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Abstract

Over the last decade, the world has experienced an unprecedented movement of

innovation due to the significant development of information and communication

technologies, particularly the Internet. Unfortunately, this advancement has been

accompanied by an increase in cyber-attacks, and the protection of these communi-

cation networks appears to be the next challenge of the upcoming decades.

As the primary defense, the intrusion detection systems have been the subject of

numerous researches and play a crucial role in network security. This thesis summa-

rizes the research conducted in the area of network anomaly detection with the goal

of developing a model capable of detecting and classifying a wide range of attacks

while also adapting to a constantly changing threat scenario.

The proposed approach has been tested on the public database CIC-IDS2017.

The database will first be pre-processed and normalized and then applied to vari-

ous classification machine learning algorithms to create models and compare their

performance using different evaluation metrics such as (Accuracy, Precision, Re-

call, F1-score, etc.). The experimental results have shown that the performance of

the machine learning algorithms used resulted in a relatively high accuracy score:

Random Forest 97.02%, Decision Tree 96.74%, K-Nearest Neighbors 96.24%, MLP

87.57% and SVM 81.12%.

Keywords: Cybersecurity, Cyber-attacks, Intrusion Detection System (IDS), Deep

Learning, Machine Learning, Network Anomaly Detection, CIC-IDS2017.
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Résumé

Avec l’important développement des technologies de l’information et de la com-

munication et particulièrement Internet, le monde a connu durant la dernière décennie

un mouvement d’innovations sans précédent. Malheureusement ces avancées furent

accompagnées par la progression des cybers attaques, la protection de ces réseaux

de communication apparait comme le prochain défi des futures décennies.

En tant que premier rempart, les systèmes de détection d’intrusion ont fait l’objet

de nombreuses recherches et jouent un rôle crucial dans la sécurité des réseaux.

Ce mémoire présente les travaux menés dans le cadre du domaine de la détection

d’anomalies dans les réseaux avec le but de développer un modèle capable de détecter

et de classifier un large éventail d’attaques tout en s’adaptant à un scénario de men-

ace en constante évolution.

L’approche proposée a été testée sur la base de données publique CIC-IDS2017.

La base de données sera d’abord prétraitée et normalisée, puis appliquée à divers

algorithmes d’apprentissage automatique de classification pour créer des modèles

et comparer leurs performances à l’aide de différentes mesures d’évaluation telles

que (Accuracy, Precision, Recall, F1-score, etc.). Les résultats expérimentaux ont

montré que les performances des algorithmes d’apprentissage automatique utilisés

ont atteint un score de précision relativement élevé : Random Forest 97.02%, Deci-

sion Tree 96.74%, K-Nearest Neighbors 96.24%, MLP 87.57% et SVM 81.12%.

Mots clés: Cybersécurité, Cyber-attaques, Système de détection d’intrusion (IDS),

L’apprentissage profond, L’apprentissage automatique, Détection d’anomalies dans

les réseaux, CIC-IDS2017.
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General introduction

With the spectacular progress of information and communication technologies,

as well as the expansion of computer networks, the world has evolved rapidly over

the last decade towards a fully connected lifestyle for all economic and social actors.

This evolution has provided us with inescapable facilities in terms of long-distance

communication (instant messaging and video calls), file transmission, online shop-

ping (e-commerce and online banking), social networking and many other forms of

information exchange. However, the widespread use of these information technology

applications has opened the door to new threats and vulnerabilities.

Due to the massive amount of data flowing through the networks and the uncon-

trolled structure of the Internet, the preservation of sensitive information and com-

munications has emerged as a challenge for cybersecurity. A study by Arkose Labs

[1] estimated that in August 2020, approximately 445 million cyberattacks took

place worldwide, twice as many as in 2019. This gives rise to an ongoing struggle

against these cyber attacks that target vulnerabilities and weaknesses in systems,

orchestrated by perpetrators with the intent to either steal sensitive information,

commit fraud, espionage, hijacking and many other malicious activities.

Cybersecurity is the set of techniques and practices that allow to maintain the con-

fidentiality, integrity and availability of information. Faced with the daily evolution

of attacks and the increasing interactivity of hackers, it is essential to have a precise

action plan to identify the elements at risk. Intrusion Detection Systems (IDS) are

a solution that meets these requirements, adopted to prevent any imminent threat

of violation of security policies, networks and computer systems.

The purpose of an intrusion detection system (IDS) is to monitor network traffic

in order to detect any misuse or abnormal behavior. Two types of IDS have been

proposed, which are network-based systems (NIDS) and host-based systems (HIDS).

The first ones try to detect any attempt to subvert the normal behavior of the system

by analyzing the network traffic, while the second ones try to detect intrusions by

analyzing the events on the local system where the IDS is running.
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GENERAL INTRODUCTION

Machine Learning techniques have been well adopted as the primary detection algo-

rithm in IDSs owing to their model-free properties and learning capacity. Leveraging

the recent development of Machine Learning techniques such as Deep Learning is

expected to significantly improve existing IDSs, especially for the detection of im-

personation attacks in large-scale networks.

In this study, we explore several Machine Learning and Deep Learning approaches

that have proven their reliability in the field of intrusion detection. Our thesis is

organized as follows:

• The first chapter is devoted to the presentation of the network security and

its various forms, we will also tackle the different types of anomalies as well as

the most widespread attacks.

• The second chapter will serve as an introduction to intrusion detection systems,

their types, functions and classifications.

• The third chapter is reserved for the presentation of Deep Learning, its history,

its recurrent models and their architectures.

• The fourth chapter is related to the discussion of the results obtained while

detailing the methodology used and the parameters taken into account.
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CHAPTER 1. NETWORK SECURITY

1.1 Definition

Network security can be defined as the process of designing a defensive strategy

and implementing the measures and safeguards required to protect the underlying

networking infrastructure from unauthorized access, malicious activity, potential

threats or intrusion attempts. As a result, a secure platform is created so that users

can perform their tasks in a safe environment.

1.2 Key principles of network security

Computer and network security are built on three pillars (Confidentiality, In-

tegrity, and Availability), commonly referred to by the “CIA triad” [2]. A network

can only be considered secure when it has all three elements in play simultaneously.

CONFIDENTIALITY

INFORMATION

SECURITY

INTEGRITY AVAILABILITY

Figure 1.1: CIA triad diagram.

• Confidentiality: is about keeping the content of information secret and inac-

cessible to unauthorized entities, and ensuring that only approved individuals

have access to sensitive information.

• Integrity: helps maintain the trustworthiness (reliability) of data by hav-

ing it in its intended state and immune to any improper modifications from

unauthorized people or malicious software.

• Availability: ensures that authorized parties have unimpeded access to data

when needed.
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In addition to CIA, another set of protections must be implemented to secure

information. These are authentication, authorization, and accounting (AAA) [3]:

• Authentication: is the process of verifying a user’s identity. A user proves

their identity by providing their credentials, which are then matched against a

file stored in an authorized user database or data authentication server, thus

preventing unauthorized access to a device, system or network.

• Authorization: following authentication, authorization is the process of de-

termining what types or qualities of activities, resources or services a user is

permitted.

• Accounting: consist of monitoring and recording user activity while accessing

network resources. This can include the amount of system time or the amount

of data sent and received during a session, as well as holding the individual

accountable for their actions.

1.3 Different types of network security

There are several types of network security, the most common of which are

covered below:

1.3.1 Network Access Control (NAC)

A network design that restricts network resources and infrastructure access to

only compliant, authenticated, and trusted endpoint devices, denying unauthorized

access and potential threats. This is achieved by deploying a password, unique user

ID and authentication process to access the network.

1.3.2 Network segmentation

An architectural technique that divides a network into multiple segments, each

of which functions as its own tiny network (see Figure 1.2).

This allows network administrators and organizations to :

• Control the flow of traffic across segments.

• Improve network monitoring and performance.

• Prevent malware from spreading by isolating a network in one area, while

keeping another segment of the network protected.
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Router

Firewall Firewall

HubHub

ServerServer

PCPC

PC

PCPC

PC

Figure 1.2: Segmented network architecture.

1.3.3 Behavioral analytics

An advanced threat detection technique that compares prior network activity

data to current events in order to discover anomalous behavior.

1.3.4 Firewalls

A combination of hardware appliances and software programs that act as a bar-

rier between a trusted internal network and the wider internet. They filter incoming

and outgoing traffic based on predefined security rules, preventing threats from

gaining access to the network.

1.3.5 Antivirus and Antimalware software

Software used to protect computers and workstations from malware and viruses

by identifying and eliminating harmful programs that have infiltrated the system

and proactively preventing endpoint devices infection.

1.4 Anomaly detection and attack types

1.4.1 Anomaly types

A sample that does not exhibit the well-defined properties of a normal sample is

considered an anomaly (or outlier) [4]. There are three generally accepted categories

which all anomalies fall into:
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1.4.1.1 Point anomaly

A point anomaly is defined as a single data point that is unusual compared to

the rest of the data [5].

1.4.1.2 Contextual anomaly

Also called conditional anomaly, it contains data points that deviate significantly

from other data points that exist in the same context [5]. This means that observing

the same point across different contexts will not always give us an indication of

anomalous behavior.

1.4.1.3 Collective anomaly

A collective anomaly is a collection of similar data points that, when compared

to the rest of the data, can be considered anomalous [5]. While each of the individual

data instances in a collective anomaly may not be anomalies by themselves, their

collective occurrence is anomalous.

1.4.2 Network attack types

Network attacks are attempts to violate the 3 essential features (Confidentiality,

Integrity, Availability). The attacks can be summarized under 4 headings.

1.4.2.1 Denial of service/Distributed denial of service

Denial of Service (DoS) is a type of cyberattack in which attackers prevent legit-

imate users from accessing authorized data. Attackers accomplish this by flooding

the network with fake traffic (excessive number of unnecessary packets) that exceed

the server’s capacity, resulting in a denial of service to additional requests [6].

A Distributed Denial of Service (DDoS) is a type of DoS attack where the traffic

used to overwhelm the target is coming from many distributed sources.

Attacker

User

Flooded HTTP requests

Legitimate requests




can't get through and fail 
Targeted server

Figure 1.3: DoS attack.
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1.4.2.2 Probe (Reconnaissance)

Probe is usually a preliminary step toward a further attack seeking to compromise

a host or network. Its primary goal is to gather all possible information about

the target, such as the network structure, the operating system in use, the types

of software installed and/or applications used. It is commonly used by attackers

to identify breaches or weaknesses that will eventually allow them to bypass an

organization’s security [5].

1.4.2.3 User to Root (User to Root (U2R))

In this type of attack, the attacker attempts to gain unauthorized access to an

administrative account in order to access or alter valuable resources. The attacker

gains access to a normal user account before progressing to the root account by

exploiting system vulnerabilities [7].

1.4.2.4 Remote to User (R2U) / Remote to Local (R2L) (Remote to

User / Remote to Local)

The attacker gains local access as a user of a targeted machine to have the

privilege of sending packets over its network. To acquire this privilege, the attacker

relies on system vulnerabilities or brute-force attacks [5].

Network

Security Anomaly

Integrity

Confidentiality

Availability

DoS

R2L

Probe

U2R

Collective 

Anomaly

Contextual 

Anomaly

Point

Anomaly

Figure 1.4: The relationship between network anomalies and network attacks [8].
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Classifying network attacks based on the anomalies they cause can be helpful in

detecting them. DoS attacks, for example, have been found to increase the amount

of data flowing and the number of packets in the network. They are therefore

classified as collective anomalies. Conversely, it would be more suitable to classify

U2R and R2U as contextual and point anomalies since the attack is targeted at

a particular user, a certain port, and has a specific purpose [8]. The relationship

between network anomalies and network attacks is summarized in Figure 1.4.

1.5 Most common attacks

1.5.1 DoS HULK

HTTP unbearable load king is a DoS attack that is designed to repeatedly gen-

erate numerous TCP SYN flood and multi- threaded HTTP GET flood requests

that will create a load on a web server, thus exhausting the web server’s resources

[9].

1.5.1.1 TCP-SYN flood

The TCP-SYN flood attack attempts to exploit the three-way handshake method

by flooding the server with SYN requests. The concept of the three-way handshake

is explained as follows:

A TCP connection is established via a three-way handshake, in which a client and

server communicate via TCP/IP, with flags set on the TCP layer of a packet. A

TCP flag is a series of bits that indicate how a packet should be handled by the

server. This communication takes place in the following steps [10]:

1. The client initiates the connection to the server by sending a packet with the

SYN (synchronize) flag.

2. The server responds to the client by sending a TCP packet with the SYN

and ACK (acknowledge) flags set, as if to acknowledge the client’s connection

request.

3. If the connection is refused due to a closed port, the server will respond with

a TCP packet with the RST (reset) flag set.

