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PREFACE

This physics text book is intended for a broad range of students; it covers the
fields of Sciences and Technology (ST), Material sciences (SM), and in particularly
suitable for first-year LMD (License, Master, and Doctorate) students in Mathematics
and Computer Sciences.

This document follows the official curriculum of the Physics 1 module taught in
the first year of the LMD programs mentioned earlier. This manuscript is essential for
first-year students given the importance of concentration and a thorough understanding
of scientific concepts. The combination of these elements, along with the requirement
to take notes during the course, can be crucial for effective learning in disciplines such
as physics and the sciences. Hence, the necessity to provide such documents to our
students.

The proposed work is the result of my experience in courses and supervised
work for several years at the University of Tlemcen. This manual compiles all the
courses on the mechanics of the material point, with varying levels of detail, along
with exercises and problems with solutions and a set of exams from previous years.

This handout comprises six chapters on mechanics. The first one focuses on
dimensional analysis. Mathematical reminders and concepts about vectors are
presented in the second chapter. The third chapter deals with the kinematics of
material point in various coordinate systems. Chapter 4 details relative motion or
changes in reference frames. The dynamics of material points is covered in the fifth
chapter. Finally, the sixth chapter is dedicated to work and energy. | must stress that
this document in no way replaces face-to-face tutorials.

| hope that this collection of exercises and solved test problems in point
mechanics will be of great help to the majority of students.

Any comment, proposal or constructive criticism allowing the improvement of

the texts will be collected with great interest.

Dr. Hadjou Bélaid Zakia
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Chapter I: Dimensional Analysis and Uncertainty Calculation

Glossary

In English In French In Arabic
Mechanics La mécanique clilsa
Physical quantities Une grandeur physique bl
Dimensional analysis Analyse dimensionnelle @) Jalaill
Uncertainty Calculation Calcul d’incertitudes LY s
Unit Unité sasll
Force La force 5 5l
Motion Le Mouvement A8l
Velocity (speed) La vitesse de yudl
Acceleration L’accélération g bl
Length Lalongeur daliadll
Time Le temps Ol
Mass La masse )
Weight Le poids sl
Momentum La quantité du mouvement A jalldus
Work Le travail Jazll
Energy L’énergie aalal)
Power La puissance delainyl
Equilibrium Etat d’équilibre R
Surface La surface daludl
Volume Le volume aaal)
Density La masse volumique danal) ALK
Frequency La fréquence gl
Linear velocity La vitesse linéaire Ahall de )
Angular velocity La vitesse angulaire a5 3 de yudl
Linear Acceleration L’accélération linéaire ol g bl
Angular Acceleration L’accélération angulaire @l & bl
Pressure La préssion Lzl
Acceleration of gravity Accélération de pesanteur g s
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Chapter I: Dimensional Analysis and Uncertainty Calculation

Current intensity L’intensité du courant loesl lall sad

Light intensity L’intensité de la lumiéere s guall 325

Quantity of material La quantité de la matiere Balall 4paS

Height La hauteur gy

Dimensionless Sans dimension x5

The period of a pendulum La période d’une pendule S SNSRI
simple

The sound Le son & gacall

Radius Le rayon A

Relative uncertainty L’incertitude relative el Y

Absolute uncertainty L’incertitude absolue Gllaall s Y

Total Differential method Méthode différentielle totale | A< Zlalidl) 45y )k

Logarithmic Method Méthode logarithmique i jle lll 45, Ll

Absolute Error Erreur absolue Gl Uadl)

Relative Error Erreur relative sl Uadl)

The International System (SI) | Systéme international S Sl plail)

The CGS system Systeme CGS AICGS

Average speed La vitesse moyenne Ao siall de )

Instantaneouse speed La vitesse instantanée duaalll de jud)
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Chapter I: Dimensional Analysis and Uncertainty Calculation

Part 1: Dimensional analysis
@il Judal)

1. Introduction

The observation of physical phenomena is incomplete if it does not lead to quantitative
information, which is the measurement of physical quantities. To study a physical
phenomenon, one must examine the important variables; the mathematical relationship

between these variables constitutes a physical law.

This is possible in certain cases, but for other cases, it is necessary to use a modeling method

such as dimensional analysis. ((s2=/ sl )
2. Definition of Dimensional Analysis ) Julaill ciy o3

It is a theoretical tool for interpreting problems based on the dimensions of the involved

physical quantities: length, time, mass, and so on.
Dimensional analysis allows for:

e Verifying the validity of dimensioned equations.

e Investigating the nature of physical quantities.

e Exploring the homogeneity of physical laws.

e Determining the unit of a physical quantity based on fundamental units (meter,

second, kilogram, etc.).

3. Physical Quantity sk ke

A physical quantity is an observable and measurable property through a specifically designed
instrument. Mechanics acknowledges seven fundamental physical quantities: length, time,
mass, electric current, temperature, quantity of material, and luminous intensity. Other
physical quantities, known as derived quantities, are expressed in terms of these three

fundamental quantities, such as velocity, acceleration, force, and more.....

Z. HADJOU BAELAID 4



Chapter I: Dimensional Analysis and Uncertainty Calculation

Note :

In general, for first-year students in Mathematics (M), and Computer Science (1), the focus is
primarily on the first three fundamental quantities: length, time, and mass.

4. International System of Units (alall alail) & 3 g1)

The value of a physical quantity is given in relation to a standard known as a "unit". The first
four fundamental units constitute the MKSA International System (Meter, Kilogram, Second,
Ampere). Using these fundamental units, derived units can be constructed: area (m?), velocity
(m/s), force (kg m/s?)...

Fundamental quantities Units 3aagl (in the
Lulull) el international system MKSA) Symbols 3.1

Length Meter (m)

Mass Kilogram (kg) (kg)

Time Second (s)

Current intensity Ampere (A)
Temperature Kelvin (K)
Light intensity Candela (Cd)
Quantity of material Mole (mol)

There are specific units such as N (Newton) for force, Hz (Hertz) for frequency, Watt for

power, Pascal (Pa) for pressure...
Note: There are two systems of units:

- The International System (SI) known as MKSA (Meter, Kilogram, Second, Ampere), which

is the most widely used system.

- The CGS system (Centimeter, Gram, Second), which is less commonly used.

Z. HADJOU BAELAID 5
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5. Dimensional Equationsaa) 4lstaa

Dimension represents the nature of a physical quantity. A physical quantity has only one

possible dimension.
The dimension of a quantity G is denoted by: [G] = L

By denoting M, L, and T as the dimensions of the fundamental quantities mass, length, and
time, we can express the dimensions of other derived quantities in terms of these three

fundamental dimensions. The resulting equations are the dimension equations for these

physical quantities.

The Fundamental Dimensions Units 32 gl\(International
Quantitiesdasba) palial) Symbols 3«1 Aay) System (SI))
Length L [l]=L Meter (m)
Mass M [m]=M Kilogram (kg)
Time T [t]=T Second (s)
Current intensity I [ =1 Ampere (A)
Temperature T [T]=06 Kelvin (K)
Light intensity J 1= Candela (Cd)
Quantity of material N [n] =N Mole (mol)
Example :
e [speed] =[v] = % = % = % = LT~ and the unit of speed is (m/s).

e [acceleration] = [a]

__[speed]
" [time] [t]

vl _LT?

= LT~2 and the unit of acceleration is (m/s?).

e [Force] = [F] = [mass][acceleration] = [m][a] = MLT™2 and the unit of force is

Newton or (kg.m/s?).

Z. HADJOU BAELAID



Chapter I: Dimensional Analysis and Uncertainty Calculation

Notes :

e The dimension of constants is always equal to 1; we say they are dimensionless.

e Angles and functions like sin, cos, tan, exp, In, and log are dimensionless functions.
[Numeric value] = 1, [angle] = 1, [cosa] = [sin o] = [tan a] = [cota] =[Inx] =[e*] =1
6. Homogeneity of Dimensional Equations e/ 4lee wilad

The two sides of a dimension equation must have the same dimensions since they represent

quantities of the same nature.
G is a physical quantity:
e G=Ax+B=|[G]=[A] =[B]
e G=A*B=][G] =[A] *[B]
e G=A/B=[¢]=I[A]/[B]
e G=A">[G] =[A]"
Note:
* A heterogeneous (non-homogeneous <wilaic ) equation is necessarily False.
* A homogeneous equation is not necessarily true.

* Dimensions cannot be added (or subtracted).

Example 1:

y= %at2 + vyt + y, Is the equation of a physical law.
e Check that this equation is homogeneous?
This equation is homogeneous if:  [y] = E atz] = [vot] = [yo]

We have :

Z. HADJOU BAELAID 7
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And [vot] = [vollt] = LT-T = L

So:
[y] = E atz] = [vot] = [v,] is checked.

Hence the equation y = %at2 + vyt + y, 1S homogeneous.

Notes:

We can use this property of dimension equations to discover physical laws by knowing the
variables involved in the given physical phenomenon and the relationship among them.

Example 2:
The period is given in terms of length and severity by the following relationship:
T=k .I".g"
e Give the physical law of period T_.s&//?

For this it is necessary to determine the exponents x and y.

It is assumed that the equation is homogeneous so: [T] = [k][l]*[g]”
The dimensions of all physical quantities in the study relationship are written.

[[]=L,[k]=1and Tisatimeso [T] =T

We have weight force J&ill 3 8 p=mg with:

—

[p] = [m]lg] = [g] = ]

—
—

P : the weight, is a force so it has the dimension of a force:[p] = [F] = MLT 2.

-2
So [g] = [ﬂ] =ML _ 72

M

—

g is the acceleration [g] = LT 2

Hence : T=1 .L*.(LT?)Y= MOLOT! = [*+Y T~2¥

Z. HADJOU BAELAID 8



Chapter I: Dimensional Analysis and Uncertainty Calculation

By identification we will have:

1
x+y=0 y=-3
{—2y=1 =

R
1 SO T =klzg 2
_x:—y:E

=>T= k\/g it’s the law of the period.

Example 3:

The average speed of the particles is expressed as a function of the mass m, the volume V,
and the pressure p by the fallowing expression:

v=f(m, V, p)= v =k.m*%VE pr

It is assumed that the equation is homogeneous, therefore: [v] = k[m]*[V1®[p]"............ 1)

-2
with [m] = M, [v] = LT, [V] = 13, [p] = 15 = "Ll = 20— — 1372

(1)= MOLT ™' = M®L3B(ML™'T2)Y = MOLT~' = M*V[3B-vT-2v

By identification we will have:

( 1
Yy=s5
a+y=0 2 1
3—y=1=; a=-y=-3
—2y =-1 2
14y 141/2 1
F=—3"="3 =
1 1 1 pV

So:v=km 2Vzpz =v=k -

It’s a law of the average speed of the particles.

Conclusions:

Dimensional analysis serves the following purposes:

- Verification of the homogeneity of physical formulas.

- Determination of the nature and the unit of a physical quantity.

- Exploration of the general form of physical laws.

Z. HADJOU BAELAID 9
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pnd part: Uncertainty Calculation

<Ll Y ol

1. Introduction

In an experiment, exact measurements do not exist. These are always accompanied by more
or less significant errors depending on the measurement method used, the quality of the
instruments used, and the role of the operator. The measuring instrument, even if built upon a
standard, also has a certain precision as provided by the manufacturer. Therefore,
measurements are carried out with approximations. Estimating the errors made in

measurements and their consequences is essential.

2. Absolute and relative uncertainty il Gl ¥ 5 dlhaal) s Y

2.1. Absolute error thal) Uadll

The absolute error of a measured quantity G is the difference 6G between the experimental
value G, and a reference value that can be considered as exact, Ge. In reality, since the exact
value is inaccessible, it is approximated by taking the average of a series of measurements of

the quantity G.
0G = |Gmeasured — Gexactl
2.2. Relative error gsdl) Uaid)

The relative error is the ratio of the absolute error to the reference value. The relative error is
dimensionless; it indicates the quality (precision) of the obtained result. It is expressed in

terms of a percentage.

&G _ |Gmeasured B Gexactl

G Gmeasured

2.3. Absolute uncertainty (3thal) i)

This is the maximum error that can be committed in the evaluation.

AG > |6G| = AG = |Gy — G| = Goy = Gy + AG

Z. HADJOU BAELAID 10
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= Gy — AGS Goyp < G + AG

The general form is:
Gex = G £ AG

The absolute uncertainty has the same unit as the measured quantity and is always positive.
Example: m=12,121g and Am=0,02g

The correct expression for the measurement (the condensed writing) of m is:

m = (12,121 £ 0,020) g

2.4. Relative uncertainty i <l )

The relative uncertainty is the ratio between the absolute uncertainty and the measured value
of G. It is also expressed in terms of a percentage and is a convenient way to quantify the

precision of a measurement. It is denoted as: AG/G
It is given in percentage and it is always smaller than 1.

Am 0,02

m 12121

~ 0.16%

3. Uncertainty Calculation <t ¥ clua

Generally, there are two mathematical methods for uncertainty calculation: the total
differential method, which is a general approach, and the logarithmic method, which is
limited to physical laws expressed as a product or a ratio.

3.1. The total differential method4.s 4 Lalisl) 43, k)
Let f(x, y, ) be a function that depends on three variables X, y, z:

The total differential of the function (f) is expressed by the following equation:

_(9f of of )
af = (ax>y'2=cst dx + (6)’) dy + (62 x,y=cst dz

x,z=cst

(af) is the partial differential of the function f with respect to x , considering y and z as

ox

constants.

Z. HADJOU BAELAID 11
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(Z_D is the partial differential of the function f with respect to y, considering x and z as

constants.

(af ) is the partial differential of the function f with respect to z , considering x and y as

constants.
The absolute uncertainty on (f) is generally expressed in the form:
of of of
of = [ ax-+ [ ay + |2
f ax x z

3512+ 52

Example:
Let f(x, y) be a physical quantity that depends on two variables x and y.

f is expressed as f(x,y) =2xy +x%y
The total differential of “f  will be given by :df = (3£) dx + ("f ) dy

With: (g_ﬁ)y=cst = 2y + 2xy and (%)x=cst = 2x + x?

So: df = (2y + 2xy)dx + (2x + x*)dy

Hence the absolute uncertainty on the quantity « f » is given by:
Af = |2y + 2xy|Ax + |2x + x?|Ay

3.2. Logarithmic method 4 8 il 48, k)

This method is based on the logarithm and its derivative.

Consider a three-variable function, G = f(x, y, z). To calculate the relative uncertainty on the

function G using the logarithmic differential method, the following steps should be followed:
1. Introduce the logarithmic function to the function G.

2. Calculate d(logG) =dG / (G In 10) or d(InG) =dG / G.

3. d—G <2 and deduce the relative uncertainty on G.

Z. HADJOU BAELAID 12
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Example

Let the function f(X,y,2)=x%y"z°

X,y etz are a variables and a, b et c are constants in the exponents.
First, we find the logarithm of “f”:

log f =log x%y"z°= log x*+log y*+log z° = alog x+ b log y+ ¢ log z
Then, we calculate the derivative of log f:

d log f= ad log x+ b d logy+c d log z

Af—f Represents relative uncertainty on the quantity « f » (il G )Y,

Z. HADJOU BAELAID 13
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Proposed exercises about chapter |

Exercise 1
Find the dimension of the following physical quantities:
Surface, Volume, Density, Frequency, Linear Velocity, Angular Velocity, Linear

Acceleration, Angular Acceleration, Force, Work, Energy, Power, and Pressure.

Exercise 2
The characteristic equation of a constant temperature fluid is as follows:

(p+%)(V—b)=c

Or p is the pressure and V is the volume.

Determine the dimensions of quantities a, b and c.

Exercise 3
Check the homogeneity of this formula:
p = pghs + hyF

Such as: P pression, p density, g an acceleration of gravity, h; and h; are heights and F a force.

Exercise 4

The trajectory y=f(x) of a projectile with an initial velocity(vy) from a point (O) located at

heigh (h) above the impact plane is given by the following formula

g
y=5>x"+h

0

Show that this formula is homogeneous.

Exercise 5

Avre the following formulas dimensionally valid?

G . . . 3 . .
1. F= == suchas: Fisaforce, G is a constant expressed in &, m is a mass, and r is a

length.
2. p = pgh; + h,F such as: P is a pressure, g is the acceleration due to gravity, hl and h2

are heights, and F is a force.

Z. HADJOU BAELAID 14
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3. 9= 25@ g chas: b and t have dimensions of length.
t cos(c)
Exercise 6

1. In a fluid, a ray ball (J=&! <) r animated by a velocity v, is subjected to a friction force
given by F=-6..n.r.v , where n is the viscosity of the fluid.
What is the dimension of n?

2. When the ball is dropped without initial speed at the moment t = 0, its speed is written to

t>0: v:a(l—exp(—é))

Where a and b are two quantities that depend on the characteristics of the fluid. What are the

dimensions of a and b?

Exercise 7

Experiments have shown that the speed v of sound in a gas is only dependent on the
volumetric mass density p and the coefficient of compressibility y. What is the law that
provides the speed v as a function of the gas's characteristics? It is noted that y has unit

equivalent to the inverse of pressure.

Exercise 8
The sound emitted by the wire of a guitar is characterized by its frequency f. This frequency
is a function of the force F of the wire tension, the length L and the density p of the wire.
Find the expression of frequency f assuming the form:
f=K F?L"p°

With K a dimensionless constant and the frequency dimension [f]=T".

Exercise 9
Let the simple pendulum formed of a ball (sphere) of radius R and mass m. The study of the
effect of the air on this pendulum shows that its period T depends on a constant k, the

coefficient of the air n, the radius of the ball R and its density p.

1- Find the expression of the period assuming the form:
T = Kn*RYp? with [n] = ML™T™!

2- Determine relative uncertainty on T based onAn, AR and Am .

Z. HADJOU BAELAID 15
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Exercise 10

The expression for a physical quantity G is:

_T?ga 2

472
Where T represents time, a is a length, and g is the acceleration due to gravity.
1. Determine the dimension of G and deduce its unit.

2. Calculate the absolute uncertainty AG in terms of AT and Aa.

Exercise 11
The refractive index n of a substance is given by the relation:

n = /N2 —sin?a
Where N is the prism index and a is an angle.

1. Calculate the absolute uncertainty An by considering that An = f(N, a).
2. Deduce the relative uncertainty An/n.

Exercise 12
The speed limit reached by a weighted parachute is a function of its weight P and its surface

S,isgivenby: v = KLS

1) Give the dimension of the constant k.

2) Calculate the speed limit of a parachute having the following characteristics:

3) The weight being known to the nearest 2 % and the surface to 3 %, calculate the
relative uncertainty Av/v on the velocity v, thus the absolute uncertainty Av and deduce the

condensed writing of this velocity.
We give: M=90 kg, S=80 m2, g=9,81 m/s2, and k=1,15 MKS.

Exercise 13
The height H of a liquid of mass M contained in a cylinder of radius R is given by the
relation:
_ (2.0.cosa)
" (Rgp)
Where a is the liquid-cylinder contact angle, p the density of the liquid and g the gravity

acceleration.
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1- Using the dimensional equations, find the dimension of o.
2- Determine relative uncertainty on ¢ based on absolute uncertainties AR, Ag, AM and
Aa.

Exercise 14

The resonance frequency f of an electric circuit is given by the formula:
1

2mVL.C

f=

L and C are known with absolute uncertainties AL and AC.

Determine as a function of L, C, AL and AC absolute and relative uncertainties on f with the

two differential methods.

Exercise 15

A) The sound emitted by a guitar wire is characterized by its frequency f. This frequency is a
function of the force F of the wire tension, the length L and the density p of the wire.

Or: f=K F*L" p® such K is constant dimensionless.
Determine the relationship of f.
B) The focal length f of a lens is determined from the formula:

D2%2—qa?

f=4D

Calculate the absolute uncertainty Af as a function of AD and Aa.
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Correction of exercises about chapter |

Exercise 1

e Surface:
We have: [I]=L, [t]=T and [m]=M.

[Physical quantities]= M* LYT*
S=Ixl= [S]=L.L=L’= [S]=L* (m?

e Volume:
V=IxIxl= [S]=L.LL=L’= [V]=L® (m®

e Density:

—

p=Tsopl =t =m=ML?= [p]=ML® (kg/m’)

—
—

e Frequency:
i 1

f=3=l=m=r=T"= [=T" (s'or Hertz)

(Note: Period [T] =T ; unitis « s »)

e Linear velocity:

- & _W_L_ — 71
v=—= [v] = H=r= LT ' = [v] =LT (m./s)
e Angulaire velocity :

—p 3 _v _el_1_ 7 _71
w—@—dt—R:>[a)]—[t]—T—T =  [0]=T" (Rd/s)

[angle] = 1i and its unit is the radian (rad).

e Lineair acceleration:

_w _ vl _ LT -2 _ T2 2
a_dtz[a]_[dt]— —=1LT = [a] = LT~* (m./s")

e Angulaire acceleration :

6 -1 — -
= [w] =G0 =T =T = [0]=T? (Rd/S)

ae
dat
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e Force:
F = mxa= [F]=[m]x[a]=M.L.T?= [F]=MLT? (kg.m.s” or Newton)

e Work:
W = Fxdxcosa=> [W]=[F]x[d] x[cosa]=MLT?.L. 1=ML?*T? (kg.m%s? or Joule)

e Energy:
Ec = (¥2).m. V= [E]=[1/2].[m].[V]* = ML?T (Joule)

Er = m.g.h=> [E]=[m]. [¢].[n]= M.LT2.L=ML?T2 (Joule)

e Power:
P =W/t = [P]=[W]/[t]=(ML*T?)/T=ML?T" (kg.m*s™ or Watt)

e Pressure:
P =F/S = [P] = [FI/[S]=(MLT?)/L2=ML™T? (kg.m™.s or Pascal).

Summary :
~ Physical Quantities ~ Symbol =~ Formulaused Dimension Unit (SI)
Surface S Ix] L m
Volume Y Ix1x] L® m°
Density p m/V ML™ Kg./m’
Frequency F UT T s™ or hertz
Linearvilocity Vv dx/dt LT m/s"
AngularVilocity Q de/dt T Rd./s'
LinearAcceleration Y dv/dt LT m./s*
AngularAcceleration o do/dt T Rd./s*
Force F m.a MLT* Newton
Work W F.d ML* T Joule
Energy E (2)mv* ML“T* Joule
Power P Wit MLT™ Watt
Pressure P F/S ML T Pascal
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Exercise 2
Wehave(P+%)x(V—b) =C

G=A+B or G=A-B then [G]=[A]=[B]
[b]=[V]=L°

(2] = P12 =a] = [PIXV = MLIT2 0= MLL5T?

[c]=[p+ VZ] [V — b]
On the other hand: [P + 25| = [p] = |5 et[V — b] = [V] = [b]
Et [C]=[P]X[V]=MLT2 . L3=ML?*T?
Exercise 3
Check the homogeneity of this formula: p = pgh,; + h,F
Such as: p a pressure, g an acceleration of gravity, h; and h; are heights and F a force.
[P] = ML™1T—2
[g] = LT~?
We have: < [hy] = [hy] =L
| [F]=MLT?
[p] = ML™3
This expression is homogeneous if:[p] = [pgh,] = [h,F]
[pghi] = ML73.L.LT~2 = ML™'T~2 = [P]

and [h,F] = ML2T~2 # ML 1T 2

So the equation is heterogeneous (not homogeneous).

Exercise 4
This expression is homogeneous if : [y] = [z‘%xz ] = [h]
0
We have :
_ _ 9 .2 LT 5 _
yl=1hl =L, [ngx ] H[vo] (LT 1)2L =L
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So: [y] = [sz ] = [h] is checked.

2
2vg

Hence the equation y =~ x? + his homogeneous.
0

Exercise 5
Gm . . m3
1. F = — =7such that: F is a force, G a constant expressed in (kg 52), mamassandra
length.

F =ma=[F] = [m][a] = MLT 2.

; - m3 _ L 1372
The unitof g is (kg sz) 0 [G] = =M"L°T
—1737-2
Then &t - lalml MO LT _ jap-2
T [r] L

In conclusion [F] # [ch] therefore the relationship F = GTm is not valid

2. p= pghy + hyF such as: P: a pressure, g: the acceleration of gravity, h; and h,: heights
and F: a force.

To demonstrate that the relation p = pgh, + h,F is valid it is necessary that:

[p] = [pghi]l = [h2F]

F - [F] MLT? J—
= — = — = =
P=57W® 12

—
[S——

[pghi1=[pllg]lh4]
]

And [p] = [[% = ML3,[g] = [a] = LT 2et [hy] = L
so [pghi1=[pllgllhs]= ML™3 LT"2L = ML™'T~?

[h,F] = [h,][F] = MLT %2 L = MIL*T 2
In conclusion [p] = [pgh,] # [h,F] therefore the relationship p = pgh, + h,F is not valid.

b sin(a)

, such as: b and t have a dimension of one length.
t cos(c)

3. 0=

b sin(a)]_[b sin(a)]
t cos(c) _[t cos(c)]

To demonstrate that [6] = [ is valid, it is necessary to demonstrate that:

[9] _ [b sin(a)]_[b sin(a)] .

t cos(c)]l [t cos(c)]
We have[f#] = 1 and [sin(a)]=[cos(c)]=1

[b sin(a)] = [b][sin(a)]=[b] =L
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[t cos(c)] = [t ][cos(c)]=[t] = L

[b sin(a)] _ L _ 1
[t cos(c)] L

is valid.

b sin(@))_[b sin(@) 3\ erified therefore the relation 6 = 252
t cos(c)] [t cos(c)] t cos(c)

In conclusion [6] = [
Exercise 6

We have: F = —6mnrv

1- [n]=?
F 6 F
= — - —_ —
Uy L 6mrv
{ [r] =
_[F] [F] = MLT?
[77] - [r][v] Wlth [U] — LT—I
k [-6m] =1
Where
_ ML
Il =777

2- Wehave:v =a (1 —exp (— %))

we’re looking for the dimension of [a] and [b]:
The argument of the exponential is therefore dimensionless:

so [v]=LT'=[a] = [a]=LT"

e (-3)| = 1= 5l [25] = 0] = 5] =

[e] _
$H=m—1
[b] =[t]=T
Exercise 7 :
We have : v=kp*y” so [v] = [k][p]*[x]”.
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( the speed v : [v] = LT™?
I the constante k: [k] =1
And 4 the density p: [p] = ML™3
Lx is homogeneous in contrast to a pressure: [y] = é = M~1LT*?

= [v] = LT 1 = ML3)*(M~1LT?)¥
= MOLT™' = M*L73* M~WLYT?
= MOLIT—l — Mx—yL—3x+yT2y
By identification:
x—y=0 1 k
{—3x+y= 1ﬁ{x_y_ 2= v=kp V22 = —
2y =-1 y=-1/2 VPX

Then:

k
vV=—
NI
Exercise 8:
f=K FL°p° ; This function is therefore homogeneous [f] = [k][F]*[L]°[p]¢

[F] =[m.a] = [m][a] = M. LT™?
[L] = Let[k] =1
[p] = 7] = ML3
[f1=T"

with:
\
s0: [f] = (MLT=2)*(L)P(ML3)¢ =T

— MOLOT—l — Ma+CLa+b—3CT—2a

a+c=0
By identification: fa+b —3c =0
—2a=-1
a=1/2
= b=—a+36=—§=—2

c=-a=-1/2

VF
2/p

F =K F2 L2 =k \F Lile; So f=k

Z. HADJOU BAELAID 23



Chapter I: Dimensional Analysis and Uncertainty Calculation

Exercise 9
1- The period of a pendulum is written :
T = Kn*RYp? such [n] = ML™1T1
Suppose the relationship is homogeneous so [T] = [k][n]*[R]*[p]*
[n] = ML7IT 1
] [R] = Let[k] =1
Wit _
|10 = [F] = 55 = ML=
\ [T]1=T

So [T] = (ML AT "V)*LY(ML™3)? =T
(AX.AY — AX+Y)
=T = MXL™*T~*LY M?L™%?

— MOLOTl — Mx+ZL—x+y—3Z T—%

x+z=0
by identification: {—x+y—3z=0
—x =1

x =-1
=\ y=x+3z=2
z=—-x=1

= T = Kn~1R?p!
2
So T =k2X
n

2- The relative uncertainty on T=f(An, AR, Am) ?

KpR? . m m 3m 3Km
=== with p=2="_= soT =
%4 5nR3 4mR3 ATIRU

T

3mK
= logT =lo bl log3K + log(m) — log(4m) — log(R) — log(u)
g g 4R g

=
T m R u
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AT |Am AR Au
=>—=’— +‘—— _|_|__
T m R U

m, R, and u are positive quantities, hence:

AT Am AR Ay

T m R U

Exercise 10
( [T]=T
) _T%a_ , { l[a] =L
1-We have G =-—-—a®, with: [g] = LT?
k [4m] =1
The dimension of G :
T?ga
(6] = |55 | = la?] = 12

2 2 27 —2

412 [471T2] 1
where G has a unit area (m?).

2- Calculation of the absolute uncertainty on G as a function of AT and Aa:

T?ga
G= 4772 -
4G (66) aT + (66) d
—3 = | — N
aT aa) ¢
dG (ZgaT)dT+ I 5a)d
—1 = —_—
412 412 a)aa
So the absolute uncertainty on G is:
AG = gar AT + gT2 2al A
~ [2m2 412 a8
Exercise 11
n = VN7 —sin’a:

1. Calculation of the absolute uncertainty on n.

The total differential of n is written:
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on on
dn = —dN + —

oN 9a ¢

The partial differentials of the function “n” with respect to the two variables N and o are:

on B 2N
ON  24/N2 — sina?
And
on B —2sina .cosa
da  2+/N2? — sina?
So
N —sina .cosa
dn=—dN +—da

VN? — sina? VN? — sina?
Then the absolute uncertainty on n is:

N |—sina . cosa|
An = ————AN +
VN?2 — sina? VN?2 — sina?

Let for a < gthe relative uncertainty on n is:

An _ NAN + sina.cosa.Aa
n (IN?2 — sina?])

