further
enhancing and revealing these connections.

1.2 Objectives and Contributions
The primary objectives of this research encompass several key aspects within the
field of AD, each aiming to address critical challenges and contribute novel insights
to the field:

• Reducing the ADM1 model with regards to control objective.

• Identifying the most suitable data-driven methods for accurate modeling and
prediction of AD systems.

• Learning kinetics reactions from simulated time-series data of AD processes.

• Developing robust predictive models for Chemostat dynamics under both
Monod and Haldane kinetics through data-driven approaches using time-
series data.

• Data-driven modeling and controlling of the Chemostat dynamics only with
substrate measurements using the Koopman Operator theory.
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The contributions arising from this research encompass diverse dimensions, en-
riching the domain of AD in meaningful ways:

• By adopting data-driven methodologies, this study offers an in-depth under-
standing of AD processes. This alternative approach sheds light on complex
dynamics, revealing hidden patterns and enhancing comprehension beyond
traditional modeling paradigms.

• The introduction of an alternative modeling perspective, grounded solely in
data, contributes a novel methodology to the AD field. This approach chal-
lenges conventional modeling techniques, offering new ways to conceptualize
and analyze AD processes.

• By exploring and rigorously testing a spectrum of data-driven techniques,
this research advances the applicability of such methods within the AD do-
main. The study’s thorough evaluation of these approaches lays the ground-
work for future investigations and implementations.

• The utilization of the Koopman Operator theory in data-driven modeling
and control of the Chemostat system constitutes a notable contribution. By
showcasing the effectiveness of this theory, particularly in scenarios with
limited measurements, the study pioneers a promising avenue for robust
control strategies within AD systems.

1.3 Organization of the Thesis
This dissertation is structured as follows:

In Chapter 2, we delve into the intricate realm of the Koopman Operator and
its implications in data-driven methods for control and analysis. We begin by
providing a comprehensive overview of the Koopman Operator Theory. Through
illustrative examples, we illustrate its significance and potential applications. Fur-
thermore, we explore how the Koopman Operator Theory can be harnessed for
control purposes, highlighting its role in shaping system behavior. Within this
chapter, we also uncover the concept of Dynamic Mode Decomposition (DMD).
We elucidate the DMD algorithm, which allows us to dissect complex dynamics
into simpler modes. Real-world applications across various domains showcase the
versatility and practical utility of DMD. Building upon the foundation of DMD,
we delve into the realm of Extended Dynamic Mode Decomposition (EDMD). We
introduce an advanced perspective on mode decomposition, potentially uncovering
deeper insights and patterns within dynamic systems. The power of data-driven
control strategies takes center stage in this chapter. We delve into Model Pre-
dictive Control, a technique that leverages data to optimize system behavior over
a predictive horizon. Moreover, we explore Nonlinear System Identification, like
DMD with control (DMDc) and EDMD with control (EDMEc) highlighting its role
in enhancing control strategies for complex systems. In essence, this chapter serves
as an exploration of the Koopman Operator Theory and its practical applications
through data-driven methods. By understanding and utilizing these techniques,
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we gain valuable tools for analyzing, controlling, and optimizing dynamic systems
across diverse domains.

In Chapter 3, we delve into the application of DMD a data-driven approach
for model order reduction of the ADM1 model. The chapter begins by unveiling
the most complicated and detailed model in AD systems, the ADM1 model. With
35 states and over 80 parameters, this high-dimensional model defies conventional
mathematical analysis. Nevertheless, it offers intricate insights into the AD pro-
cess. We provide a comprehensive overview of the ADM1 model, underscoring its
capacity to encompass all intricacies of the AD process and the presentation of
the model’s mathematical equations. Then, we use DMD to achieve model order
reduction for the ADM1 model. This involves distilling the model’s complexity
while retaining essential dynamics.

Chapter 4 Extends the utility of DMD, we employ DMDc to model the two
step anaerobic model (AM2). First, we introduce the AM2 model, a streamlined
AD model with a mere six states, four of which are primary. We furnish a compre-
hensive exposition of this model, starting with its biological and kinetic reactions,
and concluding with the deduction of its mathematical equations, presented in the
form of a set of Ordinary Differential Equations (ODEs). The DMDc data-driven
approach then allows us to capture AM2 model dynamics, potentially uncovering
valuable insights and facilitating effective control strategies.

In Chapter 5, we focus on data-driven modeling, forecasting and controlling of
the Chemostat dynamics. This chapter starts with the underpinning mathemati-
cal principles that underlie bioprocesses and biotechnology. Initially, we introduce
the simplified chemostat featuring merely two state variables, elucidating our ap-
proach to deriving ODEs for the chemostat system. Specifically, we investigate
the Continuous Stirred Tank Reactors (CSTR) with both Monod and Haldane
kinetics. Then, we underscore the versatility of data-driven methods in under-
standing such systems behavior. Harnessing the Koopman Operator Theory, we
explore data-driven control techniques for the chemostat system. We introduce a
Koopman model that represents input-output chemostat dynamics. Furthermore,
we implement Model Predictive Control based on the Koopman model (KMPC).
Through simulation results and discussions, we gain insights into the efficacy of
these data-driven control strategies.

In the concluding section of this thesis, we offer a comprehensive analysis of
the findings derived from the undertaken research, in alignment with the initial
objectives established. These findings are presented along with insightful inter-
pretations, thereby encapsulating the essence of the accomplished work.

Furthermore, the culmination of this thesis encompasses the projection of
prospective avenues and future directions. This projection of perspectives and
forthcoming work serves to highlight potential areas for further exploration, ex-
tending the scope of knowledge and contributing to the ongoing advancement of
the field.



Chapter 2

The Koopman Operator and
Data-Driven Methods

2.1 Introduction
In this chapter, we provide a comprehensive overview of the Koopman operator
theory. While our focus primarily lies in developing a functional understanding
of the Koopman operator for the purpose of this work, interested readers are en-
couraged to refer to [39] for a more extensive review of the Koopman operator
and its applications. Our exploration begins by introducing the Koopman opera-
tor for nonlinear dynamical systems. We delve into the underlying concepts and
principles, emphasizing its significance as a mathematical tool in the study of dy-
namical systems. Named after Bernard Koopman, who introduced it in the 1930s,
the Koopman operator enables a linear representation of system dynamics, making
analysis and problem-solving more accessible. We then proceed to discuss data-
driven methods employed to approximately deduce the Koopman operator from
experimental or simulation data of the dynamical systems. These techniques allow
us to extract valuable insights and understand the behavior of complex systems
using the available data. Although the Koopman operator is inherently infinite-
dimensional, practical approximations can be made to make it more manageable
for real-world applications. These approximations play a crucial role in leveraging
the power of the Koopman operator in various fields, ranging from control systems
to machine learning and beyond.

2.2 Overview of the Koopman Operator Theory
In this thesis, we consider the following autonomous continuous-time dynamical
system:

ẋ = f(x), (2.1)

where x(t) ∈M ⊆ Rn is the system’s state that may exist on a submanifoldM of
an n-dimensional vector space Rn, and f(.) represents a vector field that describes
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the dynamics. Researchers strive to find a new vector of coordinates s of either

x = ψ(s) or s = ψ(x) (2.2)

where we have simplified or potentially linearized dynamics:

ṡ = Ls. (2.3)

The dynamics of s in these new linearizing coordinates are completely governed
by the matrix L. The eigen-decomposition of L can completely describe how the
system will evolve in these coordinates in the future. The embeddings ψ might
elevate the dynamics to a space of higher dimensions of s variables which enables
the nonlinearities to be unraveled. In practical applications, we generally obtain
measurement data that records the behavior of our system at discrete time points.
This data is handled by a discrete-time dynamical system given by

xk+1 = F(xk) (2.4)

where xk = x(tk) = x(k∆t) and F is denoted by the discrete-time flow map that
evolves (2.1) such as:

F(x(t0)) = x(t0 + t) +

∫ t0+t

t0

f(x(τ ))dτ , (2.5)

Compared to the formulation of the continuous-time system in (2.1), the discrete-
time dynamics are more general and also incorporate discontinuous and hybrid
systems. In this situation, the objective is still to discover a linearizing coordinate
transform in order to have

sk+1 = Ksk. (2.6)

where K is the discrete-time version of continuous-time matrix L. To that end,
B.O. Koopman in 1931 [43] introduced a way to view systems through infinite-
dimensional linear operators Kt, which can advance all measurement functions
g :M→ C with the flow of the dynamics, in order to have:

Ktg(xk) = g(F(xk)) = g(xk+1), (2.7)

An alternative representation is given by:

Ktg = g ◦ F, (2.8)

where ◦ is the composition operation. The linear operator Kt acts on the Hilbert
space H of scalar measurement functions g and provides a linear representation of
the dynamics of the system. In the context of the Koopman operator, the scalar
measurement function g is often referred to as an observable function. This termi-
nology comes from the operator’s origins in quantum mechanics. In the context
of the Koopman operator, the observable function is a real-valued function that
represents a physical quantity of interest in the system. However, it is important
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to note that the terms observables or observable functions should not be confused
with the term observability used in control theory. The Koopman operator Kt can
be thought of as a way of trading nonlinear, finite-dimensional dynamics for linear,
infinite-dimensional dynamics. This can be beneficial because linear differential
equations can often be solved using the spectral representation, which can provide
a more complete understanding of the system’s behavior. However, because the
Koopman operator is an infinite-dimensional operator, it can be challenging to
work with in practice. Therefore, in practice, a sufficiently large, but finite, sum
of modes is used to approximate the Koopman spectral solution. This approxima-
tion can provide an accurate representation of the dynamics of the system without
the challenges associated with infinite-dimensional operators [39, 38].

When a dynamical system is sufficiently smooth, it is possible to define a
continuous-time version of the Koopman dynamical system in (2.7):

d

dt
g = Kg, (2.9)

where the operator K describes the rate of change of the Koopman operators Kt
with respect to the parameter t, also known as the continuous-time infinitesimal
generator of the one-parameter of Koopman operator family [39, 38].

The eigenfunction ψ(x) of the discrete-time Koopman operator Kt in (2.7)
corresponding to an eigenvalue λ is given by:

ψ(xk+1) = Ktψ(xk) = λψ(xk). (2.10)

where the Koopman eigenfunctions ψ(x) are actually the linearizing coordinates
transform that allow the nonlinear system in (2.4) to be written as the linear form
in (2.6). The Koopman eigenfunctions ψ(x) can be written in a continuous-time
formulation as follows:

d

dt
ψ(x) = Kψ(x) = λψ(x). (2.11)

Modern dynamical systems have a major applied difficulty in obtaining Koopman
eigenfunctions from analytical formulations or from data. Globally linear rep-
resentations of severely nonlinear systems are made possible by the discovery of
these eigenfunctions. The time derivative of the Koopman eigenfunction ψ(x),
when the chain rule is applied, results in

d

dt
ψ(x) = ∇ψ(x) · ẋ = ∇ψ(x) · f(x). (2.12)

This leads to a partial differential equation (PDE) for the eigenfunction ψ(x) when
taking in consideration equation in (2.11):

∇ψ(x) · f(x) = λψ(x). (2.13)

The given nonlinear PDE rises the possibility of the approximation of the Koop-
man eigenfunctions ψ(x) through regression using data or by solving for the Lau-
rent series [38]. It is important to note that this approach assumes that the dy-
namics are both continuous and differentiable. In simpler terms, equations (2.10)
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and (2.11) show that the Koopman operator can make the complex behavior of a
system simpler and more understandable by transforming it into linear dynamics
in terms of eigenfunction coordinates ψ(x). It also shows that certain functions,
like conserved quantities (e.g., Hamiltonian energy function), can be expressed as
eigenfunctions of the Koopman operator with zero eigenvalues [43, 38].

2.2.1 Illustrative Examples

A system that has a finite-dimensional Koopman operator.

If the right set of observables is selected, certain systems have a configuration that
results in a closed Koopman subspace. In this case, we examine a sample system
from Tu et al. [44] which has only one stationary point. This system is further
analyzed in Brunton et al. [45]. Here is the system:

ẋ1 = µx1,

ẋ2 = λ(x2 − x2
1),

(2.14)

By adding the nonlinear measurement g = x2
1 to the state x, it is feasible to

establish a Koopman invariant subspace with three dimensions. The dynamics of
the system become linear when expressed in these coordinates:

ż1

ż2

ż3

 =

µ 0 0
0 λ −λ
0 0 2µ


︸ ︷︷ ︸

K

z1

z2

z3

 for

z1

z2

z3

 =

x1

x2

x2
1

 (2.15)

Where K represents the Koopman operator of the system in (2.14). This is highly
connected to the process of linearizing a system using the Carleman linearization
technique [46, 47, 48, 49, 50, 51]. It is obvious that since z3 = x2

1 than ż3 =
2x1ẋ1 = 2µx2

1 = 2µz3, and the set of observables (x1, x2, x2
1) create a subspace

that is closed under differentiation to produce a Koopman operator with finite
dimensions.

A system that has an infinite-dimensional Koopman operator.

The majority of systems lack a configuration that permits a Koopman operator
with finite dimensions. Instead, let’s consider this particular system:

ẋ = x2, (2.16)

If we attempt to create observables in a straightforward manner to generate a
Koopman operator for this particular system, a logical option (inspired from the
previous example) is to begin with the following:[

z1

z2

]
=

[
x
x2

]
(2.17)
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Nevertheless, if we differentiate z2 = x2 we get ż2 = 2xẋ = 2x3 , we will be
required to introduce z3 = x3, and as we add more observables, the differentiation
process will lead to the exponent of each power being incremented by one.

ż1

ż2

ż3

ż4
...

 =


0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
0 0 0 0 · · ·
...

...
...

... . . .




z1

z2

z3

z4
...

 where


z1

z2

z3

z4
...

 =


x
x2

x3

x4

...

 (2.18)

This will lead to an unbounded chain of higher powers being necessary to fully
define the derivative of z. Many systems require an endless number of observ-
ables, which causes the associated Koopman operator to be infinite in size. This
is a frequent occurrence in various systems, and hence, the practical use of the
Koopman operator depends on discovering accurate approximations with finite
dimensions from the available data. In addition, and in such scenarios, the ap-
proach should be to seek out the eigenfunctions of the Koopman operator for the
nonlinear dynamical system in (2.16).

Let us propose the following function:

ψ(x) = e−1/x, (2.19)

We can easily remark that

d

dt
ψ(x) = x−2 e−1/x ẋ = e−1/x = ψ(x), (2.20)

where ẋ = x2. Since ψ(x) = e−1/x verifies the PDE in (2.13), ψ(x) = e−1/x can
be considered as a magic eigen-measurements of the Koopman operator (eigen-
function) that if we measure the nonlinear dynamical system in (2.16) on ψ(x)
the system behavior will remain linear. Similar Koopman eigenfunctions can pos-
sibly be deduced analytically by solving the PDE in (2.13) using typical methods
which involve recursively finding the components of a Taylor or Laurent series [38].

2.2.2 Koopman Operator Theory for Control

Initially, in [52], it was observed that the Koopman operator theory could be ex-
tended to actuated systems by interpreting stochastic forcing in random dynamical
systems as actuation. However, the first Koopman-based control techniques were
not introduced until more than ten years later, mainly driven by the algorithmic
progress of DMD [53]. Koopman models have lately been used more frequently
in conjunction with linear quadratic regulator (LQR) [45, 54], state-dependent
LQR [55], and model predictive control (MPC) [56, 57], among other applications
such as optimal control for switching control problems [58], Lyapunov-based sta-
bilization [39, 59], eigenstructure assignment [60], and active learning [61]. MPC
[62, 63, 64, 65, 66, 67] is particularly noteworthy as a primary enabler of Koopman-
based control success, with a wide range of applications such as power grids [68],
high-dimensional fluid flows [69], and electrical drives [70].
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Koopman operator theory for control necessitates the separation of unforced
dynamics from the influence of actuation. The earliest Koopman-based techniques
were created for discrete-time systems, which are more broad and constitute a su-
perset of those caused by continuous-time dynamics. These discrete-time dynamics
are frequently more compatible with experimental measurements and actuation,
and they may be preferable for numerical analysis [38].

