
ALGERIAN DEMOCRATIC AND POPULAR REPUBLIC

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

ABOU-BAKR BELKAID UNIVERSITY - TLEMCEN

THESIS

Presented at:

FACULTY OF SCIENCE - DEPARTMENT OF COMPUTER SCIENCE

For the graduation of:

DOCTORATE

Specialty: Computer science

By :

Zoulikha KOUDAD

On the subject of

Methods for Automatic Option Discovery in

Hierarchical Reinforcement Learning

Defended Publicly on July 15th 2024 at Tlemcen University, in front of the jury composed of:

Mr HADJILA Fethallah MCA Université de Tlemcen Chairman

Mr MERZOUG Mohamed MCA Université de Tlemcen Supervisor

Mr HADJILA Mourad MCA Université de Tlemcen Reviewer

Mr MALIKI Fouad MCA Ecole ESSAT de Tlemcen Reviewer

Mr BRAHAMI Mustapha MCA Ecole ESSAT de Tlemcen Reviewer

Laboratory of Research in Computer Science of Tlemcen LRIT.
BP 119, 13000 Tlemcen - Algeria.

Abstract

The hierarchical reinforcement learning framework breaks down the reinforcement learn-

ing problem into subtasks or extended actions called options in order to facilitate its

resolution. Di�erent models have been proposed where options were manually prede-

�ned or semi-automatically discovered. However, the automatic discovery of options has

become a real challenge for research in hierarchical reinforcement learning.

In this thesis we propose two automatic option discovery method for hierarchical re-

inforcement learning. The �rst method that we call Fast Automatic Option Discovery

(FAOD). In this contribution, we took inspiration from robot learning methods to cat-

egorize the sensorimotor �ow during navigation. Thus, FAOD agent moves along the

walls to discover the rooms' contour, closed spaces, doors and bottleneck regions to

de�ne terminate states and initiation sets for options.

In the second contribution our learning agent uses his sense of direction to discover

the shortest paths and shortcuts after an exploration based on intrinsic motivation,

without resorting to the algorithms of the graph theory, these discoveries subsequently

serve to discover the termination conditions and the initiation states of the options.

For the learning of options policies, the agent uses his experience of exploration as well

as learning by temporal di�erence strategy. We tested and validated this approach on

di�erent maze problems and on the tic-tac-toe game.

Keywords

Hierarchical reinforcement learning; Reinforcement learning; Option Discovery; Markov

decision process; Actor-criticlearning, Way�nding; Intrinsic motivation.

Acknowledgements

I would like to thank my supervisor Dr MERZOUG Mohamed

for his role as advisor during my doctoral career, and for his

constructive proposals and his availability, that allowed me to

progress steadily in my research. I would like to thank my �rst

(ex) supervisor, Dr BENAMAR Abdelkrim for his commitment

at the beginning of my doctoral training.

I would also like to thank the President Pr HADJILA Fethallah

and the other jury members Dr HADJILA Mourad, Dr MALIKI

Fouad and Dr BRAHAMI Mustapha for kindly evaluating this

work.

I am in�nitely grateful to Pr Mehdi KHAMASSI for introducing

me to the �eld of reinforcement learning, and for the constructive

and insightful discussions.

I would also like to thank the computer science team at the

Higher School of Applied Sciences in Tlemcen for their encourage-

ment and support as well as the administrative team for making

my teaching task easier during my last year of Ph.D preparation.

I gratefully acknowledge the love and support of all my family,

specially my parents, my sisters for their unconditional support

and my brothers. Last but not least, for being very supportive,

I would to thank my husband and I dedicate this work to my

children.

3

Contents

Introduction 15

Objectives . 16

Scienti�c contributions . 16

Structure of the thesis . 17

1 Background on reinforcement learning and hierarchical reinforcement

learning 18

1.1 Markov Decision Processes . 18

1.1.1 formal de�nition . 19

1.1.2 Policy and value function . 20

1.1.3 Bellman equation . 21

1.1.4 Optimal Policies . 21

1.2 Dynamic programming . 22

1.2.1 Policy Iteration . 22

1.2.2 Value Iteration . 24

1.3 Reinforcement learning . 24

1.3.1 Monte Carlo Methods . 25

1.3.2 Temporal-Di�erence Learning . 28

1.3.3 Policy Gradient Methods . 32

1.4 Hierarchical Reinforcement Learning . 37

1.4.1 Semi-Markov Decision Process . 38

1.4.2 Options . 38

1.5 Intrinsic Motivation . 41

1.5.1 Intrinsic vs extrinsic motivation 41

1.5.2 Intrinsically motivated reinforcement learning 42

1.6 Way�nding . 42

1.6.1 People's way�nding abilities and spatial knowledge 43

1.6.2 Spatial reasoning and decision making 44

1.6.3 Cognitive maps . 44

4

1.6.4 Human orientation performance 44

1.6.5 Computer models for orientation 45

1.7 Conclusion . 45

2 Related works 47

2.1 Classi�cation of approaches . 47

2.1.1 Greedy methods . 48

2.1.2 Two-step methods . 48

2.1.3 Hybrid methods . 48

2.2 Approaches of automatic option discovery in hierarchical reinforcement

learning . 48

2.2.1 BHNN: Budgeted Hierarchical Neural Network 48

2.2.2 HEXQ Discovering hierarchy in reinforcement learning 50

2.2.3 PAC-inspired option discovery in lifelong reinforcement learning . 52

2.2.4 Laplacian Framework for option discovery in reinforcement learning 53

2.2.5 Skill characterization based on betweenness 54

2.2.6 Constructing option through incremental community detection . . 55

2.2.7 Grounding subgoals in information transition 57

2.2.8 Intrinsically motivated hierarchical skill learning 58

2.2.9 Option discovery using spatio-temporal clustering 59

2.3 Discussion . 60

2.3.1 Critical study . 61

2.4 Conclusion . 63

3 FAOD: Fast Automatic Option Discovery in Hierarchical Reinforcement

Learning 65

3.1 Fast Automatic Option Discovery . 65

3.1.1 Room discovery . 67

3.1.2 Option discovery . 71

3.1.3 Learning option policies . 72

3.1.4 Hieararchical learning . 74

3.2 Experiments and Results . 75

3.3 Conclusion . 80

5

4 Way�nding Agent for Automatic Option Discovery in Hierarchical Rein-

forcement Learning 81

4.1 An agent with way�nding sense . 81

4.1.1 Exploration with intrinsic motivation 82

4.1.2 An agent with way�nding sense 83

4.1.3 Option discovery . 85

4.1.4 Learning option policies . 89

4.1.5 Hierarchical learning . 91

4.2 Experiments and results . 93

4.2.1 multi-room maze . 93

4.2.2 Tic-tac-toe game . 97

4.3 Conclusion and perspectives . 101

Conclusions and future work 102

6

List of Figures

1.1 Interaction between agent and environment in a Markov decision process. Sutton and

Barto [2018] . 19

1.2 Discrete-time transitions in MDP vs SMDP and options, Sutton et al. [1999] 39

2.1 Classi�cation of the existing approaches of automatic option discovery 49

3.1 Maze examples (a: 2x2, b: 2x3, c: 3x3 rooms problem) which are gridworld environ-

ments with stochastic cell-to-cell actions. 66

3.2 The maze (2x3 rooms) problem. Displayed state labels were obtained by the room

discovery algorithm. All rooms are discovered with their doors marked (dr). The

states next to the walls are marked (w). The start state is indicated by #, and the

goal state is indicated by 2, and are chosen interactively by the user. 69

3.3 The image (a) the agent detects a door in his sensorimotor �ow; The image (b)

illustrates a corner state detection ; The image (c) illustrates the situation of detecting

two sensorimotor changes at the same time, a door and a corner. 70

3.4 The room with three doors makes three options shown in three pictures, each option

has a separate door for its sub-goal marked (B), and the states marked with (*) form

the initiation set. 71

3.5 An actor-critic architecture. At each time step, the agent according to its actor part

chooses an action a to end up in a state s and receives a reward R(s). the critic will be

recalculated from the calculation of the prediction error δ with the temporal di�erence

method. 72

3.6 Option learning results in the 2x3 rooms maze. After the rooms discovery, 15 options

are obtained after learning. One option for each sub-goal of each room, and one option

for the room that contains the �nal goal state. a) The �rst option policy, b) The second

option policy, c) The 13th option policy that leads to the goal state. 74

7

3.7 A top level actor-critic architecture. At each extended time step, the agent according

to its actor part chooses an option o to end up in a state s and receives a reward R(s).

the critic will be recalculated from the calculation of the prediction error δ with the

temporal di�erence method. 75

3.8 Results of the hierarchical reinforcement learning phase applied on mazes of 2x2 rooms

(a), 2x3 rooms (b) and 3x3 rooms (c). In these simple examples the agent always

eventually �nds its path to the goal. In the maze (d) there is no door connection

between room 4 (bottom left) and room 5 (bottom middle), in this case too, the agent

�nds its path to th goal by passing through room 1 (top left). 77

3.9 Learning curves for the results of execution. (a) curve illustrating the average number

of steps to reach subgoal over episodes when learning option policy(146 runs of learning

option on 3x2 rooms problem and 168 runs of learning option on 3x3 rooms problem).

(b) The green curve illustrates the average number of primitive steps to goal using

learning with only primitive actions. The blue curve illustrates the average number

of primitive steps to goal using HRL with FAOD method (runs over 3x3 rooms and

2x3 rooms problems). (c) curve showing the average time in seconds to reach the

sub-target of the learning options policies, (d) the green curve showing the average

time to reach the target with a single primitive action, and the blue curve showing the

average time taken by the HRL agent to reach the goal. 78

3.10 The image (a) is the 2x2 rooms problem with �windows� on the extern walls of rooms;

The image (b) illustrates the result of executing FAOD with HRL on 2x2rooms problem

when �shortcut� is opened up between the upper right and the lower left rooms; The

image (c) illustrates the result of executing reinforcement learning with only primitive

actions. 79

4.1 Example of two paths that end when the agent returns to a position on the same path.

(a) The path is quite long and will be retained in the list of paths, this path passes

through two narrow passages. (b) The path is not long enough and will therefore be

rejected. 83

4.2 (a) A random path. (b) The shortest path between the start point and the end point

is the straightest path possible. 84

4.3 Example of terminal state discovery, the box of the door or the passage that connects

the two rooms constitutes the state most visited by the paths, and therefore the local

maximum of the states visited by these paths. 86

8

4.4 Con�icting cases in initial state set construction. (a) Two paths that leads to the same

terminal state but not belonging to the same option. (b) The states in gray belong to

two di�erent destination paths, and to two di�erent options at the same time 87

4.5 Example of complementarity in the initial states sets construction. (a, b) Two di�erent

options whose initial states belong to the same part of space, the sub-goal of option

(a) is the easternmost state and the sub-goal of option (b) is the most northerly, both

options su�er from an incomplete state set. Each option completes the other, option

(a) supplemented becomes option (c) and option (b) becomes (d). 88

4.6 The sub-goals discovery : the sub-goals discovered by the agent with a sense of direction

are marked by the letter M and they correspond to the doors which are the best

subgoals made manually in 4-room maze (a), 6-room maze (b) and 9-room maze (c).

At each experience the start state is marked by # and the goal state is marked by � 93

4.7 Sub-goal discovery in methods that use the adjacency matrix. (a) Sub-goal discovery

in the approach of Simsek and colleagues. (b) Sub-goal discovery in the approach of

Xu and colleagues. (c) Sub-goal discovery in the approach of Machado and colleagues. 94

4.8 Learning options policies. (a & b) Examples of two option policies in 6-room and 9-

room maze. (c) Curve comparing between our way�nding agent learning convergence,

and an agent without past experience. 96

4.9 Learning top level policy. (a & b) Examples of �nal paths after hierarchical learning

in 6-room and 9-room maze. (c) Curve comparing between our agent hierarchical

learning convergence, and a �at reinforcement learning agent convergence. 96

4.10 The experiments on special cases. (a) The windows on the exterior walls of the rooms

were not considered as sub-goals. (b) The internal window was considered as a sub-goal

and the agent succeeded in �nding the shortcut. 97

4.11 Examples of option terminal state in tic-tac-toe game. (a) Terminal state for option

after 3 steps is terminal state for HRL at the same time. (b) Terminal state for the

option after 3 steps and a second option is called to win. (c) Terminal state for the

option after 4 steps and a second option is called to win. 98

9

4.12 Learning outcomes. (a) The ascending curve indicates the number of options that

reached their terminal state per episode during phase one of option learning, the de-

scending curve indicates the number of failures. (b) The upper curve indicates the

number of options that reached their terminal state in phase two of option learning

and the lower curve indicates the number of failures. (c) The top curve shows the

number of HRL learning successes in 100 episodes, the bottom curve shows the num-

ber of losses in 100 episodes, and the lowest curve indicates the number of ties. (d)

The same calculations as in (c) but on �at reinforcement learning results. 100

10

List of algorithms

1 Policy Iteration. 23

2 Value Iteration. 24

3 First-visit Monte Carlo Prediction. 27

4 First-visit Monte Carlo Control. 28

5 TD(0) for estimating Vπ. 29

6 Sarsa (on-policy TD control) for estimating Q. 31

7 Q-learning (o�-policy TD control) for estimating π. 32

8 REINFORCE: Monte-Carlo Policy-Gradient Control (episodic). 35

9 REINFORCE: with Baseline (episodic), for estimating πθ. 36

10 One-step Actor�Critic (episodic), for estimating πθ. 37

11 Rooms and subgoals discovery. 68

12 The way�nding strategy to �nd the shortest paths 84

13 The option discovery algorithm . 89

11

List of Tables

2.1 Comparison table of option discovery methods 61

12

Acronyms

ANN Arti�cial Neural Network. 32

BHNN Budgeted Hierarchical Neural Network. 46

BIC Bayesian Information Criterion. 56

CPT Conditional Probability Tree. 56

DBN Dynamic Bayesian Network. 56

DG Directed Graph. 49

ER Experience Replay. 54

FAOD Fast Automatic Option Discovery. 2

FiGAR Fine Grained Action Repetition. 48

FMDP Factored MDP. 56

GPI Generalized Policy Iteration. 23

GRU Gated Recurrent Unit. 47

HRL Hierarchical Reinforcement Learning. 15

MC Monte Carlo. 25

MDP Markov Decision Process. 15

PAC Probably Approximately Correct. 50

PVF Proto-Value Function. 51

13

RGI Relevant Goal Information. 55

RL Reinforcement Learning. 15

SCC Strongly Connected Component. 49

SMDP Semi-Markov Decision Process. 37

SVI Structured Value Iteration. 57

TD Temporal-Di�erence. 27

14

Introduction

A large part of arti�cial intelligence techniques such as neural networks, fuzzy systems,

genetic algorithms, and others are inspired by human or animal behavior or mechanism.

Reinforcement Learning (RL) is similar to animals' ability to learn to predict reward

through trial-and-error learning Sutton and Barto [1981]. RL consists of an agent (soft-

ware or hardware) that interacts with his environment, and is at every moment t in a

state s and must choose an action a to perform. As a result of this action, the agent will

end up in a new state s′ and receive a scalar reward r. The learning algorithm consists

of testing and learning from mistakes in order to progressively maximize the amount of

reward obtained from the environment, Sutton and Barto [1998]. To do so, the agent

has to �nd an optimal policy, which is de�ned as the policy which maximizes the cu-

mulative total reward calculated by a value function over a �nite or in�nite horizon,

depending on the task. However, RL su�ers from the curse of dimensionality, when the

environment becomes complex or the number of states and actions is very large. This

leads to a combinatorial explosion which makes learning slow or ine�cient. Another

type of problem relates to its inability to coordinate di�erent scales of representation.

For example, when an agent has to navigate between di�erent positions inside a room,

and then between di�erent places in a city, the human designer has to manually pre-

de�ne this change in scale because it cannot be discovered by the learning algorithm.

One solution consists in dividing the problem to solve into several levels, and several

subproblems at each level, which makes the algorithm hierarchical. For this reason, this

method is called Hierarchical Reinforcement Learning (HRL) ,McGovern et al. [1998],

Precup and Sutton [1998].

The Hierarchical Reinforcement Learning is a recent �eld of research in arti�cial in-

telligence that has emerged as a solution to the dimensionality problem of conventional

reinforcement learning systems. The solution carried by the HRL consisted of dividing

a problem, modeled generally in the form of Markov Decision Process (MDP), in two

or more hierarchical levels, each lower level is divided into several sub problems to be

solved, subsequently called options, the solutions or policies made for the options are

15

subsequently used as atomic actions to solve the problem of the higher level. With the

emergence of the HRL, the decomposition of problems, and the choice of options was

done manually, which quickly became a problem, hence the emergence of automating

this process as a new �eld of research. New works has been done in this new �eld,

consisting of one side automatically discovering the hierarchical levels of a problem, and

/ or discovering the options of a given level on the other side, and it is the latter under

�elds that interests us in this thesis.

An option is characterized by a termination condition that corresponds to the sub-

goal, a set of initiation states, and a policy that provides the solution to the sub-problem.

The options o�er to the agent the opportunity to use them as many times as he needs,

in di�erent tasks. However, discovering the relevant options remains a real challenge

for the research community, several approaches are proposed, starting with a manual

de�nition of the options, Botvinick et al. [2009], later semi-automatic and automatic

methods appeared.

Objectives

The aim of the work reported in this thesis was initially to study existing approaches in

the �eld of hierarchical reinforcement learning by focusing on automatic option discovery

approaches.

Arti�cial intelligence researchers have introduced several methods and algorithms to

divide a problem, modeled as a Markov decision process, into sub-problems to be solved,

starting with the manual de�nition of options and moving towards automatic de�nitions

sometimes requiring parameters which must be de�ned manually, other methods are

very complex or very time consuming.

Hence our objective is to develop a method that is completely automatic and less

slow in execution. On the other hand, the options discovered must be reusable for

other problems of the same type as the initial problem, with an e�ective strategy for

discovering initiation states and termination conditions or sub-goals and for learning

option policies in a short time.

Scienti�c contributions

This dissertation present the following contributions;

� Classi�cation of methods of automatic option discovery

16

� Review of several approaches in the �eld of automatic option discovery for HRL

and their comparison.

� We introduce a fast approach for automatic option discovery applied on maze

problems.

� We introduce a second approach for automatic option discovery based on an agent

endowed with a sens of direction and an intelligent exploration based on intrinsic

motivation of the agent.

Structure of the thesis

The chapters are organized as follows

� Chapter 2 is reserved for the description of reinforcement learning and hierarchical

reinforcement learning as well as the Markov and semi-Markov decision-making

process.

� Chapter 3 presents the state of the art of automatic option discovery methods,

with method classi�cation, comparison, and critical review.

� In Chapter 4, we describe our �rst method called FAOD for �Fast Automatic

Option Discovery in Hierarchical Reinforcement Learning� applied to spatial and

maze problems. This method discovers the closed spaces and bottlenecks that will

become the future initiation and termination states.

� In Chapter 5, we present our second method based on agent with a sense of direc-

tion. This method will be tested on maze type problems and on the Tic-Tac-Toe

game.

� In the conclusion and future work we conclude our work and discuss prospects for

future research.

17

1 Background on reinforcement

learning and hierarchical

reinforcement learning

Reinforcement Learning is a branch of arti�cial intelligence where an agent learns to

make optimal decisions by interacting with its environment. The theoretical foundations

of RL are based on Markov Decision Processes and dynamic programming methods, such

as policy iteration and value iteration. This chapter provides a detailed introduction to

these concepts, along with an exploration of RL algorithms, including Monte Carlo

methods and temporal di�erence methods.

Monte Carlo methods use samples to estimate policy values, while temporal di�erence

methods combine ideas from Monte Carlo and dynamic programming for more e�cient

learning. Hierarchical Reinforcement Learning is then introduced, aiming to overcome

the limitations of traditional RL methods by structuring problems into hierarchical sub-

tasks. We discuss options and semi-MDPs, key concepts that allow complex problems

to be decomposed into more manageable sub-problems. Finally, this chapter addresses

intrinsic motivation and the sense of direction, concepts independent of but often related

to the learning context. Intrinsic motivation drives the agent to explore and learn

without the need for explicit extrinsic rewards, while the sense of direction helps the

agent navigate a partially observed environment.

1.1 Markov Decision Processes

Markov Decision Processes (MDPs) allow problem modeling very suitable for reinforce-

ment learning. These are issues related to the decision-making process by an agent in an

environment, where the results of the agent's actions are partially stochastic. Markov

Decision Processes (MDPs) as presented in �gure 1.1, named after Andrei Andreyevich

Markov (1856 - 1922), is a mathematical model for the random evolution of a memory-

18

Figure 1.1: Interaction between agent and environment in a Markov decision process. Sutton and

Barto [2018]

less system. Such a system respects the Markov property, that is a given future state

depends only on the present state and where knowing more about the past does not

bring any further information.

An MDP, as a discrete time stochastic control process, provides a mathematical frame-

work for modeling decision making in situations where the outcome is partially controlled

by the agent, Kozlova [2010].

1.1.1 formal de�nition

Formally, an MDP is a tuple (S,A, P, r,) where;

S is a �nite set of states.

A is a �nite set of actions.

P (s′ | s, a) is the function of probability of transition to the state s′ after taking the

action a at the state s.

r (s, a) is an immediate reward received after selecting the action a at the state s.

The set of terminal or absorbing states are states from which the agent can no longer

exit once entered and his task is completed, so he can start over from the beginning; we

then speak of episodic tasks or with a �nite horizon.

The agent's goal is not to maximize the immediate reward but to maximize the ex-

pected cumulative reward of future actions, subsequently called return R; which at a

time t can simply be de�ned by

Rt = rt + rt+1 + rt+2 + ...+ rT , (1.1)

19

where T is the �nal number of steps.

However in most cases T is not de�ned, and the number of steps may not be limited.

For this reason, the concept of discounting is added as follows:

Rt = rt + γrt+1 + γ2rt+2 + ... =
∑
k=0

γkrt+k, (1.2)

where γ ∈ [0, 1] is the discount factor, adjusts the emphasis on future returns relative to

immediate returns, Sutton and Barto [1998], Degris [2007], Kozlova [2010].