4. In case the port is open, the client will respond to the server with an ACK

packet, completing the TCP connection.

In the TCP-SYN flood attack, the attacker sends the SYN packet to the target

(server) and receives the SYN-ACK packet in response. The attacker, however,
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fails to send the required ACK packet, resulting in an incomplete connection (see

Figure 1.5). The server then reserves a resource by storing these requests in a log

queue. As the number of requests increases, the server becomes inaccessible [8].

Client Server

(1) SYN

(2) SYN-ACK

(3) ACK

ESTABLISHED

CONNECTION

Three-way Handshake

Attacker Target

SYN

SYN-ACK

NEVER ESTABLISHED

CONNECTION IS 

TCP-SYN Flood Attack

Attacker doesn't send 
ACK packet

SYN

SYN-ACK

Figure 1.5: A comparison of TCP-SYN Flood Attack with a successful Three-Way
Handshake.

1.5.1.2 HTTP-GET flood

An HTTP flood is a type of DDoS attack used by hackers to attack web servers

and applications. It involves flooding the server with HTTP GET or POST requests

that are specifically designed to consume a large portion of the server’s resources,

resulting in a denial of service, meaning that the server no longer responds to legit-

imate HTTP GET requests [11].

Client Server

SYN

SYN-ACK

ACK

HTTP GET Request

Attacker Target

SYN

SYN-ACK

Multiple HTTP GET Requests

RST

GET

GET

RESPONSE

GET

RESPONSE

RESPONSE

GET

Figure 1.6: The comparison of singular and multiple HTTP GET requests in
HTTP GET Flood attack.
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1.5.2 DoS Slowloris

Slowloris is an application layer DoS attack that connects a single computer to a

targeted web server using incomplete HTTP requests, then keeps these connections

active for as long as possible. Furthermore, by leaving these connections open while

waiting for the completion of each attack request, the affected servers will eventually

fill their maximum simultaneous connection pool, denying any further connection at-

tempts from clients. This type of DoS attack requires minimal bandwidth to launch

and only affects the target web server, leaving other services and ports unaffected

[12].

Incomplete HTTP requests

Attacker Targeted server

HTTP header

HTTP header

HTTP header

The number of requests exceeds the maximum number of simultaneous connections

Figure 1.7: Slowloris DoS attack.

1.5.3 Botnet

Botnet is a large group of internet-connected computers, often referred to as

”zombies”, that have been infected with malicious program(s) and are controlled

remotely by botnet owners, also known as ”herders”. The herder commands the

botnet through a command-and-control server that communicates via protocols such

as Internet Relay Chat (IRC) or peer-to-peer (P2P) networking. These compromised

devices are used by attackers to launch large-scale attacks without their owners’

knowledge. Botnet attacks typically involve sending spam, data theft, exploiting

sensitive information, or launching vicious DDoS attacks [13].
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Initiate

Attack

Attacker Control 

Server

Botnet Attack Nodes

Victim

Initiate

Attack

Attack
Traffic

Figure 1.8: A typical Botnet attack structure.

1.5.4 Malware

Malware refers to any malicious software that is created with the intent of harm-

ing or exploiting any programmable device, service, or network. It is most commonly

used by cybercriminals to extract data from computer systems without the user’s

knowledge or consent. This data can include anything from financial information

to medical records to personal emails and passwords, etc. Examples of common

malware includes viruses, worms, Trojan viruses, spyware, adware, and ransomware

[14].

1.5.5 Port scanning

Port scanning is often the first reconnaissance step used by hackers when at-

tempting to infiltrate a network. It involves sending packets to specific ports on a

host and using the responses to determine which applications and services the target

device is running. The hacker can then begin testing for vulnerabilities and plan an

attack [15].

The port scanners are mainly of two types:

• Brute force scanners establish a full connection to the target machine after

scanning each port one by one for the specific range and determining whether

or not the port is open. Therefore, their presence can be easily detected due

to the scanner’s numerous attempts to establish a connection to many ports

on a target host in a short period of time [16].
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• Stealth scanners perform scans in a stealthy manner without establishing a

full connection with the target. They send a single packet with a specific flag

set to the target, and based on the response, they can determine whether the

ports are open or not [16].

Port scanning types can be listed as follows:

1.5.5.1 SYN scan

In this attack, the attacker tries to establish a TCP/IP connection with a tar-

get server by sending a large number of packets with only the SYN flag to every

possible port on the server. If the server responds with a SYN/ACK packet from a

particular port, it indicates that the port is open. The attacker then sends an RST

packet, tearing down the connection and tricking the server into believing there was

a communication failure and the client did not establish a connection, when in fact

the port remains open and vulnerable to exploitation [17].

SYN

SYN / ACK

RST
( Terminate the connection !)

Source  Destination

Figure 1.9: SYN scan.

1.5.5.2 TCP Connect scan

In this scan, the first two steps (SYN and SYN/ACK) are exactly the same as

for a SYN scan. Before terminating the connection with a RST packet, the attacker

first establishes a connection with the target by acknowledging the SYN/ACK with

his own ACK packet. A TCP Connect scan can be inferred if a large number of

connections are established from a single host at multiple ports in a very short period

of time [16].

SYN

SYN / ACK

RST

Source  Destination

ACK

Figure 1.10: TCP Connect scan.
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1.5.5.3 ACK scan

This scan is used to detect the presence of a firewall on the target host or between

the target machine and the scan machine. Indeed, contrary to other scans, the ACK

scan will not seek to find out which port is open on the target machine, but rather

to know if a filtering system is active by replying for each port with ”filtered” or

”unfiltered” [18].

RST

Source  Destination

ACK

Source  Destination

ACK

No response

ACK scan: port unfiltered ACK scan: port filtered

Figure 1.11: ACK scan.

1.5.5.4 FIN scan

During this scan, the attacker sends a large number of packets with only the

FIN flag set to different ports on the target host. Sending a FIN packet without

any prior exchange between the two hosts confuses the target since it indicates that

the attacker wants to terminate a connection that has never been established. If

the port is open, the target ignores the packet; otherwise, the target sends a RST

packet [16].

Source  Destination

FIN

Source  Destination

FIN

No response

FIN scan: port open FIN scan: port closed

RST

Figure 1.12: FIN scan.

1.5.5.5 NULL scan

In this attack, the attacker sends many TCP packets with no flags to different

ports of the victim machine. The open ports ignore these packets whereas closed

ports reply back with a RST packet. This scan can be easily detected because

sending a packet without a flag is a behavior that will never be seen in a normal

machine-to-machine exchange. Some firewalls or filtering modules may malfunction

as a result of this scan, allowing packets to pass through [18].
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Source  Destination

All flags set to 0

Source  Destination

All flags set to 0

No response

NULL scan: port open NULL scan: port closed

RST

Figure 1.13: NULL scan.

1.5.5.6 XMAS scan

Unlike the FIN scan, the XMAS scan sends TCP packets with the URG, PUSH

and FIN flags set to 1 in order to bypass certain firewalls or filtering systems. It’s

important to know that when sending a packet with these three flags set, an active

service behind the targeted port won’t send back any packets. However, if the port

is closed, we will receive a RST/ACK packet [18].

Source  Destination

URG / PUSH / FIN

Source  Destination

URG / PUSH / FIN

No response

XMAS scan: port open XMAS scan: port closed

RST / ACK

Figure 1.14: XMAS scan.

1.5.5.7 UDP scan

Scanning UDP ports is not difficult to implement due to the simplicity of ex-

changes between machines using the UDP transport protocol. In this scan a large

number of UDP packets arrive at the destination. If the port is open, the targeted

server will provide no feedback to our scanning machine. If no application is ready

to receive our packet on the targeted UDP port, an ICMP packet with the cor-

responding error code, i.e. the ”ICMP Port Unreach Error” message, is sent back

[19].

Source  Destination

UDP

Source  Destination

UDP

No response

UDP scan: port open UDP scan: port closed

ICMP_PORT_UNREACH_ERROR

Figure 1.15: UDP scan.
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1.5.5.8 IP fragmentation attack

IP fragmentation is the process of splitting a datagram into smaller pieces of

information called packets. These must be of a specific size in order for the receiving

parties to be able to process them and transfer the data successfully. There are

many forms of IP fragmentation attacks. They generally involve sending datagrams

that cannot be reassembled upon delivery. The objective is to exploit the server’s

resources and prevent it from performing its intended functions [20].

1.5.6 FTP-Patator

FTP (File Transfer Protocol) is a network protocol for transferring files between

computers over (TCP/IP) connections. To transfer files via FTP, users must have

permission by providing credentials (a valid username and password) to the FTP

server [21]. The FTP-Patator attack is a brute force attack that focuses on stealing

a user’s credentials through the FTP protocol.

A brute-force attack is a trial-and-error method that hackers use to decode login

information and encryption keys in order to gain unauthorized access to systems.

Some attackers use automated tools to guess all possible passwords until the correct

combination is found [22].

1.5.7 SSH-Patator

SSH, also known as Secure Shell or Secure Socket Shell, is a cryptographic net-

work protocol that allows users to have secure communication over an insecure

network (e.g., The internet) by providing strong password and public key authen-

tication, as well as an encrypted session for transferring files and executing server

programs. The protocol is primarily used by network administrators to manage sys-

tems and applications remotely, enabling them to log in to another computer over

a network, execute commands and transfer files from one computer to another [23].

Similar to FTP-Patator, by trying many combinations of usernames and passwords,

a successful brute force SSH attack allows hackers to gain remote access to target

systems. The goal of these attacks is to obtain personal information from the user

that can be used to access their online accounts and network resources [24].

1.5.8 Web attacks

Every website on the internet is somewhat vulnerable to security attacks. Threats

range from human error to sophisticated attacks by coordinated cybercriminals. The

most frequent web attacks are the following:
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1.5.8.1 XSS

Cross-site scripting (XSS) is a type of injection attack in which an attacker injects

malicious code (usually in the form of a browser-side script) into otherwise legitimate

and secure websites. The actual attack takes place when the victim visits the affected

web page, which delivers the malicious script to the victim’s browser, which in turn

executes it since it has no way of knowing that the script is untrustworthy. Instead

of targeting the web application itself, XSS attacks typically target the application’s

users directly by stealing cookies, session tokens or other sensitive information stored

by the victim’s browser, allowing cybercriminals to impersonate real users and use

their accounts [25].

Website VisitorPerpetrator

Website
The perpetrator injects the

 website with a malicious

 script that steals each

 visitor's session cookies

2

The perpetrator discovers a 

website having a vulnerability

that enables script injection

1

For each visit to the 

website, the malicious

script is activated

3

Visitor's session cookies

are sent to perpetrator4

Figure 1.16: XSS attack.

1.5.8.2 SQL Injection

Structured Query Language (SQL) is a standardized programming language de-

signed to handle relational databases and manipulate various operations on the

data they store [26]. An SQL injection vulnerability can affect any website or web

application that uses an SQL database such as MySQL, Oracle, SQL Server, or

others. Attackers use the SQL injection attack to target these databases using SQL

statements specifically designed to trick systems and bypass application security

measures, allowing them to retrieve the contents of the entire SQL database, such

as passwords, credit card details, or user personal information, as well as to add,

modify, and delete records in the database [27].
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1.5.8.3 Man in the middle (MITM)

A common type of cyberattack in which attackers insert themselves between two

parties in order to eavesdrop or impersonate one of the parties, allowing them to

intercept information and data from either party while making it appear as if a

regular exchange of information is taking place.

Original connection

New connection

Victim

Perpetrator

(Man in the middle)

Internet

Figure 1.17: Man in the middle attack.

1.5.9 IP spoofing

An intruder uses IP spoofing to trick a system into thinking it is communicating

with a known, trusted entity by sending a packet to a target host with the IP source

of a known, trusted host rather than it’s own IP source address for the purpose of

gaining access to the system [28].

IP address:

223.125.33.66

IP source IP destination

192.168.55.23 8.8.8.8

IP address:

192.168.55.23

IP address:

8.8.8.8

Packet with spoofed 

source IP address

Trusted user

Intruder

Figure 1.18: IP spoofing.
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1.6 Conclusion

In this first chapter we have defined what network security is, its fundamentals

which are confidentiality, integrity and availability and its different types. We have

also presented some of the most common attacks that a network can face. Despite

the effectiveness of these various network security techniques, a network is never

completely safe from intrusion. In the next chapter, we will focus on a solution to

this problem by presenting intrusion detection systems.
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2.1 Introduction

With the emergence of a limitless communication paradigm and the growing

number of networked digital devices, cybersecurity, which aims to protect informa-

tion or communication technologies, is of increasing concern due to the extraordinary

growth in the volume and variety of security threats to these systems [29].