Exercise 12

1- The dimension of k:

[p] = M.L.T?
[S] = L2 _r _ _[p]
We haveJ k] = and k = vis k] = [v]2.[s]

2- NA:v= /i = 3.097m/s
K.S
3- A?P = 2% = 0.02 andAS—S = 3% = 0.03

The logarithmic method is used to calculate the relative uncertainty on v :

P ) 1 P oo p—Liogk — Lioes
= _— = —_— - JRE— —_—
V= ks~ 08V T I8 |k g™ 209 Tplogk T 508
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1 1 1
= dlogv = —dlogP ——dlogk——dlogS

dv. 1ldp 1dS |Ap| | AS| Av 1Ap 1AS
— = — => —— | —=c—+-—
v 2p 28§ v v 2 p 28
AN: = =0.025
Absolute uncertainty on v is given by:
Av 1Ap 1AS
Av=v.—=v*<—— ——)—0077m/s
v 2p 28§

Hence the condensed writing of v is given by : v=(3.097£0.077)m/s

Exercise 13
1- H = (2.0.cosa) g = HRpg
(R.g.p) 2cosa
[H][R][p][g]
Hence [o] 21[cos]
( [HI=L
[R]=L

= [6] = L.L.M.L™3.LT~2 = MT2
So [0] = MT 2

2- Let’s calculate relative uncertainty ono, Ac/c = f (Am, AR, Ag, Aa) :

M
We have, 0 = —— or p = thedensity = — = >
2cos H7rR
M
SO o = HRHTERzg = Mg
) 2cosa 2mRcosa

a- The Logarithmic method :

logo = log( > = logMg — log(2nRcosa)

2nRcosa
= logo = logM + logg — log2m — logR — logcosa

= dlogo = dlogM + dlogg — dlog2n — dlogR — dlogcosa
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fo _AM 29 2R \tgaln
c M g R galfo

b- The total differential method:

d _6 dM+a dR+a d +6 d
TV 9R 9g "9 T 9
(o0 _ M
6g_21chosa
90 _ g
H oM T2 Rcosa
With oo _ ’T_Mg
R 2mR2cosa
a_a_ﬂ sina
\6(1 " 2nR " cos?a
Hence
g —Mg M Mg sina
de =——dM +———dR + —d —_—
? 2mRcosa +27Tchosa +27chosa g+2nR cos?a
d ( Mg )[(1)dM+ 1 dR+<1>d +(Sin“)d]
—1 =|— f— JE— —
d 2nRcosa/ I\M (R) g g cosa *
=0
do dM —dR dg sina
= —=—+—+—+ a
o M R g cosa
So %" + R, 29 +|tga|Aa
Exercise 14
We have f = :

2nvVL.C

We will calculate the absolute uncertainty on f.

1%t Method: The total differential

or = (5g) -+ (3c) e
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(Z{) 21n 2L;5_ 211T'(2L_x/1L_C)
(af) 1 -1
ac 21" 2CVIC

: 1 e
So: df = 2’ (ZL\/_) dL+2n ZC\/_dC

With

df = (anl/_) [(_1) dL+—dc]

:>Ujf_f: [(;L>dL +_dcl

|AL+ |AC

|2L |2C

= 2L = L AL+ 2 AC is the relative uncertainty on f.
f 2L 2C

pos o7 = (). +

1 1 1 . ]
Af = (zm/ﬁ) -(G7AL +5-AC) is the absolute uncertainty on f.

2" Method: The logarithmic differential

We have f =

1 11 1
- = loga—zlogL —ElogC

1 1 1
= dlogf = dlog%—idlogL —EdlogC

df 1dL 1dC Af | 1| AL | 1| AC
S — = ——— — — - — + —_—] —
f 2L 2C f 2l'L 21 C

Hence the relative uncertainty on f is:

Af 1AL 1AC

f “2L '2C
And absolute uncertainty about f:
Af = (1 AL 1AC>
r=ret*z7¢
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Exercise 15
A) The expression of the frequency f:

[f]=T7"

We consider that the formula of "f" is homogeneous.
[f] = [KI[FI*[LI°[p]® = T~ = (MLT~)*(L)*(ML™)°
= T 1= Matc La+b—3c T-2a

By identification
1

atc=0 a=gz L L
a+b—3c=0 = {b=-2 =f=KFL%p 2
—1=-2a c=-1

2

or

H
I
S-S
| ™

B) Let us calculate the absolute uncertainty Af as a function of AD and Aa.
DZ _ a2
4D

S df = (%) dp + (%) da

—4(D* = @2 _
= df = <2D(4D) M7 —a )>dT +(55) da

f=

16D? 4D

D? — a2 —2a
= df = —4-D2 aT + (E) da

So the absolute uncertainty on f is:

—a? —2a
Af: —4D2 AT + |E| Aa
D? — q? a
=>Af= W AT+5ACL
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Chapter II: Vector Analysis

Glossary
In English In French In Arabic
Vector Vecteur glad
Vector quantity Grandeurs vectorielles Sld e
Displacement vectors Vecteur de déplacement a gall Jail) el
Position vector Vecteur position (a0 glads
Velocity vector Le vecteurvitesse Ao pull g lad
Acceleration vector Le vecteuraccélération g obudll glads
Unit vector Vecteur unité Bas sl g lads
Magnitude Module, I’intensité ou la glad sk
norme du vecteur
Direction La direction, le sens & i ola)
Addition Addition &
Subtraction Soustraction z okl
Scalar multiplication Multiplication scalaire PRANPAREN
Coordinate systems Systémes de coordonnées Gilflaal alas
Force vectors Le vecteur force 5sdll ¢ lad
Opposite direction La direction opposée Sl ol
Zero vector Vecteurnul paria glad
Equal vectors Vecteurségaux 4 sluie 4
Vector parallel Vecteur parallel Solseglad
Vector perpendicular Vecteurperpendiculaire Lalre g lad
Free vector Vecteurslibres Ba dadl
Sliding vector Vecteursglissants 4l yie dad
Linked vectors Vecteursliés laie 4l
Opposite vector Vecteursopposes OluSlaia glelad
Algebraic value Valeur algébrique L dad
Equal magnitudes Méme amplitude (module) aly shall (s
Graphic representations Représentationgraphique sladll & Jial
The sum of two vectors la somme de deux vecteurs el g sana
The axis Un axe D5
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The xy-plane Un plan (Oxy) (S Siasa alae

The scalar product Produit scalaire PRANPARIN

The vector product Produit vectoriel ol glaa

The mixed product Produit mixte BAEDIAREN

The parallelepiped Un parallélépipéde S lalatiaall (5 3) sl
The parallelogramme Un parallélogramme gAY 5 ) sl
The norme La norme gl Jsh
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1. Introduction

Vectors are fundamental mathematical entities used to represent quantities that have both
magnitude and direction. Unlike scalars, which only have magnitude (e.g., distance, time,
temperature), vectors provide a more comprehensive description of physical quantities by
including information about their orientation or direction.

In other words, in physics, two types of quantities are used: scalar quantities and vector

quantities:

e Scalar quantity <kl a3l : defined by a number (a scalar) and an appropriate unit
such as: volume, mass, temperature, time ...
e Vector quantity el&ll laidl: this is a quantity defined by a scalar, a unit and a

direction such as : Displacement vector, velocity #, weight 3, electric field E ...

2. Definition

Vectors are physical or mathematical quantities carrying two properties: magnitude and
direction. It is an oriented segment. Symbolically, a vector is usually represented by an arrow.

/B'/(A)

e Origin (Ix)): presents the point of application "A".

e Support ( ) the straight line that carries the vector (A).

e Direction (¢3¥): Vectors have a specific direction or orientation in space, often
indicated by angles or coordinate systems (from A to B).

e Modulus (4Lskl): The size or length of a vector represents its magnitude. This is
typically represented by a positive numerical value gives the algebraic value of the

vector AB noted.

3. Vector types

e Free vector: the origin is not fixed.
e Sliding vector: the support is fixed, but the origin is not.

e Linked vectors: the origin is fixed.
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e Equal vectors: if they have the same direction, the same support or parallel supports

and the same modulus.
D

S s

e Opposite vector: if they have the same support or parallel supports, the same modulus

but the direction is opposite.

B C
C
/' B D
A / A
D

4. Unit Vector 3asgll glad

A vector is said to be unitary if its modulus is equal to 1.

<!

We write:|u|=1

&l

and V = |V[u=V.4

5. Algebraic Measurement
Consider an axis (A) bearing points O and A. O is the origin, and the abscissa of point A is the

algebraic measure of the vector 04 .
0 (8)

6. Components of a Vector Flad <k i

The coordinates of a vector in space, represented in an orthonormal base frameR(O, 7,7, E)
are : Vy, Vy et V;such that:

V=Vi+Vj+Vk

Where a position vector ¥V = OM is a vector used to determine the position of a point M in
space, relative to a fixed reference point O which, typically, is chosen to be the origin of our
coordinate system.
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A

Z

Y
The modulus of the vector V is : V = \[VZ + ;2 + V2
In cartesian coordinates, a vector is written as:
V=xi+yj+zk =2V =|V|=/x2+y%+22
7. Elementary Operations on Vectors
7.1. Vector addition
The sum of two vectors A andF is W, obtained using the parallelogram:
A g------- w
A+B=w >
B
Let two vectors A and B: A =xT+yj+zk and B = x'T+y'J + z'k
x x'
A JZ’ and B y, so A+B=w=x+x)+G+Y)]+(z+2)k
A
Note :
1. Forseveral vectors: A+B+C+D =R /E
D
A
c

ool
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2. Properties :

A+B=B+4, (A+B)+C=4A+(B+C), A-B=A+(-B)
3. Charles relationship:

Or the three points: A, B and C, we have: 4B + BC = AC

7.2. Subtracting two vectors

This is an anticommutative operation such that: W = 4 — B = 4 + (=B)

Let two vectors: Aand B A=xT+yj+zk and B=xT+y]+7k

N

A (g’) andB (;ZC’E) SOA—B=w=(x—-x)+@—-y)j+ (- 2k

ol

7.3. Product of a vector and a scalar
The product of a vector ¥ by a scalar a is the vectora v, this vector has the same support as v.

The two vectors (v and av) have the same direction if a>0 and they are opposite supports if
a<0.

x
av = a(y> = axi + ay] + azk
z

Notes:[a?]| = |a||¥],a(dl + V) = au + av and (a + B)U = au + fu

8. Products

8.1. Scalar product saludl slaad)

Given two vectors 4 and B making an angle 0 between them, the scalar product 4. B = m
with m is a scalar such that:

A.B =m = |4|.|B| cos(4,B)
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With :(4,B) = 0

Note : The properties of the scalar product are:

-

The scalar product is commutative AB=B.A

The scalar product isn’t associative 7{ (75. Vg),doesn't exist, because the result would
be a vector.

A.B = 0 whenboth vectorsareperpondicular(ff 1 E)

xl

|fZ@ andﬁ(y,’>so AB=x.x+yy +z2

8.2. Vector product (Sddl glaal)
The vector product of two vectors Aand B is a vectorC and is written as:
C = AAB

S /X _ Xt
To calculate the vector product of two vectorsA (32’ and B (gl’)we have :

B .
e A =il il ARyl

ANB =T(yz' — zy') — j(xz' — zx") + k(xy' — yx')= C

So the modulus of the vector product can be given by another method such as:

w = \/(yz’ —2zy')2 + (xz' —zx")%2 + (xy' — yx')?
Characteristics of vectorc :

The support: Cis perpondicular to the plane formed by the two vectors Aand B.

The direction: The three vectors 4, B and C form a direct trihedron. The direction is given

by the rule of the three fingers of the right hand.
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riR l

direct

The modulus :
€| = |A]. [B|sin(&, B)

The modulus of the vector product corresponds to the area (the surface 4slwq) of the
parallelogram (£ >l=Y/ s i/ +ie) formed by the two vectors AandB.

Example:

In an orthonormal Cartesian coordinate base (7,7, k) :

IANj=k,jAk =Tetk AT =].Ontheotherhand TAk = —

~

Notes : The properties of the vector product are:

e The vector product is not commutative (Anticommutative).

o Not associative :V; A (V;AV3) # (V AV5)AV; .

e Distributive with respect to vector sum:AA(B; + B,) = AAB; + AAB,
But: ViA(Vy+V3)# (Vi AV;) + (V] AV;)

-

o AAB =—BA A because sin(4, B) = —sin(B, 4)

ol
jos])

v =

A
AAB = C BA = —C

(¥

e AMB = 0 when the two vectors are parallel (A) [ §)

Z. HADJOU BAELAID 39



Chapter II: Vector Analysis

8.3. Mixed product
The mixed product of three vectors A4, BandC is a scalar quantity m such that:
m= (AYAE) ¢

Where m represents the volume of the parallelepiped (<3uhivwall 5 ) 5 aaa) constructed by the

three vectors :
¢
4& B

A
Note: The mixed productis commutative, (AAB).C = A.(BAC) = (CAA).B

9. Derivative of a vector

Let the vector 4 = xT + yj + zk which varies with time:

Its first derivative in relation to time is:

— dA dx9+ dynrdzE
“ar artTad Tar
The second derivative is:

—  d?A d*x, d’y, d%z-
=dt2=dtzl+dt2]+dt2k

Note :

e Derivative of a scalar product(4.B) = 4".B + A.B
e IfBisconstant (4.B) = A"

. (A)Z), = 0 because (/TZ), =24.4=0

e The derivative vector is perpendicular to the vector.

e A vector is written as A = |A|@ = A4, if @ is a variable vector, then A’ = A" + A

Example: The position vector on Cartesian Coordinates is written as:
A=xi+yj+zk

The velocity vector in Cartesian Coordinatesis written as:
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7 doM' dx%_l_ dy%_l_ dz -
T Tar  dr Tad T
The acceleration vector in Cartesian Coordinatesis written as:

d20M d*x, d%*y, d%z-
dt? - dt? L+ dtzj + dtzk

a=

Z. HADJOU BAELAID
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Proposed exercises about chapter 11

Exercise 1
[ fandEbeing the unit vectors of the rectangular axes Oxyz, we consider the vectors:

m=1+3] — 2k, 7 =41 —2] + 2k andr; =37 —] + 2k
1. Show these 3 vectors graphically.
2. Calculate their modulus
3. Calculate products 77 - 7, andr;AT,.

Exercise 2

1. Let the points be M; (+1,+1,+1), M, (+2,+2,+1) and M3 (+2,+1,0); calculate the angle
M; M, M;
2. Determine the equation of the plane (p) passing through the point M2 and perpendicular to

the vector A = 37— 2/ + k
Exercise 3

T, 7etE being the unit vectors in the orthonormal frame (Oxyz). Let two vectors A and B be
defined by:

A= —747—2k and B =27 +4) — 5k

1- Calculate (4.B) and deduce the angle 6= (4,5)

2- give (AAB), deduce the area of the parallelogram formed by the two vectors
Exercise 4
We give the three vectorsV; (1, 1, 0), V,(0, 1, 0) andV; (0, 0, 2).

1. Calculate norms ||[V; ||, ||Vz|| and||V5||, deduce the unit vectors w7, 75 and v respectively

fromV{, Vz’and de 73:
2. Calculate cos (v7, v;), knowing that the corresponding angle is between 0 and 7.

3. Calculate the mixed product v;. (v, A v3). What does this product represent?
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Exercise 5

Consider in space, referred to the direct orthonormal reference frame (0,1, 7, ﬁ) the points
A(2,0,0), B(2,-2,0)and C(2, 3, -1).

1. Calculate the vector product OAAOB

2. Calculate the area of triangle OAB.

3. Calculate the mixed product (ﬁ, 0B, D_C)), Deduce the volume of the parallelepiped
built on the vectors.

4. Between these products, what are the mixed products that can be calculated

(0AAOB). OC ; OA.(0BAOC); (0A.0B) A OC ; OAA(OB .0C);
Exercise 6
A) Let /T(l, 2, 1), §(1, 0, c) be two vectors where ¢ ER

1. Calculate the scalar product A. B and the modulus of the two vectors as a function of c.

2. Determine the values of ¢ for which the angle (/T ,B ) is equal to w/3.

B) Consider the points A (3,5,4),B (3,1, 3),C (8,5,5)and D (1, 2, 3) in space.
Calculate the mixed product (ﬁ, DB, FC), deduce the volume of the parallelepiped formed

by the three vectors.
Exercise 7

Let be three vectors 4, B and C,suchas; A = —2i+j+3k , B=2i—j+k, C=xi+
17 + zk

1- Calculate x and z so that the vector C or :

a- Parallel toA b- Parallel toB

2-1f, C=xi+yj+zk

Calculate x, y and z so that the vector Cor: Perpendicular to A and B at the same time.
Exercise 8
Let be avector U = (¢ + 3))/(\t? + 9)

1. Show that U is a unit vector?
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2. Calculate its derivative with respect to time?
Exercise 9
Let be the points A (+1,+1,+1), B (+2,+2,+1) and C (+2,+1,0)

1. Calculate the scalar product AB.AC and the vector product AB AAC.

2. What do these two products represent? Deduce the angle between the vectors

AB et AC.
Exercise 10

q, fandf being the unit vectors of an orthonormal reference frame (Oxyz), consider the

vectors. H=21-2+3k , B =l+]+k
1- Calculate the vector product 77 A 7.

2- Deduce the angle 6 formed by the two vectors 77 and 7.
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Correction of exercises about chapter |1

Exercise 1

We are 7;=i +3] — zk’( L )r—z’ —47 27 + zié(_“z) and 7; =37 — + zk’(_i)

-2 2 2
1- Vector representation 77,7, and 75 :

A

Z

v

2- The magnitudes of :

J(;) = |/T| = ||/T|| =./x2+y2 4 z?
z

7= [x2+y;+z2=V1+9+4=V14

75l = |x5+yZ+2z5=V16+4+4 =124

77l = [x5+yf+22=V9+1+4=+14

3- N =x1%+VV,+2,2,=4—6—4=—6
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-

mi Az =l 5 o= et A+l 3R
4 -2 2

=7HAT =32—(=2.(=2)T— (1.2 — ((=2).4)] + (1.(=2) — (34))
=7 AT =20 — 10] — 14k
Exercise 2

1- Let My(1,1,1), M(2,2,1) et M3(2,1,0).

Calculate the angle M; M, M which is the angle between the two vectors M,M;; M,Mj:

1-2
We have M,M; = <1 - 2) = (Z}) =—1—7
1-1 0

2-2 .
0—-1

M,M,.M,M; = ((=1).0) + (=1.(=1)) + (0.(-1)) = 1
=

MyMy. MyM; = |MyM,|. |[MyMj). cos = V2.v/2.cos8 = 2cos8
VA

= 2c0s0 =1 = cosO = :>9=i‘§

+ 2km

N =

2- The equation of the plane passing through M,(2,2,1) and perppondicular to the vector
A=31-27+k.
Let X be a point with coordinates (x,y,z) which belongs to the plane (p).

X — 2
z—1

S . . M
We know that A perpendicular to this plane therefore: g I—
AMX=(x-23-2(y-2)+(z-1)1=0 I

=3x—2y+z—-3=0(%
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(*)s the equation of the plane passing through M(2,2,1) and perpondicular to the vector
A=31-27+k
Exercise 3

2
A- Let the two vectors A ( ) and B ( 4 )

1- The scalar product

AB=-2+4+10=12

_)

According to the second writing of the scalar product 4.B = ||4||||B]| cos(4, B)

—0 730

4]l = V5, ]| = Va5 5o cos(@B)=ja7 =

So the angle 6 (Z,E) =43.08°

2- Vector product

= i) _]_) z N N -

ANB=|_1 1 —2|=(-5-(-8)i—(5-(-4)j+(-4—-2)k
2 4 -5

=37— 9/ — 6k

The vector product AANB gives a vector perpendicular to the plane formed by the two vectors
Aand B and the module of this product (||AAB||) presents the surface of the parallelogram

formed by the two vectors A and B.

|AAB|| = V9 + 81 + 36 = V126
The area of the parallelogram is v126.
Exercise 4
We give the three vectors 7{(1, 1,0), 7{(0, 1,0) and 73) 0,0, 2).

1. Calculates the normes||V3 ||, |Vz]| and||V5|| :

Let's calculate the norms of the various vectors and the unit vectors of their respective

directions.
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N T 5 A V2 V2
= 2 2 2 = _):—_1) s D(— —
”Vl” 1 + 1 + O 2 = vl ||V1|| ) vl( 2 ) 2 '0)

— v,
||V2||=\/02+12+02:1=>v_2’:ﬁ:j; 7,(0,1,0)
2

= _ [z iz Vs
3

2. Let's calculate cos (v, V) as follows :

— — \/E — — — — — —
V1.V = > and v;.v; = ||[v1]|. [|v;]l. cos(vy, v7)
V2
= cos(v;,77) = -
3. Wehavea:
2
vl.v2=7
T 7k .
v, A3 =0 1 02(1)2?+09+0k=?
0 O

= T, AT; = 1(1,0,0)

V. (0 AV3)=1%x14+1x0+0x0=1

e The first term represents the scalar product between the vectors v; and v, is equal to
the product of the projection modulus of v;on v, multiplied by the magnitude of v,.

e The second term is the vector product between v, and v5.

e The last term is the mixed product between (v;, v,, v3) and is none other than the

volume of the parallelepiped built on the basis of the three vectors.

Exercise 5

A(2,0,0), B(2,~2,0)and C(2, 3, ~1).
1. The vector product OAAOE :

0A|0);0B| -2 |s00ANOB = |2 ¢ ol =—4k
0 0 0
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The area of the triangle (OAB) is half the areaAof the parallelogram formed by the two

vectorsO4 and OB. /\ /
(0]
)= |OAAOB| >

S(OAB =2=2

2. The mixed product (04, OB, 0C), and the volume of the parallelepiped built on the

(0AGE). ¢ = (_84) | (_%) _ 4

So the volume of the parallelepiped built on the vectors equal 4.

vectors.

The products that can be calculated are
(0ANOB).0C = 04.(0BAOC);

On the other hand, these two products are false because the vector product can only be
between two vectors

(04.0B)AOC; 0AA(OB.OC);
Exercise 6

A)Let /T(l, 2, 1), §(1, 0, c) be two vectors where ¢ ER
1. The scalar product A. B and the modulus of the two vectors as a function of c.
AB=1+0+c=c+1
|4l = VT 2+ 2 = VB

|B]| = V12 + 02 + c2 = /1 + ¢2

2. The values of ¢ for which the angle (/T , §) is equal to m/3.

According to the second writing of the scalar product 4.B = ||4||||B]| cos(4, B)

(ff,ﬁ) =mn/3= cos(/f, §):l/2

_ AB ct1 1
cos(4.B)=[1 1] = vevm = 2
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Then

c=2++3
B) Consider the points A (3,5,4),B (3,1, 3),C (8,5,5) and D (1, 2, 3) in space.

Calculate the mixed product (DA, DB, DC),

pa=(33) = (1) pA=(1) = (3) o=(:4) = 3
4-3 1 3-3 0 5-3 2

(DAnDE) . DC=(3 ). (3)=-3

-8 2

The volume of the parallelepiped formed by the three vectors is 3 m® (We take the absolute

value).

Exercise 7
Let there be three vectors 4, B and € such that
A=-21+j+3k, B=2i—j+k, C=xi+1j+zk

1- Calculate x,y and z so that the vector Cis:

a- C Paralleltod ifAAC =0

oLt T R
ANC=|—2 1 3]/=0
x 1 =z
= (z-3){ — (=22 — 3x)] + (=2 — x)k = 0+0] + Ok
z—3=0
=142z+4+3x=0
—2—-x=0
z=3
=142z+4+3x=0
x=-=2

= C =—-20+]+3k
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b- C ParalleltoB if B AC =0

- - i) .]_) E -
BAC=]2 -1 1|=0
X 1 =z
= (—z—1)i— (2z — x)] + (2 + x)k = 07+0] + 0k
—z—1=0
=432z—x=0
24+4x=0

=C =-21+j—1k
2-1f, C =xl+y]+ zk

¢ Perpendicular to A andB atthe same timeif C'= AAB
I R A
AANB=1-2 1 3
2 -1 1

= (1+3)—(-2-6)]+ (2-2k

= =41+8f
Exercise 8
Let be a vector U = (7 + 3))/(Vt2 + 9)

1- U is a unit vector ?

1
(t2+9)

Check that|U| = 1or|U| = J (t2 +9)=1

So U is an unit vector.

2- The derivative of U :

RTINS B TR
it~ dt\(Vez19)) " dt\(Vez +9))

:>dﬂ t2—t2+9 é+< -3t >e
at \@z+9°2) "\ +9372))

:>d17_< 9 >9+< -3t )9
at ~ \@ez+9)2)" T \@z + 9)2r2)/
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Exercise 9
A. let be the points A (+1,+1,+1), B (+2,+2,+1) and C (+2,+1,0)

The Scalar product AB. BC

_(2-1 1 . (2-2 0
AB({2—-1]=(1]and BC|1-2]=1| -1
1-1 0 0-1 ~1

AB.BC = 1X0 + 1X(—=1) + 0X(—1) = —1 = |4B|.|BC|cos6

The vector product AB A AC with AC (f:i) = < ! )

0-1 -1
ABAAC=|1 1 ol|=-1-(-Dj—-k=—-T+]—-k
1 0 -1
The angle between AB. BC will; cosd = =25 = =1 50 ©=-n/6
|AB|.|BC| 2
Exercise 10
We have: 7i=27-2]+3k and 7 =i+j+k
1- Calculation of vector product 77 A 75.
A= =51 + J+ 4k
2- The modulus of vector product 77 A 7; is:
7 A7z = |7l |71l. sind
= sin =222 — g9
[7(].171]
= 0~64°C
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Chapter III: Kinematics of material point

Glossary
In English In French In Arabic
Kinematics La cinématique s all
Material point Un point matériel dgale Aty
Reference system Un systeme référentiel aa pldal
Velocity (speed) La vitesse de
Acceleration L’accélération g ol
Motion characteristics Caractéristiques d’un A all pailad
mouvement
Position vector Vecteur position o sall gl
Time equation/ Hourly Equation horaire A ) Aol
equation
Trajectory Trajectoire Sl
Trajectory equation Equation de la trajetoire bsall Aalas
Velocity vector Vecteur vitesse de pull glad
Acceleration vector Vecteur accelération g bl gl
Coordinate systems Systeme de coordonnée alilaay) ol

Cartesian coordinates

Coordonnées cartésiennes

A 56, EaaY)

Polar coordinates

Coordonnées polaire

k) sy

Cylindrical coordinates

Coordonnées cylindriques

il sk iy

Spherical coordinates Coordonnées sphériques a9 SN cliilasy)
Intrinsic coordinates Coordonnees intrinseques 4m sl ilflaay)
Rectilinear movement Movement réctiligne Lagiione 4S
Uniform rectilinear movement | Movement réctiligne uniforme | dekiie daive 48 )a

MRU

Uniformly varied rectilinear

Movement réctiligne

e%\% B .’. - - ..".. as‘);

movement uniformement varié¢ MRUV
Circular movement Movement circulaire MC EERIEPINGEN
Uniform circular movement Movement circulaire uniforme Aalaiie 4,10 A8 o

MCU

Uniformly varied circular

movement

Movement circulaire

uniformement varié MCUV

(‘ALLJ.ILJE‘)‘.}MAL):I\J‘\SP
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Sinusoidal or harmonic
movement

Mouvement sinusoidal ou
harmonique

4@ 55 ol da 4S a

A frame Un referential e ) plae
The equation of motion Equation de mouvement A8 jall Aalas

A mobile Un mobile e
Average velocity La vitesse moyenne dau il dc yull
Instantaneous velocity La vitesse instantanée Lballl de )
Average acceleration L’accélération moyenne Lo siall gl
Instantaneous acceleration L’accélération instantanée aalll & Ll

The orthonormal coordinate
system

Un systéme de coordonnees
orthogonal

Lliall Gldlaay) aUas

The Frenet frame Le repére de Frenet / triedre de | Ju 4 alas
Frenet.

The moving point Un point en movement A8 a Al 4 dale At

The normal acceleration L’accélération normal (bl & Ll

tangential acceleration L’accélération tangentielle s=laall g Lol

Motion Le Mouvement A< al)

Weight Le poids O3

Linear velocity La vitesse linéaire Aoladl) de L)

Angular velocity La vitesse angulaire A 50 e pudl

Linear Acceleration L’accélération linéaire bl g bl

Angular Acceleration L’accélération angulaire @3 g bl

Acceleration of gravity Accélération de pesanteur dpalall ¢ s

Height La hauteur gl Y

The period of a pendulum La période d’une pendule simple | b (sl 53 550

The sound Le son & gaall

Radius Le rayon ki Caial

The abscissa L’abscisse dalal)

Radius of curvature Le rayon de courbure niall jluall Hlad Caal

The right triangle Un triangle droit 8 Calia

Amplitude Amplitude ol

Frequency Fréquence sl

Average speed La vitesse moyenne o giall de )

Instantaneous speed La vitesse instantanée dpzaalll de
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1. Introduction

The theory of General Relativity invented by A. Einstein in 1915 is a relativistic theory of
gravitation. This theory challenges the idea of an inert Euclidean space, independent of its
material content. Kinematics studies the movement of a material point independently of the
causes that give rise to it. It is based on a Euclidean description of space and absolute time.
The material point is any material body whose dimensions are theoretically zero and
practically negligible in relation to the distance it travels. The state of movement or rest of a
body is two essentially relative notions: for example, a mountain is at rest in relation to the
earth, but in movement in relation to an observer looking at the earth from afar, for whom the
globe (with all that it contains) is in perpetual movement. In this course, we illustrate the

notions of velocity and acceleration by restricting ourselves to movements in the plane.

2. Reference Systemga

The concept of motion is relative. A body can be in motion with respect to one object and at
rest with respect to another (relative motion), hence the necessity of choosing a reference
frame. A reference frame is a system of coordinate axes linked to an observer.

This study of motion is carried out in two forms:

- Vectorial: using vectors: position OM, velocity ¥, and acceleration d.

- Algebraic: by defining the equation of motion along a given trajectory.

3. Characteristics of a movement

3.1. Vector position and time equations il 4xia 3l ddslaall g 2 gall £lad

We define the position of a material point M in a reference frame by the position vector OM,
where O is a fixed point and serves as the origin of the reference frame. The components of
point M or the vector OM are given in the chosen coordinate system's basis (Cartesian
coordinates, polar coordinates, etc.).

The point M moves through time, and this movement is described by an equation known as

the "time equation™ (4« 4ales), translated as the "time equation.”

3.2. Trajectory _iuall
The trajectory is the geometric path of successive positions occupied by the material point

over time with respect to the considered reference system.
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zZ*
N, M
. 1
fi \ i
1
1
'®) o } - >
S b 1 i I b
— H“\x ‘j | r J }
- - 1 ,
I ~ 1
~ |
" I _\_\_JI"/

Example:
The position of a material point M identified by its coordinates (x, y, z) at time t in a

coordinate system R(O,7, 7,k) with a position vector:

— t2
OM = (t — 1)?+?]_)

— t?
0M=(t—1)?+?j = t?

So t=x+1
The trajectory equation of the material point is
_(x+1)?
2
3.3. Velocity vector 4s jull gld
Consider a mobile that is located at position M(t) at time t, and it evolves at the point

M’(t+At) at instant(t+At).

-

U = lim '_t:}MMJ

Mt—e)

'_U\’l[f'-.l’

trajectoire
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The average velocity 4w siall 4= udl between the two instants t and t+At is called:
MM MM
Vmoy T A — ¢ At
If the time interval At is very small (At—0), we then refer to it as instantaneous

velocity 4uaalll dc ull:

!

