وزارة النعابم العالج و البكث العامج MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABOU BEKR BELKAID-TLEMCEN
FACULTE DE MEDECINE
Dr. B. BENZERDJEB - TLEMCEN

المهروبة البرائرية الطهوراكية الشعبية République Algérienne Démocratique ET POPULAIRE

جامعة أبي بكر بلقايد - تلمسان كالية الطاب د. ب. بن زرجب - تلمسان

DEPARTEMENT DE PHARMACIE

MÉMOIRE DE FIN D'ÉTUDES POUR

L'OBTENTION DU DIPLÔME DE DOCTEUR EN PHARMACIE

Thème

Substances naturelles et Coronavirus : Revue et potentiel d'inhibition du SARS-CoV-2

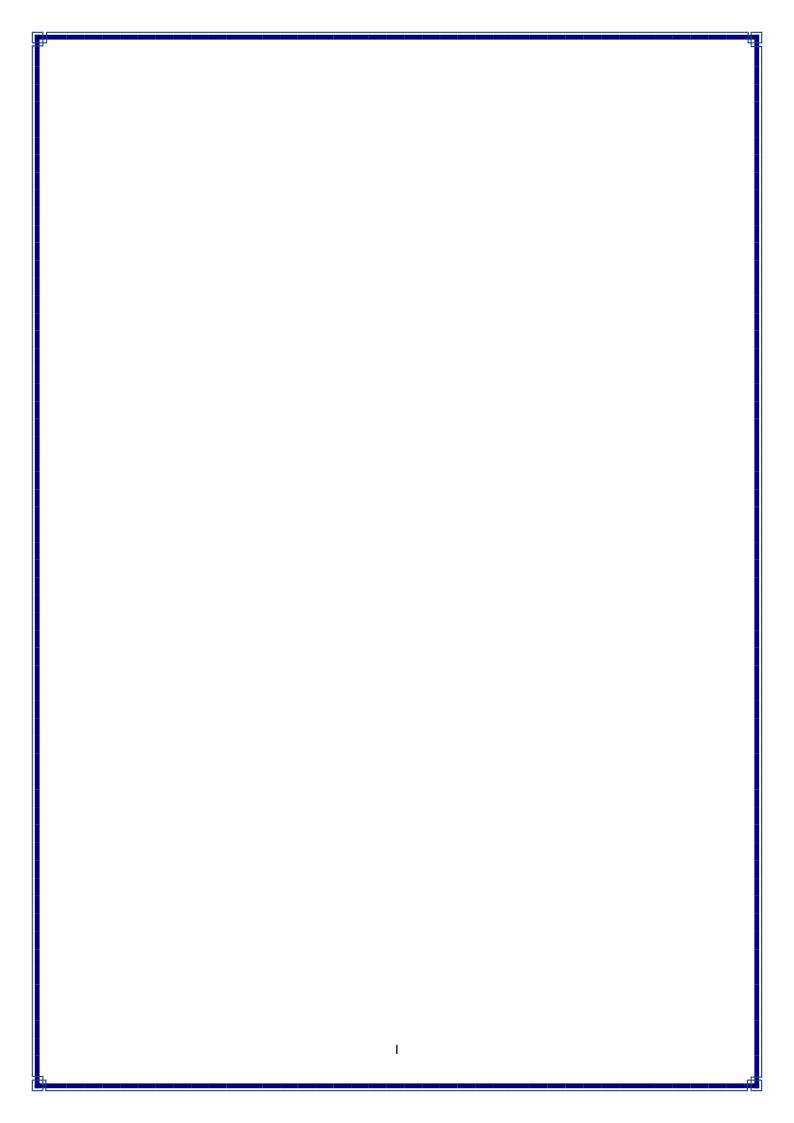
Présenté et Soutenu le : 10 Octobre 2021

Par

HAMMADI Meryem Wafa

HOUALEF Manel

Jury


Dr DALI YAHIA.K : Maître de conférences A en pharmacognosie **Président**

Dr HASSAINE.S : Maitre-assistante en pharmacognosie **Membre**

Dr GHENIMI.F : Maitre-assistante en chimie analytique **Membre**

Dr HELALI.A : Maitre-assistante en pharmacognosie **Encadrante**

Année Universitaire 2020-2021

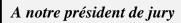
الحمد الله ربب العالمين، و الصلاة و السلاء على أشرف الخلق سيدنا محمد الصادق الأمين، الله و لا علم لنا الا ما علمتنا و زدنا علما.

Au terme de ce travail, nous tenons à remercier Dieu le tout-puissant, le clément, le miséricordieux de nous avoir donné le courage, la force, la volonté et la patience pour achever ce travail.

Madame HELALI. A

Docteur en pharmacie

Maitre-assistante en pharmacognosie


Il nous est très agréable de vous exprimer notre gratitude et reconnaissance d'avoir accepté la direction de ce mémoire.

Vous avez fait preuve d'une patience et d'une écoute appréciable durant l'élaboration de ce travail.

Nous vous remercions pour votre soutien, votre disponibilité, vos conseils précieux et orientations qui nous ont été d'un grand apport dans la confection de ce mémoire.

Nous espérons être à la hauteur de la confiance que vous nous avez accordée

Monsieur DALI YAHIA.K

Pharmacien hospitalo-universitaire

Maître de conférences en pharmacognosie

Nous sommes honorées d'accepter de présider ce jury de mémoire

Votre présence est pour nous l'occasion de vous exprimer notre reconnaissance pour votre aide précieuse dans l'évaluation et l'enrichissement de ce travail.

Nous vous prions de trouver dans ce travail l'expression de notre plus profond respect.

A notre membre de jury

Madame HASSAINE.S

Pharmacien hospitalo-universitaire

Maître assistante en pharmacognosie

Vous nous avez honorés d'accepter avec grande sympathie de siéger parmi notre jury de thèse.

Veuillez trouver ici l'expression de notre grand respect et nos vifs remerciements.

Madame Ghenimi.F

Dr en pharmacie

Maitre assistante en chimie analytique

Nous vous remercions de la confiance que vous avez bien voulue nous témoigner en acceptant de juger ce mémoire.

Veuillez trouver dans ce travail le témoignage de nos sincères estimes.

Finalement nous tenons à exprimer notre vive gratitude à tous les enseignants qui ont participé de près ou de loin à notre formation du primaire au cycle

Ce travail est le couronnement de plusieurs mois d'effort avec l'appui et le soutiens de plusieurs personnes que je tiens à remercier ici vivement.

Je dédie ce mémoire ...

A mes chers parents,

A celui qui m'a offert la vie et la prunelle de mes yeux, sources de sagesse, et de tendresse. Ceux qui m'ont appris le respect et le sens du devoir et qui ont sacrifié le tout pour me voire heureuse.

Aucune dédicace ne saurait exprimer mon respect, mon amour éternel et ma considération pour les sacrifices que vous avez consenti pour mon instruction et mon bien être. Je vous remercie pour tout le soutien et l'amour que vous me portez.

Puisse Dieu, le Très Haut, vous accorder santé, bonheur et longue vie et faire en sorte que jamais je ne vous déçoive.

A mes frères Abdessamad, Nabil et Imad,

Qui m'ont toujours encouragé moralement tout au long de mon parcours. Et à qui je dois tout l'amour, avec tous mes vœux de les voir réussir dans leurs vies.

A ma sœur adorée Souhila

Qui animent ma vie par le courage et la générosité « Que dieu exauce tes vœux ».

A mes grands-parents

Que ce modeste travail soit l'expression des vœux qu'ils ont formulés dans leurs prières « Que dieu vous garde pour nous ».

A tous mes oncles, mes tantes et toute ma famille HAMMADI et DAHO

Et plus particulièrement à mes chères tantes : Fadoua, Wassila, Sadjida et l'adorable Nassima. A ma belle-sœur Hayat et ma cousine Samah. Veuillez trouver dans ce modeste travail l'expression de mon affection et ma gratitude.

A la mémoire de mes grands-parents paternels

Qui nous ont quitté mais qui sont toujours dans mon esprit et mon cœur. Je leur dédie aujourd'hui ma réussite. Que Dieu ait vos âmes et vous accueille dans son paradis en vous entourant de sa sainte miséricorde.

A tous mes amies

Avec qui j'ai traversé ces 6 années d'études, mes fidèles B.Lamia, B.Fatima, B.Nour El Houda, G.Zineb, B.Abir et B.Khouloud. En témoignage de l'amitié qui nous uni et des souvenirs de tous les moments que nous avons passés ensemble. Mes meilleures années étaient avec vous sœurettes. Merci

A ma chère Binôme Manel.

« La réussite appartient à tout le monde mais c'est au travail d'équipe qu'en revient le mérite. » J'étais très ravi pour mener ce travail de mémoire de fin d'études avec vous et j'ai pu apprécier d'avantage votre forte personnalité et votre bonté ainsi que votre simplicité.

A tous mes enseignants qui m'ont initié aux valeurs authentiques, en signe d'un profond respect et d'un profond amour.

A tous ceux qui m'aiment et à tous ceux qui, par un mot, m'ont donné la force de continuer.

HAMMADI Meryem Wafa 🌋

Merci à dieu le miséricordieux de nous avoir guidé, de nous avoir donné la force pour accomplir ce travail et d'avoir fait qu'on arrive là où on en est aujourd'hui.

Je dédie ce modeste travail:

A ma mère Amel et mon père Abdelmalek,

Tous les mots du monde ne sauraient exprimer l'immense amour que je vous porte, ni la profonde gratitude que je vous témoigne. Vous êtes la source de mes joies et le secret de ma force. Merci pour les valeurs nobles, les conseils précieux, l'éducation, le soutien permanent venu de vous, et votre assistance et présence dans ma vie. Merci pour tous vos sacrifices pour que vos enfants grandissent et prospèrent.

Que Dieu tout puissant vous garde et vous procure santé, bonheur et longue vie pour que vous demeuriez le flambeau illuminant le chemin de vos enfants.

Ames chères frères, Meriem et Mohammed

Sans qui, la vie n'aurait aucun charme, vous me remplissez de joie. Je vous remercie pour vos conseils et vos encouragements vous avez toujours été à mes côtés.

Je vous aime du fond du cœur cher frères et Je vous souhaite un avenir plein de bonheur, de réussite et de sérénité.

A la mémoire de mes grands-parents décédés, que l'éternel les remplit de sa

miséricorde,

A toutes ma famille, oncles et tantes, leurs épouses et époux

A tous mes chers cousins et cousines,

Je vous souhaite un avenir plein de réussite

A mon fiancé Houssem, qui a su me supporter et qui n'a jamais cessé de me soutenir. Que dieu nous bénisse et nous garde l'un pour l'autre.

A ma chère Binôme Meryem,

J'ai pris beaucoup de plaisir à travailler avec vous. Nous avons formé une belle équipe. Et j'ai pu apprécier d'avantage votre forte personnalité et votre bonté ainsi que votre simplicité.

A tous ceux que j'aime et que je respecte.

HOUALEF MANEL

SOMMAIRE

Remerci	iement	II
Dédicac	e	VI
SOMM	AIRE	IX
LISTE I	DES TABLEAUX	XII
LISTE I	DES FIGURES	XII
LISTE I	DES ABREVIATION	XIII
Introduc	ction	1
Partie T	héorique	4
I Gér	néralités sur les coronavirus	5
I.1	Historique	5
I.2	Épidémiologie	6
I.2.	1 Distribution géographique des coronavirus	6
I.2.2	2 Origine et réservoir des coronavirus	8
I.2.	3 Transmission	9
I.3	Infection par les coronavirus	9
I.3.	1 Période d'incubation	9
I.3.2	2 Signes cliniques et pathogénicités	9
II Stru	acture	10
II.1	Morphologie	10
II.2	Propriétés physico-chimique	11
II.3	Génome virale	11
II.4	Protéines structurales	11
II.4	.1 Protéine S	11
II.4	.2 Protéine E	12
II.4	.3 Protéine M	12
II.4	.4 Protéine N	12
II.4	.5 Protéine HE	13
II.5	Protéines non structurales	13
III Cyc	cle de vie du SARS-CoV2	14
III.1.	Attachement, Pénétration et Décapsidation	14
III.2.	Transcription et Réplication	15
III 3	Assemblage	15

III	[.4.	Libération	15
IV	Diag	nostic	16
V	Trait	ement	18
V.	.1 '	Traitement conventionnel	18
V.	.2	Médecine traditionnel chinoise	19
VI	Prév	ention	20
Parti	ie Pra	atique	22
I	Prob	lématique	23
II	Obje	ectifs de l'étude	24
III	I.5.	Objectif principal	24
III	I.6.	Objectifs secondaires	24
III	But o	de l'étude	24
IV	Maté	ériels et méthodes	24
III	[.7.	Recherche bibliographique des données	24
III	I.8.	Stratégie de recherche	24
III	[.9.	Criteres de non inclusion	25
III	1.10.	Critères d'inclusion	25
III	[.11.	Critères d'exclusion	25
III	I.12.	Analyse et exploitation des données	25
	IV.1	.1 Informations relatives à l'article :	25
	IV.1	.2 Informations relatives aux substances naturelles décrites dans l'article :	25
V	Résu	ıltats	26
III	I.13.	La date de publication	27
III	[.14.	Le pays	27
III	I.15.	L mécanisme d'action	28
III	I.16.	Les types d'étude	29
III	[.17.	La famille botanique	29
III	I.18.	Liste des substances les plus citées	30
VI	Disc	ussion	39
III	[.19.	Les limites de l'étude	39
III	1.20.	Discussion des résultats	39
III	I.21.	Les substances naturelles anti-SARS-CoV-2 les plus citées	41
	VI.1	.1 Polyphénols	41
	VI	[1.1.1 Quercétine	41

VI.1.1.2	Rutine	42
VI.1.1.3	Kaempférol	42
VI.1.1.4	Myricétine	43
VI.1.1.5	Naringénine	44
VI.1.1.6	Hespéridine	45
VI.1.1.7	Catéchines et catéchines gallates	46
VI.1.1.8	Curcumine	47
VI.1.1.9	Lutéoline	49
VI.1.1.10	Apigénine	50
VI.1.1.11	Acide caféique	50
VI.1.2 Ter	pènes	51
VI.1.2.1	Glycyrrhizine	51
VI.1.2.2	Andrographolide	52
VI.1.2.3	Artémisinine	53
VI.1.3 Alc	aloïdes	54
VI.1.3.1	Berbérine	54
VI.1.4 Cas	s particulier: Huile de coco vierge (étude in vivo)	56
Conclusion		57
Références Biblio	ographiques	59
Annexes		71
Résumé ·		206

LISTE DES TABLEAUX

Tableau I: Méthodes de diagnostic du COVID-19 (38)	18
Tableau II: Statut des vaccins COVID-19 (50, 51)	21
Tableau III: Classement de 63 substances les plus citées dans la littérature qui pourraient	avoir
une efficacité contre les Coronavirus	31

LISTE DES FIGURES

Figure 1: Distribution mondiale des coronavirus humains (A). Les couleurs vertes, bleues,	
brunes et violettes représentent la distribution globale des coronavirus humains NL63, HK	U1,
OC43 et 229E respectivement. (B) Les couleurs rouges et jaunes représentent la distribution	n
globale du MERS-CoV et du SARS-CoV respectivement (5)	7
Figure 2: Nombre des cas infectés et la distribution géographique du SARS-CoV-2 dans le	;
monde jusqu'au 23 Mars 2020 (6)	8
Figure 3: Représentation schématique d'un coronavirus (15).	11
Figure 4: Schéma du cycle de vie/infectieux du SRAS-CoV-2. ACE2 angiotensine I	
convertissant l'enzyme 2, TMPRSS2 sérine protéase 2 transmembranaire (35)	16
Figure 5: Diagramme de flux de recherche documentaire et de sélection d'essais	26
Figure 6: Répartition selon la date de publication (2003-2021)	27
Figure 7 : Répartition selon le pays	
Figure 8 : Répartition selon le mécanisme d'action	28
Figure 9: Répartition des types d'étude réalisée sur les substances naturelles testés sur les	
coronavirus	29
Figure 10 : Répartition selon la famille botanique.	29
Figure 11 : Classement des 15 substance les plus citées par ordre décroissant	30
Figure 12: graphique en secteur montrant les pourcentages des différentes familles chimique	ues
des substances étudiées.	31
Figure 13 : Quercétine et ses analogues et activité antivirale contre le SARS-CoV-2	42
Figure 14 : Kaempférol et ses analogues et activité antivirale contre le SARS-CoV-2	43
Figure 15 : Myricétine et ses analogues et activité antivirale contre le SARS-CoV-2	44
Figure 16 : Naringénine et ses analogues et activité antivirale contre le SARS-CoV-2	45
Figure 17 : Hespéridine et ses analogues et activité antivirale contre le SARS-CoV-2	46
Figure 18 : Catéchine et l'epigallocatéchine et activité antivirale contre le SARS-CoV-2	47
Figure 19 : Curcumine et ses analogues et activité antivirale contre le SARS-CoV-2	48
Figure 20 : Activité de la lutéoline contre le SARS-CoV-2	49
Figure 21 : Apigénine et ses analogues et activité antivirale contre le SARS-CoV-2	50
Figure 22 : Activité de la glycyrrhizine sur les différents types de coronavirus	52
Figure 23 : Activité antivirale d'andrographolide extrait d' Andrographis paniculata	53
Figure 24 : Activité de la Berbérine contre le SARS-CoV-2	55
Figure 25 : Activité de l'huile de coco sur le taux de protéine C-réactive (CRP)	56

LISTE DES ABREVIATION

% : Pourcentage

μM : Micro-mol

3CLpro : Protéase de type 3-chymotrypsine

ADN : Acide désoxyribonucléique

ACE2 : Enzyme de conversion de l'angiotensine 2

AI : Activité inhibitrice
APN : Aminopeptidase N
ARN : Acide ribonucléique

Bax : Pprotéine pro-apoptique « protéine régulateur d'apoptose »

BRB : Berbérine CC : Curcumine

CC50 : Cencentration cytotoxique médiane

CCL2 : Chemokine ligand 2

CHIKV : Virus de Chikungunya

COVID-19 : Maladie à coronavirus 2019

CRP : Protéine C-réactiveDENV : Virus de la Dengue

DOST : Département des sciences et technologies des Philippines

EBV : Virus d'Epstein Barr

EC50 : Concentration efficace médiane

EGCG : Epigallocatéchine gallate

EL : Energie de liaison

ELISA : Enzyme-linked immunosorbent assays ittéralement « dosage

d'immunoabsorption par enzyme liée »

EV-D68 : Entérovirus D68

ER = **RE** : Réticulum endoplasmique

ERGIC : Compartiment intermédiaire ER-Golgi

GRP78 : Glucose Regulated Protein 78

H1N1 : Virus de la grippe AHCoV : Coronavirus humains

HCoV-NL63 : Coronavirus humains NL63
 HCoV-OC43 : Coronavirus humains OC43
 HCoV-229E : Coronavirus humains 229E

HE : Hémagglutinine estérase

HSV : Virus de l'Herpès complexe

IBV : Avian infection bronchitis coronavirus « virus de la bronchite

infectieuse aviaire »

IC50 : Concentration d'inhibition médiane

IL : Interleukine

Kb : Kilobit

Kcal : Kilo calorieKDa : Kilodalton

MAPK : Mitogen-activated protein kinase « protéine kinase nécessaire à

l'induction de la mitose »

MERS : Syndrome respiratoire du Moyen-Orient

MERS-CoV : Coronavirus associé au syndrome respiratoire du Moyen-Orient

Mpro : Main protease « Protéase principale »

MTC : Médecine Traditionnelle Chinoise

NDV : Maladie de Newcastle

Nsps = nsps : Protéine non structurelles

OMS : Organisation Mondiale de la Santé

ORF : Cadre de lecture ouverte

Ph : Potentiel hydrogène

PLpro : Protéase de type Papaïne Like

Protéine E : Protéine d'enveloppe
Protéine M : Protéine de membrane

Protéine N: Protéine la nucléocapside

Protéine S: Protéine de surface

RBD : Domaine de liaison aux récepteursRdRp : ARN-polymérase ARN-dépendante

ROS : Espèces réactives de l'oxygène

RTC : Complexe de réplication-transcription

RT-PCR : Réaction de polymérisation en chaine par transcription inverse

rRT-PCR : Réaction de polymérisation en chaine par transcription inverse en temps

réel

SARS-CoV : Coronavirus du syndrome respiratoire aigu sévère

SARS-CoV-2 : Coronavirus 2 du syndrome respiratoire aigu sévère

SDRA : Syndrome de détresse respiratoire aigue

SRAS : Syndrome respiratoire aigu sévère

TMPRSS2 : Protéase transmembranaire à sérine 2

TNF : Facteur de nécrose tumorale

VHA : Virus de l'hépatite A
VHB : Virus de l'hépatite B
VHC : Virus de l'hépatite C

VIH : Virus de l'immunodéficience humaine

es coronavirus ont été identifiés pour la première fois chez l'humain dans les années 1960 (1). Il s'agit de virus causant des maladies émergentes, c'est-à-dire de nouvelles infections dues à des modifications ou à des mutations des virus. Les coronavirus humains causent principalement des infections respiratoires, allant du simple rhume à des pneumopathies sévères parfois létales.

Trois coronavirus causent des infections pouvant être sévères voire même mortelles : le syndrome respiratoire aigu sévère (SRAS-CoV) apparu en Chine et à l'origine de l'épidémie de 2003, le syndrome respiratoire du Moyen-Orient (MERS) qui a occasionné l'épidémie de 2012 et le coronavirus-2 du syndrome respiratoire aigu sévère (SARS-CoV-2) qui provoque la maladie à coronavirus-2019 (COVID-19) (2).

En fin décembre 2019, la Chine a signalé l'apparition d'une nouvelle maladie infectieuse, due à un virus baptisé coronavirus-2 du syndrome respiratoire aigu sévère (SARS-CoV-2), initialement transmis de l'animal à l'homme, puis de l'homme à l'homme. En peu de temps, le SARS-COV-2 s'est propagé dans d'autres pays, tuant des milliers de personnes. En conséquence, l'Organisation mondiale de la santé (OMS) a déclaré la maladie à Coronavirus-2019 (COVID-19) comme étant une pandémie et à l'heure actuelle, cette dernière est considérée comme la deuxième cause de mortalité après les maladies cardiovasculaires.

L'OMS indique qu'aucune thérapie efficace n'a été approuvée à ce jour pour la prévention ou le traitement de cette maladie. Bien que des vaccins soient maintenant déjà lancés, mais des preuves sur leur sécurité et leur efficacité dans la population sont toujours attendues. Ce qui suggère la nécessité d'élargir le champ de la recherche de traitements efficaces.

Parmi les autres options thérapeutiques, les produits naturels et dérivés constituent une vaste source de molécules médicamenteuses potentielles. La nature fournit un immense puits de principes actifs qui restent à découvrir pour traiter les maladies.

Historiquement, 80% des développements de médicaments cliniquement importants sont encore inspirés par ces entités dérivées de la nature. Par conséquent, les produits d'origine naturelle ou les substances phytochimiques ont continuellement servi l'humanité en tant que source noble d'éléments importants sur le plan thérapeutique.

Et ces produits revêtent une importance considérable en cas de crise sanitaire mondiale et représentent l'une des approches les plus pratiques et les plus prometteuses pour réduire l'intensité des pandémies grâce à leur potentiel thérapeutique.

C'est ainsi que nous nous sommes intéressés à entreprendre ce travail qui a pour objectif principal de faire un état des lieux de la littérature scientifique disponible actuellement sur les

substances naturelles d'origine végétale et qui ont des effets antiviraux prometteurs contre les Coronavirus.

Le travail que nous présentons est composé de deux volets :

- ✓ Dans le premier volet, nous présenterons une synthèse bibliographique dans laquelle nous apportons à l'étude de coronavirus et du coronavirus-2 du syndrome respiratoire aigu sévère (SARS-CoV-2).
- ✓ Le deuxième volet porte sur notre étude répartie, dans ce manuscrit, comme suit :
 - Un premier chapitre qui décrit le matériel et les méthodes utilisées lors de la recherche documentaire;
 - Le deuxième chapitre expose l'ensemble des résultats obtenus et leur discussion;
 - o Et enfin, nous nous finirons par une conclusion.

I Généralités sur les coronavirus

I.1 Historique

Le coronavirus fait référence à l'ordre des Nidovirale, de la famille des Coronaviridae et de la sous-famille des Orthocoronavirinae (3), qui subdivise en quatre genres selon la taxonomie actuelle en : *alpha-coronavirus*, *beta-coronavirus*, *gamma-coronavirus* et *delta-coronavirus*. Les coronavirus infectent plusieurs espèces des mammifères et aviaires.

Les HCoV-229E et -NL63 appartiennent au genre *Alpha-coronavirus*, dont le –NL63 est un virus saisonnier qui cause des pathologies bénignes. D'autres coronavirus humains appartiennent au genre *Beta-coronavirus* qui est lui-même subdivisé en quatre clades nommés A, B, C et D. Les HCoV-HKU1 et –OC43 sont inclus dans le clade A, le SARS-CoV-1, le SARS-CoV-2 et le MERS-CoV appartiennent aux clades B et C respectivement (4), et qui sont responsables de pathologies sévères. *Les Gamma-coronavirus* infectent les oiseaux, alors que les *Delta-coronavirus* affectent les oiseaux et les mammifères.

Les coronavirus sont connus dans la communauté vétérinaire depuis la fin des années 1930 (5). En effet, dans les années soixante, une vingtaine de coronavirus infectant des espèces animales aviaires (poulet) et mammifères (chien, chat, porc, bovin, etc.) ont été déjà connus. Mais lors de l'identification des premiers HCoV (HCoV-OC43 et HCoV-229E), les pathologies respiratoires causées par ses virus étaient considérées comme trop modérées pour susciter un intérêt marqué dans la communauté médicale. En 2003, l'identification d'un coronavirus comme étant l'agent étiologique du Syndrome Respiratoire Aigu Sévère (SARS), circulant de manière pandémique depuis novembre 2002 a généré un intérêt nouveau pour ce groupe viral jusqu'alors peu étudié en médecine humaine (6). Depuis l'identification du SARS-CoV, de nombreux coronavirus ont été décrits, dont deux infectant l'homme, les HCoV-HKU1 et -NL63 en 2004. En 2012, un nouveau coronavirus humain, le MERS-CoV a émergé au Moyen-Orient. Il est à l'origine d'une pathologie similaire au SARS (4). À la fin de l'année 2019, une survenue de cas de pneumonies sévères a été observée en mois de décembre dans la ville de Wuhan, en Chine. Un nouveau coronavirus associé à cette épidémie a été identifié au début janvier 2020 et la maladie, apparue en 2019, a été appelée Covid (Coronavirus disease) -19 et elle a été, par la suite, classée comme pandémie.

I.2 Épidémiologie

I.2.1 Distribution géographique des coronavirus

Les coronavirus ont une distribution mondiale. HCoV-229E et HCoV-OC43 sont identifiés depuis 1960 et ont été isolées sur tous les continents. Les coronavirus humains récemment isolés (HCoV-NL63 et HKU1) ont été décrits dans de nombreux pays (Figure 1A). La pandémie de SARS-CoV-1 a débuté en novembre 2002 dans le delta de la rivière Pearl de la province de Guangdong dans le sud de la Chine (4, 7, 8), puis s'est répandue à d'autres pays en Asie, en Amérique du Nord et en Europe (29 régions). Les pays les plus touchés étaient la Chine suivie par le Hong Kong, le Taïwan, le Canada, le Singapour, le Vietnam, les État Unis et les Philippines (9). La fin de la pandémie a été déclarée par l'OMS en juin 2003 (4), et aucun cas n'a été signalé après 2004. Les pays autour de la péninsule arabique sont reconnus comme endémique pour le MERS-CoV, et l'Arabie Saoudite est le pays qui a signalé le plus de cas suivi par le Qatar (4). Le MERS-CoV a cependant été identifié dans 26 pays d'Afrique, d'Europe, d'Amérique du Nord et d'Asie. La plupart de ces cas sont épidémiologiquement liés à l'épidémie du Moyen-Orient (4). Au début du mois de juin 2015, le premier cas de MERS-CoV a été détecté en Corée du Sud (4, 10) à partir d'un sujet revenant du Moyen-Orient (4, 10), soulignant la capacité de cette endémie à se propager rapidement dans le monde (Figure 1B). La survenue de cas de pneumonies sévères a été observée en décembre 2019 dans la ville de Wuhan de la province de Hubei, en Chine (9, 10). L'épidémie s'est rapidement répandue hors de Chine pour affecter, en espace de quelque semaines, tous les pays du monde (10) (Figure2).

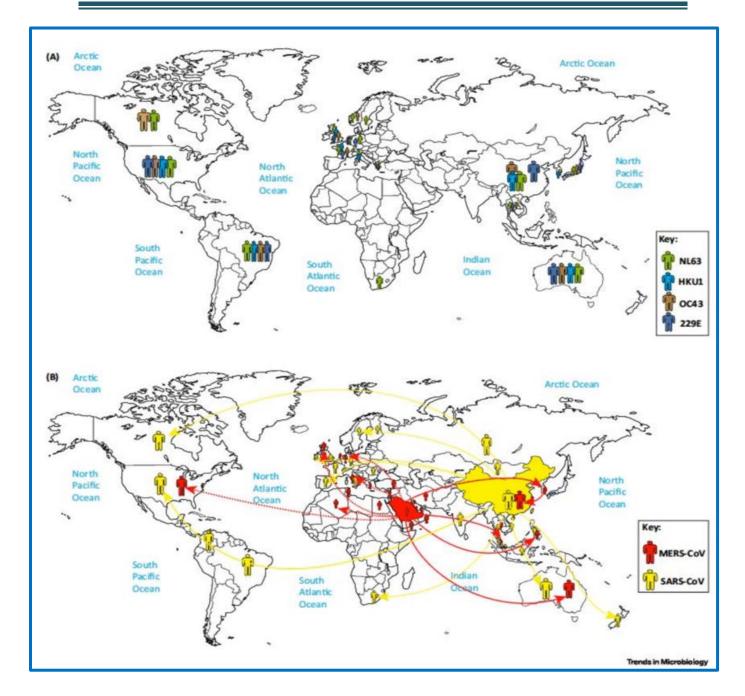


Figure 1: Distribution mondiale des coronavirus humains (A). Les couleurs vertes, bleues, brunes et violettes représentent la distribution globale des coronavirus humains NL63, HKU1, OC43 et 229E respectivement. (B) Les couleurs rouges et jaunes représentent la distribution globale du MERS-CoV et du SARS-CoV respectivement (5).

Figure 2: Nombre des cas infectés et la distribution géographique du SARS-CoV-2 dans le monde jusqu'au 23 Mars 2020 (6).

I.2.2 Origine et réservoir des coronavirus

Les coronavirus sont fréquemment d'origine zoonotique, c'est à dire ils peuvent impliquer à la fois les animaux ainsi que les êtres humains. En générale, les alphas et les betacoronavirus semblent avoir comme origine les mammifères y compris les chauves-souris ou les rongeurs, tandis que les gamma- et les delta-coronavirus auraient pour origine les aviaires (les oiseaux). Les HCoV ont émergé à un certain moment à partir d'un réservoir animal, les virus d'origine des chiroptères (HCoV-229, HCoV-NL63) ou des rongeurs (HCoV-OC43, HCoV-HKU1), les hôtes présumés étant des bovidés pour HCoV-OC43 et des camélidés pour HCoV-229 (10). Au cours des vingt dernières années, trois nouveaux coronavirus ont émergé dans la population humaine à partir d'un réservoir animal, dont le SARS-CoV-1 qui s'est propagé de la chauve-souris aux civette palmier (Paguma larvata) (11) et qui peut être un hôte intermédiaire dans lequel le virus se soit adapté pour finalement infecter les humains. Des études approfondies semblent indiquer que les vecteurs du MERS-CoV sont les camélidés présents en Arabie Saoudite notamment le dromadaire. Le virus le plus proche du SARS-CoV-2 est un virus de la chauve-souris (Rhinophillus affinis), avec 96% d'identité (3). Le SARS-CoV-2 présente par rapport au virus de la chauve-souris et par rapport au SARS-CoV-1 des différences au niveau du site de liaison au récepteur ACE2 sur la protéine S (10). Les particularités du site de liaison se retrouvent chez le pangolin malais (*Manis javanica*) importé illégalement et présent sur les marchés chinois.

I.2.3 Transmission

La transmission des coronavirus se fait principalement de façon directe, via les sécrétions naso-pharyngées (les goutelettes repiratoires) dispersées dans la toux et les éternuements d'une personne infectée et symptomatique, ou indirectement (manu-portée) par contact avec des objets contaminés ou des mains souillées.

I.3 Infection par les coronavirus

I.3.1 Période d'incubation

La durée d'incubation d'infection par les coronavirus est trés courte : de l'ordre de 2 à 5 jours en moyenne pour les coronavirus classiques (HCoV-NL63, HCoV-HKU1, HCoV-E229 et HCoV-OC43), tandis qu'elle est de 2 à 13 jours pour le SARS-CoV-1, le MERS-CoV et le SARS-CoV-2. Dans le cas de HCoV-E229, les symptômes induits par l'infection durent en moyenne 7 jours, mais peuvent parfois dépasser les 18 jours (4, 8, 10).

I.3.2 Signes cliniques et pathogénicités

Les infections à coronavirus classiques sont caractérisées par des symptômes non spécifiques et variables selon les patients. Dans la population générale, l'infection à HCoV classique est le plus souvent associée à une rhinite ou une rhinopharyngite plus ou moins symptomatique. Lorsque l'infection est symptomatique, les signes cliniques les plus souvent décrits sont la fièvre, la toux, des myalgies et une congestion nasale. Les pathologies induites par les différents HCoV sont similaires et le tableau clinique seul ne permet pas de distinguer entre eux ou vis-à-vis d'autres virus respiratoires, tel que les rhinovirus, les virus d'influenza, les métapneumovirus, le virus syncytium respiratoire (RSV) ou les virus para influenza (PIV) (4). Les manifestations cliniques des infections par le SARS-CoV-1, MERS-CoV ou SARS-CoV-2 sont plus sévères que les infections par les coronavirus classiques. Au cours de l'infection par le SARS-CoV-1, la maladie se manifeste au départ par un accès fébrile (supérieur à 38°C) associé à des frissons, des myalgies, des maux de tête, une détresse respiratoire généralement 3 à 7 jours après le début des symptômes, ce qui entraine la mort. Les manifestations digestives, en particulier des diarrhées, sont observées chez un tiers des

patients (4, 8, 10). Le MERS-CoV présente un degré de gravité plus marqué qui est à l'origine d'une pathologie respiratoire plus sévère nécessitant souvent une ventilation mécanique (4, 10). Une atteinte rénale, intestinale et hépatique est également observée dans le MERS-CoV (10). Les manifestations cliniques de l'infection par SARS-CoV-2 vont d'une infection asymptomatique au syndrome respiratoire sévère mettant en jeu le pronostic vital. Les formes asymptomatiques sont limitées à une atteinte des voies respiratoires hautes qui sont fréquentes chez les enfants et les sujets jeunes, alors que les formes fatales s'observent chez les sujets sensibles (sujets âgés ou présentant une comorbidité : obésité, diabète...) (10, 12). Les manifestations neurologiques sont fréquemment observées au cours de cette pandémie, la manifestation la plus fréquente est la perte du goût (agueusie) et de l'odorat (anosmie), mais des manifestations diverses telles que la confusion, l'agitation, les troubles de la vigilance, la convulsions et l'encéphalopathie ont été rapportées (10). Le MERS-CoV semble avoir un taux de mortalité plus important (35%) que le SARS-CoV-1 (10%). Le taux de mortalité dans le cas du SARS-CoV-2 est très variable selon la pyramide des âges et des comorbidités affectant la population. En Europe, le taux de létalités peut être supérieur à 10%, il est compris entre 2 et 3% à l'échelle mondiale et, en tenant compte des cas asymptomatiques, il pourrait en fait être globalement de l'ordre de 0,5% à 1% (3).

II Structure

II.1 Morphologie

Les coronavirus sont des virus sphériques avec environ 125 nm de diamètre (13, 14), enveloppés dont le génome est un ARN de polarité positive et d'une taille de l'ordre de 30 Kilobase, ce qui fait le génome le plus grand chez les virus à ARN (10). La capside virale est constituée par nucléoprotiéne N, la protéine A est à la surface, l'enveloppe est constitué par un double feuillet lipidique au sein duquel insérées trois protéines E, M, et S (protiéne Spike) (4, 9-15). De plus, les *beta-coronavirus* de clade A (HCoV-HKU1 et -OC43) contiennent une cinquième protéine structurale l'Hémagglutinine éstérase HE (4). Les coronavirus doivent leur nom à leur aspect en microscopie électronique, avec des spicules formant une couronne autour de la particule virale (10).

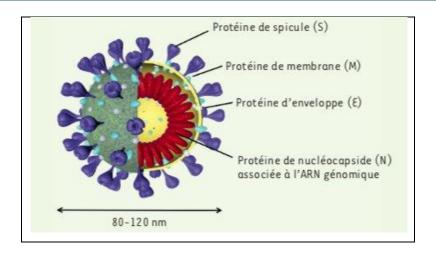


Figure 3: Représentation schématique d'un coronavirus (15).

II.2 Propriétés physico-chimique

Le caractère enveloppé des coronavirus leur confère une certaine fragilité dans le milieu extérieur, l'enveloppe virale indispensable au pouvoir infectieux étant dégradé par la chaleur, la déssication, les détergents et les solvants (10).

II.3 Génome virale

Le génome des coronavirus est un ARN simple brin de polarité positif et non-segmenté. Il possède une coiffe méthylée en 5' et il est polyadénylé à son extrémité 3'. Les deux-tiers 5' du génome, sont constitués par deux cadres de lecture ouverts ou ORF, nommés ORF1a et ORF1b codent 16 protéines non structrales (ns1 à ns16). Le tiers 3' du génome des coronavirus est constitué par au moins quatre cadres de lecture ouverts codant les protéines structurales S, E, M et N (4, 10). De plus, les différents génomes de coronavirus se distinguent entre eux par la présene ou non d'ORF putatif suplémentaires codant des protéines accessoires (4).

II.4 Protéines structurales

II.4.1 Protéine S

C'est une protéine de surface dont la masse moléculaire varie entre 180 à 200 KDa, trés fortement glycosylée, qui s'assemble sous forme de trimères et est ancrée à la surface de l'enveloppe virale. C'est cette protéine qui donne l'aspect de couronne aux coronavirus en microscopie éléctronique (16). C'est une glycoprotéine jouant un rôle majeur dans le pouvoir

infectieux (10). Elle est constituée de domaines S1 et S2, pouvant être clivés ou non selon les différents type de coronavirus (17), et permet à la particule virale de se fixer à un récepteur membranaire exprimé par la cellule hôte afin d'engager son entrée dans cette dernière. La liaison au récepteur cellulaire repose sur le domaine S1 de la protéine S, qui contient un domaine de liaison au récepteur (Receptor-Binding Domain, RBD). Le domaine S2 est, quant à lui, un domaine de fusion nécessaire pour la fusion de l'enveloppe virale avec la membrane de la cellule (16). Elle a un rôle déterminant pour le tropisme cellulaire et pour la pathogénicité (18).