1.1.2 Policy and value function

The value function can be a state function or a function of pair (state-action), its role is

to estimate how much it is bene�cial for the agent to be in a given state, or how much

it is bene�cial for the agent to perform a given action while in a given state, this by

estimating the expected future rewards when the agent is in a given state or when he

chooses to perform an action in a given state.

A policy or strategy can be de�ned as the application which, in the deterministic case,

associates with each state s the action that the agent must take, and is noted π (s). In

the stochastic case, a policy associates with each state s the probability of choosing each

possible action a, and will be noted π (s, a).

Thereafter, the value function Vπ (s) of a state s is de�ned as the cumulative rewards

expected in state s by following the policy π, and is de�ned as follows :

Vπ (s) = E [Rt | st = s] (1.3)

Likewise, we de�ne the value function of a state-action pair for a policy π as follows :

Qπ (s, a) = E [Rt | st = s, at = a] (1.4)

20

1.1.3 Bellman equation

The value function can be written as Bellman equation which demonstrates the rela-

tionship of the value of a state with the values of successor states.

Vπ (s) = E [Rt | st = s]

= E
[∑

k=0 γ
krt+k | st = s

]
= E

[
rt +

∑
k=1 γ

krt+k | st = s
]

= E
[
rt + γ

∑
k=1 γ

k−1rt+k | st = s
]

= E [rt] + γE
[∑

k=1 γ
k−1rt+k | st = s

]
= E [rt] + γE [Rt+1 | st = s]

= E [rt] + γ [Vπ (st+1)] ,

(1.5)

where E [rt] is the average of rewards for all possible actions by the policy π in the

current state s, where :

E [rt] =
∑
a∈A(s)

π (s, a)
∑
s′∈S

P (s′ | s, a) r (s, a) (1.6)

Therefore, given a policy π, the value of the state s is de�ned by :

Vπ (s) =
∑
a∈A(s)

π (s, a)
∑
s′∈S

P (s′|s, a) [r (s, a) + γVπ (s′)] (1.7)

This equation is called the Bellman equation.

1.1.4 Optimal Policies

The optimal policy is the policy with the greatest expected return. There can be several

optimal policies π∗ With the same optimal value function V ∗ :

V ∗ (s) = max
π

Vπ (s) (1.8)

Likewise for the state-action value function :

Q∗ (s, a) = max
a∈A(s)

Qπ (s, a) (1.9)

21

Hence the Bellman optimality equation for V ∗ is written as follows :

V ∗ (s) = max
a∈A(s)

∑
s′∈S

P (s′ | s, a) [r (s, a) + γV ∗ (s′)] , (1.10)

and for Q∗ the Bellman optimality equation is :

Q∗ (s, a) =
∑
s′∈S

P (s′ | s, a)
[
r (s, a) + γmax

a′
Q∗ (s′, a′)

]
(1.11)

To �nd and build the optimal policy, the main idea is to use the value function and

improve it iteratively. In the following sections we will introduce the two most e�cient

methods to solve this problem; dynamic programming and reinforcement learning.

1.2 Dynamic programming

Dynamic programming refers to a set of algorithms for calculating the optimal policies

π∗ of a �nite MDP, Degris [2007] provided that the dynamics of the environment are

known a priori. The dynamics of the environment are de�ned by the transition function

P , and the reward function r. These algorithms are called model-based algorithms, and

indirect learning algorithms, and are considered o�ine learning algorithms due to the

fact that the agent does not need to interact with the environment to know the results

of his actions.

In the following subsections we present two dynamic programming algorithms, the

policy iteration algorithm and the value iteration algorithm.

1.2.1 Policy Iteration

The policy iteration algorithm Sutton and Barto [1998], Kozlova [2010], Geist [2009]

begins with a random initialization of the policy and value function for all states of the

MDP, and then proceeds by iterations. At each iteration the algorithm evaluates the

policy by calculating the value function V using the Bellman equation, then performs

an improvement of the current policy.

The evaluation of the policy consists in calculating Vπ for each state s ∈ S and

repeating this process until values stabilisation, because the value of one state s depends

also on values of the successor states in the trajectories de�ned by the policy π.

Policy improvement is done for every state s in a greedy fashion by choosing the action

22

for it that maximizes its value V (s) given by the Bellman equation.

The algorithm iterates evaluation and improvement until the policy stops improving.

In this case, we have reached an optimal policy.

Algorithm 1 Policy Iteration.

Require: θ
Ensure: V ∗,π∗.

Initialize Vπ (s) and π (s) arbitrarily.
{Policy Evaluation}

2: repeat

∆← 0
4: for all s ∈ S do

v ← Vπ (s)
6: Vπ (s)←

∑
s′∈S P (s′|s, π (s)) [r (s, π (s)) + γVπ (s′)]

∆← max (∆, |v − Vπ (s)|)
8: end for

until ∆ < θ
{Policy improvement}

10: stable← True
for each s ∈ S do

12: b← π (s)
π (s)← argmaxa∈A(s)

∑
s′∈S P (s′ | s, a) [r (s, a) + γVπ (s′)]

14: if b 6= π (s) then
stable← False

16: end if

end for

18: if not (stable) then
GOTO 2

20: end if

return V ,π.

The policy iteration algorithm introduced a concept that will be used by all rein-

forcement learning algorithms, namely the idea of alternating between two processes,

the policy evaluation process and the process of policy improvement. Regardless of the

granularity and other details of the two processes, the two processes converge to give

the optimal value function and the optimal policy. This concept is called Generalized

Policy Iteration (GPI).

23

1.2.2 Value Iteration

The Policy Iteration Algorithm is an iterative algorithm that contains in each iteration

another computationally expensive iterative algorithm which is the Policy Evaluation

Algorithm. The latter continues its iterations over all MDP states until convergence to

move to the improvement phase. However, the number of iterations of the evaluation

phase can be truncated so that only one remains, which will be combined with the policy

improvement step into a single operation. This operation will repeat until convergence,

which constitutes a new algorithm called value iteration.

The resulting improvement evaluation operation is always based on the Bellman equa-

tion and the optimal policy is deduced after convergence of iterations.

Algorithm 2 Value Iteration.

Require: θ
Ensure: V ∗,π∗.
Initialize V arbitrarily.
repeat

∆← 0
for all s ∈ S do

v ← V (s)
V (s)← maxa

[
r (s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)

]
∆← max (∆, |v − Vπ (s)|)

end for

until ∆ < θ
for each s ∈ S do

π (s)← argmaxa∈A(s)
∑

s′∈S P (s′ | s, a) [r (s, a) + γV (s′)]
end for

return V ,π.

1.3 Reinforcement learning

Classical DP algorithms are of limited utility in reinforcement learning both because of

their assumption of a perfect model and because of their high computational cost, Sutton

and Barto [1998]. These algorithms are considered as model-base reinforcement learning,

and are based on the assumption that the transition and reward functions of the MDP

to be solved are known. However, this assumption does not suit many problems. On

the other hand, model free RL uses experience to directly learn one or both of the two

quantities state/action values or policies that can achieve the same optimal behavior

24

without estimating or using the environment model, Dayan and Niv [2008].

Temporal Di�erence Learning (TD-LEARNING) like Q-LEARNING or SARSA and

ACTOR-CRITIC are examples of modelless algorithms, Sutton and Barto [1998], Ko-

zlova [2010]. Indeed, these reinforcement learning algorithms make online or direct

learning.

Reinforcement learning (RL) is similar to animals' ability to learn to predict reward

through trial-and-error learning, Sutton and Barto [1981]. It traces back work on animal

learning by the psychologist Edward Thorndike in 1911, Thorndike [1911]. It later

developed within the �eld of computer science in the 1950s with the advent of arti�cial

intelligence.

To our knowledge, the �rst theoretical work on trial and error learning was from

Turing's, Minsky and Fardy's, and Clark's publications. In parallel, still in the 1950s, the

term �optimal control� was introduced for dealing with dynamic systems. The solution

was given by dynamic programming algorithms based on the work of Richard Bellman,

Hamilton and Jacobi, and Ron Howard. Subsequently in 1961, Michie in Michie [1961]

described a system capable of learning to play the tic-tac-toe game, and Samuel in

Samuel [1959] realized a software that teaches the game of checkers.

The merger between trial and error learning and dynamic programming was done by

K Lopf H [1975] between 1972-1975, and it is in 1981 that Sutton and Barto, Sutton and

Barto [1981] "considered as pioneers of modern RL" implemented a linear perceptron

whose learning equation is derived and extended from the work of Rescorla and Wagner

in 1972 in experimental psychology, Rescorla et al. [1972]. This equation introduces

the notion of temporal di�erence: the ability to learn to predict reward based on the

comparison between two temporally consecutive estimations of this prediction. Sutton,

Barto and Anderson proposed in 1983 the actor-critic architecture, Barto et al. [1983],

which is based on temporal di�erence learning.

1.3.1 Monte Carlo Methods

Monte Carlo (MC) methods do not assume complete knowledge of the environment and

require only experience, they sample sequences of states, actions, and rewards from ac-

tual or simulated interaction with an environment.

Monte Carlo methods are used for episodic tasks, thus, experience is divided into

episodes, and all episodes eventually terminate no matter what actions are selected.

It is only at the end of an episode that the value estimates and policies are changed.

Hence Monte Carlo methods are incremental in an episode-by-episode sense, but not in

25

a step-by-step sense, Sutton and Barto [1998].

In reinforcement learning, Monte Carlo methods are a family of methods based on

the same principle of trajectory plotting to make prediction, estimate of state value

function or state � action value function, and control. In this section we will detail two

algorithms, the state value function estimation algorithm, and the control algorithm for

the estimation of the optimal policy.

Monte Carlo Prediction

Here we present one Monte Carlo algorithm for learning the state-value function for

a given policy, that is the value expected of the cumulative future discounted reward,

starting from the actual state. An obvious way to estimate it from experience, that is

simply to average the returns observed after visits to that state. As more returns are

observed, the average should converge to the expected value.

For the estimation of Vπ (s), the value of a state s under policy π, we have a set of

episodes obtained by following π and passing through s. Each occurrence of state s in

an episode is called a visit to s. Of course, s may be visited multiple times in the same

episode; the �rst time it is visited in an episode is called the �rst visit to s. The �rst-

visit MC method estimates Vπ (s) as the average of the returns following �rst visits to s,

whereas the every-visit MC method averages the returns following all visits to s. These

two methods are very similar but have slightly di�erent theoretical properties. First-visit

MC is shown in procedural form in the algorithme 3. First-visit MC algorithm converge

to Vπ (s) as the number of �rst visits to s goes to in�nity, Sutton and Barto [1998].

Monte Carlo Control

In model based algorithms like policy iteration and value iteration, it is useful to estimate

only value function to determine policy, one simply looks ahead one step and chooses

whichever action leads to the best combination of reward and next state. But here in

reinforcement learning there is no model for determining the action leading to a state

and a reward, and we cannot determine the policy, so one of the main purposes of the

methods of Monte Carlo is to estimate the policy, thus one of primary goals for Monte

Carlo methods is to estimate state-action pairs values Q∗ rather than state values.

The estimation of state-action value Qπ(s, a) is to estimate the expected return when

starting in state s , taking action a, and thereafter following policy π. Thus , the Monte

Carlo methods are then adapted to state-action visit rather than state visit. A state-

action pair (s, a) is said to be visited in an episode if the state s is visited and action a

26

Algorithm 3 First-visit Monte Carlo Prediction.

Require: a policy π
Ensure: Vπ.
Initialize V arbitrarily for all s ∈ S.
Returns(s)← an empty list for all s ∈ S.
loop

Generate an episode following π : s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT
G← 0
for each step of episode,t = T − 1, T − 2, ..., 0 : do
G← γG+ rt+1

Unless st appears in s0, s1, ..., st−1
Append G to Returns(st)

end for

V (st)← average (Returns (st))
end loop

is taken in it. The �rst-visit MC method averages the returns following the �rst time in

each episode that the state was visited and the action was selected, the same adaptation

was done for the de�nition of the every visit MC method.

The goal of MC control algorithms is to approximate optimal policies, as the majority

of RL methods, the MC control algorithm alternates between policy evaluation and

policy improvement, that is the principle of generalized policy iteration. The �rst-visit

MC control algorithm 4 start with an arbitrary policy π0. The policy evaluation is done

by estimating state-action value function, an in�nit number of episodes are generated to

observe �rst-visits of state-action pairs, for exploration purposes, a new start state-action

is generated at each episode.

The policy improvement step is greedy as in policy iteration algorithm, thus for any

action value function Q, the corresponding greedy policy is the one that for each s ∈ S
deterministically chooses an action with maximal action-value :

π (s) = arg max
a
Q (s, a) , (1.12)

πk+1 is therefor constructed greedily with respect to Qπk .

In Sutton and Barto [1998] it is proved that πk+1 is uniformly better than πk, or just as

good as πk , in which case they are both optimal policies.

27

Algorithm 4 First-visit Monte Carlo Control.

Ensure: π∗, Q∗.
Initialize:
π (s) ∈ A (s) arbitrarily for all s ∈ S.
Q (s, a) ∈ R, for all s ∈ S,a ∈ A (s).
Returns(s, a)← an empty list for all s ∈ S,a ∈ A (s).
loop

Choose s0 ∈ S, a0 ∈ A (s0) randomly with probability > 0.
Generate an episode form s0,a0 following π : s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT
G← 0
for each step of episode,t = T − 1, T − 2, ..., 0 : do
G← γG+ rt+1

Unless the pair st,at appears in s0, a0, s1, a1..., st−1, at−1
Append G to Returns(st, at)

end for

Q (st, at)← average (Returns (st, at))
π (st) = arg maxaQ (st, a)

end loop

1.3.2 Temporal-Di�erence Learning

�If one had to identify one idea as central and novel to reinforcement learning, it would

undoubtedly be Temporal-Di�erence (TD) learning�, Sutton and Barto [1998]. TD learn-

ing methods combine the advantages of ideas from Monte Carlo methods and ideas from

dynamic programming. TD learning is similar to Monte Carlo methods in that it does

not need a model and learns directly from experience. At the same time, the method es-

timates the value function based on other estimations (they bootstrap1) without waiting

for the �nal return of the episode, and this is what the methods of dynamic programming

do.

TD method is based on the principle of generalized policy iteration (GPI), the dif-

ference between this method and the previous methods is mainly found in the phase of

policy evaluation, or the prediction problem.

TD Prediction

TD learning is model-free learning and is based on experience or interaction with the

environment. It is an episodic method like the MC technique. While the latter waits for

the end of the episode to be able to update the V (s) values, the TD methods wait only

1bootstrapping is to make an estimate based on other estimates

28

for a single step.

At step t, TD method waits for the next step t + 1 to retrieve the reward rt and the

estimated value V (st+1) to update st as follows:

V (st)← V (st) + α [rt + γV (st+1)− V (st)] , (1.13)

where α ∈ [0, 1] is the learning rate.

Indeed the target for updating the TD learning is the term rt + γV (st+1), this method

is called TD(0), or one step TD which is a special case of TD(γ) or the n-step (for

more details see chap 7 and chap12 of the book, Sutton and Barto [1998]). The TD(0)

method is presented in the algorithm 5 below.

Algorithm 5 TD(0) for estimating Vπ.

Require: the policy π to be evaluated
Ensure: Vπ.
parameter: step size α ∈ [0, 1].
Initialize: V (s) arbitrarily for all s ∈ S.
for each episode do
Initialise s. {the initial state}
repeat

a← π (s) action given by π for actual state s
Take action a; observe reward r and next state s′.
V (s)← V (s) + α [r + γV (s′)− V (s)]
s← s′

until s is terminal.
end for

TD like MC methods uses sample updates, i.e. they use the successor value (or values)

along the way to calculate the value of a state s which has just been visited, unlike DP

methods which do not wait interact with the environment to see the successors, since

they maintain a full proability distribution of all possible successors.

TD methods are more advantageous compared to dynamic programming methods and

Monte Carlo methods. for the �rst case it is due to the fact that the TD methods do

not need an environment model to predict the dynamics of the MDP, and compared to

the MC methods which at each iteration of learning must wait for the end of the episode

to compute the value function, the TD methods only wait for one step of time. And

with regard to the convergence of the algorithm, it was proved in [Sutton 98] that for

any �xed policy π the algorithm TD converges to Vπ.

29

TD Control: policy improvement

The temporal di�erence methods also follow the Generalized Policy Iteration model,

after having seen a TD prediction method which represents the policy evaluation phase

we will see two TD control methods i.e. the policy improvement phase.

Policy learning is faced with the exploration / exploitation dilemma. Exploration

consists in choosing the actions already known and which give the best return, while

the exploration chooses new actions in the hope of receiving even greater cumulative

rewards, but at the risk of sometimes adopting an under-optimal behavior.

Methods of learning policies must �nd a trade o� between exploration and exploita-

tion. In this perspective there are two classes; on-policy and o�-policy methods, Sutton

and Barto [1998], Léon [2019]. In on-policy methods, the learned policy is used at the

same time as it is improved. The disadvantage of these methods is that the same policy

must make it possible to learn the optimal actions to be carried out while exploring the

environment, therefore by using a behavior that is not necessarily optimal.

The o� policy methods allow two policies to be used at the same time, an explorer

policy which generates random actions, this policy is called bihavioral policy. The second

policy is the target policy which is evaluated and improved. O� policy methods are often

of higher variance and converge more slowly, but at the same time they are the most

powerful.

ε-greedy method

Among the exploration methods, we cite the ε-greedy method, Degris [2007], where at

each time step a random action is chosen with a low probability ε where (0 < ε < 0.2).

The choice of this action follows a uniform distribution independent of the actions values.

And with greater probability (1− ε) the action with the best action value is chosen.

The greedy method makes it possible to obtain a good trade o� between exploration

and exploitation.

Sarsa

Sarsa is an on-policy TD control method. It is a free model method, that is to say that

we do not know in advance the transition function and the reward function, the reason

why we must learn the value function (state-action) instead of the state value function.

This is possible by adapting the TD estimation method as follows :

30

Q (st, at)← Q (st, at) + α [rt + γQ (st+1, at+1)−Q (st, at)] (1.14)

This update is performed after each transition from a non-terminal state st, if st+1

is terminal then Q (st+1, at+1) is set to zero. At each transition, all the elements of the

quintuplet (st, at, rt, st+1, at+1) are used, hence the name of the Sarsa method.

The Sarsa algorithm estimates the action value Qπ for the applied policy π and at the

same time changes π according to Qπ as presented in the algorithm 6.

Algorithm 6 Sarsa (on-policy TD control) for estimating Q.

parameter: step size α ∈ [0, 1], small ε > 0.
Initialize: Q (s, a) arbitrarily for all s ∈ S, a ∈ A (s).
for each episode do
Initialise s. {the initial state}
Choose a from s using policy derived from Q (e.g., ε-greedy)
repeat

Take action a; observe reward r and next state s′.
Choose a′ from s′ using policy derived from Q (e.g., ε-greedy)
Q (s, a)← Q (s, a) + α [r + γQ (s′, a′)−Q (s, a)]
s← s′;a← a′;

until s is terminal.
end for

Q-learning

This is a o�-policy TD control algorithm, it is one of the oldest RL algorithms, see

Watkins [1989], Watkins and Dayan [1992], its formula for updating the action value

function is as follows:

Q (st, at)← Q (st, at) + α
[
rt + γmax

a
Q (st+1, a)−Q (st, at)

]
(1.15)

The action value function Q directly approximates the optimal action value function

Q* independently of the policy followed during learning.

The di�erence between the Sarsa algorithm and Q-learning lies in the fact that Sarsa

performs updates according to the actions actually chosen, while the Q-learning algo-

rithm modi�es the values of the function according to the optimal actions even if the

agent had not chosen them, hence the expression maxaQ (st+1, a) in the formula of the

value function. The use of two policies at the same time, one of which is completely arbi-

trary, allows a good compromise between exploitation and exploration. The Q-learning

31

algorithm performs an update after each (st, at, st+1, rt) transition as indicated by the

algorithm 7.

Algorithm 7 Q-learning (o�-policy TD control) for estimating π.

parameter: step size α ∈ [0, 1], small ε > 0.
Initialize: Q (s, a) arbitrarily for all s ∈ S, a ∈ A (s).
for each episode do
Initialise s. {the initial state}
repeat

Choose a from s using policy derived from Q (e.g., ε-greedy)
Take action a; observe reward r and next state s′.
Q (s, a)← Q (s, a) + α [r + γmaxaQ (s′, a)−Q (s, a)]
s← s′;

until s is terminal.
end for

1.3.3 Policy Gradient Methods

All methods already learned was action-value methods; they learned the values of actions

and then selected actions based on their estimated action values. Now, we consider

methods that learn parameterized policy that can select actions without consulting a

value function, Sutton and Barto [2018]. Let be θ the policy's parameter vector, thus

π (a | s, θ) = Pr {at = a | st = s, θt = θ} de�ne the probability that action a is taken at

time t in the state s with parameter θ. Methods for learning policy are based on the

gradient ascent to maximise a performance measure J (θ) as follow :

θt+1 = θt + α∇̂J (θ), (1.16)

where ∇̂J (θ) is a stochastic estimate whose expectation approximates the gradient of

the performance measure.

Methods that follow this schema are called policy gradient methods, among them meth-

ods that learn approximations to both policy and value function are called actor-critic

methods, where 'actor' is a reference to the learned policy, and 'critic' refers to the

learned value function. The advantage of policy gradient methods is that they can be

applied for episodic case as well as the continuing case. In this thesis we will treat only

the episodic (discret) case.

If the action space is discrete and not too large, then it is useful to form parameterized

numerical preferences h (s, a, θ) ∈ R for each state-action pair. The actions with the

32

highest preferences are given the highest probabilities of being selected, for example,

according to an exponential soft-max distribution:

π (a, s, θ)
.
=

eh(s,a,θ)∑
b e

h(s,b,θ)
(1.17)

The action preferences can be parameterized arbitrarily, by a deep Arti�cial Neural

Network (ANN), where θ is the vector of all the connection weights of the network.