5= lim " = i MM
v = llm V. = lim —-
At—0 oY At—0 At

MM' = MO + OM' = OM' — OM = AOM

So:

3.4. Acceleration vector g jbuil) glad
When velocity varies over time v=f(t), point M is subjected to an acceleration.

M

M AT
@y = lim =Y

At—0 At , .
trajectoire

e The average accelerationbw siel/ & _Ludl is written:
U+ A —v()  AV(@)

a = =
moy (t+At) —t At
® \When the time is very small At —» 0 instantaneous acceleration sl g ludl s
written by :
. AOM
a= A%—>0 At
. dv(t) d?’OM
=>d= =
dt dt?
58
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4. Expression of velocity and acceleration in different coordinate systems

To solve a problem in physics, we must locate the position of the moving point M in space
OM (t).

The position must be located from a frame of reference (reference), we are required to choose
the appropriate reference to use it according to the problem we want to solve

Generally, we use Cartesian, Polar, Cylindrical or Spherical coordinates

4.1 Cartesian coordinates

Let the frame be R(O,x,y,z) with the unit vectors 7, and k. With X,y and z are the coordinates

of point M which gives its position in space. VAl

They are also the vector componentsW.

X: abscissa; y: ordinate and z: height

m is the projection of point M in the plane (Oxy)

e Vecteur position
OM = xT+ yj + zk

The unit vectors Z,7 et k constitute a basis linked to the axes (Ox), (Oy) and (Oz)

A
e Elementary displacement
. i VAV RN
The elementary displacement dl: S dz| av
Next (Ox) the displacement is written dx M dy dx
Next (Oy) the displacement is written dy T
Next (Oz) the displacement is written dz k4
O i : ™y
X/ __? ________________ o
X m

By fixing y and z, M moves along 7, the elementary displacement is then written dl, = dxt.
By fixing x and z, M moves along , the elementary movement is then written dT£ = dyj.

By fixing x and y, M moves along k, the elementary displacement is then written d—l; = dzk.
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The total displacement of point M is:
dl = dl, +dl, + dl; = dxi + dy] + dzk
Or mathematically :

OM = xi+ y] + zk = dOM = dxi + dyj + dzk
The elementary volume dV=dl;.dl,.dl;=dx.dy.dz

e Velocity vector

( dx
doM d d d T
R oM x, dy, Z - dy
= — = e —k - -
VEw Tttt Tt T\ T
_dZ
\Vz = ¢

The velocity module is written: |¥| = \/vZ + v2 + v2

Note: The magnitude of the velocity, equal to |v|, is called the speed. In S.I. units, v is

expressed in (m/s) or (m.s™%).

e Acceleration vector:

dvy _ d’x

X" ar T arz

a:g_dzm a:dvy:dz_y
dt dte? y dt dt?

la, = &=Lz

z dt dt?

The acceleration module is written:

ld| = /a,%+a32,+a§

The unit of acceleration in S.1 units is (m/s%) or (m.s ).
4.2. Polar coordinates dxadll cidlaay)

When the motion is in a plane, it's also possible to locate the position of point M using its
polar coordinates (p, 0).

p: polar radius p =|OM| (0< p <R)
0: polar angle 6=(ox, OM) (0< 0 < 2r)
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Chapter III: Kinematics of material point

Let's consider point M moving in space, identified by its polar coordinates (p, 0) in the

orthonormal coordinate system (OXY) with unit vectors u,, ug.

A
Y y X
M
) .
p 7
i1 i
O Xm X

e Position Vector

—

The position vector of a material point M in polar coordinates is written: 7 = oM = pU,

The unit vectors l7r is following OM and 179 is perpendicular to U} (ﬁr 1 Ug).

Transit relations between cartesian coordinates and polar coordinates

We project the point M into the plane (Oxy)

{xM = |0M|cos6 = pcos6 Y
Yu = |0_M|sin0 = psin6

OM = xyT + yy] = OM/cart = pcos6i + psin®j

@]
Xy

OM /pol = pU, and OM/cart = p(cosbi + sin)) XM
By identification:  u,; = cosO1 + sinfj
Rule: Note: The derivative of a unit vector with respect to an angle is a unit vector

perpendicular to the angle in the positive direction.
= gal) alei\i\gé‘»i"}” KT S s Baa g plad A ag gl ‘A\MUS.\AJ &MZM

The vector ug L u, in the direction of 6 which corresponds to the direct direction therefore

_,  dm
Uo = g

S0 ug = —sinb1 + cosOf
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By projecting the unit vectors we will have the same results

Ay
YU oo .
i We) g
N
x(Up) °© x(Uy) X

U, = x(W)T+ y@,)j=>u; = |[u;|cosbi + [u/|sinBf

with |u,/| = 1 since it is a unit vector therefore u, = 1cos671 + 1sin6y

ug = x(ug)l + y(ug)j = up = —uglsinbi + |ug|cosdf
with [ug| = 1 since it is a unit vector therefore ug = —sinO1 + cos0y

To write the unit vectors w, and uy as a function of 7and j we use the passage table

U J
u, cos0 sin@
Ug - sinf cosf

1= cos Bu, — sinBuy and 7= sin Ou, + cosOugy
Example :

Write the vector 4 = 2x7 + yJ

{x = p cos6 {T = cos Ou, — sinbuy
y = p sinf ] = sin Ou, + cosOugy

So 4 = 2 p cosB (cos 0w, — sinbug) + p sind (sin 6%, + cosbug)
= A =2 p cos?0u; — 2p(cos 0sin®)ug + p sin?0 u, + p(sin O cosO)ug

= A= p (2c0s%6 + sin?0)u,; — p(cos Osin®)uy

= A= (pcos?6 + 1)u,; — p(cos Bsind)iu,
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Chapter III: Kinematics of material point

e Elementary displacement
The variables p and 6 are independent: we fix one and change the other
- We fix 6, and we change p, then the moving point moves from the point M(p, 0) to the
point M’ (p+dp, 0)
dl, = MM’ = dpw;’
- We fix p, and we change 6, then the moving point moves from the point M(p, 0) to the
point M’(p, 6+d 0)

y ‘P M?’ M’
The angle 6 varies by d6, causing a linear dl, e
1
displacement of point M towards point M" 0
Us , (MM 1 5) 5
In the right triangle OMM’’, MM’ = psinfdo. v\]—’“ <
Since d@ is very small, we can approximate Us o » :X

Sin(do) as do.

Therefore, MM”’ = pd6, so
dl, = MM" = pd6ug

SO
di = dl, + dl, = dpu, + pdfug

We can obtain the same result mathematically:
OM = p(_fr = dOM = dpl_fr + pdﬁr

To make the derivative of a unit vector dﬁr, we must bring out the derivative with respect to

=

an angle ‘Z;T for this we multiply and divide by do
_  dU, .,
dUu, = 70 do = Uydb

y A dS

With & =Ty so dOM = dpU, + p d6 Uy dl, #
1
Calculation of the surface: 0 M
SN P
ds = |dly|.|dL| =dp.pd9=>s=ffdp.pd9 17
0

We can separate the variables since they are independent > :X
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s = fOdep.fOzndH =R72277.'

with p varies from 0 to R and 0 varies from 0 to 2n = s = nR?

e Velocity vector

dOM dp . dU,

U= =—U,+
ar dt P4
We have: avy _ dUrd6 _ dUr a0
dt dt dé de dt
av, _ al, _aop o oM _dpp . odo
5 = Uy donc ” _dtUe S0 v =— —dtUr+pdtU9
=7 =pU, + p6-Uywith p = 2—fand o =Z—f
e Acceleration vector
- dv_d20M _p—> dder dpde dBdUg
=3~ ae dat? Ur 2 a dtdtU9+pdt2U9+pdt dt
R dzpl7 erpdel7 ddeU,_l_ dzel7 (d@)zﬁ
>4 =—— _— — —
dez 7 dt dt dtde 0P gz 0 de) T
4y _ g oo _
With: =& = Uget =2 = —T,

So: a= p"(_fr + 2p'9'L79 + p9"l79 - p(@')zl_fr

4.3. Cylindrical Coordinates 4 shu¥) cilflaay)
If the spatial trajectory involves p and z playing a specific role in determining the position
vector (W); for example, the movement of air molecules in a whirlwind; it is preferable to
use cylindrical coordinates (p, 6, z). With:
p: polar radius
0: polar angle
z: altitude or height

p= |0—rﬁ|, 0<p<R
and < g = ((ox),%’),o <6 <2m

z=2zy, 0<z<H

Where m is the projection of point M onto the plane (Oxy), and R is the radius of the cylinder,
and H is the height of the cylinder.
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If we add the 'z' component to polar coordinates in space, we obtain what is known as
cylindrical coordinates. Consider R(Oxyz) and a point M belonging to a cylinder.
Point M is identified by three coordinates p, 6 (polar coordinates), and z.

e Position vector

The position vector in cylindrical coordinates (p, 6, z) in the orthonormal frame

R(0,u,, ug, uy) is written:

7 = OM = Om + mM (Relation de Charles)
om = pu, (Coordonnées polaires) =>7=0M = pu, + zu,
mM = zu, (hauteur du cylindre)
e Unit vectors
The unit vectors ﬁp is following Om (m is the projection of the point M on the plane (Oxy))
and l_fg is perpendicular to l_fr and Om in the direction of 0 (l_fp 1 l_fe) and l_fz is following
(O2), (ﬁz Il 75) and it is perpendicular to the plane formed by the two other unit vectors (ﬁp

and l_fg).

Transit relations between cylindrical coordinates and Cartesian coordinates:

By projecting the point m onto the axes (Ox) and (Oy) (like polar coordinates) z is the height

X = p cos6
y=psinb
z=12
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oM cylin = Om+mM = pu, + zu,

OM/cart = xT+ y] + zk

OM/cart = p (cosO T+ sin 6 ) + zk

By identification

u, =cosbt+sinb

-

8 ingi+cos 6]
ug—de = —sinBt+cos 0] X
l =¥
Using the passage table :
U J k
u, Cosf Sing 0
Ug - sin@ Cosb 0
u, 0 0 1

I = cos Bu, — sinBuy

J=sin 0w, + cosbus; and k=1,
e Elementary displacement
The variables p, 6 and z are independent: we fix one and change the other

- Wefix 0, z and we change p, then the moving point moves from the point M(p, 6,z) to
the point M’(p+dp, 0,2)
dl, = MM’ = dpw;
- We fix p, z and we change 6, then the moving point moves from the point M(p, 6,z) to
the point M’(p, 6+d 0,2)

The angle 0 varies by do, this leads to a linear movement from point M towards point M"

following U, , (W I u_g’)

In the right triangle OMM*’, MM”’=p sind6
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do is so small then sin d0=d0.

Then MM"=pd0 therefore  dl, = MM'" = pd6ug

- We fix p, 6 and we change z, then the moving point moves from the point M(p, 6,z) to

the point M””’(p, 6,z+dz)

dl; = MM'" = dzw,

7A
(L =)
e )ug
Mx
e
kA i
i) _/9 — ' d,IB/, i
_____________ PN dl,
dly

So

[ =dl +dl, +dl; = dpu, + pdbug + dzu,
We can obtain the same result mathematically
OM = pu, + zu, = dOM = dpl_fp + pdl_fp + dzu,+ zdu,
du, = 0 car &, = k it's a vector fix.
= _)p

dUp == % d9 == Ugdg

With =2 =T, so dOM = dpl, + p d6U, + dzii;
e The cylinder volume

dv = |dl;|. |dL;|. |dl5| = dp. pd6.dz =V = fﬂ dp. pdé dz

We can separate the variables since they are independent
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R 2 H R?
V=] pdp.[;"d6 [ dz=—2nH =V =nR*H

(with p varies from 0 to R and 0 varies from 0 to 2z and z varies from 0 to H)
e The surface of the base of cylinder

dSpase = |_d_l_1)| |ZiT£| = dp.pdl = Spgse = ff dp.pd6

We can separate the variables since they are independent
s = fOR pdp.fozn do = R;ZTr = Spase = TR?
e The lateral surface of cylinder
dsiqr = |dLy|.|dLs] = dp. pd6 = spase = [ pd6.dz
The radius is constant p=R, the variables are independent so we can separate them

21 H
s = Rf do j dz = R2nH = Spase = 2TRH
0 0

e Velocity vector

S - .= _doM _dpp aly | dz 7 au,
The velocity in this case is written by: v = — T U-+p T U,+z "
dU, dU.d6 dU,de
dt dt d§ df dt
with: & =, so & =27, and £2=0
ae dt dt dt
., doM dpﬁ dHU, +dz_,
vV=———m—=— —_— PR
dt dt TP ar T ar e
>v=pU,+p6Ug+2zU,
With: p'=d—p ,9-=ﬁ and z =&
dt dt dt
e Acceleration vector
S0 _ 0N _dpp | dpdly  dpdop 405 | dodls | d’zp | dzdl
A=~ ae _dtZUr+dt dt +dtdtU9+pdt2U9+pdt w TaeVrt d

L, d’p_ dpdd_ dpdd d?0 _, doN® -  d%z .,
() 0.+

- = Ly - U, —
a2 rtarac e T arar et gz le P
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v, au, -
dt

a6
= d=p-U,+2p6Uy+ p0-Ug — p(6)?U, + z-U,

— dﬁe _ —
Ug,de = —U, and

With :

4.4. Spherical coordinates <o </ <lila Y/
When the point O and the distance r separating M and O play a characteristic role, the use of

spherical coordinates (r,0,¢) are the best suited in the orthonormed base (u;, ug, u,) with:

r=|m|, 0< r<R
9=((ox),0_m’) 0< 6 <21

(
!
L(pz((oz),m)0< p<Tm

With m is the projection of M in the plane (Oxy).

e —_—
=rU,

e Position Vector :
The position vector in spherical coordinates (r,0,p) is writtenas: ¥ = OM

e The unit vectors
The unit vectors l_fr is following OM and l_f(p is perpendicular to L_fr and OM in the direction
of ¢ (U, L U,) and Uy is perpendicular to Om (Ug L Om).
Transit relations between spherical coordinates and Cartesian coordinates

By projecting m onto the axes (Ox) and (Oy)
69
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Chapter III: Kinematics of material point

x = [Om| cos6 M
y = |0om| sin6 0
z = |mM| r

By taking the right triangle (OmM):

We have Om=r sing and mM=r coso, replacingthem m O

in passing relationships we will have:

X =1 sing cosf
y =rsing sinf
Z=71Ccos¢Q

M/cart = 1 sing cosOT + r sing sin 6] +rcos @k

OM/Cart =1 ( sing cosT + sing sin ] + cos ¢ E)

By identification

— .

U, = sing cosOT + sing sin 6 + cos g k

— _ -dU, _ dU,

u, = =
P d(-@) do

= cos¢ cosOT + cos ¢ sin 6] —singk

-

Ug = U, AU, = |sing cos§ sing sinf  cos@
cosp cos@ cos @ sinf@ —sing

= 1(—sin?g sin @ — cos 2¢ sin 0) — j(—sin?¢ cosO — cos?¢ cosh)

+ E(sinfp cosfcos @ sin O — sing sin Ocose cosh)

Uy = —sin 67 + cos6]
By using the pasage table :
l J k
u, sing cosO sing sin 6 coSs @
U, cos@ cosf cos ¢ sin 6 -sin¢
Ug —sin @ cos6 1
I = sing cos@ u, + cosp cosdu, — sin O u,
J = sing sinf u; + cose sinb u, + cos 6 ug

k = cosp u, — sing u,
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e Elementary displacement
The variables r, ¢ and 0 are independent: we fix one and change the other:
- We fix ¢,0 and we change r, then the moving point moves from the point M(r, ¢,0) to
the point M’(r+dr, ¢,0) so dl; = MM = dru,
- We fix r, 6 and we change o, then the moving point moves from the point M(r, ¢ ,0) to
the point M”’(r, , +do ,0)
The angle ¢ varies by do, this leads to a linear movement from point M towards point M"

following U_q,) : (MM” 1 u_q,’)
In the right triangle OMM”’, MM”’= r.sindg

de is so small then sin dp~d¢
then MM"=r.de therefore dl, = MM" = r do &,

- We fix r, ¢ and we change 0, then the moving point moves from the point M(r, ¢, 0) to
the point M”’(r, ¢, 0+d0)

The angle ¢ varies by de, this leads to a linear displacement of the point m (projection of the
point M in the plane (Oxy)) towards the following point m' E}, (mm’ 1 uT)).

In the right triangle Omm’, mm’= Om.sind0

do is so small then sin d0=d0
So mm’'=0md6 and Om=r sine therefore d_l£ = mm' = rsing df u,

dOM = dru; + rdou, + rsing d6 ug
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Or mathematically :

OM = rU, = dOM = d(rU,) = drU, + rdU,

dﬁ,_aurd“aur d
r =96 o ¢

—

U, = sing cos0T + sing sin 60+ cosgk

aﬁr) e - e -
30 = —sing sinfi + sing cos 6j = sin <p(—sin9i + cos Hj)
=> al—]: inpUy
—— =sin
90 PUg
aUr - - —
% = cos@ cos0i + cose sin O] — sinpk
U, —
> =U,

dp
dOM = drU, + rdeU,, + rsinpddU,

e Volume of sphere

dV=dldl,dlz=dr r sing d8 r de=V = [[[ r?drsin ¢ d¢ db

R T 21 T3
=>V =f rzdrf sin<pf de =—l (— cosp)] 6]
0 0 0 3

V—4 R®
=4 —§T[

e Velocity vector

The velocity vector is written in spherical coordinates (r,0,¢) by:

%_dO—IVI)_dr_>+ dprm o 40
V= At dc’’ T‘dt(p rsing 0

dt

4.5. Intrinsic coordinates (Frenet frame) dziaiall 4S al ildlaal
We used to work in a fixed frame, but in this case, we study the motion in a moving frame

that travels with the moving point "M". This frame is the Frenet frame.
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We study the motion in the Frenet frame:

The Frenet frame is a two-dimensional reference frame.

- 1 is the unit vector along the tangent to the trajectory.

- 711 is the unit vector normal to the trajectory and perpendicular to u, directed towards the
center of curvature.

- The position remains unchanged (the frame moves with point M).
- The velocity vector is tangent to the trajectory, and it is written as: ¥ = |v|u
- The acceleration vector :

dv dlﬁlﬂ’ dIvI

-

=T Tar T a ¢t +1v I_
di du df o du 4 do
at ~do qr - ewith i=—gandw =

The acceleration vector is written by: a@ = a;u + ay7

ajy| -

So:d=—u+|V|.nw

(the perimeter of a circle (5.44a0)] = 27R, for the length of a segment (Lwsé Jsb)
x = 6R ; from angular velocity to linear velocity by % = RZ—(: = v = Rw)

Hence:

w = % with R is the radius of the curvature of the trajectory.

- dl'l_}l — UZ —
S0 a=— —
dt R

The normal acceleration (<k4ll ¢ jlall) and tangential acceleration (wseell & JLudll) are written

_ dlv|

ar = 4

by : b2
W=7

|d| =\/a§+ay =\/a,2\,+a%
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Note :

e R —oo : sothetrajectoryisaline.

e R is constant: so the trajectory is circular.
5. Study of some movements

5.1. Rectilinear motion 4uai 4s

We have linear motion if the trajectory is a straight line.

We choose a point O as the origin on the trajectory and a unit vector 7 .

The position of the mobile M, as a function of time, is identified by its abscissa:
x(t) = OM(t).

The position vector will be:r(7) = 0OM(t) = x(t)T

5.1.1. Uniform rectilinear motion 4akiiis 4adivs 45 3 URM

We have uniform rectilinear motion if the trajectory is a straight line and the velocity vector is

—_—

constant. This is a motion with zero acceleration a(t) = 0.

The initial conditions to t=0 ; x=Xg.

e The velocity

dv v t

a=—=0:J dv=f0.dt=cte
dt Yo 0

So v=vp=cte
e The position
dx x t
v=—=v0=>f dx=J vod t = [vot]h = vyt
dt X 0

So : x=vgot+xy This is the hourly equation of the motion. URM

5.1.2. Uniformly varied rectilinear motion aUiiil 5 yiia daiics 4 2 UVRM

One has a uniformly varied rectilinear movement if the trajectory is a straight and the

acceleration is constant.

The initial conditions to t=0 ; v=vgand X=xq
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e The velocity

dv v t .
= =a0:>f dvzf apdt = [apt]g
dt v 0

So v=ay t+vy

e The position
dx x t 1
v =— = qayt+ v, :>f dxzf(a0t+v0)dt=[—a0t2+vot]
dt . . 2 0

t

1 - . :
Sox = 2 a(,t2 + vyt + X this is the hourly equation of the motion UVRM

5.2. Circular motion 43 ils 4s a
Circular motion is plane motion with constant radius of curvature p=R. The trajectory of the

YA

moving object is a circle of radius R .

e The position
The moving point travels from point | to point M, thus the trajectory forms an arcIM.
By considering an elementary displacement of the moving point from point I to point m, we

would have a displacement in the form of an elementary arc Im

In the right triangle Olm, Im=R sin@

In the right triangle. If 0 is so small thensinf =~ 6.

So Im=R.#

e The speed
dim _ df

v=——-=R—
dt dt
R is constant, the speed is following the trajectory, so it is written ¥ = vu so the vector u

would be following the tangent.
75
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de . e e
e 0 = w is the angular velocity 429/ 33 45 )

do
Vv=R—=R.0=R.w
dt

Note: The relationship between linear velocity and angular velocity is: v = Rw

e The acceleration

S_db_dv di
Ad=—=—Uu+v —

dt dt dt
dau dudo . du —
E—annﬁh E_ n

(with(ii, 1) the unit vectors in the Fresnet farme and % = w)

5.2.1. Uniforme circular motiondakiia 4; yla 4s a

In this case the angular velocity » is constant and therefore the linear velocity v is also
constant, thena, = 0.

- —

The acceleration in this case is :a = ay = —n

=%

5.2.2. Uniformly variable circular motion — aUaiily 3 yia 45 43 4S ja

In this case the angular velocity o is not constant and therefore the velocity v is not constant

also, then @ = a;u + ayfi.

2
The acceleration in this case is: a = %17 + %ﬁ =R Z—‘:ﬁ + Rw?n
5.3. Sinusoidal or harmonic motion 4w 4s

The movement is called sinusoidal or harmonic if its evolution over time is written by the
equation:

x(t) = Asin(wt + @)

A: amplitude, o: angular frequency, and ¢: phase.

_27‘[_2
w = = nf

T: period and f: frequency
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e The speed

v(t) = d);—(tt) = Aw cos(wt + @)

e The acceleration

dv(t) d*x(t) _

_ A2 _
a(t) = TR T R A w*sin(wt + @) = a(t)

d?x(t)
dt?

= —w? x(t)

Note:

Another type of movement which is relative movement will be detailed in
the next chapter.
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Proposed exercises about chapter 111

Exercise 1
We consider a vector # , of module r = OM= a 0, carried by an axis OX making with Ox the
variable angle 6. We denote by % the unit vector of OX and by 7 the unit vector directly

perpendicular to .

1. Calculate the express of % in terms of a, 0, % and 7.

2. Represent this vector Z—; .

><V

Exercise 2
A) A material point M is marked by its cartesian coordinates (X,y).
1. Write x and y in terms of the polar coordinates p and 6.

2. Give the expression of the unit vector 4 as a function of the unit vectors t and J.

3. Calculate dﬁ/ 4 What does this vector represent? y X

.. . .. OM = t%1u N
B) If the position of point M is given by p . (w constant) A p
=w
0

Find the expression of the velocity vector ¥ in polar coordinates. ) X

[1
Exercise 3

Consider a polar coordinate system with the origin O and unit vectors u, and ug.
Let M be a point with coordinates (p, 6).

1. Using a detailed diagram, provide the expression for the position vector OM in polar
coordinates

Give the conversion relationships between polar and Cartesian coordinates.

Express the vector A=2xT+ yJ in polar coordinates.

Write the elementary displacement vector in polar coordinates.

Provide the velocity vector and the acceleration vector in polar coordinates.

o o~ N

Find the expression for the elementary area in this coordinate system and deduce the area
of a disk with radius R.
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Exercise 4

A material point M is identified by its cartesian coordinates (X, Y, z).

1. Write down the relationship between cartesian coordinates and cylindrical coordinates
(using a diagram).

2. Write the position vector in cylindrical coordinates and deduce the velocity vector in the

same coordinate system.

p = 4t?
3. If the position of the point is represented in cylindrical coordinates by § 8 = wt
z =4t

Find the expression of the velocity vector ¥ in cylindrical coordinates.
Exercise 5

The differential of the vector 7, d7 = dl = dx7 + dyJ + dzk can be expressed in cylindrical

i B 0T g O
coordinates as dr = » dp + 5 do + P dz.

1. Using the formulas for switching between the two coordinate systems, evaluate the
vectorsZ |, et OT
9p '20 <" 97

2. Derive the unit vectors U_p,)%’ et@(cylindrical coordinates) as a function of 7, j and k
(Cartesian coordinates), check that they are orthogonal.

3. Write A = 2x7 + yj — 2zk in cylindrical coordinates.

Exercise 6

Write the vector 4 = x .7 — 2.y.j + z. k in cylindrical coordinates i.e. as a function of p, 0,

Z U, Ug, Uy . (using passing relations)

M — 37 27—
OM = t°u, + 5t7u, (w constant)
0 = wt

If the position of point M is given by {
Find the expression of the vectors: speed ¥ and acceleration a in cylindrical coordinates.
Exercise 7

A body moves along the x axis according to the relation x(t)=2t>+5t*+5.

1. Determine the velocity v(t) and acceleration a(t) at each instant t.
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2. Calculate the body's position, velocity and instantaneous acceleration for t;=2s and
t,=3s.
3. Deduce the average velocity and acceleration of the body between t;and t..

Exercise 8
The x and y coordinates of a moving point M in the (oxy) plane vary with time t according to
the following relationships: x=t+1 and y=( t* /2)+2.
Find :
1. The equation of the trajectory
2. The components of speed and acceleration and their modules.
3. Accelerations: normal ay and tangential ar and deduce the radius of curvature.
4

. The nature of the movement

Exercise 9
A particle is launched with an initial horizontal speed vO according to the time-dependent

equations:

X = vot
1
{y =39t

Determine:
1. The trajectory equation.
2. The components of speed and its module.
3. The components of acceleration and its module.
4. Tangential and normal accelerations.

5. The radius of curvature R of the particle's trajectory.

Exercise 10

A comet is moving through the solar system. His position is expressed:
2

., t
OM = (t — 1)T+?j
Where O is the origin of the landmark (the sun) and t represents the time expressed in
seconds. We assume that the comet remains in the plane (Oxy)
1. Write the equation of the trajectory
2. Determine the components of the velocity vector ¥ and the acceleration vector a and give

the nature of the movement.
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3. Express the expressions for the tangential at and normal ay accelerations and deduce the

radius of curvature.

Exercise 11

A particle moves on a trajectory whose trajectory equation is y=x? such that at each instant
Vy=Vo=cst. If t=0, X, Yo =0.

Determine :

1- The x(t) and y(t) coordinates of the particle.

2- The speed and acceleration of the particle.

3- The normal and tangential accelerations as well as the radius of curvature.

Exercise 12

A body moves on a straight line with an acceleration such that

1. a) a=-kv ; b) a=-kv® where k is a constant
If at t=0; v=vpand x=Xo

2. Find for both cases its speed and its displacement in time as well as v as a function of x

Exercise 13

A body whose motion is defined by the following velocity components: vx=1 and v,=2/(t+1)
Knowing that at t=0 x=0 and y=2.

1- What is the equation of the trajectory y=f(x).

2- Calculate the components of the acceleration.

Exercise 14

From the ground, a balloon rises with a constant initial speed vq (according to y). The wind
gives the balloon horizontal speed Vy=a.y (a constant).

1. Determine the equations of motion x(t) and y(t), Deduce the equation of the trajectory
y=f(x)

2. Calculate the accelerations a, ay and ar. Deduce the radius of curvature.

Exercise 15

A stone is thrown from the top of a 20 m high building, with a horizontal speed of 10m/s.
1. What time does it take for the stone to reach the ground?

2. At what distance from the building will the stone reach the ground?

b- With what speed will the stone reach the ground?
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Exercise 16
The motion of a body is defined by the following velocity components:

v, = Rwcos(wt)
{vy = Rwsin(wt)

Knowing that o is constant and at t=0, the moving body is at point M (0, R).

Determine :

1. The components of the acceleration vector and its modulus.

2. The tangential and normal components of acceleration, and deduce the radius of curvature.
3. The components of the position vector and deduce the equation of the trajectory.

4. What is the nature of the motion?

Exercise 17
A material point M moves along the OX axis with acceleration @ = at with a > 0.

1. Determine the velocity vector knowing that v (t=0)= vy .
2. Determine the position vector oM given thatx(t=0)=xo .
3. Check that: vi  — vf = 2a(x — xo).

4. What is the condition thata . ¥ so that the motion is uniformly accelerated and retarded?

Exercise 18

Consider a moving point M describing a circle of radius R and center O with an angular

speed w = Z—Z . At time t=0 point M is at A.

1. Write the coordinates of M as a function of R and 6.

2. Calculate the modulus of the speed of point M.

3. Determine the components of the acceleration on the axes Ox and Oy (Cartesian
coordinates) on the one hand and on the axes parallel and perpendicular to OM on the other

hand (polar coordinates).

4. We assume that a = 2—‘: (o is @ non-zero constant). Give the expressions for o and 0 as a
Y a

function of time. R

5. We recall that at t=0, 0,=0 et ®m=wy. %

y
What relationship exists between o and 6. &

v
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Exercise 19
OA is a rod of length L animated by a uniform circular movement of angular speed ® around
the point O. AB is another rod of length R, articulated at A to OA such that B can move on

1. Establish the time equations of M (middle of AB)

2. Determine the abscissa of B. Is its movement sinusoidal?
3. Calculate the speed of M
4

. Show that if r=R, the movement of B becomes sinusoidal

A

\6 a

< ¥
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Correction of exercises about chapter 111

Exercise 1
We have |7| =r = OM = af

ar — =
- ——= =7
1 T f(6,a,u,n) =

?=0M = abt

According to the diagram { © = cos67 + sin6y %
n = —sinOi + cosHJ.
dF_ d Oai) = aii + Bdﬁ
a9 dg W T T g
1) = Z—z = —sinfl+ cosbj = n
I _ + adn
—_ — =
40 au aon
2- Z—Z = au + a6 which originates from point M presents as follows:
Y
n
N 2 2 — 7
3 |7 =Ja2+ (ah)?=aV1+86
Exercise 2
A) A material point M is identified by its Cartesian coordinates (X,y):
Find x and y in terms of polar coordinates p and 6
OM =xi+y] (1)
y
In the othor hand OM is written by projection as: M X
OM = pcosOT + psindj (2) u D
Tle R
o 7 X
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X = pcos0
(1) and (2) = {y g

1- The unit vector i as a function of the unit vectors 7 and J :

we have OM = |W|ﬂ = pU = pcosOT + psinbj
SO U = cosOT + sinbf and 7 = —sinf7+ cosj
n and i represent the unit vectors of the polar coordinate basis.

