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Abstract--This paper presents the results of a simulation 
study of a typical flexible manufacturing system (FMS) that 
has routing flexibility. The objective in this study is to 
compare the following metaheuristics performances (Ant 
colony, genetic algorithms, simulated annealing, taboo 
search, particle swarm) with methods of selection of 
alternative routing in real time DMM (Dissimilarity 
Maximization Method) and modified DMM (modified 
Dissimilarity Maximization Method) in order to have an idea 
on the effectiveness from these metaheuristics and select the 
most effective.  Results obtained after several simulations of 
this model FMS showed that all metaheuristics clearly 
improved the production rate, the utilisation ratio of the 
various machines and the utilisation ratio of the material 
handling system, for a saturated FMS and even in the 
presence of breakdowns. 

 
Index Terms-- Flexible Manufacturing Systems, Alternative 

routing, Routing selection rule, Metaheuristics, Simulation   

 
1. INTRODUCTION 

Flexible Manufacturing Systems (FMS) consist of a 
computer controlled and an integrated configuration of 
numerically controlled machine tools inter-linked with 
automated material handling systems. In a FMS each 
machine is quite versatile and capable of performing 
many different operations, therefore each part may have 
alternative routings in the system. 

Scheduling involves decisions of allocating resources to 
tasks over time, and optimizing one or more objectives. 
Scheduling models can be either deterministic or 
stochastic. Deterministic models assume that all job data 
are known exactly in advance. In stochastic models, not 
all job data but their distributions are known. One of the 
earliest studies on the FMS scheduling problem in the 
work of Nof et al. [1] who demonstrated the importance 
of scheduling decisions for system performance. 

From a traditional viewpoint, scheduling is an off-line 
activity where operations that are known prior to 
production are scheduled before the production starts but 
it can not react to internal or external perturbations. 
Because of this, rescheduling becomes obligatory in order 
to avoid the increase in the wait time, the work-in-

process, and the weak use of equipments and 
consequently the degradation of the manufacturing 
system performances. Several researchers propose various 
methods to accommodate flexibility into off-line 
scheduling in order to increase the system performance 
[2]-[3]. However, real time scheduling has always 
remained a desirable but elusive goal [4]-[5]. 

The scheduling problems in manufacturing systems are 
generally NP hard and there are not universal methods 
making it possible to solve all the cases effectively [6].  

Metaheuristics are the algorithms of the stochastic type 
aiming to solve a broad range of hard optimization 
problems, for which one does not know more effective 
traditional methods. Often inspired by analogies with 
reality like physics (simulated annealing, simulated 
diffusion,) biology (evolutionary algorithms, taboo 
search,) and ethology (ant colony, particle swarms …). 
They are generally of discrete origin, but can be adapted 
to the other types of problems and they share also the 
same disadvantages: difficulties of adjustment of the 
parameters of the method and the large computation time. 

 In this paper, our interest is focused to a group of 
metaheuristics, which  include in particular the simulated 
annealing (SA), the genetic algorithm (GA), the taboo 
search (TS), the ant colony algorithms (ACO) and particle 
swarm (PSO); we are going to present a comparative 
study between these metaheuristics and DMM and 
modified DMM rules. 

We used DMM and modified DMM methods as a 
comparison basis to evaluate the performances of the meta 
heuristics studied because it was shown in [7]-[8] that 
DMM and modified DMM methods present the best 
results for the alternative selection of routing when 
compared to other traditional rules.  

The remainder of this paper is organized as follows. In 
the next section, we define DMM and modified DMM 
rules as well as metaheuristics which gave good results 
for our problem. In section 3, we define the FMS model. 
Section 4 is devoted to the results. Finally, conclusion and 
our perspectives are given. 
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2. SIMULATED METHODS AND METAHEURITICS 

In this section, we are going to define DMM and 
modified DMM rules which are used for selecting an 
incoming part and later routing it to a machining centre 
for its next operation as well as the studied metaheuristics 
(Simulated annealing, Genetic algorithm, Taboo search, 
Ant colony algorithms and Particle swarm).  