Any intrusion can have disastrous consequences. For example, personal data can

be damaged, altered or illegally accessed. Therefore, detection and prevention of

network abuses is becoming more and more strategic to ensure an adequate level of

protection against external and internal threats. In this context, many techniques

are emerging to monitor network traffic and distinguish abnormal from normal be-

havior to detect undesired or suspicious activities. One promising tool for detecting

attacks is the Intrusion Detection System (IDS) [30].

2.2 Definition

IDS is a monitoring system that listens to network traffic in a stealthy manner

in order to alert the administrator to security breaches, abnormal or suspicious

activities or other problems that could compromise the computer network, thus

enabling preventive action to be taken against intrusion threats.

2.3 Components of intrusion detection systems

In general, an IDS contain three main components as depicted in Figure 2.1:

Data collection

Data

 Preprocessing

Intrusion 

Recognition Alarm Report

Intrusion 

Models

Response to intrusion

Response to intrusion

Monitored System

Figure 2.1: The main function of an IDS.
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2.3.1 Data collection

The sensor observes the activity of the network through the information they

receive from a data source, usually a pre-processing is done before sending a sequence

of events to be analyzed, these sequences inform on the evolution of the state of the

system and its activity.

2.3.2 Data pre-processor

The data is processed by a data pre-processor to extract activity records that

are important for security analysis.

2.3.3 Intrusion recognition

Its objective is to analyze the activity data using intrusion models that have

already been established for the IDS. If the detection rule determines that there is

an intrusion, the IDS produces an alert and the decision engine then decides the

appropriate action according to the decision table. This can be a response that

automatically blocks a network connection or a report sent to the security manager.

2.4 IDS functions

The main functions of an IDS can be summarized in the following points:

• Compares the collected data with baseline data to detect intrusions.

• Logs attacks and save alert details (e.g. @IP of the intruder). This allows for

remediation of security breaches to prevent recorded attacks from occurring

again.

• Sends an alert in SNMP format to a third-party hypervisor in case of an attack.

• Sends an email or visual notification to one or more supervisors to notify of a

serious attack.

• Applies corrective measures when an intrusion is detected.
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2.5 IDS Classification

IDS Classification

Based on 

Locality

Based on 

Architecture

Based on Reaction 

or Respond

Based on

 Detection Methods

HIDS

NIDS

Hybrid

IDS

Centralized

IDS

Distributed 

IDS

Passive
Response

Active
Response

Anomaly

Detection

Signature or 
Misuse

Detection

Figure 2.2: IDS Classification.

2.5.1 Types of IDS

Based on the location and methodology of the IDS module deployed in the

network, we can distinguish three classes of IDS [6]:

2.5.1.1 Network-based IDS

The Network-based Intrusion Detection System (NIDS) is located on a separate

machine that continuously checks for malicious activities by inspecting and analyzing

the stream of packets flowing across the network, blocking attacks if necessary, and

creating reports [31].

2.5.1.2 Host-based IDS

A Host-based Intrusion Detection System (HIDS) runs on a single machine and

monitors the computer infrastructure on which it is installed, analyzing all inbound

and outbound traffics of the corresponding client and tracking changes made to

registry settings and critical system configuration, log and content files [6].
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INTERNET

FIREWALL

HOSTS

NIDS

Figure 2.3: Network-based IDS.
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Figure 2.4: Host-based IDS.
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2.5.1.3 Hybrid IDS

The network-based IDS may burden the workload and thus miss some malicious

activities, whereas the host-based IDS does not monitor all network traffic and

therefore has a lesser workload than the network-based IDS. Therefore, the hybrid

IDS, as shown in Figure 2.5, deploys IDS modules in the network as well as on clients

to simultaneously monitor specific client and network activities [6].

FIREWALL

HOSTS

NIDS





HIDS










HIDS










HIDS





Figure 2.5: Hybrid IDS.

2.5.1.4 Performance comparison of Host-based IDS and Network-based

IDS

Performance in terms
of:

Host-Based IDS Network-Based IDS

Intruder deterrence Strong deterrence for
inside intruders

Strong deterrence for outside in-
truders

Threat response time Weak real time re-
sponse but performs
better for a long term
attack

Strong response time against out-
side intruders

Assessing damage Excellent in determin-
ing extent of damage

Very weak in determining extent
of damage

Intruder prevention Good at preventing
inside intruders

Good at preventing outside in-
truders

Threat anticipation Good at trending and
detecting suspicious
behavior patterns

Good at trending and detecting
suspicious behavior patterns

Table 2.1: Performance comparison of HIDS and NIDS [32].
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2.5.2 Detection methods

There exist two main types of intrusion detection systems:

2.5.2.1 Misuse-based IDS

A misuse-based IDS, known as a signature-based IDS rely on pattern matching

techniques. It looks for events that match a predefined pattern of events that de-

scribe a known attack (signatures). An alarm is triggered when an event matches the

signature of an attack in the database. This method is suitable for detecting known

attacks, but new or unknown attacks (also called zero-day exploits) are difficult to

detect [33].

2.5.2.2 Anomaly-based IDS

Anomaly, or behavior-based, intrusion detection involves establishing profiles

of normal user/network behavior and comparing actual behavior to those profiles

then raising an alarm if there is any deviation. This detection method can be very

effective in identifying unknown attacks.

2.5.2.3 Comparison of IDS types based on the methodology

Misuse-based Anomaly-based

Method
Identify known
attack patterns

Identify unusual
activity patterns

Detection Rate High Low

False alarm rate Low High

Unknown attack detection Incapable Capable

Table 2.2: Comparison of IDS types based on the methodology [6].

2.5.3 Location of data analysis

Intrusion detection systems can also be classified based on the actual location of

the data analysis:

2.5.3.1 Centralized IDS

Consist of multiple monitors that monitor the behavior of their respective hosts

or network traffic passing by, as well as a single central analyzer that analyzes the

26



CHAPTER 2. INTRUSION DETECTION SYSTEM

data received from each monitor. The primary goal of this architecture is to make

event correlation easier. The central analyzer, on the other hand, provides a single

point of failure and a single target for an attack. That is, if the central analyzer fails

or is attacked, the entire system is jeopardized. Furthermore, communication with

the central component can cause parts of the network to become overloaded [34].

M

M

MM

M

M


A

Figure 2.6: Overview of centralized IDS architecture that consist of monitors (M)
and analysis unit (A) [35].

2.5.3.2 Distributed Intrusion Detection System (DIDS)

Is designed to operate in a non-homogeneous environment, which means that

DIDS shares the task of the central analysis unit equally among all monitors and

provides the ability to aggregate information from different sources to detect attacks

against the network system. This architecture has some advantages over the cen-

tralized approach. Mainly, distributed architectures do not have a single point of

failure. In addition, instead of having a central monitoring station to which all data

must be transmitted, independent entities perform the data collection and analysis.

This allows for better scalability of the system [34].

MA

MA

MAMA

MA

MA


Figure 2.7: Architecture of Distributed IDS [35].
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2.5.3.3 Distributed and Centralized IDS advantages and disadvantages

IDS Advantages Disadvantages

Distributed IDS -Flexibility and scalability
-Reduce computational costs
-Monitoring, analysis, and pro-
cessing of attack data is easier

-The data stream among the host
and the agent may produce high
network traffic overheads
-Can generate diverse outputs
from different IDs.

Centralized IDS -The maintenance and
administration cost lower
compared to the case of a
distributed system
-All of the IDS activities
are controlled directly
by a central console.

-Not able to detect malicious
events occurring at different
places at the same time.
-A hacker can incapacitate the
programs running on a system,
making the IDS unusable or un-
reliable

Table 2.3: Distributed and Centralized IDS advantages and disadvantages [36].

2.5.4 Behavior in case of detection of an attack

Each IDS will respond differently after detecting an attack, depending on its

configuration and function, and the responses are divided into two categories:

2.5.4.1 Passive response

Consists primarily of logging and notifying personnel, it is incapable to perform

any protective or corrective function on its own. Notification can take many forms,

including an email, text message, pop-up window, or notification on a central mon-

itor.

2.5.4.2 Active response

Aims to minimize the damage caused by the attack by providing real-time correc-

tive action and automatically blocking suspicious attacks without any intervention

required by an operator. Actions may include gathering information regarding the

nature of the attack, blocking the source address, closing connections, restarting a

server and so on.
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Passive Active

Administrator notification:
generate alarm
(through email, online/pager notification,
etc.)
generate report
(can contain information about an intrusion
such as attack target, criticality, time, source
IP/user account, description of suspicious
packets, etc. as well as intrusion statistics
for some period of time such as number of
alarms from each IDS, attack targets grouped
by IP, etc.)
Other responses: enable additional IDS
enable local/remote/network activity log-
ging
enable intrusion analysis tools
backup tampered with files
trace connection for information gathering
purposes

Host-based response actions:
deny full/selective access to file
delete tampered with file
allow to operate on fake file
restore tampered with file from backup
restrict user activity
disable user account
shutdown compromised service/host
restart suspicious process
terminate suspicious process
disable compromised services
abort suspicious
system calls
delay suspicious system calls
Network-based response actions:
enable/disable additional firewall rules
restart
targeted system block suspicious incom-
ing/outgoing network
connection block ports/IP addresses
trace connection to perform attacker
isolation/quarantine create remote decoy

Table 2.4: List of common passive and active intrusion responses [37].

2.6 Conclusion

This chapter allowed us to familiarize ourselves with the notion of IDS. We de-

fined its architecture and its three main components and summarized the different

types of IDS while comparing their performances, we also discussed detection meth-

ods and the IDS’s behavior in the event of an attack. In the following chapter we

will introduce the concept of Deep Learning.
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3.1 Introduction

Deep Learning (DL) is a subset of Machine Learning (ML), which is itself a

subset of Artificial Intelligence (AI) (see Figure 3.1). The term ”Artificial Intel-

ligence” was coined in 1955 by the American mathematician ”John MacCarthy”.

The real challenge of artificial intelligence turned out to be solving tasks that are

normally performed by humans intuitively, such as visual perception, speech recog-

nition, decision making and translation between languages [38]. Deep Learning has

revolutionized technology industries and many aspects of modern society are all pow-

ered by DL technology: from web searches to content filtering on social networks to

video recommendations, and it is increasingly present in consumer products such as

cameras and smartphones [39].

In what follows, we will review the concepts of ML. We then present the Neu-

ral Network model that underlies DL. Next, we outline the different Deep Neural

Network architectures and discuss their uses.

ARTIFCIAL INTELLIGENCE

MACHINE LEARNING

DEEP

LEARNING

Figure 3.1: Venn diagram representing the relationships between AI, ML and DL.

3.2 Brief overview of Machine Learning

ML consists of various algorithms and approaches to solve different types of

problems. Arthur Samuel in his seminal work defined machine learning as, “a field

of study that gives computers the ability to learn without being explicitly pro-

grammed”[40]. Another American by the name of Tom Mitchell gave in 1998 a
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more modern definition of Machine Learning by stating that a machine learns when

its performance in a certain task improves with new experiences [41]. In the field

of machine learning, the most common learning technique (supervised learning) is

directly inspired by the way we humans learn to do things. A machine is given a

set of examples that the machine must study to develop what is called a model and

these examples are generally grouped in what is called a dataset.

Study the 

problem

Train ML

algorithm

Evaluate

Solution

Analyze

errors

Launch
Dataset

Figure 3.2: Machine Learning approach [42].

To better understand supervised learning, it is essential to have a good under-

standing of the following 4 concepts:

1. Dataset:

Supervised learning is when a machine is given many examples (x, y) in order

to learn the relationship between x and y. These examples (x, y) are compiled

into an array called a dataset :

• The variable y is named target, it is the value we are trying to predict.

• The variable x is called a feature, it influences the value of y and we

usually have many features (x1, x2, ...) in our dataset that we group into

a matrix X.

2. Model and its parameters:

In ML, we develop a model from this dataset. It can be a linear model as you

can see on the left (see Figure 3.3a), or a non-linear model as you can see on

the right (see Figure 3.3b). We define a, b, c etc. as the parameters of a model.

3. Cost function:

Another thing to note is that a model returns errors with respect to our

dataset. We call the set of these errors the cost function (see Figure 3.14).
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X

y

(a) Linear model

X

y

(b) Non-linear model

Figure 3.3: Linear and non-linear models.

X

y f(x)

y

Errors between

 f(x) and y 

Figure 3.4: Set of errors.

Having a good model means having a model that produces small errors (see

Figure 3.5).
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X

y

(a) Low loss

X

y

(b) High loss

Figure 3.5: Good model (on the left) vs bad model (on the right).

4. Learning algorithm:

The main objective in supervised learning is to find the model parameters

(a, b, c, etc.) that minimize the Cost Function. To achieve this, we employ

a learning algorithm, the most common of which is the Gradient Descent

algorithm.