Consider the controlled discrete-time dynamical system

xk+1 = F(xk,uk), (2.21)

where x ∈ Rn is the state and u ∈ U ⊆ Rnu is the control input of the system. For
actuated systems, Koopman operator can be generalized by describing it as the
Koopman operator related to uncontrolled dynamical system, which emerges in
an extended state-space x̃ := [x>,u>]> defined as a product of the original state-
space and space for all control sequences, for instance, Rn×L(U), with L(U) is the
space of all sequences u := (ui)

∞
i=0 where ui ∈ U . The dynamics of the extended

state x̃ is given as :

x̃k+1 = F̃ (x̃k) := (F(xk,u(0)), T u), (2.22)

where T : L(U) −→ L(U) is the left shift operator, where (T u)(i) = u(i + 1) ,
i ∈ N. Let g(x,u) : Rn × L(U) → R a scalar-valued observation functions, but
unlike before, these functions now depend on both the state and input. Every
observable function belongs to a Hilbert space H that has an infinite number
of dimensions. The Koopman operator with inputs and control Kt : H −→ H
associated with (2.22) which acts on the Hilbert space of observable functions is
presented as:

Ktg(x̃k) = g(F̃ (x̃k)) = g(x̃k+1), (2.23)

The Koopman operator Kt in (2.23) is a linear operator that fully explains the
nonlinear dynamical system in (2.21) as long as the state components of xk are
included in H. In other words, the properties of the Koopman operator Kt, such
as its spectral properties, can give us insights into the spectral properties of the
nonlinear dynamical system in (2.21). For a detailed version of how to extend
the Koopman operator for controlled system, see [56, 71, 38, 39]. It is important
to note that the definition of the Koopman operator assumes that H remains
unchanged when acted upon by Kt. Therefore, in a controlled environment, H
will generally include functions that depend on u automatically.

2.3 Dynamic Mode Decomposition
Dynamic mode decomposition (DMD) was first introduced to the fluid dynamics
community by P. Schmid [72, 73, 74, 75] as a data-driven algorithm to iden-
tify coherent spatio-temporal structures from high-dimensional time-series data,
which is typical in fluid dynamics. Since then, DMD has become the standard
algorithm to estimate the Koopman operator from data [76, 44, 75]. The first
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link between DMD and the Koopman operator was established by Rowley et al.
[76]. DMD is based on the efficient singular value decomposition (SVD) or proper
orthogonal decomposition (POD) in fluid dynamics and, therefore, can perform
scalable dimensionality reduction for high-dimensional data. SVD hierarchically
orders modes based on the variance of the original data that each mode captures.
These modes remain constant even when the data’s order is changed over time.
In contrast, DMD modes are linear combinations of SVD modes that are specially
selected to extract spatially correlated structures that exhibit coherent linear be-
havior over time, indicated by oscillations with constant frequency with growth or
decay. Therefore, DMD provides dimensionality reduction using a low-dimensional
set of spatial modes and a linear model for the modes’ amplitudes’ time evolution.
DMD combines SVD/POD in space with the Fourier transform in time, taking
advantage of each method’s strengths [77, 75].

DMD variants, including DMD with control and delay DMD, are related to
subspace system identification methods that have been around for decades. Mod-
ern Koopman theory provides a new interpretation for these methods when applied
to nonlinear systems. DMD and Koopman-based approaches are suited for high-
dimensional systems, and DMD’s wide use is due to its efficiency in processing
high-dimensional spatio-temporal data. [38]

DMD is applicable to both experimental and simulated data and does not
require knowledge of governing equations, making it highly versatile. Its linear
algebra formulation also makes it easily extendable, leading to innovations in con-
trol, compressed sensing, and multi-resolution, among others. As a result, DMD
has been widely used in various applications beyond fluid mechanics, such as neu-
roscience, robotics, and finance.[75, 39]

2.3.1 The DMD Algorithm

The DMD algorithm approximates the best-fit linear matrix operator that ad-
vances high-dimensional measurements of a system forward in time [44]. There-
fore, DMD approximates the Koopman operator restricted to the measurement
subspace given by direct measurements of the system’s state. The goal of the
DMD algorithm is to find a linear matrix operator A that best represents the
state of a system, denoted by x ∈ Rn, as it evolves forward in time in accordance
with the following linear dynamical system

xk+1 = Axk, (2.24)

where xk = x(k∆t) with k = 1, 2, 3...m and ∆t is a fixed time step that is chosen to
be small enough to accurately capture the fastest changes or oscillations (i.e., the
highest frequencies) in the dynamics of the system. DMD is basically a data-driven
algorithm, and the matrix A is estimated using a collection of system snapshot
pairs {x(tk),x(tk + ∆t)}mk=1, where in the context of dynamic systems, a snapshot
refers to a measurement or observation of the full state of a system at a specific
point in time. This measurement is typically represented as a high-dimensional
column vector, where each element of the vector represents a different aspect or
variable of the system. In the standard DMD formulation [72], data are required
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to be generated from a single trajectory with consistent sampling in time, so that
tk = k∆t. However, here we present the exact DMD algorithm presented in [44],
since it works for unevenly spaced data and data joined from various time series.
Hence, the moments tk do not have to be consecutive or uniformly spaced, but for
each snapshot x(tk), there is a matching snapshot x(tk + ∆t) that is forwarded by
one ∆t in the future. The snapshots are organised into big data matrices X and
X
′
:

X =

 | | |
x(t1) x(t2) ... x(tm−1)
| | |

 , (2.25)

X
′
=

 | | |
x(t2) x(t3) ... x(tm)
| | |

 , (2.26)

The dynamical system in (2.24) can be expressed in terms of these matrices and
transformed into the following:

X
′ ≈ AX, (2.27)

The best-fitting matrix A builds a linear dynamical system that basically shifts
snapshot measurements ahead in time, which may be expressed as the following
optimization problem:

A = argmin
A
‖X′ −AX‖F = X

′
X†, (2.28)

Where † is the Moore-Penrose pseudo-inverse and ‖.‖F is the Frobenius norm1of a
matrix. Using the SVD of X = UΣV∗ the pseudo-inverse of X can be calculated
as X† = VΣ−1U∗ where the matrices U ∈ Cn×n, and Vm×m are unitary which
means U∗U = I and V∗V = I, and ∗ represents the complex-conjugate transpose.
Σn×m is a diagonal matrix containing the singular values. The columns of U are
usually called the POD modes as in [78, 79].

SinceA is an approximate representation of the Koopman operator constrained
to a finite-dimensional subspace of linear measurements, we are frequently focused
on the eigenvalues Λ and eigenvectors Φ of A given:

AΦ = ΦΛ, (2.29)

However, when dealing with high-dimensional data, the matrix A can become
impractical to represent and compute due to its large size of n × n elements.
Therefore, the DMD algorithm aims to find the leading spectral decomposition of
A (i.e., eigenvalues and eigenvectors) without explicitly constructing it. Rather
than calculating A using equation (2.28), we can project A onto the first r POD
modes inUr, and estimate the pseudo-inverse using the rank-r SVD approximation

1The Frobenius norm of a matrix A is given by ‖ A ‖F=
√∑m

i=1

∑n
j=1 |aij |2
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X ≈ UrΣrV∗r:

Ã = U∗rAUr (2.30)

= U∗rX
′
X†Ur (2.31)

= U∗rX
′
VrΣ

−1
r U∗rUr (2.32)

= U∗rX
′
VrΣ

−1
r , (2.33)

One can approximate the leading eigenvalues and eigenvectors of A by using the
spectral decomposition of the considerably reduced matrix Ã:

ÃW = WΛ, (2.34)

The DMD eigenvalues of the diagonal matrix Λ are consistent with the eigenvalues
of the high-dimensional matrix A. The eigenvectors of Ã that form the columns of
W act as a coordinate transformation to diagonalize the matrix. These columns
can be interpreted as linear combinations of POD mode amplitudes that follow
a single temporal pattern determined by the appropriate eigenvalue λ and act
linearly.

Since Ã is a r rank where r � n and it defines a reduced order linear model
of the original dynamical system on POD coordinates:

x̃k+1 = Ãx̃k, (2.35)

It allows for the reconstruction of the full-state system dynamics using:

xk = Ux̃k, (2.36)

The reduced system’s eigenvectors W and the time-shifted data matrix X
′
are

used to reconstruct the eigenvectors of A, that represent the DMD modes Φ by
using the following formula:

Φ = X
′
VΣ−1W, (2.37)

The DMD algorithm is summarized in Algorithm 1. Tu et al. [44] have shown that
the DMD modes correspond to the eigenvectors of the full matrixA, provided that
certain conditions are met (these conditions include the assumption that the data
matrices X and X

′
have full column rank, and that the snapshots are collected

at equally spaced time intervals). Under these conditions, the DMD modes can
be computed efficiently and accurately, and can provide a useful low-dimensional
representation of the high-dimensional dynamics of the system. Numerous open-
source implementations of the DMD algorithm are available, which can be used
to perform DMD analysis on various types of data. These implementations may
offer different features and capabilities, and can be used for various applications in
fields such as fluid dynamics, image processing, and machine learning. Some popu-
lar open-source DMD implementations include PyDMD, DMDc, and DMDLIVE,
which are available as Python packages and can be easily installed and used. Addi-
tionally, several software packages such as MATLAB and SciPy also offer built-in
DMD functions that can be used for DMD analysis [75, 53, 80].
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Algorithm 1: The Exact DMD Algorithm as in [75]
Data: Collect and arrange snapshots data from a system into matrices

X =
[
x(t1) x(t2) ... x(tm−1)

]
, X

′
=
[
x(t2) x(t3) ... x(tm)

]
Step 1: Compute the reduced SVD of the matrix X:

X ≈ UrΣrV∗r

Step 2: Define the reduced order linear matrix Ã:

Ã = U∗rX
′
VrΣ

−1
r

Step 3: Compute the eigen-decomposition of Ã:

ÃW = WΛ,

Result: Compute the DMD modes of the big matrix A:

Φ = X
′
VΣ−1W

After the DMD modes and eigenvalues have been calculated, the system state
may be expressed in terms of the DMD expansion:

xk =

r∑∑∑
j=1

φjλ
k−1
j bj = ΦΛk−1b, (2.38)

where φj and λj are DMD modes and DMD eigenvalues respectively (eigenvectors
and eigenvalues of A ), and bj are the DMD mode amplitudes. The mixture of the
DMD amplitudes b can be deduced using the first snapshot x1 of the big matrix
X :

b = Φ†x1, (2.39)

By incorporating the continuous eigenvalues ω = log(λ)/∆t, the spectral expan-
sion in (2.38) may be transformed to continuous time and written as follows:

x(t) =

r∑∑∑
j=1

φje
ωjtbj = Φ exp(Ωt)b, (2.40)

where the continuous-time eigenvalues ωj are represented by the diagonal matrix
Ω. The data matrix X may therefore be written as:

X ≈

 | |
φ1 ... φr
| |


b1

. . .
br


e

ω1t1 · · · eω1tm

... . . . ...
eωrt1 · · · eωrtm

 (2.41)
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2.3.2 Domain applications

The versatility of DMD lies in its ability to extract dynamic features from time-
varying data without requiring prior knowledge of the underlying system’s equa-
tions. This leads to an the application of DMD to increasingly diverse array
of problems, including finance [81], plasma physics [82] and robotics [83]. It
originated in fluid dynamics research [73, 72, 75], where it has been applied to
study mixing, acoustics, combustion, and various flow geometries, such as jets
[84, 85, 86], cavity flows [87, 88] , boundary layers [89, 90, 91], wakes[92, 93, 94, 95],
and shock-turbulent boundary layer interactions[96]. DMD has also been applied
to investigate epidemiological systems [97, 53], where modal frequencies often cor-
respond to yearly or seasonal fluctuations, and the phase of DMD modes provides
insight into how disease fronts propagate spatially. In neuroscience, DMD has
the potential to transform the analysis of neural recordings, as evidenced by a
recent study that identified dynamically relevant features in electrocorticography
(ECoG) data of sleeping patients [98, 99, 100]. DMD has also been used in video
processing to separate foreground and background objects, providing a flexible
platform for real-time video separation [101, 102, 103].

2.4 Extended Dynamic Mode Decomposition
The Dynamic Mode Decomposition method presented in Section 2.3 is widely
used for approximating the Koopman operator from data [76, 44, 75, 38], but it
has limitations in identifying nonlinear changes of coordinates needed for strongly
nonlinear systems because it relies on linear measurements. DMD alone may not
be sufficient to capture crucial features of nonlinear systems, such as multiple
fixed points and transients. To address this limitation, Williams et al.[3, 104, 105]
introduced the Extended Dynamic Mode Decomposition (EDMD) method. The
EDMD is a popular approach for identifying and representing Koopman embed-
dings from data. EDMD improves DMD by using an augmented vector that
includes nonlinear measurements of the system’s state. This approach allows the
best-fit linear DMD regression to be performed on the augmented vector, enabling
better approximation of the Koopman operator for strongly nonlinear systems.

More specifically, let ϕk(x) be a set of nonlinear observable functions or mea-
surements of the state x. The augmented state vector s is defined as:

s = ϕ>(x) =


ϕ1(x)
ϕ2(x)

...
ϕp(x)

 (2.42)

where s ∈ Rp is a vector that contains the original state x as well as nonlinear
measurements such that p� n. Two data matrices are produced in the same way
as previously described in DMD:
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S =

 | | |
s1 s2 ... sm−1

| | |

 , (2.43)

S
′
=

 | | |
s2 s3 ... sm
| | |

 , (2.44)

with sk = ϕ(x(tk)). A best-fit linear matrix operator AS that projects S into S
′

is created, much like in DMD:

AS = argmin
AS

‖S′ −ASS‖F = S
′
S†, (2.45)

Then, this regression may be expressed using the initial data matrices X in (2.25)
and X

′
in (2.26) used in DMD:

AS = argmin
AS

‖ϕ>(X
′
)−ASϕ

>(X)‖F = ϕ>(X
′
)(ϕ>(X))†, (2.46)

When dealing with large data sets, kernel methods [104, 39, 56, 106, 107] are
often used to perform regression analysis as the resulting augmented vector s can
be significantly larger than the original state x. By using an enriched library ϕ , a
larger basis is created to approximate the Koopman operator. Recent studies have
shown that, when the number of snapshots is in the limit of infinite, the EDMD
operator converges to the Koopman operator projected onto the subspace spanned
by the original data ϕ [108]. Even though it is recommended to use validation
and cross-validation techniques to prevent EDMD models from overfitting in some
specific situations [38, 75].

2.5 Data-Driven Control
The Koopman operator framework is particularly significant for engineering ap-
plications in control [39, 109], as it provides new potential for nonlinear system
control by overcoming theoretical and computational limits caused by nonlinear-
ity. Some of these constraints are solved by nonlinear control approaches such as
feedback linearization and sliding mode control. However, these techniques fre-
quently fail to extend beyond a restricted class of systems, and defining stability
and robustness requirements, for example, can be a difficult task [38]. Koopman-
based techniques use a linear approach that takes advantage of established the-
oretical and computational methods. These methods have proven to be effective
in tackling various demanding applications, such as robotics [110, 61, 111, 54],
chemical processes [112], power grids [68, 113], traffic [114], biology [115], logis-
tics [116] and fluid dynamics [39, 69]. This is accomplished by Koopman anal-
ysis, which represents nonlinear dynamics within a linear framework that covers
the whole basin of attraction of stable or unstable equilibria or periodic points,
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without the need for linearization. Consequently, the Hartman-Grobman theo-
rem can be extended using Koopman analysis in a globally linear fashion [40].
In addition, the Koopman operator operates on observables, making it suitable
for data-driven (model-free) methods that have been highly developed in recent
years [53, 117, 56, 71, 118, 55, 119, 58, 61]. The resultant models have demon-
strated the ability to uncover crucial information about global stability properties
[120, 121] , observability [122], controllability [123], and sensor/actuator placement
[124, 125] for the fundamental nonlinear system. Koopman operator theory shares
a strong connection with Carleman linearization [46], which likewise incorporates
finite-dimensional dynamics into infinite-dimensional linear systems. For many
years, Carleman linearization has been employed to obtain truncated linear (and
bilinear) state estimators [47] and to investigate the stability, observability, and
controllability of the underlying nonlinear system [38, 48]. However, Carleman
linearization is limited to polynomial (or analytical) systems, while the Koopman
operator framework can be used for general nonlinear systems, even those with
discontinuities, as it does not depend on the analyticity of the vector field.