 

A. Dissimilarity Maximization Method 

DMM [9] is developed with the goal of reducing the 
congestion in the system, The DMM concept is based on 
the objective of maximising the dissimilarities among the 
alternative routings. DMM uses a dissimilarity coefficient; 
which is based on the types of machines in routings. It 
selects a routing for each part so that the cumulative 
dissimilarity, in terms of machine tool requirements, is 
maximised. Dissimilarity between routings i and j is 
calculated by dividing the number of machine types that 
are not common in both routing i and j on the total 
number of machine types in both routings  

 

B. Modified Dissimilarity Maximization Method [8] 

This rule is also used in the selection of the alternative 
routings in real time in FMS. In DMM rule, after having 
selected a routing for a part, this routing cannot be used 
by another part as long as the first part did not leave the 
system thus each routing can contain only one part at the 
time. The modification of this rule, aims to keeping the 
same principle but by assigning several parts to only one 
routing. Then if all routings are selected, the following 
part will be transferred in the routing where the queue of 
the first machine of this routing, contains at least a free 
place. 

 

C. Ant colony Optimization 

This metaheuristic was introduced by Marco Dorigo 
(1992) [10] and was inspired by the studies on the real ant 
whose members are individually equipped with very 
limited faculties but can find the shortest path from a food 
source to their nest without visual cue. They are also 
capable of adapting to changes in the environment like the 
appearance of an unexpected obstacle on the initial path 
between the food source and the nest.  

The first algorithm of this type of metaheuristics was 
conceived to solve travelling salesman problem. [10] This 
algorithm principle is simple. 

When an ant k moves city i to city j, it leaves a trail on 
the way. Moreover, it chooses the next city to be visited 
using a probability P K 

ij based on a compromise between 
the intensity of the trail Гkij and visibility ηij that 
represents the reciprocal of the distance between i and j, 
the relative importance of the two elements is controlled 
by two parameters α and β. 

Each ant k has a form of memory tabuk it points out the 
ordered list of the cities which have been already visited 
in order to force this one to form an acceptable solution. 

After a full run, each ant deposit a certain quantity of 
pheromone Δ Гkij which depends on the quality of the 
solution found on the whole of its course. 

This algorithm has been adapted to our problem by 
replacing the city i by the part i and the city j by the 
routing j. For each part i, the choice of routing j is based 
on a compromise between the intensity of the trail Гkij and 
visibility ηij (depends on the number of parts in the input 
buffer of the first and second machine of the routing).   

 

D. Simulated Annealing 

The simulated annealing method was conceived by 
S.Kirkpatrick, C.D Gellat and M.P Vechi in 1983 [11]. It 
is a metaheuristic inspired by a process used in metallurgy 
to obtain a well ordered solid state with minimal energy 
called annealing process.  

This technique consists in carrying material at high 
temperature, then to lower this temperature slowly. 

This optimization method is based on works of 
N.Metropolis [12] which allow describing the behaviour 
of a system in thermodynamic equilibrium at a certain 
temperature. This technique transports the annealing 
process to the resolution of an optimization problem: the 
objective function to be minimized being the energy E of 
material. The temperature T is also introduced.  

From an initial solution at a temperature T, we generate 
another solution close in a random way. If this solution 
improves the objective function, this latter is 
automatically accepted. If it degrades the function 
objective, it can also be accepted according to a 
probability exp(-ΔE) were ΔE is the variation of the 
objective function, once thermodynamic equilibrium is 
reached one should lowers the front temperature slightly 
before implementing a new iteration.  

 

E. Particle Swarms  

PSO is a recent metaheuristic approach proposed by 
Kennedy and Eberhart in 1995[13].It is based on the 
metaphor of social interaction and communication, such 
as fish schooling and bird flocking when it is randomly 
searching for food in an area, where there is only one 
piece of food available and none of them knows where it 
is, but they can estimate how far it would be at each 
iteration. For this problem, the simplest strategy to find 
and get the food is to follow the bird known as the nearest 
one to the food. 

In PSO, each single solution is called a particle, the 
group becomes a swarm (population) and the search space 
is the area to explore. Each particle has a fitness value 
calculated by a fitness function, and a velocity of flying 
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towards the optimum. In the original version of PSO, all 
particles fly across the problem space following the 
particle nearest to the optimum by two elastic forces. One 
attracts it to the best location so far encountered by the 
particle. The other attracts it with random magnitude to 
the best location encountered by any member of the 
swarm. 