For the episodic case, the performance measure can be de�ned to be the value of the

start state of the episode. By assuming that every episode starts in some particular

state s0, the performance will be :

J (θ) = Vπθ (s0) , (1.18)

where Vπθ is the true value function for πθ, the policy determined by θ.

Performance depends on action selections and the distribution of states in which those

selections are made, and both of these are a�ected by the policy parameter which e�ect

on the actions, and thus on reward, can be computed, but the e�ect of the policy on the

state distribution is a function of the environment and is typically unknown. Thus we

can't estimate the performance gradient with respect to the policy parameter when the

gradient depends on the unknown e�ect of policy changes on the state distribution. The

policy gradient theorem, Sutton and Barto [2018] gives the solution to this problem

by providing an analytic expression for the gradient of performance with respect to the

policy parameter. The policy gradient theorem for the episodic case establishes that

∇J (θ) ∝
∑
s

µ (s)
∑
a

qπ (s, a)∇π (a | s, θ), (1.19)

where the gradients are column vectors of partial derivatives with respect to the com-

ponents of θ, and π denotes the policy corresponding to parameter vector θ. The symbol

∝ means "proportional to". The policy gradient theorem gives an exact expression pro-

portional to the gradient without involving the derivative of the state distribution; all

that is needed is some way of sampling whose expectation equals or approximates this

expression.

33

REINFORCE: Monte Carlo Policy Gradient

Monte Carlo policy gradient algorithm called REINFORCE, Sutton and Barto [2018]

derive from the policy gradient theorem as follow:

∇J (θ) ∝
∑
s

µ (s)
∑
a

qπ (s, a)∇π (a | s, θ)

= Eπ

[∑
a

qπ (st, a)∇π (a | st, θ)

]

At time t, the classical REINFORCE algorithm involve only at the action actually taken,

thus the sum over the random variable's possible values is replaced by an expectation

under π, and then the expectation is sampled, it is in this way that we introduced st
in the last equation and that we are going to introduce at in the following equation.

However, for an expectation under π, the terms must be weighted by π (at | st, θ), so the
right hand side of the equation is then multiplied and divided by π (at | st, θ).

∇J (θ) = Eπ

[∑
a

π (a | st, θ) qπ (st, a)
∇π (a | st, θ)
π (a | st, θ)

]

= Eπ
[
q (st, at)

∇π (at | st, θ)
π (at | st, θ)

]
= Eπ

[
Rt
∇π (at | st, θ)
π (at | st, θ)

]
,

where Rt is the return as usuel. The expression in brackets is the quantity that can

be sampled on each time step whose expectation is equal to the gradient. Thus REIN-

FORCE update becomes

θt+1 = θt + αRt
∇π (at | st, θt)
π (at | st, θt)

(1.20)

34

Algorithm 8 REINFORCE: Monte-Carlo Policy-Gradient Control (episodic).

Require: a di�erentiable policy parameterization π (a | s, θ)
Initialize step size α > 0.
Initialize policy parameter θ.
loop

Generate an episode : s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT following π (· | ·, θ)
for each step of episode,t = 0, 1, ..., T − 1 : do
R←

∑t
k=t+1 γ

k−t−1Rk

θ = θ + αγtR∇ lnπ (at | st, θ)
end for

end loop

From the identity ∇ lnx = ∇x
x
, we can use ∇ ln π (at | st, θ) instead of ∇π(at|st,θt)

π(at|st,θt) .

Monte Carlos policy gradient pseudo-code is presented in algorithm 8.

REINFORCE with Baseline

The policy gradient theorem can be generalized to include a comparison of the action

value to an arbitrary baseline b(s), Sutton and Barto [2018]:

∇J (θ) ∝
∑
s

µ (s)
∑
a

(qπ (s, a)− b (s))∇π (a | s, θ) (1.21)

The update rule of the new version of REINFORCE that includes a general baseline:

θt+1 = θt + α (Rt − b (st))
∇π (at | st, θt)
π (at | st, θt)

(1.22)

One natural choice for the baseline is an estimate of the state value,V̂ (st, w), where

w is a weight vector.

REINFORCE is a Monte Carlo method for learning the policy parameter, θ, thus

Monte Carlo method is used to learn the state-value weights, w. The pseudocode for

REINFORCE with baseline using a learned state-value function as the baseline is given

in the algorithm 9, this algorithm has two step sizes, denoted αθ and αw For policy

parameter and state-value weights updates respectively.

35

Algorithm 9 REINFORCE: with Baseline (episodic), for estimating πθ.

Require: a di�erentiable policy parameterization π (a | s, θ)
Require: a di�erentiable state-value function parameterization V̂ (s, w)
Initialize step size αθ > 0, αw > 0.
Initialize policy parameter θ and state-value weights w.
loop

Generate an episode : s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT following π (· | ·, θ)
for each step of episode, t = 0, 1, ..., T − 1 : do
R←

∑t
k=t+1 γ

k−t−1Rk

δ ← R− V̂ (st, w)
w ← w + αwδ∇V̂ (st, w)
θ = θ + αθγtδ∇ ln π (at | st, θ)

end for

end loop

Actor�Critic Methods

REINFORCE-with-baseline method learns a policy and a state-value function, but it is

not an actor-critic method since the state-value function is not used for updating the

value estimate for a state from the estimated values of subsequent states), but only as

a baseline for the state whose estimate is being updated. REINFORCE with baseline

as all Monte Carlo methods has slow learning and his estimates show a high variance,

these inconveniences can be eliminated with temporal-di�erence methods.

One-step actor�critic methods, Sutton and Barto [2018], are analog to the TD methods

such as TD(0), Sarsa(0), and Q-learning, they are fully online and incremental, they

replace the full return of REINFORCE with the one-step return as follows:

θt+1
.
= θt + α

(
Rt:t+1 − V̂ (st, w)

) ∇π (at | st, θt)
π (at | st, θt)

= θt + α
(
Rt+1 + γV̂ (st+1, w)− V̂ (st, w)

) ∇π (at | st, θt)
π (at | st, θt)

= θt + αδt
∇π (at | st, θt)
π (at | st, θt)

Pseudocode for the One-step actor�critic methods is given in algorithm 10.

36

Algorithm 10 One-step Actor�Critic (episodic), for estimating πθ.

Require: a di�erentiable policy parameterization π (a | s, θ)
Require: a di�erentiable state-value function parameterization V̂ (s, w)
Initialize step size αθ > 0, αw > 0.
Initialize policy parameter θ and state-value weights w.
for each episode do
Initialize s. {the initial state}
I ← 1
while s is not terminal do
a ∼ π (. | s, θ)
Take action a; observe reward r and next state s′.
δ ← r + γV̂ (s′, w)− V̂ (s, w)
w ← w + αwδ∇V̂ (s, w)
θ = θ + αθIδ∇ lnπ (a | s, θ)
I ← γI
s← s′

end while

end for

1.4 Hierarchical Reinforcement Learning

Reinforcement learning encounters a dimensionality problem which is called the curse

of dimensionality. This term was coined by Richard Bellman and refers to phenomena

observed when analyzing and organizing data in high dimensional spaces wherein, as the

problem dimensionality increases, the volumes of the search space for solutions increases

so fast that the available data becomes sparse resulting in more e�orts for �nding an op-

timal solution. In the context of reinforcement learning when the environment becomes

complex or the number of states and actions is very large, This leads to a combinato-

rial explosion which makes learning slow or ine�cient. Another type of reinforcement

learning problem relates to its inability to coordinate di�erent scales of representation.

For example, when an agent has to navigate between di�erent positions inside a room,

and then between di�erent places in a city, the human designer has to manually pre-

de�ne this change in scale because it cannot be discovered by the learning algorithm.

One solution consists in dividing the problem to solve into several levels, and several

subproblems at each level, which makes the algorithm hierarchical. For this reason, this

method is called "hierarchical reinforcement learning" (HRL), McGovern et al. [1998],

Precup and Sutton [1998], Barto and Mahadevan [2003].

It seems natural to try to use a hierarchical decomposition of the problem into smaller

37

pieces that are easier to solve individually, since humans naturally use hierarchical repre-

sentations to act in the world. In some cases, hierarchical decomposition can be designed

by a human operator. But in many situations such as large, complex or unusual prob-

lems, providing the correct decomposition is di�cult if not impossible. That is why the

automatic hierarchical task decomposition is one of the most challenging problems in

the domain of RL, Kozlova [2010].

1.4.1 Semi-Markov Decision Process

Semi-Markov Decision Process (SMDP), Sutton et al. [1999] can be seen as MDP where

the amount of time taken by an action is a random variable, which can take either real

or integer values. In the real-valued case, the SMDPs model continuous-time discret-

event systems, Puterman [1994]. In the case of integer values, SMDPs model discret-

time systems, Howard [1971], and that is what we deal with in this thesis. Due to its

relative simplicity, the discrete-time SMDP formulation underlies most approaches to

hierarchical RL, but there are no signi�cant obstacles to extending these approaches to

the continuous-time case, Barto and Mahadevan [2003]. The actions extended in time

in SMDPs are also called abstract actions.

Let the random variable τ be the positive waiting time for state s when action a is

executed. Given an agent in state s, the joint probability of transiting to state s′ after

τ time steps when action a is executed is written P (s′, τ | s, a). The immediate rewards

expected, r (s, a) is the amount of discounted reward expected to accumulate over the

waiting time in s given action a. The Bellman equations for V ∗ and Q∗ become

V ∗ (s)← max
a∈A(s)

[
r (s, a) +

∑
s′,τ

γτP (s′, τ |s, a)V ∗ (s′)

]
, (1.23)

for all s ∈ S; and

Q∗ (s, a) = r (s, a) +
∑
s′,τ

γτ P (s′, τ | s, a) max
a′∈A(s′)

Q∗ (s′, a′), (1.24)

for all s ∈ S and a ∈ A (s).

1.4.2 Options

The term options is used for the �rst time in Sutton et al. [1999], as the generalization

of primitive actions to include temporally extended courses of action. Options consist

38

Figure 1.2: Discrete-time transitions in MDP vs SMDP and options, Sutton et al. [1999]

of three components:

� a policy π : S × A→ [0, 1],

� and an initiation set I ⊆ S

� a termination condition β : S → [0, 1],

An option o = 〈I, π, β〉 is available in all states s belonging to the initiation set I. Thus,

if an agent take the option o in a state st ∈ I, then actions are selected according to

π until the option terminates stochastically according to β. In particular, a Markov

option executes as follows. First, the next action at is selected according to probability

distribution π (st, .). The environment then makes a transition to state st+1, where the

option either terminates, with probability β (st+1), or else continues, determining at+1

according to π (st+1, .), possibly terminating in st+2 according to β (st+2), and so on.

When the option terminates, the agent has the opportunity to select another option.

It has a great advantage to limit the �eld of application of an option by the initiation

set and the termination condition, this amounts to de�ning a sub-problem much less

complex than the main problem and with a search space very limited which solves the

problem of dimensionality mentioned above. Thus an option policy will be de�ned on a

limited space as in the example cited in Sutton et al. [1999] where a handcrafted policy

π for a mobile robot to dock with its battery charger might be de�ned only for states

I in which the battery charger is within sight. The termination condition β could be

de�ned to be 1 outside of I and when the robot is successfully docked.

A Markov option is an option in which all states where an option could continue are

also states where the option could be taken or started. In a Markov option that start

at time t and take some actions for a number of steps k; the decision in one step i,

t ≤ i ≤ k may depend only on si, whereas the decision in a semi-Markov option may

depend on the entire history from t to i. Thus in semi-Markov option, Sutton et al.

39

[1999] the policy and termination condition are function of possible histories. Note that

options that select other options in hierarchical structures are also semi-Markov.

From the initiation sets of options is de�ned a set of available options Os for each
s ∈ S, thus primitive actions available in state s could be considered as options of one

step. So we can consider the agent's choice at each time to be entirely among options,

some of which persist for a single time step, others of which are temporally extended,

Sutton et al. [1999]. The set of all these available options is noted O =
⋃

s∈S
Os.

Another important concept is policies over options, Sutton et al. [1999]. When initi-

ated in a state st , the Markov policy over options µ : S ×O → [0, 1] selects an option

o ∈ Ost according to probability distribution µ (st, ·). The option o is then taken in st ,

determining actions until it terminates in st+k, at which time a new option is selected,

according to µ (st+k, ·), and so on, see �gure 1.2. In this way a policy over options, µ,

determines a conventional policy over actions, or �at policy, π = flat (µ), which may not

be Markov even though all the options it selects are Markov, when any of the options

are temporally extended. The action selected by the �at policy in state si depends not

just on si but on the option being followed at that time, and this depends stochastically

on the entire history since the policy was initiated at time t. These policies that may

depend only on events back to some particular time are semi-Markov.

Thus, the generalizations of the conventional value functions for a semi-Markov �at

policy π, in a state s ∈ S is given as the expected return given that π is initiated in s :

V π (s) = E
{
rt+1 + γrt+2 + γ2rt+3 + · · · | E (π, s, t)

}
, (1.25)

where E (π, s, t) denotes the event of π being initiated in s at time t. The value of a

state under a general policy µ can then be de�ned as the value of the state under the

corresponding �at policy : V µ (s) =def V flat[µ] (s), for all s ∈ S. Action-value functions
generalize to option-value functions. Sutton and colleagues in Sutton et al. [1999] de�ne

Qµ (s, o), the value of taking option o in state s ∈ I under policy µ, as

Qµ (s, o) = E
{
rt+1 + γrt+2 + γ2rt+3 + · · · | E (oµ, s, t)

}
, (1.26)

where oµ, the composition of o and µ, denotes the semi-Markov policy that �rst follows

o until it terminates and then starts choosing according to µ in the resultant state.

The optimal policy over a set of options O can be learned by generalizing learning

methods on actions, since each option is viewed as an indivisible, opaque unit. When

the execution of option o is started in state s, we next jump to the state s′ in which

40

o terminates. Based on this experience, an approximate option-value function Q (s, o)

is updated after each option termination as in one-step Q-learning, which is called in

Sutton et al. [1999] SMDP Q-learning :

Q (s, o)← Q (s, o) + α

[
r + γk max

o′∈Os′
Q (s′, o′)−Q (s, o)

]
, (1.27)

where k denotes the number of time steps elapsing between s and s′, r denotes the

cumulative discounted reward over this time, and α is step-size parameter.

1.5 Intrinsic Motivation

The behavior of human or animal is referred to be intrinsically motivated when it is

inherently enjoyable, Barto et al. [2004], Vigorito and Barto [2010]. So, humans or ani-

mals engage for activities as exploration, play, and other behaviors driven by curiosity,

for their own sakes, without expecting an external explicit reward. Intrinsically moti-

vated behavior is essential to accumulate knowledge and competences for solving future

problems. Earlier in psychology, Harlow Harry. F and R. [1950], it has been shown that

young human or animal subjects often tend to exhibit intrinsically motivated behavior

when they are not preoccupied with foraging, survival, or reproduction. This allowed

them, over time, to acquire complex skills and know-how that they can bene�t from in

their future lives, Vigorito [2016].

1.5.1 Intrinsic vs extrinsic motivation

While intrinsic motivation is de�ned as the doing of an activity for its inherent sat-

isfaction, the extrinsic motivation is when an activity is done in order to attain some

separable outcome, Oudeyer and Kaplan [2009]. Thus, instrumentalization or goal is the

central feature that di�erentiates intrinsic and extrinsic motivation. The experimental

psychology, Harlow Harry. F and R. [1950], Oudeyer and Kaplan [2009] revealed that

exploratory activities are more likely to be intrinsically motivated, thus some properties

like (the `fun', the `challenge', the `novelty', the `cognitive dissonance' or the `optimal

incongruity') are crucial to the de�nition of intrinsic motivation.

41

1.5.2 Intrinsically motivated reinforcement learning

Early work on intrinsic motivation focused on approaches that provide intrinsic reward

to agents proportional to errors in the predictions of their environment, leading the agent

to discover new areas of the environment, thereby focusing learning on those areas so

as to reduce that unpredictability, Schmidhuber [1991]. In reinforcement learning, the

extrinsic reward is done by the critic as an environment response associated with the

task to be solved, but the intrinsic reward is function of the agent's current state of

knowledge, and thus, the reward function is continually changing as the agent continues

to learn.

In Barto et al. [2004], authors have used intrinsic reward to learn a collection of skills in

a very hierarchical environment as the playroom domain described in, Barto et al. [2004],

thus when the agent encounters an unpredicted salient event, it is intrinsically rewarded

few times for the same event, the intrinsic diminishes and the agent gets "bored" with

that event, so it moves for another activity when it encounters another unpredictable

salient event using skills already learned, and so on. complex skills are learned faster

when agent learn sub-skill using intrinsic reward.

Authors in �im³ek and Barto [2006] de�ne two value functions, and therefore two

policies, task policy for solving the task MDP and the behavior policy for improving the

agent behavior. This last policy is based on an intrinsic reward de�ned on the base of the

improvement in the the task policy value function, thus, each time the improvement in

that value function is signi�cant, the agent will have more chances of having a signi�cant

positive intrinsic reward. As a result, the agent learns to focus its exploration in regions

where the learning updates improve the agent value function the most.

In Vigorito and Barto [2010], the authors use the intrinsic reward to accumulate

structural knowledge during the exploration of the environment, thus, the agent builds

options incrementally, each option in this framework corresponds to a controllable vari-

able , the discovered options are used to gradually discover other options until all the

complex structure of the environment is discovered.

1.6 Way�nding

Orientation behavior is an intentional, directed and motivated movement from an origin

to a speci�c distant destination, and which cannot be directly perceived by the traveler.

This involves interactions between the traveler and the environment Allen [1999] and

Golledge [1999]. The ultimate goal of human orientation is to �nd the way from one

42

place to another. The traveler must be able "to achieve a speci�c destination within

the con�nes of pertinent spatial or temporal constraints and despite the uncertainties

that exist". The sense of orientation is necessary when the human has only a partial

description of his environment and he must navigate in an extended space to collect the

information allowing him to reach his destination. Allen [1999] proposes a taxonomy of

orientation tasks based on functional objectives. and consists of three categories:

� traveling with the aim of reaching a familiar destination,

� exploratory journey with the aim of returning to a familiar point of origin,

� travel with the aim of reaching a new destination.

1.6.1 People's way�nding abilities and spatial knowledge

According to Golledge [1999], the origin of human orientation is due to the cognitive

and behavioral abilities of people to �nd a path from an origin to a destination. These

abilities allow people to use environmental information and/or knowledge in the head

to successfully orient. Allen's work Allen [1999] groups people's spatial abilities accord-

ing to the tasks and situations in which they are applied. This classi�cation is based

on previous research in the psychometric, information processing, developmental, and

neuropsychology traditions. It consists of interactions between

� a �xed observer and small manipulable objects,

� an observer and moving objects,

� a mobile observer and large �xed objects.

Although there are encounters with people and moving objects, orientation in a building

mainly concerns the third group because people move through an environment that

contains large, stationary objects. The foundation of this group of spatial abilities is

based on sensitivity to available perceptual information Martin [2001].

People's spatial abilities seem to depend mainly on the following four interactive re-

sources: perceptual abilities, basic information processing abilities, previously acquired

knowledge and motor abilities Allen [1999]. These resources support di�erent means of

orientation.

Cognitive abilities also depend on the task at hand. Finding your way around a road

network requires a di�erent set of cognitive abilities than navigating from one room to

43

another in a building. People are generally good at applying their individual skills to

the task at hand. If their spatial skills are weak, they use verbal skills to navigate, when

people get lost, they usually ask for help Martin [2001].

1.6.2 Spatial reasoning and decision making

People use topological information instead of metric information. The topological prop-

erties of objects remain invariant under transformations such as translations, rotations,

and scalings. Piaget and Inhelder [1967] demonstrated that the fundamental spatial

concepts are topological, but not at all Euclidean. They showed that children begin

to conceptualize space by constructing and using elementary topological relationships,

such as proximity, separation, order, and closure. Golledge and Stimson [1997] argue

that in many cases human decision-making is not strictly optimizing in an economic and

mathematical sense - as the algorithms of classical decision-making theories propose -

and therefore emphasize on behavioral decision theory, Martin [2001].

Instead of making exact calculations, people apply qualitative methods of spatial

reasoning, Frank [1992], Martin [2001], that rely on relative rather than absolute mag-

nitudes and values. When people perceive space through di�erent channels, they arrive

at di�erent types of information, which are usually qualitative in nature.

1.6.3 Cognitive maps

When people travel with the goal of reaching a familiar destination, they use enduring

internal representations of spatial knowledge of the orientation environment. A useful

metaphor suggests that people have a cognitive map in their head, Kuipers [1982], a

mental representation that matches people's perception of the real world. The term cog-

nitive map was �rst used in an article by TOLMAN [1948]. People construct and develop

their cognitive maps based on recording information through perception, natural lan-

guage, and inference. Complex environmental structures can lead to slower development

of cognitive maps and also representational inaccuracies Martin [2001].

1.6.4 Human orientation performance

Performance in human orientation relies on collecting individuals' perceptions of dis-

tances, angles, and locations. Lynch in his book Lynch [1964], divided the content of

city images into paths, edges (boundaries), regions, nodes and landmarks. Weisman

44

[1981] identi�ed four classes of environmental variables that in�uence way�nding perfor-

mance in built environments: 1. visual access, 2. degree of architectural di�erentiation,

3. use of signs and numbers to provide identi�cation or orientation information, and 4.

map con�guration. people's familiarity with the environment and frequency of previous

use also have a large impact on orientation performance.

1.6.5 Computer models for orientation

Cognitive computer models typically simulate a guide that can solve route planning tasks

using a cognitive map-like representation. The goal of these models is to discover how

spatial knowledge is stored and used, and what cognitive processes act on it. One can

distinguish between computational process models where cognition is conceptualized as

sets of rules acting on symbolic representations, and biologically inspired models that

model cognition using lower-level physiologically plausible mechanisms.