II.4.2 Protéine E

La protéine de l'enveloppe est la plus petite protéine structurale de 8 à 12 KDa. Elle se compose en N-terminal d'un court ectodomaine hydrophile, d'un long et unique domaine transmembranaire et d'un segment hydrophile en C-terminal, formant l'endodomaine. Cette protéine semble également indispensable à l'assemblage et la maturation de l'enveloppe virale (16, 19, 20).

II.4.3 Protéine M

La protéine membranaire M est la plus abandante des protéines de la structure. Protéine de 25 à 30 KDa, elle possède au moins un site de glycosylation localisé au niveau d'un trés court ectodomaine suivi de trois domaines transmembranaires et d'une longue séquence C-terminale. Cette protéine joue un rôle dans la morphogénèse de l'enveloppe et dans l'assemblage des particules virales. Elle intéragit avec les autres protéines structurales (16, 19).

II.4.4 Protéine N

C'est une phosphonucléoprotéine de 43 à 50 KDa. Ce sont des résidus sérine et la seule protéine contenue dans la nucléocapside. Elle possède 422 acides aminés. La protéine N est formée de deux domaines séparés N-terminal et C-terminal, ainsi que d'une région de liaison. Ces domaines ont utilisé des mécanismes différents selon le stade de vie du virus. Le rôle de protéine N est d'interagir avec l'ARN virale pour former la nucléocapside (16, 19, 20).

II.4.5 Protéine HE

L'hémagglutinine-éstérase est présente chez certains betacoronavirus (BCoV, HCoV-OC43, et HCoV-HKU1) (21). Cette protéine agit comme une hémagglutinine, lie l'acide sialique aux glycoprotéines de surface et contient une activité acétyl-éstérase. Ces activités sont déstinées à améliorer l'entrée des cellules à médiation par la protéine S et la propagation du virus à travers la muqueuse (19-21).

II.5 Protéines non structurales

Les protéines non structurales des coronavirus sont situées dans les deux premiers tiers du génome, composés de deux ORFs (ORF1a et ORF1b). Suite à un clivage de leurs polyprotéines pp1a et pp1a/b, les coronavirus expriment 15 ou 16 protéines non structurales (Nsps). Il semble que la protéine Nsp1 peut se lier à l'ARN et jouer un rôle dans la régulation de la traduction et la protection contre le système immunitaire. La protéine Nsp3 possède des domaines protéase de papaïne (papaïne-like protéase PLpro). Cette protéase permet la libération des Nsp1, Nsp2 et Nsp3 par clivage de la polyprotéine. En effet, les Nsp1 et Nsp3 des SARS-CoV sont impliquées dans différentes voies d'inhibition de la réponse à l'interféron de type 1. La Nsp5 est une protéase de type sérine qui appartient à la famille de la chymotrypsine. Elle permet la libération des Nsps 4 à 6. La protéine Nsp12 est l'enzyme clé de la réplication et de la synthèse des ARN sous génomiques à partir d'un brin de polarité négative. De plus, Nsp12 forme un complexe avec l'hélicase Nsp13 afin de dérouler les acides nucléiques et permettre la synthèse de nouveaux brins d'ARN. Il semble que Nsp8 participe également au coiffage du génome et des ARNm grâce à l'activité ARN polymérase ARN-dépendante, en association avec Nsp7. La protéine Nsp14 a une activité d'exorubonucléase (ExoN). Elle joue un rôle critique dans la transcription et la réplication de génome virale. De même, la protéine Nsp15 possède un domaine d'endonucléase facilitant la synthèse optimale d'ARN viral, mais n'y étant pas essentielle. Enfin la protéine Nsp16 qui joue un rôle très important avec l'aide de Nsp14 dans la formation de la coiffe des ARNs, permettant aux ARNs coiffés d'échapper à leur détection par les PRRs, aidant par le fait la propagation de l'infection (19, 22-24).

III Cycle de vie du SARS-CoV2

III.1. Attachement, Pénétration et Décapsidation

La protéine de pointe S joue un rôle crucial dans la détermination du tropisme tissulaire et l'établissement de l'infection. Grâce à sa position, elle est devenue une cible très explorée pour la conception des thérapies et de vaccins. C'est une protéine de fusion classe 1 comportant 2 sous unités : la sous unité S1 impliquée dans la reconnaissance du récepteur cellulaire (ECA2) via le domaine de liaison au récepteur (RBD), Ce motif agit comme ligand du site de liaison extracellulaire sur l'ECA2 appelé domaine de la peptidase (PD) assurant ainsi l'attachement viral, la sous unité S2 comprend : un peptide de fusion et 2 répétitions heptade HR1 et HR, assurant la médiation de la fusion ultérieure des membranes cellulaire et virale (25-27).

Le SARS CoV 2 utilise deux voies d'entrée : la plus décrite est la fusion directe ainsi que la voie endolysosomale acido-dépendante (28). Une activation protéolytique préalable du complexe S-ECA2 à deux sites par des protéases cellulaires, le premier site de clivage se trouve à la limite S1/S2 ce qui entraine un changement conformationnel dans le domaine S2 en le stabilisant dans un état de préfusion, les 2 domaines restent associés de manière non covalente (29). Le deuxième clivage au niveau du site S'permet la séparation des domaines de liaison et de fusion de manière à exposer le peptide de fusion ce qui aboutit à la fusion des membranes cellulaire et virale prouvant ainsi la libération du génome viral dans le cytosol (30). En général, diverses protéases cellulaires facilitent le mécanisme d'entrée y compris la protéase transmembranaire à serine (TMPRSS2) impliquée dans la fusion directe, et la cathepsine L pour la voie endosomale. D'autres protéases telle que la furine, la trypsine et la trypsin-like des voies respiratoires humaines pourrait contribuer à ce processus. La trypsine a été signalée comme renforçant l'infection virale par formation de syncytiums (31). Des études récentes ont montré que le SARS CoV2 peut utiliser d'autres récepteurs pour infecter différents types de cellules comme le CD147 et le CD26 (32).

L'ACE2 est une peptidase de surface cellulaire omniprésente avec un taux d'expression particulièrement augmenté dans l'épithélium pulmonaire et l'intestin grêle (29). Il agirait aussi comme récepteur pour le SARS CoV. Bien que structurellement similaire, la protéine S du SARS CoV2 a montré une affinité d'environ 20 fois plus que celle du SARS CoV pouvant expliquer la transmission et contagiosité élevées du SARS CoV2 (31).

III.2. Transcription et Réplication

Dans la phase post-entrée du cycle viral, l'ARN viral détourne la machinerie de la cellule hôte pour initier la traduction des gènes ORF1a et ORF1b en deux polyprotéines désignées pp1a et pp1ab (2, 33). Cette traduction nécessite un décalage du cadre de lecture appelé le décalage ribosomique. Les protéases virales ; PLpro (Nsp3) et Mpro (Nsp5), prennent le relai par un clivage autoprotéolytique des pp1a et pp1ab générant 16 protéines non structurales (Nsps) qui forment ensemble le complexe de réplication et de transcription (RTC). Le RTC orchestre la réplication du génome avec le Nsp12 (RdRp) par synthèse d'une copie complémentaire de sens négatif qui sert par la suite de model pour la synthèse de nouveaux ARNg (+) et des ARN sous-génomiques imbriqués qui sont traduits par la suite en protéines structurales (S, M, E, N) et protéines accessoires (34, 35).

III.3. Assemblage

L'étape suivante du cycle de vie du SARS CoV2 est l'assemblage, La protéine N se lie au génome de la progéniture pour former la nucléocapside au niveau du cytoplasme alors que les protéines de structure S, M et E sont insérées dans le réticulum endoplasmique (ER) puis elles se déplacent vers le compartiment intermédiaire ER-Golgi (ERGIC) où elles se combinent avec le complexe N-ARN formant des particules virales matures bourgeonnant de l'ERGIC (35, 36).

III.4. Libération

Au stade final du cycle viral, Les virions sont transportés dans des vésicules à la surface cellulaire et libérés par exocytose dans l'espace extracellulaire. De là, ils peuvent soit cibler d'autres cellules saines ou se transmettre dans l'environnement via la respiration et infecter d'autres personnes par les modes de transmission déclarés (31, 34).

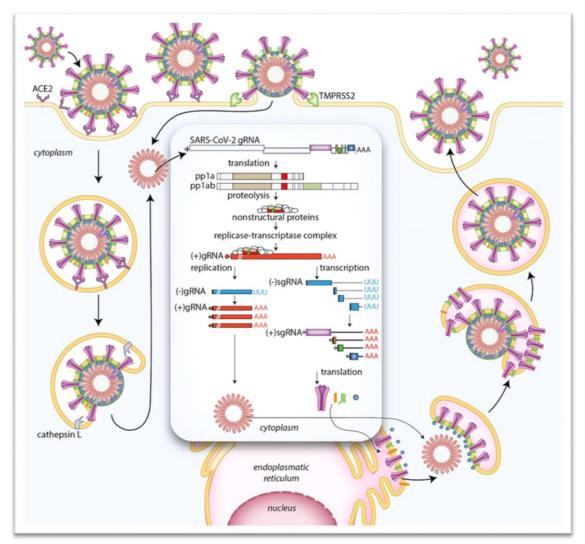


Figure 4: Schéma du cycle de vie/ infectieux du SRAS-CoV-2. ACE2 angiotensine I convertissant l'enzyme 2, TMPRSS2 sérine protéase 2 transmembranaire (34).

IV Diagnostic

Un diagnostic rapide et précis de la Covid 19 a un rôle essentiel à jouer afin d'initier un traitement précoce et prévenir la propagation du virus (37). Toute personne présentant au moins 2 critères cliniques et un critère épidémiologique ou au moins 3 critères cliniques s'il n'y a pas d'historique d'exposition est comptabilisée comme un cas suspect (38). Les critères épidémiologiques sont les suivants : l'historique de voyage ou la résidence dans une zone touchée par la Covid-19, le contact avec des patients confirmés ou probables. Alors que les

critères cliniques comprennent la fièvre, les symptômes respiratoires; pneumonie, lymphocytopénie ... (39).

Les approches moléculaires sont utilisées en première intention dans la confirmation des cas suspects, notamment le test des acides nucléiques qui est la principale technique de diagnostic au laboratoire. Les tests sérologiques d'antigène et d'anticorps constituent également des tests précieux vu leur délai d'exécution court. La séquence génomique du SARS-CoV-2 a été publiée dans les bases de données publiques le 10 Janvier 2020. Après, comme pour tout autre virus émergent, le développement des tests de détection d'anticorps et d'antigènes a commencé. Actuellement l'organisation mondiale de la santé (OMS) recommande que les échantillons soient prélevés des voies respiratoires y compris les écouvillonnages naso-pharyngés, les expectorations et le liquide de lavage broncho-alvéolaire (40). Compte tenu du tropisme respiratoire du SARS-CoV-2, il est important de procéder à une tomodensitométrie thoracique qui constitue une base importante pour poser le diagnostic dans les plus brefs délais (39). Récemment, une technologie basée sur CRISPR/Cas13 a été publiée pour détecter le SARS-CoV-2 (41). Cependant, la réaction en chaîne par polymérase à transcription inverse en temps réel (rRT-PCR) reste le gold standard pour le diagnostic de la Covid-19. Mais avec l'augmentation des cas suspects de Covid-19, le manque et le cout élevé des tests, de nombreux pays réservent ces tests aux cas sévères. Par conséquent, selon certaines estimations, le nombre réel d'individus infectés est plus élevé que celui déjà diagnostiqué (42).

Tableau I: Méthodes de diagnostic du COVID-19 (37)

Méthodes	Caractéristiques	Limites
CT scan	Disponible plus tôt, vérifier la gravité de l'état, vérifier une éventuelle infection	•
RT-qPCR		Coûteux et long à exécuter, plus enclin aux faux négatifs ou à une faible valeur
Détection basée sur CRISPR	Haute sensibilité et spécificité avec efficacité et aucune exigence d'instrumentation élaborée	Certains risques biologiques liés à la conservation et à l'exploitation d'échantillons de patients
Détection d'anticorps	Rapide, robuste et facile à exécuter, ne nécessitant qu'une petite quantité d'échantillon	Incapable de détecter la présence d'une infection
Détection d'antigène	Faible complexité, rapide, facile à réaliser	Idéal pour identifier une infection aiguë ou précoce, plus enclin aux faux négatifs

V Traitement

V.1 Traitement conventionnel

Le tableau clinique de la Covid-19 est variable allant d'une infection asymptomatique à une maladie grave et mortelle. Pour les infections légères ; la prise en charge est à domicile, alors que pour les patients atteints d'une maladie grave ; ils doivent être hospitalisés. Les soins de soutiens comprennent un traitement antipyrétique et une hydratation. Un traitement prophylactique est recommandé afin d'éviter la thrombose veineuse profonde (43). Il faut surveiller étroitement les paramètres cliniques et les signes vitaux (44) y compris le taux d'oxygène. Si nécessaire une oxygénothérapie est appliquée avec un débit de 5L/min dans la première phase puis titrée progressivement pour obtenir une concentration en oxygène de

90% pour les adultes et les enfants, et de 92-95% chez les femmes enceintes. Une ventilation mécanique invasive est recommandée chez les patients atteints de syndrome de détresse respiratoire aiguë qui représentent environ 5% (39).

À ce jour, il n'existe pas de thérapies efficaces prouvées pour la Covid-19, bien qu'environ 300 essais cliniques soient en cours (43). Les médicaments déjà approuvés qui peuvent être des candidats pour le traitement de Covid-19 comprennent les inhibiteurs de la protéase du virus de l'immunodéficience humaine (VIH); le Lopinavir et le Ritonavir. Un traitement antigrippal l'Arbidol (umifénovir) semble être efficace *In vitro* contre le SARS-CoV-2.Un autre traitement antigrippal, inhibiteur du RdRp; le Favipiravir est soumis à l'étude pour des essais cliniques randomisés sur la Covid-19. Le Remdesivir est une prodrogue analogue de nucléotide qui a montré une efficacité contre le MERS. Actuellement il est en cours d'évaluation dans un essai de phase III en chine contre le SARS-CoV-2. La Chloroquine; un antipaludéen, représente un autre candidat prometteur qui peut agir par inhibition de la fusion virale en augmentant le ph endosomale (26). Le Camostat mésylate est censé inhiber la TMPRSS2. Des antibiotiques à large spectre sont recommandés en cas d'infections bactériennes et des glucocorticostéroides en cas de choc septique (39).

Au 2 octobre 2020, environ 405 médicaments étaient en développement et près de 318 parmi eux dans la phase clinique. Ces traitements potentiels comprennent des inhibiteurs de l'entrée virale, des inhibiteurs de la réplication, des agents immunomodulateurs, des immunoglobulines et des vaccins (45).

V.2 Médecine traditionnelle chinoise

En Chine, le protocole de traitement de la COVID-19 met l'accent sur la combinaison de la médecine traditionnelle chinoise (MTC) avec la thérapie conventionnelle, Lors de la conférence de presse sur la COVID-19 du Conseil d'État de la Chine, trois médicaments et trois décoctions de MTC ont été soulignés pour leurs effets cliniques remarquables dans le contrôle de la COVID-19 pendant cette pandémie. Parmi lesquels on peut citer : les granules de **Jinhua Qinggan** (Se composent de 12 herbes, dont les fleurs de *Lonicera japonica*, *Gypsum Fibrosum* (CaSO4), la tige d'Ephedra, *Armeniacae Semen Amarum* (l'amande d'abricot séchée au soleil et réduite en poudre), les bulbes de *Fritillaria Thunbergii*, les fruits de *Forsythiae*, etc.), les capsules de **Lianhua Qingwen** (Se composent de 13 herbes, dont *Pogostemon cablin*, les fruits de *Forsythiae*, les fleurs de *Lonicera japonica*, la tige d'Ephedra, les amandes d'abricot, la racine d'*Isatis*, les racines et rhizomes de la rhubarbe,

etc.) et l'injection de XueBiJing (composée de 5 herbes, dont les fleurs de *Carthamus tinctorius*, l'écorce des racines de la Pivoine à fleurs blanches, les rhizomes de la livèche, les racines et rhizomes de *Salvia miltiorrhiza* et les racines d'*Angelica sinensis*). Les capsules (granulés) de **Lianhua Qingwen** et les granulés de **Huashi Baidu** (composé de 14 herbes, dont l'Ephedra, les amandes d'abricots, les racines et rhizomes de *Glycyrrhiza*, *Pogostemon cablin*, etc) ont été officiellement approuvés récemment par l'administration nationale chinoise des médicaments pour soulager la fièvre, la toux et la fatigue des patients atteints de formes légers à modérés de la COVID-19.

La pratique actuelle a prouvé l'efficacité clinique et l'avantage de la MTC dans la gestion de la Covid 19. Il a été rapporté que le taux d'efficacité global a atteint plus de 90 % chez 74187 cas confirmés de COVID-19 qui ont reçu un traitement de MTC.(46)

VI Prévention

Afin de maitriser l'évolution de la pandémie causée par le SARS-CoV2 et limiter ainsi sa propagation, certaines précautions de santé publique sont nécessaires (47). Vu que le virus se transmet principalement par les gouttelettes salivaires et le contact physique, il est important de se tenir à distance de toute personne suspectée et porter des masques. Pour les individus en bonne santé, un lavage fréquent des mains avec du savon ou une solution hydro-alcoolique est la première des précautions à prendre. Il faut également respecter l'étiquette de la toux en se couvrant le nez et la bouche avec le pli du coude ou avec un mouchoir, garder une distance de sécurité, rester à la maison et éviter les voyages inutiles. En plus, une désinfection des surfaces fréquemment touchées (les poignées de porte, les téléphones, les interrupteurs d'éclairage...).

Pour les patients Covid-19 symptomatiques, en plus des précautions précédentes, ils doivent s'auto-isoler et porter des masques chirurgicaux à trois couches en permanence. Également pour les fournisseurs de soins, ils doivent porter des masques médicaux (43). Au contraire, le port de gants n'est pas recommandé pour le grand public car ils sont facilement contaminés (48).

Suivant les lignes directrices de l'OMS, plusieurs pays ont durci leurs mesures notamment les restrictions de voyage, la quarantaine et le verrouillage. La surveillance et le dépistage rapide permetent une détection précoce des cas et ainsi faire face à la propagation de la maladie (43).

La vaccination est un moyen de prévention efficace, les vaccins sauvent des millions de vies chaque année. Leur mode d'action consiste à stimuler le système immunitaire et de développer une immunité adaptative protectrice relativement durable. Selon l'OMS, au 18 février, plus de sept vaccins ont été mis à disposition dans les pays. Parallèlement, plus de 200 vaccins candidats sont en cours de mise au point, dont plus d'une soixantaine sont en phase de développement clinique (49) (Tableau II)

Tableau II: Statut des vaccins COVID-19 (49, 50)

	Fabricant	Nom du vaccin	Type du vaccin	Statut d'évaluation	Date de décision anticipée	Approbation
1	Pfizer - BioNTech	BNT162b2	ARNm	Finalisé	31 décembre 2021	Approuvé dans 100 pays 35 essais dans 5 pays
2	AstraZeneca	AZD1222	Vecteur viral non réplicatif	Attendu	Mars-Avril 2021	Approuvé dans 122 pays 40 essais dans 21 pays
3	AstraZeneca /SKBio	AZD1222	//	Finalisé	15 Février 2021	/
4	Serum Institute of India	Covishield (ChAdOx1_n CoV19)	//	Finalisé	15 Février 2021	Approuvé dans 46 pays 2 essais dans 1 pays
5	Sinopharm/ BIBP	BBIBP-CorV (Cellules Vero)	Virus inactivé, produit dans des cellules Vero	En cours	Fin Mars 2021	Approuvé dans 65 pays 14 essais dans 7 pays
6	Sinovac	CoronaVac	//	/	Fin Mars 2021	Approuvé dans 40 pays 19 essais dans 7 pays
7	Moderna	mRNA-1273	ARNm	/	Estimée fin Février 2021	Approuvé dans 76 pays 28 essais dans 6 pays
8	Janssen	Ad26.COV2.S	Vecteur viral non réplicatif	Pas encore commencé Utilise une procédure abrégée s'appuyant sur l'EMA	12 Mars 2021	Approuvé dans 70 pays 11 essais dans 3 pays
9	The Gamaleya National Center	Sputnik V	Vecteurs d'adénovirus humains	/	/	Approuvé dans 71 pays 21 essais dans 7 pays

Partie Pratique

I Problématique

La Covid-19 causée par le nouveau coronavirus SRAS-CoV-2 (syndrome respiratoire aigu sévère dû au coronavirus-2) représente une menace mondiale émergente qui met à rude épreuve la capacité mondiale de soins de santé. Cette pandémie est la troisième épidémie mortelle de coronavirus qui s'est déjà produite au 21ème siècle. Même plus d'un an après son émergence, des centaines de milliers de personnes sont toujours infectées par le SARS-CoV-2 et des milliers de vies sont perdues chaque jour dans le monde. Au 04 Septembre 2021, près de 219 millions de personnes sur la planète ont reçu un diagnostic, et environ 4,55 millions d'entre elles en sont décédées. Malgré une compagne de vaccination demeurant efficace (plus de 5 milliards doses de vaccins a été administrés), l'épidémie de la Covid-19 ne recule plus. Ainsi qu'avec l'apparition de nouveaux variants inquiétants.

L'organisation mondiale de la santé (OMS) indique qu'aucune thérapie efficace n'a été approuvée à ce jour pour la prévention ou le traitement de cette maladie, ce qui suggère la nécessité d'élargir le champ de la recherche de traitements efficaces.

Au cours des dernières décennies, des données récentes de l'industrie pharmaceutique montrent que, pour certaines maladies complexes, les produits naturels représentent toujours une source précieuse pour la production de nouvelles entités chimiques. C'est pour cette raison, les membres de la communauté scientifique et les chercheurs tentent de trouver le meilleur moyen de guérir ou prévenir les maladies en utilisant la phytothérapie.

Étant donné que les produits naturels, notamment ceux d'origine végétale ont toujours été une source importante d'agents thérapeutiques et signalés comme possédant de multiples activités biologiques y compris des propriétés antivirales, la problématique du présent travail de recherche est :

Quelle sont les substances naturelles d'origine végétales qui ont des effets antiviraux contre les Coronavirus ? Et peuvent-elles constitué un moyen intéressant dans le combat mondial contre la Covid-19 ?

II Objectifs de l'étude

III.5. Objectif principal

L'objectif principal de notre étude est de faire un état des lieux de la littérature scientifique disponible actuellement sur les substances naturelles d'origine végétale qui ont des effets antiviraux prometteurs contre les Coronavirus.

III.6. Objectifs secondaires

Notre étude a comme objectifs secondaires de :

- Discuter les cibles et les mécanismes d'action moléculaires de ces substances végétales;
- Discuter leur possible utilisation contre le SARS-CoV-2.

III But de l'étude

Le but de cette revue est de répondre à la question suivante : les substances naturelles d'origine végétale sont-elles une option préventive et thérapeutique envisageable dans la prise en charge de la Covid-19 ?

IV Matériels et méthodes

III.7. Recherche bibliographique des données

Les bases de données utilisées sont : PubMed, Science Direct et Biomed Central. La recherche bibliographique et le téléchargement des articles ont été effectués durant la période allant du 1 Janvier au 31 Mai 2021.

III.8. Stratégie de recherche

Dans un premier temps, les mots clés de l'équation de recherche ont été saisis dans les moteurs de recherche des bases de données utilisées. Nous nous sommes servis de mots clés anglais en lien avec le virus tel que : "Coronavirus", "SARS-CoV-2", et en lien avec la phytothérapie et les composés naturels : "Alkaloïds", "Polyphenols", "Phytosterols", "Terpenes" et "Secondary metabolites". Par la suite, nous avons utilisé les filtres suivants : entre 2000 et 2020, articles universitaires, en anglais...

III.9. Critères de non inclusion

- ✓ Les magazines, les quotidiens, les proceedings de conférences, les livres et les résumés seuls ;
- ✓ Les articles publiés avant 2003 ;
- ✓ Les articles en doubles ;
- ✓ Les articles rédigés en langue autre que le français ou l'anglais.

III.10. Critères d'inclusion

Les articles que nous avons inclus dans le projet de recherche répondaient aux critères suivants :

- ✓ Tout design d'articles : étude *in silico*, essai *in vitro*, essai *ex vivo*, essai *in vivo*, essais contrôlés randomisés, essais cliniques et méta-analyses dont le texte intégral est disponible en Open Access ou téléchargeable ;
- ✓ Articles rédigés en anglais ou en français ;
- ✓ Articles publiés durant la période allant du 1^{er} janvier 2003 au 31 mai 2021.

III.11. Critères d'exclusion

Dans notre étude ont étaient exclus les revues.

III.12. Analyse et exploitation des données

IV.1.1 Informations relatives à l'article :

Après téléchargement des articles considérés, une lecture approfondie s'est avérée nécessaire pour classer les articles et relever les informations suivantes :

- L'année de publication ;
- Le pays;
- Le type de l'étude.

IV.1.2 Informations relatives aux substances naturelles décrites dans l'article :

- Le nom de la substance;

- La structure chimique de la substance ;
- La plante d'origine ;
- La famille botanique de la plante ;
- La classe chimique de la substance ;
- Le mécanisme d'action antivirale.

Les données recueillies ont été ensuite rapportées sur les programmes informatiques Excel[®] et Google Sheets[®] pour convertir ainsi les résultats en graphes et faciliter la tâche d'analyse.

V Résultats

Au total, 5330 articles ont été identifiés par la recherche électronique de PubMed, Science Direct et BioMed Central. La figure 5 présente un résumé du processus de sélection des études. 1881 articles ont été sélectionnés en fonction du titre et du résumé, et 1368 après la suppression des doublons. À cette étape, les textes intégraux ont été évalués et 1220 articles ont été exclus pour inéligibilité. Enfin, 145 études ont été incluses dans notre étude.

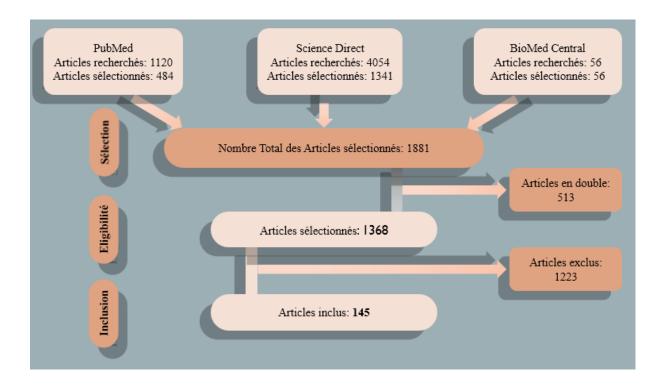
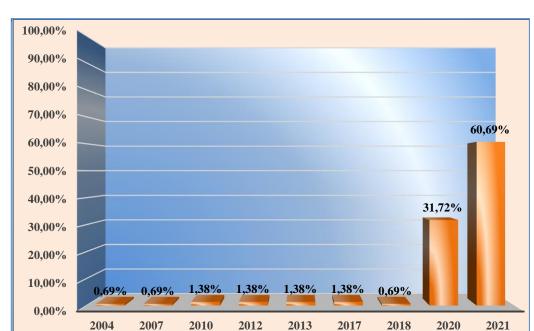



Figure 5: Diagramme de flux de recherche documentaire et de sélection d'essais.

III.13. La date de publication

Figure 6: Répartition selon la date de publication (2003-2021)

La majorité des études portant sur les substances naturelles agissant contre les Coronavirus ont été réalisées durant la période des deux dernières années : 2020 (31,72%) et 2021 (60,69%) coïncidant avec l'émergence du nouveau coronavirus SARS-CoV-2. 2004 représente l'année de l'apparition de la première publication et le nombre des articles publiés entre 2004 et 2020 n'a pas évolué de façon significative.

III.14. Le pays

Figure 7: Répartition selon le pays.

Les états produisant le plus de publications sont les pays asiatiques principalement l'inde avec un pourcentage de 35,2% suivi par la chine (16,6%) puis la Corée (9%). Les autres pays : Egypte, Allemagne, Nigéria, USA, Brésil, Taïwan publient moins d'articles pertinents, le reste de pays y compris l'Algérie publient moins de 2 articles.

45,00% 40,00% 35,00% 30,00% 25,00% 20,00% 15,00% 10,00% 5,00% 0,00% 1,00

III.15. Le mécanisme d'action

Figure 8 : Répartition selon le mécanisme d'action.

La plupart des études portant sur les substances naturelles agissant sur les coronavirus ont montré que plusieurs métabolites agissaient par inhibition de la protéase principale (Mpro) avec un pourcentage de 43,71%, d'autres par inhibition de RdRp, ACE2, la protéine S ou par inhibition de la PLpro. D'autres études ne montrent pas par quels mécanismes ces métabolites secondaires ont été agis contre les coronavirus.

III.16. Les types d'étude

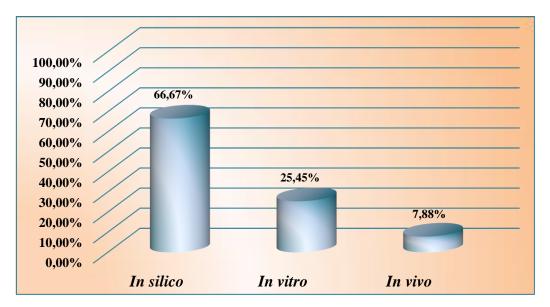


Figure 9: Répartition des types d'étude réalisée sur les substances naturelles testés sur les coronavirus

La plupart des études portant sur les Coronavirus et les substances naturelles ont été réalisées par la méthode *In silico* avec un pourcentage de 66,67%, 25,45% par des méthodes *In vitro* et seulement 7,88% grâce à des essais *In vivo*.

III.17. La famille botanique

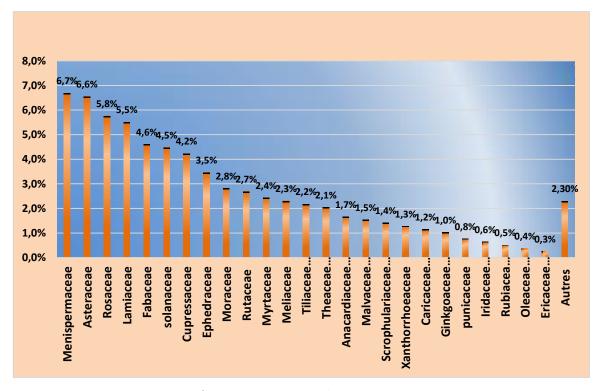


Figure 10 : Répartition selon la famille botanique.

Sur les 963 substances naturelles évoquées dans les articles étudiés, Les menispermaceae représente la famille botanique la plus citées contre les coronavirus avec un pourcentage de 6,4% suivi par les asteraceae (6,3%) puis les rosaceae (5,6%) et Lamiaceae (5,3%) Les autres familles botaniques présentent un pourcentage inferier à 4,5%.

III.18. Liste des substances les plus citées

Notre recherche a permis d'établir une liste de 963 substances naturelles d'origine végétale testées contre les Coronavirus (voir annexe I). Tenant compte de la fréquence de citation dans les études, nous avons classé les substances les plus citées (à partir de 3 citations) par ordre décroissant (voir figure 11 et tableau III).

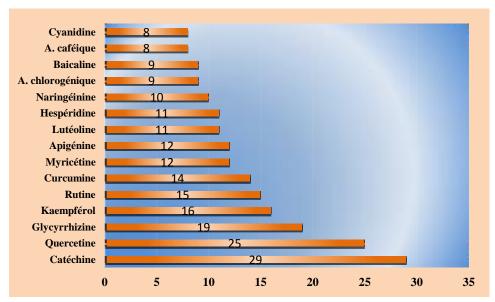


Figure 11 : Classement des 15 substances les plus citées par ordre décroissant.

Sur ces 963 substances evoquées ; Les catéchines sont les composées majoritairement citées (29), suivi par la quercétine (25) puis la glycyrrhizine (19) et kaempférol (16). Les autres substances présentent une fréquence de citation inferieur à 15.

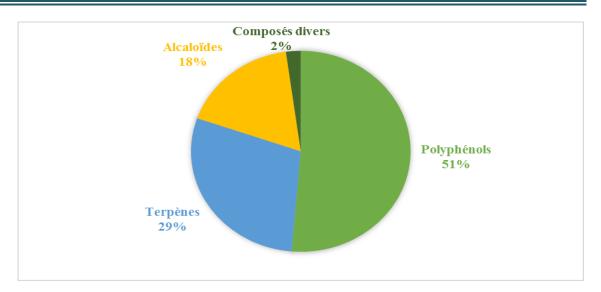


Figure 12: graphique en secteur montrant les pourcentages des différentes familles chimiques des substances étudiées.

Sur les 963 substances naturelles évoquées dans les articles étudiés, les polyphénols représentent les métabolites secondaires les plus testés contre les Coronavirus avec un pourcentage de 51%, suivi par les terpènes (29%) puis les alcaloïdes (18%). Les autres composés tels que certains métabolites primaires ne constituent que 2% des substances étudiées.

Tableau III: Classement de 63 substances les plus citées dans la littérature qui pourraient avoir une efficacité contre les Coronavirus

N°	Substance chimique	Classe	Virus	Mécanisme d'action	Type d'étude	Référence
	Acide protocatéchique					
	catéchine					
	Epicatéchine			Inhibiteur de M ^{pro} ,PL ^{pro} ,		
	Gallate de catéchine			l'helicase, protéine N, protéine S, RBD, l'ACE2,	In silico In vitro In vivo	(51-79)
	catéchine 5- O-gallate	Polyphénol	SARS- CoV SARS- CoV-2	RdRp, CTSL, Nsp6, Nsp15 et la furine, Interaction de la protéine S avec la GRP78, Inhibe la réplication et		
1	l'épicatéchine gallate					
	Gallocatéchine					
	Gallocatéchine-3-gallate			réduit la tempête cytokinique et antioxydant		
	Epigallocatéchine					
	Epigallocatéchine gallate (EGCG)					
	Quercétine	Polyphénol	SARS-	Inhiber l'entrée des cellules	In silico	(53-55, 57-
2	Quercétine-3- O- galactoside	Polyphénol (Flavonoïde)	CoV MERS-	du SRAS-CoV-2 via le récepteur ACE2 et inhiber	In vitro In vivo	60, 67, 68, 78, 80-94)

	Quercétine-3- O- glucoside		CoV SARS- CoV-2	le processus protéolytique, 3CL ^{pro} , PL ^{pro} , RdRp, Interaction avec le domaine		
	Quercétine-3- O- glucuronide			HR2, diminuer les facteurs de l'inflammation, réduit la		
	Quercetrine			tempête cytokinique et		
	Quercétagénine			antioxydant.		
	Quercétine 3,5- digalactoside					
	Quercetin 3-(6- malonylglucoside)					
	Avicularine (quercétine- 3-O-α-L- arabinofuranoside)					
	Guaijaverin (Quercétine 3-arabinopyranoside					
	Quercétine 3- vicianoside					
	Quercétine-3-rutinoside- 7-glucoside					
	Isoquercétine					
	Quercétine-4'- O -α- d - glucopyranoside					
	Glycyrrhizine		SARS- CoV	Inhibiteur de la réponse inflammatoire pour empêcher l'apparition d'une		
3	18β-acide glycyrrhétinique	Terpène	SARS- CoV-2 MERS-	tempête cytokine, 3CL ^{pro} , PL ^{pro} , RdRp, TMPRSS2, protéine S, RBD, ACE2,	In silico In vitro In vivo	(23, 56, 82, 95-110)
	L'acide glycyrrhétinique		CoV	Nsp1, furine et l'Endoribonucléase		
	Kaempférol					
	Kaempférol-7-O- néohespéridoside					
	Kaempferide					
	Kaempférol-3-O- rutinoside	D 1 1/ 1	SARS- CoV	Inhiber l'entrée des cellules du SRAS-CoV-2 via le récepteur ACE2 et inhiber	y .1.	(51, 53-55,
4	Kaempféritine	Polyphénol (Flavonoïde)	SARS- CoV-2	le processus protéolytique,	In silico In vitro	57, 58, 60, 70, 82-87,
	Kaempférol 7- O - rhamnoside	,	MERS- CoV	3CL ^{pro} , PL ^{pro} , RdRp, Nsp14, Nsp16 et la protéine S.		89, 111)
	Kaempférol 3-glucoside 7-rhamnoside					
	Kaempférol7,4'- diglucoside					
5	Rutine	Polyphénol (Flavonoïde)	SARS- CoV SARS- CoV-2	Inhibiteur de la 3CL ^{pro} , PL ^{pro} , protéine E, Nsp 15, l'ACE2, l'Endoribonucléase, réduire les cytokines	In silico In vitro	(23, 52, 53, 57, 59, 67, 68, 76, 77, 81, 90, 92, 98, 112, 113)

6	Curcumine (diferuloylméthane) Diacétylcurcumine Déméthoxycurcumine (DMC) Bisdéméthoxycurcumin e (BDMC) Myricétine Myricétine Myricétine-3- O-	Polyphénol	SARS- CoV-2 SARS- CoV MERS- CoV	Interaction de la protéine S avec la GRP78, Inhibiteur de la M ^{pro} , l'ACE2, protéineS, RdRp, Diminuer les facteurs d'inflammation et les cytokines, Augmenter le nombre des cellules T rég	In silico In vitro In vivo	(53, 54, 63, 64, 66, 72, 85, 91, 99, 113-117) (23, 52-55, 59, 65, 81,
7	xylosyl-(1→2)- rhamnoside Myricétine 3-rutinoside	(Flavonoïde)	CoV-2	TMPRSS2, RdRp, réduire des cytokines	In vitro	82, 90, 98, 113)
	Apigénine					
	Apigénine-7- β -D- glucoside					
	Apigénine 7-(6"-malonylglucoside)	Polyphénol (Flavonoïde)	CADC	Inhibiteur de la 3CL ^{pro} ,	In silico In vitro	(51-54, 57, 61, 70, 87, 118-121)
8	Apigénine-7-O- glucoronide		SARS- CoV-2	PL ^{pro} , RdRp, Nsp 15, 1'ACE2, protéine S		
	6,6'-biapigénine					
	Apigéninidine 5-O- glucoside	Polyphénol (Anthocyane)				
	Apigéninidine	(Anthocyane)				
	Lutéoline		SARS- CoV-2			(52-54, 57,
	lutéoline-7-glucoside	Polyphénol (Flavonoïde)				
	Lutéoline-6-C- arabinosid			Inhibiteur de 3CL ^{pro} , PL		
9	Lutéoline-6-C- glucoside			pro, l'ACE2, protéine S, Nsp14, Nsp15, RdRp, TMPRSS2, réduit les	In silico In vitro	60, 67, 81, 83, 87, 89,
	Lutéoline-6C-glucoside- 8C-arabinoside			cytokines		94)
	Lutéoline-6-8-di-C- arabinoside					
	Hespéridine	Polyphénol	SARS-	Inhibiteur du M ^{pro} , Nsp 1, l'Endoribonucléase, RdRp,	In silico	(23, 53, 54, 56, 59, 66,
10	Hespérétine	(Flavonoïde)	CoV-2	TMPRSS2, protéine S, bloquer la protéine du canal 3a, réduire le SDRA	In vitro	90, 98, 113, 114, 122)
	Naringénine	Polyphénol	SARS-	Inhibiteur des M ^{pro} , Nsp 15,	In silico	(52-54, 57,
11	Naringine	(Flavonoïde)	CoV-2	TMPRSS2, RdRp	In vitro	59, 60, 68, 122, 123)
12	Acide chlorogénique (Acide 5- cafféoylquinique)	Polyphénol	SARS- CoV-2	Inhibiteur de la réplication virale (Mpro), l'ACE2,	In silico	(20, 52, 53, 55, 57, 80, 92, 124,
	Acide isochlorogénique B		CoV-2	Interaction avec Nsp15	In vitro	125)