Each particle maintains two character items: velocity 
and position. Both of them are updated at each step until 
the population converges to an optimum as follow: 

( ) ( ) ( )( ) ( )( )111 2211 −++−++−= txprctxprctVtV igiiii       (1) 

( ) ( ) ( )tVtXtX iii +−= 1                                        (2) 
Where vi (t) denotes the velocity vector of particle j at 

time t. xi (t) represents the position vector of particle j at 
time t. Vector pi is the memory of particle i at current 
generation, and vector pg is the best location found by the 
whole swarm. Cognitive coefficient c1 and social 
coefficient c2 are known as acceleration coefficients r1 and 
r2 are two random numbers with uniform distribution. 

PSO originally designed for continuous optimization 
problems, but can be adapted to discrete problems like our 
problem of routing selection where (1) and (2) were 
replaced by the following equation proposed by Pan et al 
[14]: 

( ) ( )( ) ( )( ) ( )( )1,1,112132 −−−⊕⊕⊕= tGtptXFwFcFctX iii   (3) 
The equation (3) consists of three components: The 

first component is ( ) ( )( )11 −⊕= tXFwt iiλ  which represents 
the velocity of the particle. F1 represents an operator 
which modifies the routing of some parts with the 
probability of w, a uniform random number r is generated 
between 0 and 1. If r is less than w then the F1 is applied 
to generate a perturbed permutation of the particle 
by ( ) ( )( )11 −= tXFt iiλ , otherwise current permutation is kept 
as ( ) ( )1−= tXt iiλ .Of the same way, the second component 
which is cognition part of the particle  
( ) ( ) ( )( )1,21 −⊕= tptFct iii γδ  and the third component which 

is the social part of the particle ( ) ( ) ( )( )1,32 −⊕= tGtFctX iii δ  
have been modified where F2 and F3 represent the 
crossover with the probability C1 and C3. 

 

F. Genetic algorithms  

Genetic algorithms were proposed by Holland [15]. 
They were inspired from the principles of natural genetics 
and the theory of evolution (The presence or absence of 
genes and their order in the chromosome decide the 
characteristics of a species. Different traits are passed on 
from one generation to the next through different 
biological processes that operate on the genetic 
structure………..).  

In a GA, each solution is stored in an artificial 
chromosome represented by a code. Each of these 
chromosomes is defined by two characteristics.  

The first is their genotype, which is the actual sequence 
which defines the chromosome. It is called like this 
because of the analogy with a genetic sequence in 
biology. The second is the phenotype, which is the 
decoded version of the genotype that determines the traits 
of the individual.  

With each of the chromosomes, the parameters are 
decoded and evaluated by the fitness function to 
determine the quality of the phenotype.  

New candidates are generated gradually from a set of 
renewed populations by applying artificial genetic 
operators selected, after repeatedly using operators of 
crossover and mutation [16].  

Crossover is performed by taking two fit genotypes, 
choosing a place along the bit string, cutting each of them 
at that place and then connecting one string's left to the 
other string right and vice versa. This produces two new 
chromosomes, which are a combination of the two 
parents.  

Reproduction is simply a matter of passing 
chromosomes which are judged to be above a certain 
fitness level through to the next generation and mutation 
is done by choosing bits randomly and swapping them. 

 

G. Taboo search  

This method was formalized by F Glover [17]. It is 
based on the use of mechanisms inspired by the human 
memory. The principle of this metaheuristic is simple: we 
generate an initial configuration which is updated during 
successive iterations. The mechanism of passage of one 
configuration, called s, to the next one, called t, comprises 
two stages:  

- The first builds the set of the neighbours of s, i.e. 
the set of the accessible configurations in only one 
elementary movement of s, let V (s) be the set (or 
the subset) of these neighbours. 

- The second evaluates the objective function f of 
the problem for each configuration belonging to V 
(s). The configuration t, which succeeds s in the 
series of the solutions built by the taboo method, is 
the configuration of V (s) in which f takes the 
minimal value. This configuration t is adopted 
even if it is worse than s; due to this characteristic 
the taboo method can avoid the trapping in the 
local minima.  

To avoid to return to a retained configuration and 
generate a cycle in each iteration the taboo list that gave 
its name to the method contains m movements (t → s), 
which are the opposite of the last m movements (s → t) 
carried out. 
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4. FLEXIBLE MANUFACTURING SYSTEM MODEL 
PRESENTATION  

The FMS considered (see fig.1) for this study includes 
seven machining centres, each machine has an input and 
output buffer, a loading and an unloading station, and six 
different part types, each part types has different 
alternative routings. 