2- Calculate the expression of dﬁ/ 4 Which this vector represents?

di _d(cos0i+sin0)) | 07+ cosi = 7
5= T = —sinfi + cosj =1

—

u . . - . . .
20 represents a unit vector perpendicular tou in the direct direction .

—
2- The position of point M is given by {Og/[: ttu (w constant)

The expression of the velocity vector ¥ in polar coordinates is :

s _doM _dwd) o, di
VS0 T T ar ot dt
di du d6 _

t dodar ¢

vV=2tUu+t:*wn

Exercise 3

B- The polar coordinates are p and 8 ; with p = |[OM|| ; 0<p<R and the 8 = (0x, 0M) with

0<6<2m. Ay
1- The vector OM in polar coordinates is written M
as following :0M = pu, 0
J U,
u_G) ‘ » ﬂ |-
o . g
l
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2- the transition relationships between polar and Cartesian coordinates.
cosf = _ Ay
p Xy = pcoso

Sing = YTM {yM = psind

So the vector OM in coordinates cartesian Ym p
is written OM = x,7 + V3] Ul w
Ug i \ 9
We had : OM = pu, (in polar coordinates) o . X
l M

Then OM = p(cos6i + sinb))

—

- - H — - . e — d . - e
By identification w,=cos81+ sinfjand ug = % = —sinfi + coslj

3- The writing of the vector 4 = 2x7 + yj in polar coordinates

we have {xM = pcos6 d {E’,}, = c0.502+ sin@fq
Yu = psinb Uy = —sinfi + cosfj
By using the passage table u, ug
[ Cosb -sin 0
] Sin6 cosf

So7=cosbu, — sinBu, and j= sinBu, + cosd uy
The vector 4 is then written as;

A= 2pcosf(cosO u, — sin 0 ug) + psind (sin @ U, + cosd Ug)

>A=pQ+ cos*6)u, — p sin Bcosb uy
4- The vector of elementary displacement in polar coordinates
Y —> — — - — dT —
dOM = d (pu,) = dpu, + pdu, with du, = d—e"de = Ugdf
So dOM = dpu, + pdbug

5- The velocity vector and the acceleration vector in polar coordinates.

. . . - _dOM _ dp_—, o .,
The velocity vector in polar coordinates: v = = d—‘;up +p U

The acceleration vector in polar coordinates:
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. dB _ d?’p_—  dpdu, dpd9___, d?e ., do dug
a_dt_dtzup+dt dt+dtdt 9+pdt2u9+pdt dt
.., du, duj, do db dug dug db ao —,
With —p=—p.———ﬁget—9——9.—=——u
dt de “dt  dt dt de " dt dt P
5 dp dzp_> dpd9_> dpde——> d29_> de do —,
S0 d=—= —— —— —p——u
dt dt2 +dt dt 9+dtdt 9+'D Ug dt dt P
. _ d?p dp d6 - 29_4 de\? —,
=>a= 2— — (—) u
dat? + dt dt 9+p Ug =P t P

6- The expression of the elementary surface in the polar frame:
ds = dly.dl, and dOM = dpu; + pd0ug = dlyu; + dl, g
with dl; is the variation of p along u, which is dp and dl; is the variation of 6 along ug
ds = dp.pdfo
The surface of a disk with radius R.

S=[f dp.pd = [ pdp [2" d6 == 21 = nR?

Exercise 4

1. A material point M is identified by its Cartesian coordinates (X, y, 2).

Write the relationship between Cartesian coordinates and polar coordinates.

X = pcosO Y
y = psinf .
zZ=2zy Uz
f » X

2. Find the expression of the position vector and deduce the velocity? of point M in
cylindrical coordinates.

0—M)=p7+272

_doM _ dp du, dz du,

= + z +
T dtp pdt dt “Tar
du, _ B de d
We have dt_0=>v_pUP+pdt d9+ U
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= ¥ = pU, + pdU, + 7U,

3. A velocity vectorvof point M in cylindrical coordinates:

dp

(E_8t

p = 4t* o _

We have{e = wt Hence dc

dz 1

Z—\/E LE_Z_\/E
- R dU;) R d —_ 2 —_— 1 e
:>U:pUp+pgw+ZUZ:8tUp+4t .G).UQ +2_\/EUZ

Exercise 5

The differential of vector 7, d7 = dl = dx7 + dyJ + dzk can be expressed in cylindrical
: , o7 o7 oF

coordinates as dr = % dp + % do + P dz.

. o oF . oF
1. We are looking for the vectors 3 ot a-

Weare # = x7+ y] + zk

- The displacement vector in cartesian coordinates (X, v, z) :
d7 = dl = dxi + dy] + dzk
- The displacement vector in cylindrical coordinates (p, 6, z) :
or or or

dr=%dp+%d9+£dz

Relationships between cartesian coordinates (X, y, z) and cylindrical coordinates (p, 6, z) are :

y = psind = {dy = dp.sinf + p.cos6.d0

{x = pcos6 {dx = dp.cosf — p.sin6.d6O
Z=2Zy dz = dzy

= d7 = dl = (dp. cos® — p.sin0.dO)T + (dp.sind + p.cos.d6)] + dzk
= d7 = (cos6.7+ sind.))dp + (—psindi + p.cos6.])dO + dzk............. (1)

— dit = (Z—;) dp+(2) d6 + (E) dz....cooooeceeecceeccieee @)

With identification between (1) and (2) we'll have :
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-

( Or I
% = c0s0.1+ sinf.]
:><a?__ inoT 7
30 = psinfi + p.cosB.j
or -
\ 2k

2. Deduce Unit Vectors U;@ andU; (cylindrical coordinats) as function of 1, J and k

(Cartesian coordinates) :

The displacement vector in cylindrical coordinates is written:

d = dpU, + pdOUg + dzK...........coooveeeie, 3)
( U7 = Z—j = c0s0.7+ sinf.J
(1) and (3) = 79’ = %a_z = —sinb1l + cosb.]
I N
—_— 0 -
\ U, =5 =k

Note :

The unit vectors of the Cartesian coordinates base can be written as a function of the unit

vectors of the cylindrical coordinates base from the table below:

) j k U = cosbu, — sinbuy
= {J = sinbu, + cosbuy
u, |Cos® |Sin® |0 k=1u;
Ug |-sin® |Cos® |0
Z |0 0 1

3. Checking that they are orthogonal?
|Up)| = \/00392 +sinf? =1
= J|T9| = \/(—sin9)2 + cosf? =1
L m=lf=1

Hence Fp’, U_(;et UZ) are the unit vectos.

We have U,.Uy = 0,U,.U, = 0 and U,.Ug = 0
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So Uy, Ug,and U, are orthogonal vectors.
Therefore the vectorsU,, Uy, U,form an orthonormal reference frame.

4. Write 4 = 2x7 + yj — 2zk in cylindrical coordonates.

x = pcos6 1 = cosbu, — sinbugy
We have {y = psinf and < j = sinbu, + cosbug
zZ = ZM k — u—z>

So A = 2x7+ yj — 2zk is wretten by :
= A = 2pcosf(cosbiL, — sinbitg) + psind (sindu, + cosOug) — 22k
= A4 = (2pcosH? + psin®@?)u, + (—2pcosbsin® + posBsin®)uy — 22k
= 4 = (cos6? + 1)pu, — pcosBsinOu, — 271,
Exercise 6

Writing the vector 4 = x .7 — 2.y.j + z.k in cylindrical coordinates:
Transit relations between cylindrical and Cartesian coordinates

Xy = pcosO

Yu = psinf

Zy = mM

So the vector OM in Cartesian coordinates is written OM = Xul + yuJ + Zu
OM = p(cos6T + sinf]) + zk

We have: OM = pu; + zu; (in cylindrical coordinates)

By identification u,= cos67 + sinéJ , =k

—

— du . - -
and ug = d—e” = —sinf1 + cosb] u

Cos0 -sin 0 0

~l

By using the table passage

U= cosbu, — sinBuy j | Sinb cos0 0
J = sin 0 u, + cosb uy kK |0 0 1

—

k=1u,
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The vector 4 is written by:

-

A = pcosB(cosd u, — sin 0 ug) — 2 psind(sin 6 u, + cosd ug )+ u;
= A = p(cos?0 — 2 sin®@)u, — 3p sinBcosd ug V +zu,

TN — +35° 25
B. The position of point M is given by{OM = t7u, + 57w, (w constant)

0 = wt
i o dOM oo g dlUy — du;
1. Speed is written : v=——= 3t°u, +t -+ 10 tu, + 10t m
.. du, du, do s av, _ =
Wlthﬁ:ﬁ.—:C()UQ and &2 =0
dt do dt dt
=V =3tu, + t*wus + 10t u,
—)_dﬁ_dzm_ — 2 du—F; 2 =4 3 dﬁg x4 dll—z)
a=—=—7=6tU +3t° —=+3t°wlUp++t°0—=+10U, + 10t —

Sd=6tu,+3t% wig +3t?> 0 Uy — 0 0l, + 10U,

... du, du, deo — dug dug db =
Wlth—pz—p.—zwug, —9=—9.—=—wUp
dt de " dt dt de " dt

>d=6tu,+6t> wug—t3w?U, + 107,
Sod=(6t—tPw?)u,+6t> wug+10U,
Exercise 7

a- we have x(t)=2t>+5t*+5 so0 :

The velocity: v(t) = % =

6t°+10t

dv(t) _

=12t+10
dt

The acceleration: a(t)=

b- The body's position at time t;=2s, as well as its instantaneous velocity and acceleration:
The position : x(2)= 2(2)*+5(2)*+5=41m

Instantaneous speed: v(2)=6(2)*+10(2)=44m/s

Instantaneous acceleration: a(2)=12(2)+10=34m/s’

-The body's position at time t2=3s, as well as its instantaneous velocity and acceleration:
Position : x(3)= 2(3)*+5(3)*+5=104m

Instantaneous speed: v(3)=6(3)*+10(3)=84m/s
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Instantaneous acceleration: a(3)=12(3)+10=46m/s’
c- We deduce the speed and average acceleration of the body between t; and t,:

_104-41

Average speed:  V,, = i—’; = % > Vmoy = ——— = 63m/s
Average acceleration :
R i B

Exercise 8

The coordinates of a moving point M in the plane (oxy) are written as:

x(t)=t+1 and y(t)=(t*/2)+2
a- The equation of the trajectory is then written :
To find the equation of the trajectory, simply find the relationship between x(t) and y(t).
To do this, deduce the time from one equation, x(t) or y(t), and replace it in the other
equation).

Here, we'll write t as a function of X :

x2

The equation of the trajectory is .  y(x) = 5 — X+ ;
b- Components of velocity and acceleration vectors:

- The velocity :v(t) = v, (DT + v, (t)]

v () = dz(tt) —1
d
vy (t) = % =t

The velocity is written by v(t) = T+
The velocity module:|7(t)| = V1 + t2

- The acceleration: a(t) = a, ()7 + a, ()]

o) = dv;t(t) _o
0 (6) = dvzl,t(t) .
So a(t) =j

The acceleration module is: |a(t)| = 1

c- Normal and tangential acceleration:
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- Tangential acceleration

ar = dl:;(tt)l with |v(t)| = v+ v =V1+t?

_dNTFE) | 2t
“TTTae T

because (U™) = nU’' U™ !

t
a =
T = Vitt?

- Normal acceleration :

The accelerations ay and ar are the normal and tangential components of the acceleration.d
(@ = apUr + ayUy > |d| = |a? + a%)

We have the shape of a right triangle, by applying Pitagort's relation.

2 _ 2 4 o2 Z

a —aT+aN _> Cl—]\;
> ) —

So af=a?-a? or |d|= /a%+a,2\, ar

t 2 t2
2
V1 + t2 1+1¢?
1
2 _
W= e
Soay = —— =
O = Ty

2 3
The radius of curvature: ay = % = %=> R=v3=1+1t?:>

c- The nature of movement
I, N
a(t).v(t) = (1)(t) =1(0)+t(1)=t>0

The motion is then uniformly accelerated.

Exercise 9
The x and y coordinates of a mobile point M in the (xy) plane vary with time t according to
X = vot
the following relationships: 1
g p {y _ Egtz

1- The equation of the trajectory is then written as follows:

2
. . 1
Here, we will express t as a functionof x: t == Soy=-g (i) =9 x2
Vo 2 Vo 2vg

The equation of the trajectory is: y(x) = z%xz
0
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The components of the velocity

dx(t)
Ue(t) = — ==

_ady(@®) _
v, (t) = =

gt

The velocity is expressed as: v(t) = vl + gt j

The magnitude of the velocity: |3(t)| = /vE + (gt)% = vE + gt2

The components of the acceleration

dvx(t)
ax(t) = dt = 0 R . o= N
dvy(0) The acceleration is expressed as: a(t) = gj
a,(t) = prant

The magnitude of the acceleration |d(t)| = g
2- The nature of the movement

a(t).v(t) = vy(0) + gt(g) = g*t >0
The movement in this case is uniformly accelerated.

3- Normal and tangential accelerations.

- Tangential acceleration:

d( ,v§+g2t2) 297t
at 2 [v2+g2t2

_ dv@®]

ar =— avec |v(t)| =vE+g%t2 so ap=

gt gt

JVE + g2t? v

aT:

- Normal acceleration
The accelerations ay and ar are the normal and tangential components of the acceleration

vector d.

(@=arUr +ayUy)>a?=a%+a) so ay =a?—a?

2

. , g2t , g*t? , g2V + g*t? — gtt?

ay =9- — =9 — 3 272 0 AN = 2 212
JVE + g2t? vy +9g°t vy +9g°t

_ ’ g%vg g
So ay = vZ+g2t2 v

The radius of curvature

3

v v v3 v2+g2t2)2
aN:;:gvo:R: :(og )
gvo gvo
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Exercise 10
. t2
OM = (t — 1)?‘*‘?]_)
1- The equation of the trajectory
_ £2 x=t—1
OM =({t—-1Di+—-]= _t2
2 y = 7

2
t=x+l=>y = Gct)

2- The components of velocity and acceleration, and their magnitudes :

e Velocity
_dx
vx_a vle - - - -
= _ vV=v=1+t]=>|V] =V1+t?
_dy v, =t
vy, =—
dt
e Acceleration
dv
ax:d_t.'x ax:O - - -
= _.a=1/=>lal=a=1
_dvy ay_]_
a, =—=
dt

3- The nature of the movement
a.v = t > 0 so The movement in this case is uniformly accelerated.

Normal and tangential accelerations.
e Tangential acceleration
_dpl _d(V1+e2) ot
ar = at dt iz 1

e Normal acceleration

We have a? = a2 + a; soa? =a?—d?

> _ 4 t? , 1 1
as =1————=aé =—=Day = —
N t2+1 N w2 TN Ty
4- The radius of curvature
2 2 3
ay==—=R=—=2 =13
R an 1

Exercise 11

A particle moves along a trajectory with the equation y = x? in such a way that at each
moment vy = Vp=const. If at t=0, Xo, yo=0.
a- Let's find the coordinates x(t) and y(t) of the particle.

We have the following (Ox):
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dx X t
Ux:VOZE;" dxzfvodt
0 0

= x(t) = vyt

On the other hand: y=x?= y(t) = vZt?

x(t) = vyt
S0 {y(t) = vit?

5- The components of velocity and acceleration,

e Velocity
dx
Vy =— =7 .
dSt = v(t) = vl + 2vit]
vy == 2vét

The velocity module  |v(t)| = /v + 4vdt?

e The acceleration

dv,
— =0
G dt _ 2
d = v(t) = 2v5)
a, = Py _ 208
Yo dt 0

The acceleration module |a(t)| = 2vé
b- Normal and tangential acceleration

e The tangential acceleration
_dv®| 4wt

ar
dt JVE + 4vit?

e The normal acceleration
16v8t?

2 2 2 2 4
a} =a’—ad:l=af =4j —————
O vE +4vit?

48
=ay = 2 412
vy +4v,t
203 203
So ay = —=2—=="

,v§+4vgt2 v

e The radius of curvature
v 2v3 v3

Ay = — =25 R=—"
N v 205
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Exercise 12
o 1%case: a=-kv

K=constant, at t=0, v=vg et X=Xg

We have the acceleration, seeking the velocity as a function of time.

dv dv
a=——=—kv >—=—kdt
dt v
So [y &= [} —kdt = Inv — lnv, = —kt
v
> In—=-kt
Vo

Then vi = ek and v(t)=voe™
0

We have found the velocity, now seeking the position as a function of time.

dx
v=—= voe Kt = dx = voe *t dt

t _ -
So f;odx = [Jvoe™¥ dt = x —x, =%°(1—e Kty
Then x(t) = x, + % (1 —e k)
We need to find the relationship between velocity and position.

We have — = e ¥ and x = xo + =2 (1 — e7*)
0

— Vo4 _ Y\ Yo (Yo=?
Sox—x0+k(1 Uo) x0+k(v0)

vo -
k
Thenv = k(x — xy) + vy

v
> vy — v =k(x—x)

X =Xx9+

o 2" case: a=-kv?

Like the first case, we first seek the velocity as a function of time.

dv ev? dv kdt
a=—=—KvV > — = —
dt 2
v dv t -1 1 1 1
So fvov—z—fo—kdtﬁj-i';——kt SO v__kt+v_0
Then — = %t (%)
v Vo

The velocity is written as: v(t) = kt:0+1
0

We have found the velocity, now seeking the position as a function of time.

=X _ Yo o dx=

% Yo
dt ktV0+1 ktV0+1
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J.xdx = ftLdt SX—X) = 1ln(ktvo +1)
X o ktvg +1 k

The position as a function of time is given by x(t) = xo + %ln(ktv0 +1)
The relationship between velocity and position.

(*)=> ktvy +1 = % donc x = x +%ln%

= ln% =k(x —x,) = % = ek(x=x0) g0 p = pyek&o—1)

Exercise 13

Let's find the equation of the trajectory of a body whose motion is defined by
V=1 and wv,=2/(t+1)

At (t=0) x=0and y=2

ve=1=>-—=1 dx=dt=>x=t
_ 2 Ay 2 % dy =2dt= [Ydy = [ Zdt (%)
WEM T t+1 2 0t+1

(x)=>y—2=2In(t+1)
By replacing t by x we have the equation of the trajectory of the form:
Y=2+2.In(x+1)

a- The components of acceleration
_ dux _ Q)

) U= T = 0
i . _dvy _dGp) -2
y dt dt (t+1)2
So a(t) = —=7
alt) = (t+1)2]
Its modulus: |ad| = 2z
-lal= (t+1)2

Exercise 14

A Dballoon rises with a horizontal velocity vo (vy=Vo) and the wind gives it a horizontal velocity
(vx =ay)

a- Let's determine the equations x(t) and y(t), with v,=ay and v,=vq

We take at t=0 x=0and y=2

dy
= = — =
We have Vy=Vo it Vo
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= dy = vydt donc foy dy = fot vodt

:>y:170t

on the other hand

dx
v, = ay = avyt :>E = avyt

t 2
= dx = avytdt donc f(f dx = [ avotdt = x = avo%

So y=vot:ot=l
Vo

a

v

@ x=av =gy
0

The equation of the trajectory y=f(x) is of the form: y = /2’;""

b- Normal and tangential accelerations:

U = vol + ay] = vyl + avyt]
- - - d_) -
The acceleration is of the form: a = d—z = avyj

And |¥] = /vE + a?vit?

The tangential acceleration

, 2, 12,242
_ d|v| _ d |vgta“vit 2a2v§t

ar S A= ——
at at 2 /v§+a2v§t2
. . . a?vit
So the tangential acceleration is written ar =
The normal acceleration
2 _ 2 2 ) 2 2 _ 2.2 atvgt 2 _ a’vg
ac=ar+t+ay>ay=a“—ar>ay=a UO_W =ay =—;
. . . av%
So the normal acceleration is written ay = —
Radius of curvature :
v?  avi 3
aN = —_—= [
v av
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Chapter III: Kinematics of material point

Exercise 15

a-A stone is thrown from the top of a building 20 meters high with a velocity v4=10 m/s

y
c
i
Calculating the time taken by the stone to reach the ground: I
Considering oy direction, the acceleration is gravity g. O X

So ay = -g (because the motion is in the opposite direction of oy, and ax = 0 since the velocity

Vy in the direction of Ox is constant).

a—ﬁ—— =>dv, = —gdt
y_dt_ g y = g
So v, = —gt

At t=0, the stone has zero velocity in the y direction.

dy
vy == —gt = dy = —gtdt
So y =Tgt2 + ¥

At t=0, the stone is at the top of the building, so y,=H=20.
When the stone reaches the ground, its y component will be zero, so y=0.

Therefore, we are looking for the time at which y=0.

Y=-0,5 g t*+20 =0 = gt*=40

We take g=10m/s, so the time taken by the stone to reach the ground is t=2s.
b- Along (Ox), v, = % = vy = dx = vydt

At t=0, x=0, so x=vt=10t

The stone reaches the ground at a distance of 20 m.

c- Along (oy), vy=-0.t=-20m/s, and along (0x), v,x=10m/s,

So ¥ =-20T+ 10/ > |?| =400 + 100 = V500 m/s
Exercise 16

v, = Rwcos(wt)
{vy = Rwsin(wt)

Knowing that at t=0, the moving body is at the origin O (0,0),

Z. HADJOU BELAID 100



Chapter III: Kinematics of material point

1. The components of the acceleration vector and its modulus

d .

a, = % = —Rw?sin (wt)
d

a, = ¥ — Rw? cos(wt)

dt

[d)] = \/(_ROJzSiTl (wt))z + (RCUZCOS (a)t))Z = Rw?
2. The tangential and normal components of acceleration and deduce the radius of
curvature.

- Tangential acceleration:

[7] = \/ (Rwcos(wt))? + (Rwsin (wt))? = Rw

dv dRw 0
Qr =—=——>a; =
7 de ™~ dt T
- Normal acceleration:
2 2 R2 2
ay =%=a= Rw? and ar=0 SsOR =Z—= R:)ZZR
N

Radius of curvature is R.

h .
3. The components of the position vector Sin

4
INT
dx \
{vx = Rwcos(wt) - Rwcos(wt) (\ >

. =
v, = Rwsin(wt d
Y (wt) d_Jt] = Rwsin(wt)

- { dx = Rwcos(wt)dt
dy = Rw sin (wt) dt

Cos

. fdx = wacos(a)t)dt
fdy = Rfa)sin (wt) dt

x = Rsin(wt)
{y = —R cos (wt)

The trajectory equation.

x% + y? = R%sinwt + R%*cos?wt = x* + y?> = R?
4. The nature of movement

The acceleration a=ay and the equation of the trajectory is x* + y? = R?, so the motion is
uniformly circular.
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Chapter III: Kinematics of material point

Exercise 17

A material point M moves along the OX axis with acceleration a = at with a > 0.

1- Determine the velocity vector knowing that v (t=0)= vy .

dv v t
a=—= dvzafdt
dt vo 0

=>v—vy = at(l)
So v = (at + vy)i
2- The position vectorOM knowing that x(t=0)=x, .

dx x t t t
v=—=at+v, =>f dx=f(at+v0)dt=ajtdt+v0Jdt
dt Xo 0 0 0

t2 ‘
ﬁx—xO:IaE+U0t‘|
0
n+1
[xmdx = —and[ % = nx
n+1 x
x= %at2 + vot + x¢(2)
S .
:>0M=(§at +v0t+x0>l

3. Show that v? — v = 2a(x — x,)

2 2,.2 2
-vp . 1 (v- - +v8-2 -
(1):>t:w in (Z)X—x():—a(v vo) +v0(v vo):v ve—2vvy | pvo=vg
a 2 a a 2a a

v +v3 —2vy, 2V, — 2V}
2a 2a

:>x—x0=

v? — vé
2a

=>X — Xg =
so 2a(x — xp) = v2 — v}
4- For motion to be uniformly accelerated, @ ¥ must be positive.

For motion to be uniformly retarded, @ ¥ must be negative.

Exercise 18 Y .
a- Point M describes a circle with center O and radius R. R
The coordinates of point M are: / %
© <>
{x = Rcos 0
y = Rsin 0
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Chapter III: Kinematics of material point

b- The velocity at point M

= RY in 6 = —RO-sing
vx—dt— dtsm = sin
vy=REc059=R9'c059

v= |vi+vi= JRZH-Z(—SinZ)H + R26%*(cos?2)6
= v = RO

c- The components of acceleration

dv

a, = d_tx = —R6O-sin § — RO?cosh
dv

a, = d_ty = RO cos6® — RO?sinb

a= \/RZQ..Z + R294
The tangential acceleration:

dv dR6

T

The normal acceleration:

v? ,
ay =—= RO

d-Wehaveazi—?:dw =adt so w—wy=at=>w = wy+ at (*)
At (t=0), 05=0 and o= with w = 2 = wy + at = d6 = wdt + atdt

2
So [} d6 = [} wodt + [} atdt Then 6 = a* + wjt

_ _ 2 _ 2_,.2
(*):> t = w—wq - g = g(w wo) + w, (w wo) _ wi-wp
a 2 a a

2a

= 0 — w~—w(
2a
Exercise 19

v

a- The time equations of point M (the middle of AB).

Z. HADJOU BELAID 103



Chapter III: Kinematics of material point

With OA=r and OA=R
Along the Ox axis :

R
Xy =71 cosO + ) cosa

] ) . T sinf
AH =rsina =Rsin0 =sina = R
2
2 ) 2 ) LA
cos“a + sin“a =1=>cos“a=1-sin a=1—ﬁsm )

r2
— e cin?2
So cosa= |1 stm 0
R rz .,
0 = wt then xy =1 coswt + - 1—§sm wt

R . Rr sin6 ro. ro.
Yum =Esm(x=ET=55mwt SO Yu :ESlTlCL)t

2

r

( 2

— R " iz
JxM—rcoswt+— l—ﬁsm wt
| ot
k Ym =7 sinw

b- The abscissa of B:

rZ
Xg =1 cosf + R cosa = r coswt + R\/l - ﬁsinzwt

According to the equation of motion, point B does not have sinusoidal motion

c- The velocity at point M

( dx , r?wsinwtcoswt
Vy = =
M dt dy rw
L vy, = E = TCOS(U’:

d- If r=R Showing that the movement of B is sinusoidal

2

r
Xg = rcoswt + r\/l — —sin?
T

Wt = 2rcoswt
yg =0
= Xp = 2rcoswt

So the movement of B in this case is sinusoidal.
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Chapter IV: Relative motion

Glossary
In English In French In Arabic

Relative motion Mouvement relative A 48 a
Absolute reference frame Un référentiel absolu GBlhe as g
Relative reference frame Un référentiel relatif (e g e
Absolute motion Mouvement absolu dallae A< a
Entrainment motion Mouvement d’entrainement Apailly @l jaiall aladll 4S ja

Gl alaall
Velocity composition Composition de la vitesse e yudl S 5
Fixed frame of reference Un référentiel fixe ) aladll
Moving frame of reference Un référentiel mobile & jaiall alaall
Absolute velocity Vitesse absolue Alladl de )
Relative velocity Vitesse relative Ll de )

Entrainment velocity

Vitesse d’entrainement

Al & jaiall alaall ey
Gl alall

Composition of acceleration Composition des accelerations | & stuill S 3
Absolute acceleration Acceleration absolue Gllaall g Ll
Relative acceleration Acceleration relative (aail) g )

Entrainment acceleration

Acceleration d’entrainement

Al & jatiall alaall g Lol
Culil) alzall

Coriolis acceleration

Acceleration de Coriolis

Coriolis g all
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Chapter IV: Relative motion

1. Introduction

State of motion or state of rest are two essentially relative notions, meaning that each of the
two states depends on the position of the moving body relative to the body taken as reference
frame. All the motions we have studied so far have been in a Galilean frame of reference, i.e.
at rest or in uniform rectilinear motion. When two observers linked to two different reference
frames are in motion relative to each other, the position, trajectory, velocity and acceleration
of the same moving body vary according to the reference frame chosen by the observer.

A bus passenger, for example, is in motion relative to an observer seated on the side of the
road, whereas he is at rest relative to another observer (a passenger lending the same bus).
Clearly, then, the notion of motion or rest is intimately linked to the position of the observer.
To say observer is to say to choose a frame of reference to determine the position, velocity

and acceleration of a moving object at each instant.

2. Composition of movements 4S_adl cils s

Let R (O, X, v, z) be a fixed or absolute (Galilean) frame of reference and R' (O', X', ¥, Z') a
moving or relative (non-Galilean) frame of reference relative to (R).

It's always useful to know how to determine the position, velocity and acceleration of a
material point M in a fixed reference frame if they are known in the other relative reference

frame and vice-versa.

£y RIOXYZ)
M *>
- , )
RIOX)2) S M =
Zt om e 4
o vV
: . 1K) b
og.
o ¥
.

Let's associate to the reference frame R (called absolute reference frame) the reference
frame R(O,1, f,?) and to the reference frame R' (called relative reference frame) the

reference frame R’ (O ’,7, ]_'),F).
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Chapter IV: Relative motion

If M is a movable point in space, defined by coordinates (X, y, z) in the fixed reference frame
(R) and by (X', y', ") in the movable reference frame (R').

We will call:

Relative motion 4xill 4 a1 ; the motion of M relative to (R').

Absolute motion Zallaall 4< )al) : the motion of M relative to (R).

Entrainment motion: the motion of the moving frame of reference (R') relative to the fixed

frame of reference (R).
2.1. Velocity composition cile sl cus 53 ¢ i

If we know the relative motion, i.e. the motion of the material point considered in the moving
frame of reference (relative frame of reference < aidll al=dll) and that of the moving frame of

reference relative to the fixed frame of reference (fixed frame of reference <ulill alaall),

We have: OM = 00" + 0'M = 00" + (x'V +y'J + 2'k')
With: OM = (x7 + yj + zk)in the fixed reference frame R.

and O'M = (x’z_” +y'77 + z’?)in the moving reference frame R".

H H . —’_dm_d_x—) d_y-» %_’
The velocity isthen: v =——=—1+—j+—k
dOM d00’  dO'M
dt  dt dt
_dwi vy dzigg  dOOT A d) AR o e o
=ttt +dtk+ a T Ty gty TS rt e
—)_doﬁM_d_x_, d_y_, E—)_—>
Vg =—— —dtl+dt]+dtk—v(M)/(R)
— _dx dy’ dz'— do'M o
with = &Y T 82 7 _
t Ivr dtl+dt]+dtk dt/(R) v(M)/(R"
—)_dO—O; Id_?> Id_7> Id_ﬁ_ !
\ ="+ oy o = v®)/(B)

v, represents absolute velocity4illall ie ;. | the derivative of OM with respect to time in the

fixed reference frame.

v, is the relative velocity 4wl 4=yl i.e. the derivative of O'M with respect to time in the

moving reference frame.
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Chapter IV: Relative motion

v, is entrainment velocity <l abeall 4ually & jaial aled) de s, this is the derivative of OM with
respect to time in the fixed reference frame, considering the moving point M fixed in the
moving reference frame (X',y' and z' are constant).
It also represents the velocity of the moving frame of reference relative to the fixed frame.
The law of velocity composition is given by:

v, =V, + 7,
Note :

1. When the entrainment motion is translational, the vectors (7, ]—’)and_l?’) remain parallel to

the unit vectors (7, j and k) of the fixed reference frame.

v dj  dkr = — door
So—=—]=—=0andve=( )/R
dt ~ dt dt

2. If the moving frame of reference (R') rotates relative to the fixed frame of reference (R), the

entrainment velocity can also be written as:

—

Ve = T + wAO'M

With @ represents the rotational velocity 45 1 4= ) of R’/R.