2.5.1 Model Predictive Control

MPC, or model-based control, is a highly successful control scheme that has be-
come increasingly popular over the last two decades [62, 63, 64, 65, 66, 67, 126].
It is favored for its versatility, adaptability to modeling discrepancies and distur-
bances, and its use of customized cost functions and constraints. MPC has become
the standard advanced control method in process industries [66] and has gained
attraction in the aerospace industry [126]. At its core, MPC is a control scheme
that solves an optimization problem to determine the sequence of control inputs
{û0, û1, . . . , ûN−1} that will minimize a cost function J while satisfying a set of
constraints. The optimization is performed over a finite time horizon T = N∆t,
and only the first control input ûopt0 in the sequence is applied to the system. The
process then repeats, with a new measurement being taken and a new optimiza-
tion problem being solved to determine the next control input in the sequence.
One of the key advantages of MPC is its ability to incorporate customized cost
functions and constraints. This means that the control inputs can be tailored to
meet specific performance objectives, such as minimizing energy consumption, or
maintaining product quality. The constraints can also be tailored to meet spe-
cific requirements, such as limits on process variables or equipment capacities.
Figure 2.1 depicts the schematic of the receding horizon MPC framework. MPC
can handle both linear and nonlinear systems, but the most critical part of MPC
is identifying a dynamical model that accurately represents the system behavior
in the presence of actuation. If the model is linear, the optimization problem is
typically convex and can be solved efficiently. However, nonlinear systems require
more complex optimization techniques, which can be computationally expensive
and limit their real-time applicability. Koopman-based controls have benefited
from the MPC framework’s success, as its adaptive nature enables compensation
for discrepancies in the model and disturbances in the system. Several versions of
MPC, such as nonlinear MPC [64, 67], robust MPC [127], and explicit MPC [128],
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Figure 2.1: Schematic of the receding horizon model predictive control framework.

are available but are computationally expensive, limiting their use in real-time
applications. However, combining Koopman-based models with linear MPC can
significantly broaden the scope of linear MPC to address nonlinear systems.

The optimization problem, which is based on a receding-horizon approach, can
be described as follows. For linear MPC, the goal is to minimize the quadratic
objective function.

min
û(.|y)∈U

J = min
û(.|y)∈U

N−1∑
k=0

‖ŷk − yRefk ‖
2
Q + ‖ûk‖2

R + ‖∆ûk‖2
R∆

(2.47)

subject to the discrete-time linear dynamical model

x̂k+1 = Ax̂k + Bûk,
ŷk = Cx̂k,

(2.48)

and under the presence of constraints on state and input

yMin ≤ ŷk ≤ yMax, (2.49)
uMin ≤ ûk ≤ uMax, (2.50)

where ∆ûk is the control input rate given by ∆ûk := ûk − ûk−1. The state
transition matrix in model (2.48) is represented by A, while B denotes the con-
trol matrix, and C stands for the measurement matrix. The calculation of each
component in the cost function (2.47) involves determining the weighted norm
of a vector, i.e.,‖ŷ‖2

Q = y>Qy. Weight matrices Q ∈ Rn×n, R ∈ Run×un , and



2.5 Data-Driven Control 26

R∆ ∈ Run×un , used to penalize deviations of predicted output y from a reference
trajectory yRef , inputs, and input rates, respectively, are positive semi-definite
and determine their respective significance levels. After receiving the measure-
ment y, we establish the control sequence to be resolved over the moving time
horizon as û(0, . . . , N − 1|y) := {û0, û1, . . . , ûN−1}. The current output of the
plant, known as the measurement y, is utilized to assess the initial condition x̂0

when resolving the optimization problem.
There are two primary research efforts in the integration of Koopman the-

ory and MPC, which are roughly classified into discrete or continuous input ap-
proaches. For the latter, a Koopman-MPC framework has been proposed, which
leverages the Koopman operator to capture the dynamics of the system. In this
approach, the output measurements are lifted into a higher-dimensional space us-
ing a nonlinear transformation, which enables the use of linear models for the
system dynamics. Specifically, the lifted measurements are mapped to a set of
observables that form a basis for the Koopman operator. The Koopman opera-
tor is a linear operator that preserves the dynamics of the system, and it can be
used to model the evolution of the system in the augmented space. To construct
the Koopman-based model, a set of snapshots of the system’s output are used
to estimate the Koopman operator matrix. This is typically done using a lin-
ear least-squares regression problem, which minimizes the difference between the
model predictions and the observed output. The resulting Koopman-based model
is then employed in the MPC optimization process to generate the control inputs.
Figure 2.2 illustrates the MPC controller based on the Koopman operator.

Figure 2.2: Schematic of the MPC framework incorporating a model based on the
Koopman operator.

Besides the goal of achieving increased predictive power via a Koopman-based
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model, this approach further provides the possibility to readily incorporate non-
linear cost functions and constraints in a linear fashion by incorporating these
directly in the set of observables. This is because the observables, which are the
inputs to the Koopman operator, can be chosen to be any nonlinear function of the
system’s output. Therefore, by selecting appropriate observables, the nonlinear
cost functions and constraints can be incorporated in a linear manner, making it
easier to solve the MPC optimization problem [117, 38, 56].

2.5.2 Nonlinear System Identification for Control

Dynamic Mode Decomposition with Control

The DMD algorithm was extended by Proctor et al. [53] to include the effect of
actuation and control, which is called DMD with control (DMDc). The reason for
this extension is that when DMD is naively applied to data from a system with
actuation, it often gives inaccurate results because the effects of internal dynamics
are mixed with the effects of actuation. DMDc solves this problem by including
the actuation signal in the analysis to separate the effects of internal dynamics
from those of actuation and control. This approach has been used to study the
spread of diseases [97] and can also work on heavily sub-sampled or compressed
data [129]. As an alternative, if the actuation signal is measured, a new DMD
regression algorithm may be developed to extract the effects of internal dynamics
from actuation and control.

Using the following measurement data matrices of snapshots :

X =

 | |
x1 ... xm−1

| |

 , X
′

=

 | |
x2 ... xm
| |

 , Υ =

 | |
u2 ... um
| |

 (2.51)

where X and X
′
are the same as in DMD presented in Section 2.3 while Υ is a

matrix showing the history of the actuation input. The DMDc technique in this
case aims to find the best-fit linear operators A and B that roughly fulfill the
following dynamics:

xk+1 ≈ Axk + Buk, (2.52)

Using the data matrices in (2.51) the dynamics in (2.52) may be written as

X
′ ≈ AX + BΥ, (2.53)

Again, the matrix A and the corresponding DMD modes and eigenvalues may be
obtained via a least-squares regression approach as in DMD Algorithm 1. However,
we can easily distinguish two cases to consider when using this algorithm: when
the input data matrix represented by B is known, the algorithm can be modified
in order to find the DMD modes. In this modified version, X

′
is replaced with

X
′ −BΥ, where:

(X
′ −BΥ) ≈ AX, (2.54)
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However, if B is unknown, it is necessary to simultaneously identify A and B. In
this instance, we can reformulate the dynamics in (2.53) as:

X
′ ≈

[
A B

] [X
Υ

]
(2.55)

The following least-squares optimization problem is resolved to simultaneously
compute the matrices A and B :

min
[A B]

∥∥∥∥X′ − [A B
] [X

Υ

]∥∥∥∥2

2

, (2.56)

in which the solution is stated as:[
A B

]
= X

′
[
X
Υ

]†
, (2.57)

In the original paper by Proctor et al. [53], the formulation of the solution in
(2.57) was written as:

G = X
′
Ω† (2.58)

whereG =
[
A B

]
is an augmented matrix containing the unknown operators

A and B, and Ω =

[
X
Υ

]
is an augmented matrix that contains the state and

input data matrices X and Υ. The DMDc algorithm in this case where B is
unknown is presented in Algorithm 2. DMDc is a method that was initially used
in epidemiology to improve intervention efforts [130]. However, it has been used
with MPC to control nonlinear systems since then [56, 57, 131]. Surprisingly,
the DMDc method works well even for strongly nonlinear systems because it uses
both linear and nonlinear measurements of the system. DMDc offers a flexible
regression framework that can handle measurements of an actuated system and
identify accurate and efficient models [75, 38].

Extended Dynamic Mode Decomposition with Control

The DMDc algorithm is a straightforward and effective way to identify systems us-
ing numerical methods. This involves approximating the Koopman operator with
a linear model that progresses through linear observables and actuation variables
in the best possible way. EDMD is a method similar to DMD, except that it em-
ploys nonlinear observables. Williams et al. [117] introduced an EDMD extension
for controlled systems (EDMDc). This method estimates an unforced system’s
Koopman operator and accounts for the effects of inputs on system dynamics and
data. In this approach, inputs are treated as system parameters that change over
time. The Koopman operator is then represented as an operator that varies with
these parameters, taking inspiration from a type of models called linear param-
eter varying (LPV) models [38]. Korda and Mezić [56] generalized this method
to identify system matrices A and B in a higher-dimensional observable space.
This helps to clarify the unforced dynamics and control on observables, making
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Algorithm 2: The DMDc Algorithm
Data: Collect and arrange snapshots data from a system into matrices

X =
[
x1 ... xm−1

]
, X

′
=
[
x2 ... xm

]
, Υ =

[
u1 ... um

]
Step 1: Construct the augmented matrix of the state and input
snapshots Ω:

Ω =

[
X
Υ

]
Step 2: Compute the SVD of the matrix Ω:

Ω ≈ ŨΣ̃Ṽ
∗

Step 3: Decompose the matrix Ũ ∈ R(n+p)×n into Ũ1 ∈ Rn×n and
Ũ2 ∈ Rp×n where n and p are the numbers of the states and control
inputs, respectively such as:

Ũ =

[
Ũ1

Ũ2

]
Result: Compute the A and B matrices :

A = X
′
ṼΣ̃−1Ũ

∗
1

B = X
′
ṼΣ̃−1Ũ

∗
2

it less ambiguous. The Koopman operator is defined as an independent operator
on the extended state x̃ := [x>,u>]> similar to (2.23), with observables that may
involve nonlinear functions of both the state and input i.e. g(x,u). However, for
practical purposes, certain simplifications are made to enable the control prob-
lem to be formulated in a convex manner. It is assumed that the observables are
composed of nonlinear functions of the state, but linear functions of the control
input i.e. g(x,u) := [ϕ1(x) . . . ϕp(x), u1 . . . uq]

> ∈ Rp+q, by focusing solely on the
state observables ϕ(x) and limiting the dynamics of interest to them, the resulting
linear evolution equation to be established can be expressed as follows:

sk+1 ≈ Ask + Buk, (2.59)

where s ∈ Rp is the vector-valued observable described in section 2.4 as :

s := ϕ>(x) =


ϕ1(x)
ϕ2(x)

...
ϕp(x)

 (2.60)
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The (time-shifted) data matrices in the augmented space S = ϕ>(X) and S
′
=

ϕ>(X
′
) are assessed given the data X,X

′
and Υ similarly to DMDc as in (2.51).

The least-squares regression problem yields the system matrices A and B is given
by:

min
[A B]

∥∥∥∥S′ − [A B
] [S

Υ

]∥∥∥∥2

2

, (2.61)

where the solution is provided as[
A B

]
= S

′
[
S
Υ

]†
= ϕ>(X

′
)

[
ϕ>(X)

Υ

]†
, (2.62)

In many cases, the state x is considered as part of the basis or space of observables
e.g., s = [x>,ϕ(x)]>. To estimate it, one can choose the suitable elements from
the observable vector x, in order to have x = Cs with C = [In×n0] and C is
the measurements matrix. If the state vector is not considered as an observable,
one alternative approach is to solve a similar least-squares problem to obtain an
approximation of the measurement matrix:

min
C
‖X−CS‖2

2 , (2.63)

It has also been demonstrated that the state may be calculated using techniques
such as multidimensional scaling [132].

When full-state measurements are not attainable, and only input-output data
is accessible, it is common to use Time-delay coordinates which are an impor-
tant and versatile type of measurement functions for systems that exhibit long-
term memory effects. They are particularly significant in practical situations
where full-state measurements are not feasible [38], and they have shown to
outperform models that use monomials as observables in control applications
[119]. This technique is usually employed in system identification [133]. To
that end, we will examine a series of measurements involving a scalar input-
output pair, namely u(t) and x(t). Using these measurements, we can create
a vector of delayed inputs uk := [uk, uk−1, uk−2, . . . , uk−m]> and outputs
sk := g(xk) := [xk, xk−1, xk−2, . . . , xk−m]>, respectively. We can represent
a dynamical system as the following:

sk+1 = Ask + Buk, (2.64)
yk = [1 0 . . . 0] sk = xk, (2.65)

The initial component of sk is used to retrieve the present state x. For causality
to be maintained, both the system matrix A and control matrix B must have an
upper triangular structure, or else current states will be influenced by future states
and inputs. In this case, the input uk is formed using past inputs, despite the sys-
tem actually having only one input. Therefore, it is advisable to include previous
inputs in s, i.e., sk := g(xk,uk−1) := [xk, (x, u)k−1, (x, u)k−2, . . . , (x, u)k−m]>

to make the current actuation value uk appear as a single input to the system
[56, 134, 39]:

sk+1 = Âsk + b̂ uk, (2.66)
yk = [1 0 . . . 0] sk = xk, (2.67)
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The delay observables sk := g(xk,uk−1) has always been used with EDMDc when
full-measurements is absent and only input-output data is accessible [38, 56]. If the
delay information is absent, EDMDc may not be successful even after projecting
onto a higher-dimensional observable space. To derive a unified equation, we can
merge equations (2.64) and (2.65):

s1,k+1 = yk+1 =
[
CA CB

] [sk
uk

]
(2.68)

This statement is similar to the autoregressive-exogenous (ARX) models used in
linear system identification [133]. In ARX models, the present output is expressed
as a combination of past measurements and inputs in a linear manner. EDMDc
provides a linear model of the controlled dynamics, using a nonlinear transforma-
tion of the state within the space of observables. It can be used together with
any model-based control approach, much like DMDc. When combined with MPC
using a quadratic cost function, the resulting optimization problem can be proven
to be a convex quadratic programming problem, as per a study cited in reference
[56, 38]. The computational cost of this approach is comparable to that of lin-
ear MPC, and it is not affected by the number of observables. Additionally, it
performs better than MPC using a model based on either local linearization or
Carleman linearization.

2.6 Conclusion
In this chapter we offered a thorough examination of the Koopman Operator The-
ory and various well-known data-driven methodologies. We began with a review
of the Koopman Operator Theory, outlining its essential concepts and importance
in comprehending complicated dynamic systems. The Dynamic Mode Decom-
position (DMD) approach is then shown, a strong algorithm that approximates
the Koopman Operator from data generated by complicated nonlinear dynamical
systems. The Dynamic Mode Decomposition (DMD) approach is then shown, a
strong algorithm that approximates the Koopman Operator form data generated
by complicated nonlinear dynamocal systems. The DMD method and domain ap-
plications that proved its efficiency in extracting coherent structures and modes
from high-dimensional data were described. The promise of this method has been
emphasized in a variety of areas, including fluid dynamics, neurobiology, and video
analysis. Furthermore, we investigated the Extended Dynamic Mode Decompo-
sition (EDMD), which builds on the basis of DMD to address nonlinearity and
high-dimensional data issues. EDMD expands DMD’s capabilities by including
new features, allowing for more accurate representation of complex systems and
improved predictive capabilities. We looked at Data-Driven Control in the con-
text of control systems by employing the Koopman Operator Theory. Using the
Koopman model for control purposes brings up intriguing opportunities for opti-
mizing system behavior. Model Predictive Control (MPC) was established as a
major application, allowing for real-time control by repeatedly optimizing control
inputs based on projected system behavior. Furthermore, we investigated Non-
linear System Identification for Control utilizing DMD with control and EDMD
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with control, demonstrating their use in detecting nonlinear controlled systems
and building control-oriented models. These data-driven approaches give vital
insights into system dynamics, allowing the creation of effective control strate-
gies for a wide range of applications such as robots, autonomous vehicles, and
process control. Finally, the Koopman Operator and data-driven methods have
revolutionized the field of system analysis and control. Their ability to extract
meaningful information from data, detect system behavior, and assist predictive
control has opened up new research and practical application possibilities in a
variety of disciplines. As data-driven approaches progress, we may expect even
greater advances in understanding and managing complex dynamic systems in the
future, leading to more efficient, adaptive, and intelligent control methodologies.



Chapter 3

Model Order Reduction of The
ADM1 Model Using the DMD
Method

3.1 Introduction
This chapter investigates the complexities of the ADM1, a sophisticated and in-
tricate model. The properties and components of the ADM1 model are described,
allowing for a better understanding of AD dynamics. The chapter also gives the
ADM1 model’s mathematical equations, demonstrating its resilience in describing
the complicated biochemical interactions seen in anaerobic systems. The exami-
nation of this model reveals that it is a useful tool for academics and practitioners
in understanding and optimizing AD processes. Next, we apply the DMD method
to reduce the high-dimensional complexity of the ADM1 model. This approach
allows us to obtain a simplified representation of the system.