Among the �rst computer models is the TOUR model, Kuipers [1978], which simulates

learning and problem solving while traveling in a large-scale urban environment. The

TOUR model is based on the cognitive map and divides knowledge into �ve categories:

1. routes, 2. a network of streets, 3. the relative position of two places, 4. the division

of borders, and 5. regions.

Other cognitive computer models exist, such as TRAVELER Leiser and Zilbershatz

[1989], SPAM McDermott and Davis [1984] and ELMER, McCalla et al. [1982], which

simulate learning and problem solving in spatial networks. ARIADNE, Epstein [1997]

learns the facilitators and obstacles for pragmatic two-dimensional navigation. NAVI-

GATOR, Gopal et al. [1989], Gopal and Smith [1990] constructs a hierarchical cognitive

map based on spatial learning. Orientation learning is performed using spatial and tem-

poral measurements. O'Neill [1991] presents a model of spatial cognition and orientation

based on the biological approach.

These computer models mainly perform the creation and exploration of the cognitive

map; they largely neglect the processes by which people immediately perceive and assign

meaning to their spatial environments as they navigate through them Martin [2001].

1.7 Conclusion

In this chapter, we have introduced the fundamental concepts necessary for our work on

the automatic discovery of options in hierarchical reinforcement learning. We have cov-

45

ered the basics of Markov Decision Processes, dynamic programming, key RL algorithms,

and the principles of hierarchical learning through options and semi-MDPs.

Moving forward, we will employ the option framework as a core component of our

approach. Additionally, intrinsic motivation and a sense of direction will be utilized in

our second contribution to enhance the learning process. However, before diving into

our contributions, we will review the state of the art on existing methods for option

discovery.

46

2 Related works

With the emergence of the HRL, the decomposition of problems, and the choice of

options was done manually, which quickly became a problem, hence the emergence of

automating this process as a new �eld of research.

New works has been done in this new �eld, consisting of one side automatically dis-

covering the hierarchical levels of a problem, and / or discovering the options of a given

level on the other side, and it is the latter under �elds that interests us in this the-

sis. Much work has been done in the �eld of automatic option discovery, and many

approaches have been used, some researchers use the graphical representation of MDPs,

and graph theory to derive important features from states, to infer options as in Hengst

[2002], others uses theoretical foundations for the e�cient processing of information as in

van Dijk and Polani [2011], other research are based on probabilistic models and causal

network representations, Vigorito and Barto [2010], more recent research are based on

mathematical models applied to spatial information, Machado et al. [2017], X. Xu and

Li [2018].

In this chapter, we propose a detailed study of recent methods in the �eld of the

automatic discovery of options, beginning with a classi�cation that we propose, then we

explain each method separately, and we end with a comparative and summary study.

2.1 Classi�cation of approaches

Discovering option is to discover all option parameters, initiation states, terminate state,

and the option policy. We distinguish two large classes according to the order of discovery

of the parameters, which are the greedy methods and the two-step methods, we deduce

another class which is a kind of hybridization of the �rst two classes. Figure 2.1 illustrates

our classi�cation of the existing approaches.

47

2.1.1 Greedy methods

In these methods, the policy of the option is discovered along with the states of the

option, which are the initiation states and the terminal state which corresponds to the

sub-goal of the option. These methods are usually powerful and suitable for problems

with a very large state and action spaces. Among these methods we cite Leon and

Denoyer [2018], Brunskill and Li [2014], van Dijk and Polani [2011], Vigorito and Barto

[2010].

2.1.2 Two-step methods

As the name suggests, these methods take place in two steps, the �rst step is to dis-

cover the states of the option, the most common is to discover the terminal state �rst,

then the set of initiation states. The second step consists in applying a reinforcement

learning algorithm on the discovered states to learn the policy of the option, the ma-

jority of the methods of this class are graphical methods and have very satisfactory

results, of which we quote, Hengst [2002], �im³ek and Barto [2009], X. Xu and Li [2018],

Lakshminarayanan et al. [2016]

2.1.3 Hybrid methods

These methods generally start by discovering the terminal states of the options in the

�rst step, then the policy is learned in parallel with the discovery of the initiation states,

these methods take advantage of the �rst two classes and show very good results as in

Machado et al. [2017].

2.2 Approaches of automatic option discovery in

hierarchical reinforcement learning

2.2.1 BHNN: Budgeted Hierarchical Neural Network

In this work, Leon and Denoyer [2018], a neural network is applied on a particular case

of partially observed MDP. Here the agent always observes xt and can require another

observation yt considered to be supplementary but necessary to have a good choice for

the next action. Budgeted Hierarchical Neural Network (BHNN) is composed of three

parts; option model, actor model and acquisition model, and its architecture is close to

48

Figure 2.1: Classi�cation of the existing approaches of automatic option discovery

hierarchical recurrent network with two hidden states ot for option model, and ht for

actor model.

Acquisition model

Decides whether a new high-level observation yt is required, the decision depend of the

value of σt ∈ {0, 1} that follows a Bernoulli distribution, thus only if σ = 1 the agent

uses the new high-lelvel observation yt to compute a new option ot, in the other case it

uses only xt to decide for the next action.

Option model

Computes a new option if σ = 1 using a Gated Recurrent Unit, Cho et al. [2014], (gruopt)

that has as inputs the observations xt and yt and the last computed option olast.

Actor model

Updates the actor state and computes the next action in the current option. The update

of actor state depends on the acquisition model and is decided by a Gated Recurrent

Unit (GRU), (gruact) that has as input the both observations xt and yt. The softmax

distribution of the actor model gives next action to be executed.

49

Option discovery

Each time the model choose to acquire a high-level observation, it computes a new

intrinsic option when σ = 1. Then the policy will behave as a classical recurrent policy

until another new observation yt will be acquired. Since the option is de�ned directly

according to the actual observations, there is no need to have an explicit initiation

set. BHNN discovers hierarchy since it discovers when the high-level observation has

to be acquired and when to start a new sub policy. In BHNN the acquisition cost is

integrated to the immediate reward, the associated discounted return will be the new

objective to be maximized using the policy gradient algorithm, Wierstra et al. [2010]

and A3C algorithm, Mnih et al. [2016]

Results

BHNN has been compared to a recurrent policy gradient (R-PG) method, Wierstra

et al. [2010] which is implemented with GRU cells and use xt and yt at every time step,

and with Fine Grained Action Repetition (FiGAR), Sharma et al. [2017], which enables

the agent to decide how many times it will repeat the chosen action, and uses similar

network architecture. Experiences were applied on this approach were tested on three

environments; Cart Pole, Lunar Lander, and multi-room Maze. In each environment the

observation yt depend on the environment, for example in multi-room maze yt contains

the observed doors. And as result, BHNN need only a few amount of high-level observa-

tion in the CartPole environment to have the same accuracy as FiGAR. BHNN succeed

in discovering options with random initiations of the environments at each experience.

2.2.2 HEXQ Discovering hierarchy in reinforcement learning

HEXQ, Hengst [2002] is hierarchical reinforcement learning algorithm that automatically

decomposes the MDP hierarchically and discovers and learns options in each level of the

hierarchy. This approach is applied on taxi domain and Tower of Hanoi Puzzle for the

experimentations.

Automatic hierarchical decomposition

HEXQ decompose the MDP on levels where the number is the same number of the state

variables. The levels are then ordered in the way that the bottom level is associated

to the state variable that changes value most frequently; this level only interacts with

50

the environment and uses primitive actions. The next level is associated to the second

variable in the frequency of value changes, and so on until the top level. This primary

decomposition needs a random exploration of the environment by the agent to take

statistics on the frequency on state variables changes.

Option discovery

After the hierarchical decomposition, HEXQ starts with the �rst level associated with the

most frequently value changeable variable, another exploration is needed for the mod-

elization of state transitions and rewards for this limited MDP. So a Directed Graph

(DG) is generated, in which the state values represent vertices and the transitions as-

sociated with primitive actions represent edges. The exploration results also on some

unpredictable transitions (called exits) that will not belongs to the graph. An entry

state is de�ned to be a state that can be reached after an exit, for example, for the Taxi

location variable; all states are entries because the Taxi agent can start at any location.

The exit transitions are not predictable because they are caused by changing in state

variable belonging to a higher level.

The DG of the actual level is decomposed into Strongly Connected Components

(SCCs), the SCCs connected form regions, and the regions are abstracted to form higher

level states. The resulted regions can be connected by edges, these connexions could be

broken to form additional exits and entries. This process is repeated until no additional

regions are formed. Options are then formed on each region, the exits will form the

sub-goals of the options, so one option is constructed for each exit in each region. The

option policy is next learnt on line.

For the next level, regions already discovered form abstract states and policies form

abstract actions, the same process of discovering regions and policies is repeated for

higher levels until achieving the top level. Hengst de�ned here a recursively optimal

hierarchical value function that computes automatically the value function on any level

in the hierarchy.

Results

HEXQ experiments and trials perform better results than the �at version of reinforce-

ment learning and MAXQ (the predecessor of HEXQ). HEXQ converge rapidly after the

hierarchy decomposition and the sub MDP discovering and become faster than the �at

algorithm and MAXQ. Another point is that all the steps of the method are performed

automatically, and no parameter is given manually, so the agent is totally autonomous.

51

2.2.3 PAC-inspired option discovery in lifelong reinforcement

learning

In this approach, Brunskill and Li [2014], the authors provide theoretic elements for

measuring the learning speed of RL with options, by de�ning the sample complexity.

The sample complexity of an RL algorithm A in an SMDP is the number of epochs

where A takes non -ε- optimal actions, calculated as follows;

∑
t

τt.I
(
V At (st) ≤ V ∗ (st)− ε

)
, (2.1)

where

I (c) =

 1 if c occure

0 otherwise
,

with ε > 0 �xed, and τt the duration of the option selected at the epoch t.

Then, the authors de�ne an RL algorithm to be Probably Approximately Correct

(PAC) in SMDP denoted PAC-SMDP when the sample complexity is bounded by some

polynomial function, see Brunskill and Li [2014] for detail. The authors propose an

option discovery algorithm, thus the options discovered are those who minimize the

sample complexity of future RL tasks and assure a high quality performance.

The PAC-SMDP algorithm operates in two phases, in phase 1, the algorithm performs

E3 RL algorithm, Kearns and Singh [2002] for tasks which results in MDPs with learned

policies, on which the option discovery algorithm could be performed. In phase 2 the

discovered options are used for new tasks by applying SMDP-Rmax algorithm, Brafman

and Tennenholtz [2003] for high level reinforcement learning.

Option discovery

The option discovery algorithm requires as input a set of MDPs. The options are discov-

ered in scalable greedy manner with one initiation state for each option. The algorithm

chooses repeatedly an initiation state and tries to build an option in order to cover e-

optimal policies of a subset of state-MDP pairs. The option grows by adding reachable

states, so the algorithm follows the actual option policy and add to the option new states

reachable by this policy. Next the option policy is determined for each new state, thus

an actions are assigned for each state successor, the �rst action that improve the sample

complexity for the set of all options is selected. If no option can improve this value then

all new states are considered as terminal states and the option is added to the options

52

set.

Results

For the experiments, the algorithm is tested on four-room maze, Sutton et al. [1999]. In

phase 1 the agent learns the policies of 40 MDPs, on the same structure with di�erence

in reward distributions, using the E3 PAC MDP algorithm for each task. The resulting

policies are used for executing the option discovery. In phase 2, the SMDP-RMAX

algorithm is used on the discovered options to learn new tasks. This algorithm was

compared to primitive action only algorithm, Hand Coded option , and Policy Blocks

algorithm, Pickett and Barto [2002], PAC inspired algorithm have better result in term

of rewards than primitive action and Policy Blocks algorithms, and it is better than

Hand Coded method because of autonomy of the PAC inspired agent, and the di�erence

in the results is minimal.

2.2.4 Laplacian Framework for option discovery in reinforcement

learning

In this work, the authors Machado and colleagues, Machado et al. [2017] use Proto-Value

Functions (PVFs) to discover options in HRL. PVFs were already introduced in learning

representation for RL in, Mahadevan [2005]. In this approach, PVFs are calculated using

the normalized graph Laplacian;

L = D−
1
2 (D − A)D−

1
2 , (2.2)

where A is the MDP's graph adjacency matrix, and D the diagonal matrix where the

entries are the sums of rows of A. PVFs are the eigenvectors of L, so they have the

advantage that they capture the characteristics and the geometry of the environment

like symmetries and bottleneck.

Option discovery

For discovering options, the authors de�ne the eigenpurpose as the intrinsic reward

function of PVF. Eigenpurposes are goals for options to be discovered, this makes options

independent of the MDP task, and thus options are related only on the environment

structure. For learning option, an MDP is associated to a purpose, de�ned as the

original MDP except the reward function, it is replaced by the eigenpurpose, and a new

53

action �terminate� is added to the set of actions. Learning can now be applied using

value iteration algorithm or Qlearning, the policy determined is called eigenbehavior.

For the determination of option initiation and termination states, the agent execute

the action terminate when he reaches the largest value in the eigenpurpose (or a local

maxima), achieving this termination state, any further reward will be negative, thus, any

state where there is an action with a positive value mean that the agent can achieve the

purpose from it, so it belong to the initiation set of the option called here the eigenoption.

Results

This approach is experimented on I-maze, open room, and the 4 room domain. Eigenop-

tions are associated to eigenpurposes that correspond to the smallest eigenvalues. Eigen-

purposes are not necessarily bottleneck states, this make the approach useful for envi-

ronments where there are no bottlenecks, and the authors proved the e�ciency of these

options for exploration because of their disponibility in all the state space and at dif-

ferent time scales. The experiments show a large number of options discovered for the

domains cited above. The eigenoptions could be used in other tasks in the same envi-

ronment since they are task independent. In complex problems, it will be impossible

to use adjacency matrix for the representation of MDP, so an approximation method

is proposed for the eigenoption discovery. The algorithm was applied on Freeway and

Montezum's Revenge games and had better result than random walk methods.

2.2.5 Skill characterization based on betweenness

In this approach, �im³ek and Barto [2009] contribute with a new method for discovering

options based on �betweenness�, a measure of centrality on graphs, this measure help

to �nd bottlenecks which will be considered as subgoals or terminate states for options.

Considering an MDP, an interaction graph is the directed graph generated by the agent

interaction with its environment; such that, the vertices represent the states of the MDP

and the edges represent the transitions between vertices. So the value of betweenness of

a vertice v is computed by the equation :

∑
s 6=t6=v

σst (v)

σst
wst, (2.3)

where σst is the number of shortest paths from the state s to the state t, σst (v) is

σst passing through the state v, and wst is a weight assigned to paths from s to t. The

54

weights are a representation of the reward function of the MDP.

Option discovery

The option discovery starts with the discovery of subgoals, which are terminate states

of options, these states correspond the local maxima of betweenness. The initiation set

are constructed of states with a little distance to terminate states if the domain is very

large, else the options can be available on all states of the domain. The option policies

are formed by the optimal trajectories for achieving subgoals. On the HRL top level

learning, the authors use Q-learning algorithm for determining the top level policies.

Experiments and discussion

The method is experimented on taxi domain Hengst [2002], play room domain, Barto

et al. [2013], Tic-Tac-Toe game, and rooms domain. Local maxima of betweenness led

to bottleneck for every domain, which are doors in room domain, forks in Tic-Tac-Toe

game and changes in some variable in play room and taxi domains. For HRL top level

learning, the results of learning with the options generated by the betweenness technique

are compared with learning with options generated randomly and with learning based

on primitive actions only. The betweenness based approach has obtained signi�cantly

better results in all domains. However, the limitation of the approach resides in the fact

that to compute the betweenness we need a complete knowledge of the entire interaction

graph, and the cost time become very high in complex domains. As a solution the

authors proposed an incremental algorithm that search for local maxima in sub-graphs

instead of the global graph, repeated local maxima on state make of that stat a subgoal.

This method is tested on grid world domain, and the algorithm succeeds to identify

subgoals.

2.2.6 Constructing option through incremental community

detection

The work of X. Xu and Li [2018] has two objectives, to create options automatically,

and to update and optimize options during an online learning. For the �rst objective,

the �rst step is the detection of communities on the state transition graph constructed

from a prior exploration of the environment, at the next step; options are constructed

from these communities.

55

Community detection

The detection of communities consists of partitioning the transition graph on sub graphs,

each subgraph will be a community. The connections intra-community are dense and

connections inter-community are sparse, there are no intersection states between com-

munities, and the union of all communities results on the initial graph. To construct

communities, the authors use the Louvain algorithm, which is an incremental algorithm

starting with considering each state as a separate community, and greedily gathers adja-

cent communities to ensure better modularity measure. The modularity measure serves

to evaluate the quality of a community, and is calculated by

Q (P) =
∑
Ck∈P

(
m(Ck)

M
− d (Ck)

2

4M2

)
, (2.4)

where m(Ck) is the total of internal edges of the community Ck, M the total number

of edges in the initial graph, and d(Ck) is the sum of the degrees of all vertices of Ck.

Option discovery

For the option discovery, the authors create an option between every two adjacent com-

munities, such that the initiation set is composed of all states in the �rst community,

and the termination condition is de�ned by the �rst states achieved in the second com-

munity. For the generation of the option policy, the authors use the Experience Replay

(ER) process, the ER use trajectories generated in the community detection phase for re-

inforcement learning with a completion reward and the environment reward to generate

the optimal policy.

Updating option for an online hierarchical reinforcement learning

For the complex problems, it is impossible to have the entire transition graph in the

�rst exploration, so an incremental learning is needed. For this solution, the �rst explo-

ration result in a sample graph on which the Louvain algorithm is applied for detecting

communities and so discovering options. In the next step during learning, the agent can

discover new states and periodically ask for updating the community partition. Seeing

the position of the new state, the algorithm can decide to create a new community, to

join two communities, or do not give change in the partition. For each case a new value

of modularity measure is computed. The policies of the options modi�ed are updated

and if a new option is discovered, the ER process is applied for the policy learning.

56

Results

The option discovery process is tested on the four rooms' domain and compared with Q-

primitive RL, manual option agent and the betweenness agent, �im³ek and Barto [2009].

The Louvain option agent and the betweenness agent have the same better result than

the q-primitive agent, and catch the manual option agent after some learning episodes.

The incremental approach was tested on Pac-Man game; compared with the Q-primitive

learning, the incremental Louvain method had faster learning speed and higher average

score.

2.2.7 Grounding subgoals in information transition

In this work, van Dijk and Polani [2011], the authors introduce a new theoretic founda-

tion based on Shannon information theory to de�ne subgoals, so they de�ne the Relevant

Goal Information (RGI) to be the quantity of goal information required by the agent to

maintain and perform its policy. The RGI is de�ned as the mutual information between

the goal G and the action At at a state st, and is formulated as follow;

I (G;At | st) = H (At | st)−H (At | G, st) , (2.5)

where H (At | st) is the conditional entropy.
To discover options, the authors start by discovering subgoals or terminate states

of options. The achievement of a subgoal marks a qualitative transition of the RGI,

for example, an agent want to achieve a room entry in a maze, only when this task is

terminated, he can enter the room and search for goal. So when a transition in the

relevant goal information is high, a subgoal is achieved.

Option discovery

The algorithm is multi-goal, thus it starts with the initialization where the number of

goals is �xed, and then operates in two phases;

� (i) Learning phase; a new goal g is selected and a policy p is learned using hierar-

chical Q(0) algorithm.

� (ii) Subgoal discovery; a number of trail run are executed, each execution is related

to one goal gr already learned. The start position is random and the option to

execute is selected from the set of available options according to the policy of

57

the goal gr, the goal distribution is updated at each execution and the RGI is

calculated. After that executions, the states with interesting transition are selected

as subgoals, so options are created and learned with all states of the domain as

initiation sets and Q(0) algorithm with primitive action only. These options will

be available for learning hierarchical policies for future goals.

� The algorithm loop from phase (i) until the number of goals is achieved.

Results

The algorithm was tested on 6-room domain and as result the learning is accelerated

comparing to �at learning after some episodes with a negative skill transfer, the agent

rapidly success to avoid these bad options and accelerate learning.

2.2.8 Intrinsically motivated hierarchical skill learning

In this work, Vigorito and Barto [2010], the authors Vigorito and Barto present an

incremental algorithm for option and environment structure learning. The learning

agent uses an intrinsic reward for the option learning. The structured environment is

modeled as a Factored MDP (FMDP) see Vigorito and Barto [2010], Boutilier et al.

[1995], .T et al. [2006] for detail. FMDPs are presented by Dynamic Bayesian Networks

(DBNs). Thus, for each action executed is associated a DBN which is a two layer directed

acyclic graph, the �rst layer represents the FMDP variables at time t, and the second

layer is for the same variables at time t+1, one edge from a node of the �rst layer to

a node belonging to the second layer designates a dependency between the associated

variables given the action executed. For each DBN, there is one Conditional Probability

Tree (CPT) for each variable Si in the DBN. The leaves of CPT contain the probability

distributions over the domain of the variables Si. To learn the structure of DBNs with

their CPTs, the authors use an approximation method, that is the Bayesian Information

Criterion (BIC) and the network is constructed incrementally in a greedy manner, so

when a new data point is added to a leaf of a CPT, the BIC score is computed on that

leaf, and for all resulted leafs of each possible re�nement (split of a leaf in new leafs

according to the distribution of the input value of the variable considered in that �rst

leaf).

58

Option discovery

The options are constructed incrementally based on the structural information actually

available. The options use an active learning with intrinsic reward, and are subsequently

used for learn more of the environment. The intrinsic reward changes as the agent

learns to give more importance for the exploration of new structures, so to perform

an active learning. The algorithm of option discovery maintains a set C of controllable

variables; one option will be associated to each possible value of each controllable variable

discovered.

The set C is initially empty, the execution start with a local active learning algorithm

using primitive actions, after each action, the CPTs are updated for each variable Si,

and a BIC score is computed for each new re�nement, thus re�nements with best BIC

scores are kept and the corresponding variables becoming controllable are added to C, if

all ancestors of the new controllable variable are controllable than new option is created

for each leaf value as a subgoal. The option policy is then learned using the Structured

Value Iteration (SVI) algorithm, once an option created, it can be selected in next steps

or iterations for discovering more other options hierarchically resulting in discovering

options and hierarchy at the same time. When an option is selected, it is executed to

completion, if it fails repeatedly to reach the subgoal after a �xed number of steps, the

option will be eliminated.