	Acide neochlorogenique (3-CQA)					
	Acide cryptochlorogenique (4- CQA)					
	Baicaline	Polyphénol	SARS- CoV	Inhibiteur de M ^{pro} , protéine	In silico	(23, 54, 56, 85, 90, 95,
13	Baicaléine	(Flavonoïde)	SARS- CoV-2	S, TMPRSS2, RdRp et l'Endoribonucléase	In vitro	98, 104, 113)
14	Acide caféique	Polyphénol	SARS- CoV-2	Inhibiteur des M ^{pro} , RdRp, protéine M, Nsp 15, diminuer les facteurs inflammatoires	In silico In vitro	(51-55, 57, 112, 124)
	Cyanidine					
	la cyanidine 3-(6-p-caffeoyl)glucoside					
	cyanidine-3-(p- coumaroyl)-rutinoside- 5-glucoside				In silico In vitro	(54, 76, 77, 82, 83, 120, 126, 127)
	Cyanidine 7-arabinoside		SARS- CoV SARS- CoV-2	Inhibiteur des Mpro, PL pro, ACE2, protéine S et RdRp		
	cyanidine- 3-arabinoside	Polyphénol				
15	Cyanidine 3,5- diglucoside	(Anthocyane)				
	Cyanidine 3-rutinoside					
	Cyanidin 3-O-[200-O- (xylosyl) glucoside] 5- O-(600-O-malonyl) glucoside					
	cyanidine-3-O- glucoside					
	Leucocyanidine					
16	Berbérine	Alcaloïde	SARS- CoV SARS- CoV-2	Agit sur le stade tardif du cycle viral, Inhibiteur de M ^{pro} , Nsp 15, protéine S, Inhibe le NF-κB et MAPK (cytokine) CASP et BAX (dommage tissulaire), réduit l'inflammation	In silico In vitro In vivo	(52, 98, 109, 128- 131)
17	Acide ellagique	Polyphénol (Tannins)	SARS- CoV-2	Inhiber l'entrée des cellules du SRAS-CoV-2 via le récepteur ACE2 et inhiber le processus protéolytique, M ^{pro} , RdRp, protéine S, TMPRSS2, furine	In silico	(55, 56, 58, 118, 132- 134)
18	Isorhamnetine	Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction de la protéine S avec la GRP78, Inhibiteur de la 3CL ^{pro} , RdRp et l'ACE2	In silico In vitro	(54, 57, 60, 67, 72, 87, 94)

19	Acide gallique	Polyphénol	SARS- CoV-2	Inhiber l'entrée des cellules du SRAS-CoV-2 via le récepteur ACE2 et inhiber le processus protéolytique, Mpro, RdRp, protéine S, TMPRSS2, furine	In silico	(54, 55, 57, 58, 84, 133, 135)
	Acide bétulinique		SARS-			
	L'acide bétulonique		CoV MERS-	Inhibiteur de M ^{pro} , Plpro,	In silico	(52, 56, 83,
20	3- O -acide bétulinique p -coumarate	Terpène	CoV SARS- CoV-2	l'ACE2, Nsp 15, TMPRSS2 et la furine	In vitro	96, 115, 136, 137)
	Delphinidine					
21	Delphinidine 3-O-beta- D-glucoside 5-O-(6- coumaroyl-beta-D- glucoside)	Polyphénol (anthocyanidi	SARS- CoV-2	Inhibiteur de 3CL ^{pro} , l'ACE2, protéine S er RdRp	In silico	(82, 83, 93, 98, 120,
	Delphinidine 3,5- diglucoside	ne)		, F		126, 127)
	Delphinidin 3- sambudiglucoside					
22	Amentoflavone	Polyphénol (Flavonoïde)	SARS- CoV SARS- CoV-2	Inhibiteurs de la protéine de pointe, RdRp et de la M ^{pro}	In silico In vitro	(23, 57, 82, 87, 121, 127)
	Acide oléanolique					
	Oleanane		SARS- CoV-2 SARS- CoV MERS- CoV			(97, 98, 103, 136- 138)
23	l'acide oléanolique 3- glucuronide	Terpène		Inhibiteur de RdRp, 3CLpro et la protéine S (RBD)	In silico	
23	12,13-Epoxyolean-3-yl acétate	respene			111 511100	
	12,13-Epoxyolean- 9(11)en-3-yl acétate					
24	Resvératrol	Polyphénol (Stilbenoïde)	MERS- CoV SARS- CoV-2	Inhibition de la Mpro, protéine S, RdRp, réduire les cytokines, Inhibition de l'infection par le MERS- CoV	In silico In vitro In vivo	(53, 54, 81, 139, 140)
25	Acide ursolique	Terpène	SARS- CoV-2	Interaction avec Nsp15, PLpro et l'ACE2, réduire les cytokines	In silico	(52, 63, 81, 97, 136)
	Eugénol					
	Acétyle eugénol		CADC	Lubibitana da assez C. C.		(63, 85,
26	Iso-eugénol	Polyphénol	SARS- CoV-2	Inhibiteur des protéine S et M ^{pro}	In silico	107, 141,
	Acétyle isoeugénol					142)
	Acétate d'eugényle					
27	Limonène	Terpène	SARS- CoV-2	Inhibiteur de M ^{pro}	In silico	(98, 113, 141-143)
	Artémisinine					
28	Acide artémisinique	Terpène	SARS- CoV-2	Action sur la protéine BRD2, Inhibiteur du Nsp 1,	In silico In vitro	(66, 109, 141, 144,
	Dihydroartémisinine		CUV-2	Inhibiteur de la réplication		145)
	Artémisone					

	Andrographolide					
	14-Deoxy-11- oxoandrographolide					
	Néoandrographolide					
	Désoxyandrographolide	Terpène	SARS-			
29	19β-D-glucoside		CoV	Inhibiteur des PL ^{pro} et M ^{pro}	In silico	(114, 146-
	Andrographine	respense	SARS- CoV-2	inmotedi des i E et ivi	In vitro	149)
	14-Deoxy-11,12- didehydroandrographoli de		C0 V 2			
	Désoxyandrographolide					
30	Acide férulique	Polyphénol	SARS-	Inhibiteur de protéine M,	In silico	(51, 53, 54,
50	Acide isoferulique	Toryphenor	CoV-2	RdRp, Mpro,	In vitro	57, 112)
31	Lycorine	Alcaloïde	SARS- CoV SARS- CoV-2	Inhibiteur de la pénétration et de la réplication virale (3CLpro), Inhibiteur des ribosomes de l'hôte, RdRp et la protéine N	In silico In vitro	(23, 128, 150, 151)
	Kazinol F		SARS-			
	Kazinol B		CoV SARS- CoV-2 MERS- CoV	Inhibiteurs des 3CL ^{pro} et PL ^{pro}		(86, 141, 152-154)
32	Kazinol J	Polyphénol			In vitro In silico	
	Kazinol A					
	Kazinol T					
	Liquiritine		SARS- CoV MERS-	Inhibiteur de 3CL ^{pro} , PL pro, RdRp, l'ACE2 et la	In silico	(54, 83, 86,
33	Liquiritigenin	Polyphénol				
33	Isoliquiritigénine	(Flavonoïde)	CoV SARS- CoV-2	protéine S	In vitro	102, 107)
	Hypéricine	Polyphénol	SARS- CoV	Inhibition des 3CL ^{pro} , PL ^{pro}	In silico	(70, 76, 77,
34	pseudohypericine	(Anthraquino ne)	SARS-	,RdRp, l'helicase, l'ACE2 et la protéine de pointe	In vitro	82)
	pocuaonyponome	110)	CoV-2	1 1		(62.01.07
35	Pipérine	Alcaloïde	SARS- CoV-2	Inhibiteur de M ^{pro} , réduire les cytokines	In silico	(63, 81, 85, 102)
	Mangiférine		SARS-	Inhibiteur de complexe	In silico	(53, 55, 66,
36	Mangiférine-(1- > 6)-α- d -glucopyranoside	Polyphénol	CoV-2	Nsp10-Nsp16, Mpro et TMPRSS2	In silico In vitro	135)
	u -grucopyranoside	Hétéroside	SARS-	Inhibiteur de 3CL ^{pro} ,		(23 83 00
37	Amygdaline	cyanogène	CoV-2	l'ACE2 et la protéine S	In silico	(23, 83, 98, 104)
38	Wogonine	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CL ^{pro} , RdRp, Nsp15 et réduire les cytokines	In silico	(52, 54, 60, 81)
	Tanshinone IIA		SARS-			
	Tanshinone IIB		CoV SARS-	Inhibiteur de PL ^{pro} et de	In silico In vitro	(85.06
39	Tanshinone I	Terpène	CoV-2	3CL ^{pro}		(85, 96, 155, 156)
	méthyl tanshinonate		MERS-			155, 150)
	cryptotanshinone		CoV			

	dihydrotanshinone I					
	Isotanshinone IIA					
	Tanshinlactone					
	Isocryptotanshinone					
	Tanshinketolactone					
	3α-hydroxytanshinone IIA					
	Neotanshinlactone					
	Tanshinol A					
	Tanshinol B					
	Nortanshinone					
	Isotanshinone I					
	Cryptotanshinone 17-oic acid					
	17- hydroxycryptotanshinon e					
40	α-Amyrin	Terpène	SARS-	Interaction avec Nsp15,	In silico	(52, 83, 98,
	α-Amyrin acétate	respense	CoV-2	Inhibiteur de la M pro	Th stiteo	136)
44	Proanthocyanidine	Polyphénol	SARS-	Inhibiteur de TMPRSS2,	7 .7.	(68, 82, 98,
41	Proanthocyanidine A2	(Tannin)	CoV-2	3CLpro et protéine S	In silico	120)
	Cryptolépine					
	Isocryptolépine		SARS-		In silico	(137, 157- 159)
	Néocryptolépine					
	Cryptolépinone		CoV	Inhibitour do M ^{pro} DdDn		
42	Biscryptolépine	Alcaloïde	MERS-	Inhibiteur de M ^{pro} , RdRp, TMPRSS2, Protéine S et l'ACE2		
	Cryptolépicarboline		CoV SARS-			
	11- Isopropylcryptolépine		CoV-2			
	Hydroxycryptolépine					
	Cryptospirolépine					
	Ginkgetine		SARS-		_	
43	Isoginkgétine	Polyphénol (Flavonoïde)	CoV SARS- CoV-2	Inhibiteurs de la M ^{pro} , RdRp	In silico In vitro	(82, 87, 121)
	Gedunin		<u>2</u>			
44	7-désacétyl-7- benzoylgédunine,	Terpène	SARS- CoV-2	Inhibiteur de la M ^{pro} , PL pro, RBD, l'ACE2, RdRp,	In silico	(55, 56, 97)
	7-Déacétylgédunine			TMPRSS2 et la furine		
45	Emetine	Alcaloïde	SARS- CoV-2	Inhibiteur des ribosomes de l'hôte, RdRp et la protéine N	In silico In vitro	(103, 128, 151)
	Ferruginol		SARS-			
46	18-hydroxyferruginol	Terpène	CoV	Inhibiteur de PL ^{pro} et de 3CL ^{pro}	In silico	(96, 115,
	18-oxoferruginol	•	MERS- CoV	SCL [*]	In vitro	121)
L	<u>΄</u>			<u>I</u>	l .	l .

	O -acétyl-18- hydroxyferruginol		SARS- CoV-2			
47	Alpha terpinéole Alpha terpinène Terpinolène	Terpène	SARS- CoV-2	Inhibiteur de la réplication virale (Mpro)	In silico	(141-143)
48	Puérarin	Polyphénol (Isoflavone)	SARS- CoV-2	Inhibiteur des 3CL ^{pro} et l'ACE2	In silico In vitro	(23, 53, 94)
49	Daidzein	Poyphénol (Isoflavone	SARS- CoV-2	Inhibition de la M ^{pro} , RdRp, réduire les cytokines	In silico In vitro	(53, 54, 81)
	Broussochalcone A		SARS- CoV			
50	Broussochalcone B	Polyphénol	SARS- CoV-2 MERS- CoV	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	(86, 152, 153)
51	Cepharanthine	Alcaloïde	MERS- CoV SARS- CoV-2	Inhibiteur de translocation virale et la Mpro	In silico	(128, 134, 150)
52	Menthol	Terpène	SARS- CoV-2	Inhibiteur de la réplication virale (Mpro)	In silico	(98, 141, 142)
53	6-shogaol	Polyphénol	SARS- CoV-2	Inhibiteur de M ^{pro} , Nsp1	In silico	(63, 85, 106)
54	Stigmastérol Stigmast-4-en-3-one	Terpène	SARS- CoV-2	Inhibiteur de 3CL ^{pro,} 1'ACE2	In silico	(83, 138, 160)
55	β-sitostérol Sitostérol	Terpène	SARS- CoV-2 SARS- CoV	Inhibiteur de 3CL ^{pro,} l'ACE2, Nsp 15	In silico	(52, 83, 122)
56	6-gingérol	Polyphénol	SARS- CoV-2	Inhibiteur de M ^{pro}	In silico	(63, 85, 91)
57	Allicine	Composé organo- sulfuré	SARS- CoV-2	Inhibiteur de M ^{pro} , Nsp15 et la protéine S	In silico	(52, 63, 107)
58	10- Hydroxyusambarensine	Alcaloïde	SARS- CoV-2 SARS- CoV MERS- CoV	Interaction avec l'ACE2, protéine S, 3CLpro, RdRp et TMPRSS2	In silico	(137, 158, 159)
	Strychnopentamine		SARS- CoV-2			
59	Isostrychnopentamine	Alcaloïde	SARS- CoV MERS- CoV	Interaction avec l'ACE2, protéine S, 3CLpro, RdRp et TMPRSS2	In silico	(137, 158, 159)
	Acide salvianolique A			Inhibiteur de l'entrée de		(60.05
60	Acide salvianolique B	Polyphénol	SARS- CoV-2	virus (ACE2) et de la	In silico	(68, 85, 107)
	Acide salvianolique C			3CLpro		,
61	Célastrol	Terpène	SARS- CoV SARS- CoV-2 MERS-	Inhibiteur de PL ^{pro} , 3CL ^{pro} et piéger les radicaux superoxydes	In silico In vitro	(96, 161, 162)

			CoV			
	Withaférine A					
	17-hydroxy withaférine A	Terpène	SARS- CoV-2	Interaction avec l'ecto- domaine de pointe, liaison	7 .7.	(88, 113,
62	27-deoxywithaferin A			avec TMPRSS2 et GRP78,	In silico	163)
	17-hydroxy-27-deoxy- deoxy withaférine A			Inhibiteur de Mpro		
63	Diosmine	Polyphénol	SARS-	Inhibiteur du protéase	In silico	(59, 83,
0.5	Diosmétine	(Flavonoïde)	CoV-2	principale (M ^{pro}) et l'ACE2	In stiteo	113)

VI Discussion

III.19. Les limites de l'étude

Nous n'avons pas la prétention à travers cette recherche d'avoir présenté des résultats sans faille. Aussi, avons-nous rencontré divers obstacles au cours de nos investigations :

- ✓ Le choix des mots clés : Nous avons commencé notre recherche par des mots clés vastes (« Natural products », « medicinal plants », « natural compounds » ...), nous nous sommes retrouvés avec un grand nombre de résultats dont la plupart non pertinents, donc nous avons eu recours à d'autres mots clés plus spécifiques et exhaustives ;
- ✓ Chaque moteur de recherche possède sa syntaxe et ses règles, on a choisi les 3 bases de données citées par rapport à d'autres à cause de la recherche facile et la possibilité d'utiliser les filtres désirés ;
- ✓ Le grand nombre de résultats nous a obligé à éliminer les revues de notre recherche ;
- ✓ Plusieurs articles étaient des revues ou simplement des résumés ;
- ✓ La plupart des articles étaient rédigés en anglais qui nécessitaient une traduction en français et par conséquent plus de temps pour être traités ;
- ✓ La plupart des études étaient des hypothèses (étude faites sur un virus qui a les mêmes propriétés que le SARS-CoV).

III.20. Discussion des résultats

 La lecture des 145 articles sélectionnés pour l'étude a montré que presque la totalité des études portant sur les substances naturelles agissant contre les Coronavirus ont été réalisées durant les deux dernières années 2020 et 2021. Ce constat peut être clairement justifié par l'émergence du nouveau coronavirus SARS-CoV-2 ainsi que l'ampleur universelle et la gravité de la pandémie engendrée par ce dernier comparée aux deux dernières épidémies dues aux SARS-CoV-1 et au MERS-CoV.

- Les articles étudiés portaient sur différents types d'études : in silico, in vitro et in vivo évaluant l'efficacité d'une liste de 963 composés naturels. Presque la totalité de ces études ont été réalisées par les méthodes in silico dites aussi computationnelles. Ces dernières sont des approches ou des méthodes de criblage virtuel basées sur des algorithmes développés pour le criblage d'un grand nombre de molécules en un temps plus court et l'identification d'un candidat médicament potentiel(82). L'utilisation de ces approches a augmenté au cours des deux dernières années, ce qui est attendu en raison :
 - ✓ Du résultat rapide fournis par ces méthodes ;
 - ✓ De la possibilité d'anticipation et de prédiction sans besoin de matières premières, d'extraction ou de purification ;
 - ✓ De la démarche déontologique qui ne nécessite pas le recours aux animaux ;
 - ✓ De la baisse des coûts et des risques par rapport aux méthodes classiques.
- Sur les 963 substances naturelles évoquées dans les articles étudiés, les polyphénols représentaient les métabolites secondaires les plus testés contre les Coronavirus. Les polyphénols sont des molécules naturelles connues pour leur activité antivirale contre un large éventail de virus, notamment le VIH-1, le VIH-2, le HSV-1, le HSV-2, le virus de la grippe, le virus de la dengue, le VHB, le VHC, le virus de la bronchite infectieuse (IBV), Virus Murbarg, virus Ebola, virus de la maladie de Newcastle (NDV), virus de la poliomyélite-1, lentivirus et coronavirus.

Dans le cas de ces derniers, les polyphénols agissent contre les coronavirus en utilisant divers mécanismes, notamment l'activation ou l'inhibition des voies de signalisation cellulaire ou l'arrêt de la protéase de type papaïne (PL pro) et de l'enzyme 3-chymotripsine-like protéase (3CLpro).

III.21. Les substances naturelles anti-SARS-CoV-2 les plus citées

VI.1.1 Polyphénols

VI.1.1.1 Quercétine

La quercétine est un flavonoïde largement présent dans le règne végétal, retrouvé dans le pamplemousse, les oignons, les pommes et le thé noir, Une moindre quantité existe dans les légumes à feuilles vertes et les haricots. La quercétine exerce une gamme d'activités pharmacologique en tant qu'agent antioxydant et anti-inflammatoire. Une expérience a confirmé que la quercétine pouvait améliorer l'apoptose des fibroblastes de fibrose pulmonaire idiopathique sénescente induite par un ligand et réduire la fibrose pulmonaire in vivo(94). En 2017, une étude in vitro a montré que la quercétine et la quercétine-β-galactoside peuvent inhiber l'activité des protéases virales (3CL pro et PL pro) des SARS-CoV et MERS-CoV (86). En outre, des études récentes (in silico et in vitro) ont signalé les effets inhibiteurs potentiels de la quercétine et de ces analogues sur la protéase principale du SARS-CoV-2 (Figure 9) (53, 55, 59, 68, 87, 92). Une autre technique d'amarrage a été également utilisée pour mieux définir l'activité inhibitrice des glycosides de ce flavonol. Cette technique a révélé que la quercétine 3,5-digalactoside enregistrait l'énergie de liaison la plus faible avec la Mpro. Il a été observé que les flavonols avec deux fragments de glucose enregistraient une énergie de liaison (EL) inférieure à celle des flavonols avec un ou trois fragments de glucose (82). La quercétagénine, un autre flavonol pouvait inhiber efficacement la réplication du SRAS-CoV-2 in vitro à 58 % avec une IC50 de 145 µM. Il a été également signalé que la quercétine et la quercétine 3-(6-malonylglucoside) pourraient réduire l'entrée du SRAS-CoV-2 en bloquant l'activité de l'ACE2 (80, 94). Les analogues de la quercétine peuvent également se lier au RdRp et à la PL pro (54, 89).

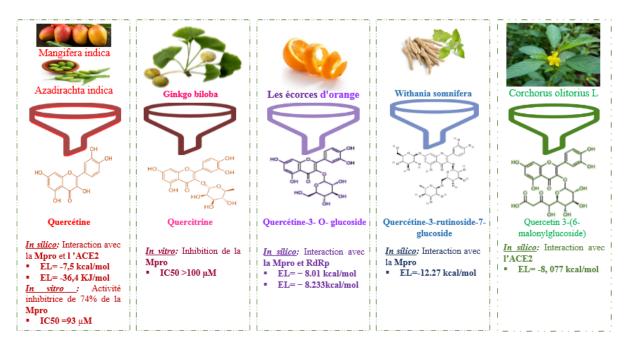


Figure 13 : Quercétine et ses analogues et activité antivirale contre le SARS-CoV-2.

VI.1.1.2 Rutine

La rutine flavonoïdes isolé de l'extrait de différentes plantes médicinales telles que Withania somnifera, Passiflore officinale et Theobroma cacao (57, 113). La rutine exerce diverses activités biologiques, notamment anti-inflammatoire, antivirale. Des études ont montré que la rutine présente une activité antimicrobienne et, grâce à des études in silico, une possible activité inhibitrice de plusieurs protéines essentielles au SARS-CoV-2 pour terminer son cycle viral. Cependant, son spectre antiviral est plus large et il est testé expérimentalement comme agent antiviral contre les rétrovirus, les orthomyxovirus, les virus de l'hépatite B et C et le virus de la grippe H1N1.

D'autres expériences réalisées par différents chercheurs mentionnent que la rutine peut être utilisée comme inhibiteur potentiel de Mpro et d'ACE2 du COVID-19(23, 52, 57, 68, 112, 113). De plus, des tests d'inhibition enzymatique *in vitro* ont également montré que la rutine avait une activité inhibitrice contre le 3CLpro du SRAS-CoV étant donné que la séquence 3CLpro du SARS-CoV-2 est très similaire à celle du SARS-CoV (53, 67).

VI.1.1.3 Kaempférol

Le kaempférol est un flavonol qui peut être extrait de plusieurs plantes à savoir *Moringa* oleifera, Carica papaya, Ephedra sp (51, 55, 83). Dans une étude in vitro, le kaempférol extrait de *Broussonetia papyrifera* a été identifié comme inhibiteur des protéases virales

(PL ^{pro} et 3CL ^{pro}) à la fois dans le SARS-CoV et le MERS-CoV (86). Des études ont récemment commencé à se concentrer sur l'infection par le SRAS-CoV-2, le kaempférol et ses analogues ont été testés contre diverses protéines cibles des coronavirus telles que 3CL pro, RdRp, l'ACE2 et la protéine S à la fois *in silico* et *in vitro* (10) (53, 55, 60, 70, 83, 85, 87, 111).

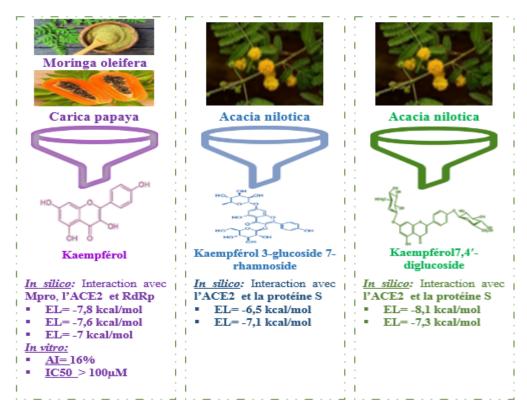


Figure 14: Kaempférol et ses analogues et activité antivirale contre le SARS-CoV-2.

VI.1.1.4 Myricétine

La myricétine est un flavonol qui peut être extrait de *Isatis indigotica*, *Torreya nucifera* ou de *Moringa oleifera* (55, 123). La myricétine et ses analogues ont été testés contre la Mpro, RdRp, TMPSS2, l'endoribonucléase et l'IL-6 à la fois *in silico* et *in vitro*. Ils ont montré de bons scores d'amarrage surtout contre la TMPRSS2 et RdRp (**Figure 11**) (52-55, 81, 82, 113, 123). Selon une étude *in vitro*, l'absence des groupes hydroxyles dans le cycle B en C3 et en C4 était la raison de l'activité inhibitrice plus faible du kaempférol et de la quercétine que la myricétine (53).

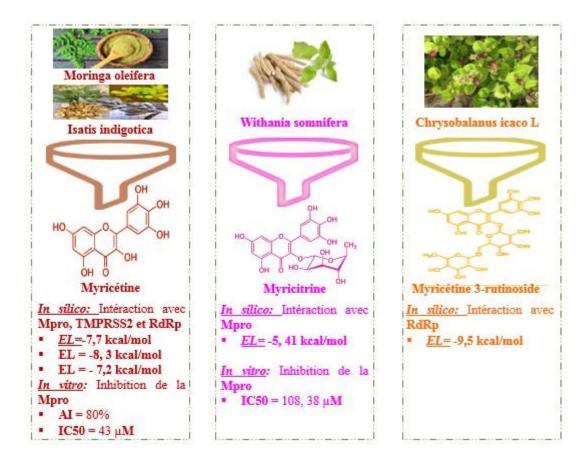


Figure 15 : Myricétine et ses analogues et activité antivirale contre le SARS-CoV-2.

VI.1.1.5 Naringénine

La naringénine est une flavonone extraite principalement des fruits d'agrumes, *d'Isatis indigotica*. Elle a été signalée comme agent antiviral contre le virus Zika (59, 122, 123). La naringénine n'a montré aucun effet inhibiteur contre la Mpro du SARS-CoV (122). Par contre, elle a marqué de bon score d'amarrage contre la Mpro, TMPRSS2 et RdRp du SARS-CoV-2(54, 57, 123). La naringine, un hétéroside de la naringénine, a révélé aussi de bons scores avec la Mpro et Nsp 15 (52, 57).

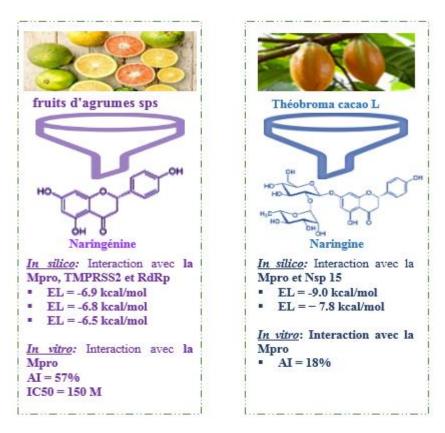


Figure 16 : Naringénine et ses analogues et activité antivirale contre le SARS-CoV-2.

VI.1.1.6 Hespéridine

L'hespéridine et son aglycone l'hespéritine sont des flavonones extrait principalement des fruits d'agrumes. L'hespéridine a des effets antimicrobiens, anti-inflammatoires, sur la fonction cardio-vasculaire, le diabète de type II...(90). Plusieurs études ont noté l'activité inhibitrice possible de l'hespéridine et l'hespéritine contre diverses protéines cibles à savoir la Mpro, TMPRSS2 et le RdRp (**Figure 13**) (53, 54, 114, 122, 123, 129).

Dans le groupe flavanone, l'ordre de l'activité inhibitrice de M pro était le suivant : naringine < hespéridine < naringénine. La naringénine est de la naringine glycosylée. Cependant, son activité inhibitrice était 3,2 fois plus élevée que celle de la naringine. L'hespéridine qui contenait une glycosylation à 7-OH au niveau du cycle A comme la naringénine et le groupe méthoxy à la position 5' du cycle B s'est avéré avoir une activité inhibitrice plus élevée que celle de la naringine mais une activité inhibitrice inférieure à celle de la naringénine, indiquant que la glycosylation à la position C7 a amélioré l'effet inhibiteur de M pro. En revanche, le groupe méthoxy en C5' dans le cycle B a réduit son activité inhibitrice (53).

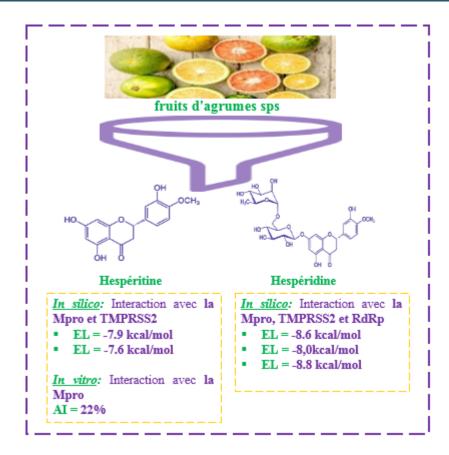


Figure 17 : Hespéridine et ses analogues et activité antivirale contre le SARS-CoV-2.

VI.1.1.7 Catéchines et catéchines gallates

Les catéchines sont des polyphénols, plus précisément elles font partie de la famille des flavonoïdes ; de la sous-classe des flavanols, présentes dans certains aliments, dont le thé vert (*Camellia sinensis*) et *Carica papaya*. L'effet de la catéchine et ses analogues dans l'inhibition de la réplication du coronavirus associé au SARS-CoV-2 a été récemment étudié et divers mécanismes d'action ont été attribués aux activités antivirales de la catéchine, tels que l'inhibition de la protéine S, RdRp, ACE2 et de Mpro (51, 54, 62-64, 68).

Dans une étude in silico, les catéchines extrait de *Mangifera indica* et *Moringa oleifera* ont été identifiés comme inhibiteurs puissants de Mpro avec un score d'amarrage très important (55). De plus, l'epicatéchine c'est un analogue structurel de catéchine qui présente en plus des autres effets inhibiteurs, la capacité d'inhiber la furine, la protéine N et de Nsp6 (56, 69).

L'épigallocatéchine gallate (EGCG), principale catéchine du thé vert est connue pour exercer une activité antivirale contre plusieurs types de virus y compris le virus de l'herpès, le virus de l'hépatite et le virus de la grippe A. Des études in silico pour tester l'activité

antivirale contre le SRAS-CoV-2 ont montré que L'épigallocatéchine gallate se liait bien aux cibles clés, notamment la protéine Spike, 3CLpro, PLpro et le RdRp (62, 75). En plus, des études in vitro ont confirmé l'efficacité de cette substance dans l'inhibition de la réplication et la réduction de la tempête cytokinique (78, 79).

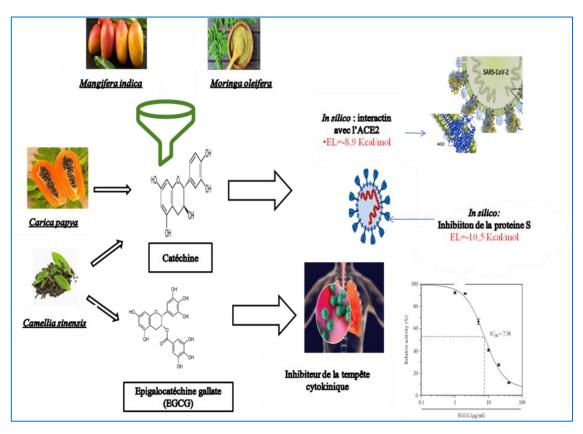


Figure 18 : Catéchine et l'epigallocatéchine et activité antivirale contre le SARS-CoV-2.

VI.1.1.8 Curcumine

La curcumine (CC) et ses analogues sont les principaux constituants du curcuma (Curcuma longa L.) et d'autres de Curcuma spp qui sont largement utilisés dans le monde comme épices culinaires, ingrédient de complément alimentaire populaire ainsi qu'en médecine traditionnelle en raison de sa large gamme d'avantages pour la santé, y compris les bienfaits anti-inflammatoires, anticancéreux, cardiovasculaires, respiratoires et immunitaires. De plus, la suppression de plusieurs cytokines par la curcumine a suggéré que cela pourrait être une approche utile dans le traitement des patients atteints d'Ebola contre la tempête des cytokines. La curcumine a une variété d'activités antivirales contre le virus de la dengue, le virus de l'herpès simplex, le virus Zika et le virus chikungunya. CC inhibe également l'aminopeptidase N (APN) qui a été identifiée comme un récepteur cellulaire de

l'alpha CoV (63, 99). Une autre étude a montré que la curcumine pouvait inhiber efficacement la protéase principale du SRAS-CoV dans les cellules Vero E6 in vitro (115). Récemment de nombreuses recherches ont montré son pouvoir inhibiteur potentiel contre la Mpro du SARS-CoV-2 à la fois in silico et in vitro (63, 113). Dans une étude in vitro menée sur la curcumine et ses analogues, l'ordre des effets inhibiteurs était le suivant : bisdéméthoxycurcumine < curcumine < diméthylcurcumine. Dans ce groupe, la curcumine contenait deux groupes méthoxy (C2' et C4") et a montré une activité inhibitrice plus élevée sur M pro que la bisdéméthoxycurcumine qui n'avait pas le groupe méthoxy. Cependant, son activité inhibitrice était inférieure à celle de la diméthylcurcumine, qui contenait un groupe méthoxy en C2'(53). Deux essais contrôlés randomisés à double aveugle ont montré une augmentation significative des cellules T régulatrices et une diminution du taux de cytokines (IL-6, IL-1β) ainsi qu'une atténuation dans le taux de mortalité chez les patients sévères. La curcumine présente des problèmes majeurs de solubilité dans l'eau, son métabolisme élevé et son excrétion rapide du corps. Ceci est résolu par la formulation nanométrique à savoir la nanocurcumine (116, 117). D'autres études d'amarrage moléculaire ont révélé que la curcumine peut se lier également au RdRp, l'ACE2 et la protéine S (54, 64).

Figure 19 : Curcumine et ses analogues et activité antivirale contre le SARS-CoV-2.

VI.1.1.9 Lutéoline

La lutéoline est un flavonoïde et plus spécifiquement une flavone. Elle présente de multiples activités biologiques, notamment anti-inflammatoires, anticancéreuses, anti-oxydante, antivirales et protectrices cardiaque. Il a été rapporté que la lutéoline peut interférer avec le virus au début de son cycle de vie, dans une certaine mesure, bloquer l'absorption et l'internalisation du virus de la grippe. De plus, diverses études ont confirmé que la lutéoline inhibe l'activité de la protéase NS2B/NS3 du virus de la dengue. Il a également été documenté que la lutéoline a un effet anti-virus d'Epstein-Barr (EBV).

Une étude *in silico* a montré que la lutéoline extraite de l'*Ephedra sp* et du *Ginkgo biloba* est un inhibiteur du 3CLpro de SARS-CoV-2. D'autres études ont également montré que ce composé est un puissant inhibiteur de l'ACE2 et de la RdRp. Dans l'ensemble, la lutéoline a un bon effet antiviral, ce qui suggère que la lutéoline peut être un médicament potentiel pour le traitement du COVID-19 et leur effet réel dans le traitement cette maladie doit être vérifié par d'autres études (52, 54, 57, 60, 67, 83, 87).

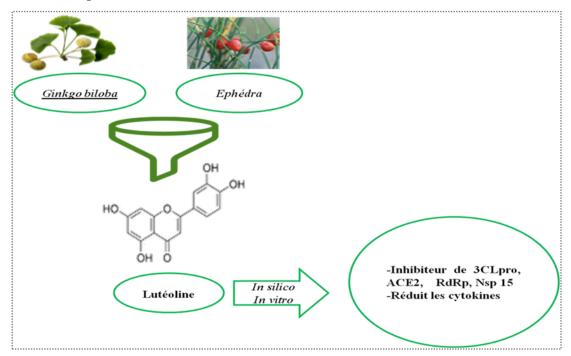


Figure 20 : Activité de la lutéoline contre le SARS-CoV-2.

Lutéoline-7-glucoside (57), Lutéoline-6-C-arabinosid, Lutéoline-6-C-glucoside, Lutéoline-6C-glucoside-8C-arabinoside et la Lutéoline-6-8-di-C-arabinoside sont des analogues de la lutéoline isolés de l'extrait de *Justicia adhatoda* (89). Ces derniers présentent également une activité antivirale contre le SARS-CoV-2.

VI.1.1.10 Apigénine

L'apigénine est un composé de la famille des flavonoïdes, qui a des propriétés antiinflammatoires. Une étude in silico faite par des chercheurs indonésiens sur la *Carica papaya* a montré l'activité antivirale de cette substance naturelle telle que l'inhbition de Mpro, PLpro et RdRp (2). De plus, plusieurs études sur les différents analogues de l'apigénine tels que Apigéninidine 5-O-glucoside, apigénidine et le 6,6'-biapigénine ont montrés leur efficacité antivirale contre le SARS-CoV-2 via l'inhibition de Mpro et de RdRp (61, 121).

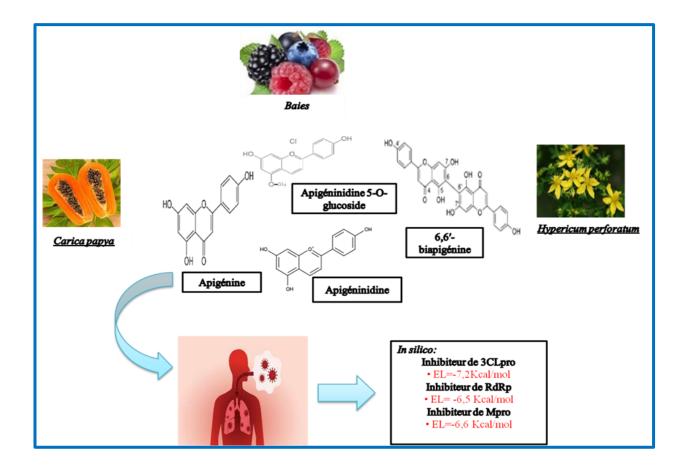


Figure 21 : Apigénine et ses analogues et activité antivirale contre le SARS-CoV-2.

VI.1.1.11 Acide caféique

L'acide caféique est un polyphénol, naturellement présent dans toutes les plantes car c'est un intermédiaire clé dans la biosynthèse de la lignine. Une étude *in silico* faite par des chercheurs indonésiens a montré que l'acide caféique extrait du *Carica papaya* fait diminuer les facteurs inflammatoires du SARS-CoV-2 (51). D'autres études *in silico* ont confirmé que ce composé agit comme un inhibiteur de la Mpro, de la protéine M et de la RdRp (52-55, 57, 112, 124).