. LS, = — _dooi
3. In the case of translational motion w = 0then v, = —
2.2. Composition of acceleration wle jludll s 5 ¢ ¢id

Acceleration is the derivative of velocity with respect to time :

dv _d?0M _d*x, d%y, d%z.

AT A _dtzl+dt21+dt2k
9_d0—0’)+dx'7+dy—>+dz’ﬁ+ dl+ d7+ dk’
V="ar Tart Tad? Tae Py
d dx’_; _dzx’7+dx dr

de\de ) T dez b T ar ae

d (dy' - _dzy’_,,_l_dy dj’

act\ac’ )T aer ) T ar dr

d (47 =\ _ Zz;,+dz'dﬁ

dt \ dt T dt? dt dt

and

d(  dv _dx'd7+ d¥

ac\* ac) " ar dt T dee
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Chapter IV: Relative motion

d(  dj\ dy'dj d2]'
dt dt dt dt dtz
d( ,dk’\ dz'dk  d?K
—|z =——+7z
dt dt dt dt dt?
L@ +dzz'l_c7+d2W+ ,d27+ ,d27+ ,dZP’” dx’d7+dy’d7
=gzt gl T ae dez Y TV aer TP ae dt dt | dt de
+dz’dk’
FTPTL
with

. d*0M _ d* Ay A
%=z Tt/ tae

d20M d*x', d*y' . d*z

—

=g =gzt tae) ek

_, d¥00" | d*%  d¥F 4K

=gz "X ae vV e T e
_. d?o0’ da

=0 =—7 + GA(BAO'M M)+—A0M

. dx'dv dy'djy dz'dk’'

e = (dt dt+EE+Edt>

= a; = 2(BAv) /R’

Then the law of composition of the acceleration will be :

a;=a,+a;+a,
a, is the absolute acceleration ksl ¢ Ll representing the second derivative of OM with
respect to time in the fixed reference frame. This is the acceleration of M in the fixed frame of

reference.

a, is the relative acceleration -l ¢ Ll representing the second derivative of 0'M with
respect to time in the moving frame of reference. This is the acceleration of M in the moving
frame of reference.

a, is the entrainment acceleration <uGll aleall 4uailly & sl Wladll ¢ 5L, which represents the
acceleration of the motion of the moving frame relative to the fixed frame. This is the
acceleration of the moving frame R' relative to the fixed frame R.

a, is the Coriolis or complementary acceleration (it has no physical meaning).
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Note:
If the moving frame of reference (R') rotates relative to the fixed frame of reference (R), the

drive speed can also be written as:
7 = (‘w"’) /R + (GAO'M)/R’,

Entrainment acceleration by:

T = d2oo’
e dt?

)/R + (—AO M)/R' + (BABAO'M) /R’

and the Coriolis acceleration by:
a; = 2.(@Av) /R’

With w represents the rotational velocity of R’/R.

Particular cases:

1. When the training motion is translational, the vectors 7, ]_;and K'remain parallel to the unit

vectors (7, 7 and k) of the fixed reference frame.

dv _dji _dki _ = — =
So==="=0and @ =0
dt dt dt
—, _dooi —, _ (d%oo0’ — =
Then v, = a, = ( 22 )and a. = 0.
5 - ap - — = — dw
2. If R’ has a uniform rectilinear motion thenw =0, a;, =0, — = cst and
4200’ = _, = _
——— = 0So a, = 0 because v, = cst.
dt?

3. If R’ has a pure rotation about R (R" and R have the same origin), so we have:

207
222 —Gand @ =0 then 7, = (@AO'M)/R’

Anda, = (—AO M)/R' + (BAGBAO'M) /R’
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Chapter IV: Relative motion

Proposed exercises about chapter 1V

Exercise 1

A moving train of a speed v passes through a station. At the moment t=0 a M bulb is detached
from the ceiling of one of its compartments. The movement of M is then observed by a

passenger of the train and by the station chief motionless on the platform.
Describe the movement of M for each observer.
Exercise 2

A man mounting a horse galloping at a constant speed v, launches an arrow into the air with

speed vy relative to the horse.

At what angle 6 should vy make with the vertical for the arrow to fall back onto the man?
(air resistance will be neglected).

Exercise 3

The coordinates of a moving particle in the reference frame (R) provided with the reference

frame (0,37, E) are given as a function of time by:
x=2t3+1, y=4t>+t—1, z = t?

In a second frame of reference (R') with the reference frame(0’,7,)", k") with 7 =

s — —

7, k' the coordinates of a moving particle are given by:
x'=2t3, Yy =4t*-3t+2, zZ=t>-5

1- Calculate the express the velocity v of m in (R) as a function of its velocity v' in (R’), and
proceed in the same way for the accelerations.

2- Define the entrainment motion of (R') relative to (R).

Exercise 4
In the (Oxy) plane, consider a system of moving axes (OXY) with the same origin O,

rotating with a constant angular velocity o around (OZ). A moving point M moves along axis
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(OX) with constant acceleration y and no initial velocity. We call relative motion of M its
motion with respect to (OXY), and absolute motion with respect to (Oxy).
At time t=0, axes (Ox) and (OX) are coincident and M is in OA.

Calculate in the moving reference frame : "

1- The velocity and relative acceleration of M.

2- Entrainment velocity and acceleration. J v

3- Coriolis acceleration. N U -

4- Deduce its absolute velocity and acceleration. Uy 0 f; ® >

Exercise 5

A point M moves with a constant velocity vo on the axis (OX) of a coordinate system

(OXYZ) which rotates with a constant angular velocity o around (Oz) in the plane (Oxy).

1- What is the expression of OM in the fixed frame (Oxy)? Calculate the absolute velocity and
absolute acceleration.

2- Calculate the relative velocity v, and the entrainment velocity v,, verify that v,-v,.v,.

3- Calculate the relative acceleration a,, the entrainment acceleration a,, and the coriolis

acceleration a;, verify that a -a,.a.+a..
Exercise 6

In the (Oxy) plane, we consider a system of moving axes (OXY) with the same origin o and
such that (OX) makes a variable angle 6 with (Ox). A point M moving along axis (OX) is
marked by OM=r. We call relative motion of M, its motion with respect to (OXY), and

absolute motion with respect to (Oxy).

Calculate in the moving frame of reference (polar coordinates):
1- Relative velocity and acceleration of M.

2- The velocity and entrainment acceleration of M.

3- Coriolis acceleration.

4- Deduce its absolute velocity and acceleration.
Exercise 7

Consider the reference frame R(Oxyz) where point O' moves along the axis (Ox) with
constant velocity v. O' is linked to the reference frame (O'x'y'z"), which rotates around (0z)
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with constant angular velocity . A moving point M moves along the axis O'x" such that
|O'M|=t2.

At time t=0, the axes (Ox) and (O'x") are coincident and M is at O.

v

1. Calculate the relative velocity v, and the entrainment velocity v,, deduce the absolute

velocity v,.

2. Calculate the relative acceleration a,, the entrainment accelerationa, and the Coriolis

accelerationa, , deduce the absolute acceleration a,.
Exercise 8

Consider the reference frame R(Oxyz) where point O' moves along axis (Oy) with constant
acceleration y. We link to O' the reference frame (O'XYZ) which rotates around (Oz) with a
constant angular velocity . The coordinates of a moving body M in the moving frame of

reference are x'=t? and y'=t.
At time t=0, the axis (O'x) coincides with (Ox).

Calculate in the moving frame of reference:
1- Velocity v, and v,, deduce the absolute velocity v,.
2- Relative acceleration @,,, entrainment accelerationa, and Coriolis acceleration a;, deduce

the absolute acceleration a,.
Exercise 9

In a plane (Oxy), consider a system of moving axes (OXY), of the same origin O, rotates

around (Oz) with a constant angular velocity m. A moving point on axis (OX) is marked by:

|W| = r =13(1 + sinwt)
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Where 1y is a positive constant: vt
Calculate in the moving reference frame:
1) Relative velocity and acceleration of M. Y M
2) Entrainment velocity and acceleration of M. | 7.
3) Coriolis acceleration. U, ” ) b=t .
4) Deduce its absolute velocity and acceleration. o7 X

Exercise 10

In the plane (Oxy) of a reference frame (Oxyz), a point O', to which the reference frame
(O'XY2Z2) is linked, describes a circle of center O and radius R, and rotates with a constant
angular velocity o. A point M moves along the axis (O"Y) parallel to Oy with constant

acceleration vy (at time t=0, M is merged with My(R,0,0) and its initial velocity is positive).

<V

1- Calculate in the (Oxyz) reference frame the position vector OM, the absolute velocity v,.
And the absolute accelerationa,.
2- Knowing that O’X// O x, O’Y// Oy and O’Z// Oz, calculate:
a- Relative speed and drive velocity, check that v, -7, v,+7,.
b- A relative acceleration @, , entrainment acceleration a,, and the Coriolis acceleration

a. , check that a,-a,.a,.a..
Exercise 11

Consider a fixed reference frame (Oxyz) and a moving reference frame (Ox'y'z") which rotates

around (Oz) with a constant angular velocity o.
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A moving point M (OM=r) moves along the axis (Ox") according to the law:

r = 1y (cos wt + sin wt) with ro= constant.

Determine in the moving reference frame (Ox'y'z'):

1- The velocity v, and the entrainment velocity v,, deduce the absolute velocityv,.

2- Relative acceleration a,., entrainment acceleration a, and Coriolis acceleration a, , deduce

absolute acceleration a, .
Exercise 12

Consider the fixed reference frame R(Oxyz) where point O' moves along axis (Ox) with
constant velocity vo. Linked to O' is the moving reference frame (O'X'y'z") which rotates
around (Oz) with constant angular velocity . A moving point M moves along the (O'y")
axis with constant acceleration .

At time t=0, the axes (Ox) and (O'x") are coincident and M is at O.

Calculate in the moving frame:
1- The relative velocity v, and the entrainment velocity v,, deduce the absolute velocity v,.
2- The relative acceleration a,, the entrainment acceleration a, and Coriolis acceleration a; ,

deduce the absolute acceleration a,.
Exercise 13

In the (Oxy) plane, a point O' (the origin of the moving reference frame) moves along the
(Ox) axis such that |OO'|=t. The reference frame (O'X'Y') rotates around (Oz) with a
constant angular velocity ®. A moving point M (O'M=r) moves along the axis (O'X")

according to the law: r = ry (cos wt + sin wt) With; ro= constant.
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Determine at time t as a function of ry and :

1- The relative velocity v, and the entrainment velocity v,, deduce the absolute velocity v, in

the moving frame of reference.
2- The relative acceleration a,, the entrainment acceleration a, and Coriolis acceleration a,

in the moving frame of reference, deduce the absolute acceleration a, in this frame of

reference.

Exercise 14

In the frame (Oxyz), a point O’ to which the frame (O’XYZ) is attached, describes a circle
with center O and radius R; it rotates with a constant angular velocity o’ in the plane (Oxy).

A point M describes a circle with center O’ and radius d in the plane (O’XY); it rotates with a

constant angular velocity Q.
Y’ A

Calculate in the fixed frame (Oxyz) knowing that (0’X”) /7 (0X):

1- The absolute velocity v,, relative velocity v, and entrainment velocity v,. Verify that

Vg=UpiUp .
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2- The absolute acceleration a,, relative acceleration a,, entrainment acceleration a,, and

Coriolis acceleration a.. Verify that a,-a,+a.+a. .
Exercise 15

In the plane (Oxy), a point O’ to which the frame (O’x’y’z’) is attached, describes a circle
with diameter R rotates at a constant angular velocity @ around point O. A point M initially at
O’ moves along the circumference in the positive direction with the same angular velocity o

and the same radius R.

At time t=0, M is on the O’x’ axis parallel to O’x”’:

1. Provide the expression for OM in the fixed reference frame R(Oxy).

2. Calculate the components of the velocity and acceleration vectors of M in the
reference frame R(Oxy).

3. Calculate the components of the velocity and acceleration vectors of M in the
reference frame R’(O’x’y’).

4. Calculate the entrainment velocity v, , the entrainment acceleration a,, and the

Coriolis acceleration a,.
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Correction of exercises about chapter 1V

Exercise 1

We consider the station as the fixed reference frame and the train as the moving reference
frame. The motion of “P” observed by a passenger (inside the train)

— N y
v, = —gtj = vy e P
y
U,
y
1 A train
1 The station
- X

~J

The speed of the train relative to the station ¥ = v, = viwith U, = Tand U, =J’

The reference frames are parallel because the train undergoes a translational motion relative to

the station.

dx
dt

v=—=dx =vdt sox = vt (at: t=0, x=0)

X
X=vt=>t=—
v
The motion of “P” observed by the stationary stationmaster on the platform:
— — —_— > - — X\ > -
Vg =V +V, =—gtj+vi>v, = —g(;)]+vl

The position :

x =vt

1 2
Y =59t" + ¥y
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Chapter IV: Relative motion

Exercise 2

In this case, the ground is the fixed reference frame, and the horse is the moving reference
frame. The horse has a translational motion relative to the ground, so the unit vectors of the

two frames are equal.

Y Arrow
A
\
Uy
V_) x
f I - Usx Ground
v Z,
i X

We study the motion of the arrow in both frames.
VHorse/ground =V, =V and  Vgrrow/horse = v =74

Vax =V + v, Sin O
Vay = Vo Cos 6

()

T = T = Vaad + ] |

The entrainment velocity is along the ox axis (translation motion), whereas the relative

velocity makes an angle 6 with the vertical oy.

(o

v

r

T
Xarrow/ground = f Vg dt = f (v + vysin 0)dt = (v + vysin 0)t
0

0

()=

T T
k X' Horse/ground = f v dt = f vdt = vt
0 0

For the arrow to fall back on the man, it's necessary that (v + vysin 6)t = vt = sinf = 0.

Thus, it's required that 6=0, meaning v, should be vertical.
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Chapter IV: Relative motion

Exercicse 3
. x=2t3+1
OM/(R){y =4t?+t—1 and O'M(R"){y' = 4t> — 3t +2
7z =t?

x' = 2t3

7' =t?>-5

1. The speed of point m in the fixed reference frame (R) and the moving reference frame (R").

> 4
(g "1
dOM ddt 4
I dy _ y 1
dz ot ]—;A
\ — R X’k
dt Oc _;r gl
o 'O
X
r_=6t2 LA
- dt ] - -~
—,> N dO’M dy, v XE
v =UT=W<E=8LL_3 O [1
2 _ 5
\dt

So:
D= 6t27 +(8t + 1)] + 2tk And v = 6t27 +(8t — 3)] + 2tk

—

We have v, = v, + v, >V, = 1, — U,

To=(6t27 +(8t + 1)j + 2tk) — (6t21 +(8t — 3)] + 2tk)=4]

2. The acceleration of point m in the two reference frames, fixed (R) and moving (R’), is as

follows:

(dv,

= 12t
| ae
s-a =200 _g
Y dt | de
dvz_z

\ dt
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Chapter IV: Relative motion

Conclusion:

The motion of frame of reference (R") relative to the fixed frame of reference (R) is a uniform

translational motion along axis (Oy) with a constant speed of 4m/s.
Exercise 4

The fixed frame of reference and the moving frame of reference have the same origin, so O’

and O are the same.

Then, 00’ =0 and OM = O'M = ~yt2U,
2

with U, = cos wtT + sin wtj

and U_y) = (—sin wt 1+ cos wtJ)

Wehavealsoa7=< )and _0
o dt
1. Absolute velocity
— dO M 277 — e
vy = —/(OXY) with 0'M = OM = —yt U, S0 v, =ytU,

Absolute acceleration :
— dvr ’ e
a, /(0 XY) with v =ytU,

— dZOIM pnd
So a, = 7 = ]/UX

2. Entrainment velocity :

Vg = 00’ + @AO'M with 007 =05s07, = BAO'M
WwAO'M =] 0 0 w —w%ytzU S0V, =w -yt? U
%ytz 0 0
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Chapter IV: Relative motion

Entrainment acceleration

2907 —_— O B —— o L — —
a, =% 4+ BA@AO'M) + 22 A0'M ; *2AO'M =0 because w constant and
at at at

0 0 W =—w2§yt27x’
0 a)%ytz 0

And BA(BAO'M) = BA (w3yt? Uy)

— 1 e
So a, = —wzzytz U,

3. Coriolis acceleration

oo ~
a;= 20Av, =20 0 o|=2wytl, so a;=2wytl,
yt 0 O

4. Absolute velocity :

Vo =V + 0, = ytlUs + 0 5yt2 T,

= yt(cos wtT+ sin wt)] + w %ytz (—sin wt T+ cos wt))

Acceleration absolute
@ =T+ T+ =y — w5yt Uy + 20ptT,

a; = (y — w? %ytz) (cos wt T+ sin wt) + 2wyt (—sin wt T+ cos wt})

Exercise 5
y
X
M
Y
J| UL
N\ /A 6 = wt
Uy N\
o I X

In the farme (0XY) OM = Vo t@)

With U_X) = Cos wt] + Sin ootf And U_Y) = —sinwt1 + Cos ootf

W/(R) = vyt (Cos ot + Sin ootf) In the farme (Oxy)

Z. HADJOU BELAID 123

d?o00’
dt?

=0



Chapter IV: Relative motion

Absolute velocity

dOM
Vg = Tt ——/(R) = v, (Cos wt I + Sin wt]) — vywt Sin wtT + vowt Cos wt]

=v, (cos ot] + Vo Sin ootf) + vowt (—sin wt] + Cos u)t]—j :UOU; + voth_Y)

(or) F(;—do_M/(R) _M_UOU vyt dde
- de’ dU, df
WHR T3 T de dt
dU, dU,dot . dU, —.
= It = 70 dt —wU becauseﬁzUy

SO . v—a) = voU—X) + vo(l)tU—Y)
Absolute acceleration

dva

-/ (R)

= —vyw Sin wt] + Vo W COS wtf—vow Sinwt1 + Vo WCOS ootT

— 10T cos wt] + v,w?T Sin wt]
— dﬁ . 7 2 T .
=>a,; = W/(R) = 2V, (—smootl + Cos ootf) —vow*T (Cos wt ]+ Sin wtf)

= a—a) = sz(l)Uy - vaZTUx

Relative velocity

= =7.70t Ux SO v—‘r):von

—
Uy

Entrainment velocity

The fixed frame and the mobile frame have the same origin so O’ is confused with O, then

00’ =0
o> _ 400" | dUy _ G _x avx _ T
Ve = — + X . 0+ vyt With . = wU,
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Chapter IV: Relative motion

S0; v, = wvt U,

Or

=wv0tU—y) SO Eg=(uv0tU—y)

With ﬁ; = Cos wt [+ Sinwt] And U; = —sinwt + Cos wt]
So v, =7, + v, = vp(Cos ot] + Sinootf) + w vyt (—sinwt]+ Coswt])

—

SV, = v0m+wvotU_y)

So v, =, +7v, isverified
Relative acceleration

I

ay =—- with v, =v,Ux Then a;, =0

Entrainment acceleration

_ d*00" 4, d (dU;\ _. d, —.
@ =—3 +X Tz = vt a, = Vota(w Uy)
= a, = Vytw (%) With % = %% = —wU,:

= a, = Vytw (+ (—a)U;))

>a, = —vew?t U,
Or
d?00’

— =y dB ——
a, = + GA(GAO'M) + - AO'M

dt?
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Chapter IV: Relative motion

—AO’'M = 0 because w constant and ——— =10
dt dt?
o R (7 /A T .
And GA(BAO'M) = GA(w vt Uy) = | 0 0 | = —w?v,t U,
0 wyet 0

So: a, = —wv,tU,
Coriolis acceleration
., _dxdU, v, .
a. = ZE at with = vyt etW =wU,
SO _dz = ZUOwU_y)
Or

U, U, U, -
ac= 20Av, =20 0 wl|=20vU,

v, 0 O
SO a—(; = Z(UVOU_y)
Absolute acceleration
a;; = a: + _dz + a_g = _wzvotﬁx) + zwvoU—y)

= ag = —w?vpt(Cosw t T+ Sin wt]) + 2wve(—sin wt T + Cos wt])

So

a, = a, + a; + a, Is verified

Exercise 6

In the mobile frame (0XY): OM = rFx)

In the mobile frame (polar coordinates) we have:

Relative velocity

_, do'M dr —._, .
Ur = T/(OXY) = Evar =1rUy
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Chapter IV: Relative motion

Relative acceleration

—

a, = dtr with v, = r Uy

e dzr—> e
So: a, = FUX = T'"UX
Entrainment velocity

00" = 0 "because both reference frames have the same origin."”

_,_d0_0"+XdU;_6+ du,
T dc T dr
With 2%z — 4% 46 0 d 6 = wt
dt de dt
alUy _ dUx dot _ g
So — =i @ wU car — =U,
Then?ezwrfy
or vj_ﬂ+ BAO'M
00" =0 sov, = GAO'M

_ . U U, U . .
WAO'M=|g ¢ @|=wrt, So v =wrU,
r 0 0

Entrainment acceleration

_ d*00" d*U, d dU

Ge= g TXGe TTa (‘” Uy)

>a, =1 w(dﬂ> With dﬂ:ﬁ@z—wﬁz
dt dt dae dt

>0, = Tw (+ (—wa)))

—

>a, =— rw?U,

or
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Chapter IV: Relative motion

o = 00 + GA(GAO'M) + d(T)Ao'M
Ge = "z TOAE dt
do — d?00’ _
—AO'M = 0 because w constant and =0
dt dt?
. R (/A TA .
GABAO'M) =dMwrUy)) =0 0 o=-w?rU
0 wr O
So @, = —w?rl,

Coriolis acceleration

_ _dxdu, dUu, .
aC=ZE It with X =r and It = wU,

Soa; = 2r'wU_y)

Or
U, U, U, _
a.=20MAv, =210 0 o = 2wrU,
r 0 0

Soa, = Zwr'Ty
Absolute velocity 7, =7, + 7, =r U, + w1 @

Absolute acceleration a; =@, +a; +a, = (r' — w?*r)Uy + 2wr'U,

Exercise 7
Relative velocity z z
v =2 /(RYwith O'M = t2T;  so %, = 2tUy
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Chapter IV: Relative motion

Entrainment velocity:

Vg = T + wAO'M

We are looking for the vector 00'.

The point O’ moves along the axis (Ox) with a velocity v, thus v,, = %? =l

At t=0, x=0 so %=v=>00’=vt so 00" = vtl

WwAO'M = 0 0 wl|= (UtZUy and 7 =i
t2 0 0

— _ 277 -
So v, = wt“Uy, + vi

"we need to express v, In the same coordinate system. To do this, we will express 7 In terms

of U, and Uj,

U, =cosOT+Sin0] — =
We have o L= 1=cos0U, —Sin6 U,
U, = —sinft+ cos 0

So v, = wtzU_y) + v(cos 6U, — Sin 6 U_y)) = v cos OU, + (wt? — v sin H)UT,
Absolute velocity
Ty =T, + 7, = 2tU, + a)tZU_y)+v(cosem—Sin9U_y))
=7, = (2t + v cos 0)U,, + (wt* — v sin H)Fy)
Relative acceleration

@ =T /(R with v, = 2tU; so @ = 2U,

Entrainement acceleration

_, d*00" . dd
ag = — 5~ + GA(GAO'M) + ——AO'M
400" _5,% \o'Wi =3 0 constant
iz - Vg = constan
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Chapter IV: Relative motion

. S (VAR TS _
And GA(BAO'M) = BAwt?U, =g o o= —0*t?U,
0 wt? 0

So a, = —w?t?U,
Coriolis acceleration

U, U, U, .
A =20A%, =209 0 =40l

2t 0 0

Absolute acceleration

A, =@ +a; + a, = 2U, — w*t?U, + 4twl,

So a;=(2 — w?t?)U, + 4t wU,

Exercise 8

The coordinates of point m in the moving reference frame M(t?, t)/(R”).
So 0'M is written: O'M = t2T,, + tU,

Or O’ moves on the axis (Oy) with a constant acceleration y.

at instant t=0, the axis (O’x) is confused with (OX). So v,=0 and y,=0

then; the acceleration of O'is:y = %:’dv = ydt

After integration V=y.t

And ‘;—Jt’ =yt=>dy=ytdt soy= %ytZAnd 00" = %Vtzf

—_—

do'm
dt

Relative velocity: v, = /(R with 0'M = t2U, + tU_y) So v, = 2tU, + U_y)

Entrainment velocity: v, = 299+ ZAO'M With 007 = Zyt? 200" vty
dt 2 = dt
WAO'M=|09 0 ol=-0tUy+wt?U, so v, =yt]—wtlUy+ wt?U,
t2 t 0
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Chapter IV: Relative motion

We need to write v, in the same coordinate system, so we'll write j as a function of

F,;and Fy):

U, = cosf +Sin6] ., . — —
We have: {__ N =] =sinfU, + cos 0U,,
U, = —sinft + cos 0]

So v, = wtziy) — wtUy, + yt(sin@@ + cos 6@)

:'132 = (yt sin 6 — wt)U, + (wt? + ytcos 0U,
Absolute velocity :
Vo =V, + 0, = 2tU, + U, + (yt sin 8 — wt)U, + (wt? + ytcos 6)U,,
:'v_a’ = (yt sin 6 — wt + 2t)U, + (wt? + ytcos 6 + 1)UT,

Relative acceleration :

@ =X /(Rwith B = 2tUy, + Uy So @ = 2U,

Entrainement acceleration :

_, _d*00 _ . . di
@ =—7+ GA(BAO'M) + - AO'M
1 oW 5B tant ddZW_ 1
dt = ecause w constant an dt2 =YV
and GA(BAO'M) = BA(—wtUy + wt?Uy) =| o 0 ol=-0*t*U, — 0*tU,
—wt wt? 0

Thena, = j — w?t?U, — w*tU, = y(Sin U, + cos 8U,)) — w*t?U, — w’tU,
a, = (ySin6 — wt>)U, + (ycos 6 — wzt)U_y)

Coriolis acceleration :

—

FX’) Uy UZ —_— P——
@ =280%=2|g 0 of=40U, - 200,
2t 1 0
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Chapter IV: Relative motion

Absolute acceleration :
a; =a;+a;+a;

:>EZ = 2U, + (y Sin6 — w?t?)U, + (y cos 6 — wzt)U_y) + 4t a)U_y) —2wU,

S0 @=(2 — 2w + ¥ Sin 6 — w?t2)U, + (y cos 6 — w?t + 4tw U,
Exercise 9

The fixed frame of reference and the moving frame of reference have the same origin, so O'
and O are the same.

—_— | — —

Then 00’ =0 and OM = O'M = |OM| Uy = r = ro(1 + sinwt) Uy

with U = cos wt1+ sin ot Y4 X
— Y
and Uy = (—sinwtT + cos wt]) M
Wehavealso;8=(8> and &2 =0 LU
o dt — 6 = wt

Uy & >
Relative velocity o ! X
S dO—M/(OXY) S0 Ty = ry(w cosot)U,

Relative acceleration

20/M —
a = d”r L/0XY) so @ =S50 = —ro(w? sinwt) Uy
Entrainment velocity
vj_ﬂﬂuAOM with 00’ = 0s0 7, = GAO'M
U, u, U, o
wAO'M = 0 0 w|=wry(l+sinwt)U,
ro(1+sinwt) 0 O
S0 U, = w ry(1 + sinwt) 73,)
Entraiment acceleration
2hn! d2o00’ =
a, = 00’ + A(wAO M) + AO M, —AO M =0 because w constant and 22 = 0
_ TR 7 Uy U,
And BA(BAO'M) = @A (wgytz Uy) =10 0 o
0 wry(l+sinwt) 0
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Chapter IV: Relative motion

= —w?ry(1 + sinwt) U,
S0 @, = —w?ry(1 + sinwt) U,

Coriolis acceleration

U, u, U, B
a, = 2whAv, = 2 0 0 w|=2wry(wcoswt)U,
ro(wcoswt) 0 0

S0 a, = 2wry(w coswt)ﬁy)
Absolute velocity
Ty =Ty + 7, = ro(w cosot)Uy + w re(1 + sinwt) UT,
In the Cartesian coordinate base:
Vg = yt(cos wt1+ sinwt)] + w %ytz (—sin wt T+ cos wt])
Absolute acceleration
a, =a; +ac+a,
@, = 2wrs(w coswt)U, — w?rg(1 + sinwt) Uy — ro(w? sinwt) Uy
In the Cartesian coordinate base:

a, = (—ro(w? sinwt) — w?ry(1 + sinwt)) (cos wt T+ sin wt) + 2wry(w coswt) (—sin wt T

+ cos wt))
Exercise 10

At t=0, y’=0 and v=Vq

OM =00 +0'M with00 = R(cos wt?+ Sin ootf)

M moves along the axis (O'y) parallel to Oy.

v

With constant acceleration vy.

%XV

After integration v = yt + v,

dy 1,
Ezyt+v0:>dy=ytdt+v0dt So yzzyt + vyt
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Chapter IV: Relative motion

—,—> 1 2 —_
O'M = (Eyt + vot) U,

Since, (O’y)//(oy) then U_y) =7 So O'M = Gyt2 + vot)U_y) = Gyt2 + vot)j
Finally OM = 00’ +0'M = R(cos wt? + Sinwt]) + Gytz + vot)f

-

- 1
= OM = R cos wtl+ (r Sin u)t+§)/t2 + v0t>]

Absolute velocity :

— dm . - -
v, = 7/(R) = —rwsin ot + (rw Cos wt + yt + vy)J

Absolute accelertion :

_, dy,
=0

/(R) = —r w?Cos wtl + (—rw?Sinwt+y)J

Relative velocity :

_, do'm | R
7= /(R) = (vt + o))
Entrainement velocity :
VU, = T + wAO'M

@AO'M = 0 Because the unit vectors of the two marks are parallel, so there is no rotational
movement.
There is a translational movement

doo’ .
Vp = —. = “Twsin wtl+ rw Coswt]

Let's check that : v, = v, + v,

U, =1, + 7V, = (yt +v)] — Rw sin Qt7+ rw Cos wt]

= —rwsin wtl + (rw Cos wt + yt + vy)J

So v, = v, + v, Is verified.
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Chapter IV: Relative motion

Relative acceleration :

— (av—;

a, = dt) /R with v, = (yt + vy)] Soa, =yJ.

Entrainement acceleration :

o = 2200 + BN (BAO'M) + d(T)AW
Ge = "z T UMY dt

dw

o AO'M =0 and E)’A((T)’AW) =0

Because there is a translational movement between the reference marks.