3.3 Review of Artificial Neural Networks

In Deep Learning, instead of developing a model, we develop what are known as

Artificial Neural Networks (ANNs). The concept remains the same as in machine

learning, but this time our model is not a simple function such as f(x) = ax + b,

but rather a network of functions connected to each other (a Neural Network). The

more functions these networks contain, the more the machine can learn to perform

complex tasks like object recognition, identifying people in a picture, driving a car,

and so on.

To understand how artificial Neural Networks work, it is necessary to go back

to the origin of their history in order to learn how they were invented and how they

evolved over time to reach the technology we know today.

3.3.1 History of Artificial Neural Networks

The first Neural Networks (NNs) were invented in 1943 by two mathematicians

and neuroscientists named Warren McCulloch and Walter Pitts. In their scien-

tific article entitled: ”A logical calculus of the ideas immanent in nervous activity”
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[43], they explain how they were able to program artificial neurons inspired by the

functioning of biological neurons.

In biology, neurons are excitable cells connected to each other and whose role is

to transmit information in our nervous system. Each neuron is composed of a cell

body, and many branching extensions called dendrites, plus one very long extension

called the axon [42]. (as represented in Figure 3.6).

Dendrites are the neuron’s entry point. The neuron receives signals from previous

neurons via synapse. When the sum of these signals exceeds a certain threshold,

the neuron is activated and sends an electrical signal along the axon to the endings,

where it is forwarded to other neurons in our nervous system [42].

Figure 3.6: Biological neuron.

3.3.2 Modeling an artificial neuron

What Warren McCulloh andWalter Pitts tried to do was to model this operation,

considering that a neuron could be represented by a transfer function, which takes

as input signals x and returns an output y (see Figure 3.7).

f

X1

X2

X3

y

Figure 3.7: Transfer function f with inputs (x1, x2, x3) and output y.
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Within this function, there are 2 main phases:

3.3.2.1 Aggregation phase

We sum up all of the neuron’s inputs, multiplying each one by a coefficient

w. This coefficient represents synaptic activity, i.e. whether the signal is excitatory

(w = +1) or inhibitory (w = −1). In this aggregation phase, we obtain an expression

of the form:

Aggregation : f = w1x1 + w2x2 + w3x3 (3.1)

f

X1

X2

w1
w2

X3

w3
y

Figure 3.8: Aggregation phase.

3.3.2.2 Activation phase

We look at the result of the previous calculation, and if it exceeds a certain

threshold (usually 0), then the neuron is activated and returns an output y = 1. If

not, it remains at 0.

Activation =


y = 1 if f ≥ 0

y = 0 else

(3.2)

This is how Warren McCulloch and Walter Pitts managed to develop the first

artificial neurons later renamed ”Threshold Logic Unit”. This name comes from the

fact that their model was originally designed to handle only logic inputs of 0 or 1.

They were able to demonstrate that certain logic functions, such as the AND gate

and the OR gate, could be reproduced using this model. They also demonstrated

that by connecting several of these functions to each other, similar to the neurons

in our brain, any Boolean logic problem could be solved [43].
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However, even if this model lays the basis of what Deep Learning is today, it

contains a certain number of flaws, notably the fact that it does not have a learning

algorithm.

A solution was found 15 years later in 1957 by Franck Rosenblatt the inventor

of the Perceptron by proposing the first learning algorithm in the history of Deep

Learning.

3.3.3 The Perceptron

The Perceptron is the basic unit of Neural Networks. It is a binary classification

model, capable of linearly separating two classes of points.

We provide variables (x1, x2, ...xn) to a neuron and multiply each input of the

neuron by a weight (w1, w2, ...wn), in addition we will pass a complementary coeffi-

cient b that we call the bias which gives us a function:

z = w1x1 + w2x2 + b (3.3)

z a

b

x1

x2

ypred

w1

w2

Figure 3.9: Perceptron model.

The Perceptron is defined by the following characteristics:

• The input data vector (x1, x2, ..., xn).

• The weights (w1, w2, ..., wn) accorded to each input for neuron activation.

• The aggregation function: sums the products of the information by their as-

sociated weights and processes this data: S =
∑n

i=1 xiwi + b.

• The bias b allows the shift of the activation function by a constant amount.
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• Activation function a(z) which associates to the aggregated value a unique

value, the neuron compares this value to a threshold and decides the output

either active or inactive. This function can take several forms.

The Perceptron also has a learning algorithm that allows it to find the values of

its parameters W in order to obtain suitable outputs y [44].

To develop this algorithm, Frank Rosenblatt was inspired by Hebb’s theory,

which suggests that when two biological neurons are jointly excited, they strengthen

their synaptic links [45]. In neuroscience, this phenomenon is called synaptic plas-

ticity, and it is what allows our brain to build its memory, learn new things or make

new associations.

Based on this concept, Frank Rosenblatt has developed a learning algorithm,

which consists in training an artificial neuron on reference data (X, y) so that it

reinforces its parameters W each time an input X is activated at the same time as

the output y present in these data. He devised the following formula ( 3.4), in which

the parameters W are updated by calculating the difference between the reference

output and the output produced by the neuron, and by multiplying this difference

by the value of each input X, and by a positive learning rate α.

W = W + α(ytrue − y)X (3.4)

– ytrue : reference output.

– y : output produced by the neuron.

– X : neuron input.

– α : learning rate.

If our neuron produces an output different from the one it is supposed to produce,

(y = 0, ytrue = 1), then our formula returns :

W = W + α(1− 0)X

W = W + αX

Therefore, for inputs x that are equal to 1, the coefficient w will be increased by

a small α step. This leads to an increase of the function f and brings our neuron

closer to the activation threshold.
w1 = w1 + α (x1 = 1)

w2 = w2 (x2 = 0)
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As long as the neuron produces a bad output (y ̸= ytrue) , the coefficient W will

continue to increase (see Figure 3.10) , until ytrue equals y and at that moment our

formula returns (W = W +0), which means that our parameters will stop adjusting.

f

X1

X2

=1

=0

w1

w2

y=0
ytrue=1

y

f

1

1-1

y=1

Activation

threshold

Figure 3.10: The first learning algorithm in Deep Learning history.

3.3.4 Common activation functions

Activation functions decide whether a neuron should be activated or not by

taking the weighted sum of all the inputs of the previous layer, and then generate

and transmit an output value (usually non-linear) to the next layer. They also help

to normalize the output of each neuron to a range between 1 and 0 or between -1

and 1. In the following we present some examples of activation functions:

3.3.4.1 Sigmoid function

The following sigmoid activation function (see Figure 3.11) converts the weighted

sum to a value between 0 and 1. It is especially used for models where we have

to predict the probability as an output (since probability of anything exists only

between the range of 0 and 1).

a(z) =
1

1 + e−z
(3.5)
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3.3.4.2 ReLU function

The following Rectified Linear Unit (ReLU) activation function often works a

little better than a smooth function like the sigmoid, while also being significantly

easier to compute (see Figure 3.12).

a(z) = max(0, z) =


0 if z < 0

z if z ≥ 0

(3.6)

The negative side of the graph makes the gradient value zero. Due to this reason,

during the back propagation process, the weights and biases for some neurons are

not updated. This can create dead neurons which never get activated. All the

negative input values become zero immediately, which decreases the model’s ability

to fit or train from the data properly [46].

3.3.4.3 Tanh function

Hyperbolic tangent (Tanh) function is very similar to the sigmoid activation

function, and even has the same S-shape with the difference in output range of -1

to 1 (see Figure 3.13).

a(z) =
ez − e−z

ez + e−z
(3.7)

Figure 3.11: Sigmoid function.
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Figure 3.12: ReLU function.

Figure 3.13: Tanh function.
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Our goal is to set the parameters w and b in order to obtain the best possible

model that is to say the model that makes the smallest errors between the outputs

a(z) and the real data y and for that we will start by defining a loss function that

will allow to measure its errors.

3.3.5 Loss function

A loss function is a function that allows us to quantify the errors made by a

model and to measure the distances between the outputs a(z) and the data y that

we have (see Figure 3.14).

There are several loss functions. One of them, widely used in regression problems,

is the logarithmic loss function defined by the following formula:

L =
−1

m

m∑
i=1

yilog(ai) + (1− yi)log(1− ai) (3.8)

• m : amount of data.

• yi : data number i.

• ai : output number i.

Data y=0

Data y=1


Output a(z)

Errors

Figure 3.14: Distances between outputs a(z) and the data y.

Once we dispose of our loss function we can use it to minimize the errors of our

model and for that we will use the gradient descent algorithm.
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3.3.6 Gradient descent algorithm

Gradient descent is one of the most widely used learning algorithms in DL. It

consists in adjusting the parameters w and b in order to reduce the model’s errors.

To do so, we must first determine how this function varies according to the different

parameters.

Figure 3.15: Log loss curve.

By calculating the derivative of the function, we can learn how the function

varies. If the derivative is negative, it indicates that the function decreases as w

increases. Conversely, if the derivative is positive, it indicates that the loss function

increases when w increases (see Figure 3.16).

∂L

∂w
< 0

∂L

∂w
> 0

Figure 3.16: Gradient descent algorithm.

The formula for gradient descent is as follows:
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Wt+1 = Wt − α
∂L

∂Wt

(3.9)

Wt+1 : Parameter W at instant t+ 1

Wt : Parameter W at instant t

α : Positive learning rate

∂L

∂Wt

: Gradient at instant t

By repeating this formula in a loop we are able to reach the minimum of the loss

function by progressively descending its curve, hence the gradient descent term.

The Perceptron being a linear model made it a not very useful model since a

large part of the phenomena of our universe are not linear. Artificial intelligence

had its first winter, from 1974 to 1980, during which there were almost no investors

to fund AI research.

AI was on the verge of death until 1986, when Geoffrey Hinton, one of the

fathers of Deep Learning, developed the Multi-Layer Perceptron (MLP), the first

true artificial Neural Network.

3.3.7 The Multi-Layer Perceptron

This model proposes to connect together several neurons which makes the reso-

lution of more complex problems possible (see Figure 3.17).

For example we connect three Perceptrons; the first two receive inputs x1 and

x2, performing calculations based on their parameters, and return two outputs y1

and y2, which they in turn send to the third Perceptron which performs calculations

to produce the final output y3.

f1

f2

f3

X1

X2

y1w11
w12

w21
w22 y2

w31

w32

y3

Figure 3.17: Example of a Multi-Layer Perceptron (MLP).
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
f1 = w11x1 + w12x2 + b1

f2 = w21x1 + w22x2 + b2

f3 = w31y1 + w32y2 + b3

(3.10)

We can see from the graphs below (see Figure 3.18) that the most accurate model

is the Multi-Layer Perceptron.

(a) Multi-Layer Perceptron (b) Single-layer Perceptron

Figure 3.18: Performance comparison between the single layer Perceptron and the
Multi-Layer Perceptron.

Now the question that arises is how to train such a Neural Network so that it does

what we ask it to do? in other words, how to find the values of all the parameters

w and b in order to obtain a good model.

The solution is to use the “Back Propagation” method, which consists in deter-

mining how the network’s output varies according to the parameters (w, b) present

in each layer. To do so, we calculate a sequence of gradients indicating how the

output varies according to the last layer, then how the last layer varies according

to the second last layer, and so on until we reach the very first layer of our network

(see Figure 3.19). Using the gradient, we can then update the parameters (w, b) of

each layer so that they minimize the error between the output of the model and the

expected output (ytrue).
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f13

f12

f11

f10

f23

f22

f21

f20

f32

f31

f30

f4 yfinal

X1

X2

Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3 Output layer

∂yfinal

∂f4

∂f4

∂f3

∂f3

∂f2

∂f2

∂f1

Figure 3.19: Back propagation method.

3.4 Convolution Neural Networks

The first Multi-Layer Perceptron variants were developed in 1989. The famous

Yann LeCun invented the first Convolutional Neural Networks (CNNs) [47], which

are inspired by the organization of an animal’s visual cortex [48], [49] and are de-

signed to automatically and adaptively learn spatial hierarchies of features, from

low-level to high-level patterns, and capable of recognizing and processing images

by introducing mathematical filters at the beginning of these networks.

Input Convolution Pooling

Fully

connected

Output

ClassificationFeature extraction

Figure 3.20: Outline of CNN [50].
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CNN is a mathematical construct that is typically composed of three types of

layers (or building blocks): convolution, pooling, and fully connected layers [51].

Image

(input)

Layers in CNN

Convolutional
Layers

Pooling 

Layers

Fully
connected

Layers

Activation 

Functions


Feature map
(output)

Figure 3.21: Layers in CNN.

3.4.0.1 Convolutional layer

A convolution layer is a fundamental component of the CNN architecture that

performs feature extraction [51]. It contains a set of filters (or kernels) that perform

convolution operations on the input image before passing the result to the next layer.