VI.1.2 Terpènes

Les terpènes sont des composés naturels à base d'isoprène caractérisés par une grande diversité chimique et un large éventail d'effets thérapeutiques. Cette classe de produits naturels a été une source précieuse pour l'identification de nouveaux agents thérapeutiques à savoir, la glycyrrhizine, un glycoside de saponine triterpénique isolé de *Glycyrrhiza* spp (96). L'artémisinine, un antipaludien important largement utilisé dans le traitement du paludisme (96).

VI.1.2.1 Glycyrrhizine

La glycyrrhyzine également appelé acide glycyrrhizique est une saponine triterpénique extraite principalement de la racine de *Glycyrrhiza glabra* (la réglisse) et de *Glycyrrhiza uralensis*. Un grand nombre d'études ont montré que la réglisse et ses composants ont un effet protecteur sur l'inflammation et les lésions pulmonaires et c'est une plante médicinale prometteuse pour le traitement du SRAS. En plus, la glycyrrhizine était active contre d'autres virus tels que le virus varicelle-zona, le virus herpès simplex et le virus de la dengue. C'est une substance hépato-protectrice efficace chez les patients atteints d'hépatite C chronique et peut protéger d'une variété de maladies hépatiques telles que l'hépatite virale chronique, les lésions hépatiques d'origine médicamenteuse ou chimique, la stéatose hépatique non alcoolique, l'hépatite auto-immune et les carcinomes hépatocellulaires. Elle est également utilisée pour e traitement de l'inflammation cutanée.

L'effet de la glycyrrhizine dans l'inhibition de la réplication du coronavirus associé au SARS-CoV-2 a été récemment étudié et divers mécanismes d'action ont été attribués aux activités antivirales de la glycyrrhizine, tels que l'inhibition de l'endoribonucléase(23), l'inhibition de la Mpro, PLpro, RBD, RdRp et l'ACE2, l'inhibition de la protéine S et de la protéine accessoire Nsp1 et l'inhibition de la TMPRSS2 (82, 97, 105-109). De plus, la glycyrrhyzine joue un rôle important dans l'inhibition de l'hyper-activation immunitaire et du développement des facteurs de la tempête des cytokines(109).

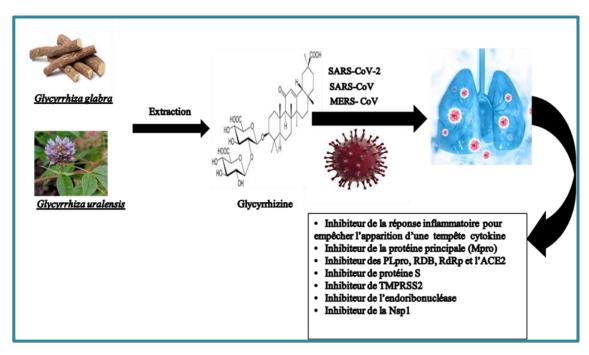


Figure 22 : Activité de la glycyrrhizine sur les différents types de coronavirus.

18β-acide glycyrrhétinique est actif contre le coronavirus du SARS-CoV, SARS-CoV-2 et MERS-CoV en agissant sur l'inhibition de Mpro (56, 96, 98).. L'acide glycyrrhétinique est l'aglycone de la glycyrrhizine (104).

VI.1.2.2 Andrographolide

L'andrographolide est le principal composant actif isolé de l'extrait de l'herbe Andrographis paniculata (146, 147). Cette lactone diterpénique de type labdane possède un large éventail d'activités biologiques, y compris l'activité antivirale, antibactérienne, antiparasitaire, anti-tumorale et un potentiel antidiabétique promoteur. Des études antérieures ont montré que l'andrographolide possède un large spectre de propriétés antivirales, qui inhibe diverses infections virales, notamment le virus de la grippe A, le virus de l'immunodéficience humaine (VIH), le virus Chikungunya (CHIKV), le virus de la dengue (DENV) en agissant sur GRP78 et Enterovirus D68 (EV-D68. L'andrographolide induit un stress du réticulum endoplasmique (RE) conduisant à la mort des cellules cancéreuses par apoptose via l'induction des niveaux accrus d'espèces réactives de l'oxygène (ROS) qui peuvent inhiber la carcinogenèse induite par le virus (148). Des effets inhibiteurs supplémentaires de l'andrographolide incluent ceux de la migration cellulaire, de l'invasion, de l'expression des métalloprotéinases matricielles, de l'anti-angiogenèse, de l'autophagie et du dérèglement de la voie de signalisation ont été rapportés pour les troubles inflammatoires, y compris le cancer.

De plus, des études *in silico* pour tester l'activité antivirale contre le SRAS-CoV-2 ont également montré que l'andrographolide se liait bien aux cibles clés, notamment la protéine Spike, 3CLpro et le PLpro, ce qui indiquait que l'andrographolide a une efficacité potentielle contre le SRAS-CoV-2 (114, 146-149). Dans l'ensemble, en tant que composé d'origine végétale, l'andrographolide est largement distribué avec une faible cytotoxicité, mais sa puissante activité antivirale contre une variété de virus nécessite des recherches plus approfondies.

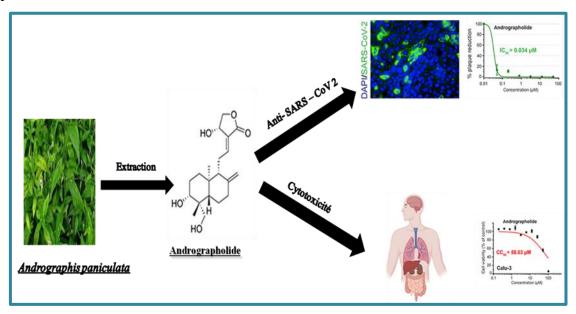


Figure 23 : Activité antivirale d'andrographolide extrait d' Andrographis paniculata

VI.1.2.3 Artémisinine

L'artémisinine est le principal composant actif de l'*Artemisia annua*. Il s'agit d'une lactone sesquiterpenique. L'artémisinine est un ancien médicament antipaludique, a sauvé des millions de vies, il a été signalé comme ayant de multiples activités pharmacologiques, y compris la modulation anticancéreuse, antivirale et immunitaire.

Dans une étude *in vitro*, l'artémisinine a été choisi pour tester leur potentiel anti-SARS-CoV-2 en utilisant des cellules Vero E6 de rein de singe vert africain. Des tests de cytotoxicité ont été effectués avant le test antiviral pour déterminer la cytotoxicité des composés sélectionnés, et les copies d'ARN viral dans les surnageants ont été déterminées par PCR quantitative en temps réel (qRT-PCR) pour déterminer les effets antiviraux des composés. Les résultats de cette étude montre que l'artémisinine et ses dérivés : L'arteannuine B a montré le potentiel anti-SARS-CoV-2 le plus élevé avec une CE 50 de 10,28 ± 1,12 M. L'artésunate et la dihydroartémisinine ont montré des valeurs de CE 50 similaires de 12,98 ± 5,30 M et 13,31

± 1,24 M, respectivement, qui ont pu être atteintes cliniquement dans le plasma après administration intraveineuse. Une analyse plus poussée du mode d'action a révélé que l'arteannuine B et la luméfantrine agissaient à l'étape post-entrée de l'infection par le SRAS-CoV-2. Cette recherche met en évidence le potentiel anti-SARS-CoV-2 des artémisinines et fournit des candidats de premier plan pour la recherche et le développement de médicaments anti-SARS-CoV-2 (144). D'autres études *in silico* ont montré que ce composé chimique est un puissant inhibiteur de BRD2 et de la protéine accessoire Nsp1(66, 141, 164).

VI.1.3 Alcaloïdes

Depuis la découverte de cette classe de produits naturels, plusieurs activités biologiques associées aux alcaloïdes ont été rapportées, notamment analgésiques, antibactériennes, antifongiques, anti-inflammatoires, anticancéreuses et antivirales. Parmi les alcaloïdes qui ont une activité antivirale, la berbérine (150).

VI.1.3.1 Berbérine

La berbérine (BRB) est un alcaloïde isoquinoléique dérivé de l'herbe chinoise *Coptis chinensis* et des plantes du genre *Berberis*. Ses propriétés biologiques de grande envergure identifiées dans les études précliniques comprennent une activité anti-inflammatoire, anti-arythmique, antimicrobienne et hypocholestérolémiante. La BRB a une activité antivirale à large spectre *in vitro* contre les virus de plusieurs familles différentes, y compris le virus de la grippe A, l'entérovirus, le virus du chikungunya, les virus de l'hépatite B et C, le VIH, le virus respiratoire syncytial, le cytomégalovirus humain, le virus de l'herpès simplex et le papilloma virus humain (129).

Dans une étude, la BRB a montré de bonnes activités de liaison à la sous-unité S1 du SARS-CoV-2. Ensuite, pour déterminer si ce composé peut être un candidat pour une activité anti-coronavirus à large spectre, ils ont effectué une évaluation plus approfondie sur les sous-unités S1 du MERS-CoV et du SARS-CoV. Les résultats ont montré une activité de liaison similaire avec la sous-unité S1 du MERS-CoV mais une affinité réduite pour le SARS-CoV(109). En outre, la BRB a révélé de bons scores d'amarrage contre la Mpro et le Nsp 15 (52, 98). Une autre étude a identifié les cibles thérapeutiques potentielles de la berbérine contre le SRAS-CoV et le SARS-CoV-2 en utilisant la modélisation informatique. Les cibles les plus importantes pour la berbérine comprennent NF-κB et MAPK, qui sont des protéines régulant la tempête de cytokines, et les CASP et BAX, qui sont des cibles pertinentes pour

prévenir les dommages tissulaires en supprimant les voies de signalisation de la mort cellulaire. Ainsi, ils ont démontré pour la première fois que la berbérine réduit considérablement la réplication virale, supprime l'entrée virale du récepteur hôte ACE2 et TMPSS2, et diminue les marqueurs inflammatoires, notamment l'IL-6, l'IL-8, l'IL-1α et le CCL2 dans les cellules Calu3 infectées par le SRAS-CoV-2 (130). La BRB a également montré son efficacité contre le SRAS-CoV-2 à de faibles concentrations micromolaires in vitro dans les cellules Vero E6 (129). Dans un essai contrôlé randomisé mené sur 39 patients atteints de COVID-19 sévère hospitalisés regroupé en 2 groupes, le premier a reçu la BRB plus un traitement de routine dans les 14 jours suivants l'admission et le groupe témoin n'a reçu qu'un traitement de routine. Aucune différence significative n'a été observée entre les deux groupes dans la tendance des taux d'IL-6, de TNF-α, de CRP, de procalcitonine et de globules blancs dans les 14 jours. Dans les analyses de sous-groupes de patients souffrant de diarrhée, la berbérine a amélioré de manière significative les modifications des taux d'IL-6, de TNF-α et de CRP. Ils ont supposé que la berbérine pouvait réduire les taux sériques de médiateurs inflammatoires grâce à la protection et au maintien de la fonction gastrointestinale (131).

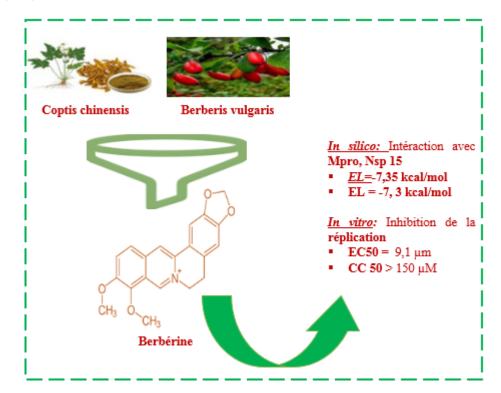


Figure 24 : Activité de la Berbérine contre le SARS-CoV-2.

VI.1.4 Cas particulier : Huile de coco vierge (étude in vivo)

L'huile de noix de coco vierge s'est avérée efficace pour réduire l'inflammation et a montré un soulagement rapide des symptômes chez les sujets COVID-19 suspectés et probables.

Une étude in vivo a été menée par des chercheurs du Département des sciences et technologies des Philippines (DOST) et de l'Université Ateneo de Manila, qui ont recruté 56 personnes dans deux centres d'isolement du pays, l'unité d'isolement de l'hôpital communautaire de Santa Rosa et l'installation d'isolement communautaire de Santa Rosa. Tous les participants ont été considérés comme des cas suspects et probables de COVID-19, avec des symptômes typiques tels que toux, fièvre et perte de goût. Les participants ont été divisés en deux groupes, intervention et contrôle. L'étude a duré 28 jours et les patients ont également reçu des repas standardisés. Pour le groupe d'intervention, de l'huile de noix de coco vierge a été mélangée à leurs repas. La posologie était basée sur le poids corporel du patient. Pour les jours 1 à 3, la quantité d'huile de noix de coco vierge ajoutée était de 0,6 ml par kg de poids corporel et elle n'était servie qu'au petit-déjeuner. Du 4ème au 28e jour, il a été incorporé au petit-déjeuner, au déjeuner et au dîner à une dose plus élevée de 1,2 ml par kg de poids corporel. Chaque jour, les participants surveillaient leurs symptômes.

Le groupe de l'intervention a reçu de l'huile de noix de coco vierge, qui a vu ses niveaux de protéine C-réactive (CRP) diminuer de manière significative après 28 jours, par rapport au groupe témoin (165).

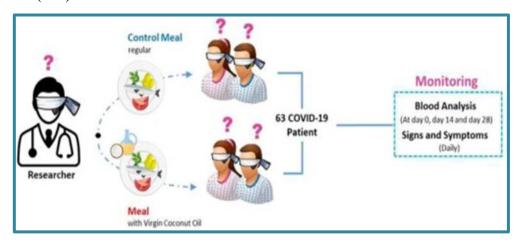


Figure 25 : Activité de l'huile de coco sur le taux de protéine C-réactive (CRP) (165)

Les produits naturels sont utilisés depuis longtemps comme un trésor de découverte de médicaments. Ces molécules structurellement diverses exercent un large éventail d'activités pharmacologiques, y compris une activité antivirale exceptionnelle.

Des efforts considérables ont été consacrés au développement de médicaments anticoronavirus à partir de produits naturels, en particulier dans le contexte des défis auxquels la santé publique mondiale est confrontée, tels que les épidémies de SRAS-CoV en 2003 et l'actuel SARS-CoV-2.

Afin de fournir une compréhension plus systématique de la recherche sur l'activité anticoronavirus des produits naturels, nous avons examiné les études pertinentes à ce jour, et avons résumé les propriétés de nombreuses molécules bioactives naturelles en fonction de leur famille chimique, mécanisme d'action...

La plupart de ces produits naturels sont énumérés comme des inhibiteurs contre le SARS-CoV et le SARS-CoV-2 et quelques molécules agissent sur le MERS-CoV.

Cette étude a compilé des données sur différents types de phytoconstituants possédant une activité antivirale contre les coronavirus ainsi que des phytoconstituants présentant des affinités contre les cibles thérapeutiques du SRAS-CoV-2 comme RdRP, 3CLpro, PLpro et les cibles des cellules hôtes comme ACE-2, principalement sur la base des méthodes de criblage computationnel. Parmi ces substances, les flavonoïdes, les terpènes et les alcaloïdes ont montré une activité anti-coronavirus très encourageante, ce qui pourrait fournir un grand nombre de candidats prometteurs pour le développement de médicaments anti-coronavirus et offrir des armes potentielles contre le SRAS-CoV-2 dans le dilemme actuel.

Cependant, d'autres études *in vivo* et *in vitro* doivent être réalisées pour confirmer la bioactivité de ces composés contre la COVID-19.

Dans l'ensemble, le développement de produits phytopharmaceutiques comme approche alternative pourrait être considéré comme une option thérapeutique viable contre le SRAS-CoV-2 dans la pandémie actuelle de la COVID-19.

Références Bibliographiques

Bibliographie

- 1. Vabret A, Dina J, Brison E, Brouard J, Freymuth F. Human coronaviruses. Pathol Biol (Paris). 2009;57(2):149-60.
- 2. Asrani P, Hasan GM, Sohal SS, Hassan MI. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. Omics: a journal of integrative biology. 2020;24(11):634-44.
- 3. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology journal. 2019;16(1):69.
- 4. Kin N, Vabret A. [New therapies against HCV]. Rev Francoph Lab. 2016;2016(487):25-33.
- 5. Kin N, Vabret A. Les infections à coronavirus humains. Revue Francophone des Laboratoires. 2016;2016:25-33.
- 6. Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England journal of medicine. 2003;348(20):1967-76.
- 7. Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and SARS-COV-2. Turkish journal of medical sciences. 2020;50(Si-1):549-56.
- 8. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in microbiology. 2016;24(6):490-502.
- 9. Masood N, Malik SS, Raja MN, Mubarik S, Yu C. Unraveling the Epidemiology, Geographical Distribution, and Genomic Evolution of Potentially Lethal Coronaviruses (SARS, MERS, and SARS CoV-2). Frontiers in cellular and infection microbiology. 2020;10:499.
- 10. Segondy M. Les Coronavirus humains. Revue Francophone des Laboratoires. 2020;2020(526):32-9.
- 11. Halaji M, Farahani A, Ranjbar R, Heiat M, Dehkordi FS. Emerging coronaviruses: first SARS, second MERS and third SARS-CoV-2: epidemiological updates of COVID-19. Le infezioni in medicina. 2020;28(suppl 1):6-17.
- 12. Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K. A chronicle of SARS-CoV-2: Part-I Epidemiology, diagnosis, prognosis, transmission and treatment. The Science of the total environment. 2020;734:139278.
- 13. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1).
- 14. Malik YA. Properties of Coronavirus and SARS-CoV-2. The Malaysian journal of pathology. 2020;42(1):3-11.
- 15. Kumar V, Jung YS, Liang PH. Anti-SARS coronavirus agents: a patent review (2008 present). Expert opinion on therapeutic patents. 2013;23(10):1337-48.
- 16. Juckel D, Dubuisson J, Belouzard S. [Coronavirus, emerging viruses]. Medecine sciences: M/S. 2020;36(6-7):633-41.
- 17. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011-33.
- 18. Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus Spike Protein and Tropism Changes. Advances in virus research. 2016;96:29-57.
- 19. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods in molecular biology (Clifton, NJ). 2015;1282:1-23.
- 20. Liang Y, Wang ML, Chien CS, Yarmishyn AA, Yang YP, Lai WY, et al. Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Frontiers in immunology. 2020;11:1022.
- 21. Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods in molecular biology (Clifton, NJ). 2020;2203:1-29.

- 22. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Advances in virus research. 2011;81:85-164.
- 23. Patil R, Chikhale R, Khanal P, Gurav N, Ayyanar M, Sinha S, et al. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Informatics in medicine unlocked. 2021;22:100504.
- 24. Fan Z, Peng K, Tan X, Yin B, Dong X, Qiu F, et al. Molecular cloning, expression, and purification of SARS-CoV nsp13. Protein expression and purification. 2005;41(2):235-40.
- 25. Dehelean CA, Lazureanu V, Coricovac D, Mioc M, Oancea R, Marcovici I, et al. SARS-CoV-2: Repurposed Drugs and Novel Therapeutic Approaches-Insights into Chemical Structure-Biological Activity and Toxicological Screening. Journal of clinical medicine. 2020;9(7).
- 26. Shi Y, Wang G, Cai XP, Deng JW, Zheng L, Zhu HH, et al. An overview of COVID-19. Journal of Zhejiang University Science B. 2020;21(5):343-60.
- 27. Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, Kulkarni S, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life sciences. 2020;256:117883.
- 28. Tsai SC, Lu CC, Bau DT, Chiu YJ, Yen YT, Hsu YM, et al. Approaches towards fighting the COVID- 19 pandemic (Review). International journal of molecular medicine. 2021;47(1):3-22.
- 29. Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. The Journal of biological chemistry. 2020;295(37):12910-34.
- 30. Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Frontiers in immunology. 2020;11:1817.
- 31. Poduri R, Joshi G, Jagadeesh G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cellular signalling. 2020;74:109721.
- 32. Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev. 2020;170:1-25.
- 33. Pandeya KB, Ganeshpurkar A, Mishra MK. Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana. Medical hypotheses. 2020;144:109905.
- 34. AAF de Vries. SARS-CoV-2/COVID-19: a primer for cardiologists. Netherlands heart journal: monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation. 2020;28(7-8):366-83.
- 35. Al-Horani RA, Kar S. Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses. 2020;12(10).
- 36. Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, et al. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta pharmaceutica Sinica B. 2020;10(7):1163-74.
- 37. Liu X, Liu C, Liu G, Luo W, Xia N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics. 2020;10(17):7821-35.
- 38. Moazzam M, Sajid MI, Shahid H, Butt J, Bashir I, Jamshaid M, et al. Understanding COVID-19: From Origin to Potential Therapeutics. International journal of environmental research and public health. 2020;17(16).
- 39. Dzieciatkowski T, Szarpak L, Filipiak KJ, Jaguszewski M, Ladny JR, Smereka J. COVID-19 challenge for modern medicine. Cardiology journal. 2020;27(2):175-83.
- 40. Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, et al. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). Journal of microbiology and biotechnology. 2020;30(3):313-24.
- 41. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4).
- 42. Alsuliman T, Alasadi L, Alkharat B, Srour M, Alrstom A. A review of potential treatments to date in COVID-19 patients according to the stage of the disease. Current research in translational medicine. 2020;68(3):93-104.

- 43. Hussain A, Yadav S, Hadda V, Suri TM, Tiwari P, Mittal S, et al. Covid-19: a comprehensive review of a formidable foe and the road ahead. Expert review of respiratory medicine. 2020;14(9):869-79.
- 44. Shamim S, Khan M, Kharaba ZJ, Ijaz M, Murtaza G. Potential strategies for combating COVID-19. Archives of virology. 2020;165(11):2419-38.
- 45. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nature reviews Microbiology. 2020:1-14.
- 46. Huang YF, Bai C, He F, Xie Y, Zhou H. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19). Pharmacological research. 2020;158:104939.
- 47. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents. 2020;55(3):105924.
- 48. Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clinica chimica acta; international journal of clinical chemistry. 2020;508:254-66.
- 49. organization wh. Vaccins contre la COVID-19 18 fevrier 2021 [Available from: https://www.who.int/fr/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines.
- 50. tracker c-v. VACCINS APPROUVÉS 2021 [updated 29 septembre 2021. Available from: https://covid19.trackvaccines.org/vaccines/approved/.
- 51. Hariyono P, Patramurti C, Candrasari DS, Hariono M. An integrated virtual screening of compounds from Carica papaya leaves against multiple protein targets of SARS-Coronavirus-2. Results in Chemistry. 2021;3:100113.
- 52. Kumar S, Kashyap P, Chowdhury S, Kumar S, Panwar A, Kumar A. Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine: international journal of phytotherapy and phytopharmacology. 2021;85:153317.
- 53. Nguyen TTH, Jung JH, Kim MK, Lim S, Choi JM, Chung B, et al. The Inhibitory Effects of Plant Derivate Polyphenols on the Main Protease of SARS Coronavirus 2 and Their Structure-Activity Relationship. Molecules (Basel, Switzerland). 2021;26(7).
- 54. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. Journal of biomolecular structure & dynamics. 2020:1-16.
- 55. Umar HI, Josiah SS, Saliu TP, Jimoh TO, Ajayi A, Danjuma JB. In-silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. Journal of Taibah University Medical Sciences. 2021;16(2):162-76.
- 56. Vardhan S, Sahoo SK. Virtual screening by targeting proteolytic sites of furin and TMPRSS2 to propose potential compounds obstructing the entry of SARS-CoV-2 virus into human host cells. Journal of traditional and complementary medicine. 2021.
- 57. Yañez O, Osorio MI, Areche C, Vasquez-Espinal A, Bravo J, Sandoval-Aldana A, et al. Theobroma cacao L. compounds: Theoretical study and molecular modeling as inhibitors of main SARS-CoV-2 protease. Biomedicine & Pharmacotherapy. 2021;140:111764.
- 58. Arokiyaraj S, Stalin A, Kannan BS, Shin H. Geranii Herba as a Potential Inhibitor of SARS-CoV-2 Main 3CL(pro), Spike RBD, and Regulation of Unfolded Protein Response: An In Silico Approach. Antibiotics (Basel, Switzerland). 2020;9(12).
- 59. Attia GH, Moemen YS, Youns M, Ibrahim AM, Abdou R, El Raey MA. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids and Surfaces B: Biointerfaces. 2021;203:111724.
- 60. Du A, Zheng R, Disoma C, Li S, Chen Z, Li S, et al. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. International journal of biological macromolecules. 2021;176:1-12.

- 61. Elsbaey M, Ibrahim MAA, Bar FA, Elgazar AA. Chemical constituents from coconut waste and their in silico evaluation as potential antiviral agents against SARS-CoV-2. South African Journal of Botany. 2021;141:278-89.
- 62. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors an in silico docking and molecular dynamics simulation study. Journal of biomolecular structure & dynamics. 2020:1-13.
- 63. Halder P, Pal U, Paladhi P, Dutta S, Paul P, Pal S, et al. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with MPro of SARS-CoV-2 through in silico analysis. Journal of Ayurveda and Integrative Medicine. 2021.
- 64. Jena AB, Kanungo N, Nayak V, Chainy GBN, Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Scientific reports. 2021;11(1):2043.
- 65. Gogoi B, Chowdhury P, Goswami N, Gogoi N, Naiya T, Chetia P, et al. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Molecular diversity. 2021:1-15.
- 66. Gupta S, Singh V, Varadwaj PK, Chakravartty N, Katta A, Lekkala SP, et al. Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins. Journal of biomolecular structure & dynamics. 2020:1-20.
- 67. Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity. Journal of agricultural and food chemistry. 2020;68(47):13982-9.
- 68. Meyer-Almes F-J. Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Computational Biology and Chemistry. 2020;88:107351.
- 69. Mishra CB, Pandey P, Sharma RD, Malik MZ, Mongre RK, Lynn AM, et al. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Briefings in bioinformatics. 2021;22(2):1346-60.
- 70. Natesh J, Mondal P, Kaur B, Abdul Salam AA, Kasilingam S, Meeran SM. Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Computers in biology and medicine. 2021;133:104383.
- 71. Roh C. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. Int J Nanomedicine. 2012;7:2173-9.
- 72. Allam L, Ghrifi F, Mohammed H, El Hafidi N, El Jaoudi R, El Harti J, et al. Targeting the GRP78-Dependant SARS-CoV-2 Cell Entry by Peptides and Small Molecules. Bioinformatics and biology insights. 2020;14:1177932220965505.
- 73. Jang M, Park R, Park YI, Cha YE, Yamamoto A, Lee JI, et al. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochemical and biophysical research communications. 2021;547:23-8.
- 74. Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, et al. Tea Polyphenols EGCG and Theaflavin Inhibit the Activity of SARS-CoV-2 3CL-Protease In Vitro. Evidence-based complementary and alternative medicine: eCAM. 2020;2020:5630838.
- 75. Mhatre S, Naik S, Patravale V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in biology and medicine. 2021;129:104137.
- 76. Pitsillou E, Liang J, Hung A, Karagiannis TC. Inhibition of interferon-stimulated gene 15 and lysine 48-linked ubiquitin binding to the SARS-CoV-2 papain-like protease by small molecules: In silico studies. Chemical physics letters. 2021;771:138468.
- 77. Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. Journal of Molecular Graphics and Modelling. 2021;104:107851.

- 78. Shin JA, Oh S, Jeong J-M. The potential of BEN815 as an anti-inflammatory, antiviral and antioxidant agent for the treatment of COVID-19. Phytomedicine Plus. 2021;1(4):100058.
- 79. Zhao M, Yu Y, Sun LM, Xing JQ, Li T, Zhu Y, et al. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature communications. 2021;12(1):2114.
- 80. Mesli F, Ghalem M, Daoud I, Ghalem S. Potential inhibitors of angiotensin converting enzyme 2 receptor of COVID-19 by Corchorus olitorius Linn using docking, molecular dynamics, conceptual DFT investigation and pharmacophore mapping. Journal of biomolecular structure & dynamics. 2021:1-13.
- 81. Niu WH, Wu F, Cao WY, Wu ZG, Chao YC, Liang C. Network pharmacology for the identification of phytochemicals in traditional Chinese medicine for COVID-19 that may regulate interleukin-6. Bioscience reports. 2021;41(1).
- 82. Puttaswamy H, Gowtham HG, Ojha MD, Yadav A, Choudhir G, Raguraman V, et al. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific reports. 2020;10(1):20584.
- 83. Gao K, Song Y-P, Song A. Exploring active ingredients and function mechanisms of Ephedrabitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology. BioData Mining. 2020;13(1):19.
- 84. Shaji D, Yamamoto S, Saito R, Suzuki R, Nakamura S, Kurita N. Proposal of novel natural inhibitors of severe acute respiratory syndrome coronavirus 2 main protease: Molecular docking and ab initio fragment molecular orbital calculations. Biophysical chemistry. 2021;275:106608.
- 85. Ibrahim MAA, Abdelrahman AHM, Hussien TA, Badr EAA, Mohamed TA, El-Seedi HR, et al. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in biology and medicine. 2020;126:104046.
- 86. Park JY, Yuk HJ, Ryu HW, Lim SH, Kim KS, Park KH, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of enzyme inhibition and medicinal chemistry. 2017;32(1):504-15.
- 87. Xiong Y, Zhu G-H, Wang H-N, Hu Q, Chen L-L, Guan X-Q, et al. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia. 2021;152:104909.
- 88. Azim KF, Ahmed SR, Banik A, Khan MMR, Deb A, Somana SR. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. Informatics in medicine unlocked. 2020;20:100367.
- 89. Gheware A, Dholakia D, Kannan S, Panda L, Rani R, Pattnaik BR, et al. Adhatoda Vasica attenuates inflammatory and hypoxic responses in preclinical mouse models: potential for repurposing in COVID-19-like conditions. Respiratory Research. 2021;22(1):99.
- 90. Ghosh K, Amin SA, Gayen S, Jha T. Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors. Journal of molecular structure. 2021;1224:129026.
- 91. Kumar Verma A, Kumar V, Singh S, Goswami BC, Camps I, Sekar A, et al. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021;137:111356.
- 92. Kushwaha PP, Singh AK, Prajapati KS, Shuaib M, Gupta S, Kumar S. Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study. Microbial pathogenesis. 2021;157:104954.
- 93. Sharma P, Shanavas A. Natural derivatives with dual binding potential against SARS-CoV-2 main protease and human ACE2 possess low oral bioavailability: a brief computational analysis. Journal of biomolecular structure & dynamics. 2020:1-12.

- 94. Xu J, Gao L, Liang H, Chen S-d. In silico screening of potential anti–COVID-19 bioactive natural constituents from food sources by molecular docking. Nutrition (Burbank, Los Angeles County, Calif). 2021;82:111049.
- 95. Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2004;31(1):69-75.
- 96. Diniz LRL, Perez-Castillo Y, Elshabrawy HA, Filho C, de Sousa DP. Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies. Biomolecules. 2021;11(1).
- 97. Vardhan S, Sahoo SK. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Computers in biology and medicine. 2020;124:103936.
- 98. Zígolo MA, Goytia MR, Poma HR, Rajal VB, Irazusta VP. Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools. Science of The Total Environment. 2021;781:146400.
- 99. Chen L, Hu C, Hood M, Zhang X, Zhang L, Kan J, et al. A Novel Combination of Vitamin C, Curcumin and Glycyrrhizic Acid Potentially Regulates Immune and Inflammatory Response Associated with Coronavirus Infections: A Perspective from System Biology Analysis. Nutrients. 2020;12(4).
- 100. Ding H, Deng W, Ding L, Ye X, Yin S, Huang W. Glycyrrhetinic acid and its derivatives as potential alternative medicine to relieve symptoms in nonhospitalized COVID-19 patients. Journal of medical virology. 2020;92(10):2200-4.
- 101. Gowda P, Patrick S, Joshi SD, Kumawat RK, Sen E. Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication. Cytokine. 2021;142:155496.
- 102. Hejazi II, Beg MA, Imam MA, Athar F, Islam A. Glossary of phytoconstituents: Can these be repurposed against SARS CoV-2? A quick in silico screening of various phytoconstituents from plant Glycyrrhiza glabra with SARS CoV-2 main protease. Food and Chemical Toxicology. 2021;150:112057.
- 103. Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. The potential of Paritaprevir and Emetine as inhibitors of SARS-CoV-2 RdRp. Saudi Journal of Biological Sciences. 2021;28(2):1426-32.
- 104. Luo L, Jiang J, Wang C, Fitzgerald M, Hu W, Zhou Y, et al. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharmaceutica Sinica B. 2020;10(7):1192-204.
- 105. Muhseen ZT, Hameed AR, Al-Hasani HMH, Tahir ul Qamar M, Li G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. Journal of Molecular Liquids. 2020;320:114493.
- 106. Sharma A, Tiwari V, Sowdhamini R. Computational search for potential COVID-19 drugs from FDAapproved drugs and small molecules of natural origin identifies several anti-virals and plant products. Journal of biosciences. 2020;45(1).
- 107. Toor HG, Banerjee DI, Lipsa Rath S, Darji SA. Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19. European journal of pharmacology. 2021;890:173720.
- 108. van de Sand L, Bormann M, Alt M, Schipper L, Heilingloh CS, Steinmann E, et al. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. Viruses. 2021;13(4).
- 109. Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine: international journal of phytotherapy and phytopharmacology. 2021;85:153364.
- 110. Zhao Z, Xiao Y, Xu L, Liu Y, Jiang G, Wang W, et al. Glycyrrhizic Acid Nanoparticles as Antiviral and Anti-inflammatory Agents for COVID-19 Treatment. ACS applied materials & interfaces. 2021;13(18):20995-1006.
- 111. Mehmood A, Khan S, Khan S, Ahmed S, Ali A, xue M, et al. In silico analysis of quranic and prophetic medicinals plants for the treatment of infectious viral diseases including corona virus. Saudi Journal of Biological Sciences. 2021;28(5):3137-51.

- 112. Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infection, Genetics and Evolution. 2020;84:104451.
- 113. Ghosh A, Chakraborty M, Chandra A, Alam MP. Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (M(pro)) of SARS-CoV-2. Journal of molecular modeling. 2021;27(3):97.
- 114. Kodchakorn K, Poovorawan Y, Suwannakarn K, Kongtawelert P. Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2. Journal of molecular graphics & modelling. 2020;101:107717.
- 115. Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of medicinal chemistry. 2007;50(17):4087-95.
- 116. Tahmasebi S, Saeed BQ, Temirgalieva E, Yumashev AV, El-Esawi MA, Navashenaq JG, et al. Nanocurcumin improves Treg cell responses in patients with mild and severe SARS-CoV2. Life sciences. 2021;276:119437.
- 117. Valizadeh H, Abdolmohammadi-vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International immunopharmacology. 2020;89:107088.
- 118. Gowrishankar S, Muthumanickam S, Kamaladevi A, Karthika C, Jothi R, Boomi P, et al. Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 An in silico study. Food and Chemical Toxicology. 2021;148:111966.
- 119. Fayed MAA, El-Behairy MF, Abdallah IA, Abdel-Bar HM, Elimam H, Mostafa A, et al. Structure-and Ligand-Based in silico Studies towards the Repurposing of Marine Bioactive Compounds to Target SARS-CoV-2. Arabian Journal of Chemistry. 2021;14(4):103092.
- 120. Messaoudi O, Gouzi H, El-Hoshoudy AN, Benaceur F, Patel C, Goswami D, et al. Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. Egyptian Journal of Petroleum. 2021;30(1):33-43.
- 121. Ryu YB, Jeong HJ, Kim JH, Kim YM, Park J-Y, Kim D, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & medicinal chemistry. 2010;18(22):7940-7.
- 122. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Depicting the inhibitory potential of polyphenols from Isatis indigotica root against the main protease of SARS CoV-2 using computational approaches. Journal of biomolecular structure & dynamics. 2020:1-12.
- 123. M P, Reddy GJ, Hema K, Dodoala S, Koganti B. Unravelling high-affinity binding compounds towards transmembrane protease serine 2 enzyme in treating SARS-CoV-2 infection using molecular modelling and docking studies. European journal of pharmacology. 2021;890:173688.
- 124. Adem Ş, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M, et al. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine: international journal of phytotherapy and phytopharmacology. 2021;85:153310.
- 125. Neupane NP, Karn AK, Mukeri IH, Pathak P, Kumar P, Singh S, et al. Molecular dynamics analysis of phytochemicals from Ageratina adenophora against COVID-19 main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE2). Biocatalysis and agricultural biotechnology. 2021;32:101924.
- 126. Khalifa I, Nawaz A, Sobhy R, Althwab SA, Barakat H. Polyacylated anthocyanins constructively network with catalytic dyad residues of 3CLpro of 2019-nCoV than monomeric anthocyanins: A structural-relationship activity study with 10 anthocyanins using in-silico approaches. Journal of Molecular Graphics and Modelling. 2020;100:107690.
- 127. Rameshkumar MR, Indu P, Arunagirinathan N, Venkatadri B, El-Serehy HA, Ahmad A. Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA polymerase and spike proteins: A molecular docking study. Saudi Journal of Biological Sciences. 2021;28(1):448-58.

- 128. Garg S, Roy A. In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2. Chemico-Biological Interactions. 2020;332:109309.
- 129. Varghese FS, van Woudenbergh E, Overheul GJ, Eleveld MJ, Kurver L, van Heerbeek N, et al. Berberine and Obatoclax Inhibit SARS-Cov-2 Replication in Primary Human Nasal Epithelial Cells In Vitro. Viruses. 2021;13(2).
- 130. Wang ZZ, Li K, Maskey AR, Huang W, Toutov AA, Yang N, et al. A small molecule compound berberine as an orally active therapeutic candidate against COVID-19 and SARS: A computational and mechanistic study. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2021;35(4):e21360.
- 131. Zhang BY, Chen M, Chen XC, Cao K, You Y, Qian YJ, et al. Berberine reduces circulating inflammatory mediators in patients with severe COVID-19. The British journal of surgery. 2021;108(1):e9-e11.
- 132. Estrada E. Protein-Driven Mechanism of Multiorgan Damage in COVID-19. Medicine in Drug Discovery. 2020;8:100069.
- 133. Suručić R, Tubić B, Stojiljković MP, Djuric DM, Travar M, Grabež M, et al. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Molecular and cellular biochemistry. 2021;476(2):1179-93.
- 134. Tito A, Colantuono A, Pirone L, Pedone E, Intartaglia D, Giamundo G, et al. Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor (in vitro): A Promising Source of Novel Antiviral Drugs. Frontiers in chemistry. 2021;9:638187.
- 135. Singh R, Gautam A, Chandel S, Ghosh A, Dey D, Roy S, et al. Protease Inhibitory Effect of Natural Polyphenolic Compounds on SARS-CoV-2: An In Silico Study. Molecules (Basel, Switzerland). 2020;25(20).
- 136. Amparo TR, Seibert JB, Almeida TC, Costa FSF, Silveira BM, da Silva GN, et al. Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology. Phytotherapy research: PTR. 2021.
- 137. Gyebi GA, Ogunro OB, Adegunloye AP, Ogunyemi OM, Afolabi SO. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL(pro)): an in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of biomolecular structure & dynamics. 2021;39(9):3396-408.
- 138. Zaki AA, Ashour A, Elhady SS, Darwish KM, Al-Karmalawy AA. Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies. Journal of traditional and complementary medicine. 2021.
- 139. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC infectious diseases. 2017;17(1):144.
- 140. Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C, et al. Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro. Viruses. 2021;13(2).
- 141. Aydın AD, Altınel F, Erdoğmuş H, Son Ç D. Allergen fragrance molecules: a potential relief for COVID-19. BMC complementary medicine and therapies. 2021;21(1):41.
- 142. Kulkarni SA, Nagarajan SK, Ramesh V, Palaniyandi V, Selvam SP, Madhavan T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. Journal of molecular structure. 2020;1221:128823.
- 143. Panikar S, Shoba G, Arun M, Sahayarayan JJ, Usha Raja Nanthini A, Chinnathambi A, et al. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (M(pro)) with pharmacokinetics and toxicological properties. Journal of infection and public health. 2021;14(5):601-10.
- 144. Cao R, Hu H, Li Y, Wang X, Xu M, Liu J, et al. Anti-SARS-CoV-2 Potential of Artemisinins In Vitro. ACS infectious diseases. 2020;6(9):2524-31.
- 145. Nair MS, Huang Y, Fidock DA, Polyak SJ, Wagoner J, Towler MJ, et al. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. Journal of ethnopharmacology. 2021;274:114016.