Results

The algorithm was tested on the light box domain which has strict hierarchical depen-

dencies in the structure. The algorithm of intrinsically motivated active hierarchical

learning succeeds to have far better results in �nding correct re�nements than the ran-

dom agent and the non hierarchical intrinsically motivated agent. The algorithm gives

better results in number of step and time to achieve goal comparing to agent with prim-

itive action only.

2.2.9 Option discovery using spatio-temporal clustering

In this work, Lakshminarayanan et al. [2016], the authors propose a new method for

state and action abstraction. The idea is to divide the state space into clusters; this

partitioning is performed using the spectral clustering algorithm PCCA+. Based on

an adjacency matrix of a graph; the Laplacian matrix is calculated, thus the algorithm

computes the eigenvalues of that matrix and choose the k best ones, a linear transfor-

59

mation is than performed around the k resulting vertices to �nd the �nal clusters of the

graph.

Option discovery

The PCCA+ is applied to the adjacency matrix of the MDP graph to �nd the clusters of

the state space, each cluster constructs an abstract state, states are belonging to di�er-

ent abstract states according to di�erent membership values which are computed using

a projection method, see Lakshminarayanan et al. [2016]. One option is constructed

between each two adjacent abstract states to move from one abstract state to another,

the option policy is learnt by following the positive di�erence in the membership value of

state to the destination abstract state; this method is called �hill climbing�. Note that a

state s belongs to an abstract state S with a maximal membership value comparing to

its membership values to other adjacent abstract states. The termination condition is

given by the states belonging to the two abstract states with closest or equal member-

ship values, for example a door between two rooms belong to the �rst and the second

room equally. The algorithm is adapted for online agent by sampling trajectories, and

performing option discovery using PCCA+ algorithm, the resulting options are used

in SMDP Q learning for sampling new trajectories, and the process is repeated until

convergence.

Results

The algorithm is tested on the 3-room maze, the agent succeed to discover the three

abstract states, and the correct options, the doorway as bottleneck correspond to the

termination condition, and the policies learned were very functional for navigating agent

from one room to another.

2.3 Discussion

In this section, we will review all methods mentioned above from another point of view,

that of critics. We have set some criteria for a relevant comparison, starting with the

de�nition of the sub-goals, being very important elements in the de�nition of options,

many studies have shown that the best sub-goals are those that correspond to the bot-

tlenecks of the environment, giving as a result the necessary and su�cient sub-goals for

a given problem. The second criterion is that of the de�nition of the sets of initial states

60

for options, the more these sets are limited, the faster the execution of the options, at

the same time the union of these sets must cover all the state space of the MDP. Another

interesting criterion is the possibility of re-use of options, a hierarchical reinforcement

learning agent can pass a fast traverse if he does not have to discover options for each

new task, he can be a winner only if he has all the options at his disposal for high-

level learning, so we examine if the options discovered by each algorithm are reusable

for other tasks in the same environment. Autonomy is also an important criterion, a

learning agent who does not need the intervention of a human to set a few parameters

is very practical in cases where the man can not be present, thus the agent can adapt

with its environment.

2.3.1 Critical study

In this sub-section, we criticize each method separately, and a comparison according to

the criteria already cited is presented in table 1.

methode sub-goals initiation states reuse autonomy

BHNN + not de�ned +/- +/-
HEXQ + limited + +

PAC-inspired + limited + +
Laplacian + not limited + +

Betweenness + not limited - +
Community detection + limited + +
Information transition + not limited + +
Intrinsically motivated + limited + +

PCCA+ + limited + +

Table 2.1: Comparison table of option discovery methods

Budgeted Hierarhcical Neural Network

The option that de�ne a passage from one regular situation to another, like from one

room to another in room maze domain are reused, but when the agent uses a new

initial position, he must learn how to go to the door or to the goal using a high-level

observation, because there is no complete de�nition of the initiation set for options. In

the experiments on maze domain, the option model requires the information on doors,

note that the doors position is the most important information in that domain because

61

it represent bottleneck regions, see Botvinick and Weinstein [2014], this information was

given as an observation yt and not automatically discovered.

HEXQ algorithm

There is one problem and it is cited in the article, is that HEXQ cannot be applied on

all types of problems, like multi-room maze in which the discovery of exit transitions is

ambiguous and it is the most important indicator for the HEXQ approach.

PAC-inspired option discovery

In this algorithm, the greedy approach used in discovering option is very useful to avoid

the exponential complexity problem. However, the PAC inspired option discovery needs

as inputs a set op MDPs su�ciently representative. In the experimentations, the al-

gorithm needed 40 MDPs with a prede�ned reward function for discovering options in

4-rooms maze, which is very greedy in computing time.

Laplacian option discovery

This algorithm uses mathematical techniques as indicated by its name, which make it

very powerful and simple at the same time. Note that the method is more exploratory

than exploitative.

Skill characterization based on betweenness

In this approach, the use of the reward function of the MDP in the option discovery

process makes that the options created are not task independents, which reduce the

possibility of reusing these options, thus, the initiation states are not limited in the case

of small MDPs, and are formed by all states of the environment, on the other hand, in

the case of complex problem, the set of initiation states are formed by states with little

distances from the terminal states, these sets are not necessarily optimal.

Constructing option through incremental community detection

This graphical approach is very powerful and gave a satisfying results in identifying

options, the identi�cation of sub goals is very relevant, and so for the initiation sets,

but the method needs a full exploration of the environment for generating the transition

graph, which is impossible in complex problems, so the authors use an online learning

with incremental community detection, that is a power solution too.

62

Grounding subgoals in information transitions

This algorithm executed on several MDPs with di�erent goals gives the possibility of

reusing the options discovered for future tasks, another advantage of this method is

that the agent doesn't require any prior world knowledge. The disadvantage is that the

algorithm try to discover too many goals before being applicable on real task, and the

option discovered perform an action abstraction, but there is no state abstraction in the

sense that all options have the same initiation set, that is all the states of the domain.

Intrinsically motivated hierarchical skill learning

This algorithm based on FMDP representation use a DBN for each action executed and

a CPT for each variable in the DBN, seem to have a very complex representation with

a high spatial complexity, thus a probability distribution and an entropy are computed

for each leaf of a CPT at each step, with the BIC score at each re�nement. These

calculations are necessary to have the ability to decide of the controllability of a variable,

which makes this system very ingenious but very complex at the same time. Another

limitation of this work cited in the article is the number of steps �xed manually to decide

if an option succeeds or fails.

Option discovery using spatio-temporal clustering PCCA+

This graphical and mathematical approach has been successful in identifying sub goals

and limiting the state space for options in optimal strategy and so for the policies

learning. As many graphical approach, this method needs a full exploration of the

environment for the construction of the adjacency matrix, which is not always possible

with large and complex problem, so as solution , the authors proposed an online method

with an incremental learning, that is the actual solution proposed by several research.

2.4 Conclusion

The goal of this study is to �nd the means to be able to design an option discovery

method that is optimal in terms of re-usability, autonomy, and e�ciency in the discovery

of termination states and initiation states, without forgetting the main purpose of the

options, which is to remedy the dimensionality problem.

From this study we concluded that the most e�cient methods in terms of temporal

complexity are the graphical methods like in Machado et al. [2017], Lakshminarayanan

63

et al. [2016], Hengst [2002], �im³ek and Barto [2009], X. Xu and Li [2018], these meth-

ods are autonomous, and e�ciently discover the initiation states and termination states,

and their options are reusable. Among these methods, the �rst three uses an adjacency

matrix to present the states and transitions of the problem, this requires a full explo-

ration of the environment, which is very time consuming when the problem to study is

quite large, however the incremental methods build their environment as they discover

the options, X. Xu and Li [2018] which is very pro�table even with the non-graphical

methods, Vigorito and Barto [2010], van Dijk and Polani [2011].

However the graphical methods are mainly classi�ed as two phases. Methods that

use intrinsic motivation demonstrate high e�ciency and intelligence in the discovery

process, and methods using information theory are strong enough at the same time very

complicating, while connectionist methods as in Leon and Denoyer [2018] need a more

in-depth study to be able to discover more reusable options.

Subsequently, we hope to be able to design methods which make a compromise between

graphical and incremental methods, and which use the principle of intrinsic motivation

and may well be a connectionist methods; by trying the applicability to heterogeneous

domains

64

3 FAOD: Fast Automatic Option

Discovery in Hierarchical

Reinforcement Learning

The automatic discovery of options has become a real challenge for research in hierarchi-

cal reinforcement learning and the new proposed approaches are very greedy in learning

time or space. Thus we opt for a faster and less consuming approach. In this chapter

we adopted a new perspective for the problem of automatic discovery of options in HRL

assumed at one depth level. thus, we propose an automatic option discovery method

for hierarchical reinforcement learning, that we call FAOD (Fast Automatic Option Dis-

covery). We take inspiration from robot learning methods of Tani and Nol� [1999] to

categorize the sensorimotor �ow during navigation. Here, the agent moves along the

walls to discover the rooms' contour, closed spaces, doors and bottleneck regions to de-

�ne initiation sets and termination states for options. The learning method consists in

RL of the options by temporal-di�erence learning with actor-critic architecture, Barto

et al. [1983], before moving on to the top level learning of the hierarchy.

3.1 Fast Automatic Option Discovery

Our approach for option discovery starts with a �rst exploration phase of the state

space in order to discover bottleneck regions. But before we should discover the closed

spaces like rooms. Thus the bottleneck regions will correspond to states where one of

the actions lead to the discovery of a new state in a new room. The bottleneck regions

in multi-room problems correspond to the doors, and de�ne the subgoals (i.e., terminate

states) of options. This description corresponds to the maze problem whose type 2x2

rooms was initially described in Sutton et al. [1999], then other types (2x3, 3x3, ...)

appeared, as illustrated in the �gure 3.1. Maze type problems are the most used RL

problems to test and validate the approaches and solutions proposed in the �eld of RL

65

(a) (b) (c)

Figure 3.1: Maze examples (a: 2x2, b: 2x3, c: 3x3 rooms problem) which are gridworld environments

with stochastic cell-to-cell actions.

for non-continuous problems.

Our choice for the discovery of the bottleneck regions is based mainly on the results of

Solway and colleagues, Solway et al. [2014] whose experiments have shown that the best

options are those that end on the bottleneck regions. Simsek and Barto, �im³ek and

Barto [2009] calculated values of betweenness for each state; the maxima of betweenness

represented the sub-goals, and gave the door states in the room' task. Thus, the work

of vanDijk and Polani, van Dijk and Polani [2011] had similar results, by calculating a

RGI value, the RGI value decreases drastically in the corners and near the walls. As in

Botvinick et al. [2009], the authors manually chose the bottleneck states that are the

gates in the maze problem as sub-goals. Although, ten years before that, the authors

in Sutton et al. [1999] introduced maze problems for hierarchical reinforcement learning

for the �rst time, and built the options manually, so that the doors between the rooms

form the sub-goals or termination conditions.

The original idea of this work is to implement a procedure of exploration that mimics in

a simpli�ed way the process of automatic segmentation of the sensorimotor �ow of robot

navigating di�erent rooms proposed by Tani and Nol� [1999], where the authors proposed

a set of recurrent neural network modules as experts that compete in a self-organized way

to learn the internal model of the world. online. This work is based on their previous

work, Nol� and Tani [1999], where an agent has to detect changes happening in the

environment. The changes detected are matched to a mixture of experts, each expert is

a recurrent neural network to predict the next state of the environment, or sensorimotor

�ow. The novelty here consists in using this principle, without re-implementing the

complex neural network machinery of the original algorithm, in order to de�ne possible

66

terminal states of options as states in which their is a sudden change in the responding

expert.

We tested and validated this work on maze problems introduced in Sutton et al. [1999],

that is a grid environment composed of four, six or nine rooms. The cells of the grid

correspond to the states of the MDP. The agent can move from one cell to another by

taking one of the eight possible actions (north, south, east, west, northeast, northwest,

southeast, southwest).

3.1.1 Room discovery

The room discovery phase consists of exploring the state space, Our agent starts with a

randomly �xed starting position and looks for the top left corner to start exploration,

to get to this corner it uses north and west actions only, until he gets stuck at the upper

left corner, which will be the starting point of the rooms exploration.

For the rooms exploration, the agent moves along the walls and marks corners and

doors as moments of salient and sudden changes in the sensorimotor �ow (mimicking a

change of expert in Tani and Nol� [1999]) until arriving to the room start state. The

agent has a wall tracking procedure and as soon as a salient change in its sensorimotor

�ow occurs, it considers it an important event that deserves to be marked. In this

procedure, the robot simply follows the walls and detects the salient changes in its

sensorimotor �ow: for example the angles that force it to turn, the openings (doors) for

which the robot no longer detects a wall neither at its left nor at its right are bottleneck

states, Solway et al. [2014] considered later as sub-goals of the options.

Once the agent has returned to its starting position and has memorized a �rst set of

marked states, the agent starts a second step where it explores di�erent actions from each

of the marked states. Because two of the four possible actions (North, South, East, West)

lead to no displacement when performed in states labeled as corners, while the other

two actions produce the same sequence of states experienced during the wall following

process, these states are not considered as relevant sub-goals. In contrast, trying di�erent

actions in states labeled as doors lead to a room change, which corresponds to di�erent

states than those experienced during wall following. They can thus be stored in the set

of possible sub-goals, to be later considered as terminal states for the options to learn.

For simplicity, as all work in the HRL �eld, we consider here that the agent can

perfectly discriminate every state of the environment. This is simplistic but still a

reasonable assumption since one can consider that di�erent features of each room such as

carpets of di�erent colors, paintings or decorations on the walls, and di�erent furnitures,

67

Algorithm 11 Rooms and subgoals discovery.

Initialize startState sS, minDuration minD, iter = 0.
list of Marked States lMS = {sS}
while (iter < minD) and (!isempty(lMS)) do
STEP1: Move along walls until back to sS
if salient change in the direction of movement then
mark state as corner and add to lMS

end if

if salient change in the sensors detecting a break in the followed wall then
mark state as door and add to lMS

end if

STEP2: Search for new neighbor states
for each state s in lMS do

Remove s from lMS
Test all actions from state s
if one action leads to a new state s′ then
mark s as sub-goal
sS = s′

GOTO STEP1
end if

end for

iter + +
end while

68

Figure 3.2: The maze (2x3 rooms) problem. Displayed state labels were obtained by the room discov-

ery algorithm. All rooms are discovered with their doors marked (dr). The states next to

the walls are marked (w). The start state is indicated by #, and the goal state is indicated

by 2, and are chosen interactively by the user.

enable the agent to discriminate di�erent rooms.

Then the agent restarts the wall following process in each new room, starting from the

door that gave access to it. This process is recursive until the wall following process has

been performed from each successor state of a subgoal, and until no subgoal is added

to the present set. The result of the room discovery algorithm on a 3*2 maze is shown

in the �gure 3.2. We �xe an arbitrary minimal duration of exploration so that at the

end of this process the agent has visited all the rooms. The pseudo code of the room

discovery procedure is given in algorithm 11.

Wall tracking procedure

In the wall tracking procedure, the agent walks next to the wall trying to break the wall

with each step, this means that before advancing straight, the agent tries to go in the

direction of the side wall. If he cannot pass, there is no change in his sensorimotor �ow,

and he must continue to walk straight. If he manages to walk in the direction of the

wall, this marks a change in the sensorimotor �ow, and implies the possibility of �nding

himself in a bottleneck or door if this passage leads to states or space that has not been

explored before, and it must be a narrow passage in the sense that the agent cannot

move in the old direction of wall tracking or its reverse direction.

In the example of the image (a) of �gure 3.3, the agent is in position x, he walks

next to the wall executing the action "west", at each step he tries to execute the action

69

(a) (b) (c)

Figure 3.3: The image (a) the agent detects a door in his sensorimotor �ow; The image (b) illus-

trates a corner state detection ; The image (c) illustrates the situation of detecting two

sensorimotor changes at the same time, a door and a corner.

"south", which does not give any change, so it continues with the action "west" until he

reaches position x2, at this state, trying to execute the south action, the agent does not

feel the usual blocking, on the contrary he manages to pass, which marks a signi�cant

change in his sensorimotor �ow. So it is possible that he is at the door position, at

this point he can't move "west" or "east", he can only continue with the action "south"

where he will end up in a state that he hasn't explored before, implying that the passage

was indeed a door and the new space is part of a new room to explore.

The second type of important change in the sensorimotor �ow is when the agent while

walking along the wall �nds itself in a blocking situation, where it can neither continue

straight nor go in the direction of the wall. In this case, the agent notices that he is in

a corner of the room and he has to turn in the opposite direction of the wall to start

walking straight again next to the new wall.

As shown in the �gure 3.3.(b) an agent in state x continues straight, taking the action

"east", trying the action "north" at each step, but without result. When the agent is

in position x2 neither of these two actions serves to move, and he is blocked, which is a

signi�cant change in the sensorimotor �ow. In this case the x2 state is marked corner

and the agent chooses the action "south" to be able to track the new opposite wall.

A third situation is possible, when the agent detects two changes in its sensorimotor

�ow at the same time. In this situation, the agent does not manage to continue straight

near the wall, on the other hand he can move by pushing the wall, which implies that it

is a door which is in a corner of the room as shown �gure 3.3.(c), in this case the cell is

marked corner and door.

70

3.1.2 Option discovery

As de�ned before, an option o = 〈I, π, β〉 consists of an initiation set I, a termination

condition β, and an option policy π. In this work, the option initiation sets, and their

termination conditions are deduced from the results of the room discovery procedure.

Although we have explored only the contours of the rooms, their internal cells are easily

calculated from these contours, this saves us a lot of exploration time, and this is where

the fast feature of FAOD comes from, instead of a random exploration, we did an

organized exploration that just follows the walls and infers the rest of cells.

Subsequently, the room cells will correspond to the initiation sets of the options and

the doors or bottlenecks will correspond to the sub-goals, i.e. the termination condi-

tions, following the strategy used in Sutton et al. [1999] and in Botvinick et al. [2009]

for the manual construction of options where an option is constructed for each door

in a room, such that the cells of the room form the initiation set and the door cor-

responds to the termination condition. So if a room contains two doors this implies

that there will be two options in that room with two nearly identical initiation sets and

two di�erent termination conditions. A door which belongs to a room and which does

not form its terminal state, will be part of its initiation set as illustrated in the �gure 3.4.

Figure 3.4: The room with three doors makes three options shown in three pictures, each option has

a separate door for its sub-goal marked (B), and the states marked with (*) form the

initiation set.

After construction of the apparent options, we add an option in each room such

that the initiation set is formed of the cells of the room including the doors, and the

termination condition corresponds to the global goal of the problem or the MDP. We

must add this option in each room because we do not know in which room the global

71

goal cell is located, from where we must search in all the rooms in the next phase which

is the learning phase.

3.1.3 Learning option policies

Each option whose initiation set and termination function are already discovered is

treated as a separate RL problem to learn its policy, thus the initiation set of the

option represents the set of states of the RL problem or the MDP's state set. The

termination function that de�nes the sub-goal of the option will de�ne the goal of this

RL problem. The transition function which speci�es the probability of transition from

one state to another after execution of a chosen action will be the same as the original

MDP considering the set of restricted states of the option. An option-speci�c pseudo-

reward function is de�ned separately from the global MDP reward function.

For policy learning we have chosen temporal-di�erence learning in an actor-critic

model that we had already introduced in chapter 2. In the actor-critic implementa-

tion, Sutton and Barto [2018], Botvinick et al. [2009], the agent comprises two parts,

the actor part and the critic part, as présented in the �gure 3.5. The actor chooses

the actions to be executed in each state according to the option policy being learned

πo based on the weight of each action in each state. The purpose of the critic is to

compute the value function V for each state, the value function indicates an estimate of

the cumulative long-term reward expected after visiting that state.

Figure 3.5: An actor-critic architecture. At each time step, the agent according to its actor part

chooses an action a to end up in a state s and receives a reward R(s). the critic will be

recalculated from the calculation of the prediction error δ with the temporal di�erence

method.

Learning by actor-critic methods is online and incremental learning because the policy

to be learned is used at the same time as it is improved. The learning of the policy

72

is done through a succession of episodes, at the beginning of each episode a random

starting position is chosen, when the agent reaches the sub-goal this marks the end of

the episode and the actions that guided the agent towards the sub-goal are reinforced

by the pseudo-reward.

At the beginning of learning, the actor materialized by the weight W is initialized for

each action in each state of the current option, and the critic de�ned by the value V is

initialized for each state s. At each time step the probability of choosing an action a is

given by the function softmax de�ned as follows:

P (a) =
eW(st,a)/τ∑

a′∈A eW(st,a′)/τ
, (3.1)

where W (st, a) is the weight of the action a in the current state st, and τ is the

temperature parameter.

After the execution of the action a the agent �nds itself in the state st+1 and receives

the pseudo-reward rt, so it uses the di�erence temporal method to compute the error

δ on the prediction of the cumulative reward expected at state st as indicated by the

following formula :

δ = rt + γV (st+1)− V (st) , (3.2)

where γ is the discount factor.

The temporal di�erence error is used to update the value function of the state st and

the weight of the action a chosen in that state, as indicated by the following equations:

V (st)← V (st) + αV δ (3.3)

W (st, a)← W (st, a) + αW δ, (3.4)

where αV ∈]0, 1[and αW ∈]0, 1[are the learning rates.

This process continues until the sub-goal of the option is reached, then a new episode

begins with a new starting state s0 and the timer reset to t0 = 0.

Once the learning is complete, the policy of the option is de�ned by the actions having

a maximum weight in each of the states of the initiation set. Three examples of option

policies are shown in the �gure 3.6

73

(a) (b) (c)

Figure 3.6: Option learning results in the 2x3 rooms maze. After the rooms discovery, 15 options are

obtained after learning. One option for each sub-goal of each room, and one option for the

room that contains the �nal goal state. a) The �rst option policy, b) The second option

policy, c) The 13th option policy that leads to the goal state.