These convolution operations pass the input images through a set of convolutional

filters, each of which activates certain features in the images [52]. The resulting

output is called a feature map or activation map. A filter can technically be thought

of as a relatively small matrix (typically 3x3 or 5x5) that can detect patterns such

as edges, corners, circles, etc. The deeper the network, the more sophisticated these

filters become. Thus, in later layers, instead of detecting edges in simple shapes,

our filter may be able to detect specific objects such as eyes, ears or even different

types of animals.

Let’s take an example where we have an input image of size 5x5 and we want

our convolutional layer to contain a filter of size 3x3 (see Figure 3.22).
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1 2 1 0 2

2 0 0 1 0

1 0 2 1 0

1 0 1 2 1

0 2 1 0 2

(a) Input image

1 0 1

0 1 0

1 0 1

(b) Convolutional filter

Figure 3.22: Example of a (5x5) input image and a (3x3) convolutional filter.

When the convolutional layer receives the input, it slides over each 3x3 set of

pixels from the input itself until it has covered every 3x3 block of pixels from the

entire image.

Now let’s apply convolution operations to this input using this filter and a step

size of 1 pixel (see Figure 3.23).

1 2 1 0 2

2 0 0 1 0

1 0 2 1 0

1 0 1 2 1

0 2 1 0 2

1 0 1

0 1 0

1 0 1
1x1 2x0 1x1 0 2

2x0 0x1 0x0 1 0

1x1 0x0 2x1 1 0

1 0 1 2 1

0 2 1 0 2

5

1 2 1 0 2

2 0 0 1 0

1 0 2 1 0

1 0 1 2 1

0 2 1 0 2

1 0 1

0 1 0

1 0 1
1 2x1 1x0 0x1 2

2 0x0 0x1 1x0 0

1 0x1 2x0 1x1 0

1 0 1 2 1

0 2 1 0 2

5 3
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1 2 1 0 2

2 0 0 1 0

1 0 2 1 0

1 0 1 2 1

0 2 1 0 2

1 0 1

0 1 0

1 0 1

1 2 1 0 2

2 0 0 1 0

1 0 2x1 1x0 0x1

1 0 1x0 2x1 1x0

0 2 1x1 0x0 2x1

5 3 6

2 6 2

5 3 7

Figure 3.23: An example of convolution operation with a kernel size of 3x3 no
padding, and a stride of 1.

By dragging the filter to all possible positions, we created a 3x3 output called a

feature map or activation map (see Figure 3.24).

5 3 6

2 6 2

5 3 7

Figure 3.24: Feature map.

1. The number of filters affects the depth of the output. For example, three

separate filters would produce three different feature maps, creating a depth

of three.

2. Stride is the distance, or number of pixels (usually 1), over which the kernel

moves on the input matrix. A larger stride results in a smaller output.

3. Zero-padding is usually used when the filters do not fit the input image.

This sets all elements that fall outside of the input matrix to zero, resulting

in a larger or equally sized output. There are three types of padding [53]:

• No padding: in this case, the last convolution is dropped if the dimen-

sions are not matched.
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1 2

3 4

2x2 output

Figure 3.25: No padding.

• Same padding: ensures that the output layer has the same size as the

input layer.

1 2

4 5

3

7

6

8 9

3x3 output

Figure 3.26: Same padding.
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• Full padding: increases the size of the output by adding zeros to the

border of the input.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

4x4 output

Figure 3.27: Full padding.
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3.4.0.2 Pooling layer

The pooling layer simplifies the output by performing a nonlinear downsampling

operation that aims to reduce the size of the convolutional feature maps, allowing

for much faster computation due to the reduced amount of learnable parameters

in the network [51]. It is therefore common to periodically insert a pooling layer

between two successive convolutional layers of a CNN architecture. There are several

approaches to pooling. The most commonly used approaches are max-pooling and

average pooling.

• Max pooling: returns the maximum value of the part of the image covered

by the kernel. It also works as a noise suppressor by completely eliminating

noisy activations and also performs denoising and dimensionality reduction

[54].

255 167 25 46

2 70 251 58

8 59 68 90

4 125 201 126

255 251

125 201

Filter size:

2x2

stride: 2

Feature map 

Output

Figure 3.28: Max pooling.

• Average pooling: calculates the average value of the elements present in the

region of the feature map covered by the filter.

255 167 25 46

2 70 251 58

8 59 68 90

4 125 201 126

124 95

49 121

Filter size:

2x2

stride: 2

Feature map

output

Figure 3.29: Average pooling.
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3.4.0.3 Fully connected layer

The output of the final pooling or convolution layer is flattened into a one-

dimensional (1D) array of numbers (or vector) (see Figure 3.30) and fed to one or

more fully connected layers in which each input is connected to every output by a

learnable weight. The final fully connected layer has the same number of output

nodes as the number of classes, while each fully connected layer is followed by a

nonlinear activation function [51].

Output feature map

Flattening

1D array

Fully connected 

Classification

Figure 3.30: The output feature map is flattened before being passed to the fully
connected layers.

3.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were first developed in the 1980s based on

the work of David Rumelhart [55]. But their recent popularity is mainly due to the

work of Juergen Schmidhuber, Sepp Hochreiter and Alex Graves [56], [57]. Their

applications are extremely diverse, ranging from speech recognition to driverless

cars. All the networks we have seen so far were feedforward Neural Networks. In a

feedforward Neural Network, signals flow in a single direction, from input to output,

one layer at a time. In a recurrent network, the output of one layer is added to the

next input and fed back to the same layer. Unlike feedforward networks, a recurrent

network can receive a sequence of values as input and can also produce a sequence

of values as output. RNNs have a ”memory” that holds all the information about

what was calculated. It uses the same parameters for each input because it performs

the same task on all inputs or hidden layers to produce the output. This reduces

the complexity of the parameters, unlike other Neural Networks [58].

The mathematical description of the memory transfer process is as follows:
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Figure 3.31: RNN architecture.

ht = φ(Wxt + Uht-1) (3.11)

where:

• hththt is the hidden state at time t.

• WWW is the weight matrix.

• xtxtxt is the input at the same time t.

• ht-1ht-1ht-1 is the hidden state at time t-1.

• UUU is a transition matrix.

• φφφ is an activation function.

In general, an RNN is an extremely difficult network to train. Since these net-

works use backpropagation, we run into the problem of the vanishing gradient (as

there are more layers in the network, the value of the product of derivatives de-

creases until at some point the partial derivative of the loss function approaches a

value close to zero, and the partial derivative vanishes). Unfortunately, the vanish-

ing gradient is exponentially worse for an RNN. The reason is that each time step
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is equivalent to an entire layer in a feedforward network. Thus, training an RNN

for 100 time steps is equivalent to training a 100-layer feedforward network, which

leads to exponentially small gradients and decreasing information over time.

There are several ways to solve this problem, the most popular of which is gating,

a technique that helps the network decide when to forget the current input and when

to retain it for future steps. One of the most common types of gating today is the

Long Short Term Memory (LSTM).

3.6 Long Short Term Memory

A common LSTM unit consists of different memory blocks called cells, an input

gate, an output gate and a forget gate. The information is retained by the cells and

the memory manipulations are performed by the gates (see Figure 3.32).

Xt

ht

X

σ σ

X

+

tanh σ

X

tanh

ft

Ct-1

ht-1

Ct

ht

Forget gate

Input gate Output gate

Cell state

Otit Čt

Figure 3.32: Structure of LSTM.

1. Forget gate: decides which information can be ignored and which should be

retained for future use. Information from the current input Xt and the hidden

state ht-1 is passed to the gate and multiplied by weight matrices Wf followed

by the addition of a bias bf . The result is passed to an activation function σ

which gives a binary output. If for a particular state of the cell the output is
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0, the information is forgotten and for output 1, the information is kept for

future use.

ft = σ(Wf · [ht-1, Xt] + bf ) (3.12)

2. Input gate: is responsible for adding useful information to the cell state.

First, the information is regulated using the sigmoid function σ and filters the

values to be stored in a similar way to the forget gate using the inputs ht-1

and xt. Then, a vector is created C̃ using the tanh function that gives an

output from -1 to +1, which contains all possible values of ht-1 and xt. The

output values generated by the activation functions are ready for point-to-

point multiplication to obtain the useful information.

it = σ(Wi · [ht-1, Xt] + bi) (3.13)

C̃ = tanh(Wc · [ht-1, Xt] + bc) (3.14)

3. Output gate: is responsible for extracting useful information from the cur-

rent state of the cell and presenting it as an output. First, the values of the

current state xt and previous hidden state ht-1 are passed into the third sigmoid

function σ. Then the new cell state generated from the cell state is passed

through the tanh function. Both these outputs are multiplied point-by-point.

Based upon the final value, the network decides which information the hidden

state should carry. This hidden state is used for prediction [59].

ot = σ(Wo · [ht-1, Xt] + bo) (3.15)

ht = ot × tanh(Ct) (3.16)

3.7 AutoEncoders

The idea of AutoEncoders (AEs) has been part of the historical landscape of

Neural Networks for decades (LeCun [60], 1987; Bourlard and Kamp [61], 1988;

Hinton and Zemel [62], 1994). Basically, they are end-to-end networks that are used

to compress input data. They transform data from a higher dimensional space to

a lower dimensional space, essentially performing compression which is a way to

reduce dimensionality and extract meaningful information.
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AutoEncoders consist of 3 parts:

• Encoder: compresses the data into a lower dimensional representation (also

called the latent space).

• Bottleneck: ensures a lower dimensional representation of the original data.

• Decoder: decompresses the representation back to the original domain.

x1

x2

x3

x4

x5

V1

V2

x1'

x2'

x3'

x4'

x5'

Original data Reconstruction

Bottleneck

Encoder

Decoder

Figure 3.33: Architecture of an AE.
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3.8 Metrics for evaluating the model’s performance

In this section, we’ll define the primary building blocks of the metrics we’ll use

to evaluate classification models.

3.8.1 Confusion matrix

An NxN matrix that groups a classification model’s correct and incorrect guesses.

A confusion matrix has one axis for the label predicted by the model and another

for the ground truth. N represents the number of classes. For example, N=2 for a

binary classification model (see Figure 3.34).

Actually

Positive (1)

Actually 

Negative (0)

Predicted 

Positive (1)

True Positive

(TP)

Predicted 

Negative (0)

False Negative

(FN)

False Positive

(FP)

True Negative

(TN)

Ground truth

Predicted

Figure 3.34: Confusion matrix.

Each cell in the confusion matrix represents an evaluation factor. Let’s understand

these factors one by one:

• True Positive (TP): an outcome in which the model predicts that an obser-

vation belongs to a class and the observation actually belongs to that class.

• True Negative (TN): an outcome in which the model predicts that an

observation does not belong to a class and it actually does not belong to that

class.

• False Positive (FP): an outcome in which the model predicts that an ob-

servation belongs to a class when it actually does not.

• False Negative (FN): an outcome in which the model predicts that an

observation does not belong to a class when it actually does.
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3.8.2 Accuracy

The percentage of correct predictions made by a classification model. Formally,

accuracy is defined as follows:

Accuracy =
Number of correct predictions

Total number of predictions

For binary classification, accuracy can also be calculated in terms of positives and

negatives as follows:

Accuracy =
TP + TN

TP + TN+ FP + FN

3.8.3 Precision

Identifies how often a model was correct when predicting the positive class.

Precision =
TP

TP + FP

3.8.4 Recall or Sensitivity or TPR

It is the number of correct positive results divided by the number of all relevant

samples (all samples that should have been identified as positive).

Recall = True Positive Rate (TPR) =
TP

TP + FN

3.8.5 Specificity or TNR

Percentage of negative instances out of the total actual negative instances. It is

similar to recall but the shift is on the negative instances.

Specificity = True Negative Rate (TNR) =
TN

TN+ FP

3.8.6 FPR

Corresponds to the proportion of negative data points that are mistakenly con-

sidered as positive, with respect to all negative data points.

False Positive Rate (FPR) =
FP

FP + TN
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3.8.7 FNR

Corresponds to the proportion of positive data points that are mistakenly con-

sidered as negative, with respect to all positive data points.

False Negative Rate (FNR) =
FN

FN + TP

3.8.8 F1 score

The harmonic mean of the precision and recall, where an F1 score reaches its

best value at 1 (perfect precision and recall) and worst at 0.

F1 score = 2× Precision× Recall

Precision + Recall

3.8.9 ROC curve

Receiver Operating Characteristic (ROC) curves summarize the trade-off be-

tween the true positive rate and false positive rate for a predictive model using

different probability thresholds.

Figure 3.35: ROC curve.
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3.9 Conclusion

In this third chapter, we briefly defined machine learning and supervised learning,

which served as a basis for a better understanding of Deep Learning. Today, DL

has proven to be very effective and has led to significant advances in many domains.