- 146. Banerjee S, Kar A, Mukherjee PK, Haldar PK, Sharma N, Katiyar CK. Immunoprotective potential of Ayurvedic herb Kalmegh (Andrographis paniculata) against respiratory viral infections LC-MS/MS and network pharmacology analysis. Phytochemical analysis: PCA. 2021;32(4):629-39.
- 147. Sa-Ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, et al. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives. Journal of natural products. 2021;84(4):1261-70.
- 148. Shi TH, Huang YL, Chen CC, Pi WC, Hsu YL, Lo LC, et al. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochemical and biophysical research communications. 2020;533(3):467-73.
- 149. Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, et al. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/ 3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural components. Current Research in Pharmacology and Drug Discovery. 2021;2:100038.
- 150. Fielding BC, da Silva Maia Bezerra Filho C, Ismail NSM, Sousa DP. Alkaloids: Therapeutic Potential against Human Coronaviruses. Molecules (Basel, Switzerland). 2020;25(23).
- 151. Ren PX, Shang WJ, Yin WC, Ge H, Wang L, Zhang XL, et al. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta pharmacologica Sinica. 2021:1-11.
- 152. Choudhury S, Moulick D, Borah A, Saikia P, Mazumder MK. In search of drugs to alleviate suppression of the host's innate immune responses against SARS-CoV-2 using a molecular modeling approach. In silico pharmacology. 2021;9(1):26.
- 153. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. Journal of biomolecular structure & dynamics. 2020:1-14.
- 154. Muhammad I, Rahman N, Gul EN, Niaz S, Basharat Z, Rastrelli L, et al. Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants. Computers in biology and medicine. 2021;133:104362.
- 155. Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorganic & medicinal chemistry. 2012;20(19):5928-35.
- 156. Rodrigues GCS, Dos Santos Maia M, de Menezes RPB, Cavalcanti ABS, de Sousa NF, de Moura É P, et al. Ligand and Structure-based Virtual Screening of Lamiaceae Diterpenes with Potential Activity against a Novel Coronavirus (2019-nCoV). Current topics in medicinal chemistry. 2020;20(24):2126-45.
- 157. Borquaye LS, Gasu EN, Ampomah GB, Kyei LK, Amarh MA, Mensah CN, et al. Alkaloids from Cryptolepis sanguinolenta as Potential Inhibitors of SARS-CoV-2 Viral Proteins: An In Silico Study. BioMed research international. 2020;2020:5324560.
- 158. Gyebi GA, Adegunloye AP, Ibrahim IM, Ogunyemi OM, Afolabi SO, Ogunro OB. Prevention of SARS-CoV-2 cell entry: insight from in silico interaction of drug-like alkaloids with spike glycoprotein, human ACE2, and TMPRSS2. Journal of biomolecular structure & dynamics. 2020:1-25.
- 159. Ogunyemi OM, Gyebi GA, Elfiky AA, Afolabi SO, Ogunro OB, Adegunloye AP, et al. Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: an in silico perspective. Antiviral chemistry & chemotherapy. 2020;28:2040206620984076.
- 160. Rakib A, Paul A, Chy MNU, Sami SA, Baral SK, Majumder M, et al. Biochemical and Computational Approach of Selected Phytocompounds from Tinospora crispa in the Management of COVID-19. Molecules (Basel, Switzerland). 2020;25(17).
- 161. Caruso F, Singh M, Belli S, Berinato M, Rossi M. Interrelated Mechanism by Which the Methide Quinone Celastrol, Obtained from the Roots of Tripterygium wilfordii, Inhibits Main Protease 3CL(pro) of COVID-19 and Acts as Superoxide Radical Scavenger. International journal of molecular sciences. 2020;21(23).

- 162. Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic & medicinal chemistry letters. 2010;20(6):1873-6.
- 163. Balkrishna A, Pokhrel S, Singh H, Joshi M, Mulay VP, Haldar S, et al. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish Model. Drug design, development and therapy. 2021;15:1111-33.
- 164. Li G, Yuan M, Li H, Deng C, Wang Q, Tang Y, et al. Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial. International journal of antimicrobial agents. 2021;57(1):106216.
- 165. Angeles-Agdeppa I, Nacis JS, Capanzana MV, Dayrit FM, Tanda KV. Virgin coconut oil is effective in lowering C-reactive protein levels among suspect and probable cases of COVID-19. Journal of functional foods. 2021;83:104557.
- 166. Alfaro M, Alfaro I, Angel C. Identification of potential inhibitors of SARS-CoV-2 papain-like protease from tropane alkaloids from Schizanthus porrigens: A molecular docking study. Chemical physics letters. 2020;761:138068.
- 167. Amparo TR, Seibert JB, Almeida TC, Costa FSF, Silveira BM, da Silva GN, et al. In silico approach of secondary metabolites from Brazilian herbal medicines to search for potential drugs against SARS-CoV-2. Phytotherapy research: PTR. 2021.
- 168. Blum L, Geisslinger G, Parnham MJ, Grünweller A, Schiffmann S. Natural antiviral compound silvestrol modulates human monocyte-derived macrophages and dendritic cells. Journal of cellular and molecular medicine. 2020;24(12):6988-99.
- 169. Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral research. 2018;150:123-9.
- 170. Maiti S, Banerjee A, Kanwar M. In silico Nigellidine (N. sativa) bind to viral spike/active-sites of ACE1/2, AT1/2 to prevent COVID-19 induced vaso-tumult/vascular-damage/comorbidity. Vascular pharmacology. 2021;138:106856.
- 171. Patel CN, Goswami D, Jaiswal DG, Parmar RM, Solanki HA, Pandya HA. Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. Journal of Molecular Graphics and Modelling. 2021;105:107874.
- 172. Al-Beltagi S, Preda CA, Goulding LV, James J, Pu J, Skinner P, et al. Thapsigargin Is a Broad-Spectrum Inhibitor of Major Human Respiratory Viruses: Coronavirus, Respiratory Syncytial Virus and Influenza A Virus. Viruses. 2021;13(2).
- 173. Arunkumar M, Gunaseelan S, Kubendran Aravind M, Mohankumar V, Anupam P, Harikrishnan M, et al. Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery. Journal of biomolecular structure & dynamics. 2021:1-28.
- 174. Park J-Y, Kim JH, Kwon JM, Kwon H-J, Jeong HJ, Kim YM, et al. Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorganic & medicinal chemistry. 2013;21(13):3730-7.
- 175. Thakkar SS, Shelat F, Thakor P. Magical bullets from an indigenous Indian medicinal plant Tinospora cordifolia: An in silico approach for the antidote of SARS-CoV-2. Egyptian Journal of Petroleum. 2021;30(1):53-66.
- 176. Chidambaram S, El-Sheikh MA, Alfarhan AH, Radhakrishnan S, Akbar I. Synthesis of novel coumarin analogues: Investigation of molecular docking interaction of SARS-CoV-2 proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies. Saudi Journal of Biological Sciences. 2021;28(1):1100-8.
- 177. Chidambaram SK, Ali D, Alarifi S, Radhakrishnan S, Akbar I. In silico molecular docking: Evaluation of coumarin based derivatives against SARS-CoV-2. Journal of infection and public health. 2020;13(11):1671-7.

- 178. Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW, Yuk HJ, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & medicinal chemistry. 2013;21(11):3051-7.
- 179. Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chemico-biological interactions. 2021;335:109348.
- 180. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. J Mol Struct. 2021;1229:129489.
- 181. Mpiana PT, Ngbolua K-t-N, Tshibangu DST, Kilembe JT, Gbolo BZ, Mwanangombo DT, et al. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chemical physics letters. 2020;754:137751.
- 182. Mamkulathil Devasia R, Altaf M, Fahad Alrefaei A, Manoharadas S. Enhanced production of camptothecin by immobilized callus of Ophiorrhiza mungos and a bioinformatic insight into its potential antiviral effect against SARS-CoV-2. Journal of King Saud University Science. 2021;33(2):101344.
- 183. Hu S, Wang J, Zhang Y, Bai H, Wang C, Wang N, et al. Three salvianolic acids inhibit 2019-nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2. Journal of medical virology. 2021;93(5):3143-51.
- 184. Kapoor N, Ghorai SM, Kushwaha PK, Shukla R, Aggarwal C, Bandichhor R. Plausible mechanisms explaining the role of cucurbitacins as potential therapeutic drugs against coronavirus 2019. Informatics in medicine unlocked. 2020;21:100484.
- 185. Kovalchuk A, Wang B, Li D, Rodriguez-Juarez R, Ilnytskyy S, Kovalchuk I, et al. Fighting the storm: could novel anti-TNF α and anti-IL-6 C. sativa cultivars tame cytokine storm in COVID-19? Aging. 2021;13(2):1571-90.
- 186. Park HH, Kim H, Lee HS, Seo EU, Kim JE, Lee JH, et al. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials. 2021;273:120827.
- 187. Raj V, Park JG, Cho KH, Choi P, Kim T, Ham J, et al. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. International journal of biological macromolecules. 2021;168:474-85.
- 188. Sherif YE, Gabr SA, Hosny NM, Alghadir AH, Alansari R. Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study. Evidence-based complementary and alternative medicine: eCAM. 2021;2021:8814890.
- 189. Skariyachan S, Gopal D, Muddebihalkar AG, Uttarkar A, Niranjan V. Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies. Computers in biology and medicine. 2021;132:104325.
- 190. Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Molecular Therapy. 2021.
- 191. Zhu ZL, Qiu XD, Wu S, Liu YT, Zhao T, Sun ZH, et al. Blocking Effect of Demethylzeylasteral on the Interaction between Human ACE2 Protein and SARS-CoV-2 RBD Protein Discovered Using SPR Technology. Molecules (Basel, Switzerland). 2020;26(1).

Annexe 1 : liste détaillée des substances naturelles évoquées dans les articles étudiés.

N°	Substance chimique	Structure chimique	Plante	Famille	Classe	Virus	Mécanisme d'action	Type d'étude	Date de l'article	Pays	Référence
1	Khainaoside B	H. H.	Vitex glabrata	Lamiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la protéine S	In silico	2021	Turquie	(124)
2	Khainaoside C	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Vitex glabrata	Lamiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Turquie	(124)
3	Vitexfoline A		Vitex rotundifolia	Lamiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la protéine S et Mpro	In silico	2021	Turquie	(124)
4	Scrophulosid e B		Picrorhiza scrophulariiflora Radix scrophulariae	Scrophulariaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Turquie	(124)
5	Calcéolariosi de B	" o " o " o " o " o " o " o " o " o " o	Fraxinus sieboldiana	Oleaceae	Terpène	SARS- CoV-2	Inhibiteur de protéine S et Mpro	In silico	2021	Turquie Inde	(113, 124)

			Forsythia suspensea								
			Withania somnifera	Solanaceae							
		04	Laitue (Lactuca sativa) Polygonum cuspidatum	Asteraceae							
6	Acide chlorogéniqu e (Acide 5- cafféoylquini que)	HO OF OH	Corchorus olitorius L Ageratina	Tiliaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la réplication virale (Mpro), ACE 2 et Nsp 15	In silico In vitro	2020 2021	Turquie,Chine, Inde,Algérie,In de,Nigéria,Chil i,Corée	(20, 52, 53, 55, 57, 80, 124, 125)
			adenophora	Asteraceae							
			Moringa oleifera	Moringaceae							
7	Acide	но	Carica papaya	Caricaceae	Polyphénol	SARS-	Diminuer les facteurs inflammatoires	In silico	2020	Turquie,Inde,In donéie,Nigéria,	(51-55, 57,
,	caféique	но	Moringa oleifera	Moringaceae	Тотурненог	CoV-2	Inhibiteur de Mpro,protéine M,RdRp et Nsp 15	In vitro	2021	Chili,Corée	112, 124)

8	Caféine	CH ₃ CH ₃ CH ₃ CH ₃	Coffea Theobroma cacao	Rubiaceae Malvaceae	Alcaloïde	SARS- CoV-2	réduire des cytokines	In silico	2020 2021	Floride,Chine	(81)
9	Acide 3,5- Dicafféoylqui nique	10 CH OCH OCH OCH OCH OCH OCH OCH OCH OCH	Corchorus olitorius L	Tiliaceae	Polyphénol	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
10	Cyanidine 3- (6-p- cafféoyl)gluc oside		_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(127)
11	Méthyl-1,4,5- tri-O-caféoyl quinate	10 01 01	Corchorus olitorius L	Tiliaceae	Polyphénol	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
12	Acide 3- caféoyl-5- féruloylquini que	N N N N N N N N N N N N N N N N N N N	_		Polyphénol	SARS- CoV-2	Inhibiteurs de la TMPRSS2	in silico	2020	Inde	(82)
13	6'-O- caféoylarbuti ne		Vaccinium dunalianumas	Ericaceae	Polyphénol	SARS- CoV-2		In silico	2021	Turquie	(124)
14	Schizanthine Z		Schizanthus porrigens	Solanaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de la protéase de type papaïne SARS- CoV-2	In silico	2020	Chili	(166)
15	Schizanthine Y		Schizanthus porrigens	Solanaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de la protéase de type papaïne SARS- CoV-2	In silico	2020	Chili	(166)

16	(all-E)- Violaxanthine		Ananas comosus	Bromeliaceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
17	12,13- Epoxyolean- 3-yl acétate	\$\$\$\$;	Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2	1	In silico	2021	Brésil	(167)
18	12,13- Epoxyolean- 9(11)en-3-yl acétate		Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
19	Lanosta-8,24- dièn-3-yl acétate	H,C, y, CH,	Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
20	Lupényl acétate	O H H	Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
21	Taraxeryl acétate	A H	Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2		In silico	2021	Brésil	(167)
22	Ursa- 9(11),12- dièn-3-yl acétate	١	Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
23	α-Amyrine	CH ₅ H ₂ C H ₃ CH ₅ H ₄ C H ₄ CH ₅ H ₄ C H ₅ CH ₅ H ₄ C H ₅ CH ₅	Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2	Inhibiteur de la M pro, Nsp 15	In silico	2021	Inde,Brésil,Arg entine	(52, 98, 167)
24	α-Amyrin acétate		Dorstenia arifolia	Moraceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(83, 167)

25	3- Géranyloxye modine		Senna alexandrina	Fabaceae	Polyphénol	SARS- CoV-2	_	In silico	2021	Brésil	(167)
26	3β-Hydroxy- lantadène B		Lantana camara	Verbenaceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
			Lantana camara	Verbenaceae							
27	Acide bétulinique	HO H	Cryptomeria japonica Juniperus formosana	Cupressaceae	Terpène	SARS- CoV SARS- CoV-2	Inhibiteur de Mpro, L'ACE 2, Nsp 15, furine et TMPRSS2	In silico In vitro	2007 2020 2021	Brésil, Chine, Inde, Taiwan	(52, 56, 83, 96, 115, 167)
			Prunus dulcis	Rosaceae							
			Tinospora crispa	Menispermaceae							
28	L'acide	Н	Juniperus formosana	Cupressaceae	Terpène	SARS- CoV SARS- CoV-2	Inhibiteur dePLpro	In vitro	2007	Taiwan, Brésil	(96, 115)
20	bétulonique	o → H	Cryptomeria japonica	Taxodiaceae	Тогроно	MERS- CoV	et de 3CLpro	III VIII O	2021	Talwan, Diesii	(20, 113)

29	Lantacine		Lantana camara	Verbenaceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
30	Abssinine		Erythrina velutina	Fabaceae		SARS- CoV-2	_	In silico	2021	Brésil	(167)
31	Acétate de lupényle		Erythrina velutina	Fabaceae	Terpène	SARS- CoV-2	_	In silico	2021	Brésil	(167)
32	Sigmoidine C	","	Erythrina velutina	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	_	In silico	2021	Brésil	(167)
33	Apocynine E		Trichilia catiguá	Meliaceae	Polyphénol (Flavonoïde)	SARS- CoV-2		In silico	2021	Brésil	(167)
34	Acide dicaféylquini que	10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Mikania glomerata	Asteraceae	Polyphénol	SARS- CoV-2		In silico	2021	Brésil	(167)
35	Acide	ОН	Maytenus ilicifolia	Celastaraceae	Terpène	SARS-	Réduire les cytokines Inhibiteur des	In silico	2020	Inde, Brésil,	(52, 63, 81, 97,
33	ursolique	HO HO	Ocimum Sanctum (Basilic)	Lamiaceae	1 et petie	CoV-2	Plpro, l'ACE2 et Nsp 15	in suico	2021	Chine	167)
36	Huile de coco vierge	_	Cocos nucifera	Arecaceae	_	SARS- CoV-2	Abaisser les niveaux de protéines C- réactives	In Vivo (étude cas témoin)	2021	Phillippines	(165)

37	Corilagine	HO OH OH OH	Geranii Herba	Geraniaceae	Polyphénol	SARS- CoV-2	Inhiber l'entrée des cellules du SRAS- CoV-2 via le récepteur ACE2 et inhiber le processus protéolytique et la Mpro	In silico	2020 2021	Suisse, KSA	(58, 59)
			Geranii Herba	Geraniaceae							
		0	Eucalyptus globulus	Myrtaceae			Inhibe l'interaction Protéine S/ACE2 et inhiber le			Suisse,	
38	Acide ellagique	но	Punica granatum L	Punicaceae	Polyphénol	SARS- CoV-2	processus protéolytique, Mpro, RdRp, TMPRSS2 et la	In silico In vitro	2020 2021	Espagne, Inde, Bosnie- Herzégovine, Nigéria, Italie	(55, 56, 58, 118, 132-134)
			Mangifera indica	Anacardiaceae			furine				
			Moringa oleifera	Moringaceae							
		ОДОН	Geranii Herba	Geraniaceae			Inhibe l'interaction Protéine S/ACE2				
39	Acide gallique	но Он	Moringa oleifera	Moringaceae	Polyphénol	SARS- CoV-2	et inhiber le processus protéolytique, Mpro, RdRp,	In silico	2020 2021	Suisse, Inde, Nigéria, Chili, Bosnie- Herzégovine	(54, 55, 57, 58, 84, 133)
		ÓН	Punica granatum L	Punicaceae			TMPRSS2 et la furine				

			Mangifera indica	Anacardiaceae							
40	Géraniine		Geranii Herba	Geraniaceae	Polyphénol	SARS- CoV-2	Inhiber l'entrée des cellules du SRAS- CoV-2 via le récepteur ACE2 et inhiber le processus protéolytique	In silico	2020	Suisse	(58)
41	Kaempféritin e	HC OH OH OH	Geranii Herba	Geraniaceae	Polyphénol	SARS- CoV-2	Inhiber l'entrée des cellules du SRAS- CoV-2 via le récepteur ACE2 et inhiber le processus protéolytique	In silico	2020	Suisse	(58)
42	Kaempférol 7- O - rhamnoside		Geranii Herba	Geraniaceae	Polyphénol	SARS- CoV-2	Inhiber l'entrée des cellules du SRAS- CoV-2 via le récepteur ACE2 et inhiber le processus protéolytique	In silico	2020	Suisse	(58)
			Geranii Herba	Geraniaceae		SARS-	Inhiber l'entrée des cellules du SRAS- CoV-2 via le			Suisse, Chine,	
43	Kaempférol	011	Carica papaya	Caricaceae	Polyphénol (Flavonoïde)	CoV MERS- CoV SARS-	récepteur ACE2 et inhiber le processus protéolytique,	In silico In vitro	2017 2020 2021	Egypte, Indonésie, Pakistan, Inde, Nigéria, Corée	(51, 53-55, 58, 60, 82-87, 111)
			Ephedra sp	Ephedracea		SARS- CoV-2	3CLpro, Plpro, RdRp			Trigoria, Colce	

			Crocus sativus	Iridaceae							
			Senna alexandrina	Fabaceae							
			Broussonetia papyrifera	Moraceae							
			Moringa oleifera	Moringaceae							
			Mangifera indica	Anacardiaceae							
			Ginkgo biloba	Ginkgoaceae							
44	Acide	ООН	Geranii Herba	Geraniaceae	Dalambán 1	SARS-	Inhiber l'entrée des cellules du SRAS- CoV-2 via le récepteur ACE2 et	I:11: -	2020	Suisse, Egypte,	(54, 57,
44	protocatéchiq ue	ОН	Cocos nucifera	Arecaceae	Polyphénol	CoV-2	inhiber le processus protéolytique, Mpro, Plpro, RdRp	In silico	2021	Chili, Inde	58, 61)
45	catéchine	HO OH OH	Camellia sinensis	Theaceae	Polyphénol Flavonoïde	SARS- CoV-2	Inhibiteur de la Mpro, RdRp, protéine S, ACE2	In silico	2020 2021	Inde, Nigéria, Chili, Indonésie	(51, 54, 55, 57, 62- 64)

			Carica papaya	Caricaceae							
46	Gallate de catéchine		Camellia sinensis	Theaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico In vitro	2020 2021	Inde, Corée	(53, 62)
		⊘ OH	Camellia sinensis	Theaceae			Inhibiteurs des				
47	Epicatéchine	HO O O OH	Mangifera indica	Anacardiaceae	Polyphénol Flavonoïde	SARS- CoV-2	3CLpro,CTSL, NS P6, protéine N,RBD, ,RdRp,AC E2 et la furine	In silico In vitro	2020 2021	Corée du Sud, Allemagne, Nigéria, Chili, Inde, Chine	(54-57, 62, 66-69)
		ОН	Moringa oleifera	Moringaceae			L2 et la furme				
48	Epicatéchine gallate	HO CH CH	Camellia sinensis	Theaceae	Polyphénol	SARS- CoV SARS- CoV-2	Inhibiteur de la Mpro et protéine N	In silico In vitro	2012 2020 2021	Inde, Corée	(53, 62, 71)
49	Gallocatéchin e-3-gallate	NO (34) (34	Camellia sinensis	Theaceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020 2021	Chine, Inde	(60, 62)
50	Gallocatéchin e	HO OH OH	Camellia sinensis	Theaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2020	Inde	(62)
51	Epigallocatéc hine	HO OH OH OH	Camellia sinensis	Theaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro, Nsp15 et la furine	In silico In vitro	2020 2021	Inde, Corée	(52, 53, 56, 62, 63)

52	Catéchine 5- <i>O</i> -gallate	HO HO OH OH	Acacia nilotica	Fabaceae	Polyphénol	SARS- CoV-2	Inhibition des 3CLpro,PLpro,Rd Rp,l'helicase	In silico	2021	Inde	(70)
		OH J	Camellia sinensis	Theaceae			Interaction de la protéine S avec la GRP78, Inhibiteurs des 3CLpro,				
53	Epigallocatéc hine gallate (EGCG)	HO OH OH	Psidium guajava	Myrtaceae	Polyphénol	SARS- CoV SARS- CoV-2	PLpro, RdRp, ACE2, protéine N, Inhibe la réplication, réduit	In silico In vitro In vivo	2012 2020 2021	Maroc, Inde, Corée, KSA, Chine, Australie	(53, 54, 59, 62, 65, 71-79)
		OH OH	Rosa hybrida	Rosaceae			la tempête cytokinique et antioxydant				
54	Théaflavine (TF1)	но он он он	Camellia sinensis	Theaceae	Polyphénol Flavonoïde	SARS- CoV-2	Inhibiteur de la RdRp, 3CLpro	In silico In vitro	2020	Inde, Corée	(54, 74)
55	Théaflavine- 3'- <i>L'O</i> - gallate (TF2a)	HO OH OH HO OH	_	1	Polyphénol	SARS- CoV-2	Inhibiteur de la RdRp	In silico	2020	Inde	(54)
56	Théaflavine- 3'-gallate (TF2b)	HO OH OOH	_	_	Polyphénol	SARS- CoV-2	Inhibiteur de la RdRp	In silico	2020	Inde	(54)
57	Digallate de théaflavine (TF3)		Camellia sinensis	Theaceae	Polyphénol	SARS- CoV-2	Inhibiteurs des 3CLpro,proteine S,PLpro,RdRp,AC E2	In silico	2020 2021	Inde	(54, 75)
58	Hespéridine		Citrus sinensis	Rutaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur du Mpro, Nsp 1, RdRp, protéine S,	In silico In vitro	2020 2021	KSA, Inde, Thailande, Corée	(23, 53, 54, 56, 59, 66, 90,

			Withania somnifera	Solanaceae			l'Endoribonucléase ,TMPRSS2, Réduire le SDRA, Bloquer la protéine du canal 3a				113, 114, 122)
			Isatis indigotica	Brassicaceae			du canai 3a				
59	Hespérétine	HO CH ₃	Fruits d'agrumes sps	Rutaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2020 2021	Inde	(23, 123)
60	Diosmine	40 OH OH OH OH	Withania somnifera	Solanaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur du protéase principale (Mpro)	In silico	2021	KSA, Inde	(59, 113)
61	Myricétine-3- O- xylosyl- (1→2)- rhamnoside		_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	KSA	(59)
62	Myricétine 3- rutinoside		-	_	Polyphénol (Flavonoïde)	SARS-C oV-2	Inhibiteur de la RdRp	in silico	2020	Inde	(82)
		OH L QU	Citrus sinensis	Rutacea			Inhibiteur du				
63	Myricétine	HOOOH	Camellia sinensis	Theaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	protéase principale (Mpro), Nsp 15, TMPRSS2, RdRp, réduire des	In silico In vitro	2020 2021	KSA, Inde, Chine, Nigéria, Corée	(23, 52-55, 59, 65, 81, 123)
		OH 0	Withania somnifera	Solanaceae			cytokines				

			Myrica penssylvanica	Myricaceae							
			Isatis indigotica	Brassicaceae							
			Torreya nucifera	Taxaceae							
			Moringa oleifera	Moringaceae							
		OH JE	Withania somnifera	Solanaceae			Inhibiteur du protéase principale			KSA, Inde,	(23, 52,
64	Rutine		Passiflore officinale	Passifloraceae	Polyphénol (Flavonoïde)	SARS- CoV SARS- CoV-2	(Mpro), protéine E, Nsp 15, PLpro, l'Endoribonucléase , l'ACE2, réduire	In silico In vitro	2020 2021	Allemagne, Chili, Argentine, Chine,Australie	
		NO TOOLS	Theobroma cacao L	Malvaceae			des cytokines			, Corée	112, 113)
65	Lyoniresinol	HO OH	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du protéase principale (Mpro)	In silico	2021	KSA	(59)
66	Naringénine	E C C C C C C C C C C C C C C C C C C C	Citrus sinensis	Rutacea	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur du protéase principale (Mpro), Nsp 15,	In silico In vitro	2020 2021	KSA, Chine, Inde, Argentine,	(52-54, 57, 59, 60, 98, 122, 123)

			Isatis indigotica	Brassicaceae			TMPRSS2, RdRp			Chili, Corée	
			fruits d'agrumes	Rutaceae							
67	Naringine	HO OH OH OH	Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la 3CLpro	In silico In vitro	2020 2021	Allemagne, Chili, Corée	(53, 57, 68)
68	Lycorine	O H H O O O O O O O O O O O O O O O O O	Leucojum aestivum Lycoris radiata	Amaryllidaceae	Alcaloïde	SARS- CoV SARS- CoV-2	Inhibiteur de la pénétration et de la réplication virale (3CLpro), Inhibiteur des ribosome de l'hôte, RdRp et la protéine	In silico In vitro	2020 2021	Turquie, Afrique de sud, Inde, Chine	(23, 128, 150, 151)
			Geranii Herba	Geraniaceae							
		QI.	Ephedra sp	Ephedraceae		SARS-	Inhiber l'entrée des cellules du SRAS- CoV-2 via le récepteur ACE2 et			Suisse, Chine,	(53-55, 57,
69	Quercétine	но	Crocus sativus	Iridaceae	Polyphénol (Flavonoïde)	CoV MERS- CoV SARS-	inhiber le processus protéolytique, 3CLpro, Plpro,	In silico In vitro	2017 2020 2021	Turquie, Egypte, Inde, Allemagne, Nigéria, Chili,	58, 60, 67, 68, 78, 81, 83-87, 91,
		он б	Allium cepa	Amarylidaceae		CoV-2	l'ACE2, RdRp, Réduire des cytokines et			Corée	94)
			Broussonetia papyrifera	Moraceae			antioxydant				

			Moringa oleifera	Moringaceae							
			Psidium guajava	Myrtaceae							
			Camellia sinensis	Theaceae							
			Rosa hybrida	Rosaceae							
			Azadirachta indica	Meliaceae							
			Mangifera indica	Anacardiaceae							
			Ginkgo biloba	Ginkgoaceae							
70	Quercétine-3- <i>O</i> - glucoside	HO OH OH OH	Corchorus olitorius L	Tiliaceae	Polyphénol Flavonoïde	SRAS- CoV-2	Inhibiteur de l'ACE2	In silico In vitro	2020 2021	Algérie, Chine	(67, 80)
71	Quercétine-3- <i>O</i> - galactoside	HO OH OH OH	Corchorus olitorius L	Tiliaceae	Polyphénol Flavonoïde	SARS- CoV MERS- CoV SRAS- CoV-2	Inhibiteur de l'ACE2, 3CLpro et Plpro	In silico In vitro	2017 2020 2021	Algérie, Chine, Corée	(67, 80, 86)

72	Quercétine-3- <i>O</i> - glucuronide	HO OH OH	Justicia adhatoda	Acanthaceae	Polyphénol Flavonoïde	SRAS- CoV-2	Inhibiteur de l'ACE2, Mpro, Plpro, RdRp, Diminuer les facteurs de l'inflammation	In silico In vitro	2020 2021	Chine, KSA, Inde	(59, 67, 89)
73	Quercétine 3,5- digalactoside		-	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la Mpro	in silico	2020	Inde	(82)
74	Quercetin 3- (6- malonylgluco side)	HO CH CH	Corchorus olitorius L	Tiliaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
75	Quercetin 3- (6- malonylgalact oside)	HO ON ON ON ON	Corchorus olitorius L	Tiliaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
76	Quercetrine	HO OH OH OH		1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la 3CLpro	In silico In vitro	2021	Chili, Chine	(57, 87)
77	Quercétagéni ne	HO OH OH OH	1	I	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la RdRp, Mpro	In silico In vitro	2020 2021	Inde, Corée	(53, 54)
78	Guaijaverin (Quercétine 3- arabinopyran oside)	1.0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1	Psidium guyava	Myrtaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction avec le domaine HR2	In silico	2020	Bangladesh	(88)
79	Avicularine (quercétine-3- O-α-L-	OH OH OH	Lespedeza cuneata	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro et l'ACE2	In silico	2020	Bangladesh, Inde	(88, 93)

	arabinofurano side)		Polygonum aviculare	Asparagaceae							
			Rhododendron aureum	Ericaceae							
			Taxillus kaempferi	Loranthaceae							
80	Emodine	OH O OH	Isatis indigotica	Brassicaceae	Polyphénol (Flavonoïde)	SARS- CoV SARS- CoV-2	Inhibiteur de Mpro	In silico	2020	Inde	(122)
81	Glycyrrhizine	HOOCO ON A SECOND	Glycyrrhiza uralensis Glycyrrhiza glabra	Fabaceae	Terpène	SARS- CoV SARS- CoV-2 MERS- CoV	Inhibiteur de la réponse inflammatoire pour empêcher l'apparition d'une tempête cytokine, Inhibiteur des 3CLpro, Plpro, Protéine S (RBD), RdRp, ACE2, TMPRSS2, Nsp 1,l'Endoribonucléa se	In silico In vitro In vivo	2004 2020 2021	Chine, Brésil, Inde, Allemagne	(23, 82, 95-97, 99- 103, 105- 110)
82	18β-acide glycyrrhétiniq ue		Glycyrrhizae radix	Fabaceae	Terpène	SARS- CoV SARS- CoV-2 MERS- CoV	Inhibiteur de la protéine principale	In silico	2020 2021	Brésil, Chine	(96, 104)

83	L'acide glycyrrhétiniq ue	HO HO	Glycyrrhiza glabra	Fabaceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro et la furine	In silico	2021	Argentine, Inde	(56, 98)
84	Kazinol F	HO OH OH	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020 2021	Corée, Inde, Italie	(86, 141, 152, 153)
85	Kazinol B	но	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020 2021	Corée, Inde	(86, 152, 153)
86	Kazinol J	HO OCH3 OH	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020 2021	Corée, Inde	(86, 152, 153)
87	Kazinol A	но	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020	Corée, Inde	(86, 153)
88	Kazinol T	HO OH OH	Broussonetia kazinoki	Moraceae	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Pakistan	(154)
89	Broussochalc one A	HO OH OH	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020 2021	Corée, Inde	(86, 152, 153)

90	Broussochalc one B	но Н он	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020 2021	Corée, Inde	(86, 152, 153)
91	broussoflavan A	HO + + OH	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020	Corée, Inde	(86, 153)
92	Silvestrol	HO HO COCH ₃	Aglaia sp	Meliaceae	Flavagline	MERS- CoV SARS- CoV-2	Inhibiteur de la réplication virale et la traduction	In silico In vitro	2018 2020	Allemagne	(168, 169)
93	Apyriflavonol A	OH OH	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020	Corée, Inde	(86, 153)
94	3'-(3- méthylbut-2- enyl)-3',4,7- trihydroxyfla vane		Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020	Corée, Inde	(86, 153)
95	4- hydroxyisolo nchocarpin	OH O	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In silico In vitro	2017 2020	Corée, Inde	(86, 153)

96	Isoliquiritigén ine	HO OH	Broussonetia papyrifera	Moraceae	Polyphénol	SARS- CoV et MERS	Inhibiteurs des 3CL ^{pro} et PL ^{pro}	In vitro	2017	Corée	(86)
97	3-propylidène phtalide				Terpène	SARS- CoV-2	Action sur la protéine BRD2	In silico	2021	Turquie	(141)
98	Acétyle isoeugénol	H ₃ C O CH ₃	_	_	Polyphénol	SARS- CoV-2	_	In silico	2021	Turquie	(141)
99	Alpha amyl cinnamaldéhy de	€	-	1	Polyphénol	SARS- CoV-2	Action sur la protéine BRD2	In silico	2021	Turquie	(141)
100	Alcool alpha amylcinnamy lique	OH CH₃	1	ĺ	Polyphénol	SARS- CoV-2		In silico	2021	Turquie	(141)
101	Alpha héxyl- cinnamaldéhy de	H CH ₃	1	1	Polyphénol	SARS- CoV-2	Action sur la protéine BRD2	In silico	2021	Turquie	(141)
102	Alpha isométhylion one	H ₃ C CH ₃ CH ₃	-		Terpène	SARS- CoV-2	_	In silico	2021	Turquie	(141)
103	Alpha pinène		Eucalyptus globulus Corymbia citrodora	Myrtaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Turquie, Inde	(141, 143)

104	Alpha terpinène	H ₃ C—CH ₃	Juniperus	Lauraceae Cupressaceae	Terpène	SARS- CoV-2	Inhibiteur de la réplication virale	In silico	2020 2021	Turquie, Inde	(141, 142)
105	Alpha terpinéole	CH ₃ CH ₃ CH ₃ OH	Eucalyptus globulus Corymbia citrodora	Myrtaceae	Terpène	SARS- CoV-2	Inhibiteur de la réplication virale (Mpro)	In silico	2020 2021	Turquie, Inde	(141-143)
106	Salicylate d'amyle	OH O	_				_	In silico	2021	Turquie	(141)
107	Anéthol		Juniperus oxycedrus	Lauraceae		SARS- CoV-2	Inhibiteur de la réplication virale	In silico	2020 2021	Turquie, Inde	(141, 142)
				Cupressaceae							
108	Anis Alcool	OH					_	In silico	2021	Turquie	(141)
109	Benzaldéhyde	H	_	_			_	In silico	2021	Turquie	(141)

110	Alcool Benzylique	ОН	_	_		_	In silico	2021	Turquie	(141)
111	Benzoate de Benzyl		-	1		Action sur la protéine BRD2	In silico	2021	Turquie	(141)
112	Cinnamat Benzylique		_			Action sur la protéine BRD2	In silico	2021	Turquie	(141)
113	Salicylate de Benzyle	₽ ••••••	-	-		Action sur la protéine BRD2	In silico	2021	Turquie	(141)
114	Béta	CH₃	Laurus nobilis	Lauraceae		Action sur la	7 .7.	2021	т.	(141)
114	Caryophyllèn e	H ₂ C H CH ₃	Juniperus oxycedrus	Cupressaceae		protéine BRD2	In silico	2021	Turquie	(141)
115	Béta Damascénone		_			_	In silico	2021	Turquie	(141)
116	Béta pinène	CH ₂	Laurus nobilis	Lauraceae			In silico	2021	Turquie	(141)
110	Beta piliene	H ₃ C	Juniperus oxycedrus	Cupressaceae		_	т зиисо	2021	rurquie	(1+1)

117	Camphre	H ₃ C CH ₃	Juniperus oxycedrus	Lauraceae Cupressaceae			_	In silico	2021	Turquie	(141)
118	Carvone		_	-			_	In silico	2021	Turquie	(141)
119	Cinnamaldéh	> ====================================	Laurus nobilis	Lauraceae		SARS-	Inhibiteur de la	In silico	2020	Turquie, Inde	(141, 142)
119	yde	T	Juniperus oxycedrus	Cupressaceae		CoV-2	réplication virale	т ѕшсо	2021	Turquie, mae	(141, 142)
120	Alcool à la cinnamyle	ОН	_	_			_	In silico	2021	Turquie	(141)
121	Citral	CH ₃	Laurus nobilis	Lauraceae	T	SARS-	Inhibiteur de la M	Lesilia	2021	Turquie,	(09, 141)
121	Curai	H ₃ C CH ₃	Juniperus oxycedrus	Cupressaceae	Terpène	CoV-2	pro	In silico	2021	Argentine	(98, 141)
122	Citronellol	CH ₃ O H	Corymbia citrodora	Myrtaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Turquie, Inde	(141, 143)