The alternative routes and processing times of each 
part type and the production ratio of the part types that are 
randomly arriving at the loading station are shown in 
Table I (see table I) 

The operation of the FMS model used in this study is 
based on the following assumptions:  

- The flexible process plan of each part type is 
known prior to production.  

- Processing times are known deterministically and 
they include tool change, set-up, and machining 
times. 

- The processing time of an operation is the same on 
the alternative machines identified for that 
operation.   

- Each machine can process only one part at a time. 

 

 
Fig. 1.Configuration of the FMS model [5] 

5. RESULTS AND DISCUSSIONS 

To validate the results of this study and show the 
improvements made by the metaheuristics we simulated 
DMM and modified DMM on a FMS model using 
ARENA software (1). On the other hand, metaheuristics 
were simulated using Java (2) on the same model with 
variations on the criteria of the studied system. 

The methods and the algorithms were simulated over 
20000 hours with a warm up time of 3000 hours. 
Simulations has been carried out on (Core (TM) 2Duo 
CPU with 2.2 GHZ and 1 GO of RAM)   

In this section we will have some results obtained after the 
simulation of the two methods and execution of the 
programs as well as interpretations of these results. 

A. Production rate 

Rate of part leaving the system is calculated by 
dividing the number of parts left by the number of parts 
created. 

TABLE I 

ALTERNATIVE ROUTINGS OF PART TYPES [5] 
 

Part type 
and 

Production 
RATIO 

Routing and processing time (min) 

L – VTC1 (30) – VMC1 (20) - UL 

L – VTC1 (30) – VMC2 (20) - UL 

L – VTC2 (30) – VMC1 (20) - UL 

 

A 

17℅ 

L – VTC2 (30) – VMC2 (20) - UL 

L – VTC1 (20) – SHP (1) – VMC1 (15)-UL 

L – VTC1 (20) – SHP (1) – VMC2 (15)- UL 

L – VTC2 (20) – SHP (1) – VMC1 (15) - UL 

 

 

B 

17℅ L – VTC2 (20) – SHP (1) – VMC2 (15) - UL 

L – VTC1 (40) – VMC1 (25) - UL 

L – VTC1 (40) – VMC2 (25) - UL 

L – VTC2 (40) – VMC1 (25) - UL 

 

C 

17℅ 

L – VTC2 (40) – VMC2 (25) - UL 

L – VTC1 (40) – SHP (1) – VTC1 (20) – HMC1 (35)–UL 

L – VTC1 (40) – SHP (1) – VTC1 (20) – HMC2 (35)–UL 

L – VTC1 (40) – SHP (1) – VTC2 (20) – HMC1 (35)–UL 

L – VTC1 (40) – SHP (1) – VTC2 (20) – HMC2 (35)–UL 

L – VTC2 (40) – SHP (1) – VTC1 (20) – HMC1 (35)–UL 

L – VTC2 (40) – SHP (1) – VTC1 (20) – HMC2 (35)–UL 

L – VTC2 (40) – SHP (1) – VTC2 (20) – HMC1 (35)– UL 

 

 

 

 

 

D 

21℅ 

L – VTC2 (40) – SHP (1) – VTC2 (20) – HMC2 (35)–UL 

L – VTC1 (25) – SHP (1) – VTC1 (35) – HMC1 (50)–UL 

L – VTC1 (25) – SHP (1) – VTC1 (35) – HMC2 (50)–UL 

L – VTC1 (25) – SHP (1) – VTC2 (35) – HMC1 (50)–UL 

L – VTC1 (25) – SHP (1) – VTC2 (35) – HMC2 (50)–UL 

L – VTC2 (25) – SHP (1) – VTC1 (35) – HMC1 (50)–UL 

L – VTC2 (25) – SHP (1) – VTC1 (35) – HMC2 (50)–UL 

L – VTC2 (25) – SHP (1) – VTC2 (35) – HMC1 (50)–UL 

 

 

 

 

E 

20℅ 

L – VTC2 (25) – SHP (1) – VTC2 (35) – HMC2 (50)–UL 

L –HMC1 (40) – UL F 

8℅ L –HMC2 (40) – UL 

 

The figure 2 and table II show that for a significant rate 
of creation of the parts results obtained by metaheuristics 
are better than those of the Modified DMM (MDMM) and 
DMM and that below the creation rate of 1/25 the 
production rate is practically the same one for all 
methods. 