3.2 The Anaerobic Digestion Model Number.1

3.2.1 Description of the ADM1 model

The ADM1 model is a detailed model presented in a report prepared by the IWA
Task Group for Mathematical Modeling of Anaerobic Digestion Processes [1]. The
model explains the conversion of complex organic substrates into methane and car-
bon dioxide and inert byproducts. Figure 3.1 provides a summary of the model’s
focus on substrates and the corresponding conversion processes. The model in-
cludes disintegration of complex solids into carbohydrates, proteins, long chain
fatty acids (LCFA) and inert substances, and then hydrolysis of these products
to sugars, amino acids and LCFA. These substances are then fermented to pro-
duce volatile organic acids and molecular hydrogen. Methane is produced through
different mechanisms, including cleavage of acetate to methane and reduction of
carbon dioxide by molecular hydrogen. The ADM1 model uses state variables to
describe the behavior of soluble and particulate components, organic species and
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Figure 3.1: Reaction paths and COD flux as described in ADM1. [1]

molecular hydrogen are described in terms of chemical oxygen demand (COD).
Nitrogenous and inorganic carbon species are described in terms of their molar
concentrations. The ADM1 solves for the hydrogen ion concentration, and thereby
the pH, by ensuring chemical neutrality in solution. Particulate species consist
of either active biomass species or particulate substances that are incapable of
directly passing through bacterial cell walls. The model employs several kinetic
expressions that describe the conversion rates in terms of substrate concentra-
tions and rate constants. The ADM1 model also considers the inhibition caused
by extreme pH, accumulation of molecular hydrogen, and elevated free ammonia
concentrations. The liquid-gas mass transfer of gaseous components is described
by mass transfer relationships, requiring separate mass balances for the liquid and
gas phases.

3.2.2 Mathematical equations of the ADM1 model

The ADM1 has 35 dimensions in its state space and can be divided into four
categories: soluble components “S”, particulate components “X”, gas components,
and ion components. By applying the principle of mass conservation as in (5.1),
the equations describing the system can be expressed in the following manner:

• Soluble components
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[Ssu, Saa, Sfa, Sva, Sbu, Spro, Sac, SH2 , SCH4 , SIC , SIN , SI ]

d

dt
Si =

F

Vliq
(Si,in − Si) +

19∑
j=1

ρjvij (3.1)

• Particulate components
[Xsu, Xaa, Xfa, Xch, Xpr, Xpro, Xac, XH2 , Xli, Xc, Xc4, XI ]

d

dt
Xi =

F

Vliq
(Xi,in − Xi) +

19∑
j=1

ρjvij (3.2)

• Gas components
[Sgas,H2 , Sgas,CH4 , Sgas,CO2 ]

d

dt
Sgas,i = −Fgas

Vliq
Sgas,i + ρT,i

Vliq
Vgas

(3.3)

• Ion components
[Scat, San, Sva- , Sbu- , Spro- , Sac- , SHCO-

3
, SNH3 ]

d

dt
Scat = − F

Vliq
(Scat,in − Scat)

d

dt
San = − F

Vliq
(San,in − San)

d

dt
Si- = −ρA,i-

(3.4)

The ADM1 model consists of a total of 28 different processes, which fall into
three categories: 19 biochemical processes that are characterized by their reaction
rates ρj, 9 physical processes that are characterized by their acid-base rates ρA,i-
and gas transfer rates ρT,i. These processes are important for converting complex
organic substrates into methane, carbon dioxide, and other byproducts. It should
be noted that these processes are essential components of the ADM1 model, and
their accurate representation is necessary to understand the behavior of the system
being analyzed. In this context, the way in which biomass grows is described using
functions of the Monod type, and the way in which it decays is described using
first-order equations:

ρj =
km,i · Si
KS,i + Si

· Xi (3.5)

ρj = k · Xi (3.6)

The equations include various parameters such as maximum uptake rate constant
(km,i), half saturation constant (KS,i), and decomposition rate constant (k) of
component i, along with rate coefficient (vij) which represents the effect of the
jth process on the ith component. The liquid and gas volumes of the reactor are
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represented by Vliq and Vgas respectively. The concentrations of the ith component
in the reactor are denoted by Si, Xi, Sgas,i, and Si- . Additionally, the flow rate
and concentration of each component of the organic matter feed are represented
by F , Si,in and Si,in.

The following is an explicit presentation of the pH value:

pH = − log10(SH+) (3.7)

SH+ = −θ
2

+
1

2

√
θ2 + 4Kω (3.8)

θ = Scat+ − San− −
Sva-
208
− Sbu-

160
− Spro-

112
− Sac-

64
− SHCO-

3
+ SNH+

4
(3.9)

where Kω is a parameter that pertains to the transition of hydrogen ions. When
considering the total COD, it involves adding up all the organic components.

CODTotal = Ssu + Saa + Sfa + Sva + Sbu + Spro + Sac + SH2 + SCH4

+ SIC + SIN + SI + Xsu + Xaa + Xfa + Xch + Xpr + Xpro

+ Xac + XH2 + Xli + Xc + Xc4 + XI ,

(3.10)

The ADM1 takes also into account the inhibition coefficients of inorganic nitrogen,
hydrogen, and ammonia nitrogen given by the following:

IIN,lim =
1

1 +KI,IN/SIN

IH2 =
1

1 + XH2/KI,H2

INH3 =
1

1 + SNH3/KI,NH3

(3.11)

To use the ADM1 model as an accurate simulation of the AD process, it is im-
portant to first identify the critical parameters that are highly sensitive to its
performance, such as Sin, Xin, and certain rate constants. These parameters,
along with the corresponding inhibition parameters KI,IN , KI,H2 , and KI,NH3 ,
should be identified when considering a biogas plant feed with a particular type
of organic matter. Once these parameters have been identified and calibrated, the
model can be used as a reliable simulation of the AD process.

The ADM1 is a complex system that includes a large number of state vari-
ables and time constants ranging from fractions of a second to several months.
Simulation results [135, 1, 136, 137, 138] have shown that the time constants of
soluble, particulate, and gas components are much longer than those of the ion
components. This means that the soluble, particulate, and gas components can
be considered as slow states, while the ion components are considered fast states.
Furthermore, it has been observed that some of the slow states have low sensitiv-
ities to the substrate feed. This means that changes in the substrate feed have a
minimal impact on these slow states. This information is important in designing
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and optimizing the AD process, as it allows researchers and engineers to identify
the critical components of the system that require attention in order to achieve
optimal performance. ADM1 is a model that takes into account the degradation
of organic matter from composite organic to gaseous products. However, due to
its high dimensionality and numerous parameters (35 state variables and more
than 130 parameters), it is challenging to use the model for control applications.
Therefore, a reduced model must be developed. However, the reduction of ADM1
should not affect the model structure, as this could interfere with the way that
inputs, states, and outputs of different model components are linked and interact.
This is important because ADM1 is applied in various types of digesters, with
different organic feeds and under a wide range of operational conditions.

3.3 Model Order Reduction of the ADM1 Model
Using DMD Method

In this section, the ADM1 model presented in Section 3.2 is reduced using a naive
application of the DMD method explained in Chapter 2 (Section 2.3). The core
idea behind the model reduction procedure is depicted in Figure 3.2. The DMD
method can be applied on data generated from either a real AD plant or the sim-
ulation of ADM1 model, which we will be referencing to a virtual anaerobic plant
or bioreactor. The virtual plant used in this study consisted in the benchmark
version from Lund University [136, 139], where the implementation and valida-
tion of the differential and algebraic equations of the ADM1 model were carried
out (all the parameter, initial condition and constants of the ADM1 model used
in this work can be found in [136]). Using MATLAB, the ADM1 model is sim-
ulated after applying a constant dilution rate in order to generate snapshots of
data, over a simulation period of 100 days. Since ADM1 has 35 state variables,
each snapshot of data contains 35 elements. The sampling time is taken equal
to 1 day, so we have finally 100 state snapshots available for the DMD approach.
The state measurements vector (containing Soluble, Particulate and Ion and Gas
components) and data matrices are represented respectively by (3.12),(3.13) and
(3.14) as follows:

xk =



x(Ssu, tk)
x(Saa, tk)

...
x(Xi, tk)

...
x(Sgas,CO2 , tk)


(3.12)
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Figure 3.2: The ADM1 Model Reduction Procedure Using DMD method:
Data Collection: Generate data either through simulations or experiments. Col-
lect state measurements data at different time points and organize them into state
snapshots. Reshape the collected data snapshots into data matrices.
Model Reduction: Apply Singular Value Decomposition (SVD) on the data ma-
trix X. Examine the resulting sigma matrix Σ. Determine the appropriate trunca-
tion order based on the singular values. Deduce the Dynamic Mode Decomposition
(DMD) modes and amplitudes. Construct the reduced-order model using Proper
Orthogonal Decomposition (POD) modes. Utilize the POD modes to reconstruct
the dynamics of the full-state system for validation purposes.
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X =

 | | |
x1 x2 ... x100−1

| | |

 , (3.13)

X
′
=

 | | |
x2 x3 ... x100

| | |

 , (3.14)

In our analysis, each column of the matrix X , denoted as xk, represents the
measured data of 35 variables from the ADM1 model at different time points tk,
(k = 1...99). Thus, the size of matrix X is (35 × 99). To analyze the data using
MATLAB, we employed the DMD algorithm 1. By applying the SVD to our data
matrix X, we examined the sigma matrix Σ, which contains the singular values
of the ADM1 system as shown in Table 3.1. To create a reduced-order model, we
retained only the singular values corresponding to the desired reduced order of the
global linear model. The remaining singular values, associated with dynamics that
have less influence on the overall system behavior, were truncated. In this case, we
decided to retain only 7 modes, highlighted in red in Table 3.1. It is important to
mention that in [140], the authors employed a similar method based on Principal
Component Analysis (PCA) for reducing the complexity of the ADM1 model.
They proposed three potential reduced models of the ADM1, starting with 7, 8,
and 9 state variables. This parallel can be drawn with the singular values matrix
Σ in Table 3.1, where we can observe the flexibility to choose either 8 or 9 values
instead of solely 7.

Ã =



1.0000 0.0017 0.0925 0.1151 −0.0051 −2.5154 1.2853
0.0004 0.9801 −2.2847 −3.0447 1.8790 65.4570 −11.5858
−0.0003 0.0112 0.7896 −0.3413 1.2606 7.7779 11.2188

0 0.0022 0.0424 0.9697 0.2909 −0.2709 3.6992
0 −0.0002 −0.0137 0.0220 0.7279 −0.6853 −2.4070
0 −0.0001 −0.0029 0.0022 0.0151 0.9111 0.3044
0 0 0.0020 −0.0025 0.0444 0.1197 0.0717


,(3.15)

One significant advantage of the DMD method is its capability to generate
a linear global model while allowing us to choose the desired level of linear or-
der approximation. By applying the DMD method, we successfully reduced the
ADM1 model from 35 states to just 7 states , which correspond to the dominant
dynamics of the AD process. To verify the accuracy of our selection of dominant
modes in the reduced linear model with the given constant coefficients matrix Ã in
(3.15), we reconstructed the original data matrix X generated from the simulation
of ADM1 model over a period of 100 days. In order to illustrate the effectiveness
of the method, we present Figures 3.3, 3.4, and 3.5, which show the comparison
of a subset of original state variables of ADM1 and the states generated from the
reduced DMD model: 6 soluble components in Figure 3.3, 6 particulate compo-
nents in Figure 3.4, and 3 gas components and 3 ion components in Figure 3.5.
We compare the original data with the data recovered from the reduced model
using the DMD algorithm 1. The comparison was conducted for two time inter-
vals: the first 100 days (0...100 days) where measurements were available, and the
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σi 1 2 3 4 5 6 7 8 9 ... 35
1 343.3 0 0 0 0 0 0 0 0 · · · 0
2 0 16.9 0 0 0 0 0 0 0 · · · 0
3 0 0 1.29 0 0 0 0 0 0 · · · 0
4 0 0 0 0.42 0 0 0 0 0 · · · 0
5 0 0 0 0 0.07 0 0 0 0 · · · 0
6 0 0 0 0 0 0.015 0 0 0 · · · 0
7 0 0 0 0 0 0 0.006 0 0 · · · 0
8 0 0 0 0 0 0 0 0.0025 0 · · · 0
9 0 0 0 0 0 0 0 0 0.0017 · · · 0
...

...
...

...
...

...
...

...
...

... . . . 0
35 0 0 0 0 0 0 0 0 0 0 0

Table 3.1: The matrix Sigma Σ, where singular values are reported in the diagonal
and, where the 7th order is the truncation target.
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Figure 3.3: DMD applied on the ADM1 data: Soluble Components results com-
parison
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Figure 3.4: DMD applied on the ADM1 data: Particulate Components results
comparison
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Figure 3.5: DMD applied on the ADM1 data: Gas and ions Components results
comparison
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subsequent 100 days (101...200 days) where no data was collected. These initial
results obtained using the DMD method have been highly satisfactory, particu-
larly considering that this is a data-driven technique without any prior knowledge
of the underlying dynamics of the complex ADM1 model. The fact that the DMD
approach can successfully capture and represent the dominant dynamics of the
system without relying on detailed knowledge of the model is remarkable. Fur-
thermore, it is important to highlight that similar positive results were obtained
for other variables in addition to the ones presented. This indicates the robustness
and effectiveness of the DMD method in capturing the essential dynamics of the
system across multiple variables. These findings suggest that the reduced linear
model derived through the DMD method holds promise for various applications.
It provides a simplified representation of the complex ADM1 model while main-
taining a high level of accuracy in capturing the system’s behavior. These results
open up possibilities for utilizing the reduced model in process control applica-
tions and further exploring its potential in optimizing and controlling anaerobic
digestion processes.

3.4 Conclusion
In conclusion, there is a gradual progress towards comprehensive AD models, cul-
minating in the ADM1, which represents a highly detailed model for AD processes.
Emphasizing the significance of this mathematical model as an approximation of
real-world systems, we delve into the characteristics and properties of the ADM1
model. Understanding these mathematical representations is crucial as they serve
as the foundation for generating data that can be employed as input for our sub-
sequent data-driven techniques. The DMD method was employed to extract a
simplified linear model from the intricate ADM1 system, reducing 35 state vari-
ables to 7 while retaining the primary dynamics. Moreover, the initial ADM1
state variables were successfully recovered using the linear reduced model, show-
casing the potential of this approach for modeling and predicting system behavior.
The success of the DMD method in producing satisfactory results without relying
on explicit knowledge of the ADM1 model’s dynamics underscores its value as a
valuable tool in data-driven modeling and analysis. It offers a practical approach
to understanding and leveraging the behavior of complex systems based solely on
observational data.



Chapter 4

Modeling the AM2 Model Using the
DMDc Technique

4.1 Introduction
The chapter looks at the AM2 classical modeling approach, which provides a
detailed explanation of the biological and kinetic reactions involved using the mass
balance law. The AM2 model’s mathematical equations were refined, revealing
insight on the measurement and modeling of the anaerobic process. We employ the
DMDc technique for the data-driven modeling of the AM2 model as an alternative
modeling approach for AD systems modeled by the AM2. This method facilitates
the construction of a data-driven model for the AM2 system, which can be valuable
for system analysis and control design.

4.2 The Two Step Anaerobic Model

4.2.1 Description of the model: biological and kinetics re-
actions

The Anaerobic Model 2 (AM2 ) proposed by Bernard et al [5], is a simple model
which represents AD in two steps (Acidogenesis-Methanogenesis). It is a model
developed within the framework of the European Research Project called AMOCO
and it is derived from the law of mass balance [25]. The primary purpose of
developing the AM2 model is to facilitate the design of monitoring and control
systems for AD processes. It is not intended as a numerical simulation tool for
studying process behavior. The model primarily focuses on describing the AD of
soluble substrates or those with minimal particulate content [21], [141]. The AM2
model describes the dynamics of six state variables: two consortia of bacteria X1

and X2, two types of substrates S1 and S2, Total Inorganic Carbon component C
and Total Alkalinity component Z.