123	Coumarine		Sarcandra glabra Acanthopanax senticosus	Chloranthaceae	Coumarine		_	In silico	2021	Turquie	(141)
				Araliacea							
124	Dihydro- ambrettolide		_					In silico	2021	Turquie	(141)
125	Acétate de diméthyl- benzylcarbiny le		_	Ι				In silico	2021	Turquie	(141)
126	Ebanol	O H	l	1			1	In silico	2021	Turquie	(141)
			Laurus nobilis	Lauraceae							
127	Eugénol	H ₃ CO HO	Juniperus oxycedrus	Cupressaceae	Polyphénol Allylbenzèn e	SARS- CoV-2	Inhibiteur de la réplication virale (Mpro) et la protéine S	In silico	2020 2021	Turquie, Inde, Egypte	(63, 85, 107, 141, 142)
			Clou de girofle	Myrtaceae							
128	Acétate d'eugényle	H ₃ C O OCH ₃	_	_	Polyphénol		_	In silico	2021	Turquie	(141)

129	Farnésol	The state of the s	_		Terpène			In silico	2021	Turquie	(141)
130	Galaxolide	CH ₃ H ₃ C CH ₃ CH ₃ CH ₃	_	_			Action sur la protéine BRD2 et la protéase principale Mpro	In silico	2021	Turquie	(141)
131	Géraniol	CH ₃	Laurus nobilis	Lauraceae	Terpène			In silico	2021	Turquie	(141)
	Geranioi	H₃C CH₃	Juniperus oxycedrus	Cupressaceae	Terpene		_	Th state	2021	Turquie	(111)
132	Acétate de géranyl	CH ₃ CH ₃ O CH ₃	_	_	Terpène		_	In silico	2021	Turquie	(141)
133	Hydroxycitro nellal	VOH VOO	_	_				In silico	2021	Turquie	(141)
134	Iso-eugénol	H ₃ C CH ₃	l	_	Polyphénol			In silico	2021	Turquie	(141)
135	Lilial	H ₂ C CH ₃ CH ₃	_	_	Terpène		_	In silico	2021	Turquie	(141)
136	Limonène		Laurus nobilis	Lauraceae	Terpène	SARS- CoV-2	Inhibiteur de la réplication virale (Mpro)	In silico	2020 2021	Turquie, Inde, Argentine	(98, 113, 141-143)

			Juniperus oxycedrus	Cupressaceae							
			Withania somnifera	Solanaceae							
			Eucalyptus globulus Corymbia citrodora	Myrtaceae							
137	Linalol	OH	Laurus nobilis	Lauraceae	Terpène	SARS-	Inhibiteur de la	In silico	2020	Turquie, Inde	(141, 142)
137	Emaior		Juniperus oxycedrus	Cupressaceae	Тегрене	CoV-2	réplication virale	In suico	2021	ruiquie, mae	(141, 142)
138	Acétate de	H ₃ C CH ₃	Laurus nobilis	Lauraceae	Terpène			In silico	2021	Turquie	(141)
130	linalyle	H ₃ C CH ₃	Juniperus oxycedrus	Cupressaceae	1 ci pene		_	in staco	2021	Turquie	(171)
139	Lyral	OH O	_	_	Terpène		Action sur la protéine BRD2 et la protéase principale Mpro	In silico	2021	Turquie	(141)

140	Majantol	ОН	_	_	Terpène		_	In silico	2021	Turquie	(141)
141	Menthol	CH ₃	Laurus nobilis	Lauraceae	Tamba	SARS-	Inhibiteur de la	In silico	2020	Turquie, Inde,	(98, 141,
141	Menthol	H ₃ C CH ₃	Juniperus oxycedrus	Cupressaceae	Terpène	CoV-2	réplication virale (Mpro)	т ѕшсо	2021	Argentine	142)
142	Salicylate de méthyle	ОН	_	_	Polyphénol		_	In silico	2021	Turquie	(141)
143	Salicylaldéhy de	ОН	_		Polyphénol		_	In silico	2021	Turquie	(141)
144	Santalol	ОН	Tinospora crispa	Menispermaceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020 2021	Bangladesh, Turquie	(141, 160)
145	Santalol E- cis, épi-bêta-	HO.	Tinospora crispa	Menispermaceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Bangladesh	(160)
146	Sclaréol	CH ₅ a CH ₅	_	_	Terpène		Action sur la protéase principale Mpro	In silico	2021	Turquie	(141)
147	Terpinolène	H ₃ C CH ₃	Laurus nobilis	Lauraceae	Terpène			In silico	2021	Turquie	(141)

			Juniperus oxycedrus	Cupressaceae							
148	Vanilline	O _H CH ₃	_		Polyphénol		Inhibiteur du RdRp	In silico	2020 2021	Inde, Turquie	(54, 141)
149	Vertofix	H ₃ C CH ₃	_		Terpène		Action sur la protéase principale Mpro	In silico	2021	Turquie	(141)
150	Artémisinine	T T T T T T T T T T T T T T T T T T T	Artimisia annua	Asteraceae	Terpène	SARS- CoV-2	Action sur la protéine BRD2, Inhibiteur de Nsp1 et de la réplication	In silico In vitro	2020 2021	Turquie, Inde, Chine, États- Unis	(66, 141, 144, 145, 164)
151	Nigellidine	OH H _I C	Nigella sativa	Renunculaceae	Alcaloïde	SARS- CoV-2	Action sur la protéine BRD2 et la Mpro, Inhibiteurs de l'ACE 2 et la protéine S	In silico	2021	Turquie, Inde	(141, 170)
152	Curcumine (diferuloylmé thane)	0 OH H0 OCH ₃ H ₂ CO	Curcuma longa	zingiberaceae	Polyphénol	SARS- CoV MERS- CoV SARS- CoV-2	Interaction de la protéine S avec la GRP78, Diminuer les facteurs d'inflammation et les cytokines, Augmenter le nombre des cellules T rég,Inhibiteur de 3CLpro, l'ACE2, RdRp	In silico In vitro In vivo	2007 2020 2021	Turquie, Brésil, Chine, Inde, Egypte, Thaïlande, Iran, Corée, Taiwan	(53, 54, 63, 64, 66, 72, 85, 91, 99, 114- 117)
153	Dicoumarol	OH HO	_	_	Polyphénol (Coumarine)	SARS- CoV-2	Inhibiteur de la protéine S	In silico	2021	Argentine	(98)

154	Withaférine A	Me, H OH Me	Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Interaction avec l'ecto-domaine de pointe, Liaison avec TMPRSS2 et GRP78, Inhibiteur de Mpro	In silico	2020 2021	Bangladesh, Inde	(88, 113, 163)
155	Resvératrol	HO OH	Plusieurs plantes	İ	Polyphénol (Stilbenoide)	MERS- CoV SARS- CoV-2	Inhibition de l'infection par le MERS, Inhibition des protéines virales, protéine S, Mpro, RdRp, réduire des cytokines	In silico In vitro In vivo	2017 2020 2021	Turquie, Taïwan, Chine, Inde, France, Corée	(53, 54, 81, 139, 140)
156	Acide Asiatique		Centella asiatica	Apiaceae	Terpène	SARS- CoV-2	Interaction avec la protéase principale, la protéine de liaison à l'ARN Nsp9, l'ecto-domaine de pointe et Nsp 15		2020 2021	Bangladesh, Inde	(52, 88)
157	27-hydroxy withanone		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S	In silico	2021	Inde	(163)
158	17-hydroxy withaférine A		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S	In silico	2021	Inde	(163)
159	17-hydroxy- 27-deoxy- deoxy withaférine A		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S	In silico	2021	Inde	(163)

160	Withanolide D	HO H HO H	Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S	In silico	2021	Inde	(163)
161	27-hydroxy withanolide B		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S	In silico	2021	Inde	(163)
162	Withanolide A	OH H H	Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S	In silico	2021	Inde	(163)
163	Withanoside VI	GE GO O	Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine S	In silico	2021	Inde	(171)
164	Withanoside IV	MO OH OH OH OH OH OH OH	Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine S	In silico	2021	Inde	(171)
165	Withanone		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S, Mpro	In silico	2021	Inde	(92, 163)
166	27- déoxywithafe rin A		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur l'interaction entre le récepteur hACE2 et le RBD de la protéine S	In silico	2021	Inde	(163)
167	Berbérine		Hydrastis canadensis	Renunculaceae	Alcaloïde	SARS- CoV SARS-	Inhibe le NF-κB et MAPK(cytokine) CASP et	In silico In vitro In vivo	2020 2021	Floride,Inde, Argentine, États-Unis,	(52, 98, 109, 128- 131)

			Berberis vulgaris	Berberidaceae		CoV-2	BAX(dommage tissulaire), Inhibiteur de Mpro,			Chine, Netherlands	
			Coptis chinensis	Renonculaceae			Nsp15,protéine S, agit sur le stade tardif du cycle viral, réduit				
			Berberis buxifolia	Berberidaceae			l'inflammation				
			Argemone mexicana	Papaveraceae							
		HO, L	Andrographis paniculata	Acanthaceae							
168	Andrographol ide		Eurycoma harmandiana	Simaroubaceae	Terpène	SARS- CoV SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico In vitro	2020 2021	Thaïlande, Inde, Taïwan	(114, 146- 149)
		HO HO	Sophora flavescen	Fabaceae							
169	(±)- Eriodicyol	OH OH	Ephedra sp	Ephedraceae	Polyphénol (Flavonoïde)	SRAS- CoV-2	Inhibiteur de l'ACE2, 3CLpro	In silico In vitro	2020	Chine	(67, 83)
170	Homoeriodict yol	HO OH O	_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction de la protéine S avec la GRP78	In silico	2020	Maroc	(72)

171	Eriodictyol-7- O-rutinoside		Citron	Rutaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la RdRp	in silico	2020	Inde	(82)
172	Isorhamnetin e	OCH ₃ OH	_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction de la protéine S avec la GRP78, Inhibiteur de la 3CLpro,RdRp et l'ACE2	In silico In vitro	2020 2021	Maroc, Chine, Inde, Chili	(54, 57, 60, 67, 72, 87, 94)
173	Protostémoni ne	HO OH OH	_	_	Alcaloïde	SARS- CoV-2	_	In silico	2020	Maroc	(72)
174	Thapsigargin e	O O O O O O O O O O O O O O O O O O O	_	_		SARS- CoV-2	Bloque la production de la descendance SARS-CoV-2	In vivo	2021	RU	(172)
175	Sulfoquinovo syldiacylglyc érole	\$\frac{1}{2}\frac{1}{2	Algue rouge Gigartina tenella	Gigartinaceae	Glycolipide	SARS- CoV-2		In silico	2021	Inde	(173)
176	3,6-anhydro- D-galactose- 2-sulfate	= 0 0 = =	Algue rouge		Polysacchari de sulfaté	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Inde	(173)
177	α- carraghénane		Algue rouge		Polysacchari de sulfaté	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Inde	(173)
178	λ- carraghénane		Algue rouge		Polysacchari de sulfaté	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)

179	Fucoïdane		Algue rouge		Polysacchari de sulfaté	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
180	κ- carraghénane		Algue rouge		Polysacchari de sulfaté	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Inde	(173)
181	Alginate	0H 0 0H 0 0H 0 0H 0 0H 0	Algue brune		Polysacchari de sulfaté	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
182	β-glucane		Algue brune		Polysacchari de non sulfaté	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
183	β-galactane		Algue rouge		Polysacchari de	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
184	β-(1-3)- galactotriose	HO OH HO OH	_	1	Polysacchari de	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
185	Galactobiose	HO OH OH	_	1	Polysacchari de	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
186	β-(1-6)- galactotriose	HO - OH -	_	_	Polysacchari de	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
187	DialphaGal		_	_	Polysacchari de	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)

188	Eckol	OH HO OH OH	Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanni n)	SARS- CoV SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico In vitro	2013 2021	Corée, Inde	(173, 174)
189	Difucol	HO OH HO	_		Polyphénol (Tanin)	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In siico	2021	Inde	(173)
190	Trifucol	HO OH HO OH OH	_	_	Polyphénol (Tanin)	SARS- CoV-2	Inhibiteur de 3CLpro Inhibiteur de la protéine S	In silico	2021	Inde	(173)
191	Dieckol		Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin)	SARS- CoV	Inhibiteurs de 3CL pro	In vitro et in silico	2013	Corée	(174)
192	Phloroglucino 1	НО	Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin)	SARS- CoV	Inhibiteurs de 3CL pro	In silico	2013	Corée	(174)
193	Triphlorétol A	OH OH OH	Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin	SARS- CoV	Inhibiteur de 3CL pro	In vitro et in silico	2013	Corée	(174)
194	Dioxinodéhy droeckol	HO CH OH OH	Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin	SARS- CoV	Inhibiteur de 3CL pro	In vitro et in silico	2013	Corée	(174)
195	2-phloroeckol	HO OH OH	Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin	SARS- CoV	Inhibiteur de 3CL pro	In vitro et in silico	2013	Corée	(174)
196	7- phloroeckol	HO CH CH	Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin	SARS- CoV	Inhibiteurs de 3CL pro	In vitro et in silico	2013	Corée	(174)

197	Fucodiphloro ethol G	HO	Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin	SARS- CoV	Inhibiteurs de 3CL pro	In vitro et in silico	2013	Corée	(174)
198	Phlorofucofur oeckol A	10 () () () () () () () () () (Ecklonia cava (algue brune)	Laminariaceae	Polyphénol (phlorotanin)	SARS- CoV	Inhibiteurs de 3CL pro	In vitro et in silico	2013	Corée	(174)
199	Acide férulique	EH.	Carica papaya	Caricaceae		SARS- CoV-2	Inhibiteur de protéine M, RdRp, Mpro	In silico In vitro	2020 2021	Inde, Indonésie, Chili, Corée	(51, 53, 54, 57, 112)
200	N-trans- féruloyl- tyramine	HO H	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
201	N-trans- feruloyl- tyramine- diacetate		Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
202	Cryptomisrin e		Yzygium aromaticum Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020	Ghana	(157)
203	Cryptospirolé pine		Cryptolepis sanguinolenta	Apocynaceae Periplocaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de Mpro, RdRp, protéine S, ACE2, TMPRSS2	In silico	2020 2021	Ghana, Nigéria	(137, 157- 159)

204	Cryptoquindo line		Cryptolepis sanguinolenta	Apocynaceae Periplocaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de Mpro, RdRp, protéine S, TMPRSS3	In silico	2020 2022	Ghana, Nigéria	(137, 157, 158)
205	Biscryptolépi ne		Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp et l'ACE2	In silico	2020	Ghana, Nigéria	(157, 158)
206	Cryptolépicar boline		Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020	Ghana	(157)
207	11- Isopropylcryp tolépine		Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020	Ghana	(157)
208	Cryptoheptin e		Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020 2021	Ghana, Nigéria	(137, 157)
209	Hydroxycrypt olépine		Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020 2021	Ghana, Nigéria	(137, 157)
210	Cryptolépino ne		Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020	Ghana	(157)
211	Néocryptolép ine	025	Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV2	Inhibiteur de Mpro, RdRp	In silico	2020	Ghana	(157)
212	Isocryptolépi ne	N	Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020 2021	Ghana, Nigéria	(137, 157- 159)

213	Quindoline	N N H	Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020	Ghana	(157)
214	Cryptolépine		Cryptolepis sanguinolenta	Apocynaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020	Ghana	(157)
215	Artéméther	T. O. T.	-	1	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In vitro	2020	Chine	(144)
216	Artésunate	T O T O T O T O T O T O T O T O T O T O	_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In vitro	2020	Chine	(144)
217	Dihydroartém isinine	H ₃ C H ₃ OH	1	1	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In vitro	2020	Chine	(144)
218	Acide artémisinique		1	1	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In vitro	2020	Chine	(144)
219	Arteether	TO T	-	ı	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In vitro	2020	Chine	(144)
220	Luméfantrine	H ₃ O OH OH	_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de la production des protéines virales	In vitro	2020	Chine	(144)
221	Arteannuine B	H. O	_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de la production des protéines virales	In vitro	2020	Chine	(144)

222	Artémisone		_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In vitro	2020	Chine	(144)
223	Célastrol	O HO	Tripterygium wilfordii Tripterygium regelii	Celastraceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur dePLpro et de 3CLpro, Piéger les radicaux superoxydes	In silico In vitro	2010 2020 2021	Corée, Brésil	(96, 161, 162)
		О ОН	Scutellaria Baicalensis	Lamiaceae			****				
224	Baicaline	но	Withania somnifera	Solanaceae	Polyphénol (Flavonoide)	SARS- CoV SARS- CoV-2	Inhibiteur de Mpro, l'Endoribonucléase et de la protéine	In silico In vitro	2004 2020 2021	Chine, Inde, Egypte	(23, 85, 90, 95, 104, 113)
		óнö	Rosmarinus officinalis	Lamiaceae			de pointe				
225	Vitamine C	H 0 H	Malpighia glabra	Malpighiaceae		SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur des protéines inflammatoires	In silico	2020	Chine	(99, 103)
226	Calanolide A	OH	Calophyllum lanigerum	Calophyllaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
227	Inophyllum A		Calophyllum inophyllum	Calophyllaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)

228	Cordatolide A		Calophyllum cordato- oblongum	Calophyllaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
229	Collinin	0 CH ₃	Zanthoxylum schinifolium	Rutaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
230	Mesuol	O OH HO O	Marila pluricostata	Calophyllaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
231	Isomesuol	= 0	Marila pluricostata	Calophyllaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
232	Suksdorfin		Lomatium suksdorfii	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
233	Pteryxin		_	_	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
234	Rutamarine		Ruta graveolens	Rutaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
235	Séséline		_	_	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(176)
236	Psoralène		Prangos tschimganica	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale et Nsp 15	In silico	2020 2021	Inde	(52, 177)

			Ferula sumbul								
237	Bergaptène	0	Prangos tschimganica Ferula sumbul	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2020	Inde	(177)
238	Imperatorine		Prangos tschimganica Ferula sumbul	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2020	Inde	(177)
239	Héraclénine		Prangos tschimganica Ferula sumbul	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2020	Inde	(177)
240	Héraclénol	H O O	Prangos tschimganica Ferula sumbul	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2020	Inde	(177)

241	Saxaline	O O O O	Prangos tschimganica Ferula sumbul	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2020	Inde	(177)
242	Oxypeucedan ine		Prangos tschimganica Ferula sumbul	Apiaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale PLpro	In silico	2020	Inde	(177)
243	Toddacouma quinone		Toddalia asiatica	Rutaceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2020 2021	Inde, Pakistan	(154, 177)
244	Esculétine	0	Artemisia capillaris	Asteraceae	Polyphénol (coumarine)	SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2020	Inde	(177)
245	Esculine	0H	l'orge	Poaceae	Polyphénol	SARS-	Inhibiteur de la	In silico	2020	Inde	(106)
		но о	Marron d'Inde	Sapindaceae	(coumarine)	CoV-2	Nsp1				
246	Tomentine A	HO O O O O O O O O O O O O O O O O O O	Paulownia tomentosa	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)

247	Tomentine B	HO OH	Paulownia tomentosa	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
248	Tomentine C	HO HO O	Paulownia tomentosa	Scrophulariaceae	Flavonoïde	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
249	Tomentine D	H O O O O O H	Paulownia tomentosa	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
250	Tomentine E	HO H	Paulownia tomentosa	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
251	3'- O - méthyldiplac ol	HO HO HO	Paulownia tomentosa	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
252	4'- O - méthyldiplac ol	"0 " "0 " "0 " "0 " "0 " "0 " "0 " "0	Paulownia tomentos	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
253	3'- O - méthyldiplac one	HO HO HO	Paulownia tomentosa	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
254	Diplacone	HO HO HO	Paulownia tomentosa	Scrophulariaceae	Polyphénol (Flavonoïde)	SARS- CoV	Inhibiteur de la protéase principale	In vitro	2013	Corée	(178)
255	4'-O- méthylbavacc halcone		Psoralea corylifolia	Fabaceae		MERS- CoV SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(152)

256	Corylifol A	HO O OH	Psoralea corylifolia	Fabaceae		MERS- CoV SARS- CoV-2	Inhibiteur de la protéase principale	In silico	2021	Inde	(152)
257	Cedrane-3-	HO HO	Juniperus formosana	Cupressaceae	Terpène	SARS- CoV MERS-	Inhibiteur dePLpro	In vitro	2007	Brésil, Taïwan	(96, 115)
231	β,12-diol	CH ₂ OH	Cryptomeria japonica	Taxodiaceae	Тегрепс	CoV SARS- CoV-2	et de 3CLpro	in viiro	2021	Bresii, Taiwaii	(90, 113)
		^{HO} √.Ĥ	Juniperus formosana	Cupressaceae		SARS-					
258	α-Cadinol		Cryptomeria japonica	Taxodiaceae	Terpène	CoV MERS- CoV SARS-	Inhibiteur dePLpro et de 3CLpro	In vitro	2007 2022	Brésil, Taïwan	(96, 115)
		<	Chamaecyparis obtusa var. formosana	Cupressaceae		CoV-3					
259	7β- hydroxydésox	HO OCH3	Juniperus formosana	Cupressaceae	Terpène	SARS- CoV MERS-	Inhibiteur dePLpro	In vitro	2007	Brésil, Taïwan	(96, 115)
<u> </u>	y- cryptojaponol	ОН	Cryptomeria japonica	Taxodiaceae	Тегрене	CoV SARS- CoV-2	et de 3CLpro	in viii o	2021	Ziesii, Tuiwuli	(70, 110)
260	Cryptojapono l	0 +	Cryptomeria japonica	Cupressaceae	Terpènes	SARS- CoV	Inhibition de la réplication	In vitro	2007	Taiwan	(115)

261	Forskoline	OH OH OH	Juniperus formosana Cryptomeria japonica	Cupressaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur dePLpro et de 3CLpro	In vitro	2007 2021	Brésil, Taïwan	(96, 115)
		0	Juniperus formosana	Cupressaceae							
262	Acide pinusolidique		Cryptomeria japonica	Taxodiaceae	Terpène	SARS- CoV MERS- CoV SARS-	Inhibiteur dePLpro et de 3CLpro	In vitro	2007 2022	Brésil, Taïwan	(96, 115)
		HO₂C \	Chamaecyparis obtusa var. formosana	Cupressaceae		CoV-3					
263	3β,12- Diacetoxyabi eta-	OAc OAc	Juniperus formosana	Cupressaceae	Terpène	SARS- CoV MERS-	Inhibiteur dePLpro	In vitro	2007	Brésil, Taïwan	(96, 115)
	6 ,8,11,13- tétraène	Aco	Cryptomeria japonica	Taxodiaceae		CoV SARS- CoV-2	et de 3CLpro		2021		. , ,
264	Déhydroabiet		Juniperus formosana	Cupressaceae	Terpène	SARS- CoV MERS-	Inhibiteur dePLpro	In vitro	2007	Brésil, Taïwan	(96, 115)
	a-7-one		Cryptomeria japonica	Taxodiaceae	Terpène	CoV SARS- CoV-3	et de 3CLpro		2022		

			Chamaecyparis obtusa var. formosana	Cupressaceae							
265	Ferruginol	OH	Torreya nucifera Chamaecyparis	Taxaceae	Terpène	SARS- CoV MERS-	Inhibiteur dePLpro	In vitro	2007 2010	Brésil, Taïwan,	(96, 115,
203	rerrugillor	H	obtusa var. formosana	Cupressaceae	Тегрепе	CoV SARS- CoV-2	et de 3CLpro	in viiro	2021	Corée	121)
266	18- hydroxyferru ginol	8	Torreya nucifera	Taxaceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(121)
267	18- oxoferruginol	OH OH	Torreya nucifera	Taxaceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(121)
268	O -acétyl-18- hydroxyferru ginol	HO	Torreya nucifera	Taxaceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(121)
269	Iguestérine	0 H0	Tripterygium regelli	Celastraceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de PLpro et de 3CLpro	In silico In vitro	2010 2021	Brésil, Corée	(96, 162)
270	Sugiol	OH OH	Chamaecyparis obtusa var. formosana	Cupressaceae	Terpène	SARS- CoV	Inhibition de la réplication	In vitro	2007	Taiwan	(115)

271	8-béta- hydroxyabiet a-9(11),13- dien-12-one	ОН	Chamaecyparis obtusa var. formosana	Cupressaceae	Terpène	SARS- CoV	Inhibition de la réplication	In vitro	2007	Taiwan	(115)
272	6,7- déhydroroyle anone	ÖH -	Chamaecyparis obtusa var. formosana	Cupressaceae	Terpène	SARS- CoV	Inhibition de la réplication	In vitro	2007	Taiwan	(115)
273	Hinokinine		Chamaecyparis obtusa var. formosana	Cupressaceae	Polyphénol (Lignane)	SARS- CoV	Inhibition de la réplication	In vitro	2007	Taiwan	(115)
274	Hinokiol	OH HO	Torreya nucifera	Taxaceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(121)
275	Savinine		Chamaecyparis obtusa var. formosana	Cupressaceae	Polyphénol (Lignane)	SARS- CoV	Inhibition de la réplication	In vitro	2007	Taiwan	(115)
276	Déhydroabiét ate de méthyle	of the state of th	Torreya nucifera	Taxaceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(121)
277	Isopimaric acide	HO	Torreya nucifera	Taxaceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(121)
278	Kayadiol	НО	Torreya nucifera	Taxaceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(121)

279	Pristimerine	OMe	Tripterygium regelii	Celastraceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(162)
280	Tingénone	HO	Tripterygium regelii	Celastraceae	Terpène	SARS- CoV	Inhibiteur de la 3CL pro	In vitro et In silico	2010	Corée	(162)
281	Tanshinone IIA		Salvia sp	Lamiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de PLpro et de 3CLpro	In silico In vitro	2012 2020 2021	Brésil, Egypte, Corée	(85, 96, 155, 156)
282	Tanshinone IIB	H H	Salvia sp	Lamiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de PLpro et de 3CLpro	In silico In vitro	2012 2020 2021	Brésil, Corée	(96, 155, 156)
283	Tanshinone I		Salvia sp	Lamiaceae	Terpène	SARS- CoV SARS- CoV-2	Inhibiteur de PLpro et de 3CLpro	In silico In vitro	2012 2020	Brésil, Egypte, Corée	(85, 155, 156)
284	Méthyl tanshinonate	MeO	Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV	Inhibiteurs des 3CL pro et PL pro	In vitro	2012	Corée	(155)
285	Cryptotanshin one	++	Salvia sp	Lamiaceae	Terpène	SARS- CoV SARS- CoV-2	Inhibiteurs des 3CL pro et PL pro	In silico In vitro	2012 2020	Corée, Egypte	(85, 155)
286	Dihydrotansh inone I		Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV	Inhibiteurs des 3CL pro et PL pro	In vitro	2012	Corée	(155)

287	Isotanshinone IIA	H ₂ C CH ₃	Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
288	Tanshinlacton e	N _{Hj} C	Salvia sp	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
289	Isocryptotans hinone	Me Me	Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
290	Tanshinketola ctone		Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
291	3α- hydroxytansh inone IIA	HO Br. CH ₃	Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
292	Neotanshinla ctone	CH ₃	Salvia sp	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
293	Tanshinol A	NO.	Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
294	Tanshinol B	9 0 0 0	Salvia sp	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
295	Nortanshinon e		Salvia miltiorrhiza	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)

296	Isotanshinone I	H ₃ C CH ₃	Salvia glutinosa	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
297	Cryptotanshin one 17-oic acid	HC CH ₃	Salvia hastata	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
298	17- hydroxycrypt otanshinone	NG CH ₀	Salvia sp	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de CL pro	in silico	2020	Brazil	(156)
299	Lutéoline-7- glucoside	HOH, C HO OH O	_	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
300	Lutéoline	НО	Ephedra sp	Ephedraceae	Polyphénol	SARS-	Inhibiteur de 3CLpro, ACE2, RdRp, Nsp 15,	In silico	2020	Chine, Inde,	(52-54, 57, 60, 67, 81,
300	Luteonne	OH O	Ginkgo biloba	Ginkgoaceae	(Flavonoïde)	CoV-2	Rdkp, 185 13, Réduit les cytokines	In vitro	2021	Chili, Corée	83, 87, 94)
301	Wogonine	H,C HO HO OH	_	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, RdRp, Nsp 15, Réduit les cytokines	In silico	2020 2021	Chine, Inde	(52, 54, 60, 81)
302	Jezonofol	H O O H	Cocos nucifera	Arecaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Egypte	(61)
303	Scirpusine A		Cocos nucifera	Arecaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Egypte	(61)

304	Cassigarol G		Cocos nucifera	Arecaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Egypte	(61)
305	Maackin A	2	Cocos nucifera	Arecaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Egypte	(61)
306	Ether d'acide thréoguiacyl glycérol-8'- vanillique		Cocos nucifera	Arecaceae		SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Egypte	(61)
307	Ether d'acide érythroguiacy 1-8'-vanillique		Cocos nucifera	Arecaceae		SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Egypte	(61)
308	Apigénine	HO OH O	Carica papaya	Caricaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la 3CLpro, Plpro, RdRp, Nsp 15,	In silico In vitro	2020 2021	Chine, Corée, Inde, Indonésie,Chili	(51-54, 57, 87)
309	Apigénine 7- (6"- malonylgluco side)	HO OH OH OH	ı		Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(121)
310	Apigéninidin e 5-O- glucoside	CI OH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
311	Apigéninidin e	HD CH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
312	6,6'- biapigénine	HO CONTROL ON O	Hypericum perfo ratum L	Hypericaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibition de l'ACE2 et la protéine de pointe	In silico	2021	Inde	(70)

313	Picéatannol		Cocos nucifera	Arecaceae	Polyphénol (stilbène)	SARS- CoV-2	Inhibiteur de Mpro et de RdRp	In silico	2020 2021	Egypte, Inde	(54, 61)
314	P-acide hydroxy- benzoïque	0	Cocos nucifera	Arecaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro et de 3CLpro	In silico	2021	Egypte	(61)
315	Acide vanillique	• • • • • • • • • • • • • • • • • • •	Cocos nucifera	Arecaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro et de RdRp	In silico	2020 2021	Egypte, Inde	(54, 61)
316	Polyacétylène triol	,cc ,	Algues marines		Hydrocarbur e	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro, protéine S	In silico	2021	Egypte	(119)
317	Apigénine-7- β-D- glucoside	HO OH OH OH	Cocos nucifera	Arecaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Egypte,Chili	(57, 61, 119)
318	4,5-dihydro- 6- désoxybromo topsentine		Algues marines		Alcaloïde	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro	In silico	2021	Egypte	(119)
319	Sceptrine		Algues marines		Alcaloïde	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro, protéine S	In silico	2021	Egypte	(119)
320	Bromotopsent ine		Algues marines		Alcaloïde	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro, protéine S	In silico	2021	Egypte	(119)
321	Topsentine		Algues marines		Alcaloïde	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro, protéine S	In silico	2021	Egypte	(119)

322	Manzamine A		Algues marines		Alcaloïde	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro	In silico	2021	Egypte	(119)
323	Dragmacidine F		Algues marines		Alcaloïde	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro	In silico	2021	Egypte	(119)
324	Trypilepyrazi nol	OH L	Algues marines		Alcaloïde	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro	In silico	2021	Egypte	(119)
325	Aspernolide A		Algues marines		Terpène	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro	In silico	2021	Egypte	(119)
326	Thalassioline A		Algues marines		Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro, RdRp	In silico	2021	Egypte	(119)
327	Thalassioline B		Algues marines		Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro, RdRp	In silico	2021	Egypte	(119)
328	Thalassioline C		Algues marines		Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction avec les récepteurs des protéines Mpro, RdRp	In silico	2021	Egypte	(119)
329	Homoharringt onine (HHT)		Cephalotaxus genus	Cephalotaxaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In silico	2020	Afrique de sud	(150)
330	Oxysophoridi ne	Employee E	Sophora alopecuroides	Fabaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de la réplication virale	In silico	2020	Afrique de sud	(150)

331	Cepharanthin e		Stephania tetrandra	Menispermaceae	Alcaloïde	MERS- CoV SARS- CoV-2	Inhibiteur de translocation virale, de la Mpro	In silico	2020 2021	Afrique de sud, Inde, Chine	(128, 134, 150)
332	Fangchinolin e		Stephania tetrandra	Menispermaceae	Alcaloïde	MERS- CoV SARS- CoV-2	Inhibiteur de translocation virale, de la Mpro	In silico	2020	Afrique de sud, Inde	(128, 150)
333	Tetrandrine		Stephania tetrandra	Menispermaceae	Alcaloïde	MERS- CoV SARS- CoV-2	Inhibiteur de translocation virale, de la Mpro	In silico	2020	Afrique de sud, Inde	(128, 150)
334	Tylophorine		Tylophora indica	Asclepiadaceae	Alcaloïde	MERS- CoV SARS- CoV-2	Inhibiteur de translocation virale, de la Mpro	In silico	2020	Afrique de sud	(150)
335	Indigo	d'to	Isatis indigotica	Brassicaceae	Alcaloïde	SARS- CoV SARS- CoV-2	Inhibiteur de clivage de 3CLpro	In silico	2020	Afrique de sud	(150)
336	Fusapyridone A-2		1	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
337	Fusapyridone B-2		1	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
338	Ilicicoline H		_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
339	Leporine A		_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)

340	Fusapyridone A-1	-3-4×-	_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
341	Leporine B		_		Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
342	Epipyridone		_		Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
343	Apiosporami de		_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
344	Torrubiellone E		_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
345	Farinosone A		_		Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
346	Farinosone B				Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
347	Cordypyridon e D		_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Canada	(179)
348	β-sitostérol		Ephedra sp	Ephedraceae	Terpène	SARS- CoV SARS-	Inhibiteur de 3CLpro, lACE2 et Nsp 15	In silico	2020 2021	Chine, Inde	(52, 83, 122)

			Isatis indigotica	Brassicaceae		CoV-2					
349	Linoléate d'éthyle		Ephedra sp	Ephedraceae		SARS- CoV-2	Inhibiteur de 3CLpro, IACE2	In silico	2020	Chine	(83)
350	Squalène	***********	Ephedra sp	Ephedraceae		SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
351	Stigmast-4- en-3-one		Ephedra sp	Ephedraceae		SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
352	Clionastérol		Ephedra sp	Ephedraceae		SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
353	Herbacétine		Ephedra sp	Ephedraceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
354	Diosmétine		Ephedra sp	Ephedraceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
355	Taxifoline	""	Ephedra sp	Ephedraceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2, Nsp 15	In silico	2020	Chine	(83)
356	Delphinidine	OH OH	Ephedra sp	Ephedraceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro, ACE2, protéine S	In silico	2020 2021	Chine, Algérie, Argentine, Inde	(82, 83, 98, 120)

			Baies	Rosaceae							
357	Delphinidine 3-O-beta-D- glucoside 5- O-(6- coumaroyl- beta-D- glucoside)				Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(127)
358	Delphinidine 3,5- diglucoside	HO CF CF CH CH	Grenades	Punicaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la Mpro et ACE2	In silico	2020	Inde	(93)
359	Campestérol		Ephedra sp	Ephedraceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
360	Genkwanin	H ₂ CO OH O	Ephedra sp	Ephedraceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico In vitro	2020 2021	Chine	(83, 87)
361	Pectolinarigé nine	N O O	Ephedra sp	Ephedraceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
362	Ephédrine	H H	Ephedra sp	Ephedraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83, 104)
363	Pseudoéphédr ine	OH HN CH ₃	Ephedra sp	Ephedraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)

364	Leucocyanidi ne	HO OH OH	Ephedra sp	Ephedraceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
365	Méthyléphédr ine	I.O	Ephedra sp	Ephedraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
366	Noréphédrine	H - N - H	Ephedra sp	Ephedraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
367	(+)-N- Méthylpseud oéphédrine	OH N	Ephedra sp	Ephedraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
368	Leucocianido 1	HO OH OH OH	Ephedra sp	Ephedraceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
369	Leucopélargo nidine	HO OH OH	Ephedra sp	Ephedraceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
370	Phtalate de butyle et d'octyle	~.02	Ephedra sp	Ephedraceae		SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
371	Stigmastérol	n H	Ephedra sp	Ephedraceae	Terpène	SARS-	Inhibiteur de	In silico	2020	Chine, Bangladesh,	(83, 138,
3/1	oughuster01	HO	Prunus dulcis	Rosaceae	Terpene	CoV-2	3CLpro, l'ACE2	In smco	2021	Egypte Egypte	160)

			Tinospora crispa	Menispermaceae							
			Calendula officinalis	Asteraceae							
372	Cianidanol	OH	Ephedra sp	Ephedraceae	Polyphénol	SARS-	Inhibiteur de	In silico	2020	Chine	(83)
	C	НО	Prunus dulcis	Rosaceae	(Flavonoïde)	CoV-2	3CLpro et l'ACE2	277 00000	2020	Cimic	(3-7)
373	Sitostérol	HO HO	Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro et l'ACE2	In silico	2020	Chine	(83)
374	Cholestérol	HO	Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro et l'ACE2	In silico	2020	Chine	(83)
375	Amygdaline	OH HO O O O O O O O O O O O O O O O O O	Semen Armeniacae Amarum	Rosaceae	Hétéroside cynaogène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2, protéine S	In silico	2020 2021	Chine, Inde, Argentine	(23, 83, 98, 104)
376	Acide 11,14- eicosadienoïq ue	# H H H	Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)

377	Glycérol	НООН	Prunus dulcis	Rosaceae		SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
378	(E,E,E,E)- Squalène		Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
379	Ziziphine		Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
380	α-spinastérol		Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
381	Licochalcone B	HO O OH	Prunus dulcis	Rosaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
382	Liquiritine	HO OH OH OH	Prunus dulcis Glycyrrhiza glabra	Rosaceae Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2, protéine S	In silico	2020 2021	Chine, Inde	(83, 102, 107)
383	Glabridine		Prunus dulcis	Rosaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
384	Phaséol	н о С о с о с о с о с о с о с о с о с о с	Prunus dulcis	Rosaceae	(1.2.3.0100)	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)

385	11-Acide eicosénoïque	HO H	Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
386	(R)- coclaurine		Prunus dulcis	Rosaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
387	Estrone	H O H	Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
388	Acide butanedioïque	H. 0 , H	Prunus dulcis	Rosaceae	Terpène	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
389	l-Stépholidine		Prunus dulcis	Rosaceae	A lcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro, l'ACE2	In silico	2020	Chine	(83)
390	Hemanthamin e		Lycoris radiate	Amaryllidaceae	Alcaloïde	SARS- CoV-2		In silico	2020	Inde	(128)
391	Thalimonine		Thalictrum simplex	Renunculaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2020	Inde	(128)
392	5-alpha- Hydroxysoph ocarpine	D I I I I I I I I I I I I I I I I I I I	Sophora flavescens	Fabaceae	Alcaloïde	SARS- CoV-2		In silico	2020	Inde	(128)
393	Hippeastrine	O H	Lycoris radiate	Amaryllidaceae	Alcaloïde	SARS- CoV-2	_	In silico	2020	Inde	(128)