On the other hand, the rates obtained by simulated 
annealing and particle swarm are better than that obtained 
by other metaheuristics. 
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TABLE II 

RATE OF PART LEAVING THE SYSTEM FOR QUEUE SIZE=2. 
 

creation 
rate 

1/5 1/10 1/15 1/20 1/25 1/30 1/35 1/40 

SA 24.3 48.7 73.1 97.7 99.9 99.9 99.9 99.9 

PSO 24.3 48.8 73.0 97.5 99.9 99.9 99.9 99.9 

ACO 24.0 48.1 72.1 96.1 99.9 99.9 99.9 99.9 

TS 23.8 47.6 71.5 95.2 99.9 99.9 99.9 99.9 

GA 22.3 45.0 67.5 90.0 99.9 99.9 99.9 99.9 

MDMM 21.1 41.6 60.7 84.4 99.7 99.9 99.9 99.9 

DMM 8.8 15.4 32.0 24.6 81.4 99.9 99.9 99.9 

0

20

40

60

80

100

120

1/5 1/10 1/15 1/20 1/25 1/30 1/35 1/40

Creation rate of parts (min)

Simulated annealing
Ant colony
particle swarm
genetic algorithm
taboo search
Modified DMM
DMM

 

Fig. 2.Rate of part leaving the system for queue size=2 

 

B.Utilisation rate of the machines   

The utilization rate of machines is a very significant 
criterion in the measurement of the performance of a 
production system. The utilization rate for the machines 
VTC 1 and VTC2 is larger for the ant colony and particle 
swarms than for the modified DMM and DMM and other 
metaheuristics when rate of creation increase (see figure 3 
1or table III).The most efficient method is ant colony. 

TABLE III 

UTILIZATION RATE OF THE MACHINES VTC1 AND VTC2 
FOR QUEUE SIZE=2. 

 
creation 

rate 
1/5 1/10 1/15 1/20 1/25 1/30 1/35 1/40 

SA 92.6 92.5 92.9 92.9 78.2 65.7 56.6 49.8 

PSO 93.7 93.7 93.6 93.7 78.6 65.2 56.5 49.6 

ACO 94.7 94.7 94.6 94.6 78.7 65.6 56.2 49.2 

TS 91.8 91.7 91.8 91.5 78.7 65.6 56.2 49.2 

GA 87.1 87.7 87.6 87.4 79.0 66.0 56.6 49.3 

MDMM 84.7 83.5 82.7 84.5 79.8 66.5 56.9 49.9 

DMM 35.5 30.9 42.5 24.6 65.0 66.5 57 49.9 

                                                           
1 (1): Java is a programming language developed by Sun Microsystems    
   (2): ARENA is simulation software marked by Rockwell Automation 
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Fig. 3.Utilization rate of the machines VTC1 and VTC2 for queue 
size=2. 

 

C. Utilisation rate of the handling system   

Figure 4 and table IV show us that for a saturated 
system the auto guided vehicle (AGV) utilization rate is 
larger for particle swarm and ant colony than the modified 
DMM and DMM and other metaheuristics, which is due 
to the high production rate and the increase in the use of 
the machines. 

The best results concerning the rate of handling system 
are obtained by the ant colony. 

TABLE IV 

UTILIZATION RATE OF AGV FOR QUEUE SIZE=2. 
 

creation 
rate 

1/5 1/10 1/15 1/20 1/25 1/30 1/35 1/40 

SA 33.2 33.1 33.1 33.2 28.3 23.8 20.6 18.1 

PSO 33.7 33.7 33.6 33.7 28.5 23.6 20.5 18 

ACO 34.3 34.3 34.3 34.3 28.5 23.8 20.4 17.8 

TS 33 33 33 32.9 28.5 23.8 20.4 17.8 

GA 31.4 31.6 31.6 31.5 28.7 24 20.5 17.9 

MDMM 30.4 30.1 29.1 30.2 27.3 21 17.4 14.9 

DMM 12 10.5 14.3 8.4 21.6 20.9 17.4 15 
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Fig.4.Utilization rate of the handling system for queue size=2. 

 

6. CONCLUSION   

In this paper we have presented certain metaheuristics 
and compared their performances with methods of 
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selection of alternative routing in real time DMM 
(Dissimilarity Maximization Method) and modified 
DMM. 