Although it was first introduced back in the 1940s, it is only very recently that

we have been able to fully exploit this field with the help of powerful computing

resources, as well as the appearance of large databases.

This chapter will give us the opportunity to put into practice what we have learned

in the theoretical part. The next chapter consists of creating a model capable of

identifying and classifying a wide range of attacks using ML and DL algorithms.
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CHAPTER 4. NETWORK ANOMALY DETECTION, TESTS AND RESULTS

4.1 Introduction

The performance of Machine Learning-based intrusion detection systems is highly

dependent on the dataset used for model development. In this work, we used CIC-

IDS2017, a dataset provided by the Canadian Cybersecurity Institute (CIC), to

detect and classify a wide range of attacks such as Denial of Service, PortScan,

Web Attacks and many other widespread attacks. We implemented 4 ML algo-

rithms (Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM),

and K-Nearest Neighbors (KNN)) and one DL algorithm (Multi-Layer Perceptron

(MLP)) and compared their performance using various evaluation measures (Accu-

racy, Precision, Recall, F1 score).

4.2 Execution environment

Machine Learning is a field that requires the availability of hardware resources

(especially GPUs) capable of performing intense calculations. To carry out our

work, we have chosen to work in an experimental environment with the following

characteristics:

• OS: 64-bit Windows 10.

• CPU(Intel): Core i5-8300H @2.30GHz.

• GPU(NVIDIA): GeForce GTX 1050.

• RAM: 8GB.

• SSD: 512GB.

On the software side, we started by setting up a local Python development envi-

ronment using the Anaconda [63] platform, which is a distribution of the Python

and R programming languages for scientific computing, which aims to simplify pack-

age management and deployment.

For the programming language we chose Python [64] (3.9.12), a high-level, in-

terpreted, open source programming language that offers an excellent approach to

object-oriented programming. It is the most common and popular language for ML,

used by data scientists for various data science projects and applications, thanks

to its flexibility and the large number of open source software libraries it supports,

such as Numpy, Pandas, Matplotlib, Scikit-Learn, etc.

We also used the Jupyter Notebook [65] development environment (6.4.11) to

write and execute python codes.
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Library Description Version

Numpy [66]

A Python library that provides mathematical
function to handle large dimension array. It
provides various method/function for Array,

Metrics, and linear algebra.

1.21.5

Pandas [67]

A fast, powerful, flexible and easy to use open
source data analysis and manipulation tool,
built on top of the Python programming

language.

1.4.2

Scikit-learn [68]

Is a free software machine learning library for
the Python programming language. It

features various classification, regression and
clustering algorithms.

1.0.2

Matplotlib [69]
Matplotlib is a comprehensive library for
creating static, animated, and interactive

visualizations in Python.
3.5.2

Table 4.1: List of python libraries used.

4.3 Dataset

The dataset chosen for this study is the CIC-IDS2017 dataset, provided by the

Canadian Institute for Cybersecurity (CIC) [70], it covers the eleven criteria neces-

sary to build a reliable benchmark dataset that none of the previous datasets could

cover [71]. Generating realistic background traffic was the main priority in building

this dataset and was achieved by abstracting the behavior of human interactions

via the B-Profile system [72]. The dataset is fully annotated and has more than 80

network traffic features extracted for each NetFlow observation and evaluated for all

benign and invasive flows using CICFlowMeter software which is freely obtainable

from the Canadian Cybersecurity Institute website [73].

4.3.1 Descriptions of CIC-IDS2017 dataset

According to the author [72] of CIC-IDS2017, the data capture period started

at 9:00 am on Monday, July 3, 2017 and ended at 5:00 pm on Friday, July 7, 2017,

a total of 5 days. The dataset spanned over eight different files, a brief description

of all the files is presented in Table 4.2.
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Name of Files
Day

Activity
Size
(MB)

Attacks found

Monday-WorkingHours
.pcap ISCX.csv

Monday
262.354
MB

Benign
(Normal human activities)

Tuesday-WorkingHours
.pcap ISCX.csv

Tuesday
170.603
MB

Benign,
FTP-Patator,
SSH-Patator

Wednesday-WorkingHours
.pcap ISCX.csv

Wednesday
278.949
MB

Benign,
DoS GoldenEye,

DoS Hulk,
DoS Slowhttptest,
DoS Slowloris,
Heartbleed

Thursday-WorkingHours-Morning
-WebAttacks.pcap ISCX.csv

Thursday
89.874
MB

Benign,
Web Attack – Brute Force,
Web Attack – Sql Injection,

Web Attack – XSS

Thursday-WorkingHours-Afternoon
-Infilteration.pcap ISCX.csv

Thursday
106.175
MB

Benign,
Infiltration

Friday-WorkingHours-Morning
.pcap ISCX.csv

Friday
73.620
MB

Benign,
Bot

Friday-WorkingHours-Afternoon
-PortScan.pcap ISCX.csv

Friday
99.488
MB

Benign,
PortScan

Friday-WorkingHours-Afternoon
-DDos.pcap ISCX.csv

Friday
95.019
MB

Benign,
DDoS

Table 4.2: Description of files containing CIC-IDS2017 dataset.

The dataset contains 2830743 instances and 85 features containing 15 class labels

(1 normal + 14 attack labels) [74]. The characteristics of combined dataset and the

detailed class wise occurrence has been presented in Table 4.3 and Table 4.4.

Dataset Name CIC-IDS2017

Dataset Type Multi class

Year of release 2017

Total number of instances 2830743

Number of features 85

Number of distinct classes 15

Table 4.3: Overall characteristics of CIC-IDS2017 dataset.
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Class Labels
Number of
instances

BENIGN 2359289

DoS Hulk 231073

PortScan 158930

DDoS 41835

DoS GoldenEye 10293

FTP-Patator 7938

SSH-Patator 5897

DoS Slowloris 5796

DoS Slowhttptest 5499

Bot 1966

Web Attack - Brute Force 1507

Web Attack - XSS 652

Infiltration 36

Web Attack - Sql Injection 21

Heartbleed 11

Table 4.4: Class wise instance occurrence of CIC-IDS2017 dataset.
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Features Type Features Type

Flow ID int64 Bwd Packets/s float64

Source IP int64 Min Packet Length float64

Source Port int64 Max Packet Length float64

Destination IP int64 Packet Length Mean float64

Destination Port int64 Packet Length Std float64

Protocol int64 Packet Length Variance float64

Timestamp int64 FIN Flag Count int64

Flow Duration int64 SYN Flag Count int64

Total Fwd Packets int64 RST Flag Count int64

Total Backward Packets int64 PSH Flag Count int64

Total Length of Fwd Packets float64 ACK Flag Count int64

Total Length of Bwd Packets float64 URG Flag Count int64

Fwd Packet Length Max float64 CWE Flag Count int64

Fwd Packet Length Min float64 ECE Flag Count int64

Fwd Packet Length Mean float64 Down/Up Ratio float64

Fwd Packet Length Std float64 Average Packet Size float64

Bwd Packet Length Max float64 Avg Fwd Segment Size float64

Bwd Packet Length Min float64 Avg Bwd Segment Size float64

Bwd Packet Length Mean float64 Fwd Avg Bytes/Bulk int64

Bwd Packet Length Std float64 Fwd Avg Packets/Bulk int64

Flow Bytes/s int64 Fwd Avg Bulk Rate int64

Flow Packets/s t int64 Bwd Avg Bytes/Bulk int64

Flow IAT Meant float64 Bwd Avg Packets/Bulk int64

Flow IAT Std float64 Bwd Avg Bulk Rate int64

Flow IAT Max float64 Subflow Fwd Packets int64

Flow IAT Min float64 Subflow Fwd Bytes int64

Fwd IAT Total float64 Subflow Bwd Packets int64

Fwd IAT Mean float64 Subflow Bwd Bytes int64

Fwd IAT Std float64 Init Win bytes forward int64

Fwd IAT Max float64 Init Win bytes backward int64

Fwd IAT Min float64 act data pkt fwd int64

Bwd IAT Total float64 min seg size forward int64

Bwd IAT Mean float64 Active Mean float64

Bwd IAT Std float64 Active Std float64

Bwd IAT Max float64 Active Max float64

Bwd IAT Min float64 Active Min float64

Fwd PSH Flags int64 Idle Mean float64

Bwd PSH Flags int64 Idle Std float64

Fwd URG Flags int64 Idle Max float64

Bwd URG Flags int64 Idle Min float64

Fwd Header Length int64 External IP object

Bwd Header Length int64 Label object

Fwd Packets/s float64

Table 4.5: All 85 features present in the CIC-IDS2017 dataset.
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4.4 Implementation

A summary of the work done in this chapter is represented in Figure 4.1.

Data cleaning, encoding,
normalization

Data Preprocessing

Create a file containing only 2
labels "Normal" and "Abnormal"


(30% abnormal - 70% normal)

Create 7 different files for each
attack


 (30% attack - 70% benign)

D
oS

Feature selection

Impelemntation of
Machine Learning

Algorithms

Implementation of ML
and DL algorithms

Test and
results

Test and
results

Approach 1 Approach 2

CICIDS2017 Dataset
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Training set Validation set Test set

Training set Validation set Test set

Feature selection for each file

Each file is divided into 3 sets

Figure 4.1: Summary of the work conducted.
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4.5 Data pre-processing

Machine Learning algorithms learn from the data that is provided to them, there-

fore if this data is of poor quality, i.e. incorrect, corrupted, incorrectly formatted,

duplicate, or incomplete, then the resulting algorithm will itself be quite bad since

it is supposed to reflect what it sees in the data. For this reason, It is imperative to

pre-process our data before feeding it to the learning model and this phase is known

as data pre-processing.

We have seen in Table 4.2 that the data of CIC-IDS2017 dataset is divided into

8 different files and because processing each file individually is a tedious task, we

decided to facilitate the processing of our data by merging all 8 files into a single

CSV file called ”all data.csv” which contains a total of 2830743 instances.

4.5.1 Data cleaning

Following an examination of our dataset, we proceeded to remove all missing

values, such as NaN (Not A Number) and INF (Infinity) values, as well as all

redundant rows, as these can have a negative impact on the performance of our

model.

Categorical and string values cannot be interpreted by our model as it can only learn

from numerical values. Therefore, another modification was made to our dataset

by transforming all strings and categorical values present in the features (Flow ID,

Source IP, Destination IP, Timestamp, External IP, Flow Bytes/s, Flow Packets/s)

into numeric values using the Label Encoder [75] module from Scikit-learn library.

0 50000 100000 150000 200000

DoS Hulk
PortScan

DDoS
DoS GoldenEye

FTP-Patator
SSH-Patator

DoS slowloris
DoS Slowhttptest

Bot
Web Attack - Brute Force

Web Attack - XSS
Infiltration

Web Attack - Sql Injection
Heartbleed

231073
158930

41835
10293
7938
5897
5796
5499

1966
1507
652
36
21
11Attack

16.7%

Benign

83.3%

Attack
Benign

Figure 4.2: The distribution of data flow and attack types in the dataset.
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After examining the number of attacks in the dataset shown in Figure 4.2, we

can clearly see that there is a huge imbalance in the distribution that is due to the

nature of these attacks. During the attack, DoS and PortScan attacks generate an

excessive amount of data and packet flow. Therefore, the increase in traffic from

normal use and other types of attacks is quite natural.

4.5.1.1 First approach

In this approach, we will mainly focus on 7 types of attacks (DoS, PortScan,

DDoS, FTP-Patator, SSH-Patator, Bot and Web attack). Due to the low number

of instances in the remaining attacks, it would be quite difficult to develop a model

that can effectively detect and classify these attacks, as ML algorithms require a

good amount of data to achieve the best results. Therefore, we decided to combine

all the different types of DoS and Web attacks into two types of attacks labeled

”DoS” and ”Web Attack” respectively (see Table 4.6) and discard the rest of the

attacks.

Next, we generated 7 new CSV files, each containing a single type of attack and

benign stream. However, we did not use the entire benign traffic (2359289 instances)

for each attack file in order to avoid having a huge imbalance between attack and

normal traffic, which makes it harder for the model to converge in the learning

phase. Instead, we used a ratio of (attack=30%, benign=70%) in each attack file.

The results are shown in Table 4.7.

Class Labels New Labels
Number of
instances

DoS Hulk

DoS GoldenEye DoS 252660

DoS slowloris

DoS Slowhttptest

Web Attack - Brute Force

Web Attack - XSS Web 2180

Web Attack - Sql Injection

Table 4.6: Merging all types of DoS and Web attacks into two class labels ”DoS”
and ”Web”.
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CSV files Number of
attack

instances
(30%)

Number of
benign

instances
(70%)

Files Size
(MB)

”DoS.csv” 252660 589540 359.629 MB

”PortScan.csv” 158930 370836 198.964 MB

”DDoS.csv” 41835 97615 54.594 MB

”FTP-
Patator.csv”

7938 18522 10.279 MB

”SSH-
Patator.csv”

5897 13759 7.489 MB

”Web.csv” 2180 5086 2.810 MB

”Bot.csv” 1966 4587 2.453 MB

Table 4.7: The 7 different attack files that were used to train the models in the
first approach.

