Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 54, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONHOMOGENEOUS ELLIPTIC EQUATIONS WITH DECAYING CYLINDRICAL POTENTIAL AND CRITICAL EXPONENT

MOHAMMED BOUCHEKIF, MOHAMMED EL MOKHTAR OULD EL MOKHTAR

ABSTRACT. We prove the existence and multiplicity of solutions for a nonhomogeneous elliptic equation involving decaying cylindrical potential and critical exponent.

1. Introduction

In this article, we consider the problem

$$-\operatorname{div}(|y|^{-2a}\nabla u) - \mu|y|^{-2(a+1)}u = h|y|^{-2*b}|u|^{2*-2}u + \lambda g \text{ in } \mathbb{R}^N, \quad y \neq 0$$

$$u \in \mathcal{D}_0^{1,2}, \tag{1.1}$$

where each point in \mathbb{R}^N is written as a pair $(y,z) \in \mathbb{R}^k \times \mathbb{R}^{N-k}$, k and N are integers such that $N \geq 3$ and k belongs to $\{1,\ldots,N\}$; $-\infty < a < (k-2)/2$; $a \leq b < a+1$; $2_* = 2N/(N-2+2(b-a))$; $-\infty < \mu < \bar{\mu}_{a,k} := ((k-2(a+1))/2)^2$; $g \in \mathcal{H}'_{\mu} \cap C(\mathbb{R}^N)$; h is a bounded positive function on \mathbb{R}^k and λ is real parameter. Here \mathcal{H}'_{μ} is the dual of \mathcal{H}_{μ} , where \mathcal{H}_{μ} and $\mathcal{D}_0^{1,2}$ will be defined later.

Some results are already available for (1.1) in the case k=N; see for example [10, 11] and the references therein. Wang and Zhou [10] proved that there exist at least two solutions for (1.1) with a=0, $0<\mu\leq\bar{\mu}_{0,N}=((N-2)/2)^2$ and $h\equiv 1$, under certain conditions on g. Bouchekif and Matallah [2] showed the existence of two solutions of (1.1) under certain conditions on functions g and h, when $0<\mu\leq\bar{\mu}_{0,N}$, $\lambda\in(0,\Lambda_*)$, $-\infty< a<(N-2)/2$ and $a\leq b< a+1$, with Λ_* a positive constant.

Concerning existence results in the case k < N, we cite [6, 7] and the references therein. Musina [7] considered (1.1) with -a/2 instead of a and $\lambda = 0$, also (1.1) with a = 0, b = 0, $\lambda = 0$, with $h \equiv 1$ and $a \neq 2 - k$. She established the existence of a ground state solution when $2 < k \le N$ and $0 < \mu < \bar{\mu}_{a,k} = ((k-2+a)/2)^2$ for (1.1) with -a/2 instead of a and $\lambda = 0$. She also showed that (1.1) with a = 0, b = 0, $\lambda = 0$ does not admit ground state solutions. Badiale et al [1] studied (1.1) with a = 0, b = 0, $\lambda = 0$ and $b \equiv 1$. They proved the existence of at least a nonzero nonnegative weak solution u, satisfying u(y,z) = u(|y|,z) when $2 \le k < N$ and

 $^{2000\} Mathematics\ Subject\ Classification.\ 35{\rm J}20,\ 35{\rm J}70.$

Key words and phrases. Hardy-Sobolev-Maz'ya inequality; Palais-Smale condition;

Nehari manifold; critical exponent.

^{©2011} Texas State University - San Marcos.

Submitted February 23, 2011. Published April 27, 2011.