394	Hirsutine		Uncaria rhynchophylla	Rubiaceae	Alcaloïde	SARS- CoV-2	_	In silico	2020	Inde	(128)
395	Skimmianine	N	Zanthoxylum nitidum	Rutaceae	Alcaloïde	SARS- CoV-2	_	In silico	2020	Inde	(128)
396	13- Methoxydihy dronitidine		1	1	Alcaloïde	SARS- CoV-2	_	In silico	2020	Inde	(128)
397	Sophaline D	=======================================	Sophora alopecuroides	Fabaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2020	Inde	(128)
398	Tomatidine		1	1	Alcaloïde	SARS- CoV-2	_	In silico	2020	Inde	(128)
399	Emetine		Pyschotria ipecacuanha Cephaelis ipecacuanha	Rubiaceae	Alcaloïde	SARS- CoV-2	Inhibiteur des ribosome de l'hôte, RdRp et la protéine N	In silico In vitro	2020 2021	Inde, Chine	(103, 128, 151)
400	11-Hydroxy Vittatine		-	-	Alcaloïde	SARS- CoV-2	_	In silico	2020	Inde	(128)
401	Homonojirim ycin	H 0 H 0 H	Omphalea diandra	Euphorbiaceae	Alcaloïde	SARS- CoV-2		In silico	2020	Inde	(128)

			Commelina communis	Commelinaceae							
402	Aloperine		Sophora sp	Fabaceae	Alcaloïde	SARS- CoV-2	1	In silico	2020	Inde	(128)
403	Dendrobine	H H	Dendrobium nobile	Orchidaceae	Alcaloïde	SARS- CoV-2		In silico	2020	Inde	(128)
404	Atropine	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı	ı	Alcaloïde	SARS- CoV-2	1	In silico	2020	Inde	(128)
405	Vasicine	N N O · H	Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Inde	(89, 180)
406	Bétaïne	, o.	Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro et l'ACE2	In silico	2021	Inde	(89)
407	Choline	N O H	Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Inde	(89)
408	Lutéoline-6- C-arabinosid	H 0 H 0 H 0 H	Justicia adhatoda	Acanthaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de NSP14	In silico	2021	Inde	(89)
409	Lutéoline-6- C- glucoside	H 0 0 H 0 H 0 H	Justicia adhatoda	Acanthaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, Nsp 14, TMPRSS2	In silico	2021	Inde	(89)

410	Lutéoline-6C- glucoside-8C- arabinoside		Justicia adhatoda	Acanthaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, Plpro	In silico	2021	Inde	(89)
411	Lutéoline-6- 8-di-C- arabinoside		Justicia adhatoda	Acanthaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur d'ACE2, protéine S, TMPRSS2	In silico	2021	Inde	(89)
412	Kaempférol- 3-O- rutinoside		Justicia adhatoda	Acanthaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de 3CLpro, Nsp 14, Nsp 16, RdRp	In silico	2021	Inde	(89)
413	Zingiberène		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(113)
414	Diacétylcurcu mine		Withania somnifera	Solanaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(113)
415	Apiine	****	Withania somnifera	Solanaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(113)
416	Rosmarinate de méthyle		Withania somnifera	Solanaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(113)
417	Myricitrine	H. 0 H. 0	Withania somnifera	Solanaceae	Polyphénol	SARS-	Inhibiteur de Mpro	In silico	2021	Inde	(90, 113)
417	Myneiune	H.O. H.O. H.O. H.O.	Myrica penssylvanica	Myricaceae	(Flavonoïde)	CoV-2	minoneur de Mipro	in suico	2021	muc	(70, 113)

418	22- Hydroxyhopa n-3-one		Cassia siamea	Fabaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde, Nigéria	(90, 137)
419	Oolonghomo bisflavan-A		Thé oolong	Theaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(90)
420	Theasinensin e-D	H O H O H O H O H	Thé oolong Thé noir	Theaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(90)
421	Quercétine 3- vicianoside		_	-	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(90)
422	Deacétylcenta picrine		Swertia macrosperma	Gentianaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(90)
423	Lignane	CH ₀			Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(90)
424	Cyanidine	HO OH OH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro, RdRp, protéine S	In silico	2020 2021	Algérie, Inde	(54, 120)
425	Cyanidine 7- arabinoside	0	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)

426	cyanidine- 3- arabinoside	H5	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
427	cyanidine-3- O-glucoside	HO OH HO OT OH	La mûre	Rosaceae	Polyphénol (Anthocyane	SARS- CoV SARS- CoV-2	Inhibiteur de la Mpro, Plpro	In silico In vitro	2021	Inde, Egypte, Australie	(76, 77, 126)
428	Cyanidine 3,5- diglucoside	HO OH OH OH	_	_	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteurs de la Mpro	in silico	2020	Inde	(82)
429	Chrysophanol	OH O OH	Isatis indigotica	Brassicaceae	Polyphénol (Anthraquin	SARS- CoV	Inhibiteur de Mpro	In silico	2020	Inde, Congo	(122, 181)
42)	Сшузорнаног		Aloe vera	Xanthorrhoeacea e	one)	SARS- CoV-2	minoreur de Mipro	In suico	2020	inac, congo	(122, 101)
430	Aloeémodine		Isatis indigotica	Brassicaceae	Polyphénol	SARS- CoV	Inhibiteur de Mpro	In silico	2020	Inde, Congo	(122, 181)
430	Aloeemodine	OH O OH	Aloe vera	Xanthorrhoeacea e	(Anthraquin one)	SARS- CoV-2	minoneur de Mipro	т ѕшсо	2020	inde, Congo	(122, 181)
431	Aloïne	OH OH	_	_	Polyphénol (Anthraquin one)	SARS- CoV-2	Inhibiteur de la protéine S, RdRp	In silico	2021	Argentine, Inde	(66, 98)
432	Aloïne A		Aloe vera	Xanthorrhoeacea e	Polyphénol (Anthraquin one)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)

433	Aloïne B		Aloe vera	Xanthorrhoeacea e	Polyphénol (Anthraquin one)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)
434	IsoAloérésine		Aloe vera	Xanthorrhoeacea e	Polyphénol (Anthraquin one)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)
435	Aloérésine		Aloe vera	Xanthorrhoeacea e	Polyphénol (Anthraquin one)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)
436	7-O- méthylAloéré sine		Aloe vera	Xanthorrhoeacea e	Polyphénol (Anthraquin one)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)
437	Mangiférine	HO OH OH OH	Mangifera indica	Anacardiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de complexe Nsp10- Nsp16, Mpro et TMPRSS2	In silico In vitro	2020 2021	Inde, Nigéria, Corée	(53, 55, 66, 135)
		V	Prosopis glandulosa	Fabaceae		SARS-					
438	Acide oléanolique	OH OH	Nuxia sphaerocephala	Stilbacées	Terpène	CoV MERS- CoV SARS-	Inhibiteur de RdRp, 3CLpro	In silico	2021	Inde, Nigéria, Égypte	(103, 137, 138)
		no ∧Ĥ '	Calendula officinalis L	Asteraceae		CoV-2					
439	10- Hydroxyusam barensine	T Z Z Z	Strychnos usambarensis	Loganiaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro, RdRp, TMPRSS2, l'ACE2, protéine S	In silico	2020 2021	Nigeria	(137, 158, 159)

440	Strychnopent amine	HO H. T.	Strychnos usambarensis	Loganiaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro, RdRp, TMPRSS2, 1'ACE2, protéine S	In silico	2020 2021	Nigeria	(137, 158, 159)
441	Isostrychnope ntamine	"0 " " " " " " " " " " " " " " " " " "	Strychnos usambarensis	Loganiaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro, TMPRSS2, 1'ACE2, protéine S	In silico	2020 2021	Nigeria	(137, 158)
442	Camptothécin e		Camptotheca acuminata	Nyssaceae	Alcaloïde	SARS- CoV MERS- CoV SARS-	Inhibiteur de 3CLpro, RdRp, TMPRSS2, 1'ACE2, protéine S	In silico	2020 2021	Nigeria, Inde	(158, 182)
		но о	Ophiorrhiza mungos	Rubiaceae		CoV-2	TACE2, proteine 3				
443	Sinigrine	HO OH OF SEC	Isatis indigotica	Brassicaceae	Polyphénol	SARS- CoV SARS- CoV-2	Inhibiteur de Mpro	In silico	2020	Inde	(122)
444	Indirubine	IZ S	Isatis indigotica	Brassicaceae	Alcaloïde	SARS- CoV	Inhibiteur de Mpro	In silico	2020	Inde	(122)
445	Indicane	HO OH NA	Isatis indigotica	Brassicaceae	Hétéroside	SARS- CoV	Inhibiteur de Mpro	In silico	2020	Inde	(122)
446	Vasicoline		Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(180)

447	Vasicolinone		Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, l'ACE2	In silico	2021	Inde	(118, 180)
448	Vasicinone	N N O -H	Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(180)
449	Adhatodine		Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(180)
450	Anisotine		Justicia adhatoda	Acanthaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2021	Inde	(118, 180)
451	Phlorétine	ОН О	_	Ī	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2020 2021	Inde	(54, 65)
452	Acide nordihydrogu aïarétique		-	Ī	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(65)
453	Gallate de propyle	HO OH	Camellia sinensis	Theaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(65)
454	Apigénine-7- O- glucoronide		Eucalyptus globulus	Myrtaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro, l'ACE2, RdRp, protéine S	In silico	2021	Inde	(118)

455	Eudesmol	ОН	Vitex negundo	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro, RdRp	In silico	2021	Inde	(118)
456	Viridiflorène	T H	Vitex negundo	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro, l'ACE2	In silico	2021	Inde	(118)
457	Murrayanine	1. Z	_	l	Alcaloïde	SARS- CoV-2	Inhibiteur de protéine E	In silico	2021	Inde	(66)
458	Murrayaquin one-A	H. S	_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de Nsp9, protéine S	In silico	2021	Inde	(66)
459	1- phényléthanet hiol	S.H		1		SARS- CoV-2	Inhibiteur Nsp2	In silico	2021	Inde	(66)
460	Caféstol	0 H	_	_	Terpène	SARS- CoV-2	Inhibiteur de PLpro	In silico	2021	Inde	(66)
461	Embeline			1	Polyphénols (Quinone)	SARS- CoV-2	Inhibiteur de complexe Nsp7- Nsp8	In silico	2021	Inde	(66)
462	Withanolide N	O H	_	_	Terpène	SARS- CoV-2	Inhibiteur de Nsp4	In silico	2021	Inde	(66)
463	7,4'-di-O- galloyltricetif avan	H ₀ O _H H ₀ O _H	Pithecellobium clypearia	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de RdRp	In silico	2021	Inde	(103)

464	Chrysopenam ine		Strychnos usambarensis	Loganiaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec 1'ACE2, 3CLpro, TMPRSS2, protéine S	In silico	2020 2021	Nigeria	(137, 158)
465	Jozipeltine A		Triphyophyllum peltatum	Dioncophyllacea e	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, 3CLpro, TMPRSS2, protéine S	In silico	2020 2021	Nigeria	(137, 158)
466	Annonidine F		Monodora angolensis	Annonaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, 3CLpro, TMPRSS2, protéine S	In silico	2020 2021	Nigeria	(137, 158)
467	Atalaphylline	" o " o " o " o " o " o " o " o " o " o	Atalantia monophylla Corrêa	Rutaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, TMPRSS2, protéine S	In silico	2020	Nigeria	(158)
468	Coptisine		Corydalis saxicola	Papaveraceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, TMPRSS2, protéine S	In silico	2020	Nigeria	(158)
469	Déhydroapoc avidine	0 2	Corydalis saxicola	Papaveraceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, TMPRSS2, protéine S	In silico	2020	Nigeria	(158)

470	Alstonine	O H	Fagara zanthoxyloides	Rutaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, 3CLpro, TMPRSS2, protéine S	In silico	2020 2021	Nigeria	(137, 158)
471	5'- O - Déméthyl- dioncophyllin e A		Triphyophyllum peltatum	Dioncophyllacea e	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, 3CLpro, TMPRSS2, protéine S	In silico	2020 2021	Nigeria	(137, 158)
472	Liriodénine		Glossocalyx brevipes	Siparunaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, 3CLpro, TMPRSS2, protéine S	In silico	2020 2021	Nigeria	(137, 158)
473	Lanuginosine		Magnolia grandiflora	Magnoliaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, TMPRSS2, protéine S	In silico	2020	Nigeria	(158)
474	Ancistrocladi dine		Rhigiocarya racemifera	Menispermaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, TMPRSS2, protéine S	In silico	2020	Nigeria	(158)
475	Dioncophylli ne A	O H	Triphyophyllum peltatum	Dioncophyllacea e	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, 3CLpro, TMPRSS2, protéine S	In silico	2020 2021	Nigeria	(137, 158)

476	Dioncophylli ne B	0 H 0 N H	Triphyophyllum peltatum	Dioncophyllacea e	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Interaction avec l'ACE2, RdRp, TMPRSS2, protéine S	In silico	2020	Nigeria	(158, 159)
477	Dioncophylli ne C	H H	Triphyophyllum peltatum	Dioncophyllacea e	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
478	5,6- Dihydronitidi ne		Toddalia asiatica	Rutaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
479	Normelicopic ine	N N N N N N N N N N N N N N N N N N N	Teclea trichocarpa	Rutaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
480	Fagaronine		Fagara zanthoxyloides	Rutaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
481	Ancistrotanza nine C	, iii	Ancistrocladus tanzaniensis	Acistrocladaceae	Alcaloïde	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)

482	6- Oxoisoiguest érine		_	_	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
483	Isoiguestérine	I I I I I I I I I I I I I I I I I I I	_		Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
484	20- Epi- isoiguesterino l	N O O O O O O O O O O O O O O O O O O O	I		Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
485	20- Epi acide bryonolic	A H	Cogniauxia podolaena	Cucurbitaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
486	3-Oxolupénal (3-oxolup- 20(29)-en-30- al)	12	Nuxia sphaerocephala	Loganiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
487	Acide 2,3 ,19 -Trihydroxy- urs-12-20-en- 28-oïque		Kigelia africana	Bignoniaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)

488	3-Oxolupénol (30- hydroxylup- 20(29)-en-3- one)	HO CH ₃	Nuxia sphaerocephala	Loganiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
489	3- O -acide bétulinique p -coumarate		Baillonella toxisperma	Sapotaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
490	Isoiguesterino l	H O H O			Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
491	3- Benzoylhoslo ppone		Hoslundia opposita	Lamiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
492	7 -Acétoxy- 6,12- dihydroxy- abieta-8,12- Diène-11,14- dione		Plectranthus hadiensis	Lamiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
493	Acide cryptobéiliqu e C	H H H H	Beilschmiedia cryptocaryoides	Lauraceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)

494	3 - Hydroxylupé nal (3 - hydroxylup- 20(29)-en-30- al)		Nuxia sphaerocephala	Loganiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
495	3- Friedelanone	I I I I I I I I I I I I I I I I I I I	Hypericum lanceolatum	Hypericaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
496	11-Hydroxy- 19-(4- hydroxy- benzoyloxy)- abieta-5, 7,9(11),13- tétraène-12- one		Plectranthus purpuratus	Lamiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
497	11-Hydroxy- 19-(3,4- dihydroxyben zoyloxy)- abieta-5, 7,9(11),13- tétraène-12- one	AC CIB ON CIB	Plectranthus purpuratus	Lamiaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
498	3-Hydroxy- 20(29)-lupen- 28-ol		Schefflera umbellifera	Araliaceae	Terpène	SARS- CoV MERS- CoV SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2021	Nigeria	(137)
499	Hyperoside		Neem	Meliaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde, Chili	(57, 63)

500	Nimbaflavon e		Neem	Meliaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(63)
501	6-gingérol		Zingiber officinale	Zingiberaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2020 2021	Inde, Egypte, Inde	(63, 85, 91)
			Zingiber officinale	Zingiberaceae		SARS-	Inhibiteur de		2020		(63, 85,
502	6-shogaol	H ₃ CO H ₃ C	Sitharathai (Alpinia Officinarum)	Zingiberaceae	Polyphénol	CoV-2	Mpro, Nsp 1	In silico	2021	Inde, Egypte	106)
503	6-paradol		Zingiber officinale	Zingiberaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(63)
504	Hederin		Nigella sativa	Renonculaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(63)
505	Diacétate d'acide échinokystiqu e		Luffa cylindrica	Cucurbitaceae		SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(63)
506	Ajoene	E S S S	Allium sativum	Amaryllidaceae	Composé organo- sulfuré	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(63)
507	Allicine	0=5	Allium sativum	Amaryllidaceae	Composé organo- sulfuré	SARS- CoV-2	Inhibiteur de Mpro, Nsp 15, protéine S	In silico	2021	Inde	(52, 63, 107)

508	Pipérine		Piper nigrum	Piperaceae	Alcaloïde	SARS-	Inhibiteur de Mpro, réduire des	In silico	2020	Inde, Egypte,	(63, 81,
	1		Glycyrrhiza glabra	Fabaceae		CoV-2	cytokines		2021	Chine	85, 102)
509	Acide salvianolique A		Salvia miltiorrhiza Salvia officinalis	Lamiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de l'entrée de virus (ACE2), Mpro	In silico	2020 2021	Chine, Egypte	(85, 183)
510	Acide salvianolique B	HO OH OH OH	Salvia miltiorrhiza Salvia officinalis	Lamiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de l'entrée de virus (ACE2), Mpro	In silico	2020 2022	Chine, Egypte, Allemagne	(68, 85, 183)
511	Acide salvianolique C		Salvia miltiorrhiza	Lamiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de l'entrée de virus (ACE2)	In silico	2021	Chine	(183)
512	Crocetine		Crocus sativus	Iridaceae	Terpène	SARS- CoV-2	_	In silico	2020	Egypte	(85)
513	Picrocrocine		Crocus sativus	Iridaceae	Hétéroside	SARS- CoV-2	_	In silico	2020	Egypte	(85)

514	Mahanine	" "	Murraya koenigii	Rutaceae	Alcaloïde	SARS- CoV-2		In silico	2020	Egypte	(85)
515	Capsanthine	of the Kenterline	Capsicum annum	Solanaceae		SARS- CoV-2		In silico	2020	Egypte	(85)
516	Capsaïcine	H	Capsicum annum	Solanaceae	Alcaloïde	SARS-	Inhibiteur de	In silico	2020	Egypte, Inde	(85, 102)
310	Cupsulenie	"	Glycyrrhiza glabra	Fabaceae	Tituloide	CoV-2	3CLpro	Th state	2021	Egypte, mae	(65, 162)
517	Carnosol	2	Rosmarinus officinalis	Lamiaceae	Terpène	SARS- CoV-2	Interaction avec de Nsp15	In silico	2020 2021	Egypte, Inde	(52, 85)
518	Girinimbine	2-1	Murraya koenigii	Rutaceae	Alcaloïde	SARS- CoV-2		In silico	2020	Egypte	(85)
519	Acide carnosique	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rosmarinus officinalis	Lamiaceae	Polyphénol	SARS- CoV-2	_	In silico	2020	Egypte	(85)
520	Marliolide	H O H	Cinnamomum verum	Lauraceae		SARS- CoV-2	_	In silico	2020	Egypte	(85)
521	Zingérone		Zingiber officinale	Zingiberaceae	Polyphénol	SARS- CoV-2	_	In silico	2020	Egypte	(85)

522	Acétyle eugénol	H ₈ C O OCH ₃	Zingiber officinale	Zingiberaceae	Polyphénol	SARS- CoV-2	_	In silico	2020	Egypte	(85)
523	Thymoquinon e	•	Nigella sativa	Renonculaceae	Polyphénol	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2020 2021	Egypte, Chine/pakistan	(85, 111)
524	Safranale	H ₃ C CH ₃ O H	Crocus sativus	Iridaceae	Terpène	SARS- CoV-2		In silico	2020	Egypte	(85)
525	S-Allyl cysteine	OH NH ₂	Allium sativum Allium cepa	Amaryllidaceae	Alcaloide	SARS- CoV-2	Inhibiteur de la 3CLpro et RdRp	In silico	2020 2021	Egypte, Chine/pakistan	(85, 111)
526	Di-allyl trisulfide	\$\s\\^\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Allium sativum Allium cepa	Amaryllidaceae		SARS- CoV-2		In silico	2020	Egypte	(85)
527	Dipropyl disulfide	H ₃ C^S\ _S ^CH ₃	Allium sativum Allium cepa	Amaryllidaceae		SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2020 2021	Egypte, Chine/pakistan	(85, 111)

528	Di-allyl disulfide	S-S-S	Allium sativum Allium cepa	Amaryllidaceae		SARS- CoV-2	—	In silico	2020	Egypte	(85)
529	Dipropyl sulfide	\\\\ \$	Allium sativum Allium cepa	Amaryllidaceae		SARS- CoV-2		In silico	2020	Egypte	(85)
530	Di-allyl sulfid	S∕√	Allium sativum Allium cepa	Amaryllidaceae		SARS- CoV-2		In silico	2020	Egypte	(85)
531	Cyanidine 3- rutinoside			-	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)
532	Pélargonidine	HO OH OH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro, RdRp et protéine S	In silico	2020 2021	Algérie, Inde	(54, 120)
533	Pélargonidine 3-Galactoside Ion		Senna alexandrina	Fabaceae		SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Chine/Pakistan	(111)

534	Pélargonidine 3-rhamnoside	HO OH OH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
535	Pélargonidine -3-O-beta-D- glucoside		Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2020 2021	Algérie, Egypte	(120, 126)
536	Pelargonidine -3-glucoside		Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
537	Cyanidin 3- O-[200-O- (xylosyl) glucoside] 5- O-(600-O- malonyl) glucoside		_	_	Polyphénol (Anthocyane)	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)
538	Delphinidin 3- sambudigluco side		_	_	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)
539	Protocyanine		_	_	Polyphénol (Anthocyane)	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)
540	Gentiodelphi ne		Gentiana makinoi	Gentianaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)
541	Phacelianine		Phacelia campanularia	Hydrophyllaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)

542	Cyanodelphin e		Delphinium hybridum	Renunculaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)
543	Tecophiline	25:00-105 25 25 25 25 25 25 25 25 25 25 25 25 25	Delphinium hybridum	Renunculaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de 3CLpro	In silico	2020	Egypte	(126)
544	2 S - sambunigrine	HO OH ON H	Carica papaya	Caricaceae	Hétéroside cynogènes	SARS- CoV-2	Inhibiteur de 3CLpro, PLpro, RdRp	In silico	2021	Indonésie, Argentine	(51, 98)
545	5,7- diméthoxyco umarine		Carica papaya	Caricaceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro, PLpro, RdRp	In silico	2021	Indonésie	(51)
546	Anthraquinon e		Carica papaya	Caricaceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro, PLpro, RdRp	In silico	2021	Indonésie	(51)
547	Acide p- coumarique	""	Carica papaya	Caricaceae	Polyphénol	SARS- CoV-2	Inhibiteur de 3CLpro, PLpro, RdRp	In silico	2021	Indonésie	(51)
548	1,2-o- isopropylidèn e-bêta-l- idofuranuron o-6,3-lactone	HIII OH	Glycyrrhiza glabra	Fabaceae		SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(102)
549	1_2_acide benzènedicar boxylique_est er bis(2méthylpr opylique)	→ HO HO	Glycyrrhiza glabra	Fabaceae		SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(102)

550	Benzèneprop anoïque_acid e, _3,5- bis(1,1- diméthyléthyl)-4-hydroxy	н •	Glycyrrhiza glabra	Fabaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(102)
551	Licochalcone D		Glycyrrhiza glabra	Fabaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(102)
552	Sarsasapogén ine		_	-	Teprène	SARS- CoV-2	Interaction avec Nsp15	In silico	2021	Inde	(52)
553	Aranotine		_	_	Alcaloïde	SARS- CoV-2	Interaction avec Nsp15	In silico	2021	Inde	(52)
554	Ajmalicine	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	Alcaloïde	SARS- CoV-2	Interaction avec Nsp15	In silico	2021	Inde	(52)
555	Silymarine	HO 0 HO 0 HO		_	Polyphénol (Flavonoïde)	SARS- CoV-2	Interaction avec Nsp15	In silico	2021	Inde	(52)
556	Taspine			_	Alcaloïde	SARS- CoV-2	Interaction avec Nsp15	In silico	2021	Inde	(52)
557	Carinatine	" " " " " " " " " " " " " " " " " " " "	_	_	Alcaloïde	SARS- CoV-2	Interaction avec Nsp15	In silico	2021	Inde	(52)
558	Sésamine	H H	Sesamum indicum	Pedaliaceae	Polyphénol (Lignane)	SARS- CoV-2	Interaction avec la protéase virale	In silico	2020	Thaïlande	(114)

559	Cucurbitacine K	" " " " " " " " " " " " " " " " " " " "	Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
560	Cucurbitacine G2 glucoside		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, Mpro, RdRp et Nsp12	In silico	2020	Inde	(184)
561	Cucurbitacine J		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
562	Cucurbitacine H	" o o o o o o o o o o o o o o o o o o o	Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
563	Cucurbitacine F		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
564	Cucurbitacine P		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
565	Cucurbitacine O		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)

566	Cucurbitacine Q		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
567	Cucurbitacine D		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
568	Cucurbitacine E		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
569	Cucurbitacine B	"" ""	Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
570	Cucurbitacine A	" o o o o o o o o o o o o o o o o o o o	Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
571	Cucurbitacine L	0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
572	Cucurbitacine C		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)

573	Cucurbitacine S	HO H H O OH	Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
574	Cucurbitacine I		Cucurbita pepo	Cucurbitaceae	Terpène	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires, RdRp et Nsp12	In silico	2020	Inde	(184)
575	Extraits de Cannabis sativa	_	Cannabis sativa	Cannabaceae	_	SARS- CoV-2	Inhibiteur de la production des cytokines inflammatoires	In silico	2021	Canada	(185)
576	Eucalyptol	CH, CH,	Eucalyptus globulus	Myrtaceae	Terpène	SARS- CoV-2	Inhibition de la réplication virale (Mpro)	In silico	2020 2021	Inde	(142, 143)
577	Thymol	н •	_	_	Polyphénol	SARS- CoV-2	inhibiteur de la réplication virale	In silico	2020	Inde	(142)
578	Carvacrol	н о	1	1	Polyphénol	SARS- CoV-2	inhibiteur de la réplication virale	In silico	2020	Inde	(142)
579	Quercétine-3- rutinoside-7- glucoside		Withania somnifera	Solanaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(92)
580	Acide isochlorogéni que B		Withania somnifera	Solanaceae	Polyphénol	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(92)

581	Forsythiaside		Forsythiae Fructus	Oleaceae	Polyphénol	SARS- CoV-2	_		2020	Chine	(104)
582	Tamarixétine	HO OH OCH	-	_	Polyphénols (Flavonoïdes)	SRAS- CoV-2	Inhibiteur de l'ACE2	In vitro	2020	Chine	(67)
583	Acide 3,4- dihydroxyphé nylacétique	но он		_	Polyphénols	SRAS- CoV-2	Inhibiteur de l'ACE2	In vitro	2020	Chine	(67)
584	Nicotianamin e	HO OH O	_	_		SRAS- CoV-2	Inhibiteur de l'ACE2	In vitro	2020	Chine	(67)
585	Columbine	H. OH	Tinospora cordifolia	Menispermaceae	Terpène	SARS- CoV-2	inhibiteurs de TMPRSS2 et la Mpro	In silico	2021	Inde	(123, 175)
			Les graines de litchi	Sapindaceae							
586	Proanthocyan	HO OH OH	Aesculus hippocastanum	Sapindaceae	Polyphénol	SARS-	Inhibiteur de TMPRSS2,	In silico	2020	Algérie	(82, 120,
300	idine A2	но он	Crataegus sinaica	Rosaceae	(Tanin)	CoV-2	3CLpro et la protéine S	in suico	2021	Inde	123)
			Baies	Rosaceae							

		QСН ₃	Enantia chlorantha	Annonaceae							
587	Jatrorrhizine	H ₃ CO OH	Tenospora cardifolia	Menispermaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
		OCH₃	Mahonia aquifolium	Berberidaceae							
588	Baicaléine	HO OH O	Scutellaria baicalensis	Lamiaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de TMPRSS2, Mpro et RdRp	In silico	2020 2021	Inde	(23, 54, 56, 123)
			Feuilles d' Azadiracta indica	Meliaceae							
589	Tétratriaconta	CH ₃	Plectranthus amboinicus	Lamiaceae	alcanes	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
	ne	13000	Calligonum polygonoides	Polygonaceae		C0 V-2	TWIF KSS2				
			Crateva adansonii	capparaceae ·							
590	Fisétine	HO OH OH	Fragaria ananassa	Rosaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de TMPRSS2 et RdRp	In silico	2020 2021	Inde	(54, 123)

591	3,4- dichloroisoco umarine	000	écorce de Cinnamomum verum	Lauraceae	Polyphénol (Coumarine)	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
592	4- Amidinobenz ylsulfonyl fluoride hydrochloride	P HCI NH ₂	Les graines de litchi	Sapindaceae	1	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
593	Aesculitannin B	01 01 01 01 01 01 01 01 01 01 01 01 01 0	Les graines de litchi	Sapindaceae	Polyphénol	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
594	Ecdystérone	HO HO OH	Tinospora cardifolia	Menispermaceae	Terpène	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
595	Magnoflorine	H ₃ C H ₃ H ₄ C H ₃	Tinospora cardifolia	Menispermaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
596	Ciscapsaïcine	HO NH	Capsicum baccatum	Solanaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
597	Dihydrocapsa ïcine	HO H N	Capsicum baccatum	Solanaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(123)
598	Topotécan	CH ₃ CH ₃ CH ₃ CH ₃	_	_	Alcaloïde	SARS- CoV-2	Inhibiteurs des Mpro et RdRp	In silico	2021	Inde	(182)
599	Irinotécan		_	_	Alcaloïde	SARS- CoV-2	Inhibiteurs des Mpro et RdRp	In silico	2021	Inde	(182)

600	Élénolate de calcium		Olea europeae L	Oleaceae		SARS- CoV-2	Inhibiteur de l'ACE2 et la 3CLpro	In silico	2021	Chine/Pakistan	(111)
601	Monoterpène	н	Zingiber officinale Rosc	Zingibéraceae		SARS- CoV-2	Inhibiteur de l'ACE2, 3CLpro et RdRp	In silico	2021	Chine/Pakistan	(111)
602	Trans-3-(4- Hydroxy- 3methoxyphe nyl) acrylic anhydride	, , , , , , , , , , , , , , , , , , ,	Corchorus olitorius L	Tiliaceae	Polyphénol	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
603	Corchoionosi de A	HO" OH OH HO"	Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
604	Corchoionosi de B	OH OH OH	Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
605	Corchoionosi de C	HO, OH	Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
606	Corchoroside A	3 + + 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =	Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
607	Corchoroside B	HO JOH OH JOH	Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
608	Corchorusosi de A		Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)

609	Corchorusosi de B	HO	Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
610	Corchorusosi de C		Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2021	Algérie	(80)
611	Strophanthidi	=======================================	Corchorus olitorius L	Tiliaceae	Terpène	SARS- CoV-2	Inhibiteur de	In silico	2020 2021	Algérie	(80, 160)
	ne	HO OH OH	Tinospora crispa	Menispermaceae	·	C0V-2	l'ACE2 et la Mpro		2021	Bangladesh	
612	Malvidine	HO CH ₀ OH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro, protéine S et RdRp	In silico	2020 2021	Inde, Algérie	(54, 120)
613	Vitisidine A	HO 0H 0H 0H 0H 0H	Baies	Rosaceae	Polyphénol (Anthocyane)	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
614	Péonidine	OCH	Baies	Rosaceae	Polyphénol (Anthocyane)	SARS- CoV-2	Inhibiteur de la 3CLpro, protéine S et RdRp	In silico	2020 2021	Inde, Algérie	(54, 120)
615	Rosinidine	H ³ C·OHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
616	Tricétanidine	но он он	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)

617	Malvidine-3- glucoside	OCH ₃ OH OH OH OH OH OH OH OH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
618	Procyanidine B2	NO 0H OH OH	Baies	Rosaceae	Polyphénol (Anthocyane	SARS- CoV-2	Inhibiteur de la 3CLpro et protéine S	In silico	2021	Algérie	(120)
619	Homoorientin e	HO OH OH OH	1	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la 3CLpro	In silico	2020	Allemagne	(68)
620	Orientine	OH OH OH	_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la protéine S et la Mpro	In silico	2020 2021	Inde, Chili	(23, 57)
621	Proanthocyan idine	OH OH OH OH	1	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la 3CLpro	In silico	2020	Allemagne	(68)
622	9-dihydroxyl- 2-O-(z)- cinnamoyl-7- méthoxy- Aloesin		Aloe vera	Xanthorrhoeacea e	Polyphénols	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)
623	Elgonica dimère A	***	Aloe vera	Xanthorrhoeacea e	Polyphénols	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)
624	Féralolide		Aloe vera	Xanthorrhoeacea e	Polyphénols	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2020	Congo	(181)
625	Ébenfurane VIII	HO	Onobrychis ebenoides	Fabaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Pakistan	(154)

626	Paulownione s A	HO OH	Paulownia tomentosa	Paulowniaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Pakistan	(154)
627	Brevicornine	NO DE LA COLONIA	1	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Pakistan	(154)
628	Schizolaénon e B			_		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Pakistan	(154)
629	Prééruptorine B		-	I		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Pakistan	(154)
630	Atranorine	H O O O O O O O O O O O O O O O O O O O	_	_		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Pakistan	(154)
631	Candibirine H	HO" OCH3	Heracleum candicans Mur	Apiaceae		SARS- CoV-2	Inhibition des 3CLpro,PLpro,Rd Rp,l'helicase	In silico	2021	Inde	(70)
632	Candibirine G	PO 10 10 10 10 10 10 10 10 10 10 10 10 10	Heracleum candicans Mur	Apiaceae		SARS- CoV-2	Inhibition des 3CLpro,PLpro,Rd Rp,l'helicase	In silico	2021	Inde	(70)
633	Hypéricine	OH O OH HO CH ₃ HO OH O OH	Hypericum perfo ratum L	Hypericaceae	Polyphénol (Anthraquin one)	SARS- CoV et SARS- CoV-2	Inhibition des 3CLpro,PLpro,Rd Rp,l'helicase, l'ACE2 et la protéine de pointe	In silico In vitro	2020 2021	Inde, Australie,	(70, 76, 77, 82)
634	Pseudohypéri cine	но	Hypericum perfo ratum L	Hypericaceae	Polyphénol (Anthraquin one)	SARS- CoV-2	Inhibition de la 3CLpro,PLpro,Rd Rp,l'helicase	In silico	2021	Inde	(70)

635	Kaempférol 3-glucoside 7-rhamnoside	HO OH OH	Acacia nilotica	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de l'ACE2 et la protéine de pointe	In silico	2021	Inde	(70)
636	Kaempférol7, 4'-diglucoside		Acacia nilotica	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de l'ACE2 et la protéine de pointe	In silico	2021	Inde	(70)
637	Tribuloside	HO OH O	Tribulus terrestris L	Zygophyllaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de l'ACE2 et la protéine de pointe	In silico	2021	Inde	(70)
638	Tribulosine		Tribulus terrestris L	Zygophyllaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de l'ACE2 et la protéine de pointe	In silico	2021	Inde	(70)
639	7-hydroxy- déshydrotrém étone	° → → → → H	Ageratina adenophora	Asteraceae		SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
640	7,10,11- trihydroxy déhydrotrémé tone	ОН	Ageratina adenophora	Asteraceae		SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
641	10-oxo-7- hydroxy- nordéhydrotré métone	o o o	Ageratina adenophora	Asteraceae		SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
642	2αméthoxy- 3β-méthyl-6- (acétyl-O- méthyl)-2,3- dihydrobenzo furane		Ageratina adenophora	Asteraceae		SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
643	5-b-glucosyl- 7-déméthoxy- encecaline (5GDE)	OH O	Ageratina adenophora	Asteraceae		SARS- CoV-2	Inhibition de la Mpro et l'ACE2	In silico	2021	Inde	(125)

644	8-hydroxy-8- b-glucosyl-2- carène	OH OH OH OH OH	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
645	Eupatorone		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
646	2-déoxo-2- (acétyloxy)- 9- oxoagéraphor one(DAOA)		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
647	9- oxoagérophor one (OA)	C	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
648	9-oxo-10,11- déhydro- agérophorone (ODA)		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
649	9β-hydroxy- agéraphorone		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
650	Muurol-4-en- 7-ol	Zillo	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
651	8-beta- hydroxy- 9,12- dehydroverbo cciolenten	Н	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
652	Eupatoranolid e	District Control of Co	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)

653	3- hydroxymuur ola-4,7 (11)- dien-8-one	HO	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
654	(+)- (5R,7S,9R,10 S)-2- oxocandinane -3,6(11)-dien- 12,7-olide (ODO)		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro et l'ACE2	In silico	2021	Inde	(125)
655	(+)-7,7'- bis[(5R,7R,9 R,10S)-2- oxocadinan- 3,6(11)-dien- 12,7-olide (BODO)		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro et l'ACE2	In silico	2021	Inde	(125)
656	(+)- (5R,7S,9R,10 S)-7- hydroxy- 7,12- épidioxycadin ane-3,6(11)- dien-2-one (HEDO)	Time mix	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
657	(-)- (5R,6R,7S,9R ,10S)- cadinane-3- ène-6,7-diol (CED)	T There was the state of the st	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)

658	(+)- (5S*,6R*,9R *,10S*)-5,6- dihydroxycan dinan-3-ène- 2,7-dionel	Hammer Ha	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
659	7- hydroxycandi nane-3-ène-2- one	Н	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
660	5,6- dihydroxy candinane-3- ène-2,7-dione	он он	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
661	2-acétyl- candinane- 3,6-diène-7- one		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
662	Candinane-3- ène-2,7-dione		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
663	Candinane- 3,6-diène-2,7- dione		Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
664	1,6- dihydroxy-1- isopropyl- 4,7-diméthyl- 3,4dihydrona phtalène- 2(1H)-one	OHOH	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)

665	(4R,5S)-4- Hydroxy-5- isopropyl-2- methyl-2- cyclohexehon e	······································	Ageratina adenophora	Asteraceae	Terpène	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
666	Acide néochlorogen ique (3- CQA)	HO WOH OH	Ageratina adenophora	Asteraceae	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
667	Acide cryptochlorog enique (4- CQA)	HO,, OH	Ageratina adenophora	Asteraceae	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
668	Ester méthylique de l'acide 5- O-trans-o- coumaroylqui nique	HOW HOW THE PARTY OF THE PARTY	Ageratina adenophora	Asteraceae	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
669	(1 R ,3 S ,4 S ,5 S)-3- [(E)-3-(3,4- dihydroxyphé nyl)prop-2- énoyl]oxy- 1,4,5- trihydroxycyc lohexane-1- carboxylate de méthyle	HOHO OH	Ageratina adenophora	Asteraceae	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In silico	2021	Inde	(125)
670	Macranthoine F	HO, OH, OH	Ageratina adenophora	Asteraceae		SARS- CoV-2	Inhibition de la Mpro et l'ACE2	In silico	2021	Inde	(125)