The two steps and biological reaction schemes of the AM2 model are given by
the following :

1. Acidogenesis: The process of acidogenesis involves a group of acidogenic



4.2 The Two Step Anaerobic Model 44

bacteria X1, which breaks down the organic substance (S1) into two main
products: Volatile Fatty Acids (VFA) (S2) and carbon dioxide (CO2). This
degradation occurs at a reaction rate denoted as µ1(S1)X1:

k1S1
µ1(S1)X1−−−−−→ X1 + k2S2 + k4CO2 (4.1)

2. Methanogenesis: At this step, the group of methanogenic bacteria X2,
converts the substance S2 into methane (CH4) and carbon dioxide (CO2).
This transformation occurs at a specific reaction rate denoted as µ2(S2)X2:

k3S2
µ2(S2)X2−−−−−→ X2 + k6CH4 + k5CO2 (4.2)

The state S2 primarily consists of acetate, propionate, and butyrate and is as-
sumed to behave like acetate. The Total COD is the sum of S1 and S2, i.e.
CODTotal = S1 + S2 [5]. One of the primary challenges in AD is the possibility of
VFA (S2) accumulation within the bioreactor during the process of methanogen-
esis. This accumulation has the potential to disrupt the stability of the process
by causing acidification in the bioreactor. To address this inhibitory effect, a Hal-
dane equation is employed to model the specific growth rate of methanogens (the
specific growth rate of X2 on S2), which is represented as µ2(S2):

µ2(S2) = µ2max
S2

S2
2

Ki
+ S2 +K2

(4.3)

where:

• µ2max is the maximum growth rate of X2 on S2.

• K2 the half-saturation constant associated with the Substrate S2.

• Ki is the inhibition constant linked to the substrate S2.

The acidogenesis specific growth rate µ1(S1) (the specific growth rate of X1 on S1)
is modeled by a Monod type equation given by

µ1(S1) = µ1max
S1

S1 +K1

, (4.4)

where:

• µ1max is the maximum growth rate of X1 on S1.

• K1 the half-saturation constant associated with the Substrate S1.
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Figure 4.1: Schematic diagram of an CSTR modeled by AM2 model

4.2.2 Mathematical Equations of The AM2 Model

Figure 4.1 depicts a simplified representation of an anaerobic CSTR modeled
by AM2 model. The diagram illustrates the bioreactor’s continuous operational
mode. Furthermore, by applying the mass balance law in (5.1), the AM2 model
is derived and its original mathematical equations as proposed in [5] are:

Ṡ1 = D(S1in − S1)− k1µ1(S1)X1, (4.5)

Ẋ1 = (µ1(S1)− αD)X1, (4.6)

Ṡ2 = D(S2in − S2) + k2µ1(S1)X1 − k3µ2(S2)X2, (4.7)

Ẋ2 = (µ2(S2)− αD)X2, (4.8)

Ċ = D(Cin − C)− qC + k4µ1(S1)X1 + k5µ2(S2)X2, (4.9)

Ż = D(Zin − Z), (4.10)

Where the states of the AM2 model are:

1. S1: is the substrate concentration of carbonic substance (g/L).

2. X1: is the population concentration of acidogenic bacteria (g/L).

3. S2: is the substrate concentration of VFA (mmol/L).

4. X2: is the population concentration of methanogenic bacteria (g/L).

5. C : is the concentration of the total inorganic carbon (mmol/L).

6. Z : is the concentration of the Total Alkalinity (mmol/L).

And the AM2 model parameters are:

• α ∈ [0, 1]: is the fraction of bacteria in the liquid phase.

• k1: is the yield for substrate degradation (g/g).
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• k2: is the yield for VFA production (mmol/g)

• k3: is the yield for VFA consumption (mmol/g)

• k4: is the yield for CO2 production (mmol/g)

• k5: is the yield for CO2production (mmol/g)

• qC : is the CO2 flow rate (mmol/L per day)

The dilution rate D = F
V

(1/day) considered as the control input. In addition,
S1in, S2in, Cin and Zin are respectively the input concentrations of the substrates
S1, S2, C and Z. When it comes to modeling the biogas production, the flow rate
of biogas (qm), which includes methane (CH4) and carbon dioxide (CO2), can be
represented mathematically based on the current values of the state variables:

qm = k6µ2(S2)X2, (4.11)

where k6 is the yield for biogas production (mmol/g).

Next, for the purpose of our work and for simplifications, we disregard the
variables C and Z, and denote ξ = [S1, X1, S2, X2]> as the vector of state variables.
This will not pose any issues for the mathematical analysis of the fourth-order
model (4.5)-(4.8), as it is independent of the C and Z variables. The variables C
and Z can be added later if needed.

Considering the state vector ξ, the fourth-order model (4.5)-(4.8) used in this
study is expressed as a general nonlinear state space model in a matrix form given
below:

ξ̇ = Kr(ξ)−Dξ + F (4.12)

where

r(ξ) =

[
µ1(S1)X1

µ2(S2)X2

]
, K =


−k1 0

1 0
k2 −k3

0 1

 , F =


DS1in

0
DS2in

0

 , D =


D 0 0 0
0 αD 0 0
0 0 D 0
0 0 0 αD

(4.13)

4.3 Data-Driven Modeling of the AM2 Model us-
ing DMDc Method

In this section, we expand the application of the DMD method to derive a lin-
ear controlled model for the AM2 model discussed in Section 4.2. The DMDc
method is a nonlinear system identification technique that relies solely on data,
as explained in Section 2.5.2. The main distinction between DMD and DMDc
lies in the incorporation of control. While DMD is capable of producing a linear
operator that describes the system’s behavior, it cannot differentiate the influence
of control on the system. In contrast, DMDc can generate a discrete controlled
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linear model, which is useful for identifying and controlling nonlinear systems.
First, we generate the training data by considering the AM2 model in (4.5)-(4.8),
and rewritten in the following as a virtual system:

Ṡ1 = u(S1in − S1)− k1µ1(S1)X1

Ẋ1 = (µ1(S1)− αu)X1

Ṡ2 = u(S2in − S2) + k2µ1(S1)X1 − k3µ2(S2)X2

Ẋ2 = (µ2(S2)− αu)X2

(4.14)

where u is the control input of the system and it is the dilution rate D (day−1).
The parameters used for this simulation are given in the following Table 4.1 which
were taken from the original paper of the AM2 model [5] just to give a practical
sense of identification process.

Parameter Value Unit
S1in 20 g/L
S2in 150 mmol/g
µ1max 1.5 day−1

µ2max 0.74 day−1

k1 42.14 −
k2 116.5 mmol/g
k3 268 mmol/g
K1 7.1 g/L
K2 9.28 mmol/g
Ki 256 mmol/g
α 1 mmol/g

Table 4.1: Parameters used in the simulation of the AM2 model using MATLAB
as in [5].

We create the training data matrices presented in (4.15), (4.16) and (4.17)
by spanning 100 days, incorporating a discrete control input u (Figure 4.3). The
control input takes the form of a Pseudo-Random Binary Signal (PRBS) [142],
characterized by deterministic behavior with properties similar to white noise,
and serves to represent various potential interventions.

X =


S1

1 S2
1 , ..., S100−1

1

X1
1 X2

1 , ..., X100−1
1

S1
2 S2

2 , ..., S100−1
2

X1
2 X2

2 , ..., X100−1
2

 , (4.15)

X
′
=


S2

1 S3
1 , ..., S100

1

X2
1 X3

1 , ..., X100
1

S2
2 S3

2 , ..., S100
2

X2
2 X3

2 , ..., X100
2

 , (4.16)
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Υ =
[
u1 u2 , ..., u100−1

]
(4.17)

The initial column of matrix X in (4.15) represents the state measurements of
the AM2 model in (4.14), in the first day. These measurements are obtained
by applying the control input (u1) from the input matrix Υ in the same day.
Moreover, the matrix X′ in (4.16) is identical to X, but it is shifted one time
step (∆t = 1day) into the future. Once the data has been gathered, it is pro-
cessed using the DMDc Algorithm 2. The purpose of running this algorithm is
to create a linear state-space model for the full-state AM2 system. This model
aims to represent the behavior and dynamics of the original system. To assess
the accuracy and reliability of the DMDc model generated, a validation process is
carried out. This validation involves applying the same control input to both the
original AM2 system and the identified DMDc model, but over a a longer time
period. By doing this, we can observe and compare how both systems respond
and check if the DMDc model accurately captures the behavior of the real system.
Figure 4.4 presents the results of both the training and validation phases of the
DMDc algorithm. The figure displays two parts: the Training phase (identifica-
tion) represented with a grey background and the Validation phase (prediction)
represented with a white background. In the Training phase, the DMDc model
is created, and in the Validation phase, the model’s predictive capabilities are
assessed. The purpose of this analysis is to identify a linear model by comparing
the measured data from the CSTR with the data generated by the DMDc model.
This comparison is achieved by applying the same PRBS control inputs shown in
Figure 4.3. The excellent fit of the DMDc global linear state-space input-output
model to the measured data of the AD system is easily noticeable. To thoroughly
test the DMDc linear model’s capabilities, we deliberately introduced instability
by applying a PRBS control input. This allowed us to assess how well the DMDc
model could accurately respond to such challenging conditions. The results of
this evaluation are quite promising. The Linear DMDc model, characterized by
the matrices A and B given in (4.18) , exhibits precise predictions of the real
system’s measured data. Notably, it efficiently tracks and adapts to any sudden
changes in the behavior of the AM2 dynamics, considering the variable control
input. The DMDc global linear model’s accuracy in capturing the real system’s
dynamics is remarkable and noteworthy. It is important to stress that the DMDc
method operates solely on data, making it a fully data-driven approach. By us-
ing only input-output data, the method constructs a comprehensive global linear
state-space model. This model can then be easily employed for various tasks, such
as state-estimation and control. This data-driven nature not only simplifies the
model construction but also ensures its applicability to real-world systems without
the need for extensive system knowledge or complex mathematical models. The
ability to use input-output data directly makes the DMDc approach highly acces-
sible and versatile for practical applications in engineering and control systems.

A =


0.0873 0.1929 −0.0033 −0.7343
0.0224 1.1087 0.0006 −0.0493
−0.5018 −0.7024 0.2263 −3.4821
0.0146 0.4848 0.0051 0.7353

 , B =


9.1095
−0.2337
32.5205
−0.2903

 (4.18)
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Figure 4.2: The nonlinear system identification process using DMDc applied to
the AM2 model: Training Phase : Generate data collect data by applying a
PRBS control input to the CSTR modeled by AM2 model. System Identification
Phase: Use the data matrices X, X ′ and Υ in (4.15), (4.16) and (4.17) as an
input to the DMDc Algorithm 2 and generate as a output a DMDc state-space
model. Validation Phase: Apply a PRBS control input for a longer time period
to both original CSTR reactor and DMDc model. Compare the results between the
measured and DMDc data in corder to validate the model.
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In Figure 4.2, the three step system identification process used in this study is
shown.
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Figure 4.3: PRBS Control Input for Training and Validation
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Figure 4.4: DMDc applied on the AM2 model for modeling and identification by
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4.4 Conclusion
In summary, this chapter provides in-depth investigation of the AM2 model within
the framework of AD processes. A data-driven approach was applied to the AM2
in order to deduce a global linear state-space input-output model for controlled
AD processes. Demonstrating the accuracy of the DMDc algorithm, the results
illustrated the DMDc model’s ability to predict AM2 dynamics even under vary-
ing control inputs, setting the stage for future utilization of this linear model for
controlling AD systems through established linear control techniques. In short,
this chapter presented the effectiveness of DMDc in constructing simplified models
for AM2 model and highlighted their potential in enhancing control and predic-
tion capabilities. By bridging the gap between theoretical models and real-world
applications, these techniques offer new avenues for tackling intricate systems in
various fields.



Chapter 5

Data-Driven Modeling, Forecasting
and Controlling of the Chemostat
Dynamics

5.1 Introduction
In this chapter, we began by looking at the Chemostat’s basic model, which gives a
basic understanding of the bioprocesses system dynamics. The model was derived
from the well-known mass balance law as it is the basics of bioprocesses math-
ematical modeling. Then, we explore the broader application of the Koopman
operator theory and its data-driven approximation. We demonstrate its efficacy
in the data-driven modeling and controlling of a CSTR. This data-driven tech-
niques offers a powerful framework for understanding the system dynamics and
designing control strategies based on available data.

5.2 The Simple Mathematical Model of the Chemo-
stat

The Chemostat also known as a Continuous Stirred-Tank Reactor (CSTR) is a
continuous culture system used in microbiology and biotechnology to maintain a
stable environment for microorganism growth. It consists of a bioreactor where a
culture of microorganisms is continuously supplied with nutrients at a controlled
flow rate while an equal volume of the culture is removed to maintain a constant
volume. By regulating the nutrient supply and dilution rate, the growth rate and
biomass concentration of the microorganisms can be controlled. The chemostat
allows researchers to study microbial growth dynamics, nutrient utilization, and
various biochemical processes under controlled conditions, making it valuable for
research and industrial applications [2], [25]. Figure 5.1 provides a basic diagram
illustrating a fully mixed CSTR. The typical way to describe the dynamic behavior
of a specific population of microorganisms, labeled as X, that resides in a CSTR
and relies on a particular limiting substrate, labeled as S, often involves employing
equations derived from the well-established mass balance principle [2], [17], given
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Figure 5.1: A basic schematic representation of a totally mixed Chemostat or
CSTR [2]

by:
Time variation
of the mass of
the component
in the tank

 =


Mass of the
component
that goes in
the tank

−


Mass of the
component

that goes out
of the tank

±

Mass of the
component
produced or
consumed

 (5.1)

The assumption of complete mixing within the CSTR implies that the concentra-
tions are uniformly distributed throughout the tank, meaning that the concentra-
tions at the outlet of the reactor is the same as the concentrations at any other
point within the tank.

According to (5.1), the equation representing the mass balance for the substrate
S in the CSTR depicted in Figure 5.1 is expressed as follows:

dS

dt
=
F

V
Sin −

F

V
S − kµ(S)X (5.2)

The mass balance of the biomass X in the CSTR is similarly given by:

dX

dt
= −F

V
X + µ(S)X (5.3)

Where S is the substrate concentration (g/L) , X is the biomass concentration
(g/L), Sin is the input substrate concentration (g/L), k is the biomass substrate
consumption yield coefficient. F and V are the flow rate (L/day) of the CSTR
and its volume (L) respectively. D is the dilution rate given by D = F

V
(1/day).

It is important to note that Sin and D are regarded usually as controlled variables
or inputs in the CSTR. The specific growth rate of the biomass on the substrate,
denoted as µ(S), represents the rate at which the biomass increases in relation to
the substrate concentration. This growth rate is influenced by various factors and
can be represented by different mathematical functions.

The typical mathematical representation of the CSTR is commonly expressed
as a system of interconnected ODEs, as follows:

{
Ṡ = D(Sin − S)− kµ(S)X

Ẋ = (µ(S)−D)X
(5.4)
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In our work, we suppose that the initial conditions S0 and X0 of system (5.4) are
in the box [S−0 , S

+
0 ]× [X−0 , X

+
0 ] ⊂ Σ where the set Σ is defined by :

Σ = {(S,X) ∈ R2
+ : 0 < S < Sin and X > 0}

The literature widely acknowledges and establishes the well-known fact that the
state variables will remain positive for all future time instances [2], [25], [17]. In
relation to the kinetics µ(S) of the CSTR in (5.4), we employ two commonly used
and widely accepted models to describe the growth rate of the biomass:

• Monod Model:
µ(S) =

µMS

K + S
(5.5)

where:

– µM is the maximum growth rate.

– K the half-saturation constant .

The Monod model, named after Jacques Monod [143], considers the sub-
strate concentration S as the sole limiting factor for microbial growth. It
assumes that the growth rate of the biomass X is directly proportional to
the substrate concentration S, with a saturation effect. This model is partic-
ularly effective for studying microorganisms that exhibit nutrient-dependent
growth patterns.

Upon substituting equation (5.5) into equation (5.4), we obtain a CSTR that
exhibits Monod-type kinetics. This modified CSTR, referred to as CSTRm,
is described by the following:{

Ṡ = D(Sin − S)− k µMS
K+S

X

Ẋ = ( µMS
K+S
−D)X

(5.6)

• Haldane Model:
µ(S) =

µMS

Ks + S + S2

Ki

(5.7)

where:

– µM is the maximum growth rate in the absence of inhibition.

– Ks the half-saturation constant.

– Ki the inhibition constant.

The Haldane model, developed by J.B.S. Haldane [144], takes into account
additional factors such as substrate inhibition and toxic effects. It offers
a more comprehensive representation of the complex dynamics observed in
microbial growth, considering both substrate utilization and potential in-
hibitory effects. This model is particularly useful when studying systems
with varying substrate concentrations and potential inhibitory compounds.
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By substituting equation (5.7) into equation (5.4), we obtain a CSTR with
Haldane-type kinetics (referred to as CSTRh), which can be expressed as:

Ṡ = D(Sin − S)− k µMS

Ks+S+ S2

Ki

X

Ẋ = ( µMS

Ks+S+ S2

Ki

−D)X
(5.8)

By employing these well-established models of the CSTRm in (5.6) and CSTRh
in (5.8), researchers and scientists gain valuable insights into the behavior and
kinetics of microorganisms in different environments and under varying substrate
conditions. These models have widespread applications in fields such as bioprocess
engineering, environmental microbiology, and pharmaceutical research, enabling
better understanding, control, and optimization of biological systems. The behav-
ior of the two CSTR models, is directly influenced by the kinetics models presented
in equations (5.5) and (5.7). This relationship has been demonstrated in previous
studies [2], [25], [17]. Moreover, it is important to note that the Monod model in
equation (5.5) is a monotonic function and has a bounded behavior, whereas the
Haldane model in equation (5.7) is non-monotonic and does not exhibit such con-
straints. This distinction is illustrated in Figure 5.2, emphasizing the contrasting
dynamic characteristics of the two models.