— dZW N . 5 N . )
e =7 = T w?Cos wtl+ —rw?Sinwt] So a, = —w?ry(Cos wtl + Sin wt))

Coriolis acceleration :

a, = 2&8Av, =0
Let’s check that : a, = a, + a, + a,
a, +a,+a, = yJ+-rw?Cos wtl + rw? Sinwtj
= —r w?Cos wt?+ (—rw?Sin wt + y)J
Soa, =a, +a; +a, Is verified
Exercise 11
r = 1y(Cos wt + Sin wt) U_)£

Relative velocity: v, = d?i—tM /(R"

O’ is confused with O, then : OM = 0'M >V, = ?—tM/(R')

7, = ryw(—sinwt + Cos wt) Uy

door

Entrainment velocity : v, = 299+ BAO'M With 007 = 0 =0
dt = dt
__ |Ux Uy Ug _ _ _
WAO'M =g o w|l=wrU, sov,=wrU, =wr(Cos wt+ Sinwt) Uy
r 0 0
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Chapter IV: Relative motion

Absolute velocity : 7, = 7, + ¥, = ryw[(—sinwt + Cos wt)U, + (Cos Ot + Sin wt)U, ]

[v/] = row \/(—sinwt + Cos Qt)? + (Cos wt + Sin wt)?

Then [v,] = rowv2 So [v,] Is constant

Relative acceleration :a;, = —= /(R") v, = row(—sinwt + Cos wt) U;

So @, = ryw?(— Cos wt — sinwt) Uy
Entrainment acceleration :

— d200
ae

+ GA(@AO'M M)+ W \O'M

2 Y Y
With —AO M =0 Becausew constantand 00

=0
_ N (VAR .
And GA(GAO0'M) = BA(wrU,) = 0 ol|=-0ru;
0 wr O

Thena, = —w?ry(Cos wt + Sin wt)U,
e

Coriolis acceleration: a; = 2dAv, =2|0 0 o= 200U,
v, 0 O

Soa, = ZvaU_y) = 2ryw?(—sinwt + Cos wt)U,

Absolueacceleration :a, = a, + a, + a,

a, = —row?(Cos wt
+ sinwt) UT( — w*ry(Cos wt + Sin (nt)Fx) +2ryw?(—sinwt + Cos ot)U,
a, = —2r,w?(Cos wt + Sin wt)U, + 2ryw?(—sinwt + Cos wt)U,

[@a] = 2ryw? /(—(Cos wt + Sin wt))2+(—sinwt + Cos wt)?

Then, [a,] = 2 row?V2 so [a,] Is constant
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Exercise 12

1- Speeds:
M moves along the (Oy') axis with constant acceleration, so: O'M =Y u, withy = %
and at t=0 the point M isat O’ :

y = % = [Ydv =y [, dt sov =yt (att=0, vo (M)=0)

ay v t 1
v=yt=_—= JydY =y [ tdt soY = Eytz (at t=0, Yo (M)=0)

- 1 —
0O'M =5yt2 u,

. — d . e oy
O’ moves on Ox with a constant speed vo S0 00 = xt and vy = d—’; and a t=0, axis (O’x’) is

confused with (Ox).

d t , — S
Vo = d—::> fox dx = v, fo dt so x = vyt (att=0, Xo (0’)=0) then 00" = v,ti

do'M

Ve == =Y tuy

doo’ —— 0
Ve = —— ®.-~0M with o=1{0

)
U, = cosOT + sinf] and w,, = —sinbi + cosbj
Using the passage table : u, u,
So 7= cosBu, — sinBu, [ Cosb -sin 0
i Sin6 cosf

doo’ R s
5 = Vol = vo(cosot Uy — sinot uy)
— i x 1 —
©o-~0M=[(0 0 o= —Eytza) Uy

1.2
0 vt 0
— 1 .- — . —
Ve = (— SYo + VOCOS(Dt) u, + (—vosinwt) uy
vV, =V, +V, = (—%ytzw + vocosa)t) u, + (vt — vosinot) Uy
2- The accelerations :

N
—_— dVr —

d, at = yuy

_, dz00’ do .. =  — .. — .. = .. d200' _ =
Ao = —3 < "OM +o e OM with —=—=10
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ol
6) ‘...'- _CI)_’ ...... O’M — 10 0 0 — _%,YtZ(DZ u_y)
—Eytzm 0 0
a—e> = __Vtzw y
a =20V, =|0 0 20=-2y1twuy
0 yt O

So a; = (—2ytw)u, + (y—%ytzmz )ﬁ;
Exercise 13
r = 1y(cos wt + sin wt) U_X)

Relative velocity

szdO—M/(R)Wlth 0M=0M>=7v OtM/(R’)

Ty, = row(—sinwt + cos wt) Uy,

Entrainment velocity

Fe’=d0—0’+ BAO'M  with 007 = ti=22Y =7
oy U, T .
WAO'M = 0 0 w —ery

r 0 0

Sov, =T+ w rUj, = (cos@@— sin@@) — w 1(cos wt+ sinu)t)U_y)
T, = cos OU, — (sinf + w ry(cos wt + sin wt) U_y)
Absolute velocity
Uy = Uy + 7, = [(cos wt + row(—sinwt + cos oot))Fx) — (sinf + ryw(cos wt + sin oot)Fy)]

Absolute acceleration

— dvr
—/

a, = (R with v, = ryw(—sinwt + cos wt) U

So a, = ryw?(— cos wt — sinwt) Uy
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Entrainment acceleration

_, d*oo0" _ | e dd
@ =—5 GA(BAO'M) + < ho'M
do —— - d?00’
—AO'M = 0 because w constant and =0
dt dt?
. S (A .
And GA(GAO'M) = GA(wT Uy)=|g 0 o|=-0*rUs
0 wr O
S0 @, = —w?ry(cos wt + sin wt)U,

Coriolis acceleration

U, U, U, .
a;=20Av, =20 0 w|[=20vU,
v, 0 O

soa, = 2 wvy, U_y) = 2ryw?(—sinwt + cos oot)@
Absolute acceleration
=T A+

a, = row?(— cos wt

— sinwt) Uy — w?ry(cos wt + sinwt)U, +2r,w?(—sinwt + cos wt)ﬁy

= @g = —2r,w?(cos wt + sin wt)Uy + 2r,w? (—sinwt + cos wt)U,
Exercise 14

00" = R(Cosw'ti+Sinw't]) and 0O'M = d(Cos Qt7 + Sin Q¢ )

OM =00+ 0'M = R(Cosw't T+ Sinw'tJ) + d(Cos Qt T + Sin Q¢ J)

Absoltue velocity

L e,

The axes (0’X), (O’Y) (moving reference) are parallel with the axes (Ox), (Oy) (fixed
reference), therefore:
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Chapter IV: Relative motion

U, =Rw (—sinw't? + Cosw't)) + d.Q (—sinQt7 + Cos Qt))

57, = —(Rw' sinw't+d.Qsin Q)T+ (Rw'cosw't + d.Q cos Q)]

Relative velocity

dO’ . ->
= d.Q (—sinQt7 + Cos Qt))

Entrainment velocity

ve=?+wAOM

@AO'M = 0 Because the unit vectors of the two frames of reference are parallel, so there is a

translational movement and not a rotational movement of axes of moving reference frame.

doo'’ R N
v, =—— = —Rw'sin o't + Rw' Cos w't]
dt

Absolute velocity

o =T, + 7, =d.Q (—sinQti + Cos Qt]) + R’ (—sinw't? + Cos w't])
= —(Rw'Sinw't +dQSinQt) T+ (R w' Cosw't +dQ cos Q)]

So v, = v, + v, Estis verifiesd
Absolute acceleration

dva

d
/( )— [ (Rw'Sinw't +dASinQt) T+ (Rw' Cos 't +dQ cos Qt)]

a; = —(Rw'?Cos w't + dQ?Cos Qt)T — (Rw'?Sin w't + d.Q%Sin Q)]

Relative acceleration

a, = dvr/(R) with v, = d.Q (—sinQt7 + Cos Qt))
Donc a, = d.0? (—cos Qti — sin Qt))

Entrainment acceleration

00’
dt?

— =y dB ——
a, = + GA(GAO'M) + - AO'M
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7 —

—AOM = 0 and GA(BAO'M) = 0
Because there is a translation movement between the two references

_ d?o00’
Ge = " g12

= —R w'%Cos w'ti + —Rw'?Sinw't]

So a, = —w'?R(Cos w'tl + Sinw't))
Coriolis accélération

a, = 28AT, =0

Absolute accélération

a,+a;t+a, =d.0% (—CosQt T —sinQt)) + —Rw'?Cos w'tT+ Rw'?Sinw't]
= —(Rw"? Cos w't +d.0%Cos Q) — (Rw'?Sinw't +d.Q%Sin Qt)]

Soa, = a, + a; + a, is vérified
Exercise 15
The axes (Ox) and (O’x”) are not parallel, and the rotation is along the (Oz) axis.

The expression of (OM) vector in the fixed frame (Oxy).

OM = 00' + 0'M with R=0’M=00’

00’ = R(Coswt T+ Sinwt]) and O'M = R (COS wtT + Sin wtf’)
with I’ = Cos wt T + Sin wt] and 7 = —sinwt 7+ Coswt ]
So O'M = R(Cos wt(Cos wt T+ Sin wt J) + sin wt(—sinwt T + Cos wt]))

= 0'M = R(Cos 2wtT + sin 2wt])

S0 OM = R[(Cos wt 7 + Sin wt ) + (Cos 2wtT + sin 2wt])]

= 0'M = R[(Cos 2wt + Cos wt)T + (sin2wt +sin wt) J)]
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""The expression of absolute velocity and absolute acceleration in the fixed frame.™
Absolute velocity

. doM
Ta=——/(R) = —(00' +0'M)

=7, = R[(— wsinwt — 2w Sin 2wt)T + (w Cos wt + 2wcoswt) J]

Absolute accélération

T (R[(— wsinwt — 2w Sin 2wt)7 + (w Cos wt + 2wcoswt) J])

= a, = R[(— w?coswt — 2w? Cos 2wt)l — (w? Sin wt + 2w?sinwt) J]
""The expression of relative velocity and relative acceleration in the fixed frame."

Relative velocity

_, do'Mm | . ~ -
v, = T /R'= Rw (—sinwtt’ + Coswt))
Relative acceleration
—_—> dv—r) 1 2 _[) . _[)
a, = T /R'= —R w* (coswtt’ + Sinwtj")
Entrainment velocity
Vg = do—o+ BAO'M Wlthdo—o = Rw (—sinwt? + Cos wt))
|7 joow - .
wAO'M=[ 0 wl= Rw (—sinwti’ + Cos wtj")
Rcoswt Rsinwt 0

=7, = Rw (—sinwt? + Coswt)) + Rw (—sinwt’ + Coswt)")

=7, = Rw (—sinwt?l + Coswt)) + R w (—sin wt (Cos wt T + Sin wt J)
+ Cos wt (—sinwt? + Cos wt)))

=7V, = Rw [(—sinwtT + Cos wt]) + (—sin wt coswt — Cos?wt) T + (—Sinwt

+ sinwt coswt)J]

Z. HADJOU BELAID 142



Chapter IV: Relative motion

Entrainment acceleration

o = 00 + BA(BAO'M) + d(T)AW
Qe = gz T dt
8Ao'M =0
dt B
2An7
With dd(zf = —R w? (coswtl + Sin wt))

GA(BAO'M) = GAR @ (—sin wtt’ + Cos wt)’)

v ;oow
= 0 0 w
—Rwsinwt Rwcoswt 0

= —Rw? (coswt? + Sinwt))
=>a, = —Rw? (coswtl + Sinwt]) — R w? (cos wt! + Sin wt?)

=a, = —R w? (coswtT + Sinwt)) — R w? (cos wt (Cos wt T+ Sin wt J)
+ Sin wt (—sinwt? + Cos wt)))

=>a, = —Rw? [(coswtl + Sinwt)) — (Cos 2wt T+ Sin 2wt ) ]
Coriolis acceleration
a; = 20Av,;

— — —

v J k' - -
>a, = 0 0 w| = —Rw? (coswt’ + Sinwtj")
—Rwsinwt Rwcoswt 0
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Chapter V: Dynamics of a particle

Glossary
In English In French In Arabic
The momentum La quantité du mouvement A jalldps
Isolated system Un systéme isolé Uy e dlan
The principle of inertia Principe d’inertie Alaall e

A free and isolated particle

Une particule libre et isolée

A 5 ds e pun

Fundamental Principle of Principe fondamental de la ) sl
Dynamics dynamique Sy jaill
Newtonianmechanics La mécanique newtonienne o lilSe
Principle of action and reaction Principe d’action et de réaction | =il 2, 5 Jadll law
Force of gravity-weight La force de gravitation Al s @ ol Jaill
Force ata distance La force a distance 22 (e 3 gl
Force électrique La force électrique Al eIl 3 all
Binding or contact forces La force de réaction =il 5558
Equilibrium Equilibre oo sill Adls
Friction forces La force de frottement GlliaY) 5 48

Static friction force

La force de frottement statique

OsSd) As 2 IS Y5 8

The coefficient of static friction

Le coefficient de frottement

A8 AR Jabee

statique O Sl
The coefficient of dynamic friction | Le coefficient de frottement Uls A i) Jalas
dynamique i< Al

Elastic forces

La force élastique

dpgyall 548 ol gla V548

The spring stiffness constant

La constante de raideur d’un

ressort

o 4 g el s
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Chapter V: Dynamics of a particle

1. Introduction

In physics, dynamics is the science that studies the relationship between a body in motion and
the causes of that motion. It also predicts the motion of a body located in a given
environment. Dynamics, more precisely, is the analysis of the relationship between applied

force and changes in body motion.

2. Newton's laws of motion

2.1. The momentum &S _all 48

The momentum of a particle is the product of its mass and its instantaneous velocity vector.

—

P=mv
Experiments have shown that the momentum of a system composed of two particles, subject

only to their mutual influences, remains constant.
Theorem:

"In an isolated system of two particles, the variation in the momentum of one particle over
time is equal to and opposite in direction to the variation in the momentum of the other

particle over the same time".
2.2. Newton's three laws

2.2.1. Galilean principle of inertia 4=l las (Newton's first laws)

Newton's first law, also known as the law of inertia, states that any object continues to move
at a constant speed in a straight line, or remains at rest, unless an external force is applied to
it. In other words, if the material body is not subjected to any force, it is either in uniform
rectilinear motion, or at rest, if it was initially at rest.

For a particle the principle of inertia thus states: "A free and isolated particle moves in
rectilinear motion with constant velocity".

Note: A free particle always moves with a constant momentum (principle of inertia).

2.2.2. Newton's second law (Fundamental Principle of Dynamics) ¢sbst! 1asal)
In an abstract sense, force represents the effort required to modify a body's state of motion, in
particular to modify its speed. Different bodies have different inertia, i.e. different resistance

to a change in their state of inertia, and therefore different resistance to a change in their state
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Chapter V: Dynamics of a particle

of motion. This property must therefore be taken into account in the definition of force. To

this end, we introduce a new physical quantity called the momentum of a body.

P =m®. Consequently, force can be defined by the derivative of momentum P.

This means that the resultant of the forces applied to a particle is:

L, dp
F=—
dt
This equation is called the "equation of motion» ;=0
o almﬁ:’l3 3 dﬁ_pdm _dv
Codt M Var T M

So, F = md
This is because the mass m of the moving particle is constant (as is often the case in
Newtonian mechanics).

In general, Newton's second law for a moving particle can be written as:

z F...=md

In the S.1. system, the unit of force is: 1INewton=1N=1kg.m.s™.

Statement of the Fundamental Principle of Dynamics (2"Newton law) :

In a Galilean frame of reference, the sum of the external forces applied to a system is equal to

the derivative of the momentum vector of the system's center of inertia.

2.2.3. Newton's third law or principle of action and reactiondadll 3 g Jadl) Jam

Newton's third law, often referred to as the law of action and reaction, states that for every
action, there is an equal and opposite reaction. In other words, when two particles are under
mutual influence, the force applied by the first particle on the second is equal to, and opposite
in sign to, the force applied by the second particle on the first.

This is shown in the following figure, which allows us to write:

Fi_,=—-F_4

1 2 |Fi_z| = [F—4]
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Chapter V: Dynamics of a particle

3. Notion of force and law of force

The definition of force by the equation F = md allows us to express the force corresponding
to the effect studied as a function of physical factors such as distance, mass, electric charge of
the bodies....We will ultimately arrive at deriving "the law of force".

This law clearly shows the expression of the force (the resultant) applied to a material point in
a well-defined situation.

3.1. Force of gravity "'weight p'* 4xalall 3 g8 o) Jait)

It's gravitation that makes all the bodies in the universe attract each other. It's an attractive,
long-range, low-amplitude force. The gravitational phenomenon is created by the interaction
between two bodies. The force of gravity acting on a human being when on Earth is the result
of the interaction between the earth and the human body. As the Earth is more imposing, the
gravitational force pulls the human body towards the center of the Earth. This is gravity.

Mass (m) is the total amount of matter that makes up an object, while weight (p) is the result
of the force of gravity (g) on mass. The mathematical formula is as follows :

p=mxg.
The gravity field is represented at any point on the globe by the vector: p = mg.

With g is the gravity acceleration vector, it depends on the altitude and latitude at which the
body is located. It is generally considered to be constant, and the value adopted, at mean sea

level, is 9.81 m.s™.

Representation of the force of weight: p is always vertical, and directed downwards.

-

3.2. Force at a distance

=

Assume two bodies separated by a distance r, of mass m and m' respectively.
mm' -

The attractive force exerted by monm'is : F = Fmy , =—G—1

= F—Ea— mm' -
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Then: F = —F'.

T

where G is a constant, the value of which is experimentally determined to be:
G=6.673x10 " N.m’kg™

3.3. Force électrique 4t ¢l 3 gall
Consider two electric charges g and q' separated by a distance r. The electric force exerted by
gon q'is given by:
Foy, = k@
With : k a constant
The electric force exerted by g' on q is given by :

= _ 99—
qu/q = kr—zu

V

’

q

3.4. Binding or contact forces Jill 3,36
These are the forces acting mutually between bodies in contact.
Consider a solid body placed on a table. The body is in equilibrium on the table, i.e. the

acceleration is zero (a = 0).

Faced with the force F, representing the resultant of all the interactions of the molecules
making up the body, and applied to the table, the latter in turn applies the force F ™which is
the resultant of all the interactions of the molecules making up the surface of the table that is
in contact with the body. The two forces F and F'are called contact or binding forces because

of the contact between the two bodies.

With F = —F’and |F| = |F|.
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Chapter V: Dynamics of a particle

Prr el bob il
F:Zﬁ ﬁ:ZfT

3.5. Friction forces <\siay) 5 gil)

Whenever there is contact between the rough surfaces of two solid bodies, a resistance arises
that opposes the relative movement of the two bodies. This resistance is called frictional
force.

Friction is influenced by a number of factors. Consider the type of surface in contact. Smooth
surfaces generally offer less friction than rough ones. Friction between solid bodies can be

both static and dynamic.

a- Static friction force ¢Sl Aa & disiay) 5 481

Static friction is the force that keeps a body at rest even in the presence of an external force.
Example:

A body resting on a horizontal plane:

Consider the body shown in the figure below. It is subjected to four forces.

Let f, , be the static friction force and P and N be the weight and normal reaction force of the

support respectively.

For the body on the table to move, a minimum force F must be applied.

Na _
'\ P
¢ |l |—

=~

n:“‘"\l
£

"’P

The mass remains stationary as long as F<fs, there is resistance to movement.

- —

In this case the reaction of the support is the resultant force given by: R=N+ fs
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Chapter V: Dynamics of a particle

At equilibrium:

+F=0

ol

ZFM:B >N+f,+

-

=R+P+F=0

o]

By projecting onto the two axes Ox and Oy:
On (Oy) : P=N and (Ox) : F=f;
The mass starts moving when F>fs.

Experience shows that the ratio (fs/N) is constant.

f
tgp =y =k=u

M is the coefficient of friction and ¢ is the angle of friction.

The coefficient of friction is called static when the body is stationary. The coefficient of static
friction is a ratio between the static frictional force of an object and the normal force, and is

written as follows :

_fs_
tgp == = Us

N
b- Dynamic friction force 4 all dla 8 dlsia¥) 5 gil)
Kinetic or dynamic friction is the frictional force present when an object is in motion on
another object.
The dynamic friction coefficient is a ratio between the dynamic friction force of an object and
the normal force.
Mass starts moving when F>f,.
The coefficient of dynamic friction is written as :

_Ja_
tgp =7 = Ha

Note :

Experience has shown that the coefficient of static friction is greater than the coefficient of

dynamic friction pug > ug.
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3.6. Elastic forces 4sigsall 368 5 gla ¥ 56

Elastic force is the force applied to an object that tends to return to its shape after being
deformed. Elastic forces cause periodic movements. The most common is sinusoidal motion,
as in the case of a spring.

k m
(At equilibrium)
A

B
AN
k T "
AR
& V | -
A L
B+ — B’ (Motion)
Ax=X"-xo=x ¥ _,
P

We have: FPD: SF, ., =md

N+P+T=md

M is the mass of the body

N is the reaction force of the support Jadll 4, 3 68

P is the force of the body weight J&il & &8

T is the spring return force gl ¥ 548

By projection:

On (Ox) we have: T=-kx =ma

On (Oy) we have: N-P=0 So N=P=mg

Where k is the spring stiffness constant a5 sl <l |
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Proposed exercises about chapter V

Exercise 1

Consider a small block of mass m abandoned without initial velocity at point A of an inclined

plane at an angle a=30° to the horizontal. Point A is at height h.

1- What is the value of the coefficient of static friction s that keeps the mass in equilibrium at

point A.

Exercise 2

A man pushes a 20 kg lawnmower with a force of 80N directed parallel to the handle, which
is inclined at 30° to the horizontal.

1. If moving at constant speed, what is the modulus of the friction force due to the ground?

2. What force parallel to the handle would produce an acceleration of 1m/s, given that the

friction force is that found in question 1?

Exercise 3
A block of mass m ascends along a plane inclined by an angle a, with respect to the
horizontal, with initial velocity vy, and coefficient of friction pg.
1. Determine how far the block travels before coming to rest.
2. What is the maximum value that the static friction coefficient g can take for the body
to remain stationary.
3. For a value of the dynamic friction coefficient p, lower than the maximum value found
in the second question, what is the velocity v, of the body when it returns to its starting

position.

Exercise 4
A mass m = 15 kg suspended from a spring of stiffness K = 100N / m descends along an

inclined plane which makes an angle a = 30° with the horizontal.

\

CL
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Assuming there is no friction, determine the normal reaction of the support and the

acceleration of the mass when the spring is stretched by a length x = 0.02m.

Exercise 5
A ball of mass m is attached by two wires (Am and Om) to a vertical pole. The whole system

rotates with a constant angular velocity o around the axis of the post (we know g the
acceleration of gravity, 0 and L = |[OM])
1. Assuming o is large enough to keep both wires taut, find the force (wire tension) each wire

exerts on the ball.

2. What is the minimum angular velocity omin for which the bottom wire remains taut?

3 —
APE ®

b

Exercise 6
A body of mass (m=1kg) is attached by a wire of length L=30cm to the top of a cone, of axis
(A) and angle at the top 2a=60°. This body rotates without friction on the surface of the cone
with a rotational speed ®=10 rpm.(10.27/60s)

1. Calculate the body's linear velocity.

2. Using the fundamental principle of dynamics, determine the reaction (Ry) of the cone

surface on the body and the thread tension (T).

(4)

2a
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Exercise 7

A block (M) of mass m is thrown from the top of an inclined plane AB=1m at an angle a=45°

to the horizontal, with initial velocity va=1m/s.

1- Knowing that the coefficient of friction u=0.5 on AB.
- Demonstrate, what is the nature of the motion on AB?

- Calculate the speed of (M) when it reaches point B.

2- Friction forces are considered negligible on the horizontal plane:
- Demonstrate the nature of the motion on the horizontal plane.
- Will the block (M) stop? Justify your answer.

A (M)

~~

a=45°

B Horizontal plane

Exercise 8
A piece of ice M of mass m slides frictionlessly over the outer surface of an igloo, which is a

half-sphere of radius r with a horizontal base.

At t=0, it is released from point A without any initial velocity.
1- Find the expression for the velocity at point B, as a function of g, r and 6.
2- Using the fundamental relation of dynamics, determine the expression of |IV | the
reaction of the igloo on M at point B as a function of velocity vg.
3- At what height does M leave the sphere?
4- At what speed does M arrive at the axis (Ox)?

v
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Exercise 9
A material point, of mass m, is suspended at a fixed point O by a wire of length [ inextensible
and negligible mass. By rotating it around axis Oz, it acquires a constant angular velocity o. It

describes a horizontal circle of radius r.

1. Find the expression for the wire tension.

2. Find the expression for the inclination p of the wire with respect to the vertical.

Exercise 10
Two carriages A and B of the same mass M are linked by a wire carrying a pulley of
negligible mass. The axis of the pulley carries a mass M'.

1- Neglecting all friction, calculate the ratio M'/M so that cart B remains stationary.

2- If M'=2M, calculate the accelerations to which the masses are subjected.

M

a=30

Exercise 11
A block of mass m; assimilated to a material point can slide on a horizontal surface with a
coefficient of kinetic friction pg one of its ends is connected by an inextensible wire of

negligible mass passing through a pulley of negligible mass connected to a second mass m,. A
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force of modulus F is applied to m, at an angle 0 to the horizontal. Find the accelerations of

the two masses.

My

\\\.\\\\&\.
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[
EoTy
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Exercises correction of about chapter V

Exercise 1 (Oy)

(Ox)

What is the value of the coefficient of static friction s that keeps the mass in equilibrium at
point A?

-At equilibrium:
Zm=6 SN+f+P=02R+P=0

Following (Ox): —fs+ px=0 = fs=m g sina

Following (Oy): N- py=0 = N=m g cosa
In order for the body to remain stationary on the plane, the following conditions must be met
fs>px.

We have tg(pz%z,uszmztga

m g cosa

The maximum value that the coefficient of static friction s can take is tga.
Note: experience shows that: P> Mg

Exercise 2

Modulus of friction force:

M=20kg, a = 30° and F=80N.

1- FPD: SF=md=>p+Ry+F+f=md
with v=cst so a=0.

Following (Ox): F cosa- f=0

Following (Oy): Ry-P=0= Rn=mg
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Then: f=80.c0s.30=69.28N

2- Force F for a=1m/s?

SF =m&=>ﬁ+§;+ﬁ+f=m&
Following (Ox): -f+ Fcosa - f =m.a

_ma+tf
"~ cosa

F' = 103.1N

Exercise 3

At: t=0 ,v=vo and p= Yy

1- Let's find out how far the block can travel before it stops.

According to the fundamental principle of dynamics:
SF=md=>p+R=p+N+f=md

Initial velocity vi= vp and final velocity v¢=0 (the body will stop)

We have: v; — v} = 2al

(I being the distance covered by the body)

vi-v?

So: a=
21

The reference frame must be chosen so that the axis (Ox) follows the axis of motion, so it is

parallel to fand (Qy) is perpendicular to (Ox), so it is parallel to N.

Following (Ox): —f- px=-f-m g sina=ma

Following (Oy): N- p,=0 = N=m g cosa
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Me=tgp =f/N=Ff=Ntgoe =N. pgg S0 f= pgm g cosa

vi-v?
21

-MgMm g cosa - mgsina=ma= -4 gCcosa -gsina =

2
i Vo

2(—pgq gcosa— gsina) - 2g(ngq coso+ sina)

Then, l =

(Oy)

|

(0x)

2- The maximum value that the static friction coefficient fs can take for the body to sink,

- Atequilibrium
Following (Ox): -f+ px=0 = f=m g sina

Following (Oy): N- py=0 =N=m g cosa

For the body to be able to descend, it must: p>f

px=>f = mgsina =N pg (*) (us=f/N)

with f= N g and pg is the coefficient of static friction at which the body begins its motion
(with pg=f/N =f=Ntge so f= pgm g cosa).

(*)>» mgsina>mgcosafs sop, <tga

The maximum value that can be : g is tga

3- The velocity v; of the body as it returns to its initial position;

x=l, v;=0 and we look for vx.

v; — v} = 2al
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Where “’I” is the distance covered by the body.

vi-v?
21

So, a =

The reference frame must be chosen so that the (Ox) axis follows the axis of motion, i.e. it is

parallel to and follows py, and the (Oy) axis is perpendicular to (Ox), i.e. it is parallel to N.

Following (OX): - f + px=-f + m g sina. =m.a
Following (Oy): N - py=0 =N=m g cosa

ng=tge=fIN =>f=Ntgeo so f= pz;m g cosa

Hence; -pugz M g cosa +m g sina =m.a

vi-vf
21

= -l g Ccosa +g sina =
vf = 2gl(sina - pq COSa)
(where I is the same distance found in the question 1)

Exercise 4

To solve this problem, we'll use Newton's second law. The forces acting on the mass are
weight (if it's close to the Earth's surface), the normal (because it's resting on the plane) and
the force of the spring, which is given by Hooke's law.

Below is a diagram of the forces acting on the mass and the Cartesian axes we'll use to make
the projections.

Y&

Psino

e
)
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The spring's restoring force acts in the opposite direction to the spring's elongation (and
therefore to the direction of mass displacement):

The acceleration of the mass is also shown in the figure. It runs in the positive direction of the
x axis. In the diagram below, we've plotted the projections of the weight vector on the axes

we've chosen.

Newton's second law applied to mass motion gives:

—

SF=md=>p+N+E =md

By projecting onto the Cartesian axes we obtain:
Following (Ox): -F+px=-F +mgsina=m.a (1)

Following (Oy): N-py=0 = N=m g cosa (2)

We obtain the norm of the support reaction from equation (2), and as you can see, it's not
equal to the weight.
N=m g cosa

On the other hand, the norm of the spring return force is given by: F.=k.x
Finally, solving equation (1) yields the acceleration:

a=(- k.x +m g sino)/m = 4.8 m/s’

by taking : g = 10 m/s’.

Exercise 5
Calculating the tension T on the wire:

4(0y)

1- Let's find the force (thread tension) that each thread exerts on the ball.
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According to the fundamental principle of dynamics FPD:

SF=md=>p+T,+T, =md

The ball's motion is circular, so the acceleration in this case is the normal acceleration ay,

which is directed towards the center of the circle. (with axn=v*/R)
We choose the reference frame such that :
(Ox) follows the normal acceleration and is directed towards the center of the circle.