4.5.1.2 Second approach

In this second approach, we created a new csv file with only two label classes:

”Normal” and ”Abnormal”. The ”Normal” label class contains only benign traffic,

whereas the ”Abnormal” label class contains all 14 attacks.
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Class Labels New Labels
Number

of
instances

BENIGN Normal 2359289

DoS Hulk

PortScan

DDoS

DoS GoldenEye

FTP-Patator

SSH-Patator

DoS slowloris Abnormal 471454

DoS Slowhttptest

Bot

Web Attack - Brute
Force

Web Attack - XSS

Infiltration

Web Attack - Sql
Injection

Heartbleed

Table 4.8: Converting the entire dataset into two labels: ”Normal” and ”Abnor-
mal”.

CSV file Number of
attack

instances
(30%)

Number of
benign

instances
(70%)

File size
(GB)

”N A.csv” 471454 1100059 1.1 GB

Table 4.9: The CSV file that was used to train the models in the second approach.

For each CSV file, the Label column, which represents the class of each instance,

has been encoded using the Label Encoder module. The encoding converts each

string value in the Label column to either 1 or 0. 1 means that the instance belongs

to the class and 0 means otherwise.

Next, in order to enhance the performance and reliability of our ML model and help

it converge quickly, we normalized our data by placing all quantitative variables on

the same scale.

4.5.2 Creation of Training and Test Data

In Machine Learning, it is never appropriate to evaluate the performance of a

model on the same data that was used for its training. The CIC-IDS2017 dataset

contains a single unbundled dataset rather than dedicated training and test data.
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As a result, the data must be divided into two parts: a Train set, whose data is used

for training the model, and a Test set, reserved solely for evaluating the model’s

performance. The generally preferred partitioning is 20% test data, 80% training

data. To accomplish this, we use the function train test split() [76] which comes

from the module model selection of Sklearn. This function randomly shuffles our

dataset before splitting it into two parts (see Figure 4.3).

CICIDS2017 Dataset

Train Test

Figure 4.3: Splitting the CIC-IDS2017 dataset into two parts.
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Some ML algorithms require an adjustment of their hyper-parameters in order to

obtain the best results. The issue in this case is that by tweaking these parameters

while looking for the best results, the model will eventually end up seeing all of the

test data, making it unusable for the evaluation phase. For this reason, a third set

must be cut from our dataset, called the validation set. This section allows us to

search for the model parameters that give the best performance while keeping the

test set data only for evaluation.

If we want to compare two ML models, for example a KNN with 3 neighbors and

a KNN with 6 neighbors, we will first train these two models on the Train set, and

then select the one with the best performance on the Validation set. We can then

evaluate this model on the Test set to get an idea of its performance (as shown in

Figure 4.4).

Train TestValidation

Dataset

100%

100%

92%

90%

Model 

A

Model
B

Figure 4.4: Performance comparison between two models using the validation set.

The problem with the validation set is that there is no guarantee that our data

is split in the right way. If this is the case, training and validating our two models

on another portion of the data may reveal that in fact model B is better. In this

case, there is a solution known as Cross-Validation.

4.5.2.1 Cross-Validation

Cross-Validation consists in training and validating our model on various portions

of the Train set. For example, by dividing the Train set into five parts, we can train

our model on the first four and validate it on the fifth. The process will then be

repeated for all possible configurations. At the end, we will calculate the average of

the five scores obtained, and when comparing two models, we will be confident in

selecting the one with the best overall performance (see Figure 4.5).
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Val

Train set

Train Train Train Train

Train Val Train Train Train

Train Train Val Train Train

Train Train Train Val Train

Train Train Train Train Val

Split 1

Split 2

Split 3

Split 4

Split 5

Model
A

Model
B

0.92 0.90

0.88 0.95

0.89

0.93

0.86

0.93

0.92

0.90

0.89 0.92

Figure 4.5: Performance comparison between two models using the Cross-
Validation method.

A ML algorithm will only be able to learn if the training data contains enough

relevant features and not too many irrelevant features. A critical part of a successful

ML project is finding a suitable set of features to train on [42]. This process is called

Feature selection.

4.5.3 Feature selection

Feature selection is one of the most crucial phases during model development. It

is the process of selecting the most important features to input into ML algorithms.

Feature selection techniques are used to reduce the number of input variables by

removing redundant and irrelevant features, which can negatively impact the per-

formance, accuracy and computational cost of the learning algorithm.

4.5.3.1 Feature Selection According to Attack Types

In order to determine which features are important in defining an attack, we

used the Random Forest Regressor [77] module of Sklearn. This is an algorithm that

creates a Decision Forest where each feature is given an importance weight based

on its utility in building the Decision Tree. When the process is complete, these

feature importance weights are compared and ranked. The sum of the importance

weights of all the features gives the total importance weight of the Decision Tree.

Comparing the score of a feature with the score of the entire tree gives information

about the importance of that feature in the Decision Tree [8].
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Features such as (Flow ID, Source IP, Source Port, Destination IP, Destination

Port, Protocol, Timestamp, External IP) were excluded from the calculation because

they are related to connection information and do not represent properties of any

specific attack [78]. The 5 features with the highest importance weight for each

attack are listed in Table 4.10.

Attack / Feature name Importance
Weight

Attack / Feature name Importance
Weight

DoS attack DDoS attack

Bwd Packet Length Std 0.486887 Bwd Packet Length Std 0.472082

Flow IAT Min 0.026953 Total Backward Packets 0.091310

Fwd Packet Length Max 0.019744 Fwd IAT Total 0.008562

Total Length of Fwd Packets 0.012743 Flow Bytes/s 0.008193

Fwd Packet Length Std 0.010881 Total Length of Fwd Packets 0.006510

PortScan attack FTP-Patator attack

Flow Bytes/s 0.315061 Fwd Packet Length Max 0.388980

Total Length of Fwd Packets 0.303497 Fwd Packet Length Std 0.027879

Flow Duration 0.000368 Fwd Packet Length Mean 0.014869

Flow IAT Mean 0.000234 Bwd Packet Length Std 0.000242

Flow IAT Max 0.000205 Bwd Packet Length Mean 0.000213

SSH-Patator Web attack

Fwd Packet Length Max 0.000887 Bwd Packet Length Std 0.004635

Total Length of Fwd Packets 0.000565 Total Length of Fwd Packets 0.003736

Flow IAT Mean 0.000556 Total Fwd Packets 0.002832

Flow Duration 0.000516 Flow IAT Min 0.002257

Flow IAT Max 0.000509 Bwd Packet Length Max 0.001523

Bot attack

Feature name Importance weight

Bwd Packet Length Mean 0.358487

Flow IAT Min 0.027334

Flow IAT Max 0.010331

Flow IAT Std 0.005678

Flow IAT Mean 0.004784

Table 4.10: List of the 5 most relevant features for each attack.
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Figure 4.6: Graphs of features ranked by their importance weight for each attack.

4.5.3.2 Feature Selection According to Normal or Abnormal

The second approach to feature selection is to use the data from the file shown

in Table 4.9 which contains only Normal and Abnormal labels. Similar to the first

approach, we used the Random Forest Regressor to extract the most relevant features

for this dataset, the list of features obtained is presented in Table 4.11 and the feature

graphs in Figure 4.7.

Feature name
Importance

weight

Bwd Packet Length Std 0.252245

Total Length of Fwd Packets 0.145528

Fwd Packet Length Std 0.032334

Flow Bytes/s 0.015275

Flow IAT Std 0.007259

Fwd IAT Total 0.006500

Flow IAT Min 0.005038

Flow Duration 0.004401

Total Length of Bwd Packets 0.003380

Flow IAT Max 0.003134

Table 4.11: List of the 10 most relevant features for the dataset containing only
Normal and Abnormal labels.
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Figure 4.7: Graphs of feature importance weights according to Normal and Ab-
normal Labels.

4.6 Implementation of Machine Learning Algo-

rithms

Two different approaches have been used to apply ML algorithms to the dataset.

In the first approach, we used ML classification techniques to implement five types

of ML algorithms: Random Forest, Decision Tree, K-Nearest Neighbors, Support

Vector Machine and Multi-Layer Perceptron. These models were built and tested

on seven different attack files, which are listed in Table 4.7.

In the second approach, we applied the same five ML algorithms to the dataset con-

taining only two labels ”Normal” and ”Abnormal” which we discussed in Table 4.9.
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Deep Neural Networks and other complex models can detect subtle patterns in

the data, but if the training set is noisy or contains too many features, the model

is likely to detect patterns in the noise itself, leading to overfitting of the model as

well as the inability to generalize to new instances [42]. To avoid this problem while

reducing computational costs, we included only the 10 most relevant features for

each attack in the model learning phase for both approaches.

4.6.1 Decision Trees

Decision Trees are versatile ML algorithms that can perform classification and

regression tasks. They are built by analyzing a set of training examples for which

the class labels are known. They are then applied to classify previously unseen ex-

amples.

Each Decision Tree consists of nodes, branches, and leaves. Each node in the tree

acts as a test case for an attribute, and each child node descending from the node

corresponds to possible answers to the test case. An element is sorted into a class

by following the path from the root node down to the leaf node based on the an-

swers that apply to the element. An element is assigned to the class that has been

associated with the leaf it reaches [79].
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Node

Leaf
Node

Leaf
Node

Leaf

Node

Class variable

AttributeAttribute

Attribute

Attribute
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Figure 4.8: Decision Tree Structure.
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4.6.2 Random Forest

Random Forest is one of the most popular ML techniques used to solve both

classification and regression problems. It runs a number of Decision Trees on dif-

ferent subsets of a given dataset and averages the results to improve the predictive

accuracy of that dataset. Instead of relying on a single Decision Tree, the Random

Forest takes the predictions from each tree and predicts the final output based on

the majority votes of the predictions [80].

Class 1 Class 1 Class n

Tree 1 Tree 2 Tree n

Majority voting for
Classification or Averaging for

Regression

Final Class

Figure 4.9: Random Forest structure.

4.6.3 K-Nearest Neighbors

K-Nearest Neighbor (KNN) is one of the most basic yet essential classification

algorithms in ML, which uses proximity to make classifications or predictions about

the grouping of an individual data point. To determine if a data point belongs to a

specific class, it first selects the number of neighbors (k) and calculates the distance

to find the unclassified data point’s closest k neighbors. From these k neighbors, the

number of data points is calculated in each class, which then classifies the unknown

sample into the class with the highest number of neighbors [81].
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New data point

 will belong to 


 class AK = 5

Class A
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Figure 4.10: Operation of KNN algorithm for K = 5 value.

4.6.4 Support Vector Machine

Support Vector Machine (SVM) is a supervised ML algorithm primarily used for

classification problems. The SVM algorithm’s goal is to find a separating hyperplane

in an N-dimensional space that separates data points, each in its own class. To

successfully classify these data points, the algorithm finds the optimal hyperplane,

which is the one with the highest distance between the data points of the two classes

[82].

Optimal 

Hyperplane

Maximum

Margin

Support

Vectors

Figure 4.11: Classification of data points using SVM algorithm.
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4.6.5 Multi Layer Perceptron

This topic has been elaborated in Chapter 3 (see The Perceptron and The Multi-

Layer Perceptron).

4.7 Results and Discussion

In this section, the results of the studies conducted in the implementation section

are presented.

Several tests have been performed to obtain the right hyper-parameters for each

model. These parameters include for example (the number of neighbors k for KNN

or the number of layers and iterations for MLP etc...). To do so, we begin by

randomizing the hyper-parameters, then train our model on the training set while

validating it on the validation set, then repeat this process with different parameter

values until we achieve the best results, and finally confirm these results by testing

the final model on the test set. The best model is the one with the highest accuracy

score and the lowest error rate when compared to all other models.