Figure 5.2: The graphs of Monod and Haldane functions

5.3 Data-Driven Modeling and Forecasting of the
Chemostat Dynamics

This section focuses on forecasting Chemostat dynamics using the EDMDc data-
driven approach, which was introduced in Chapter 2, Section 2.5.2. The goal is to
create a data-driven model based on the Koopman operator theory , as discussed
in Chapter 2, Section 2.2. This model enables the prediction of future states for
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the nonlinear dynamical system of the chemostat presented in Section 5.2, solely
relying on measurements of the system’s states and inputs. The presented predic-
tor exhibits a linear structure and offers various applications, including diagnos-
tics, state estimation, future state prediction, and control of nonlinear Chemostat
systems. An essential aspect of this approach is that it is entirely data-driven,
simplifying the process through nonlinear data transformation (embedding) and
a linear least squares problem in the embedded space. This simplicity allows for
the straightforward handling of large data sets, making the method efficient and
practical. In addition, by employing the EDMDc data-driven technique, we can
develop a predictive model for the chemostat dynamics, leveraging the Koopman
operator theory. The resulting linear structure facilitates versatile uses in under-
standing, predicting, and controlling nonlinear chemostat systems, making it a
valuable tool in various applications.

To simplify numerical control and data storage, the continuous-time dynamical
system of the Chemostat described in equation (5.4) is transformed into a discrete-
time dynamics model. This conversion allows us to represent the system’s behavior
at specific time intervals rather than continuously. By discretizing the model, we
can work with discrete data points, making it more manageable for computational
purposes and enabling easier implementation of prediction and control algorithms.
Additionally, this discrete-time representation facilitates data storage since it re-
quires storing values at specific time instances, rather than continuously recording
data points. Denote x = [S,X]> the state vector and u ∈ [uMin, uMax] is the
control input where it is considered to be the dilution rate, e.i. D ∈ [DMin, DMax].
Hence, the nonlinear system (5.4) can be seen as:

ẋ = f(x, u), (5.9)

Using the Runge-Kutta fourth order approach as in [4], the discrete-time model
of chemostat is given by:

xk+1 = xk +
Td
6

(k1 + 2k2 + 2k3 + k4), (5.10)

where k1, k2, k3, k4 are given as:
k1 = f(tk, xk, u(tk)),

k2 = f(tk + Td
2
, xk + Td

2
k1, u(tk + Td

2
))

k3 = f(tk + Td
2
, xk + Td

2
k2, u(tk + Td

2
))

k4 = f(tk + Td, xk + Tdk3, u(tk + Td))

(5.11)

where tk is the time instant and Td is the sampling time.
The discrete-time dynamical model (5.10) can be rewritten as follows:

xk+1 = f(xk, uk), (5.12)

where xk = [Sk, Xk]
>, xk ∈ Σ ⊂ R2

+ and u ∈ U ⊂ R1.
In this scenario, we consider the system (5.12) for which we have access to

full-state measurements, meaning we can directly observe the system’s states, de-
noted as yk = xk. To analyze the system’s behavior more effectively, we employ a
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technique called embedding, which involves mapping the original state space into
a higher-dimensional space using nonlinear observable functions. By transform-
ing the data into this higher-dimensional state space, we can apply the EDMDc
algorithm to process the augmented data effectively. The main objective is to
approximate the Koopman operator, which is a linear operator representing the
Chemostat’s underlying dynamics in the new embedded space. Through the ED-
MDc algorithm, we can derive the matrices A,B, and C of the linear Koopman
model in least-squares sense. These matrices are crucial for the construction of
the linear Koopman model that accurately describes the Chemostat’s behavior in
the augmented space. The obtained model can then be used for analysis, predic-
tion, and control of the Chemostat’s dynamics. Figure 5.3 describes the process
of identifying a linear dynamical model of the chemostat using operational data
from either the CSTRm in (5.6) or CSTRh in (5.8) within the framework of the
Koopman operator theory.

Figure 5.3: By using operational data from the Chemostat (CSTRm or CSTRh), a
linear dynamical model of the chemostat can be identified. This process proceeds
in two steps: Step 1: The measured states of the system are lifted or embedded
to a higher-dimensional state space with the help of nonlinear observable functions
e.g., common basis functions in the existing literature, the thin plate spline radial
basis function , the Gauss basis function, the polynomial basis function and the
Fourier basis function [3], [4]. Step 2: The EDMDc algorithm is applied to the
lifted data. This algorithm allows for the approximation of the Koopman operator,
which characterizes the underlying chemostat dynamics in the higher-dimensional
space. In this step, the matrices A,B, and C are obtained using a least-squares
approach, which further refines the model’s accuracy.

5.3.1 Application to the CSTR with Monod Kinetics

First, we perform the numerical simulation to apply the data-driven approach to
the chemostat with Monod kinetics or CSTRm presented in (5.6). To simplify,
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the latter can be rewritten as:

dx1

dt
= u(Sin − x1)− kµmax

x1

x1 +K
x2

dx2

dt
= µmax

x1

x1 +K
x2 − ux2

(5.13)

where x1, x2 are the substrate and the biomass concentrations S, X, respectively
and the control input u is the dilution rate D. The parameters used are given in
the following table:

Parameter Value Unit
Sin 2 g/L
µM 1 day−1

K 0.2 g/L
k 1 −−

Table 5.1: CSTRm parameters

The CSTRm model described in equation (5.13) and with the parameter val-
ues presented in Table 5.1 exhibits a maximum of two equilibrium points. The
first equilibrium point is termed the "undesired washout equilibrium" denoted as
E0(2; 0), where the chemostat experiences bacterial washout. The second equilib-
rium point, referred to as the "desired positive equilibrium" E1(0.2; 1.8), corre-
sponds to the normal functioning state of the chemostat, where the substrate S is
degraded by biomass X. The existence and stability of these equilibria depend on
the values of the operating parameters D and Sin. To illustrate the behavior of the
system around the positive equilibrium, Figure 5.4 showcases the dynamics of the
CSTRm model. In this region, the chemostat operates near the desired positive
equilibrium, and the figure highlights how the system behaves under these con-
ditions. For more comprehensive insights into the analysis of equilibria and their
stability, readers are encouraged to refer to the source [25]. This reference provides
detailed information on the mathematical analysis of the equilibrium points and
their stability properties in the context of the Chemostat model, enabling a deeper
understanding of the system’s behavior and performance characteristics.

Data Collection

To collect the data, we discretize the scaled dynamics of the CSTRm in (5.13) with
a descritization period Td = 0.1 day. Subsequently, we conduct 200 individual
trajectories of the system over 1000 sampling periods, applying a PRBS control
input that is uniformly distributed within the range [0.01, 0.5]. In order to initiate
these trajectories, we randomly generate initial conditions x1(0) and x2(0) from
a uniform distribution within the box [0, 2]2. This approach ensures a diverse set
of starting points for the trajectories, providing a comprehensive representation
of the system’s behavior. The collected data is then organized into the following
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Figure 5.4: Numerical simulation of system (5.13) around the positive equilibrium.
Right: the solutions S(t) and X(t) with respect to time, Left: the phase plan X(t)
with respect to S(t) for different initial conditions.

three matrices:

X =

[
x1

1 x2
1 , ..., x200000−1

1

x1
2 x2

2 , ..., x200000−1
2

]
, (5.14)

X
′
=

[
x2

1 x3
1 , ..., x200000

1

x2
2 x3

2 , ..., x200000
2

]
, (5.15)

Υ =
[
u1 u2 , ..., u200000−1

]
(5.16)

MatrixX of size 2×2·105 comprises the system’s state measurements, capturing
the state variables x1 and x2 over the specified trajectory periods. MatrixX

′
of size

2× 2 · 105 contains the shifted states matrix. Lastly, matrix Υ of size 1× 2 · 105

contains the control inputs applied to the system during the trajectories. By
employing this data collection approach, we can obtain a significant amount of
information about the CSTRm model’s behavior and dynamics.

Basis Functions Selection and Embedding

There are many basis functions that can be used as embedded functions or obeserv-
ables in order to augment the data matricesX andX′ . The Radial Basis Functions
(RBF) are one of the most effective and commonly-used basis functions in the ap-
proximations of the Koopman operator from data, as recommended in [3, 4, 56].
In this work, we choose the Thin Plate Spline RBFs [145] given by:

ϕ(x) =‖ x− xc ‖2 log(‖ x− xc ‖)) (5.17)
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where xc = x0 is the center and it is randomly selected with consistent distribution
over [0, 2]2. We choose the embedded functions ϕi to be equal to the state itself
(ϕ1 = x1, ϕ2 = x2) and 30 RBFs, therefore, the dimension of the augmented
state-space is N = NRBF + 2 = 32. The lifted data matrices S and S′ are given
as:

S = ϕ(X) =


x1

1 x2
1 , ..., x200000−1

1

x1
2 x2

2 , ..., x200000−1
2

ϕ1
3(x) ϕ2

3(x) , ..., ϕ200000−1
3 (x)

...
... , ...,

...
ϕ1

32(x) ϕ2
32(x) , ..., ϕ200000−1

32 (x)

 , (5.18)

S′ = ϕ(X′) =


x2

1 x3
1 , ..., x200000

1

x2
2 x3

2 , ..., x200000
2

ϕ2
3(x) ϕ3

3(x) , ..., ϕ200000
3 (x)

...
... , ...,

...
ϕ2

32(x) ϕ3
32(x) , ..., ϕ200000

32 (x)

 , (5.19)

The matrices S, S′ and Υ (not lifted input matrix) are used as an input for the
EDMDc method presented in Chapter 2 Section 2.5.2 in order to construct the A,
B and C matrices for the linear Koopman model of CSTRm as already illustrated
in Figure 5.3.

Model Comparison

The study compares the performance of the linear Koopman model with two
other predictors based on local linearizations of the CSTRm model. The local
linearizations are conducted around a given initial condition x0 and the desired
positive equilibrium E1(0.2; 1.8).

The figures (Figure 5.6 and Figure 5.7) illustrate the results, demonstrating
the significantly higher accuracy of the proposed Koopman model compared to the
predictors based on local linearizations. To generate these predictions, a PRBS
control input u = D presented in Figure 5.5 is applied, with uniformly distributed
in the range [0.1, 0.43]. The simulations start from two different initial conditions,
x1

0 = [1; 0.5] (Figure 5.6) and x2
0 = [0.3; 1.5] (Figure 5.7), with the latter chosen

close to the equilibrium E1.
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Figure 5.5: PRBS Control Input for Validation
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.
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Figure 5.7: Prediction comparison for the CSTRm at initial condition x2
0 =

[0.3; 1.5].

The evaluation metric used is the Relative Root Mean Square Error (RMSE)

RMSE = 100×

√
Σk ‖ xPrediction(kTh)− xTrue(kTh) ‖2

2

Σk ‖ xTrue(kTh) ‖2
2

(5.20)

calculated for 100 randomly chosen initial conditions. The results, presented in Ta-
ble. 5.2, clearly demonstrate that the embedding-based Koopman model outper-
forms the predictors based on local linearizations across various initial conditions.
Remarkably, even when the initial conditions are close to the equilibrium E1, the
linear Koopman model proposed in this study remains superior. Overall, the find-
ings highlight the high accuracy and effectiveness of the linear Koopman model
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Predictor Average RMSE
Koopman Model 2.030 %

Local linearization at x0 545.449%
Local linearization at E1 23.605%

Table 5.2: Prediction comparison- average RMSE (5.20) over 100 randomly chosen
initial conditions

in capturing the true dynamics of the chemostat system. The proposed Koopman
model proves to be a robust and reliable predictor, demonstrating its superiority
over local linearization-based predictors for accurate trajectory predictions, even
in cases where the initial conditions are in the vicinity of the equilibrium point.

5.3.2 Application to the CSTR with Haldane Kinetics

Next, and by following the same simulation procedure for the CSTRm, we apply
the numerical simulations to the chemostat with Haldane kinetics or CSTRh given
in (5.8) and rewritten as:

dx1

dt
= u(Sin − x1)− kµmax

x1

x2
1

Ki
+ x1 +Ks

x2

dx2

dt
= µmax

x1

x2
1

Ki
+ x1 +Ks

x2 − ux2

(5.21)

and the parameters considered in this case are depicted in Table 5.3 below:

Parameter Value Unit
Sin 2 g/L
µM 5 day−1

Ks 0.5 g/L
Ki 0.2 g/L
k 1 −−

Table 5.3: CSTRh parameters

As opposed to the CSTRm in (5.13) and with the presence of the quadratic
term in the denominator the CSTRh presented in (5.21) has at most three equilib-
rium points: E0(2; 0) denoted the undesired washout equilibrium, E1(0.0574; 1.9426)
denoted the desired working equilibrium and E2(1.7426; 0.2574) denoted the hid-
den equilibrium. In a manner similar to CSTRm, the existence and stability of
equilibria in CSTRh are influenced by the values of operating parameters D and
Sin. However, CSTRh exhibits a certain sensitivity to variations in the dilution
rate D, and the presence of three equilibrium points directly hinges on the specific
value of D. This characteristic introduces complexities when employing a data-
driven approach to construct a linear Koopman model capable of predicting the
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dynamical behavior of the Chemostat. To visually demonstrate the system’s be-
havior, Figure 5.8 offers insights into the dynamics of the CSTRh model in (5.21).
Operating in proximity to the desired positive equilibrium, the chemostat func-
tions appropriately. However, in certain instances, if the system commences from
initial conditions that are close to the undesired washout equilibrium, the latter
might attract and lead to a malfunction of the chemostat system. Furthermore,
the presence of a hidden equilibrium becomes evident, which could potentially
give rise to future challenges. The figure effectively depicts how the system be-
haves under these specified conditions. The sensitivity of CSTRh to the dilution
rate and the existence of multiple equilibria pose challenges when attempting to
develop a linear Koopman model using a data-driven approach. Understanding
the system’s behavior in various scenarios is crucial, as it can lead to unforeseen
issues that might hinder the predictive capabilities of the chemostat model.
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Figure 5.8: Numerical simulation of system (5.21) around the equilibrium points.
Right: the solutions S(t) and X(t) with respect to time, Left: the phase plan X(t)
with respect to S(t) for different initial conditions.

Data Collection

The data collection strategy was done in the same manner for the CSTRm in
(5.13). The only difference is that we used a PRBS control input uniformly dis-
tributed within a broader range of [0.01, 1]. And the same data matrices X in
(5.14) , X

′
in (5.15) and Υ in (5.16) are gathered.

Basis Functions Selection and Embedding

Similarly, the Thin Plate Spline RBF in (5.17) (one can use different RBF in order
to compare) was used as embedding functions to augment the data matricesX and
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X
′
. So, we choose the embedded functions ϕi to be equal to the state itself (ϕ1 =

x1, ϕ2 = x2) and 50 RBFs, compared to 30 RBFs for augmenting the CSTRm data.
Therefore, the dimension of the augmented state-space is N = NRBF + 2 = 52. It
is worth noting that there is no such technique to chose the number of RBFs used
to augment the datasets, however, in our work, we used trial-and-error to find the
desired number.

Model Comparison

The research evaluates and contrasts the effectiveness of two models in predicting
the CSTRh (5.21) behavior: the construed linear Koopman model and the local
linearization-based model. Similar to the CSTRm model comparison procedure,
the local linearization model is performed twice, once around a specific initial con-
dition x0 and another around the desired positive equilibrium E1. The study aims
to understand which approach yields better results in capturing and predicting
the dynamics of the system. The validation control input is shown in Figure 5.9,
which is uniformly distributed in the range [0.2, 0.7]. Figures 5.10 and 5.11 show
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Figure 5.9: PRBS Control Input for Validation

the results, indicating the significantly higher accuracy of the proposed Koopman
model compared to local linearization-based predictors. The simulations begin
with two different initial conditions, x1

0 = [1.01; 1.5] presented in Figure 5.10 and
x2

0 = [0.2; 1.9] presented in Figure 5.11, with x2
0 selected near the equilibrium E1

in accordance to the model comparison strategy of the CSTRm model. Using
the RMSE in (5.20) for evaluation across 100 random initial conditions, Table
5.4 confirms the superiority of the embedding-based Koopman model over local
linearization-based predictors.
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Predictor Average RMSE
Koopman Model 2.741 %

Local linearization at x0 37 ×106%
Local linearization at E1 16.475%

Table 5.4: Prediction comparison- average RMSE (5.20) over 100 randomly chosen
initial conditions
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Figure 5.10: Prediction comparison for the CSTRh at initial condition x1
0 =

[1.01; 1.5] .
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Figure 5.11: Prediction comparison for the CSTRh at initial condition x2
0 =

[0.2; 1.9].