3.1.4 Hieararchical learning

In hierarchical learning, we treated options in the same way we treated actions in option

policy learning. We created options following the option framework Sutton et al. [1999]

in which the notion of option was de�ned for the �rst time, and contrary to what was

decided in Botvinick et al. [2009], options in our work are not interruptible, so once an

option is chosen and launched in execution, we cannot choose another option until after

that �rst one reaches its termination condition. We used the same strategy as for option

policy learning; that is learning over options by temporal di�erence with an actor-critic

architecture.

A weight Wo is associated with each option o, once the actor chooses an option, the

actions are chosen according to the policy of that option until termination, where the

prediction error will be calculated by the di�erence between the value of the state with

which the option ended and the value of the state with which the option started. The

critique maintains the value function Vo for the option o. The prediction error is de�ned

as follows

δ = r + γVh (st+1)− Vh (sinit) , (3.5)

Vh is the high-level policy (policy over options) value function that selected the option

that just ended at state st+1 and started at state sinit , r is the high-level reward, γ is

the discount factor, and t is the number of time-steps elapsed since the relevant option

was selected.

At each extended step, an option o is selected via softmax function as below.

74

P (o) =
eWh(s,o)/τ∑

o′∈O eWh(s,o′)/τ
, (3.6)

where O is the set of available options for the actual state s, Wh(s, o) is the weight

speci�c to option o at state s, and P (o) is the probability of selecting an option o at

state s.

After choosing and executing option o, the value function and the strength are then

calculated as follow.

Vh (s)← Vh (s) + αV δ (3.7)

Wh (s, o)← Wh (s, o) + αW δ (3.8)

This cycle shown in the �gure 3.7 continues until the overall goal is achieved.

Figure 3.7: A top level actor-critic architecture. At each extended time step, the agent according to

its actor part chooses an option o to end up in a state s and receives a reward R(s). the

critic will be recalculated from the calculation of the prediction error δ with the temporal

di�erence method.

3.2 Experiments and Results

We have tested our method on multi-rooms maze problems, with maze (2x2 rooms, 2x3

rooms and 3x3 rooms) (Fig.3.1). For each experience, the user chooses interactively a

start state and a goal state on maze image. The agent begins from the start state and

then starts its exploration phase (Algorithm 11) to discover the rooms, the sub-goals and

to de�ne options. After that, options are learned one by one and a policy is calculated

for each option. At the last step, an actor critic learning is applied at the top level,

75

where the agent chooses options instead of simple actions to reach the goal from the

start state already de�ned. Our room discovery strategy consists of walking next to the

walls by going through all the rooms, this implies that our agent must go around the

perimeter of each room until returning to the starting square, hence the complexity of

the room discovery algorithm is of O(n ∗ m), where n is the number of rooms in the

maze, and m is the average number of states in the perimeter of one room. It is because

of this low complexity that the algorithm is called fast.

The values of constant parameters γ , α and τ have been discussed in Sutton and

Barto [1998] where they have proved that as γ approaches 1, the learning function takes

future reward into account more strongly, so a value close to 0.8-0.9 gives a very good

results, in our experiences we tried various values of γ, and after tests we chose γ = 0.85.

Sutton and Barto Sutton and Barto [1998] have found that the learning rate α between

0.05 and 0.1 gives best convergence learning curve, so we used α = 0.1, the temperature

parameter τ have been tested in Sutton and Barto [1998], Botvinick et al. [2009] the

best result were given by a value of τ = 10 and that is the value that we adopted in our

experiments.

In the experiments, we compared the results of our algorithm with the results of the

�at learning algorithm, using the same actor-critical architecture. We performed 35

execution of our hierarchical learning and 35 �at learning on the same MDPs based on

mazes of (2x3 and 3x3 rooms). The number of learned options is 300. We have made

statistics on the number of iterations per episodes Fig.3.9 (a-b), ie the number of steps

for the agent to reach his goal, and statistics on time elapsed in seconds per episode,

these last tests are carried out on the same computer.

In the option policies learning, the agent is trained on an option for 150 iterations. The

super�uous options are eliminated from the �rst iteration, when they reach a maximum

number of steps without �nding a sub-goal. This number changes proportionally with

an estimation of the number of states of an option. There are also 150 iterations in the

top level HRL learning.

For all maze problems used in the experimentations, the option discovery works per-

fectly. In the option learning phase, the agent then always eventually �nds its path to

the sub-goal. The top level HRL learning is similarly e�cient, and the agent gets to

�nd the goal in all the experimentations as presented in Fig. 3.8 (a),(b) and (c), and

even when there is no passage between tow rooms as in Fig. 3.8 (d), here there is no

connection between room 4 in the bottom left and room 5 in the bottom middle, our

agent could �nd another path through room 1 at the top left of the maze.

76

(a) (b)

(c) (d)

Figure 3.8: Results of the hierarchical reinforcement learning phase applied on mazes of 2x2 rooms (a),

2x3 rooms (b) and 3x3 rooms (c). In these simple examples the agent always eventually

�nds its path to the goal. In the maze (d) there is no door connection between room 4

(bottom left) and room 5 (bottom middle), in this case too, the agent �nds its path to th

goal by passing through room 1 (top left).

77

(a) (b)

(c) (d)

Figure 3.9: Learning curves for the results of execution. (a) curve illustrating the average number

of steps to reach subgoal over episodes when learning option policy(146 runs of learning

option on 3x2 rooms problem and 168 runs of learning option on 3x3 rooms problem). (b)

The green curve illustrates the average number of primitive steps to goal using learning

with only primitive actions. The blue curve illustrates the average number of primitive

steps to goal using HRL with FAOD method (runs over 3x3 rooms and 2x3 rooms prob-

lems). (c) curve showing the average time in seconds to reach the sub-target of the learning

options policies, (d) the green curve showing the average time to reach the target with a

single primitive action, and the blue curve showing the average time taken by the HRL

agent to reach the goal.

78

(a) (b) (c)

Figure 3.10: The image (a) is the 2x2 rooms problem with �windows� on the extern walls of rooms;

The image (b) illustrates the result of executing FAOD with HRL on 2x2rooms problem

when �shortcut� is opened up between the upper right and the lower left rooms; The

image (c) illustrates the result of executing reinforcement learning with only primitive

actions.

As illustrated in Fig.3.9, when the problem becomes complex (2x3 or 3x3 rooms), the

number of primitive steps to reach the goal increases exponentially with a �at reinforce-

ment learning using only primitive actions. In contrast, with FAOD this number has

to decrease signi�cantly since the problem is divided into sub-problems with sub-goals

(a). Therefore the path to the �nal goal converges very quickly (b) compared to a �at

learning. Curves (c) and (d) show statistics on the time taken by the agent to reach its

sub-goal for option policy learning (curve c), or to arrive at the overall goal for hierar-

chical learning based on the FAOD algorithm (curve d in blue), and �at learning (curve

d in green). these curves show the e�ciency of our method. The time taken by the HRL

agent is negligible compared to the time taken by the �at RL agent. The time taken

in learning the options is always very small, and once completed, the options become

reusable for future HRLs.

We next confronted the algorithm with the problem of rooms with windows; see Fig-

ure 3.10 This problem is quoted in Botvinick et al. [2009] , where windows constitute

distractor states which induce salient changes in the agent's sensorimotor �ow but nev-

ertheless should not be considered as relevant sub-goals. FAOD did not mislead, and

always gave 9 options for the problem of 4 rooms which is a good result, and the win-

dows on the outer walls of the rooms are not considered sub-goals for new options. This

success is due to the second step of the room discovery process, where the agent tries

all possible actions from marked salient states (including windows), and where windows

79

do not lead to the discovery of new states in the context of the present navigation task.

Finally, we confront the algorithm with the shortcut problem also tested in Botvinick

et al. [2009] , where a new shorcut between rooms enables the agent to reach the goal

state within a smaller number of steps without needing to go through some of the doors;

Figure 3.10. In this case, FAOD does not consider the shortcut passage as a sub-goal,

which leads to a �nal path to the goal that is unfortunately not the shortest path. Thus

here FAOD su�ers from the same limitation as in Botvinick et al. [2009] , where the

prevalence of options prevents the algorithm from �nding the simplest solution without

options. Nevertheless, overall FAOD remains fast and e�cient in maze problems with a

large number of states explored here.

3.3 Conclusion

In this work, we have proposed a novel method for option discovery based on a pre-

exploration procedure where the agent explores the environment by following the walls

and detects any salient changes in its sensorimotor �ow along this path. This method,

inspired by a robot learning algorithm for online categorization sensorimotor �ow Tani

and Nol� [1999] led to the discovery of corners, doors and windows, in simple multi-room

navigation problems. The novelty here was to combine this sensorimotor categorization

method with sub-goal discovery for HRL. The agent successfully learned to consider only

doors as relevant sub-goals (i.e., terminal states for future options) because the successor

state of these doors was a novel state, thus giving the status of bottlenecks or passages

to the doors. The results show a total autonomy in the agent's behavior, who discovers

its environment through a rapid strategy, discovers the options and learns them, and

realizes a high-level reinforcement learning to reach the �nal goal.

However, this work su�ers from a limitation because it applies mainly to simple and

well-de�ned problems of navigation and space exploration. It is not necessarily straight-

forward to adapt our approach to other types of problems like the problem of Taxi or

the problem of Playroom Barto et al. [2013] . In future work, it would be interesting to

investigate whether a mixture of experts can remedy this problem and e�ectively extend

our method.

80

4 Way�nding Agent for Automatic

Option Discovery in Hierarchical

Reinforcement Learning

Discovering abstract actions or options for hierarchical reinforcement learning is chal-

lenging, and multiple approaches are proposed. In this chpater, we present our second

new method for automatic option discovery, where our learning agent uses his sense

of direction to discover the shortest paths and shortcuts after an exploration without

resorting to the algorithms of the graph theory, since we use an incremental graphical

representation without requiring an adjacency matrix. Our agent uses intrinsic motiva-

tion for a less random and more exploratory exploration of the environment. Shortest

paths discovered subsequently serve to discover the termination conditions and the ini-

tiation states of the options. For the learning of options policies, the agent uses his

experience of exploration as well as learning by temporal di�erence including an intrin-

sic motivation strategy. We tested our approach on di�erent maze problems and on the

tic-tac-toe game and the results were better than those of �at reinforcement learning

and other methods in general and special cases.

4.1 An agent with way�nding sense

The sense of direction or way�nding is the ability of a human or an animal to �nd its way.

This involves the ability to choose a route leading to the desired destination, as well as

following the route, and verifying that the taken route leads to the desired destination.

Some animals are sensitive to the Earth's magnetic �eld which allows them to �nd their

way in a space they have never explored. On the other hand, humans have historically

used visual landmarks including the sun and the moon.

For our agent, in order to acquire his sense of direction, he must begin by making an

exploration, which consists of random paths, memorizing each time the starting point

81

and the arrival point, then he have to try to take the shortest path between these two

ends which is the path in a straight line, or as straight as possible.

4.1.1 Exploration with intrinsic motivation

In the �rst phase, the agent explores his state space and tries to discover his environment.

This exploration is not totally random, it is guided by the intrinsic motivation, Vigorito

and Barto [2010], of the agent to discover its environment.

Psychologists refer a behavior of human or animal to be intrinsically motivated when

it is inherently enjoyable, Barto et al. [2004], Singh et al. [2004]. So, humans or ani-

mals engage for activities as exploration, play, and other behaviors driven by curiosity,

for their own sakes, without expecting an external explicit reward. Intrinsically moti-

vated behavior is essential to accumulate knowledge and competences for solving future

problems.

We have applied intrinsic motivation in the exploration phase, where the agent wants

to discover new spaces instead of turning in already known spaces. The exploration

itself is modeled as a reinforcement learning problem with an intrinsic motivation reward

preventing the agent from going back. The exploration takes place in episodes, in each

episode the agent starts from a random position, and begins to walk along a fairly long

path. The intrinsic reward is zero each time the agent is in a previously unexplored

position, and negative if it is in an already explored state. We need to make sure that

the paths are long enough to have more possibilities to pass through narrow passages

or bottlenecks, which will represent sub-goals for options in a later phase. For this we

have two cases: -a. a path can reach the previously de�ned maximum length, or -b. it

cannot reach this maximum length if randomly it is in a position that it has already

visited in the same path, which marks the end of this path. In this case two situations

arise; i. if the number of steps is large enough even if it is not the maximum, the path

will be retained. In the other situation ii. the path does not contain enough steps and

will therefore be rejected, because it has a low chance of passing through a bottleneck,

as shown in the �gure 4.1.

The intrinsic reward is '0' if the agent discovers a new space, and is negative and in-

creases in value if it is in an already discovered space. The �rst time in a path (episode)

that the agent is in an already discovered space, its reward or more appropriately its

punishment is '-0.01', and each time it falls into the same error, this punishment in-

creases in value. For example, if the agent returns to the same place for the fourth time,

his reward will be '−0.04'.

82

(a) (b)

Figure 4.1: Example of two paths that end when the agent returns to a position on the same path. (a)

The path is quite long and will be retained in the list of paths, this path passes through

two narrow passages. (b) The path is not long enough and will therefore be rejected.

4.1.2 An agent with way�nding sense

During exploration, the agent performs random trajectories by applying the intrinsic

reward to form paths that are not necessarily optimal. At each iteration, a path starts

at a random position. The agent memorizes the start and end positions of the paths

he has made, then tries to position himself by estimating the actual distance between

the two ends of each path, this distance which is the length of the straight line between

the two points is usually much smaller than the length of the initial random path as

presented in �gure 4.2. For example, for a path starting point (x1, y1), and an arrival

point (x2, y2) the optimal distance estimated is given by the components (x2−x1, y2−y1).
This optimal distance may not be real because of the possible presence of obstacles on the

straight path, for this reason, the agent must travel this path, and check the distance at

each step with respect to the arrival point, in according to the de�nition of the direction

sense, section 4.1, where the agent must have the ability to choose a route that leads

to the desired destination, and follow this route and ensure at all times that the route

already taken leads to the goal.

Thus, the agent always chooses the direction of the straight line leading to the desti-

83

(a) (b)

Figure 4.2: (a) A random path. (b) The shortest path between the start point and the end point is

the straightest path possible.

nation (x2, y2) and starts taking steps and registering them in the new path which must

be the shortest or very close to the shortest in case of obstacles, and with each step, the

agent evaluates the distance between the current position and the destination point as

indicated in the algorithm 12.

Algorithm 12 The way�nding strategy to �nd

the shortest paths

Input: (x1, y2),(x2, y2) % the start and
the end positions
path = {} ; % the shortest path initially
empty
d1 = ‖x2 − x1‖;
d2 = ‖y2 − y1‖;
while (d1 > 0 && d2 > 0) do

if (d1 > 0 && d2 > 0) then
take a diagonal step towards (x2, y2)

end if

if (d1 > 0 && d2 == 0) then
take a horizontal step towards
(x2, y2).

end if

if (d1 == 0 && d2 > 0) then
take a vertical step towards (x2, y2).

end if

Evaluate d1, d2
end while

procedure take step(direction)

try a step (direction)

if (no obstacle) then

save the new position on path

else

turn right

try a step (direction)

if (no obstacle) then

save the new position on path

else

turn left

try a step (direction)

if (no obstacle) then

save the new position on path

end if

end if

end if

From this strategy, the agent continuously ensures that it is in the correct path. In

the event of an obstacle, the agent turns to the right to circumvent the obstacle, and

tries to �nd a passage, if he does not succeed, he seeks to the left. So the agent tries to

84

get around the obstacle away from the original direction as little as possible, as if the

agent is holding a compass and always manages to reach the end point in a minimal

number of steps. Once the passage to divert the obstacle is found, the steps that led to

this passage are also recorded in the path, and the procedure continues until reaching

the destination.

This procedure is applied to all paths traveled by intrinsic motivation and recorded.

At the end of this phase, we will obtain the shortest paths by the agent way�nding

sense. The agent then memorizes these best paths to take advantage of in the option

discovery phase. Our approach takes much less time than the methods of graph theory

in �nding the shortest paths. The initial exploration may not be perfect in the sense

that the agent is not obliged to visit all the states of its environment what is the case in

most classical methods and which requires an adjacency matrix as in Lakshminarayanan

et al. [2016], Machado et al. [2017], �im³ek and Barto [2009] . During the discovery of

the shortest path the agent can always �nd himself in states he has never visited in the

exploration phase.

4.1.3 Option discovery

Our option discovery method goes through three steps; i- discovery of terminal states

of options, ii- discovery of initiation states, iii- learning of option policies. These three

steps are completely automatic and require no human intervention. We will detail the

�rst two steps in this subsection and leave the third for the next subsection.

Terminal states discovery

The terminal states of the options are the sub-goals of the small tasks, when you carry

out a project consisting of several consecutive tasks, you cannot go from a �rst task to a

second without having �nished the �rst and reaching its goal, despite the fact that there

can be a multitude of methods to achieve it. The idea is to exploit this characteristic of

sub-goals, knowing that there can be several paths for a single goal, this implies that the

goal is a common point between several paths. However, the search for sub-goals does

not simply amount to looking for the common points between the shortest paths already

discovered, but to looking for the most common or most visited points. Thus, for the

�rst step, which is the discovery of the terminal states of options, we use the shortest

paths recorded during the exploration phase. And, we perform a count of the states

visited during the step of discovering the shortest paths, the most visited states of the

85

Figure 4.3: Example of terminal state discovery, the box of the door or the passage that connects

the two rooms constitutes the state most visited by the paths, and therefore the local

maximum of the states visited by these paths.

environment form obligatory passages or bottlenecks, they are states checking the local

maximas of the repetitions of visits, and will be considered later as termination states

for future options, as presented in �gure 4.3. This technique has already been adopted

in �im³ek and Barto [2009], in the calculation of betweeness local maxima, however our

method is not based on paths taken from a graph or from graph theory but on paths

taken from episodes of experiences.

The other states belonging to the shortest paths and which are not terminal states

are necessarily initial states of the options.

Initiation states discovery

In our approach the initial states are not common for all options, i.e. each option must

have a limited space, that accelerates option policy learning and the learning of policy

over option.

The states belonging to the shortest paths and which are not terminal states are

necessarily states of initiation of the options, but they must be grouped according to the

options to which they belong. At this level, we can deduce the initial states for options

by bringing together the states of the paths that lead to the same goal, However, in this

work we wanted to create optimal options as de�ned in Sutton et al. [1999], Botvinick

et al. [2009], Solway et al. [2014]. For example, in a maze type problem, the best work

organization is to associate an option for each door in each room. This implies that for

a door that separates two rooms we will have two options that have the same terminal

state, and two di�erent initiation sets, each set corresponding to the space of one room.

As a result, a problem arises because two paths that lead to the same terminal state

86

are not necessarily part of the same option, see �gure 4.4-a. On the other hand, if a

room has two doors or more, it implies that the space of this room generates two or more

options with similar sets of initiation states and di�erent termination states, therefore

the states belonging to a single path can belong to two or more options at the same

time, as shown in �gure 4.4-b.

(a) (b)

Figure 4.4: Con�icting cases in initial state set construction. (a) Two paths that leads to the same

terminal state but not belonging to the same option. (b) The states in gray belong to two

di�erent destination paths, and to two di�erent options at the same time

The solution consists in considering the paths that lead to a terminal state without

passing through another, if a path passes through two or more terminal states, it will

be divided into subpaths which each lead to a terminal state, as a result, we will have a

list of optimal paths, each leading to a single termination state.

For the discovery of initiation states sets that delimit the space of options, our al-

gorithm; (Algorithme 13) considers each path as an option before starting iterations.

These options (path) are clustered into groups according to their termination states.

In each group we look for the intersections between the initiation sets of the options

two by two, i.e. between the states of paths, and each time we �nd an intersection we

perform a union between them to have only one option. This process is repeated for

each group until stabilization i.e. until no new intersection is identi�ed. Therefore, the

number of options will be reduced at the end of the iterations to the number de�ned

by Sutton et al. [1999], Botvinick et al. [2009], Solway et al. [2014], and if we have two

rooms connected by a passage (sub-goal) we will have an option for each room, because

there is no intersection between the spaces of two rooms. After traversing paths, we end

up with sets of states, each set corresponds to the initial states of an option.

At the end, options may be in intersection with others, for example, in maze-type

problems, if two options have states in common this implies that they belong to the

same room and lead to two di�erent doors or terminal states. Therefore, if the set

87

(a) (b)

(c) (d)

Figure 4.5: Example of complementarity in the initial states sets construction. (a, b) Two di�erent

options whose initial states belong to the same part of space, the sub-goal of option

(a) is the easternmost state and the sub-goal of option (b) is the most northerly, both

options su�er from an incomplete state set. Each option completes the other, option (a)

supplemented becomes option (c) and option (b) becomes (d).

of optimal paths towards a sub-goal and which belong to a room have not succeeded

in covering all the space of this room, this implies that the initiation state set of the

corresponding option is not yet covered. To remedy this problem, the paths leading to

another sub-goal and belonging to the same room can cover the missing space. Thus we

use complementarity between options, i.e. we use each option to complement another

that belongs to the same space as shown in �gure 4.5.

The options discovered with their sub-goal are all independent of the global MDP

goal, and are therefore reusable for other MDPs that share the same environment. Our

goal is to �nd the global solution for an MDP, for that, we should add options that are

global goal dependent. Thus we add options de�ned by a common termination state

which is the goal of the global MDP, and sets of di�erent initiation states, each of which

corresponds to a di�erent state space among the spaces already discovered. For example,

for a room with two doors we had already discovered two options with the same space

of the room and two di�erent sub-goals, so we add an option for this room and the

termination state will be the goal of the global MDP. Knowing that the overall goal can

88

Algorithm 13 The option discovery algorithm

1: Input: Ter % the set of termination states
2: O = {} ; % the set of options initially empty
3: nb = 0; % the number of options
4: for each x ∈ Ter do

5: repeat

6: for each path ph (not empty) going to x do

7: for each path ph2 6= ph going to x do

8: if ph ∩ ph2 is not empty then

9: ph = ph ∪ ph2
10: ph2 = {}
11: end if

12: end for

13: end for

14: until stabilisation
15: end for

16: for each path ph (not empty) going to x do

17: if ph is not empty then

18: nb++;
19: creat a new option Onb

20: Onb initiation set=all states of ph
21: Onb terminal state=x
22: end if

23: end for

only be found in one option, the other useless options will be eliminated in the learning

option policies phase.