By projection onto the axes (Oy) and (Ox) we have :
On (OX): To+Tysin@=may =T, + T, sin0=m>%

On(Oy): p-T1cos8=0= mg=Tycos 6

_mg
So T1 " cos@

v? _ v mg
T2=mE—Tlsln0=m——

R cos6 sin 0

2
S0 T, = m%—mgtge
2- The minimum angular speed @min at which the bottom wire remains taut.

In order for the lower wire to remain taut, the following conditions must be met T,>0.

v? v?
T, =m—-— tge6>0>=>—2=> gtg6
2 rnR mgigo = R_gg

With,v=0.R=>

(1)2 RZ
R

> gtg6 and R=OM=L
So, ®’L= gtg0= w? Z%ge

tg0 tg0
And, o= |23 Then ogip = |2

Exercise 6
1- The linear velocity of the body.
L=30cm, 20=60°. (¢=30°) and =10 tr/mn.
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{10x27‘t —»60s _10x2m
> 0=
o —>»1s 60

= grd/s
v = wR and R = I sina
Hence v = wlsina = % 0,3.sin30 = 0,157m/s

Let's determine the reaction (N) of the surface of the cone on the body and the tension of the
wire (T).

According to the fundamental principle of dynamics FPD.

()

SF=md=>p+N+T =may

We choose a reference frame such that (Ox) follows the normal acceleration and is directed

towards the center of the cone, and axis (Oy) is perpendicular to (N).
Following (Ox): Tx- Nx =m ay (1)

Following (Oy): Ty+ Ny -p=mar=0 (ar=0, because the speed is constant)

=>Tcosa+ Nsina—p=0 (2)

: vZ _ _ ©2?R?
(1) =T sin a — N cos 0= m—= M—
mo?R cosa
S0;T =— ,
sin a sin a

We replace it in the second equation:

m®3R coSs o
- + N—
sin o sin o

)cosa+ Nsina—p=0
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m®?R cos?a
sin a sin a

- coso+ N— >+ Nsina—p=20

cos?a mo?R
N|— +sino | =p—— cosa
sin a sin a

1 mg sin a — mw?R cos o
= N( , ) = -
Sin o sin o
So, N=m.(g sin o — @*R cos o), Replacing R with : 1 sina., we'll have:

N=m.(g sin o — w?] sina. cos o) = 7,92 N

2 -
Hence, T = melsine N C9SZ = 5,88 N

sina sin

If we replace N by its expression, we find: T=m g cosa +m. »?1 (1 — cos?a).
Hence; T=m (g cos a + »?] sin’a)

Exercise 7

B Horizontal plane

va=1lm/s and pu=0,5 on AB.

The nature of movement on AB: FPD:
SF=md=>p+N+f=mad

We choose the reference frame, such that axis (Ox) is along the axis of motion parallel to f

and (Qy) is perpendicular to (Ox) therefore along N.

Following (Ox): —f +px=-f + m g sina=ma

Following (Oy): N-p,=0 =N=m g cosa
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pH=tge=f/N=>f=Ntge So f= pmgcosa

Hence; - p.m g.cosa + m g sino = ma = a=g(Sina - LCOSa)

V2 V2
a=10<2 >

——-0,5 —> = 3,54 m/s?

The acceleration a is constant and positive, so the motion is uniformly accelerated.

The speed of point M when it reaches point B.
vi —vZ = 2al = v} = v? + 2al
With ; | =AB=1
vg =V1+2a=284m/s

The nature of movement on the horizontal plane:Friction forces are negligible.

(Oy) 4

v

(Ox)

Following (Ox): 0=ma’

Following (Oy): N-p=0 =N =p =mg
So a’=0 then the motion is uniformly rectilinear.

Motion is uniform, so speed is constant v=vg the block will not stop.
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Exercise 8 A (N)

=

9 (T)

ok /

The point at which the point leaves the sphere
SF=md=>p+N+f=md
We choose the reference frame, such that axis (T) is tangent to the sphere and axis (N) is

perpendicular to (T).
Followig (N): N - pn=-m.ay =N - m g cos 6= -m v* /R (**)
Following (T): pr= m.ar = m g sin 6=m (dv/dt) (*)

dv

dw
_ -V _ _
v =Rw dt—Rdt—R

d2e . de
— with w = —

: — pp. — p a6
7o dt—eandaT—Re —ROlt

Equation (*) is multiplied by 6

-0 gsing = GROD 40  ing = or Y
gsin@ = o S0 g 8siné= T

0 0

then dO gsin® = 6'Rd6 :gJ 6-do

sin6d6=Rf
0

0

2
. VZ

0
g(1—cos0) = R7 = 2g(1 —cos @) = = because v? = R?6-2

= v2 = 2(gR — gRcos0)

The speed at point B is : vg = /2gR(1 — cos8)

1- The expression for the reaction of the igloo on M

(**)>>N = mgcosO —may =m (gcosO —2g(1 — cosB))

=>N= m(3gcos6—2g)
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1- The material point leaves the half-sphere at point p, so N=0

N=0= mg (3 cosB, —2) = 0so cosB, =§

Then, 6, = 48°
The angle relative to the horizontal at which the point leaves the half-sphere is 90-48=52

The height h at which the material point leaves the half-sphere is:
hp=R cos 6 = ER

1- The velocity of the material point at this point :

2
v
29(1 —cos8,) = Ep:vg = 2gR(1 — cos 8,)

2
then v, = \/ZgR(l —cosBy) = §Rg

(We'll solve the same exercise in the next chapter using the principle of conservation of

energy).

Exercise 9

.....
------------------------------------

1. Calculating the voltage T on the wire:

The material point is subjected to two mechanical forces; weight mg and tension T.

Expressing Newton's second law, we write:
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SF=md=>p +T =m.d

In such a rotational movement of m around Oz at the angular velocity o = constant, the
acceleration admits a tangential component and a component normal to the circular trajectory
of radius r around OZ. Thus, in the radial direction (ox axis), the projection of Newton's

second law gives:
T sinB = m. ay =m(v?/r)

= m. ay= M.o’r= m.o’Lsinp
Since T=mo’L
2. Calculation of wire inclination to the vertical.
Newton's second law is always written:
SF=md=>p + T = md.
The projection of this relationship along the vertical translates into :
-Tcosp+mg=0
(because the mass rotates and does not move along Oz).

Taking into account the expression for T, we obtain:

g

cosf = 7L

Since this angle is inversely proportional to the angular velocity, which must be minimal, and

since : 0< B<90° :

i.e. 0<cosp <1, the limit on angular velocity is defined

®=,/g/L
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Exercise 10 .
NA A .
Ty T',
M » <
A D4 A
v 77’

—51 _

1- Neglecting friction, let's calculate the ratio M'/M so that cart B remains stationary?

For system A (carriage of mass M):

SF=Mi=7p,+N,+T, = Ma,
Projection on the axis of motion
TA:M aa (*)

For system B (carriage of mass M):

SF = Md = p; + Ny + T = 0 (because carriage B is stationary)
Projection on the axis of motion.
-M g sina +Tg=0 (*’)
It's the same wire, SO Tg= Ta=T
M’ system (M' mass carriage):

_— — = e

SF=Md =>p +T =Md
Projection on the axis of motion, with T'=T +Tg =2T
M’g-2T=M’a’ (*”)

When carriage A moves a distance xa, carriage M' moves back a distance x' with x’=xa/2.
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(*)=>M'g — 2T = M’%A

!

(M= T=Ma, =>aq, =(221)

4M+Mr

(*>’) > T=M g sin 30=M g/2=M a,

So (ﬂ) —SoaM =AM+ M
4M+Mr 2

1- Let's calculate the accelerations for M'=2M

Thecart A: T=M aa (*)

ThecartB: T- Mgsin30=M ag=>T — % = Mag(*’)
Themasscart M M’=2M): 2 M g-2T=2M a’

When carriage A moves a distance XA and carriage B moves a distance xB, the mass M’

moves down a distance x’=( xa + Xg)/2

S0 2 x’=(xa + Xg) =2 vV'=(va+Vp)

and 2Mg-2T= M (aa+ag) (*’”)

(*)and (*') = a, _% = ag

(*)and (*’) > 2 g—2aa= (aa+ag) SO0 4aa=9(5/2)

then 2 a’=(aa +ag) (*”")

4
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Exercise 11

The fundamental principle of dynamics is applied to the masses m; and m :

For system m, :

SF=md=p,+C+T, +F =m,d (1)

For system m, :

The pulley with negligible mass, so T;= T,=T
Projecting equations (1) and (2) onto the direction of motion gives:
—Cx+FcosO —T; =mz.a (3)
and
To—myg=my.a 4)
Projecting equation (1) onto the direction perpendicular to the motion gives:

Cy=myg
And },Ld:CX/Cy:Ff/RN:)CX:},Ld mig (5)
Summing equations (3) and (4), assuming T1 = T, and equation (5), we obtain:

_ Fcosb —g(m; —pgmy)
- my; + m,

a
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Glossary

In English In French In Arabic
The work Le travail Jall
External forces Forces extérieures 4 lall s sl
The elementary work Le travail élémentaire ol Jaal)
The elementary displacement | Le déplacement élémentaire | =l Jasll
The power La puissance dethiny)
The average power La puissance moyenne o glall dcUatiay)
The instantaneous power La puissance instantanée Hocaalll e Uainy)
Energy L’énergie aalal)
Driving work Le travail moteur & jaall Janll
Resistive work Le travail résistant psaall Jasll
Kinetic energy L’énergie cinétique A8 ) Al
Conservatives forces La force conservative Aadaid) 5 g8l
Potential energy L’¢énergie potentielle Al 28l
Wight force Force du poids Jaill 5 8
Spring return force La force de rappel du ressort | =il sls )Y 3 6
Mechanic energy L’énergie mécanique ou 4l A8l
(TotaleEnergie) I’énergie totale
Friction force work Le travail de la force de ASiaVl 3 B oo

frottement
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Chapter VI: Work and Energy

1. Introduction

The aim of this chapter is to present the energy tools used in mechanics to solve problems. Indeed,
sometimes the fundamental principle of dynamics is not enough to solve a problem. Newton's laws
can be used to solve all the problems of classical mechanics. If we know the position and initial
velocity of the particles in a system, as well as all the forces acting on them. But in practice, we don't
always know all the forces at play, and even if we do, the equations to be solved are too complex. In
this case, other concepts such as work and energy must be used. Before describing the different
types of energy (kinetic, potential and mechanical) and using them in energy theorems, we'll

introduce the notions of power and work of a force.

2. The workdaad)

All motion under the action of external forces F, implies work by these forces. In other words; work

supplied by a force moves a body in its own direction and creates motion.

2.1. Work performed by a constant force
Let a particle subjected to a constant force F move this body a distance d=AB, the mechanical work

W performed by the force F is defined as: AB

W,z = F.AB = |[F|.|AB|. cosa

o

T

a is the angle between the two vectors Fand AB.

o Fora=0 W = |F|.|AB| because cos0 = 1

e Forac< g with havelW > 0 It's a driving work.

e Fora= g with have W = 0 because cosg = 0.
o ForZ<a<mW <0 Itsaresistive work.

Unity of work in the system MKSA is « Joule ».

Note:

Note that work is a scalar quantity, unlike force and displacement, which are vectors.

Example 1:
The muscular effort required to lift an object depends on both its weight (the force of gravity exerted
on it), and the height h from which it is lifted.
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In this case, the force of the weight is directed downwards, the displacement upwards and 6 is 180°.
W =-P.h= -mgh.

The force of the weight is negative, since muscular work must be done against the force of gravity.

Example 2:
To lift a car with a mass of one and a half tons, a force F of 15,000N vertical to the car is
required.

Calculate the work done by this force to move the car by a height (AB) of 3 meters.

W5 (F) = |F|.|AB|. cosa=F.d.cosa =1.5 10* . 3= 4.5 10*J

2.2. The work performed by a variable force

If the force varies in intensity and/or direction during displacement, and if the displacement has any
form whatsoever, we need to use integral calculus to generalize the definition of work. Generally
speaking, the work of a force depends on the path followed, which is why this elementary work is

necessary.
dW=F.dr = F. dl

where dl is an infinitesimal displacement along the trajectory, tangential to it.

B

F
A di

The elementary work dW performed by a force F on a point mass m during an elementary

displacement dr= dl is given by: dr

— — -

dW=F. dr=|F|.|dr| cos (F,dr)

To obtain the work on an AB displacement, we integrate this elementary work:

W=[dW = ffﬁ.&?z [F.dr.cosa

a is the angle between the two vectors Fanddr; a= (ﬁ, E:)
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2.3. The power dsUaisy)

Let a point M move along its trajectory at a velocity v (M) relative to the reference frame of study, It

experiences a force ﬁ(M) as shown in the figure opposite:

VM)

The power of a force F is the work per unit time.

We have two types:

AW
e The average power P,,, = -

. aw
e The instantaneous power P = =

Then the instantaneous power of the Fis:

2vo AW _ |F||dr]|
PIF)= o = ~a

= F .B(M) = ||F||x[|5 (M)][xcosa

Note :

v" The unit of power is the « Watt ».

v" This force can be classified into three types:
e Itis driving, if its power is positive which corresponds to an angle a<mu/2.
e |t is resistive, if its power is negative which corresponds to an angle o>n/2.

e Finally, it can be of zero power, in which case o=n/2.
3. Energy4éual)

In physics, energy is defined as the capacity of a system to produce work. Energy is not a material
substance: it is a physical quantity that characterizes the state of a system; it can be stored and exists

in many forms.

3.1. Kinetic energy 4s_al déual

In order to accelerate a point mass to a defined speed, work must be done. This work is then stored in
the point mass in the form of kinetic energy.

Suppose the object's initial velocity is vy and the force F is applied in the direction of vg, producing a

displacement d=dr.
We have: dW=F.dr and F = ma = m%

From this expression we can deduce the following:

dW = Fdr = mﬂdr
dt
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dr
dt
Let's integrate the expression of elementary work, and derive the definition of kinetic energy:

=>dW=m dv Then dW = mvdv

g 1 2 2 1 2 2
W=mf vdv=>W = -m(vg — vf) = -mvg —-mv;
4 2 2 2

Where v, is the velocity of the moving body at point A and vg its velocity at point B.

The kinetic energy of a material point of mass m and instantaneous velocity ¥ is given by the

expression:
1
Ec = —mv?
2
SO: WF’(A_)B) = ECB - ECA = AEC
Note :

v The unit of energy is the « Joule ».

v And since p=mv, we can also write:

PZ

Ec = —
¢ 2m

Theorem of the Kinetic Energy Theorem : &S al) d8Ual) 4, i
The variation in kinetic energy of a material point subjected to a set of external forces
between two positions A and B is equal to the sum of the work of these forces between these

two points.
WF(A_)B) = ECB - ECA = AEC :>ZW, = AEC
i

3.2. Conservatives forces aaiaiall 3 gal)

A force is said to be conservative, or to derive from a potential, if its work is independent of the path
taken, whatever the probable displacement between the starting point and the end point.
Conservative forces include the force of gravity, spring return force and the tension force of a wire.

Example:

Let's calculate the work of the force of gravity. VY1 1
dW = g.dl with p = —mgJ
dl = dxi + dyj Y2
so dW = —mgdy J

v
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Y2
W= —mgf dy = -mg(y, — y1)
Y1

=>W =mg(y; —y,) = mgh

So the force of gravity p is a conservative force because its work does not depend on the path
followed, and it is said to derive from a potential.

Spring return force is also a conservative force.

Note:

A force is said to be non-conservative if its work depends on the path followed, as in the case of

friction force.

3.3. Potential energy 4ialsl) 43l

Potential energy is a function of coordinates, such as the integration between its two values at start
and finish. It represents the work done by the particle to move it from its initial position to its final
position.

If the force F is a force deriving from a potential (conservative), then:

B
w =J Fe.dr = Ep, Ep, = dW = —dE,
A

Hence WAQB(F_C))) = —AE,

Potential energy is always calculated relative to a reference frame (Ep=0).
The potential energy function Ep is determined to within one constant.
By identifying the two expressions dE, and dW, we arrive at the following result: The differential of

potential energy is equal to and opposite in direction to the differential of work.

Example 1: Wight force J&ll 54

A
The force of weight is a conservative force, hence: @ A
Wi (Fe)) = —AE, 4 .
And W = mg(y, - y;) = mgh e il
SO Wﬁ = _AEP = _(Epf - Epi) = Epl = mg(ZA - ZB) z=U B

Because E; is the reference potential energy.

So Ep = mgH
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Note:
If Zp> Zgwe have E,>0

If Za< Zgwe have E,<0

Example 2 : Spring return force gl gla ¥ 348

® ;6
B CAvAanasany |

— 1
- 1
I 1
[ 1
l [

0

3

¥
=

—

F = —kxi, di = dx.TetdW = F.dl
aw = —dEp = —kx.dx > dEp = kxdx

Xf
= dEp=kj xdx
X

i

1 1
= Ep = Ek(x]? —x?) = Ekx2

3.4. Mechanic energy (Totale Energie) 4sl) 48Ul
The mechanical energy of a material point at a given instant is equal to the sum of kinetic energy and

potential energy:

EM= EC +Ep = EM= EC +Ep

e Principle of conservation of mechanical energy A:SsitSual) 48Ual) Lliail 1as
In a conservative (or potential-derived) force field, mechanical energy is conserved over time (no
friction).
Em= Ec +E,=Cte
This means that the variation in mechanical energy is zero AEy =0, it also means that the variation in

Kinetic energy is equal to the opposite of the variation in potential energy:
AEcC =- AEp

In other words, if the system is isolated or free, mechanical energy is conserved.
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Note:

In the presence of frictional forces, the variation in mechanical energy can't be stored, is equal to the

sum of the work of the frictional forces. W(Fgrot):
AEM=EmrEMi=X W 4.8(Fne) = W a.5(Ffrot)

e Friction force work : &\Sia¥) 3 8 Jac

Wa..5(Ffrot) = —F;.AB

Example:
A mass m is attached to a spring of stiffness k, and the other end of the spring is attached to point C.

The mass m can slide on the horizontal surface. Initially, the mass is at rest at point O of equilibrium.

Si{,'

0

1) Assuming no friction, move mass m from point O to point A, such that OA=a. Determine the
work of the Spring return force as m moves from O to A. Then determine the speed of m at point
0.

2) Same questions as question 1, but now we assume that friction exists, and give the dynamic

friction coefficient pic.

AnNsSwers:

1- We have, F = —kxT and di = dxt

0
S 1
zWﬁ=JdWﬁ=fF. l=—kfxdx=§ka2
a

We also have: Y; W; = AEc = Wz + Wi + Wp

With, W = Wz = 0 because R and § L Ox
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SOAE;=W; = %ka2 = Zmv2 — %mvj with va=0

2
k
Hence, v, = a /—
m

2- Case of friction
We also have: ;W; = AEc = W5 + Wz + Wr: + W
o
:0: = i >
By *

with: Ws =Wz =0

SOAEc =W+ Wg, = %ka2 —a.F = %ka2 —a.pu,.mg = %mvo2 because va=0

ka? kK 2uc
Hence, v, =\/%—2uc.a.g=a\/;—ﬂ

a
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Proposed exercises about chapter VI

Exercise 1
A body is subjected to a force F such that: F = (y% — x2)7 + (3xy)J

Find the work of force F if the body moves from point A(0,0) to point B(1,3) Following the
following trajectories:

1. On the (Ox) axis from A to C(1,0) then parallel to (Oy) from C to B.

2. On the (Oy) axis from A to D(0.3), then parallel to (Ox) from D to B.
3. On the straight line [AB].
4

. On trajectory y=x.

Exercise 2
A particle of mass m, initially at rest in A, slides without friction on the circular surface AOB of

radius a.

1) Determine the work of weight from A to M.

2) Determine the work of the surface-particle contact force m.

3) Determine the potential energy E, of m at the point M (E,(B) = 0).

a

\/

€ >

M(m) B ¢

4) Use the kinetic energy theorem to determine the speed of m at point M, deduce its Kinetic energy
E..

5) Calculate the mechanical energy Ep,.

6) Show E. ,Ep and En, (0 <6<n2). Discuss.

7) The circular surface AOB is connected to a horizontal part BC, there is friction between B and C,
the particle stops at a distance d from B. Determine the coefficient of kinetic friction.

Givend =3a=3m.

Exercise 3

Consider a small block of mass m =5kg dropped without initial velocity at point A of an inclined
plane at an angle a=30° to the horizontal. Point A is at a height ho=5m from the horizontal.

1- Knowing that the coefficient of dynamic friction on plane AB is 1g=0.2, applying the fundamental

principle of dynamics:
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- What is the nature of the motion on plane AB?

- Calculate the speed of the block when it reaches point B.

2- After passing through point B at speed Vg, the mass arrives at point C. Knowing that the
coefficient of friction is negligible on plane BC :

- Deduce the speed at point C?

- Calculate the maximum compression of the spring, given a stiffness constant

equal to k=100N/m? (g =10 m/s).

Exercise 4
A piece of ice M of mass m slides without friction over the outer surface of an igloo, which is a half-

sphere of radius r with a horizontal base.
At t=0, it is released from point A without any initial velocity.

1. Find the expression for the velocity at point B, as a function of g, r and 6.

2. Using the fundamental relation of dynamics, determine the expression of |N| the reaction of

the igloo on M at point B as a function of velocity vg. I
3. At what height does M leave the sphere?
4. At what speed does M arrive at the axis (Ox)?
R
O/ |h
X

Exercise 5
Consider a small block of mass m =2kg dropped without initial velocity at point A of an inclined

plane at an angle a=30° to the horizontal. Point A is at a height ha=5m from the horizontal.

Z. HADJOU BELAID 184



Chapter VI: Work and Energy

1. Knowing that the coefficient of dynamic friction on plane AB is pq=0.2, applying the
fundamental principle of dynamics, what is the acceleration of the block on plane AB=8m?

2. Calculate the speed of the block when it reaches point B.

3. Using the kinetic energy theorem, find the speed of the block at point B.

4. At point B, the block hits a spring with stiffness constant k=100N/m at speed Vg. Calculate

the maximum compression (x) of the spring (given g =10 m/s).

Exercise 6

e A ball B of mass m, attached to an inextensible wire of length I, is moved away from its
equilibrium position by an angle a. It is dropped without initial velocity. Passing through the vertical
position, the ball strikes (touches) a body A of the same mass and stops, body A passes from point O

to point C (OC=d) on a rough horizontal plane of friction coefficient p.

Show the forces exerted on body A.
What is the nature of the motion on the horizontal plane?

Express the velocity of ball B just before touching body A.

el

Using the principle of conservation of momentum, determine the velocity of body A after

the interaction.

o

If va=vp at point O, give the velocity of body A at point C as a function of g, I, d, o and p.
6. By what angle must ball B be moved away for body A to arrive at point C with zero

velocity.
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e From point C, body A approaches the perfectly smooth (no friction) path CD=L, inclined at
an angle B to the horizontal. It arrives, without initial velocity, on a perfect spring of length 10 and
stiffness constant k.

1. Show the forces exerted on A as the spring compresses.
2. What is the value of the spring's maximum compression?
We give m=200g, d=OC=1m, 1=10 cm, L=1m, p=0.1, g=10m/s*, k=140N/m, p=30°.

Exercise 7
A solid body S of mass m is linked on one side to a spring of stiffness K, while the other side of the
spring is fixed. The body is moved horizontally from its equilibrium position by a distance x and

then released (M =tg ¢ : coefficient of friction).

1. Show the forces applied to body S.
2. Calculate the speed Vg corresponding to the movement of S from its equilibrium position.

Exercise 8
A ball slides without friction inside a gutter.

Find the smallest height hpi, from which the ball is

launched to reach point C, without leaving the gutter.

Exercise 9

A block of mass m is dropped without initial velocity onto an inclined plane making an angle o with
the horizontal, at a distance [ above a light, uncompressed spring of stiffness k. The motion of the
block is frictionless.

1. Using the principle of conservation of mechanical energy, find the expression for the velocity of
the block when it first touches the spring.

2. Using the fundamental principle of dynamics, find the expression for the maximum compression

of the spring as a function of m, g, « and k.
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Correction of exercises about chapter VI

Exercise 1
F=(y?—x®)T+ 3xy)]

The work of force F when the body moves from point A(0,0) to point B(2,4) along the trajectories:

—

dW = Fdr with dr = dx7 + dyj
Then

aw=Fa=( * (dx):dw— 2 _ x%)dx + 3xyd
= F.dr = 3y ) \dy = (y* — x°)dx + 3xydy

SoW = [F.dr = [Fydx + [ B dy =W = [(y? — x?)dx + [ 3xydy
1- Following axis (Ox) from A(0,0) to C(2,0):
The variation is on the Ax axis, so y=0; therefore dx=0 and x varies from 0 to 2.

2 x3 8
_ 2 _ .2 _ | _,2 -2 __Z2
W—J(y x)dx+j3xydy—j x“dx=>W = 3= "3/)
0

2- Following axis (Oy) from C(2,0) to B(2,4):

The variation is parallel to Oy so x is constant (x=2) then dx=0 and y varies from 0 to 4:

4 4 yZ
W=f3xydy=f6ydy:>W=67=48j
0 0

3- On line AB:
The equation of a straight line is generally of the form: y=a.x+b

If the line passes through the two points A(0,0) and B(2,4) then b=0 and a = 2224 =2

XB—XA
Then the equation of the line is of the form y=2.x, so dy= 2.dx.
In this case, the expression for work becomes:

(x varies from 0 to 2);

2 X3
W= f((Zx)z — x%)dx + f 3x(2x)2dx = 15f xtdx=>W = 15? = 40j
0
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4- On the trajectory y=x’:

y=x? = dy =2x.dx

Then the work formula becomes:
W= f((XZ)Z —x?)dx + f 3x(x?)2xdx =J 7x% — x% dx

The body moves from A(0,0) and B(2,4) then x varies from 0 to 2; then,
3

w=lxs % 4213
—5Y T3 T e

Exercise 2
1) The work of p from A to M is:

dw = B.dl with p = mgj

di = dxi + dy] so dW = mgdy
y

W=mgf dy = mgy = mg a sinf
0

2) The work of Ry force is:

Wg = J Ry.dl =0 Because Ry L di

T nmeer Em
3) Potential energy: | _ -

dEp=—-dW = Ep=—mg a.sin6+c | _ e =

Ep(B) =0, 6= n/2 so c=mga

= Ep=mga(1-sin0) 1 7

4) AEc=YW = %mvf,[ = mga sinf

Vu=4/2gasinf a

5) En= Ec+Ep=mg a =cste

6) When Ep decreases E. increases while Ep,, remains

constant.

£f
Nu=p-=-=>f=umg B

S0 AEc=W; = ch f.di = —umgd:%mv% = —pumgd
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Then vy =./2ag

Note : Replace 6 = /2 in the formula for vy, we find :

vp =./2ag

We cane used also: E,, = Ey,, = E¢, + Ep, = E¢, + Ep,

Calculation of p:
zﬁ =my=f+P+ Ry

We have u = RL = ng because Ry = mg (with projection on (oy))
N

Projection on (ox): -f = m.y

We have also: v2 — v3 = 2y.d (vc=0)

-mag m.a.g

d

~vg =2y.d = —2ag so:y==—2 with f=my=

sof=

_f_Jf _mag _a_1
Then ’u_R_mg mg.d_d_ 3

Exercise 3

1. Knowing that the coefficient of dynamic friction on plane AB is pg=0.2, apply the fundamental

principle of dynamics:

- What is the nature of the motion on AB? a="?
SF=md=p+Ry+F

Following (Ox): —F¢t px=- F¢+ mgsina =ma

Following (Oy): Rn -py=0 = Rn=m g cosa

ug=tge = F/Ry= Ff=Rntgo = pgm gcosa
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- llgMm g cosa + m g Sina = m.a

= a=g.(Sino- pg cosa)

So0: a=3.26 m/s*

- Calculate the speed of the block when it reaches point B.

v —vi =2al=>vE =2al = Za(%)

’ h
vg = Za(%) = 8.074m/s

2. V=V because we have an MRU (principle of inertia or Newton's 1st law)

We calculate the compression distance of the spring:

AEc = SWy_ = Ecp — Ecc = Wy + Wy, + Wy
—2kx? = —2mv? so:x = /m—vg =18m
2 2 k
2" Method: Between points C and D
1 1
Ey. = Em, = Ec. + Ep. = Ec, + Ep, :5ka = Emvg

mv?

So; x = =18m

Exercise 4 s o

(T)

<.

v

1- According to the principle of conservation of mechanical energy between two points A and B:

EMA =EMB$ECA+EPA =ECB+EPB

SO ECA = ECB + EPB (*)
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Because E¢, = 0 (v4 = O)because the material point is launched without initial velocity

With hg = Rcosf
So; (*)=>mgR = %mv§+ mg Rcos 6

Then: gR = %v§+ g Rcosd = vi= 2(gR — gRcosh)

= vg = +/2(gR — gRcos6)
2-According to the fundamental principle of dynamics:

-

SF=md=>N+p =md

We choose a reference frame consisting of the axis (OT) tangent to the half-sphere and the axis (ON)

following the radius and in the direction of N:

Projecting on (ON):

2
N-pcos @ =may = N —mgcos 6 = —m%
3- When point P leaves the sphere N=0 so:

_ Vb 2 _
mg.cos 6 =m—=>v, = Rg.cos 6

(*)Y=> R = %R gcos@+ g Rcos 0 = cosh = % so By = 48°

The material point P leaves the sphere at height: hngR

The angle relative to the horizontal at which the point leaves the half-sphere is: 90-48=52
4- The velocity of the material point at this point:

vy = Rg.cosd
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Exercise 5

1- The acceleration of mass m on AB:

By applying the FPD: SF = md = + Ry + f = md
Following (Ox): —f +py=-f+ m g sina=ma....(1)
Following (Oy): Rn-py=0 = Rx=m g cosa...... 2)

Ha=tgp=F/Rn =F=Ntg¢e so F= pHgm g cosa

(1): - lg M g coso. + M g Sino = m.a = a= g (Sino- g cosa) = 3.27m/s?
2- The velocity at point B:

we have va=0

and v: — v3 = 2a(AB) = vi = 2a(AB)
with (AB)=8m

= vp = +/2(3.27)(8) = 7.23m /s~ !

3- Applying the kinetic energy theorem, find the speed of the block when it reaches point B.
AEc = Zerxt = ECB — ECA = Vl/p + WFf + WRN

%mvé = mgsina AB — F;AB

And

%mvé = mgsina AB — p; m g cosa AB

SO Vg =+/g.2.AB sina — 2, g cosa AB

vg = \/g. 2.AB(sina — p4 cosa )
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4- At point B, the block touches a spring with stiffness constant k=100N/m at speed VB.
Calculate the maximum compression (x) of the spring?

(we give g =10 m/s?).
AEM = EM(; - EMB = z:I/VfNC = (EC(; + EPC) - (ECB + EPB) = WFf

:%kxz —%mvé —mgh' = ;kx2 —%mvﬁ — mg (AB sina) = —puy m g cosa AB

So;

Z+9g 2(AB sina)—pq 2 AB
X:\/m(vB g 2(AB sina)—pq 2 g cosa ):1.07m

k

Exercise 6
1- Representation of forces on the figure:

2- Acceleration:

Frryys X

According to the fundamental principle of dynamics:

—

SF=ma=Ry+F;+P=ma
Following (Ox): - Fr =ma (1)
Following (Oy): Rn-P=0

u:g—;:>Ff= LRy ; WithP=Ry S0 F;=pum.g

(1) —umg=m.a

soa= —pg=—1m/s?

a = -1 so we have uniformly decelerated rectilinear motion.