4.7.1 First approach - Using 7 attack types

Five different ML methods are applied to 7 different attack types and the ob-

tained results are presented in Tables ( 4.12 - 4.18). For each attack, there is a best

and worst model, each is represented by a Confusion matrix as well as the ROC

curve.
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DoS attack

Machine Learning
Algorithms

Accuracy Precision Recall F1-score

RF 98.48% 97.71% 98.60% 98.14%

DT 98.42% 97.64% 98.55% 98.08%

KNN 97.96% 97.07% 97.98% 97.51%

MLP 90.63% 90.04% 88.59% 88.65%

SVM 86.10% 89.11% 76.08% 79.62%

Table 4.12: Performance comparison of the 5 ML algorithms on the DoS attack.
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Figure 4.12: Performance of the RF algorithm on the DoS attack.
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Figure 4.13: Performance of the SVM algorithm on the DoS attack.
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PortScan attack

Machine Learning
Algorithms

Accuracy Precision Recall F1-score

RF 99.94% 99.92% 99.94% 99.93%

DT 99.94% 99.91% 99.93% 99.92%

KNN 99.83% 99.75% 99.84% 99.79%

SVM 81.75% 79.32% 78.06% 77.82%

MLP 75.21% 71.09% 70.54% 62.76%

Table 4.13: Performance comparison of the 5 ML algorithms on the PortScan
attack.
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Figure 4.14: Performance of the RF algorithm on the PortScan attack.
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Figure 4.15: Performance of the MLP algorithm on the PortScan attack.

87



CHAPTER 4. NETWORK ANOMALY DETECTION, TESTS AND RESULTS

DDoS attack

Machine Learning
Algorithms

Accuracy Precision Recall F1-score

RF 97.43% 96.28% 97.84% 97.01%

KNN 96.51% 95.07% 97.02% 95.96%

DT 96.14% 95.38% 95.48% 95.43%

SVM 75.41% 71.42% 74.28% 70.52%

MLP 75.59% 77.25% 68.24% 67.24%

Table 4.14: Performance comparison of the 5 ML algorithms on the DDoS attack.
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Figure 4.16: Performance of the RF algorithm on the DDoS attack.
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Figure 4.17: Performance of the MLP algorithm on the DDoS attack.
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FTP-Patator attack

Machine Learning
Algorithms

Accuracy Precision Recall F1-score

RF 99.91% 99.92% 99.86% 99.89%

DT 99.89% 99.88% 99.85% 99.87%

KNN 99.46% 99.23% 99.47% 99.35%

MLP 91.72% 92.16% 87.93% 88.83%

SVM 82.93% 84.17% 73.48% 76.21%

Table 4.15: Performance comparison of the 5 ML algorithms on the FTP-Patator
attack.
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Figure 4.18: Performance of the RF algorithm on the FTP-Patator attack.
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Figure 4.19: Performance of the SVM algorithm on the FTP-Patator attack.
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SSH-Patator attack

Machine Learning
Algorithms

Accuracy Precision Recall F1-score

RF 97.23% 95.96% 97.66% 96.75%

DT 97.13% 95.80% 97.61% 96.64%

KNN 95.71% 94.16% 95.91% 94.97%

MLP 84.86% 88.47% 76.45% 78.49%

SVM 84.56% 90.83% 74.11% 77.57%

Table 4.16: Performance comparison of the 5 ML algorithms on the SSH-Patator
attack.
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Figure 4.20: Performance of the RF algorithm on the SSH-Patator attack.
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Figure 4.21: Performance of the SVM algorithm on the SSH-Patator attack.
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Web attack

Machine Learning
Algorithms

Accuracy Precision Recall F1-score

DT 97.10% 96.58% 96.69% 96.63%

RF 97.10% 96.68% 96.57% 96.62%

KNN 95.44% 94.36% 95.18% 94.75%

SVM 89.56% 87.23% 90.48% 88.43%

MLP 74.88% 63.85% 62.12% 56.58%

Table 4.17: Performance comparison of the 5 ML algorithms on the Web attack.
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Figure 4.22: Performance of the DT algorithm on the Web attack.
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Figure 4.23: Performance of the MLP algorithm on the Web attack.
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Bot attack

Machine Learning
Algorithms

Accuracy Precision Recall F1-score

RF 97.24% 96.07% 97.43% 96.71%

DT 97.16% 95.96% 97.38% 96.63%

KNN 95.08% 93.12% 95.68% 94.25%

MLP 80.71% 78.58% 73.77% 73.81%

SVM 70.66% 35.33% 50% 41.4%

Table 4.18: Performance comparison of the 5 ML algorithms on the Bot attack.

0 1
Predicted label

0

1

Tr
ue

 la
be

l

374 8

28 892

Confusion matrix - Bot attack

100

200

300

400

500

600

700

800

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic - Bot attack

RandomForestClassifier (AUC = 0.99)

Figure 4.24: Performance of the RF algorithm on the Bot attack.
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Figure 4.25: Performance of the SVM algorithm on the Bot attack.
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Attack names
F-measures

RF DT KNN MLP SVM

DoS 98.14% 98.08% 97.51% 88.65% 79.62%

PortScan 99.93% 99.92% 99.79% 62.76% 77.82%

DDoS 97.01% 95.43% 95.96% 67.24% 70.52%

FTP-Patator 99.89% 99.87% 99.35% 88.83% 76.21%

SSH-Patator 96.75% 96.64% 94.97% 78.49% 77.57%

Web 96.62% 96.63% 94.75% 56.58% 88.43%

Bot 96.71% 96.63% 94.25% 73.81% 41.4%

Table 4.19: Overall performance of each algorithm for all attacks.

In Table 4.19, we used the F-measure (F1 score), which is calculated as the

harmonic mean of precision and recall, giving each the same weight. It allows us

to evaluate a model by considering both Precision and Recall using a single score,

making it useful for describing model performance and comparing models.

Looking at the results, we notice that the Random Forest, Decision Tree, and

K-Nearest Neighbors algorithms were successful in detecting all types of attacks

by more than 94%. Among all algorithms, Random Forest is the most successful,

having completed 6 of the 7 tasks with the highest score.

MLP has the second worst performance among the algorithms with the lowest

score in 3 out of 7 tasks. After falling into overfitting for so many tests, we decided

to reduce the number of included features to only 4 and the number of neurons in

each hidden layer to reduce the computational cost and improve the performance of

the model.

SVM had the worst performance with the lowest score in 4 of the 7 tasks, espe-

cially in the Bot attack and this is probably due to the limited amount of training

data.

4.7.2 Approach 2 - Using Two Groups: Normal and Abnor-

mal

Table 4.20 shows the results achieved by using 10 features that were obtained in

the section Feature Selection According to Normal or Abnormal.
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ML Algorithms
Evaluation Metrics

Accuracy Precision Recall F1-score time (s)

RF 97.02% 96.08% 96.64% 96.35% 3821.53

DT 96.74% 95.70% 96.37% 96.03% 146.8

KNN 96.24% 95.04% 95.82% 95.42% 700.23

MLP 87.57% 84.95% 87.32% 85.29% 2987.85

SVM 81.12% 83.68% 68.94% 71.57% 6157.98

Table 4.20: Overall performance of each algorithm according to Normal/Abnormal.
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Figure 4.26: Confusion matrix of each algorithm according to Normal/Abnormal.
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The table 4.20 shows that Random Forest achieved the best results, but has a

drawback in terms of computation time. Decision Tree, on the other hand, had

the second best result with the fastest computation time, making it overall a better

choice.

MLP achieved decent results, which is due to the large amount of training data

present in this second approach (over 1.5 million instances, see Table 4.9).

Given the limitations of the available hardware tools (GPU, CPU, memory), we

could not apply the SVM on the whole dataset, as it takes an absurd amount of

time to train. As a result, we opted to train it on only 10% of the total dataset.

The hyper-parameters of all algorithms employed during the training phase are

listed in Table 4.21.

Classifiers Hyper-Parameters

RF RandomForestClassifier(random state=0) [83]

DT DecisionTreeClassifier(random state=0) [84]

KNN KNeighborsClassifier(n neighbors=5) [85]

MLP MLPClassifier(hidden layer sizes=(10,10,10),max iter=500) [86]

SVM SVC(kernel=’rbf’) [87]

Table 4.21: The hyper-parameters used for each classifier.

4.8 Comparative Study

In a 2017 study [72], seven commonly used ML methods (Naive-Bayes (NB),

Random Forest (RF), K- Nearest Neighbours (KNN), Multi-layer perceptron (MLP),

Adaboost, ID3, and Quadratic Discriminant Analysis (QDA)) were used to detect 14

different attack types. During this process, CIC-IDS2017 was used as the dataset.

The performance ratios obtained in this study are as follows: Naive-Bayes 84%,

KNN 96%, RF 97%, MLP 76%, Adaboost 77%, ID3 98%, QDA 92%.

In the study [88] conducted in 2019, a binary classification was used in the

CIC-IDS2017 dataset using 3 different algorithms (Deep Neural Network (DNN),

Gradient Boosted Tree (GBT) and Random Forest (RF)). The accuracy obtained

by each model was as follows: DNN 97.73%, Random Forest 92.72%, Gradient

Boosted Tree 99.97%.
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4.9 Evaluation

Studies ML Algorithms Accuracy F1-score

Faker, et al [88].

DNN 97.73% /

RF 92.72% /

GBT 99.97% /

Sharafaldin, et al [72].

RF / 97%

DT / 98%

AdaBoost / 77%

MLP / 76%

KNN / 96%

Naive-Bayes / 4%

QDA / 92%

Our study

RF 97.02% 96.35%

DT 96.74% 96.03%

KNN 96.24% 95.42%

MLP 87.57% 85.29%

SVM 81.12% 71.57%

Table 4.22: Comparison of classification prediction accuracy with previous studies
used on CIC-IDS2017.
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Figure 4.27: Comparison of the performance of the two studies with respect to
F-measures.
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Figure 4.28: Comparison of the performance of the two studies with respect to
Accuracy.

4.10 Conclusion

The objective of this last chapter was to propose a solution that best meets the

different constraints of intrusion detection systems. The proposed solution improves

the performance of IDS in terms of precision in detecting and classifying a wide

range of attacks with high accuracy and low false alarm rate. Experiments show

that the proposed approach yields very satisfactory results.
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General conclusion

Driven by a growing interest in improving network security and preventing any

security breaches that could have disastrous consequences, network security admin-

istrators are always looking for a solution to ensure a highly secure network envi-

ronment.

The work conducted in this master thesis falls within the field of network anomaly

detection, aiming to design and develop a model for the detection and classification

of a wide range of attacks using ML and DL techniques. In the first chapter of this

thesis, the generalities of network security as well as the most widespread types of

attacks have been presented in a general way in order to get familiar with the basic

concept of these notions. In the second chapter, we introduced intrusion detection

systems given the fact that they constitute a good solution for detecting abnormal

behavior within a network with the ability to alert system administrators to any

potential security violations in their organization in order to prevent them before

causing substantial damages.

The problem of detecting and classifying attacks in a real-world scenario cannot

be solved properly without resorting to ML techniques that enable classification of

attacks based on supervised learning.

We chose the CIC-IDS2017 dataset as training data for our algorithms (Random

Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Ma-

chine (SVM) and Multi-layer Perceptron (MLP)). Knowing that the performance

of our models depends entirely on the quality of this data we applied several data

pre-processing techniques such as reducing the imbalance between classes and elim-

inating all irrelevant features and missing values that could negatively affect the

performance of our models. After the learning phase, these algorithms were vali-

dated by different experiments on the validation set before being tested on the test

set. The final results being very promising, we can consider the reliability and effi-

ciency of our approach as satisfactory.
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GENERAL CONCLUSION

One of the limitations discovered during the experiments is the low precision for

classification of attacks using the SVM algorithm, which is due to the fact that we

only used 10% of the entire dataset to train the model, as SVM is a very powerful

algorithm that requires a large amount of data and a lot of time to train in order to

achieve the desired results. With more powerful hardware tools, we can drastically

reduce the training phase’s computation time, allowing us to improve the model’s

performance by devoting the entire data set to training the latter and eventually

achieve much better results.

Finally, it is worth noting that three of the four ML algorithms outperformed the

Multi-Layer perceptron. Although DL is unquestionably a more powerful technique

than ML, it does have some drawbacks, such as the massive amount of data required

to achieve good results as well as the need for powerful hardware tools to reduce

computation time. DL is best suited for complex problems such as image recognition,

speech recognition or natural language processing, provided we have enough data,

computational power and patience.
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APPENDIX

A. Work Environment

Figure A.1: Anaconda Navigator.

Figure A.2: Jupyter Notebook.
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B. Data Preprocessing

Figure B.1: The Preprocessing of all 8 files.
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C. Attack Filtering

Figure C.1: Attack filtering for All 7 attacks files.

Figure C.2: Attack filtering for Normal/Abnormal file.
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D. Feature Selection

Figure D.1: The importance weights values of features according to 7 attacks.

Figure D.2: The importance weights values of features according to Normal/Ab-
normal.
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E. Results

Figure E.1: Decision Tree performance in the first approach.
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Figure E.2: Random Forest performance in the first approach.
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Figure E.3: K-Nearest Neighbors performance in the first approach.
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Figure E.4: Support Vector Machine performance in the first approach.
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Figure E.5: Multi-Layer Perceptron performance in the first approach.
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Figure E.6: Performance of all algorithms in the second approach.
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