Notably, even when initial conditions approach E1, the linear Koopman model
excels. However, it’s worth noting that this time the local linearization model per-
forms particularly well around E1 in the steady state compared to the transient
state (this can be clearly noticed in Figure 5.11), where the Koopman model out-
performs it. Overall, these findings highlight the Koopman model’s accuracy and
effectiveness in capturing the true dynamics of the chemostat system with Haldane
kinetics, demonstrating its superiority over local linearization-based predictors.
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5.4 Data-Driven Control of the Chemostat Using
the Koopman Operator Theory

In this section, we explore the application of the Koopman operator approach to
develop a linear model for a simple chemostat with Monod kinetics, comprising
one substrate and one biomass (as given in (5.6)). The primary objective is to
establish a data-driven control strategy for the chemostat. However, instead of
having access to full-state measurements, we are constrained to only measure
a specific output, which in our case is the substrate concentration (y = S). To
address this limitation, we create a linear model using the Koopman operator solely
based on the available input-output data. This model will serve as the foundation
for developing a MPC scheme, as discussed in 2 Section 2.1. This MPC approach
based on the Koopman model will be referred to as KMPC. The section outlines
the strategy used to construct the Koopman model for the input-output chemostat,
enabling its application in the MPC control scheme. Throughout the discussion,
we present more theoretical aspects of implementing MPC based on the Koopman
model (KMPC). To illustrate the effectiveness of the KMPC approach, numerical
examples will be provided. Firstly, we compare the constructed Koopman model
for the input-output chemostat with a local linearization model, both evaluated
at a given initial condition x0). Subsequently, we apply both Linear MPC and
KMPC for the chemostat, considering two scenarios: one involving a large space
of initial conditions, and the other focusing on the invariant manifold (where
trajectories originate from initial conditions x0

1 and x0
2 generated randomly with a

uniform distribution, subject to the constraint x0
1 + x0

2 = Sin). The section aims
to demonstrate the advantages and capabilities of using the Koopman operator
approach and the derived linear model in the context of MPC Control for the
chemostat system.

5.4.1 Koopman model for the input-output chemostat

We examine the discrete-time representation of the nonlinear input-output dy-
namical system for the chemostat in the following manner:

xk+1 = f(xk, uk),

yk = h(xk),
(5.22)

where the state of the system at time step k is denoted as xk, where xk =
[Sk Xk]

>. The successor state of the system is xk+1, and xk ∈ Σ ⊂ R2
+, The

control input at time step k is denoted as uk, where uk = D is the dilution
rate. The system’s transition mapping is represented by the function f , and the
measured output at time step k is denoted as yk. In our specific case, the mea-
sured output is the substrate concentration Sk, so we have h(xk) = Sk, where
h : R2

+ → R+. We are specifically seeking a straightforward model that exhibits
a linear structure, making it well-suited for linear control design approaches, such
as MPC.
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We make the assumption that the Koopman model takes the form of a con-
trolled linear dynamical system given by:

sk+1 = Ask +Buk,

ŷk = Csk,
(5.23)

With ŷk representing the predicted output yk in (5.22). Importantly, in (5.23), the
control input uk remains unchanged from (5.22), allowing for linear constraints to
be efficiently applied to the control inputs.

To create a valid linear model for the chemostat described in equation (5.22), it
is necessary to adhere to the steps outlined in the Koopman operator framework as
discussed in Chapter 2 Section 2.5.2. The approach involves utilizing the EDMDc
method to approximate the Koopman Operator for the input-output dynamical
system of the chemostat. However, there is a notable difference: the selection of
lifting functions depends on both the present measured output and a collection of
past measured outputs and inputs. This approach, known as Time-delayed embed-
ding, entails incorporating multiple consecutive measurements of the output into
a single data point. While this technique has long been a powerful tool in system
identification theory, it has more recently been integrated into the Koopman op-
erator’s approximations as well (as seen in references [56], [39], [38], for example).
Let us consider the following set of data matrices:

X = [ζ1, .., ζK ], Y = [ζ+
1 , .., ζ

+
K ], U = [u1, .., uK ] (5.24)

In this scenario, the matrices consist of a sequence of samples from a series with
a length of nd + 1 (where nd represents the number of delays), where

ζi = [y>i,nd
û>i,nd−1 y>i,nd−1 . . . û>i,0 y>i,0]> ∈ R(nd+1)nh+nd

ζ+
i = [y>i,nd+1 û>i,nd

y>i,nd
. . . û>i,1 y>i,1]> ∈ R(nd+1)nh+nd

ui = ûi,nd

(5.25)

(ûi,j)
nd
j=0 represents a series of inputs that generate a vector (yi,j)

nd+1
j=0 consisting of

successive measurements for the output.
The data matrices X,Y,U given in (5.24) are augmented with the help of the

following embedded function or obsevables:

ϕ(ζ) = [ϕ1(ζ), . . . , ϕN(ζ)]>, (5.26)

Then, new sets of augmented data matrices are obtained as follows:

Xembed = [ϕ(ζ1), ..,ϕ(ζK)],Yembed = [ϕ(ζ+
1 ), ..,ϕ(ζ+

K)],U = [u1, .., uK ] (5.27)

By having Xembed,Yembed and the input matrix U, we can find the linear ma-
trices A,B and C of (5.23) by solving the following least squares problems:

min
A,B
‖ Yembed −AXembed −BU ‖F , min

C
‖ [y1,nd

. . . yK,nd
]−CXembed ‖F , (5.28)
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The linear Koopman model in (5.23) starts from the initial condition:

s0 = ϕ(ζ0) (5.29)

Where

ζ0 = [y>0 û>−1 y>−1 . . . û
>
−nd

y>−nd
]> (5.30)

is the vector of nd input measurements and nd + 1 are the latest measurements of
the output.

5.4.2 Model predictive control based on the Koopman model
(KMPC)

In the preceding section, we introduced an approach enabling us to construct a
model for the input-output chemostat as a linear dynamic system (described by
equation (5.23)). In the upcoming section, we will employ MPC utilizing this
linear model to control the initial nonlinear chemostat system described in (5.22).
This concept is illustrated in Figure 5.12.

Figure 5.12: Linear forecast for the nonlinear controlled dynamical system of the
cheomstat. This forecast can then be used in linear control design as linear MPC.

MPC is a popular technique for controlling complex systems with constraints as
already shown in Chapter 2, Section 2.5.1. In MPC, we calculate the control inputs
by solving a problem that aims to minimize a cost, which is set by the user, over
a future time horizon. This happens at every step during the system’s operation.
Linear MPC deals with relatively simple optimization problems, allowing for quick
control input assessment, often by solving a Quadratic Program (QP). On the
other hand, nonlinear MPC handles more complex optimization challenges. This
involves solving a non-convex optimization problem at each step, which can be
computationally intensive. To manage this complexity, local optimization methods
are usually used.

The KMPC method follows a strategy known as "receding horizon control"
Here’s how it works:

• First, the linear model (5.23) is utilized to predict how the system will evolve
over a defined prediction horizon.
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• Using these predictions, an optimal sequence of control inputs is calculated.
This sequence is designed to minimize the given cost function within the
prediction horizon.

• However, only the first element of this calculated sequence is applied to
the actual system. This generates a new output, and the entire process is
repeated.

In the following, we’ll introduce some notations and mathematical background
related to this technique. The key advantage of using the Koopman linear model
(5.23) is that even though we start with a nonlinear dynamical system, the result-
ing MPC problem becomes convex QP. The so called "dense form" approach [56]
is employed, which ensures that the solution to the complex QP is not affected
by the potentially large dimension of the variable "s" of the Koopman model in
(5.23). This simplification enables the QP to be efficiently solved using existing
optimized solvers for linear MPC, such as qpOASES [146].

The optimization problem tackled by KMPC in every step of the closed-loop
process can be outlined as follows:

(u?i )
Nh−1
i=0 , (y?i )

Nh
i=0) = arg min J((ui)

Nh−1
i=0 , (yi)

Nh
i=0)

s.t. si+1 = Asi +Bui, i = 0, ..., Nh

yi = Csi

W y
i yi +W u

i ui ≤ vi, i = 0, ..., Nh − 1

WNh
yNh
≤ vNh

s0 = ϕ(ζk),

(5.31)

where Nh represents the prediction horizon, and (ui)
Nh−1
i=0 and (yi)

Nh
i=0 form se-

quences of input and output values spanning the duration of Nh. The matrices
W y
i=0,...,Nh−1,W

u
i=0,...,Nh−1 WNh

and the vector vi define constraints for the state and
input variables. The present state ζk of the delayed-state ζ at the time instant k
is expressed as follows:

ζk = [y>k u>k−1 y>k−1 . . . u
>
k−nd

y>k−nd
]> (5.32)

The cost function J has a convex quadratic form given by:

J((ui)
Nh−1
i=0 , (yi)

Nh
i=0) = y>Nh

QNh
yNh

+ q>yNh

+

Nh−1∑
i=1

(yi)
>Qiyi) + u>i Riui + q>i yi + r>i ui

+ u>0 Ru0 + r>0 u0,

(5.33)

The optimization problem above incorporates matricesRi=0,...,Nh−1, Qi=0,...,Nh
. These

matrices are real, symmetric, and positive semi-definite, serving as components of
the cost function. The function J defined by these matrices can accommodate
various control objectives, such as achieving time-varying reference tracking. It’s
worth noting that nonlinear constraints and objectives in the original state xk can
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be managed by introducing nonlinear functions into the embedding variables (as
discussed in [56]).

Once the optimal input sequence (u?i )
Nh−1
i=0 is computed, its first element u?0

is applied to the system, producing a new measured output value (h(xk)). This
update refreshes the current state ζk, and the entire process is repeated in a
receding horizon manner. The entire process of the KMPC approach in closed-loop
operation is outlined in Algorithm 3, and the KMPC framework for identification
and control of the chemostat is visualized in Figure 5.13.

Algorithm 3: Closed-loop operation of KMPC
1: for k =0,1,... do
2: Set s0 = ϕ(ζk)
3: Solve (5.31) to get an optimal solution (u?i )

Nh
i=1

4: Apply u?1 to the nonlinear system of the chemostat (5.22)
5: end for

Figure 5.13: Schematic representation of KMPC framework for identification and
closed-loop control of nonlinear system of the chemostat.

5.4.3 Simulation results and discussions

In this section we extend the proposed data-driven technique to control the nonlin-
ear input-output dynamical system of the chemostat (5.22) with a Monod kinetics
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as in (5.6)) rewritten bellow:

dx1

dt
= u(Sin − x1)− kµmax

x1

x1 +K
x2

dx2

dt
= µmax

x1

x1 +K
x2 − ux2

(5.34)

where the parameters used in this case for simulating the CSTRm model are given
in the Table 5.5 below:

Parameter Value Unit
Sin 20 g/L
µM 0.6 day−1

K 3 g/L
k 1 −−

u = D [0.01, 0.5] day−1

Table 5.5: Parameters of the chemostat dynamics with Monod kinetics CSTRm

The control of the chemostat dynamics is always restricted in the large space
of initial conditions. Rather, it is usually controlled in the invariant manifold
(i.e., the trajectories begin from initial conditions x1(0), x2(0) generated randomly
with uniform distribution where x1(0) + x2(0) = Sin). In our work, we address
both cases. The aim is to construct a MPC controller based on the Koopman
operator framework presented in Section 5.4.1 which means that we do not have
full-state measurements anymore, and we have access to only input-output data of
the dynamical system of the chemostat (5.22). First, we compare the prediction
accuracy of the output of the linear Koopman model (5.22) with the output of
the true dynamics of the chemostat and a model based on local linearization of
the chemostat at a given initial condition x0. Then we use the MPC controller for
the feedback control of the chemostat based only on input-output data available,
without any information about the chemostat model. We establish a comparison
between MPC controller based on the Koopman model presented in this study
(KMPC) and a local linearization-based MPC (LMPC).

In terms of collecting the set of data as in (5.24), we will use the same strategy
as before by considering the chemostat model in (5.22) as a virtual bioreactor
generating this data and we use it for constructing the Koopman model (5.23).
We are going to start with the general and difficult case (control in a large space
of the initial conditions) then use the same strategy for the special case (control
in the invariant manifold).

The case of a large space of initial conditions

In the first instance, we try to model and control our system in a larger interval of
the initial condition. The idea is to consider the dynamical system of the CSTRm
in (5.34) as a virtual bioreactor generating the set of data presented in (5.24) (the



5.4 Data-Driven Control of the Chemostat Using the Koopman Operator
Theory 74

data can be collected from a real chemostat system, if available). Then, we use
this data for the construction of the Koopman model (5.23). To collect the data in
(5.24), the discretization period is chosen to be Td = 0.1day (since the dynamics
of the chemostat are evolving slowly due to the consumption of the substrate by
the biomass) and we simulate 200 trajectories over 1000 sampling periods with a
random control input (u = D) signal equally distributed. Furthermore, we choose
that the trajectories begin from initial conditions x1(0), x2(0) generated randomly
with uniform distribution where x1(0) ∈ [10, 20[ and x2(0) ∈ [2, 10]. We choose
the number of delays nd = 1 and the embedded lifting functions ϕi = Sk taken
to form the Time-Delayed vector ζ ∈ R3 in (5.25). In this work, we choose the
Inverse Multi-Quadric Radial Basis Function (IMQ-RBF) given by:

ϕ(x) =
1√

1+ ‖ x− xc ‖2
(5.35)

where xc is the center and it is randomly selected with consistent distribution over
[0, 20]3. In order to augment the sets of data in (5.24) we used 60 IMQ-RBFs,
therefore, the dimension of the augmented state-space is N = 63.

Koopman model construction and comparison

Figure 5.14 shows the accuracy of the output forecast of the Koopman model
(5.23) constructed only from input-output data generated from two randomly
chosen initial conditions (x1

0 = [10, 10]>, x2
0 = [12, 5]>), and how it fits the real

system of the chemostat compared to the local linerization-based model. In Table
5.6 we demonstrate the superiority of the Koopman model prediction accuracy
over the linerization-based model for longer prediction times and several initial
conditions. This is done by the RMSE (5.20) averaged over thirty-days forecast
horizon over one hundred randomly selected initial conditions (in both Figure 5.14
and Table 5.6, we have applied a PRBS control input u = [0.1, 0.35] for each initial
condition anew). In Table 5.7, we illustrate that for one hundred samples of x1

and x2 starting from one hundred randomly chosen initial conditions (large space
of the initial conditions), we always have x1 + x2 = Sin.

Model Average RMSE
Koopman Model 11.68 %
Local linearization at x0 4.72 ×104%

Table 5.6: Forecast comparison-RMSE (5.20) for 100 randomly chosen initial con-
ditions

Feedback Control of the Chemostat

The control objective is to track a given substrate concentration reference yRef ,
which means that we need to minimize the following objective function of the
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Day x1(0) x2(0) x1 x2 x1 + x2

1 12.3341 3.2453 2.5118 17.4881 20
2 10.2993 7.4390 2.0463 17.9536 20
3 18.4034 3.3054 2.0040 17.9959 20
4 19.3560 8.8671 1.5382 18.4617 20
...

...
...

...
...

...
57 13.2423 6.5340 1.9446 18.0553 20
58 10.8691 6.0239 2.8650 17.1349 20
59 17.8812 3.5623 1.9103 18.0896 20
60 17.6888 3.3508 1.8316 18.1684 20
...

...
...

...
...

...
97 14.2234 7.0464 1.5124 18.4875 20
98 17.7434 7.9064 2.9247 17.0752 20
99 17.9543 6.4402 1.5996 18.4003 20
100 12.0606 5.5628 2.3772 17.6227 20

Table 5.7: Table of initial condition x1(0), x2(0) and x1, x2 over averaged one
hundred days forecast horizon.