3- Il n’y a pas de frottement donc d’apres le principe de conservation de I’énergie mécanique.

Ep; = mgl(1 — cosa), E¢r = %mv]? and Ep; =0
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mgl(1 — cosa) = %mva = %mvg = mgl(1 — cosa)

So vg =+/2gl(1 — cosa)
4- According to the principle of conservation of momentum:

Pi (before impact) = P; (after impact)

mug+0=0+mv, =>v, = vy = V2gl(1 — cosa)
5- According to the principle of kinetic energy between O and C:
AEc = XWipexty = Ec. — Ecy = Wp + Wgy + W,
1 1
~mvg —-mvg = —F(0C)

With Fi=umg, v3 = 2gl(1 — cosa) and OC=d

So v =+/2gl(1 — cosa) — 2ugd

6- Find the angle a so that vc=0

ve = 0= /29l(1 — cosa) — 2ugd = 0
S0 cosa = 1—#:amin=§

e 1- Representation of forces on the figure:

2- There is no friction, so according to the principle of conservation of mechanical energy
between point C and D:

Emc=Emp = AE, = —-AE.,>E;. + Ep. = Ecp + Epp
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With vp=0 because body A changes direction at point D, so E;p = 0
The body approaches the CD section without any initial speed, so vc=0 and Ec.=0

Ep. = mghwith h = (L + x)sinf so Ep, = mg (L + x) sinf

Epp = = kx?
PD =5 x
So %kx2 =mg (L + x)sinf = %kx2 —mg Lsinf — mgxsin =0

=>70x2—x—-1=0
So x=12.7cm
Exercise 7

A solid body S of mass m is linked on one side to a spring of stiffness K, while the other side of the
spring is fixed. The body is moved horizontally from its equilibrium position by a distance x and

then released (M =tg ¢ : coefficient of friction).

1. Show the forces applied to body S.

oyt
AN’ R
T @ R
k N f
- ANNNANA -
- VVV VY v
(0x) A Ny
B B
A 4

2- Calculate the speed Vg corresponding to the movement of S from its equilibrium position.

AEc = Zerxt = ECB — ECA = Vl/p + WT + WN + Wf
With, W = Wz = 0 because R and § L Ox
So Ecg = Wr + Wy (%) (Ecq = 0 because the initial velocity is null)
We have, F = —kx?and di = dx?

0
> — 1
zWﬁ=J.dWﬁ=J.F.dl=—kfxdxzzkxz
X
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so Wr = %kx2 and Wy = —f x

According to the fundamental principle of dynamics:

-

SE=md=>N+p+T+f=md

T
s

=t =
H=1gey N

We choose a frame of reference composed of the (Ox) axis following the axis of motion, i.e. in the
same direction as T, and the (Oy) axis following N.

By projecting onto the Oy axis

N-p=0= N = mg and u=tg<p=ng
So f=mgtg o

Then (*)= %mvﬁ = %kx2 —mgxu
Hence,

2 /1
vE =a<—kx2 — mg x u)

Exercise 8
A ball slides without friction inside a gutter.

Find the smallest height hpi, from which the ball is

launched to reach point C, without leaving the gutter.
According to the principle of conservation of mechanical energy:

- Between two points A and B:

Ev, =Ey, = Ec, + Ep, = Ec, + Ep,
Then Ep, = Ec,(*)
Because E., = 0
since vy, = O because the ball is launched without initial velocity

and Ep, = 0 hence Ep, = mghandh =0

So (*)= mgh = %mvﬁ
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- Between points B and C:
EMB = EMC = ECB + EPB == ECC + EPC
Then Ec, = Ec. + Ep,
So mgh = %mvg + 2mgr (*’)
The ball leaves the gutter at point C when N=0,

According to the fundamental principle of dynamics:

Zﬁzm&:ﬁ+ﬁ=mc‘i
We choose a reference frame consisting of the axis (OT) tangent to the half-sphere and the axis (ON)

following the radius and in the direction of N and p-

Projecting onto the ON axis:

2
N+p:m.aN:oN+mg=mv7

At point C for N=0 the speed will be:

2

ve
mg =m—
r

VE=T
N g

(*)=> mgh, = %mgr + 2mgr = %mgr
S0 he =27
h. is the minimum value at which the ball reaches point C without leaving the gutter.

for h<h the ball does not reach point C.

for h>h, the ball reaches point C and leaves the trough.

Exercise 9
1. There are no non-conservative forces. We can therefore use the principle of conservation of

mechanical energy between points A and B:
AEn=0 SO Era+ Eppa=Er+ Epps

Taking the origin of the potential energies in B, and knowing that the velocity in A is equal to 0, we

obtain: gh =(¥%2)m.vg?2
So: vg=,/2gh with h=1sina

Then vz =,/2g.1sina
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2. Study of the system between points B and C:

If we choose the origin of abscissas at B (xz = 0) and therefore x¢c = d (maximum compression
distance), we find:

vZ —v3 =2ax (%)
To find the expression for acceleration, we use the fundamental principle of dynamics:

SF,,=md

The forces are weight, reaction R and spring return force Fe:

P+R+F =md
Projection on axis (0x):

mg sina — Fe = mg sina — kx = ma
Then: a = g sina - (k/ m) x
Replace in (*), to find:
—v3 = 2(gsina - (k/ m) x)x =(k/m) d? - 2g sin.d- vg 2=0
(k/2) d? - (g m sina) d- (m g.1sina )=0

Solving this second-degree equation in d yields two solutions. One is negative; we retain only the
positive solution (the physical solution):

g mgsina + \/m2g2sina + 2kmlsina
B k
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Exams and Continuous Assessment

Continuous Assessment N°01

Continuous assessment in mechanics

Exam duration: 01 h 30mn

Exercise 1: (05 Pts)
A. The momentum P (P=m$ where m is a mass and $ is a velocity) associated with a photon
depends on its frequency f according to the following expression:
P = o%*fBc7
Where c is the speed of light and o has the following dimension [c] = M.L2. T 1.
Using dimensional analysis, find the exponents a, § and v.
B. The average velocity of the molecules of a gas is written in the following formula:

9= |—
m

m being the mass of the molecule, V the volume, and p the pressure of the gas.
Calculate the relative uncertainty in 9 as a function of Ap, Am and AV.

Exercise 2: (05 Pts)
A.7, Jand k being the unit vectors of an orthonormal reference frame (Oxyz), consider the
vectors. m=21-2]+3k , H=l+j+k
1- Calculate the vector product 7; A 7.
2- Deduce the angle 6 formed by the two vectors 7; and 7.
B. Let be a polar coordinate system with origin O and unit vectors u,, Ug.

— 3
M is a point with coordinates {p = Z_t +1

(w constant).

1- Using a detailed diagram, give the expression of the position vector OM and calculate the
velocity vector of point M in polar coordinates.

2- Write this velocity vector v (M) in cartesian coordinates (1,7, f().

Exercise 3: (05 Pts)

A particle moves along a trajectory whose equation is X* + y*=4 such that X(t)=2 sin(ot).
Knowing that o is constant and at t=0, the mobile is at point M (0, R), Determine:

1) The component y(t).

2) Velocity and acceleration vector components and their moduli.

3) Tangential and normal accelerations.

4) The nature of the motion.

Good luck
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Exams and Continuous Assessment

Continuous Assessment N°02

Continuous assessment in mechanics

Exam duration: 01 h 30mn

Exercise 1: (06 pts)

A. Check the homogeneity of this formula:

p = pghy + hoF

Such as: P a pressure, p the density, g an acceleration of gravity, h, and h; are heights and F a
force.

B. The period T of oscillation of a pendulum of length | in a gravitational field
(gravitational acceleration) g is proposed in the following form:

T = k.1% gF

1. Find a and B such that k is a dimensionless constant. Write the law e the period T.
2. Calculate the relative uncertainty on T as a function of Al and Ag.

Exercise 2: (07 pts)
A. Letthe points My (+1,+1,+1), M (+2,+2,+1) et M3 (+2,+1,0) ;
1. Find the angle M{M,Mj.
2. Calculate the area of the triangle M;M,;Mj3
B. A material point M is identified by its Cartesian coordinates (X, v, z).
1. Write down the relationship between Cartesian coordinates and cylindrical coordinates
(using a diagram).
2. Write the position vector in cylindrical coordinates and deduce the velocity vector in the
same coordinate system.

p = 4t?
3. If the position of the point is marked in cylindrical coordinates by: { 8 = wt
z =+t

Find the expression of the velocity vector ¥ in cylindrical coordinates.

Exercise 3: (06 pts)

The coordinates x and y of a moving point M in the plane (oxy) vary with time t according to
the following relationships: x = 2t , y = 2t?

Find:

1. The equation of the trajectory.

2. Velocity components and modulus v.

3. Components of acceleration and its modulus a.

4. Nature of motion.

5. Tangential acceleration ar and normal acceleration ay; deduce the radius of curvature.

Good luck
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Exams and Continuous Assessment

Continuous Assessment N°03

Exam to replace the Continuous assessment in mechanics

Exam duration: 01 h 30mn

Exercise 01: (05 Pts)
The limiting velocity 9 of a ball of radius r of mass m and density p, falling into a viscous
medium (a fluid) of density pr and viscosity coefficient n 4= sxll Jalas | is given by :

2r2(p — py)

9 =
9n

g

g is the acceleration of gravity.

1. Using the dimensional equations, determine the dimension of n and derive its unit in
the MKSA system.
2. Determine the relative uncertainty on n, as a function of Ar, Ap, Apsand Av.

Exercise 0 2 : (05 Pts)
A. Let the points A (+1,+1,+1), B (+2,+2,+1) et C (+2,+1,0)

Calculate the scalar product AB.AC and the vector product AB A AC. What do these two
products represent? Deduce the angle between the vectors AB and AC.

B. Define cylindrical coordinates and give the transition relationships between Cartesian
coordinates and cylindrical coordinates.
Write the position vector in cylindrical coordinates and calculate the velocity vector in this
coordinate system.

Exercise 03: (05 Pts)
From the ground, a balloon rises with a constant initial velocity vq (following y). The wind
gives the balloon a horizontal velocity Vy=y .y (y constant).

a- Determine the equations of motion x(t) and y(t). Deduce the equation of the
trajectory y=f(x).
b- Calculate the accelerations a, ay and ar. Deduce the radius of curvature.

Good luck
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Exams and Continuous Assessment

Continuous Assessment N°04

Continuous assessment in mechanics

Exam duration: 01 h 30mn

Exercise 1: (6 pts)
The velocity limit reached by a weighted parachute is a function of its weight P and its surface

. . _ [P
area S, and is given by: V= s

1) Give the dimension of the constant k.

2) Calculate the limiting speed of a parachute with the following characteristics :

M=90 kg, S=80 m?, g=9,81 m/s?, and k=1,15 MKS.

3) With the weight known to within 2% and the surface area to within 3%, calculate the
relative uncertainty Av/v on the velocity v, and the absolute uncertainty Av and deduce the
condensed form of this velocity.

Exercise 2: (5 pts)
A. In the vector space related to the orthonormal basis (z, 7, E), consider the vectors l_f(O, 3,
1), V(0, 1, 2).
1) Calculate the scalar product U. V and the angle ¢ acute between U and V.
2) Determine the components of the vector W = UAV then calculate ||W|| by tow
methods. What does the latter represent.
3) Calculate the mixed product (U, V, W), what does this product represent.

B. Does each of the following expressions have a meaning? If yes, specify whether it is a
vector or a real. If not, say why (without calculation).

1) 4. (BAO) 2) AA(B. C) 3) A A(BAC))
4)4.(B.C) 4) (ANB)A(CAB) 5) (AAB).(CAC)

Exercise 3: (8 pts)
Let be a cylindrical reference frame with origin O, unit vectors U, g, U,. M is any point with
coordinates (p, 0, z).
Using a detailed diagram, give the expression for the position vector OM as a function of the
unit vectors uy, U, U,.

1. Find the velocity vector in cylindrical coordinates.

2. Express the elementary displacement vector in cylindrical coordinates.

3. Write the expression for the elementary volume in this frame of reference and deduce

the volume of a cylinder.

Good luck
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Exams and Continuous Assessment

Continuous Assessment N°05

Continuous assessment in mechanics

Exam duration: 01 h 30mn

Exercise 1: (6pts)
A) A particle of mass m enclosed in a cubic box of side L, has a kinetic energy E such

that:

no?

2
2mys3

Where V the volume of the box and n a dimensionless number.
Using the dimensional equations, find the dimension of c.

E= 2

n

B) The average velocity of the molecules in a gas can be written as:

9= |—
m

m being the mass of the molecule, V the volume, and p the pressure of the gas.
Calculate the relative uncertainty in 9 as a function of Ap, Am and AV.

Exercise 2 : (8pts)
A material point M is identified by its Cartesian coordinates (X, V).
1. Write the relationship between Cartesian coordinates and polar coordinates.
2. Give the expression of the unit vectors w and E; as a function of the unit vectors
Tand jJ.
3. Find the expression of the velocity vector ¥ of point M in polar coordinates.
4. Give the expression of the vector A=2xT— yJ in polar coordinates.

Exercise 3: (6pts)

The coordinates x and y of a moving point M in the plane (oxy) vary with time t according to
the following relationships: x =t+ 1,y = ; + 2t

Find :

The equation of the trajectory.

Components of velocity and its modulus v.

Components of acceleration and its modulus.

Nature of motion.

Tangential and normal accelerations.

Radius of curvature R.

ok wdE

Good luck
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Exams and Continuous Assessment

Continuous Assessment N°06

Exam to replace the Continuous assessment in mechanics

Exam duration: 01 h 30mn

Exercise 1: (6pts)

The energy of a photon is given by the expression E=hv, where h is the Planck constant and v
the photon frequency.

1- Give the dimension of h.

2- Find the expression for the wavelength A, assuming it to be of the form A=k.h*mYV?*
\Where k is a dimensionless constant, m and V represent the photon's mass and velocity
respectively.

3- Determine the relative uncertainty on A as a function of Am, Ah and AV.

Exercise 2: (8pts)

1. Define cylindrical coordinates.
2. Write the unit vectors i, , iiy and 1, in the cylindrical coordinate system in terms

of the unit vectors (7,  and k).
3. Write the elementary displacement vector in cylindrical coordinates.
Deduce the volume of a cylinder.

5. Write the vector 4 = x + 2y] — zk in cylindrical coordinates.

Exercise 3: (6pts)
A. Let a moving point M describe a circle of radius R and center O with angular velocity
o=do/dt. At time t=0 the point M is at A.

1. Write the coordinates of M as a function of R and 6.

2. Calculate the modulus of the velocity of point M.

3. Determine the components of the acceleration on the axes Ox and Oy (Cartesian
coordinates) on the one hand, and on the axes parallel and perpendicular to OM on the other
(polar coordinates).

B. Assume a=dw/dt (o is a non-zero constant). Give the expressions for o and 6 as a function

of time. v4
Recall that at t=0, 6,=0 and w=awo. Ay M
What relationship exists between o and 0. ) R

NI

Good luck
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Exams and Continuous Assessment

Continuous Assessment N°07

Continuous assessment in mechanics

Exam duration: 01 h 30mn

Exercise 1: (06pts)

A) Experience has shown that the velocity v of sound in a gas is a function only of the
gas density p and its coefficient of compressibility y . It is given by :
v=>kp*y
Recall that y is homogeneous to the inverse of a pressure, with k a dimensionless constant.
Determine the velocity of sound relationship.

B) The focal length f of a lens is determined from the formula:
D2—q?2

f=4D

Calculate the absolute uncertainty Af as a function of AD and Aa.

Exercise 2: (08pts)

Let two vectors A and B in the orthonormal reference frame (Oxyz), be defined by :
A=2-1+4-j-5k ,B=-i+j-2"k

Calculate and represent the two vectors (A +B ) and ( 4 - B).

Calculate their moduli.

Calculate the scalar product (/T .§) . Determine the angle 6= (/T, §).
Calculate the vector product (4 A B), what present |4 AB | ?

L hE

5. Write the vector € = y.7 — 2.x.j + z. k in cylindrical coordinates i.e. as a function
of p, 0, z and U, ug, U, . (indication:: use the relations for passing coordinates (x,y,z) and

unit vectors 1,77, k as a function of unit vectors U, ug, U, ).

Exercise 2: (06pts)

The coordinates x and y of a moving point M in the plane (oxy) vary with time t according to
the following relationships: x =t, y = t*- t

Find:

1. The equation of the trajectory.

2. Velocity components and modulus v.

3. Components of acceleration and its modulus.

4. Tangential and normal accelerations as a function of the modulus of v.
5. Radius of curvature R.

Good luck
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Final Exam N°01

Final Exam of Mechanics

Exam duration: 01 h 30mn

Course guestions: (6pts)
1- State and demonstrate the kinetic energy theorem.

2- A ball slides without friction inside a gutter.
Find the smallest height hpin from which the
ball is launched to reach point C, without leaving the gutter.

Exercise 1 : (7pts)

In the (Oxy) plane, a point O' (the origin of the moving reference frame) moves along the
(Ox) axis such that |OO'|=t. The reference frame (O'X"Y") rotates around Oz with a constant
angular velocity ®. A moving point M (O'M=r) moves along the axis (O'X') according to the
law r = r, (cos wt + sin wt) with ry= constant. Determine at time t as a function of ry and .

v

z !
1- The velocity v, and the entrainmen% velocityv,, in the moving reference frame (OX'Y"),
deduce the absolute velocity v, in the same reference frame.
2- Relative acceleration @,’, entrainment acceleration @, and Coriolis acceleration a_ in the
moving frame of reference, deduce the absolute acceleration a, in this frame of reference.

Exercise 2 : (7pts)
A ball of mass m is attached by two wires (Am and Om) to a vertical pole. The whole system
rotates with a constant angular velocity  around the
axis of the pole (we know g the acceleration of gravity, 6
and L = [OM]|)

1. Assuming o is large enough to keep both wires taut,
find the force (wire tension) each wire exerts on the ball.
2. What is the minimum angular velocity min for which
the bottom wire remains taut.

S

Good luck
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Final Exam N°02

Final Exam of Mechanics

Exam duration: 01 h 30mn

Course guestions: (5pts)

1- Why use dimensional analysis?

2- What can it say about the total mechanical energy of a system in the presence of frictional
forces?

3- What is the difference between a conservative force (-=isis 38) and a non-conservative
force? Give an example for each one.

4- Calculate the work of a force F=1.5 10°N supplied to move a body a height (AB) of 3
meters (vertically).

5- Calculate the work of the spring return force with stiffness constant k (EZ = dx.1).

Exercise 1: (7pts)

Consider the fixed reference frame R(Oxyz) where point O' moves along axis (Ox) with
constant velocity vo. Linked to O' is the moving reference frame (O'X'y'z") which rotates
around (Oz) with constant angular velocity . A moving point M moves along the (O'y")
axis with constant acceleration . ’
At time t=0, the axes (Ox) and (O'x’) are
coincident and M is at O.

Calculate in the moving frame:

1- The relative velocity v, and the entrainment
velocity v,, deduce the absolute velocity v,. g
2- The relative acceleration @,, the entrainment Az
acceleration a, and Coriolis acceleration a; , deduce the absolute acceleration a,.

Exercise 2: (8pts)

Consider a small block of mass m =2kg dropped without initial velocity at point A of an
inclined plane at an angle a=30° to the horizontal. Point A is at a height ha=5m from the
horizontal.

vy

1- Knowing that the coefficient of dynamic friction on )

plane AB is pg=0.2, applying the fundamental principle of \
dynamics, what is the acceleration of the block on plane B,
AB=8m? a=30° ( Le

2- Calculate the speed of the block when it reaches point
B.

3- Using the kinetic energy theorem, find the speed of the block at point B.

4- At point B, the block hits a spring with stiffness constant k=100N/m at speed V. Calculate
the maximum compression (x) of the spring (given g =10 m/s%).

Good luck
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Final Exam N°03

Final Exam of Mechanics

Exam duration: 01 h 30mn

Exercise 1: (6 pts)

A) The position of a moving body, subjected to a force F, is marked by its abscissa x, at any instant ¢
according to the relation: x= a.(bt) +F.c

Give the dimensions of the different quantities a, b and c. What might the quantity c represent?

B) The average velocity of the molecules of a gas is written in the following formula:

9= |—
m

m being the mass of the molecule, V the volume, and p the pressure of the gas.
Calculate the relative uncertainty on 9 as a function of Ap, Am and AV.

Exercise 2: (8 pts)
Let the reference frame be R(Oxyz) and the point O' moves on the axis (Ox) with a constant
velocity v0. We link to O' the reference frame (O'XYZ) which rotates around (Oz) with a

constant angular velocity o. Mobile M moves along axis (O'Y) such that |O’M| = (t> + 2)

(without initial velocity).

At time t=0, axis (O'X) is coincident with (Ox) and point M is at O'.
Calculate in the moving reference frame :

1- The relative velocity v, and the entrainment velocity v,, deduce the absolute velocity v,.

2- The relative acceleration a,, the entrainment acceleration a, and Coriolis acceleration a ,
deduce the absolute acceleration a,. Y.

\

~ Y
\
v

Exercise 3: (6 pts)
A particle moves along a trajectory whose y-coordinate equation is given by: y(t) =t?+1 such
that at each instant vy=vo=cste.

If at t=0, Xo=0; determine :

1- The equation of the particle's trajectory.
2- The particle's velocity and acceleration.
3- Normal and tangential accelerations and radius of curvature.

Good luck
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Exams and Continuous Assessment

Final Exam N°04

Final Exam of Mechanics

Exam duration: 01 h 30mn

Cours Questions: (5pts)
I. What is the work done by a force F =2ti acting on a particle of mass m=2kg for a
displacement along the horizontal (dI = dx).

1. s this force conservative?

2. Name three conservative forces.

3. Deduce the power of this force.
Il. Define the dynamic and static coefficients of friction. What is the relationship between
these two coefficients? what is the dimension of the friction coefficient?

Exercise 1 : (8 pts)

In the Oxy plane, consider a system of moving axes (O'XY), such that (Ox) makes a variable
angle 6 with (O'X). Point O' moves along axis (Ox) with constant acceleration a. A point M
moving along the O'X axis is marked by O'M = r. We call relative motion of M its motion
with respect to (O'XYZ) and absolute motion with respect to (Oxyz). (see figure 1)

Calculate in the moving reference frame :

1- The relative velocity 7, and the entrainment velocity v,, deduce the absolute velocity v,.

2- The relative acceleration a,, the entrainment acceleration a, and Coriolis acceleration a; ,
deduce the absolute acceleration a,.

h X

v ™

Exercise 2 : (7 pts)

e A ball B of mass m, attached to an inextensible wire of length I, is moved away from
its equilibrium position by an angle a. It is dropped without initial velocity.
Passing through the vertical position, the ball strikes (touches) a body A of the same mass and
stops, body A passes from point O to point C (OC=d) on a rough horizontal plane of friction
coefficient p.

1- Show the forces exerted on body A.

2- What is the nature of the motion on the horizontal plane?

3. Express the velocity of ball B just before it touches body A.
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Exams and Continuous Assessment

4. Using the principle of conservation of momentum of the system, determine the velocity

of body A after the interaction.
5. If va=vp at point O, give the velocity of body A at point C as a function of g, I, d, a and

L.
6. By what angle must ball B be moved away for body A to arrive at point C with zero
velocity.
e From point C, body A approaches the perfectly smooth (no friction) path CD=L, inclined
at an angle B to the horizontal (Fig. 2). It arrives, without initial velocity, on a perfect spring
of length 10 and stiffness constant k.
1. Show the forces exerted on A as the spring compresses.
2. What is the value of the spring's maximum compression?
We give m=200g, d=OC=1m, 1=10 cm, L=1m, p=0.1, g=10m/s?, k=140N/m, =30°.

Figure 2
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Final Exam N°05

Final Exam of Mechanics

Exam duration: 01 h 30mn

Exercise 1 : (6pts)
KEPLER's third law relates the period T to the semi-major axis a of a planet's orbit around the
T2  4m?
sun as follows: — =
a GMg
With G the universal gravitational constant and Ms the mass of the sun.
We give: G = (6.668+0.005).10™ !SI
For the earth: T = (365.25636567+0.00000001) days and a=(1.4960+0.0003).10™'m
1- Determine the dimension and unit of G.
2- Determine the mass of the sun Ms and the absolute uncertainty A Ms on this mass.

Exercise 2: (8pts)

Let the reference frame be R(Oxyz) and the point O' moves along the axis (Ox) with a
constant acceleration y; and a positive initial velocity V. We link to O' the reference frame
(O'XYZ) which rotates around (Oz) with a constant angular velocity . The coordinates of a
moving body M in the moving frame of reference are: X’=t*+2 and Y’=2t.

At time t=0, the axis (O'X) coincides with (Ox). (Fig 1)

Calculate in the moving frame of reference (O'XYZ) :

1- The relative velocity v, and the entrainment velocity v,, deduce the absolute velocity v,.

2- The relative acceleration a,, the entrainment acceleration a, and Coriolis acceleration a ,
deduce the absolute acceleration a,.

Exercise 3: (6pts)

A material point, of mass m, is suspended at a fixed point O by a wire of length [ inextensible
and negligible mass. By rotating it around axis Oz, it acquires a constant angular velocity . It
describes a horizontal circle of radius r. (Fig 2)

1. Find the expression for the wire tension.
2. Find the expression for the inclination B of the wire with respect to the vertical.

............................................

Good luck
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Exams and Continuous Assessment

Final Exam N°06

Final Exam of Mechanics

Exam duration: 01 h 30mn

Exercise 1 (6pts)
1. A moving body whose motion is uniformly circular is subject to an acceleration:

a- constant c- whose modulus is constant

b- zero d- directed towards the center of the trajectory
Give the correct answers.
2. A particle M moves along a parabolic trajectory with equation :

y = x* with x (t) = 2t

a- Determine the components of velocity and acceleration, and calculate their moduli.
b- Determine the tangential and normal accelerations, and deduce the radius of curvature R.

Exercise 2 (8pts)
A point M moves with constant velocity Vg on the axis (OX) of a reference frame (OXY2Z)
which rotates with constant angular velocity o around (Oz) in the plane (Oxy) (W = 6).
1- What is the expression of OM in the fixed reference frame. Calculate absolute
velocity and absolute acceleration.
2- Calculate relative velocity and entrainment velocity, check that v,-v,.v,.
3- Calculate the relative acceleration @, , entrainment acceleration a, and Coriolis
acceleration a; , check that a,-a,.a,+a..

Exercise 3 (6pts)
A piece of ice M of mass m slides frictionlessly over the outer surface of an igloo, which is a half-
sphere of radius R with a horizontal base.

At t=0, it is released from point A without any initial velocity.

1. Find the expression for the velocity at point B, as a function of g, R and 6.

2. Using the fundamental relation of dynamics, determine Ay
the expression of |N| the reaction of the igloo on M A
at point B as a function of velocity vg.
3. At what height does M leave the sphere? R B
4. At what speed does M arrive at the axis (Ox)? 0 h
X

Good luck
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Final Exam N°07

Final Exam of Mechanics

Exam duration: 01 h 30mn

Cours Questions: (6pts)

1- Give Newton's three laws.

2- What is the difference between a conservative force and a non-conservative force, with
examples for each case?

3- In which case do we have conservation of mechanical energy, and what do we have in the

opposite case? A C

4- State the Kinetic energy theorem and demonstrate it.
5- A ball is thrown without initial velocity and without
friction inside a gutter.

Find the height at which the ball reaches point C

and changes direction.

Exercise 1 (7 pts) :

Let the reference frame be R(Oxyz) and the point O' moves on the axis (Ox) with a constant
velocity vo. We link to O' the reference frame (O'XYZ) which rotates around (Oz) with a
constant angular velocity ®. Mobile M moves along axis (O"Y) with constant acceleration y
(no initial velocity).

At time t=0, axis (O'X) is coincident with (Ox) and point M is at O'.

Calculate in the moving reference frame:

1- The relative velocity v, and the entrainment velocity v,, deduce the absolute velocity v,.
2- The relative acceleration a,, the entrainment acceleration a, and Coriolis acceleration a; ,
deduce the absolute acceleration a.

v

Exercise 2 (7 pts) :
Consider a small block of mass m =5kg dropped without initial velocity at point A of an
inclined plane at an angle a=30° to the horizontal (see figure 2). Point A is at a height hy=5m.
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1- What is the value of the coefficient of static friction ps that keeps the mass in equilibrium
at point A?

2- Knowing that the coefficient of dynamic friction on plane AB is pg=0.2, apply the
fundamental principle of dynamics:

- What is the nature of the motion on AB?
- Calculate the speed of the block when it reaches point B.
- What can be said about the total mechanical energy of the mass m?

3- After passing through point B at speed Vg, the mass moves up the inclined plane BC
(angle=20°), and stops at point C. Knowing that the coefficient of friction remains the same,
determine the height hl of point C?

Good luck
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Final Exam N°08

Final Exam of Mechanics

Exam duration: 01 h 30mn

Course gquestion (5pts)

1- Which physical quantity has a unit and no dimension?

2- What are the different coordinate systems? In which system are the components
dependent?

3- In the case where we have only conservative forces, give the theorems we can use?

4- Define the dynamic and static coefficients of friction. Which is the most important?

Exercise 1 (8pts)
In the (Oxy) plane, consider a system of moving axes (OXY) with the same origin O, rotating
with a constant angular velocity o around (OZ). A moving point M moves along axis (OX)
with constant acceleration y and no initial velocity. We call relative motion of M its motion
with respect to (OXY), and absolute motion with respect to (Oxy).
At time t=0, axes (Ox) and (OX) are coincidentand M isat O.  v4
Calculate in the moving reference frame :

1- The velocity and relative acceleration of M.

2- Entrainment velocity of M and acceleration. \ v

3- Coriolis acceleration. g

4- Deduce its absolute velocity and acceleration. i % f B=wt -
y 0 ?y e

Exercise 2 (7 pts)
Consider a small block of mass m =5kg dropped without initial velocity at point A of an
inclined plane at an angle a=30° to the horizontal. Point A is at a height hop=5m from the
horizontal.

. What is the value of the coefficient
static friction coefficient | that keeps the mass
the mass in equilibrium at point A.

2. Knowing that the coefficient of dynamic friction on plane AB is pg=0.2, apply the
fundamental principle of dynamics:

- What is the nature of the motion on plane AB?

- Calculate the speed of the block when it reaches point B.

3. After passing through point B at speed Vg, the mass arrives at point C. Knowing that the
coefficient of friction is negligible on the plane BC :
- Deduce the velocity at point C?
- Calculate the maximum compression of the spring, given a stiffness constant equal to
k=100N/m? (we given g =10 m/s°)

Good luck
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