671	Macranthoine G	HO - CH - CH - CH	Ageratina adenophora	Asteraceae		SARS- CoV-2	Inhibition de la Mpro et l'ACE2	In silico	2021	Inde	(125)
672	Mélanges		Extrait d'ail noir	-	Polyphénols	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
673	Acide tannique		1	I	Polyphénols (Tannin)	SARS- CoV-2	Inhibition de la Mpro et la protéine S	In silico In vitro	2020 2021	Corée, Inde	(53, 82)
674	Puérarine	HO HO OH	_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de la Mpro et l'ACE2	In silico In vitro	2020 2021	Corée, Inde, Chine	(23, 53, 94)
675	Daidzeine	HO SO OH	-	I	Polyphénol (Flavonoïde)	SARS- CoV-2	réduire des cytokines, Inhibiteur de la Mpro et RdRp	In silico In vitro	2020 2021	Corée, Inde, Chine	(53, 54, 81)
676	Astragaline	HO OH OH HO OH	-	ı	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de la Mpro	In silico In vitro	2021	Chili, Corée	(53, 57)
677	Ampélopsine	HO OH OH	1	I	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
678	Ampélopsine- 4'- O -α- d - glucopyranosi de	HO CHO CHO	_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
679	Vitexine	HOO HO OH	_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)

680	Génistine	HISO OH OH OH	_	_	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
681	Quercétine- 4'- O -α- d - glucopyranosi de	HO HO OH	_	_	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
682	Déméthoxycu rcumine (DMC)	HO CH ₅	_	I	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
683	Bisdéméthox ycurcumine (BDMC)	но	_	Ī	Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
684	Mangiférine- (1- > 6)-α- d - glucopyranosi de	HRS HOW OH OH	_		Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
685	Icaritine	H ₃ C CH ₃	_		Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
686	Salicine	HW HO OH	_		Polyphénol	SARS- CoV-2	Inhibition de la Mpro	In vitro	2021	Corée	(53)
687	Pyrogallol	но он	_	.—	Polyphénol	SARS- CoV-2	Inhibition de la Mpro et RdRp	In silico In vitro	2020 2021	Corée, Inde	(53, 54)
688	Matrine	H, H, H	_	_		SARS- CoV-2	réduire des cytokines	In silico	2021	Chine	(81)

689	Paeoniflorine	HO OH OH	_	_		SARS- CoV-2	réduire des cytokines	In silico	2021	Chine	(81)
690	Atractylénoli de I	H CH ₃	-	1		SARS- CoV-2	réduire des cytokines	In silico	2021	Chine	(81)
691	Mélanine		-	ı		SARS- CoV-2	réduire des cytokines	In silico	2021	Chine	(81)
692	Aucubine	HO OH OH	-	ı	Terpène	SARS- CoV-2	réduire des cytokines	In silico	2021	Chine	(81)
693	Sinomenine	CH ₃ CH ₃ OH CH ₄ CH ₄	-	ı		SARS- CoV-2	réduire des cytokines	In silico	2021	Chine	(81)
694	Acide γ- aminobutyriq ue	H ₂ N OH	-	I		SARS- CoV-2	réduire des cytokines	In silico	2021	Chine	(81)
695	Usararoténoid e A		Milletia usaramensis ssp	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de RdRp	In silico	2020	Nigéria	(159)
696	12α épi- millettosine	X H	Milletia usaramensis ssp	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de RdRp	In silico	2020	Nigéria	(159)
697	24-Méthylène cycloarténol	Line of the contract of the co	Entandrophragm a angolense	Meliaceae	Terpène	SARS- CoV-2	Inhibiteur de RdRp	In silico	2020	Nigéria	(159)

698	Ekébérine C1		Ekebergia capensis	Zingiberaceae	Terpène	SARS- CoV-2	Inhibiteur de RdRp	In silico	2020	Nigéria	(159)
699	3-carène	H ³ C CH ⁵	Eucalyptus globulus Corymbia citrodora	Myrtaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro et la protéine S	In silico	2021	Inde	(107, 143)
700	o- cymene	H ₃ C — CH ₃	Eucalyptus globulus Corymbia citrodora	Myrtaceae	Terpène	SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(143)
701	Ginsénoside		Panax ginseng	Araliaceae	Terpène	SARS- CoV-2	Atténuer la coagulation et la tempête cytokinique	In vivo (souris)	2021	Corée	(186)
702	Rosmariquino ne		Salvia miltiorrhiza	Lamiaceae		SARS- CoV	Inhibiteurs des 3CL pro et PL pro	In vitro	2012	Corée	(155)
703	Racemoside A	なるなか	Asparagus racemosus	Asparagaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine S	In silico	2021	Inde	(171)
704	Ashwagandha nolide		Withania somnifera	Solanaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine S	In silico	2021	Inde	(171)

705	Racemoside C	****	Asparagus racemosus	Asparagaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine S	In silico	2021	Inde	(171)
706	Ilexgénine A		ı	ı	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de l'Endoribonucléase	In silico	2020	Inde	(23)
707	Mulberroside	110 10 10 10 10 10 10 10 10 10 10 10 10	-	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la protéine de pointe	In silico	2020	Inde	(23)
		ОН	Torreya nucifera	Taxaceae							
708	Amentoflavo ne	HO OH OH	Ginkgo biloba	Ginkgoaceae	Polyphénol (Flavonoïde)	SARS- CoV SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	In silico In vitro	2010 2020 2021	Inde, Chili, Chine, Corée	(23, 57, 82, 87, 121, 127)
		OH O	Theobroma cacao L	Malvaceae							
709	Bismahanine		Murraya koenigii (L.)	Rutaceae	Alcaloïde	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)
710	Coaguline N	но он	Withania coagulans	Solanaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)
711	Arécatanine A3		_	_	Polyphénol (Tannin)	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)

712	Coaguline K		Withania coagulans	Solanaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)
713	Kamalachalc one C	OH OH	Mallotus philippensis (La m.)	Euphorbiaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)
714	Pseudojervine	HH H HO OH	Veratrum album	Melanthiaceae	Alcaloïde	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)
715	Flavine adénine dinucleotide		_		Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)
716	Graecunine E	200 A.C	Trigonella foenum- graecumL	Fabaceae	Terpène	SARS- CoV-2	Inhibiteurs de la protéine de pointe	in silico	2020	Inde	(82)
717	Narirutine		_		Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la RdRp	in silico	2020	Inde	(82)
718	Hippomannin e A		_	_		SARS- CoV-2	Inhibiteurs de la RdRp	in silico	2020	Inde	(82)
719	Isoginkgétine	0H 0	Ginkgo biloba	Ginkgoaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteurs de la RdRp et de la Mpro	in silico In vitro	2020 2021	Inde, Chine	(82, 87)
720	Rotundioside B		_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la RdRp	in silico	2020	Inde	(82)

721	Tellimagradin e I		_	_		SARS- CoV-2	Inhibiteur de la RdRp	in silico	2020	Inde	(82)
722	Agathisflavon e		-		Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, protéine S, RdRp et de la TMPRSS2	in silico	2020 2021	Inde	(82, 127)
723	Emblicanine A		_		Polyphénol	SARS- CoV-2	Inhibiteur de la RdRp et la protéine S	in silico	2020 2021	Inde	(82, 107)
724	cis- Miyabenol C		Foeniculum vulgare Mill	Apiaceae	Terpène	SARS- CoV-2	Inhibiteur de la TMPRSS2	in silico	2020	Inde	(82)
725	Granatine B	HO OH OH	_		Polyphénol (Tanin)	SARS- CoV-2	Inhibiteurs de la TMPRSS2	in silico	2020	Inde	(82)
726	Hippophaenin e B		_		Polyphénol	SARS- CoV-2	Inhibiteurs de la TMPRSS2	in silico	2020	Inde	(82)
727	3,3'- Biplombagine	OH 110	_		Polyphénol	SARS- CoV-2	Inhibiteurs de la TMPRSS2	in silico	2020	Inde	(82)
728	Aromoline		_	_	Polyphénol	SARS- CoV-2	Inhibiteurs de la TMPRSS2	in silico	2020	Inde	(82)
729	Chrysophanei ne	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	_	_	Polyphénol	SARS- CoV-2	Inhibiteurs de la TMPRSS2	in silico	2020	Inde	(82)

730	Terflavine B	10	_	_	Polyphénol	SARS- CoV-2	Inhibiteurs de la Mpro	in silico	2020	Inde	(82)
731	Mudanpiosid e J		-	Ī	Polyphénol	SARS- CoV-2	Inhibiteurs de la Mpro	in silico	2020	Inde	(82)
732	Vescalagine	100 (11 (11 (11 (11 (11 (11 (11 (11 (11	-	ı	Vescalagine	SARS- CoV-2	Inhibiteurs de la Mpro	in silico	2020	Inde	(82)
733	Ginkgetine	HO	Ginkgo biloba	Ginkgoaceae	Polyphénol	SARS- CoV	Inhibiteurs de la	In silico	2010 2020	Inde, Chine,	(82, 87,
755	Gilikgetille	O O O O O O O O O O O O O O O O O O O	Torreya nucifera	Taxaceae	(Flavonoïde)	SARS- CoV-2	Mpro	In vitro	2020	Corée	121)
734	Acide Δ9 - tétrahydrocan nabinolique (Δ9 -THCA)	CH, CH, CH,	Cannabis sativa L	Cannabaceae	Cannabinoïd e	SARS- CoV-2	Inhibiteurs de la Mpro	in silico et in vitro	2021	Corée	(187)
735	Δ9 - tétrahydrocan nabinol (Δ9 - THC)	CH ₃ OH H ₃ C OCH ₃	Cannabis sativa L	Cannabaceae	Cannabinoïd e	SARS- CoV-2	Inhibiteurs de la Mpro	in silico et in vitro	2021	Corée	(187)
736	Cannabinol (CBN)	CH ₀ OH H ₀ C CH ₀	Cannabis sativa L	Cannabaceae	Cannabinoïd e	SARS- CoV-2	Inhibiteurs de la Mpro	in silico et in vitro	2021	Corée	(187)
737	Acide cannabidioliq ue (CBDA)	H OH OH	Cannabis sativa L	Cannabaceae	Cannabinoïd e	SARS- CoV-2	Inhibiteurs de la Mpro	in silico et in vitro	2021	Corée	(187)

738	Cannabidiol (CBD)	H ₅ C CH ₅	Cannabis sativa L	Cannabaceae	Cannabinoïd e	SARS- CoV-2	Inhibiteurs de la Mpro	in silico et in vitro	2021	Corée	(187)
739	Benzèneéthan amine		Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
740	Camphénol	**************************************	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
741	Rétinal	4	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
742	Trans- Géranylgéran ol	, L. J. J. J.	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
743	Acide 3,4- dihydroxyma ndélique	HO OH OH	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
744	Imidazolidin- 4-one, 2- imino-1-(4- méthoxy-6- diméthylamin o-1,3,5- triazine-2-yl)	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
745	Spiro[4,5]déc -6-én-1-ol, 2,6,10,10- tétraméthyle	~~~	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)

746	Lupéol		Tinospora crispa	Menispermaceae	SARS-	Inhibiteur de la	in silico	2021	Nigéria	(55)
, 10	-		Mangifera indica	Anacardiaceae	CoV-2	Mpro		2022	2.1.801.11	(00)
747	3. acide bêta- hydroxy-5- cholen-24- oïque	H. O. H.	Tinospora crispa	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
748	Acide Phosphonoac étique3TMS		Tinospora crispa	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
749	Nordazépam		Tinospora crispa	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
750	Acide 2,6- Dihydroxybe nzoïque 3TMS		Tinospora crispa	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
751	aR-turmerone		Tinospora crispa	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
752	(Z)gamma Atlantone		Tinospora crispa	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
753	Verbenylange late	, i	Tinospora crispa	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)

754	cis-Tumerone		Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
755	Phtalate de dibutyle		Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
756	(-)-Globulol	H. Market	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
757	Androstan- 17-one, 3- éthyl-3- hydroxy-, (5.alpha)	To one of the state of the stat	Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
758	Yangambin		Tinospora crispa	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2020	Bangladesh	(160)
759	Dracorubine	r O O O O	-	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(127)
760	Cupressuflav one		ı	1	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(127)
761	Albireodelphi ne	100 + 00 + 00 + 00 + 00 + 00 + 00 + 00	_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(127)
762	(-)- Maackiain-3- O- le glucosyl-6"- O-malonate		_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(127)

763	Cyanidine-3- (p- coumaroyl)- rutinoside-5- glucoside		_	_	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro, RdRp et la protéine S	in silico	2021	Inde	(127)
764	Céphaéline	HO NH H	_		Alcaloïde	SARS- CoV-2	Inhibiteur des ribosome de l'hôte, RdRp et la protéine N	In silico In vitro	2021	Chine	(151)
765	Przewaquino ne A	O OH	Salvia hastata Salvia miltiorrhiza Salvia przewalskii	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de la 3CL pro	in silico	2020	Brésil	(156)
766	Trijuganone A	H ₁ C CH ₂	Salvia trijuga	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de la 3CL pro	in silico	2020	Brésil	(156)
767	Castanol A	H,C, CH ₀	Salvia castanea Salvia grandifolia	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de la 3CL pro	in silico	2020	Brésil	(156)

768	Acide (6,7,8,8a- tetrahydro- 6,6-dimethyl- 2- Oxonaphtho[1,8-bc]furan- 3-yl)-4- Methylfuran- 3- carboxylique	H ₃ C CH ₃	Salvia grandifolia	Lamiaceae	Terpène	SARS- CoV-2	Inhibiteur de la 3CL pro	in silico	2020	Brésil	(156)
769	Bilobetine	OH O	Torreya nucifera	Taxaceae	Polyphénol	SARS- CoV	Inhibiteur de la	In silico	2010	Chine, Corée	(87, 121)
		NO DE DO	Ginkgo biloba	Ginkgoaceae	(Flavonoïde)	SARS- CoV-2	3CL pro	In vitro	2021	,	
770	Sciadopitysin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Torreya nucifera	Taxaceae	Polyphénol	SARS- CoV	Inhibiteur de la	In silico	2010	Chine, Corée	(87, 121)
	Semuophyom	* * *	Ginkgo biloba	Ginkgoaceae	(Flavonoïde)	SARS- CoV-2	3CL pro	In vitro	2021	Chine, Corec	(07, 121)
771	Ptérygosperm ine		Moringa oleifera	Moringaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
772	Acide benzoïque	ОН	Moringa oleifera	Moringaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)

773	Morphine	HO	Moringa oleifera	Moringaceae	Alcaloïde	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
774	Isothiocyanat e benzyle	Szcz.N	Moringa oleifera	Moringaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
775	Niazirine	N HO. OH	Moringa oleifera	Moringaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
776	Niaziminine	, OH N S	Moringa oleifera	Moringaceae	Thiocarbam ate	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
777	Niazinine	HO. OH N N	Moringa oleifera	Moringaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
778	N- carbamothioa te d'O-éthyle	HO, OH OH N H	Moringa oleifera	Moringaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
779	Niazirinine	OH OH	Moringa oleifera	Moringaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Inde	(84)
780	Galangine	HO OH OH	Sitharathai (Alpinia Officinarum)	Zingiberaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Nsp1	In silico	2020	Inde	(106)
781	Gingérénone	MeO O O O O O O O O O O O O O O O O O O	Sitharathai (Alpinia Officinarum)	Zingiberaceae		SARS- CoV-2	Inhibiteur de la Nsp1	In silico	2020	Inde	(106)

	782 Scutellarein 7-glucoside	N 0 4 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Verbena officinalisL Buddleja madagascariensi sLam Plantago asiatica	Verbenaceae Loganiaceae	Polyphénol	SARS-	Inhibiteur de la				
782		" " " "	Scutellaria immaculate	Plantaginaceae Lamiaceae	(Flavonoïde)	CoV-2	Mpro et ACE2	In silico	2020	Inde	(93)
			Polygonum odoratum	Asparagaceae							
783	Acide 3,5-Di- O- galloylshikim ique	но он он	_	_	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro et ACE2	In silico	2020	Inde	(93)
784	Méthyle 3,4,5- trihydroxyben zoate		Rhus spp	Anacardiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Égypte	(188)
785	(Z)-1-(2,4- dihydroxyphé nyl)-3-(3,4- dihydroxyphé nyl)-2- hydroxyprop- 2-en-1-one		Rhus spp	Anacardiaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Égypte	(188)

786	(Z)-2-(3,4- dihydroxyben zylidène)-6- hydroxybenz ofuran-3(2H)- one	Rhus	Anacardiac	reae Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Égypte	(188)
787	3,5,7- trihydroxy-2- (4- hydroxyphén yl)chroman- 4-one	Rhus s	Anacardiae	reae Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Égypte	(188)
788	2-(3, 4- dihydroxyphé nyl)-3,5- dihydroxy-7- méthoxy-4H- chroman-4- one	Rhus s	Anacardiae	reae Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Égypte	(188)
789	3,7- dihydroxy-2- (4- hydroxyphén yl)chroman- 4-one	Rhus s	Anacardiac	reae Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Égypte	(188)
790	BEN815 (melange de quercétine, gallate d'épigallocaté	Psidium g Camellia s	Myrtacea	ne	SARS- CoV-2	Inhibe la réplication, réduit la tempête	In vitro In vivo	2021	Corée	(78)
	chine (EGCG),l' acide	Camena	Theacea	е		cytokinique et antioxydant.				

	ellagique ,l' acide gallique ,le kaempférol et myricétine		Rosa hybrida	Rosaceae							
791	Glucogalline	HO HO HO	feuille de chêne	Fagaceae	Polyphénol	SARS-	Inhibiteur de la	In silico	2020	Inde	(135)
	Grueogamme	но ОН ОН	le fruit de l'amla	Euphorbiaceae	Totyphonor	CoV-2	Mpro et TMPRSS2	in since	2020	mae	(193)
792	Phlorizine	HO OH OH	pomme non mûre et l'écorce de la pomme	Rosaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro et TMPRSS2	In silico	2020	Inde	(135)
793	Hyoscyamine	H ₂ C –	Datura stramonium	Solanaceae	Alcaloïde	SARS- CoV-2	Inhibiteur des protéines S,M,E	In silico	2021	Inde	(189)
794	Scutifoliamid e-A		Piper acutifolium	Piperaceae		SARS- CoV-2	Inhibiteur des protéines S,M,E	In silico	2021	Inde	(189)
795	Tamaridone		Tamarix dioica	Tamaricaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur des protéines S,M,E	In silico	2021	Inde	(189)
796	Punicalagine		Punica granatum L	Punicaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la 3CLpro,protéine S,ACE2,TMPRSS 2 et la furine	In silico In vitro	2021	Bosnie- Herzégovine, Italie	(133, 134)
797	Punicaline	HO OH HO OH HO OH	Punica granatum L	Punicaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la protéine S,ACE2,TMPRSS 2 et la furine	In silico	2021	Bosnie- Herzégovine	(133)

798	GELN	gingembre	Zingiberaceae	nanoparticul es de type exosomes	SARS- CoV-2	Inhibe le Nsp12 et la tempête cytokinique	In vitro et In vivo	2021	États-Unis	(190)
799	Tinosporide,	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
800	Amritoside C	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
801	Amritoside B	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
802	Amritoside A	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
803	Tinocordifoli ne	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
804	Palmatoside G	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
805	Palmatoside F	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
806	Acides masliniques	Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro, RBD et l'ACE2	in silico	2020 2021	Inde	(97, 175)

			Olives							
807	Palmarine		Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
808	Tétrahydropal matine		Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
809	Isocolumbine	CH ₃	Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
810	Tinocordiside		Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
811	Tinocordifoli oside		Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
812	Tinosporaside		Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
813	Phytol		Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
814	Acide phytanique		Tinospora cordifolia	Menispermaceae	SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)

815	Amritoside D		Tinospora cordifolia	Menispermaceae		SARS- CoV-2	Inhibiteur de la Mpro	in silico	2021	Inde	(175)
816	Les écorces de grenade séchées		Punica granatum L	Punicaceae		SARS- CoV-2	Inhibe l'interaction Protéine S/ACE2 et réduise l'activité de la 3CL	In vitro	2021	Italie	(134)
817	Azadirachtine	H	_	_	Limonoïdes	SARS- CoV-2	Inhibiteur de la protéine S	In silico	2021	Inde	(107)
818	Gédunine		Neem (Azadirachta indica)	Meliaceae		SARS- CoV-2	Inhibiteur de la Mpro, RBD, l'ACE2, la furine et TMPRSS2	In silico	2020 2021	Nigéria, Inde	(55, 56, 97)
819	Nimbandiol		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Nigéria	(55)
820	Nimbin		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Nigéria	(55)
821	Nimbinène		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Nigéria	(55)
822	Nimbolide		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Nigéria	(55)
823	Nimbolinine		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Nigéria	(55)

824	Limonine	H	Les agrumes	Rutaceae		SARS- CoV-2	Inhibiteur des 3CLpro, RdRp, la furine et TMPRSS2	In silico	2020 2021	Inde	(56, 97)
825	Glucoside de limonin	HO OH HO	Les agrumes	Rutaceae		SARS- CoV-2	Inhibiteur de la RdRp, la furine et TMPRSS2	In silico	2020 2021	Inde	(56, 97)
826	7-désacétyl- 7- benzoylgédun ine,		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur des 3CLpro, RdRp et TMPRSS2	In silico	2020 2021	Inde	(56, 97)
827	7- Déacétylgédu nine		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur des PLpro, RdRp et TMPRSS2	In silico	2020 2021	Inde	(56, 97)
828	Acide corosolique,		Lagerstroemia speciosa	Lythraceae		SARS- CoV-2	Inhibiteur du RBD	In silico	2020	Inde	(97)
829	Obacunone		Les agrumes	Rutaceae		SARS- CoV-2	Inhibiteur des 3CLpro PLpro RdRp l'ACE2	In silico	2020	Inde	(97)
830	2- Hydroxyséné ganolide		khaya senegalensis	Meliaceae		SARS- CoV-2	Iihibiteur du RBD et TMPRSS2	In silico	2020 2021	Inde	(56, 97)
831	Oleanane		Angiospermes ligneux	_	Terpène	SARS- CoV-2	Inhibiteur du RBD et la Mpro	In silico	2020 2022	Inde, Argentine	(97, 98)
832	Époxyazadira dione		Azadirachta indica	Meliaceae		SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2020	Inde	(97)

833	Azadiradiono lide	Azadirachta indica	Meliaceae	SARS- CoV-2	Inhibiteur de l'ACE2	In silico	2020	Inde	(97)
834	Eribuline	П	_	SARS- CoV-2	Inhibiteur de la furine et TMPRSS2	In silico	2021	Inde	(56)
835	Pédonculagin e	_	_	SARS- CoV-2	Inhibiteur de la furine et TMPRSS2	In silico	2021	Inde	(56)
836	Maytansine	-		SARS- CoV-2	Inhibiteur de la Mpro et la furine	In silico	2021	Argentine, Inde	(56, 98)
837	Désoxyobacu none	1		SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(56)
838	Ginsenoside Ra2	1	_	SARS- CoV-2	Inhibiteur de la protéine S	In silico In vitro	2020	Chine	(109)
839	Ginsenoside Rb1	1	_	SARS- CoV-2	Inhibiteur de la protéine S	In silico In vitro	2020	Chine	(109)
840	Ginsenoside Rb3	_	_	SARS- CoV-2	Inhibiteur de la protéine S	In silico In vitro	2020	Chine	(109)
841	Solamargine	_	_	SARS- CoV-2	Inhibiteur de TMPRSS2	In silico	2021	Inde	(56)

842	Canthin-6- one 9-O-bêta- glucopyranosi de	Andrographi paniculata Eurycoma harmandiana Sophora flavescen	Acanthaceae Simaroubaceae Fabaceae	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
843	5-Hydroxy- 7,8,2'- triméthoxyfla vone 5- glucoside	E. harmandiana , flavescens et a paniculate		SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
844	14-Deoxy-11- oxoandrograp holide	E. harmandiana , flavescens et 1 paniculate		SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
845	Kushenol K	E. harmandiana , flavescens et a paniculate		SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
846	Néoandrogra pholide	E. harmandiana , flavescens et A paniculate		SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
847	Kushenol W	E. harmandiana , flavescens et a paniculate		SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
848	14-Deoxy- 11,12- didehydroand rographolide	E. harmandiana , flavescens et p paniculate		SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)

849	Désoxyandro grapholide	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur de PLpro	In silico	2021	Inde	(149)
850	Paniculine	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
851	Désoxyandro grapholide19 β-D- glucoside	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
852	5-hydroxy- 7,8,2',3'- tétraméthoxyf lavone	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
853	Andrographin e	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
854	5,7,2′,3′- tétraméthoxyf lavanone	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
855	5-Hydroxy- 7,2',3'- Triméthoxyfl avone	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur de PLpro	In silico	2021	Inde	(149)
856	Paniculide-A	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
857	Paniculide-B	E. harmandiana , S. flavescens et A. paniculate	SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)

858	Paniculide-C	E. harmandiana , S. flavescens et A. paniculate			SARS- CoV-2	Inhibiteur des PLpro et Mpro	In silico	2021	Inde	(149)
859	Glucoside diterpène	E. harmandiana , S. flavescens et A. paniculate			SARS- CoV-2	Inhibiteur de Mpro	In silico	2021	Inde	(149)
860	Ginkgolide A	_	_	Terpène	SARS- CoV-2	Inhibiteur de la 3CLpro	In vitro	2021	Chine	(87)
861	Ginkgolide B	_	_	Terpène	SARS- CoV-2	Inhibiteur de la 3CLpro	In vitro	2021	Chine	(87)
862	Ginkgolide C	_		Terpène	SARS- CoV-2	Inhibiteur de la 3CLpro	In vitro	2021	Chine	(87)
863	Bilobalide	_	_	Terpène	SARS- CoV-2	Inhibiteur de la 3CLpro	In vitro	2021	Chine	(87)
864	Acides Ginkgoliques	_	_		SARS- CoV-2	Inhibiteur de la 3CLpro	In vitro	2021	Chine	(87)
865	Bicuculline		_		SARS- CoV-2	Inhibiteur de la 3CLpro et l'ACE2	In silico	2021	Chine	(94)
866	Irisolidone	_	_		SARS- CoV-2	Inhibiteur de la 3CLpro et l'ACE2	In silico	2021	Chine	(94)

867	Demethylzeyl asteral		_	П		SARS- CoV-2	Inhibiteur des RBD et l'ACE2	In silico	2020	Chine	(191)
868	Isorhoifoline		Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
869	Nicotiflorine		Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
870	Kaempférol- 7-O- néohespérido side		Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
871	Prunin	HO OH HO OH	Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
872	Isoquercétine	HO OH OH OH OH	Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
873	Isoorientine	HO DH OH OH	Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
874	Isovitexine	HO OH OH OH	Theobroma cacao L	Malvaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)
875	Acide coumarique	ОН	Theobroma cacao L	Malvaceae	Polyphénol	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Chili	(57)

876	Acide machérinique 3- O - β - d - glucuronopyr anoside		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
877	Calendulagly coside C		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
878	Glycoside F		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
879	Calendulosid e G		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
880	Calendulagly coside A	A A A A A A A A A A A A A A A A A A A	Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
881	Calendulosid e B		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
882	Glucoside I		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
883	Ostéosaponin e-I		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
884	Arvensoside B		Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)

885	Acide oléanolique 3-glucuronide	HO Me Me HO DE H	Calendula officinalis L	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la Mpro	In silico	2021	Egypte	(138)
886	Lapachenole		_		Polyphénol	SARS- CoV-2	Inhibiteur de la M pro	In silico	2021	Argentine	(98)
887	Lapachol	OH OH OH	_		Polyphénol	SARS- CoV-2	Inhibiteur de la M pro	In silico	2021	Argentine	(98)
888	Méliacine		_		Terpène	SARS- CoV-2	Inhibiteur de la M pro	In silico	2021	Argentine	(98)
889	Sauroxine		_		Alcaloïde	SARS- CoV-2	Inhibiteur de la M pro	In silico	2021	Argentine	(98)
890	Spirostan		-		Terpène	SARS- CoV-2	Inhibiteur de la M pro	In silico	2021	Argentine	(98)
891	Taraxastérol	HO H ₂ CH ₃ H ₄ CH ₃ H ₄ CH ₃ H ₅ CH ₅	l'arnica la chicorée le pissenlit	Asteraceae	Terpène	SARS- CoV-2	Inhibiteur de la M pro	In silico	2021	Argentine	(98)

892	Théophylline	H ₃ C Z Z C H ₃	_	_	Alcaloïde	SARS- CoV-2	Inhibiteur de la M pro	In silico	2021	Argentine	(98)
893	Diosgénine	HO H	_	_	Terpène	SARS- CoV-2	Inhibiteur de la protéine S	In silico	2021	Argentine	(98)
894	Gitoxine		_		Terpène	SARS- CoV-2	Inhibiteur de la protéine S	In silico	2021	Argentine	(98)
895	Tyrosol	НООН	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	Insilico	2020	Inde	(54)
896	Argemexicaïn e A		Argemone mexicana L	Papaveraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de RdRp	in silico	2020	Inde	(33)
897	Argemexicaïn e B		Argemone mexicana L	Papaveraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de RdRp	in silico	2020	Inde	(33)
898	Protopine		Argemone mexicana L	Papaveraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de RdRp	in silico	2020	Inde	(33)
899	Allocryptopin e		Argemone mexicana L	Papaveraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de RdRp	in silico	2020	Inde	(33)
900	(±) 6- Acétonyldihy drochélerythri ne		Argemone mexicana L	Papaveraceae	Alcaloïde	SARS- CoV-2	Inhibiteur de RdRp	in silico	2020	Inde	(33)

901	Usararoténoïd e C		Milletia usaramensis ssp	Fabaceae	Polyphénol (Flavonoïde)	SARS- CoV-2	Inhibiteur de RdRp	In silico	2020	Nigérie	(159)
902	Dihydrorobin etine	HO OH OH			Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
903	Robinetin	HO OH OH			Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
904	5- Deoxygalangi n	" 0	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
905	Scutellarein	HO OH O	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(23, 54)
906	Purpurin	O H O H	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
907	Tricetin	HO OH OH	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
908	Gossypetin	HO OH OH	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
909	Norathyriol	но о он	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)

910	Coumestrol	но	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
911	Isosakuraneti n	но	_	ı	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
912	Pectolinarige nin	HO CO CH ₃		1	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
913	Tangeritin		_	1	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
914	Nobiletin	H ₃ CO OCH ₃ OCH	_	I	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
915	Pratensein	HO OH O OCH3	_	I	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
916	Hispidulin	HO OH O	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
917	Morine	HO OH OH	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
918	Urolithin A	HOOO	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)

919	Acacetin	HO OH O	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
920	Irilone	OH OH	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
921	Pinocembrin	HO O O	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
922	Kaempferide	HO OH OCH3	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
923	Dalbergin	HO	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
924	Butein	но ОН ОН	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
925	Biochanin A	OH O OCH ₃	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
926	Fustin	но он он	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
927	5- Hydroxyflavo ne	O O	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)

928	Pinostrobin	H ₃ CO OH O	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
929	Pinobanksin	HO OH OH	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
930	Datiscetin	HO OH O	_	Ī	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
931	Glycitein	но	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
932	Urolithin B	OH	_	Ī	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
933	Angolensin	OH 0		Ī	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
934	Pinosylvin	но	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
935	Formononetin	HO CH ₁	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
936	Liquiritigenin	но	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)

937	Prunetin	OH OHOOM	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
938	Alpinetin	но	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
939	Rhapontigeni n	HOOH	_	Ī	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
940	Genistein	HO OH O	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
941	Chrysin	HO OHO	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
942	6- Hydroxyflavo ne	но	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
943	Equol	HO	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
944	Piceatannol	НО ОН	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
945	Isorhapontige nin	НО	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)

946	Danshensu	но он	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
947	Eugenine	H ₃ CO CH ₃	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
948	Acide sinapique	H ₃ CO OH OH	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
949	Pterostilbene	H ₃ CO OCH ₃	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
950	Acide isoferulique	H ₃ C O O O O O O	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
951	Acide dihydrocaffei que	OH OH	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
952	Acide 4- hydroxycinna mique	ОН	_		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
953	Resacetophen one	но Он		_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
954	Acide salicyclique	HO	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)

955	Acide syringique	н ₃ со осн ₃	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
956	Acide 2- hydroxybenz oique		-		Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
957	Acide 3- hydroxybenz oique	ē ĕ		1	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
958	Acide 4- hydroxybenz oique	но	-	1	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
959	p -Acide coumérique	PO OH	-	ı	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
960	Paeonol	o H	_	ı	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
961	Acide cinnamique		1	I	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
962	4-éthylphénol	OH H ₃ C	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)
963	Catéchol	OH	_	_	Polyphénol	SARS- CoV-2	Inhibiteur du RdRp	In silico	2020	Inde	(54)

Résumé:

Les coronavirus sont responsables d'un fardeau économique, social et de mortalité croissante, en tant qu'agent causal de maladies telles que le syndrome respiratoire aigu sévère (SRAS), le syndrome respiratoire du Moyen-Orient (MERS) et récemment le COVID-19. Les composés naturels existants, particulièrement ceux connu pour leur activité antivirale peuvent être utiles comme agents thérapeutiques contre les infections à coronavirus. L'objectif de cette étude est de passer en revue la littérature scientifique actuellement disponible sur les substances naturelles d'origine végétale ayant des effets antiviraux prometteurs contre les coronavirus. Des recherches ont été menées dans les bases de données PubMed, Science Direct et Biomed Central pour trouver des articles incluant les mots-clés "Coronavirus", "SARS-CoV-2" ainsi que "AlKaloids", "Polyphenols", "Phytosterols", "Terpenes" et "Secondary metabolites". 145 articles de recherche publiés entre 2003 et 2020 ont été sélectionnés. La majorité des études sur les substances naturelles agissant contre les coronavirus ont été réalisées au cours des deux dernières années : 2020 (31,72%) et 2021 (60,69%) coïncidant avec l'émergence du nouveau coronavirus SARS-CoV-2. La plupart des études ont été réalisées par des méthodes in silico avec un pourcentage de 66,67%, 25,45% par des méthodes in vitro et seulement 7,88% par des tests in vivo. Nos recherches ont permis d'établir une liste de 963 substances naturelles d'origine végétale testées contre les Coronavirus. Les polyphénols représentent les métabolites secondaires les plus testés contre les Coronavirus, suivis des terpènes puis des alcaloïdes. En tenant compte de la fréquence de citation dans les études, nous avons classé 63 substances les plus citées par ordre décroissant telles que : Quercétine, Catéchine, Glycyrrhizine, Kaempférol, Rutine, Curcumine, Myrécitine, Apigénine, Hespéridine.... À l'avenir, nous espérons que les principes actifs des plantes médicinales pourront être utilisés pour traiter l'infection par le SRAS-CoV-2 chez I'homme.

Mot clés: SARS-CoV-2, COVID-19, Natural compounds, Secondary metabolites, Revue.

Abstract:

Coronaviruses are responsible for an increasing economic, social and mortality burden, as the causative agent of diseases such as the severe acute respiratory syndrome (SARS), the Middle East Respiratory Syndrome (MERS) and recently the COVID-19. Existing natural compounds, especially those known for their antiviral activity, may be useful as therapeutic agents against coronavirus infections. This study aims to review the currently available scientific literature on natural substances of plant origin with promising antiviral effects against coronaviruses. PubMed, Science Direct and Biomed Central databases were searched for articles including the keywords "Coronavirus", "SARS-CoV-2" as well as "AlKaloids", "Polyphenols", "Phytosterols", "Terpenes" and "Secondary metabolites". 145 research articles published between 2003 and 2020 were selected. The majority of the studies on natural substances acting against coronaviruses were performed in the last two years: 2020 (31,72%) and 2021 (60,69%) coinciding with the emergence of the new coronavirus SARS-CoV-2. Most studies were performed by in silico methods with a percentage of 66,67%, 25,45% by in vitro methods and only 7,88% by in vivo tests. Our research resulted in a list of 963 natural substances of plant origin tested against Coronavirus. Polyphenols represent the most tested secondary metabolites against Coronavirus, followed by terpenes and then alkaloids. Taking into account the frequency of citation in the studies, we have classified 63 most cited substances in decreasing order such as: Quercetin, Catechin, Glycyrrhizin, Kaempferol, Rutin, Curcumin, Myrecitin, Apigenin, Hesperidin.... In the future, we hope that the active ingredients of medicinal plants can be used to treat SARS-CoV-2 infection in humans.

Keywords: SARS-CoV-2, COVID-19, Natural compounds, Secondary metabolites, Review.

الملخص:

تعد فيروسات كورونا مسؤولة عن زيادة العبء الاقتصادي والاجتماعي وعدد الوفيات، كما تعد أحد العوامل المسببة للكثير من الأمراض مثل متلازمة الجهاز التنفسي الحادة الوخيمة (سارس) ومتلازمة الشرق الأوسط التنفسية (ميرس) ومؤخرا 19 -COVID. قد تكون المركبات الطبيعية الموجودة، وخاصة تلك المعروفة بنشاطها المضاد الفيروسات، مفيدة كعوامل علاجية ضد عدوى فيروس كورونا. الهدف من هذه الدراسة هو مراجعة المؤلفات العلمية المتوفرة حاليًا حول المواد الطبيعية ذات الأصل النباتي الفيروسات، مفيدة كعوامل علاجية ضد عدوى فيروسا كورونا. الهدا تم إجراء عمليات بحث في قواعد بيانات PubMed و PubMed و PubMed و "Phytosterols" و "AlKaloids" و "Phytosterols" و "Phytosterols" و "Phytosterols" و "AlKaloids" و "Rakaloids" و "Phytosterols" و المستقلبات الثانوية". تم اختيار 145 مقال بحثي منشور بين عامي 2003 و 2020. حيث اننا وجدنا ان غالبية الدراسات التي تم إجراء حول المواد الطبيعية التي تعمل ضد فيروسات كورونا تمت في العامين الماضيين: 2020 (31,72) و 2021 (60,69) بالتزامن مع ظهور فيروس كورونا الجديد-SARS-COV-2. بالطرق المخبرية و 88,7٪ فقط عن طريق الاختبارات في الجسم الحي. ولقد أتاح بحثنا وضع المعظم الدراسات أجريت بالطرق من أصل نباتي تم اختبارها ضد فيروسات كورونا. حيث تمثل مركبات البوليفينول (polyphénols) أكثر المستقلبات الثانوية التي تم اختبارها ضد فيروسات كورونا. حيث تمثل مركبات البوليفينول (polyphénols) أكثر المستقلبات الثانوية التي تم اختبارها صد فيروسات كورونا. حيث تمثل مركبات البوليفينول (polyphénols) أكثر المستقلبات ألمواد فيروسات كورونا، وتين ، كركمين ، ميريسيتين ، أبجينين ، هيسبيريدين ... في المستقبل ، نامل أن الشكورة بترتيب تنازلي مثل : كيرسيتين ، كركمين ، ميريسيتين ، أبجينين ، هيسبيريدين ... في المستقبل ، نامل أن الشكورت النشطة للنباتات الطبية يمكن استخدامها لعلاج عدى SARS-COV-2

الكلمات المفتاحية: كورونا، SARS-COV-2، المستقلبات الثانوية، المنتجات الطبيعية، مقالة.