Results obtained showed that all metaheuristics gave 
results better than DMM and modified DMM and clearly 
increased the performances of the system for a saturated 
production system and high rate of creation of the parts 
because they increase the production rate and the 
utilization rated of machines and the utilization of AGV. 

Results showed that simulated annealing gives the best 
results concerning the production rate and the ant colonies 
are more efficient if one is interested in utilization rate of 
the machines and of AGV so there is not a metaheuristic 
which is better than all methods and metaheuristics for all 
performances. We have to notice also that these 
techniques could not improve the performances 
concerning the cycle time and the rate of work in progress 
of the system. 

Our future work is to combine several metaheuristics to 
improve performances of the system and found results 
better than these presented.  

 

REFERENCES 
[1] S. Nof, M. Barash and J. Solberg. "Operational control of item flow 

in versatile manufacturing system", International journal of 
production research, 17, 479-489, 1979. 

[2] C. Saygin and S.E. Kilic. "Integrating flexible manufacturing 
systems with scheduling in flexible manufacturing system", 
International journal of advanced Manufacturing Technology, 
15(4),268-280, 1999. 

[3] C. Saygin and S. E. Kilick. "Effect of flexible process plans on 
performance of flexible manufacturing systems", proceedings of 
7th International DAAM symposium, Vienna, Austria, 393-394, 
1996. 

[4] C. Basnet and J. H. Mize. "Scheduling and control of flexible 
manufacturing systems: a critical review", International journal of 
Computer Integrated Manufacturing, 7(6), 340-355, 1994.  

[5] C. S. Shukla and F. F. Chen. "The state of the art in intelligent real-
time FMS control: a comprehensive survey", Journal of intelligent 
Manufacturing, 7, 441-455, 1996. 

[6] M.R Garey and D.S. Johson.,"Computers and intractability a guide 
of the theory of NP- completeness", W.H. Freeman and company, 
San Fransisc, 1979.          

[7] L. GHOMRI et Z. SARI, "  Influence des Contraintes et des 
Perturbations sur les Performances des Règles de Routage dans un 
FMS ", Rabat, Conception et Production Intégrées, 2007. 

[8] A. HASSAM and Z.SARI," Real-Time Selection of Process Plan in 
Flexible Manufacturing Systems: Simulation Study", CHINA, 
International Conference on Industrial engineering and Systems 
Management, 2007. 

[9] C. Saygin, F.F. Chen and J. Singh, "Real-Time Manipulation of 
alternative Routings in Flexible Manufacturing Systems: A 
simulation Study", International journal of advanced 
Manufacturing Technology, 18, 755-763, 2001 

[10] M. Dorigo, "Optimization, learning and natural algorithms", Italy, 
PHD thesis, DEI, Politecnico di Milano, 1992.   

[11] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. "Optimization by 
Simulated Annealing", Science Number 4598, volume 220, 4598, p 
.671-680, 1983. 

[12] N.Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and 
E. Teller. "Equations of state calculations by fast computing 
machines", Journal of Chemical Physics, 21:1087–1091, 1953. 

[13] R. C. Eberhart and J. Kennedy, " New optimizer using particle 
swarm theory",  Proceedings of the 6th International Symposium on 
Micro Machine and Human Science, pp. 39–43, Nagoya, Japan, 
October 1995. 

[14]  Pan QK, Tasgetiren MF, Liang YC, "A discrete  particle swarm 
optimization algorithm for the no-wait flowshop scheduling 
problem with makespan criterion", Proceedings of the international 
workshop on UK planning and scheduling special interest group, 
UK PLANSIG2005. City University, London, pp: 31–41, 2005.              

[15] Holland, J.H., Adaptation in Natural and Artificial Systems, 
University of Michigan Press, Ann Arbor (1975). 

[16] Goldberg, E.E., Genetic Algorithms in Search, Optimization, and 
Machine Learning, Addison Wesley, Reading, MA (1989).  

[17] Glover F. and Manual Laguana, 1997. Tabu Search. Article was 
principally adapted from the book « Tabu Search » of Glover, 
Laguana 1997, Kluwer Academics publishers. 

 

JASE online: jase.esrgroups.org ICEEDT'08 copyright (c) 2008 JES online: journal.esrgroups.org\jes