4.1.4 Learning option policies

The agent has all the options with their initial states and the terminal states, it remains

to determine the policy of each option or the strategy to follow, and this is where we

apply reinforcement learning, here we use the temporal di�erence algorithm on an actor-

critic architecture, Sutton and Barto [2018], Botvinick et al. [2009]. However our agent

has already discovered the shortest paths passing through the sub-goals in a previous

step, which implies that a large part of the work of learning option policies has been

done, and proceed by a completely random learning will result in a great waste of time.

To avoid this loss, we will exploit the results of the experiments of the exploration and

discovery of optimal paths phase in order to lighten the learning process.

The idea of exploiting the past experience of an RL agent is not new, Kearns and Singh

89

[2002] in their E3 algorithm, proposed two policies in the same training, an exploration

policy for unknown state spaces and an exploitation policy for known spaces.

For an ordinary RL, when an agent is in a state that quickly leads to a goal, its future

cumulative rewards must be encouraging, this value can only be reached after several

learning episodes. The purpose of using past experiences is to save the time lost by these

episodes. For that, we give the agent a good reward if he is on a good path leading to

his sub-goal. Thus we introduce the exploitation of optimal paths in the reward r(s,a)

initialization step, such that, when the agent is in a state that belongs to an optimal

path leading to the termination state of the option and chooses an action which follows

this path, he will receive a positive reward, the reward is negative in the other cases

except if the agent reaches his sub-goal. Actor-critic learning will follow the same steps

described in option policy learning in our previous work FAOD, and we introduce the

principle of intrinsic motivation to save even more time. Thus, learning for our agent

endowed with a sense of direction can be summarized in the following steps:

1. Initialization of weights W(actors) and values V(critics) with 0,

initialization of rewards r(s, a) = +1 if (s, a) belongs to an optimal path, otherwise

r(s, a) = −1;

2. For each option OP discovered:

a) For each learning episode:

a Choose a random starting position s

b While (termination state not reached and the number of steps < nmax)

� Choose an action by softmax P (a) = eW(st,a)/τ∑
a′∈A eW(st,a′)/τ

� Execute the action a.

� Observe the next state s′ and the reward r.

� Calculate the prediction error δ = r + γV (s′)− V (st).

� Calculate actor and critic.

 V (s)← V (s) + αV δ

W (s, a)← W (s, a) + αW δ

� s← s′

c if (number of steps == nmax) then eliminate OP

Where αV ∈]0, 1[and αW ∈]0, 1[are the learning rates, and nmax is the maximum

number of iterations allowed in a learning episode, calculated based on the number of

90

states in the initiation set of each option. This number nmax makes it possible to

eliminate the super�uous options which are the options that have been added to contain

the global goal of the MDP, only one option among these really contains the global goal,

for the others, the agent will search by following the steps but he will never �nd the

goal, so the option will be eliminated.

The choice of actions by the softmax function and the updating of weights and values

will follow the same strategy described in the FAOD method (see previous chapter). The

reward received for each executed action de�nes the strategy of compromise between

exploration and exploitation, at the same time as the intrinsic motivation already used

in the exploration step, so that if the agent is in a state belonging to a optimal path

and chooses the action that allows him to follow this path, the reward is (+1). On

the other hand, if he is in a state that is not part of any optimal path towards the

sub-goal, we proceed by exploration with a reward of (-1) which allows him to search

again. Finally, so that the agent does not get stuck in a position and always looks for

new states leading to the sub-goal, his reward is reduced by (0.5) each time he chooses

an action allowing him to stay in the same state, as if trying to cross an impassable wall.

After the execution of the algorithm, the policy of the option is given by the actions

which check the maximum weight in each state of the option.

However learning will not be completely random, to bene�t from the past experience,

the agent uses the memorized paths during his discovery of the shortest paths. If the

starting state of one learning episode is on a path to the terminal state, the agent takes

this path and his reward is reinforced, otherwise the agent can end up in a state that is

not part of any path going to the sub-goal, in this case he learns by applying intrinsic

motivation on temporal di�erence (with actor-critic) learning, Vigorito and Barto [2010],

Singh et al. [2004], Barto et al. [2004] ; for a better exploration until he �nds a way to

the goal or he �nds the goal itself.

4.1.5 Hierarchical learning

Option policies already learned by the agent are task independent, so for each new task

the agent can use the options that will always be available, and he will not need to

explore and discover his environment each time. Hierarchical reinforcement learning is a

reinforcement learning that uses abstract actions (options) instead of primitive actions.

In this work, we use the same actor-critic architecture with the temporal di�erence

algorithm, Sutton and Barto [2018], that at each training step chooses an option instead

of choosing a primitive action. The options are not interruptible for maze problems but

91

they are for tic tac toe games as described in the experiments.

Like primitive actions in an RL, weights are associated with options in an HRL. At

each extended step, the actor can choose an option, which will be executed by scrolling

the policy of the option already learned, until termination if it is a maze problem, or

until the The option is no longer available in the event of a non-deterministic problem

(the case of tic tac toe games). A reward is then received by the agent and the prediction

error is calculated. A positive error prediction indicates that the reward is better than

expected, and a negative error prediction indicates that things are worse. This error is

used to update the actor, i.e. the weight associated with the initiation state with the

option, and the critic which is the value associated with this same state in the same way

as we did in FAOD. The stages of the hierarchical learning of our agent with a sense of

orientation are summarized as follows:

1. Initialization of weights W(actors) and values V(critics) with 0,

2. For each episode:

a Take the starting position s = s0

b While (Goal state sG not reached)

� Choose an option by softmax function P (o) = eWh(s,o)/τ∑
o′∈O eWh(s,o′)/τ

� Execute the option o.

� Observe the next state s′ and the reward r.

� Calculate the prediction error δ = r + γVh (st+1)− Vh (sinit).

� Calculate actor and critic.

 Vh (s)← Vh (s) + αV δ

Wh (s, o)← Wh (s, o) + αW δ

Where P (o) is the probability of selecting an option o at state s, O is the set of available

options for the actual state s, and Wh(s, o) is the weight speci�c to option o at state s.

Vh is the policy over options value function. The selected option started at state sinit
and ended or stopped at state st+1, r is the problem depended reward, and t is the

number of time-steps elapsed since the relevant option o was selected. αV ∈]0, 1[and

αW ∈]0, 1[are the learning rates.

After the execution of the algorithm, the high level policy is given by options which

check the maximum weight for each state encountered during hierarchical learning for

the current problem.

92

4.2 Experiments and results

To show the performance of our agent with a sense of direction in option discovering,

we test it on two type of problems; multi-room maze problem and Tic Tac Toe game.

4.2.1 multi-room maze

For the �rst case we used the 4-room, 6-room, and 9-rooms grid-world, we performed

30 experiments to compare the results of our HRL method to the �at reinforcement

learning. At each experience the start state and the goal state are �xed by the user

interactively.

The algorithm starts by a partially random exploration of the environment as it is

driven by an intrinsic motivation reward. Thus, the agent has to walk in random paths.

The number and the length of these paths are calculated according to the estimated

size of the environment. At each step of each path, the agent can choose one of the

eight possible actions (north, south, east, west, north-east, north-west, south-east and

south-west).

(a) (b) (c)

Figure 4.6: The sub-goals discovery : the sub-goals discovered by the agent with a sense of direction

are marked by the letter M and they correspond to the doors which are the best subgoals

made manually in 4-room maze (a), 6-room maze (b) and 9-room maze (c). At each

experience the start state is marked by # and the goal state is marked by �

Next the agent memorizes the start and end positions of each path, and takes the

shortest path between the two extremities, this shortest path is calculated geometrically,

i.e. the path closest to the straight line. This is what we call our agent's sense of

direction. All states of the shortest paths are then recorded, and the states that form

the most repeated intersections between shortest paths form subgoals that the agent

93

must cross to reach its destination. The results of discovering subgoals were successfully

exactly similar to manually made subgoal described in Sutton et al. [1999], Botvinick

et al. [2009], as shown in �gure 4.6.

(a) (b)

(c)

Figure 4.7: Sub-goal discovery in methods that use the adjacency matrix. (a) Sub-goal discovery in

the approach of Simsek and colleagues. (b) Sub-goal discovery in the approach of Xu and

colleagues. (c) Sub-goal discovery in the approach of Machado and colleagues.

From Figure 4.6 and Figure 4.71 we can make a comparison of the results of the

option discovery quality between our method and other methods which proceed by dense

exploration of the environment and which use an adjacency matrix. In �gure 5-a, the

results of the �im³ek and Barto [2009] approach gives as sub-goal the two boxes which

border the door between two rooms which is slightly di�erent from the ideal sub-goal

de�ned in Sutton et al. [1999], while the de�nition of initiation sets is very di�erent.

Figure 5-b shows the result of dividing the state space on the same type of problems,

multi-room maze, by the methods of X. Xu and Li [2018]. This method divides the

state space into communities, the �gure indicates 4 communities connected with a node

between each two communities, these nodes are the doors between the rooms and repre-

sent the sub-goals, which corresponds exactly to the sub-goals sought, only the method

su�ers from high temporal complexity.

Figure 5-c shows the results of the option and subgoals discovery for the method,

of Machado et al. [2017] which performs a proto-value function calculation, although

this method succeeds in creating di�erent options, subgoals discovered are far from the

1These images were taken directly from their corresponding articles

94

optimal subgoals de�ned by the research community, as well as the initiation sets are

the same for all options, which makes the complexity of learning the policy of one option

identical to the complexity of learning global RL policy.

From these results we conclude that we have succeeded in discovering the optimal

sub-goals while consuming less time thanks to the senses of orientation of our agent.

The initiation sets of options are successfully constructed according to Algorithm 13,

followed by the application of the principle of complementarity between the options gives

good results, and the initiation sets are the same as those de�ned in Sutton et al. [1999].

We have managed to create an option for each room and door in the room, that is to

say that for a room which contains two doors we will have two options whose initiation

sets are almost the same and the sub-goals are di�erent, unlike the methods of Simsek

and Machado which did not succeed in �nding the right initiation sets.

Then the options became ready for learning. We applied the actor-critic architecture

with temporal di�erence learning, and with the use of the past experience i.e. the

shortest paths discovered in the �rst phase. At each option learning episode, the agent

checks his position, if it belongs to an already discovered shortest path leading to the

sub-goal, he takes this path directly, this is how the agent uses his past experience. If the

position does not belong to any shortest path, the agent performs actor-critic learning

until arriving at the sub-goal or a shortest path.

We have performed 166 experiences of option learning with 250 episodes for each

option learning, and as result, the learning process converged rapidly compared to the

same process of learning without past experience. The results of option learning are

shown in �gure 4.8.

95

(a) (b) (c)

Figure 4.8: Learning options policies. (a & b) Examples of two option policies in 6-room and 9-room

maze. (c) Curve comparing between our way�nding agent learning convergence, and an

agent without past experience.

For the hierarchical top level reinforcement learning, we performed an actor-critic

architecture learning with 150 episodes, and in all experiences the agent found his path

to the goal using the options policies as abstract actions. The HRL converge rapidly

(a) (b) (c)

Figure 4.9: Learning top level policy. (a & b) Examples of �nal paths after hierarchical learning in

6-room and 9-room maze. (c) Curve comparing between our agent hierarchical learning

convergence, and a �at reinforcement learning agent convergence.

as shown in the curve of the �gure 4.9 where we compared HRL learning with the �at

reinforcement learning which became very slow in complex problems (6-room and 9-

room maze). We have carried out other tests on special cases of the problem. The �rst

case is that of maze with windows on the external walls of the rooms, these windows

should not be considered as sub-goals by learning systems, the second case is that where

a shortcut is present in the maze, which is a window on the internal walls of the rooms,

96

thus in the best cases, shortcuts should be considered as subgoals, these tow problems

were invoked in Botvinick et al. [2009]. For the �rst case, our agent was not distracted

(a) (b)

Figure 4.10: The experiments on special cases. (a) The windows on the exterior walls of the rooms

were not considered as sub-goals. (b) The internal window was considered as a sub-goal

and the agent succeeded in �nding the shortcut.

by the presence of windows and his sens of direction did not mislead, and the windows

on the external walls of the rooms were never considered as subgoals, on the other hand,

the shortcut was considered as subgoal (see �gure 4.10) which is a very satisfying result

comparing to the manually formed options in Botvinick et al. [2009], and to our previous

work FAOD Koudad [2021] where only �at reinforcement learning succeed to �nd the

path passing by the shortcut.

4.2.2 Tic-tac-toe game

The Tic-tac-toe game, S. J. Russel [2010], Sutton and Barto [2018] is played by two

players X and O on 3x3 grid, where at each step the player X have to mark 'x' on a free

position he choose, then the turn of player O to mark 'o' in a free position too, the game

ends in a maximum of 5 stages. The winner is the player that marks a row �rst, it can

be a vertical, horizontal or diagonal row, if there is no winner at the 5th stage, the two

players are tied.

For our experiments, our agent with a sense of direction played X and the opponent

agent played O. At the �rst exploration our agent played randomly and memorized

only the paths leading to a victory. The tasks are then decomposed, the agent has to

reach the 3rd or the 4th state in the memorized paths, these states can be �nal steps if

the agent win in 3 steps as shown in �gure 4.11(a), or before �nal steps otherwise �gure

97

4.11(b,c), these states formed terminal conditions for options, �nal steps were considered

as terminal conditions too. Thus we had two types of options, phase one options, are

the options that start at step 1 and end at step 3 or 4, and the options of phase two are

the options that start from the terminate states of the options of Phase one, and end

at the end of the game, usually single stage options. Because of the non deterministic

character of the game, the number of the phase one options exceeded 500 cases.

(a) (b) (c)

Figure 4.11: Examples of option terminal state in tic-tac-toe game. (a) Terminal state for option after

3 steps is terminal state for HRL at the same time. (b) Terminal state for the option

after 3 steps and a second option is called to win. (c) Terminal state for the option after

4 steps and a second option is called to win.

Next, the agent learned the policies of theses options, we used the same actor-critic

reinforcement learning architecture. The reward was �xed to +100 if our agent reach

the terminal state of the option, -100 if he loses and −(differencewith subgoal)/10

otherwise. For the top level reinforcement learning, we used the same architecture too,

the reward was +1000 if our agent wins, -1000 if he loses, -10 if the game ended in a tie

and -0.1 in intermediate stages.

Due to the non deterministic character of the game, the options were not in-interruptible,

we could start with option oi, and before reaching the terminal state, we jump to another

option oj for which we reach the terminal state. So high-level learning takes an option

in the �rst phase, but it doesn't have to be the only one option. The �rst phase can end

with the terminal condition of the �rst, second, third or fourth option. The agent takes

only one option in the second phase.

98

We performed statistics on the results of option learning of the two phases, and on

the top level hierarchical learning. Figure 4.12(a) shows that in the beginning of phase

one learning, our agent X was on par with adversary agent O which is a random agent,

and as the learning progresses, our agent manages to gain the upper hand, and learn

more and more options and reach the �nal states of its options. In the second phase,

indicated in �gure 4.12(b), our agent succeeds quickly in mastering the situation in few

epochs of learning, and gaining the upper hand and this is due to the small number

of game steps in this phase. Regarding statistics on high-level hierarchical learning,

we counted the number of times our agent won, the number of times he lost and the

number of ties in each 100 learning episodes knowing that the number of episodes was

50000, and we perform the same processing to the results of learning by primitive action

only. Our agent's results were good and stable from the beginning thanks to the options

already learned and are clearly improving towards the end of the learning as shown in

Figure 4.12(c). On the other hand, learning by primitive actions only, (�at reinforcement

learning) took time before reaching some stabilization, as shown in �gure 4.12(d).

99

(a) (b)

(c) (c)

Figure 4.12: Learning outcomes. (a) The ascending curve indicates the number of options that reached

their terminal state per episode during phase one of option learning, the descending curve

indicates the number of failures. (b) The upper curve indicates the number of options

that reached their terminal state in phase two of option learning and the lower curve

indicates the number of failures. (c) The top curve shows the number of HRL learning

successes in 100 episodes, the bottom curve shows the number of losses in 100 episodes,

and the lowest curve indicates the number of ties. (d) The same calculations as in (c)

but on �at reinforcement learning results.

To prove the e�ectiveness of our method, we tested it against the minimax algorithm

S. J. Russel [2010]; which is a perfect algorithm for this game, and we compared its

results with the �at reinforcement learning algorithm. The number of iterations for the

preliminary exploration of the agent with a sense of orientation is 50000, and is the same

as the number of iterations of the �at RL, we used the same actor-critic architecture for

the �at RL, with the same learning parameters which are the learning rate α = 0.1, and

the discount factor γ = 0.85.

As a result, the �at RL agent always loses in front of the minimax algorithm, while

our agent always ends with a zero score, which is very good since we cannot hope for

better against the minimax algorithm, on the other hand, the response of our agent is

immediate which puts it ahead unlike the minimax algorithm which is deterministic and

has a high computational complexity S. J. Russel [2010] .

100

4.3 Conclusion and perspectives

In this work, we have proposed a new method for option discovery in hierarchical rein-

forcement learning, we have proposed an agent with a direction sense. First, our agent

uses his intrinsic motivation for a guided exploration and memorizes a signi�cant ex-

tremities of paths he done in this exploration. The agent doesn't need an adjacency

matrix which need an integral exploration of the environment, he uses only his direction

sense to �nd the shortest paths. The most visited states by these shortest paths are

considered as subgoals or terminal states of options that will be discovered using the

shortest paths too. Policies will be learned in very reduced time since the agent takes

advantage of his past experience to �nd his paths to the sub-goals, therefore, his low-

level learning is not entirely based on a random walk, because he already knows most of

the shortest paths to the sub goals.

Our approach was tested on maze problems and Tic-tac-toe game, at the results

our agent gave very satisfactory behaviors in the general and special cases of all the

test experiences. The agent endowed with a direction sense succeeds in �nding the

shortcuts, and not to be distracted by windows which leads to nowhere, he succeeded

in discovering the entire space of options without the need for a adjacency matrix or

a complete exploration of the environment, in addition to rapid learning using his past

experience.

For future work, we plan to explore the trail of deep learning and neural networks

as in Tani and Nol� [1999], to improve the capabilities of our agent in a much more

complex environment, to make our agent even more �exible and faster in the phase of

using his sense of direction to discover the shortest paths as well as the sub-goals or

bypassing obstacles.

101

Conclusions and future work

The objective of the work presented in this thesis is to present new methods for the

automatic discovery of options for HRL, hierarchical reinforcement learning, which ap-

peared as a solution to the problem of dimensionality from which su�ers classical RL.

The solution given by the HRL consists in dividing a complex problem, often modeled in

the form of an MDP, into sub-problems called options or abstract actions. Each treated

as a separate RL problem, along with the top-level option that coordinates those at the

lower level, hence the name Hierarchical RL.

We started by presenting the MDPs which form a suitable framework for the treatment

of problems of the RL type and planning. Subsequently, we described the most popular

dynamic programming algorithms; i.e. policy iteration and value iteration, and RL

algorithms which are Monte Carlo algorithms, temporal di�erence algorithms and recent

policy gradient methods. With regard to HRL we presented the SMDP framework and

the options framework.

We continued with a study of existing methods for the automatic discovery of options,

and we proposed a classi�cation of these methods into three classes, the greedy methods

which are the methods which discover the components of the options in an iterative

way and perform the learning of policies Simultaneously and proportionally, two-step

methods which discover the components (termination states and initiation states) of

the options in the �rst step and then learn the policies, and �nally the hybrid methods

which aim to discover termination states �rst, then discover initiation states by training

policies in parallel.

We have proposed two methods for the automatic discovery of options. The FAOD

method: (Fast Automatic Option Discovery) which consists in making a rapid and e�-

cient exploration of the environment to �nd the sub-goals, considered as salient changes

in sensorimotor �ow, detected during navigation. This method can be classi�ed under

the two-step methods, where we �rst discover the initiation states and the termination

states, then we perform option policy learning and option learning. For both cases we

used an actor-critic learning which is a temporal di�erence learning. We have tested and

102

validated this method on maze-like problems. Our agent managed to discover the right

sub-goals and the best options with a very fast strategy.

The second contribution consists of an agent endowed with a wai�nding sense for the

automatic discovery of options. In this method we have exploited several notions of

reinforcement learning and navigation, starting with the intrinsic motivation with which

our agent manages its exploration of paths to avoid to be entirely random. The agent

then seeks for each random path one corresponding optimal path, without resorting to

graph theory, but by exploiting the second notion which is the sense of direction. To

�nd the sub-goals, our agent calculates the local maxima of the states visited by the

optimal paths. The other notion used in this work is the use of past experience in the

learning phase, instead of doing a direct RL, we start by using the optimal paths found

previously. The procedure of RL by the actor-critic method is only used if the agent is

in states that are not part of the optimal paths leading to the sub-goal of the option.

We tested this method on maze-like problems, and we adapted, tested, and validated it

on the Tic-Tac-Too game.

We have tested and applied our two methods on discrete and proportionally simple

problems, our �rst solution is very fast and e�cient, but only applies to exploration and

navigation problems. The second approach is more easily adaptable to other types of

discrete problems. For future work, we want more adaptability of our option discovery

methods to more complicated environments and can be moved to continuous problems,

for this we propose to make use of modern deep learning techniques, as follows:

� Use recurrent neural networks as in Nol� and Tani [1999] for a mixture of experts

learning competitively to discover options.

� Adapt graphical or spatial problems to CNNs for the discovery of termination

states and option initiation states.