MPC problem:

J = (yNh
− yRef )>QNh

(yNh
− yRef )

+

Nh−1∑
i=1

(yi − yRef )>Q(yi − yRef ) + u>i Rui,
(5.36)

Where cost functions matrices were chosen asQ = QNh
= 10 andR = 0.01 with

a prediction horizon Nh = 10(i.e.,one day). We establish a comparison between
MPC controller based on the Koopman model presented in this study (Koopman-
MPC) and a local linearization-based MPC (Linear-MPC) in two cases. First, we
track a reference constant (yRef = SConstantk ) where we want to either maximize or
minimize the output which is the substrate concentration Sk. With no constraints
imposed on the output but we have imposed constraints on the control input
u ∈ [0.2, 3], simulation results are presented in Figure 5.15 and 5.16, we can see
that the tracking performance in the first case are almost identical. Both KMPC
and LMPC reach the desired output in the same time and manner Although
the LMPC is slightly superior to the KMPC (this is clearly noticeable in the
simulation where the reference tracking is yRef = 10 and the initial condition is
x0 = [5, 17]> ). This is due to the fact that the LMPC controller needs a model
for the local linearization computation and full measurements of the state. On the
other hand, the KMPC controller has the advantage of being entirely data-driven
with only output measurements being required. In the second case, we track a
time-varying function yRef (t) = 17cos(2πt/300) with constraints imposed on the
output where y ∈ [2, 15]. The simulation results are shown in Figure 5.17; we can
observe a good reference tracking without any violation of the output constraints
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with a constrained control input applied (u ∈ [0.2, 3]) for the KMPC controller,
however, the LMPC controller turns out to be infeasible and therefore it stops
before continuing the entire simulation period (in predictive control, infeasibility
is a common issue that occurs as a result of different trial-and-error or theoretically
backed-up methods, for more details see [65],[67]). The inaccuracy of the forecast
of the local linearization-based model over long prediction horizons is causing the
infeasibility of the LMPC controller. The KMPC controller, nevertheless, is not
only data-driven but it can also transcend the infeasibility problem and continue
the simulation until the end. In terms of the underlying optimization issue, all
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Figure 5.17: Control in larger space of the initial condition-Feedback control of
the chemostat- Time-varying reference tracking with constraints imposed on the
output (y ∈ [2, 15]) and constrained control input (u ∈ [0.2, 3]) , initial condition
x0 = [10, 10]>.
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the defining data are pre-computed offline with the KMPC controller, whereas
in the case of the LMPC controller, all the data are continuously re-computed
at each iteration. This makes KMPC faster than the LMPC when it comes to
computational speed. We should stress out that these results are gained for a
large space of initial conditions where the control of the chemostat is usually
limited.

The case of the invariant manifold

Now, we try to model and control our system in the invariant manifold. Fur-
thermore, we choose that the trajectories begin from initial conditions x1(0), x2(0)
generated randomly with uniform distribution where x1(0) + x2(0) = Sin in this
case we are sure that x1 +x2 = Sin for all time t (this was illustrated by the Table
5.8, where we have taken one hundred samples of x1 and x2 to validate it). For
that purpose, we take x1(0) ∈ [2, 20[ and x2(0) = Sin − x1(0). We used the same
nd = 1 and the embedding lifting functions ϕi = Sk as the first case, we have also
used 60 IMQ-RBFs (5.35) with the same centers selection.

Day x1(0) x2(0) x1 x2 x1 + x2

1 6.2014 13.7986 2.5118 17.4881 20
2 2.5387 17.4613 2.0463 17.9536 20
3 17.1261 2.8739 2.0040 17.9959 20
4 18.8408 1.1592 1.5382 18.4617 20
...

...
...

...
...

...
56 17.1339 2.8661 1.8459 18.1540 20
57 7.8361 12.1639 1.9446 18.0553 20
58 3.5644 16.4356 2.8650 17.1349 20
59 16.1861 3.8139 1.9103 18.0896 20
...

...
...

...
...

...
97 9.6021 10.3979 1.5124 18.4875 20
98 15.9382 4.0618 2.9247 17.0752 20
99 16.3177 3.6823 1.5996 18.4003 20
100 5.7091 14.2909 2.3772 17.6227 20

Table 5.8: Table of initial condition x1(0), x2(0) and x1, x2 over one hundred days.

Koopman model construction and comparison

As in Section 5.4.3, we compare the Koopman model (5.23) with the local linearization-
based model, generated from two randomly chosen initial conditions (x1

0 = [13.07, 6.93]>,
x2

0 = [9, 11]>). Illustrated in Figure 5.18, we can remark a clear superiority of
the proposed Kooopman model in terms the prediction accuracy over the local
linearization-based model. Table 5.9 shows the averaged RMSE (5.20) forecast
comparison over one hundred randomly chosen initial conditions. It is apparent
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that even in this case, the Koopman model (5.23) has the lowest value of the RMSE
compared to the local linearization-based model over longer prediction horizons
(based on the value of the averaged RMSE given in Table 5.9 and Table 5.6, the
Koopman model generated in the invariant manifold is more accurate compared
to the one generated in the large space of initial conditions).

Model Average RMSE
Koopman Model 7.79 %
Local linearization at x0 2.83 ×102%

Table 5.9: Forecast comparison-RMSE (5.20) for 100 randomly chosen initial con-
ditions

Feedback control of the chemostat

The control objective is still the same as in Section 5.4.3, so, we will use the
previous cost functions and prediction horizon (Q = QNh

= 10, R = 0.01, Nh = 10)
for the reference tracking purpose. However, in the case of constant reference
tracking, we forced the system to track a piece-wise constant reference.

In Figure 5.19 and 5.20 , simulation results are presented, where first we have
a comparison between KMPC controller and LMPC controller for the constant
reference tracking, we can observe a similarity of the prediction accuracy in this
case without any violation of the constraints (in the control input), nonetheless,
LMPC performed a bit better when it comes to maximizing the output (we have
seen the same results in Figure 5.15). For the time-varying reference tracking, the
KMPC controller shows its unique performance while we apply constraints in the
output (y ∈ [2, 15]) and the control input (u ∈ [0.2, 3]). On the other hand, the
LMPC controller was incapable of continuing the whole simulation process. The
KMPC controller is completely data-driven and needs only output measurements
which have the advantages of any other controller especially controllers where the
model of the system is needed, in our case LMPC.
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Figure 5.19: Control in the invariant manifold-Feedback control of the chemostat.
Top: Constant reference tracking in parts with no state constraints and control
input with constraints (u ∈ [0.2, 3]),x0 = [13, 7]>.
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Figure 5.20: Control in the invariant manifold-Feedback control of the chemo-
stat. Time-varying reference tracking with constraints imposed in the output
(y ∈ [2, 15]) and control input with constraints(u ∈ [0.2, 3]), x0 = [9, 10]>.

5.5 Conclusion
In conclusion, this chapter highlighted the complexity and uncertainty associated
with the chemostat dynamical model due to poorly known kinetics functions and
uncertain variables. We’ve utilized both EDMD and EDMDc methods to predict
how the chemostat will behave in both CSTRm and CSTRh scenarios. Further-
more, we’ve examined two cases: one where we can measure all aspects of the
system’s state, and another, more intricate situation involving input-output data.
The application of KMPC was introduced as a solution, projecting the nonlinear
model into a higher-dimensional space for effective linearization and control. This
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approach allows for linear MPC to be applied to the nonlinear chemostat model,
offering improved control performance over classical model-based MPC methods.



Chapter 6

General Conclusions

6.1 Summary of Findings and Interpretations
Throughout the course of this thesis, our primary aim revolved around the explo-
ration of data-driven methodologies for forecast, simulation, and regulation of AD
processes. Our endeavor, guided by the principles of reduced order modeling, en-
compassed a thorough investigation into the deployment of Ordinary Differential
Equation (ODE) representations as a pertinent framework to address the afore-
mentioned applications. The pertinence of ODE representations stems from their
inherent linkage to fundamental physical laws, including Newton’s and Lagrange’s
principles, and the principles of mass balances within the context of bioprocesses.
These models naturally emerge and manifest interpretability, particularly within
the phase space, thereby harboring a multitude of regularization properties.

This dissertation can be split in two main parts:
In the first part, we conducted a comprehensive exploration of the Koopman Op-
erator Theory and several established data-driven methodologies. Starting with
a thorough overview of the Koopman Operator Theory, we demonstrated its fun-
damental concepts and its pivotal role in unraveling intricate dynamic systems.
Subsequently, we delved into the DMD approach, a robust algorithm capable of
approximating the Koopman Operator using data from complex nonlinear dy-
namical systems. This method’s efficacy was showcased through domain appli-
cations, demonstrating its ability to extract coherent structures and modes from
high-dimensional data. The broad applicability of DMD was highlighted across di-
verse fields, including fluid dynamics, neurobiology, and video analysis. We then
explored the EDMD, an extension that builds upon DMD to address nonlinear
and high-dimensional data challenges. EDMD enhances the capabilities of DMD,
offering improved representation of complex systems and enhanced predictive po-
tential. Our investigation extended to the realm of Data-Driven Control, where we
tackled the Koopman Operator Theory. Utilizing the Koopman model for control
presented intriguing opportunities for optimizing system behavior. MPC emerged
as a prominent application, enabling real-time control by iteratively optimizing
control inputs based on projected system behavior. Furthermore, we delved into
Nonlinear System Identification for Control by introducing DMD with control
and EDMD with control, showcasing their utility in detecting nonlinear controlled
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systems and building control-oriented models. Ultimately, the integration of the
Koopman Operator and data-driven methodologies has catalyzed a transformation
in system analysis and control. Their capacity to extract meaningful insights from
data, discern system behavior, and facilitate predictive control has opened new
avenues for research and practical applications across disciplines. As data-driven
approaches continue to evolve, we anticipate further developments in comprehend-
ing and managing complex dynamic systems, leading to more efficient, adaptable,
and intelligent control techniques.

In the second part of this thesis, we provided a comprehensive exploration
of various models within the context of AD processes. Our journey commenced
with an examination of the ADM1, which represents a highly detailed model for
AD processes. Emphasizing the significance of mathematical models as approxi-
mations of real-world systems, we delve into the characteristics and properties of
these models. Understanding these mathematical representations is crucial as they
serve as the foundation for generating data that can be employed as input for our
subsequent data-driven techniques. Subsequently, we delved into the intricacies of
the AM2 model, which not only presented the intricate biological and kinetic reac-
tions at play but also refined its mathematical equations. This refinement offered
valuable insights into both measurement and modeling aspects, shedding light on
the anaerobic process, and culminating in exploring the most fundamental type of
bioreactors. The Chemostat, a simple yet fundamental bioreactor model, laying
the groundwork for comprehending the dynamics of bioprocess systems. Derived
from the foundational principles of mass balance, this model forms the corner-
stone of mathematical modeling in bioprocessing. By studying and analyzing
these bioreactor models, we gain valuable insights into the underlying dynamics
and behavior of the systems. Leveraging insights from these models, we can further
enhance the efficiency and sustainability of critical biological processes across di-
verse applications, spanning wastewater treatment, biogas generation, and beyond.
This knowledge is essential for subsequent steps, where data-driven techniques are
employed to extract patterns, identify correlations, and develop advanced control
and optimization strategies. Thus, the mathematical models we explored in this
study serve as critical building blocks for the data-driven approaches presented in
the first part of this thesis. Lastly, we focused on the potential and power of data-
driven methodologies presented in part one in addressing the complexities of AD
systems. Through a focused exploration of the ADM1, AM2, and chemostat mod-
els, we have demonstrated how these techniques can be used to create simplified
yet accurate representations of intricate dynamics. The ADM1 model showcased
the application of the DMD method, allowing us to refine a complex system into
a concise linear framework. This reduction not only enhances our understanding
of the system but also opens avenues for predicting its behavior. Similarly, the
AM2 model benefited from the DMDc algorithm, constructing a versatile linear
model capable of predicting dynamics under varying control inputs. This not only
advances our ability to model and control AD processes but also sets the stage
for future applications in diverse contexts. Addressing the challenging chemo-
stat system, we employed EDMD and EDMDc methods, effectively predicting
behavior in different scenarios. The introduction of Koopman Model Predictive
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Control (KMPC) demonstrated how data-driven techniques can bridge the gap be-
tween nonlinear models and linear control strategies, leading to improved control
performance. In essence, in this work we shed light on the transformative poten-
tial of data-driven strategies, simplifying complex models and enhancing control
and prediction capabilities. By forging connections between theoretical insights
and practical applications, these approaches offer innovative solutions to intricate
challenges across various domains. The integration of data-driven methodologies
marks a promising trajectory for shaping the future of AD systems and beyond,
driving progress, efficiency, and adaptability in the management of complex dy-
namic processes.

In these concluding remarks, we emphasize the critical insight gained from this
study: the judicious use of data-driven methods necessitates great attention to
align the techniques with the specific characteristics of the provided observations.
The belief in the power of complex artificial intelligence models to continuously
unravel the complexities of biotechnology is unfounded. Beyond subjective and
cost-related assessments of AI models, ascertaining their generalizability presents
intricate challenges. In light of this perspective, we advocate for the regularization
of AI models by integrating prior knowledge concerning established biological and
mathematical constraints. This regularization serves as a pivotal strategy to attain
consistency and coherence when employing such techniques.

6.2 Limitations and Future Directions
Due to time and logistic constraints, our study has some limitations which we can
summarise in the following:

Regarding the application of the DMD method to reduce the ADM1 model’s
state variables from 35 to 7, an inherent challenge arises due to the absence of
prior knowledge about which specific states contribute significantly to the dy-
namic behavior of the AD process. This lack of biological insights underscores the
complexity of the reduction task. The DMD technique hinges upon data-driven
principles, extracting dominant coherent structures embedded within the data.
While it is established that the ADM1 model can indeed be reduced to 9, 8, and
7 states through SVD and PCA [140] as we have already mentioned, the inherent
nature and significance of these states remain elusive. The SVD technique in-
herently organizes singular values hierarchically, with a progression from most to
least important. Moreover, the linear operator A produced by the DMD method,
while capturing aspects of nonlinear dynamical behavior, falls short in providing
a comprehensive representation of the entire ADM1 model. This limitation un-
derscores the need for future research to address the integration of biological and
biochemical constraints at the core of the DMD approach.

One promising avenue for enhancing the DMD method involves the integration
of known physical principles or constraints, as exemplified by the Physics Informed
DMD (PIDMD) framework [147]. PIDMD extends the scope of DMD by incorpo-
rating established physical laws into the analysis. This integration serves to refine
the decomposition process, yielding more meaningful and insightful interpretations



6.2 Limitations and Future Directions 89

of the underlying system dynamics. By honoring governing equations or physi-
cal principles, PIDMD is adept at extracting coherent modes while preserving
the intrinsic physics of the system. Notably, Physics Informed DMD finds utility
across diverse domains, ranging from fluid dynamics to structural mechanics and
even biological systems like AD processes. This integration of established physics
within the DMD framework equips researchers and practitioners with a potent
tool to gain deeper insights, better model complex systems, and ultimately bridge
the gap between data-driven techniques and the inherent underlying dynamics of
intricate systems like AD.

When considering the application of the Koopman operator theory and its
data-driven approximations, such as EDMD and its controlled variant EDMDc,
a noteworthy challenge emerges in the selection of observables or the embedded
functions. As previously discussed, this selection process offers a range of choices,
encompassing functions from polynomials to RBFs – the latter being the focus of
our investigation. This selection intricacy significantly impacts the accurate ap-
proximation of the Koopman operator for nonlinear systems. A crucial observation
from our study reveals the sensitivity of the approximated Koopman operator to
the choice of RBFs, highlighting the potential divergence in outcomes even for the
same system. With regards to this challenge, the determination of the number of
embedded functions, thereby shaping the dimensionality of the augmented state
space, remains a challenging endeavor. This is underscored by our varying utiliza-
tion of RBFs; for instance, we employed 30 RBFs to approximate the Koopman
operator of the CSTRm, and 50 RBFs for the CSTRh. Notably, this dimensional-
ity is not fixed and fluctuates based on the selected embedded functions and their
count.

To tackle this issue, researchers have employed neural networks (NN) and
deep neural networks (deep NN) [148], [149], [150] in order to facilitate the learn-
ing of Koopman eigenfunctions and embedded functions directly from time series
data. Noteworthy is their parsimonious and interpretable nature, systematically
embedding dynamics within a low-dimensional manifold characterized by Koop-
man eigenfunctions. These techniques identify nonlinear coordinates that globally
render the dynamics as linear, employing a modified auto-encoder framework.
Significantly, these methods extend Koopman representations to encompass sys-
tems exhibiting continuous spectra. They effectively leverage the capabilities and
adaptability of deep learning, while simultaneously preserving the intrinsic inter-
pretability of Koopman embeddings, thereby advancing the boundaries of data-
driven approximations into unexplored territories such as AD processes.
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