� Use unsupervised learning or self-adaptation methods for an automatic division of

problems into sub-problems.

� Exploit deep learning techniques on actor-critic methods Lillicrap et al. [2015],

Wierstra et al. [2010] for learning option policies for continuous problems.

103

Bibliography

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Cambridge,

MA: MIT Press, 2018.

R. S. Sutton, Precup .D, and Singh .S. Between mdps and semi-mdps: A framework for

temporal abstraction in reinforcement learning. Arti�cial Intelligence, 112(1):181�211,

1999.

Richard S Sutton and Andrew G Barto. Toward a modern theory of adaptive networks:

expectation and prediction. Psychological review, 88(2):135, 1981.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Cambridge,

MA: MIT Press, 1998.

Andy McGovern, Dona Precup, Balaraman Ravindran, Sathinger Singh, and Richard S

Sutton. Hierarchical optimal control of mdps. In Proceedings of the Tenth Yale Work-

shop on Adaptive and Learning Systems, pages 186�191. 1998.

Dona Precup and Richard S Sutton. Multi-time models for temporally abstract plan-

ning. In Advances in Neural Information Processing Systems, 10, pages 1050�1056.

Cambridge, MA: MIT Press, 1998.

Matthew M. Botvinick, Yael Niv, and Andrew C. Barto. Hierarchically organized be-

havior and its neural foundations: a reinforcement learning perspective. Cognition,

113(3):262�280, 2009.

Olga Kozlova. Hierarchical and Factored Reinforcement Learning. PhD thesis, Université

Pierre et Marie Curie-Paris 6, 2010.

Thomas Degris. Apprentissage par renforcement dans les processus de décision

Markoviens factorisés. PhD thesis, Université Paris VI, 2007.

104

Matthieu Geist. Optimisation des chaînes de production dans l'industrie sidérurgique :

une approche statistique de l'apprentissage par renforcement. PhD thesis, Université

Paul Verlaine, Metz, 2009.

Peter Dayan and Yael Niv. Reinforcement learning: The good, the bad and the ugly.

Current Opinion in Neurobiology, 18(2):185�196, 2008. ISSN 0959-4388. doi: https:

//doi.org/10.1016/j.conb.2008.08.003.

E.L. Thorndike. Animal intelligence:Experimental studies. New York:MacMillan, 1911.

D Michie. Trial and error. Science Survey, 2:129�145, 1961.

A Samuel. Some studies in machine learning using the game of checkers. IBM Journal

of Research Development, 3(3):210�229, 1959.

A. K Lopf H. A comparison of natural and arti�cial intelligence. SIGART newslette, 53:

11�13, 1975.

Robert A Rescorla, Allan RWagner, et al. A theory of pavlovian conditioning: Variations

in the e�ectiveness of reinforcement and nonreinforcement. Classical conditioning II:

Current research and theory, 2:64�99, 1972.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive

elements that can solve di�cult learning control problems. IEEE transactions on

systems, man, and cybernetics, (5):834�846, 1983.

Aurélia Léon. Apprentissage séquentiel budgétisé pour la classi�cation extrême et la

découverte de hiérarchie en apprentissage par renforcement. PhD thesis, Sorbonne

Université, 2019.

Christopher Watkins. Learning from delayed rewards. 01 1989.

Christopher Watkins and Peter Dayan. Technical note: Q-learning. Machine Learning,

8:279�292, 05 1992. doi: 10.1007/BF00992698.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement

learning. Discrete event dynamic systems, 13(1-2):41�77, 2003.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. New York: Wiley & Sons, 1994.

105

Ronald A. Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Pro-

cesses. New York: Wiley & Sons, 1971.

Andrew Barto, Singh Satinder, and Chentanez Nuttapong. Intrinsically motivated learn-

ing of hierarchical collections of skills. Proceedings of the 3rd International Conference

on Development and Learning, 01 2004.

Christopher M Vigorito and Andrew G Barto. Intrinsically motivated hierarchical skill

learning in structured environments. IEEE Transactions on Autonomous Mental De-

velopment, 2(2):132�143, 2010.

Harlow Margaret. K Harlow Harry. F and Meyer Donald. R. Learning motivated by

a manipulation drive. Journal of Experimental Psychology, 40:228�234, 1950. doi:

10.1037/h0056906.

Christopher M. Vigorito. Intrinsically Motivated Exploration in Hierarchical Reinforce-

ment Learning. PhD thesis, University of Massachusetts - Amherst, 2016.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology

of computational approaches. Frontiers in Neurorobotics, 1, 2009. ISSN 1662-5218.

doi: 10.3389/neuro.12.006.2007. URL https://www.frontiersin.org/article/10.

3389/neuro.12.006.2007.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-

building neural controllers. 1991.

Özgür �im³ek and Andrew G. Barto. An intrinsic reward mechanism for e�cient ex-

ploration. In Proceedings of the 23rd International Conference on Machine Learn-

ing, ICML '06, page 833�840. Association for Computing Machinery, 2006. doi:

10.1145/1143844.1143949.

Gary L Allen. Spatial abilities, cognitive maps, and way�nding - bases for individual

di�erences in spatial cognition and behavior. / edited by reginald g. golledge. In

Way�nding Behavior, Cognitive Mapping and Other Spatial Processes. Johns Hopkins

University Press, Baltimore, Md., 1999.

Reginald G. Golledge. Human way�nding and cognitive maps. / edited by reginald g.

golledge. In Way�nding Behavior, Cognitive Mapping and Other Spatial Processes.

Johns Hopkins University Press, Baltimore, Md., 1999.

106

Raubal Martin. Agent-Based Simulation of Human Way�nding: A Perceptual Model

for Unfamiliar Buildings. PhD thesis, Vienna University of Technology, Faculty of

Science and Informatics, 2001.

Jean. Piaget and Barbel. Inhelder. The Child's Conception of Space. Norton, New York,

1967.

R.G. Golledge and R.J. Stimson. Spatial Behavior: a geographic perspective. New York:

Guilford Press, 1997. ISBN 1-57230-050-7.

Andrew.I Frank. Spatial reasoning:theoretical considerations and practical applications.

In EGIS'92, Third European Conference and Exhibition on Geographical Information

Systems, 1992.

Benjamin Kuipers. The "map in the head" metaphor. Environment and Behavior, 14

(2):202�220, 1982. doi: 10.1177/0013916584142005.

E. C TOLMAN. Cognitive maps in rats and men. Psychological review, 55(4):189�208,

1948. doi: 10.1037/h0061626.

Kevin Lynch. The Image of the City. The MIT Press, 1964. ISBN 9780262620017.

Jerry Weisman. Evaluating architectural legibility: Way-�nding in the built en-

vironment. Environment and Behavior, 13(2):189�204, 1981. doi: 10.1177/

0013916581132004.

Benjamin Kuipers. Modeling spatial knowledge. Cognitive Science, 2(2):129�153, 1978.

ISSN 0364-0213. doi: https://doi.org/10.1016/S0364-0213(78)80003-2.

David Leiser and Avishai Zilbershatz. The traveller: A computational model of spatial

network learning. Environment and Behavior, 21(4):435�463, 1989. doi: 10.1177/

0013916589214004.

Drew McDermott and Ernest Davis. Planning routes through uncertain territory. Arti�-

cial Intelligence, 22(2):107�156, 1984. ISSN 0004-3702. doi: https://doi.org/10.1016/

0004-3702(84)90045-6.

Gordon I. McCalla, Larry Reid, and Peter F. Schneider. Plan creation, plan execution

and knowledge acquisition in a dynamic microworld. International Journal of Man-

Machine Studies, 16(1):89�112, 1982. ISSN 0020-7373. doi: https://doi.org/10.1016/

S0020-7373(82)80073-4.

107

Susan L. Epstein. Spatial representation for pragmatic navigation. In Stephen C. Hirtle

and Andrew U. Frank, editors, Spatial Information Theory A Theoretical Basis for

GIS, pages 373�388, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

Sucharita Gopal, Roberta L. Klatzky, and Terence R. Smith. Navigator: A psy-

chologically based model of environmental learning through navigation. Journal

of Environmental Psychology, 9(4):309�331, 1989. ISSN 0272-4944. doi: https:

//doi.org/10.1016/S0272-4944(89)80012-X.

S Gopal and T R Smith. Human way-�nding in an urban environment: A performance

analysis of a computational process model. Environment and Planning A: Economy

and Space, 22(2):169�191, 1990. doi: 10.1068/a220169.

Michael O'Neill. A biologically based model of spatial cognition and way�nding. Journal

of Environmental Psychology, 11(4):299�320, 1991. ISSN 0272-4944. doi: https://doi.

org/10.1016/S0272-4944(05)80104-5.

Bernhard Hengst. Discovering hierarchy in reinforcement learning with hexq. In ICML,

volume 2, pages 243�250, 2002.

Sander G van Dijk and Daniel Polani. Grounding subgoals in information transitions. In

Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011 IEEE

Symposium on, pages 105�111. IEEE, 2011.

Marlos C. Machado, Marc G. Bellemare, and Michael H. Bowling. A laplacian framework

for option discovery in reinforcement learning. CoRR, abs/1703.00956, 2017.

M. Yang X. Xu and G. Li. Constructing temporally extended actions through incre-

mental community detection. Hindawi,Computational Intelligence and Neuroscience,

2018(2085721), 2018.

Aurelia Leon and Ludovic Denoyer. Budgeted hierarchical reinforcement learning. pages

1�8, 07 2018. doi: 10.1109/IJCNN.2018.8489459.

Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement

learning. In International Conference on Machine Learning, pages 316�324, 2014.

Özgür �im³ek and Andrew G. Barto. Skill characterization based on betweenness. In

Advances in neural information processing systems, pages 1497�1504. Cambridge, MA:

MIT Press, 2009.

108

Aravind .S Lakshminarayanan, Ramnandan Krishnamurthy, Peeyush Kumar, and

Balaraman Ravindran. Option discovery in hierarchical reinforcement learning us-

ing spatio-temporal clustering. arXiv preprint arXiv:1605.05359, 2016.

Z. Koudad. Faod: Fast automatic option discovery in hierarchical reinforcement learning.

International Journal on Arti�cial Intelligence Tools, 30(02):2150006, 2021.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder�decoder for statistical machine translation. In EMNLP, 2014.

Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent

policy gradients. Logic Journal of the IGPL, 18:620�634, 10 2010. doi: 10.1093/

jigpal/jzp049.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lil-

licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods

for deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of The 33rd International Conference on Machine Learning, vol-

ume 48 of Proceedings of Machine Learning Research, pages 1928�1937. PMLR, 2016.

URL https://proceedings.mlr.press/v48/mniha16.html.

Sahil Sharma, Aravind S. Lakshminarayanan, and Balaraman Ravindran. Learning

to repeat: Fine grained action repetition for deep reinforcementlearning. CoRR,

abs/1702.06054, 2017. URL http://arxiv.org/abs/1702.06054.

M. J. Kearns and S. P. Singh. Near-optimal reinforcement learning in polynomial time.

Machine Learning, 49(2-3):209�232, 2002.

Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm

for near-optimal reinforcement learning. J. Mach. Learn. Res., 3:213�231, mar 2003.

doi: 10.1162/153244303765208377.

Marc Pickett and Andrew G. Barto. Policyblocks: An algorithm for creating useful

macro-actions in reinforcement learning. In Proceedings of the Nineteenth Interna-

tional Conference on Machine Learning, pages 506�513. Morgan Kaufmann, 2002.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In 22

nd International Conference on Machine Learning,(ICML), pages 553�560, 01 2005.

109

Andrew G Barto, George Konidaris, and Christopher Vigorito. Behavioral hierarchy:

exploration and representation. In Computational and Robotic Models of the Hierar-

chical Organization of Behavior, pages 13�46. Springer, 2013.

Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Exploiting structure in policy

construction. pages 1104�1113, 01 1995.

Degris .T, Sigaud .O, and Wuillemin .P.H. Learning the structure of factored markov

decision processes in reinforcement learning problems. In Proceedings of the 23rd Inter-

national Conference on Machine Learning (ICML'06), Pittsburgh, PA, pages 257�264,

01 2006.

Matthew Botvinick and Ari Weinstein. Model-based hierarchical reinforcement learning

and human action control. Phil. Trans. R. Soc. B, 369(1655):20130480, 2014.

Jun Tani and Stefano Nol�. Learning to perceive the world as articulated: an approach

for hierarchical learning in sensory-motor systems. Neural Networks, 12(7-8):1131�

1141, 1999.

Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G Barto, Yael Niv, and

Matthew M Botvinick. Optimal behavioral hierarchy. PLoS computational biology, 10

(8):e1003779, 2014.

Stefano Nol� and Jun Tani. Extracting regularities in space and time through a cas-

cade of prediction networks: The case of a mobile robot navigating in a structured

environment. Connect. Sci., 11:125�148, 1999.

Satinder Singh, Andrew G. Barto, and Nuttapong Chentanez. Intrinsically motivated

reinforcement learning. In Proceedings of the 17th International Conference on Neural

Information Processing Systems, pages 1281�1288. MIT Press, 2004.

D . Ernest S. J. Russel, P. Norvig. Arti�cial Intelligence: a Modern Approach. Upper

Saddle River, NJ: Prentice Hall, 3rd edition, 2010.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess,

Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. CoRR, abs/1509.02971, 2015.

110

Abstract

The hierarchical reinforcement learning framework breaks down the reinforcement learning problem into subtasks or extended
actions called options in order to facilitate its resolution. Different models have been proposed where options were manually
predefined or semi-automatically discovered. However, the automatic discovery of options has become a real challenge for
research in hierarchical reinforcement learning.
In this thesis we propose two automatic option discovery method for hierarchical reinforcement learning. The first method that
we call FAOD (Fast Automatic Option Discovery). In this contribution, we took inspiration from robot learning methods to
categorize the sensorimotor flow during navigation. Thus, FAOD agent moves along the walls to discover the rooms’ contour,
closed spaces, doors and bottleneck regions to define terminate states and initiation sets for options.
In the second contribution our learning agent uses his sense of direction to discover the shortest paths and shortcuts after an
exploration based on intrinsic motivation, without resorting to the algorithms of the graph theory, these discoveries subsequently
serve to discover the termination conditions and the initiation states of the options. For the learning of options policies, the agent
uses his experience of exploration as well as learning by temporal difference strategy. We tested and validated this approach on
different maze problems and on the tic-tac-toe game.

Keywords

Hierarchical reinforcement learning; Reinforcement learning; Option Discovery; Markov decision process; Actor-criticlearning,
Wayfinding; Intrinsic motivation.

�
	

jÊÓ

�
IJ
k

�
é

	
®Ê

�
J
	
m× h.

	
XAÖ

	
ß h@Q

�
�
�
¯@ Õç

�
' . AêÊg ÉJ
îD�

�
JË

�
H@PAJ

	
k ùÒ�

�
�

�
éª�ñÓ

�
H@Z@Qk. @

ð

@

�
éJ
«Q

	
¯ ÐAêÓ úÍ@

	P 	QªÖÏ @ ÕÎª

�
JË @

�
éÊ¾

�
�Ó ú

×QêË @ ø

	QK

	Qª
�
JË @ ÕÎª

�
JË @ Õæ�

�
®K

ø

	QK

	Qª

�
JË @ ÕÎª

�
JË @

�
HñjJ. Ë A

�
J

�
®J

�
®k A

�
K
Ym�

�
' ù

KA

�
®Ê

�
JË @ PAJ

	
mÌ'@

	
¬A

�
�

�
�» @ iJ.�

@ , ½Ë

	
X ©Óð . ù

KA

�
®Ê

�
K éJ.

�
� É¾

�
��. Aê

	
¯A

�
�

�
�» @ ð

@ A

�
K
ðYK
 A

��
®J.�Ó

�
H@PAJ

	
mÌ'@ YK
Ym�

�
' Õç

�
'

. ú

×QêË @

ù

KA

�
®Ê

�
JË @

	
¬A

�
�

�
�» B@) \FAOD ùÒ�

�
� úÍð

B@

�
é
�
®K
Q¢Ë@ . ú

×QêË @ ø

	QK

	Qª
�
JË @ ÕÎª

�
JÊË �

H@PAJ

	
mÌ'@

	
¬A

�
�

�
�» B A

�
J

KA

�
®Ê

�
K

	á�

�
J
�
®K
Q£ hQ�

�
�
®

	
K ,

�
ékðQ£

B@ è

	
Yë ú

	
¯

\FAOD ÉJ
»ð ¼Qj
�
JK
 , ú

ÍA

�
JËAK. ð . É

�
®

	
J
�
JË @ Z A

	
J
�
K

@

�
H@Qª

�
�

�
��ÖÏ @

�
�

	
¯Y

�
K

	
­J

	
��

�
JË

�
HñK. ðQË@ ÕÎª

�
K

�
�Q£ 	áÓ A

	
JÒêÊ

�
J�@ ,

�
éÒëA�ÖÏ @ è

	
Yë ú

	
¯ .(

�
H@PAJ

	
jÊË ©K
Qå�Ë @

ZYJ. Ë @
�

HA«ñÒm.
×ð ZAî

	
EB

@

�
HBAg YK
Yj

�
JË

�
�A

	
J
�
J

	
kB@

�
�£A

	
JÓð , É

	
g@YÖÏ @ð ,

�
é
�
®Ê

	
ªÖÏ @

�
HAgA�ÖÏ @ð ,

	
¬Q

	
ªÊË

�
é

	
��
QªË@ ñ¢

	
mÌ'@

	
¬A

�
�

�
�» B

	
à@PYm.

Ì'@ Èñ£ úÎ«

.
�

H@PAJ

	

jÊË

ú

Î

	
g@YË@ ©

	
¯ @YË@ úÎ«

�
ZA

	
JK.

	
¬A

�
�º

�
J�B@ YªK.

�
H@PA�

�
J

	
kB@ð

�
H@PA�ÖÏ @ Qå�

�
¯

@

	
¬A

�
�

�
�» B èAm.

�
�
'BAK. é�A�k@

ÕÎª

�
JË @ ÉJ
»ð ÐY

	
j

�
J��
 ,

�
éJ

	
K A

�
JË @

�
éÒëA�ÖÏ @ ú

	
¯

�
é�AJ
� ÕÎª

�
JË . PAJ

	
mÌ'@ ZYK.

�
HBAgð ZAî

	
EB

@ ðQå

�
�

	
¬A

�
�

�
�» B

�
HA

	
¯A

�
�

�
�» B@ è

	
Yë ÐY

	
j

�
J�

��
� Õç

�
' , ú

	
GAJ
J. Ë @ Õæ�QË @

�
éK
Q

	
¢

	
�

�
HAJ
Ó

	PP@ñ
	

k úÍ@

Zñj. ÊË @
	
àðX ,

É¿ A
�

�Ó ú

	
¯ é

�
Jm�� 	áÓ A

	
J
�
®

�
®m�

�
'ð i. î

	
DË @ @

	
Yë A

	
KQ�.

�
J

	
k@ .

�
IJ

�
¯ñ

�
JË @

�
�Q

	
¯ ÕÎª

�
K

�
éJ
j. �

�
K @Q

�
��@

úÍ@

�
é
	
¯A

	
�B

AK.

	
¬A

�
�º

�
J�B@ ú

	
¯ é

�
JK. Qm.

�
�
' ÉJ
»ñË@ ÐY

	
j

�
J��
 ,

�
H@PAJ

	
mÌ'@

.ñ
�
K ¼A

�
K ½J

�
K

�
éJ.ªË ú

	
¯ð

�
é

	
®Ê

�
J

	
jÖÏ @

�
éëA

�
JÖÏ @

�
éË @YË@

�
HAÒÊ¾Ë@

.
�
éJ

�
K @

	
YË @ ©

	
¯ @ðYË@ ; ék. ñ

�
JËAK. Pñª

�
�Ë@ , É«A

	
®Ë @ Y

�
¯A

	
JË @ ÕÎª

�
K ;

	
¬ñ»PAÓ P@Q

�
®Ë @

	
XA

	
m�

�
' @

�
éJ
ÊÔ

« �
H@PAJ

	
mÌ'@

	
¬A

�
�

�
�» @ ; ÕÎª

�
JË @ 	QK

	Qª
�
K . ú

×QêË @ 	QK

	Qª
�
JË @ ÕÎª

�
JË @

Résumé

L’apprentissage par renforcement hiérarchique décompose le problème d’apprentissage par renforcement en sous-tâches ou
actions étendues appelées options afin de faciliter sa résolution. Différents modèles ont été proposés où les options étaient
prédéfinies manuellement ou découvertes semi-automatiquement. Cependant, la découverte automatique d’options est devenue
un véritable défi pour la recherche en apprentissage par renforcement hiérarchique.
Dans cette thèse, nous proposons deux méthodes de découverte automatique d’options pour l’apprentissage par renforcement
hiérarchique. La première méthode s’appelle FAOD (Fast Automatic Option Discovery). Dans cette contribution, nous nous
sommes inspirés des méthodes d’apprentissage des robots pour catégoriser le flux sensorimoteur lors de la navigation. Ainsi,
l’agent FAOD se déplace le long des murs pour découvrir le contour des pièces, les espaces fermés, les portes et les régions de
goulot d’étranglement pour définir les états de terminaison et les ensembles d’initiation pour les options.
Dans la deuxième contribution notre agent apprenant utilise son sens de l’orientation pour découvrir les chemins les plus courts
et les raccourcis après une exploration basée sur la motivation intrinsèque, sans recourir aux algorithmes de la théorie des
graphes, ces découvertes servent par la suite à découvrir les conditions de terminaison et les états d’initiation des options. Pour
l’apprentissage des politiques d’options, l’agent utilise son expérience d’exploration ainsi que la stratégie d’apprentissage par
différence temporelle. Nous avons testé et validé cette approche sur différents problèmes de labyrinthe et sur le jeu de tic-tac-toe.

Mots clés

Apprentissage par renforcement hiérarchique ; Apprentissage par renforcement; Découverte d’options ; Processus décisionnel de
Markov ; Apprentissage acteur-critique, sens d’orientation; Motivation intrinsèque.

