République Algérienne Démocratique et populaire Ministère de l'enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE ABOU BEKR BELKAID - TLEMCEN
Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de
L'Univers

Département d'Écologie et Environnement

Laboratoire de recherche n°13

« Écologie et Gestion des Écosystèmes Naturels »

THÈSE

Présentée par:

BENMAISSA Amina

En vue de l'obtention du

Diplôme de Doctorat

En écologie végétale et environnement

Thème:

Contribution à l'étude des groupements à *Phillyrea* dans la région de Tlemcen (Algérie occidentale) : Aspects phytoécologiques et cartographie

Sous la direction de Pr : STAMBOULI-MEZIANE Haciba

Année Universitaire: 2020-2021

The genus *Phillyrea* L. (Lamiales Oleaceae) in the Tlemcen Region (western Algeria)

Amina Benmaissa & Hassiba Stambouli-Meziane

Laboratory of Ecology and Management of Natural Ecosystems, Department of Ecology and Environment, University Abou Bakr Belkaid, Tlemcen, Algeria; e-mail: amina5atlantica@gmail.com; madiocre@gmail.com

ABSTRACT

The aim of our work is to contribute to improving the systematics and faunistic of the genus *Phillyrea* L. (Lamiales Oleaceae) in the Tlemcen region (Western Algeria). In October 2016, *Phillyrea* leaves and fruits were collected from different plants at each of the following stations: Beni-Saf, Zarifet and Sidi Yahia. The plant material was prepared in a herbarium and then taken to the laboratory for identification and study also with the help of the known bibliography. Following most of the authors, the samples were attributed to *P. angustifolia* L. and *P. latifolia* L. We considered as present in the study area also specimens attributable to the "*media*" taxon almost always considered synonymous of *P. latifolia*.

KEY WORDS

Phillyrea; Tlemcen; Algeria; taxonomic; faunistic.

Received 08.12.2020; accepted 28.12.2020; published online 30.03.2021

INTRODUCTION

The genus *Phillyrea* L. (Lamiales Oleaceae) is distributed in the Mediterranean region, also naturalized in the Canary Islands and Madeira Island. It listed two species: *P. angustifolia* L., native to western and central Mediterranean Basin, Portugal to Albania, and *P. latifolia* L., native to the entire Mediterranean Basin, Portugal to Syria. Another species, *P. media*, is almost always considered synonymous of *P. latifolia*. In particular, *P. angustifolia*, commonly known as "*el ktem, tamthoula*" in Berber, closely resembles the olive tree, a plant widespread in Algeria (Quezel & Santa, 1962-1963); it is very useful to animals who use it as food and shelter and to humans who use it as a medicinal plant and in horticulture.

The aim of our work is to contribute to improving the current systematic and faunistic knowledge of the genus *Phillyrea* in the Tlemcen region (western Algeria).

MATERIAL AND METHODS

The Tlemcen region is part of the Oranie and covers most of the Tlemcen wilaya and a resort in the Ain-Temouchent wilaya. It is a region rich in landscape biodiversity and for this study three stations presenting important *Phillyrea* groupings were chosen.

Station 1. Béni-Saf is located east of the Traras Mountains with a northern exposure and an altitude of about 25 m. The station has a recovery rate of 5 to 6% on a slight slope of 10-20% with a silica substrate (Stambouli, 2010). This station is characterized by the dominance of *Pistacia lentiscus*, *Calicotome intermedia* and the different species of *Phillyrea*.

Station 2. Zarifet station is located on the northern slope of the Tlemcen Mountains, with an altitude of about 12 m. Its recovery rate is around 70%, with the dominance of *Quercus* sp., *Calicotome* and *Phillyrea*.

Station 3. Located between Sebdou and Sidi Yahia, at an altitude of 960 m, characterized by the dominance of the different species as *Phillyrea*, *Juniperus oxycedrus* and *Quercus ilex*.

In October 2016, we took samples of *Phillyrea* leaves and fruits from different plants present in the three stations covered by this study. These samples were stored in the herbarium and transported to the laboratory for species identification.

The books most consulted to facilitate identification were those of Coste (1900–1906), Battandier & Trabut (1902), Quezel & Santa (1962–1963) Guinochet & de Vilmorin (1975) and Dobignard & Chatelain (2012).

RESULTS AND DISCUSSION

The research carried out on the *Phillyrea* population in the study area allowed us to find the taxa mentioned below.

Phillyrea angustifolia is a 1 to 2 meters evergreen shrub with small, slender twigs, greyish smooth bark

leaves 0.5 to 1 centimeters wide and 2 to 3 centimeters long and dark green, linear, narrow, leaf borders are whole; the upper face is smooth and hairless; the underside of a lighter green. The flowers are whitish and 5 millimeters long; very short tube chalice at 4 divisions, corolla with 4 lobes spread 2 protruding stamens, short style with conical stigma.

The fruit is a drupe similar to that of blueberry; bluish, 2 to 5 millimetre round; and the dark purple mesocarp contains a fragile spherical beige endopcarp inside a dark brown seed.

Phillyrea population named "media" are located in the rugged part of the beni Saf station. It is a medium-high shrub of 1.5 to 2.5 meters with branches always small and slender, smooth grayish brown bark. The leaves are dark green wider, linearly tossed, the edges of the leaf are toothed, 1 to 2 centimetres wide and 4 to 5 centimetres long. The upper face is always smooth and hairless, the underside of a lighter green. According to Quezel & Santa (1962–1963) this taxon is a subspecies of P. angustifolia, but it is almost always considered synonymous of P. latifolia.

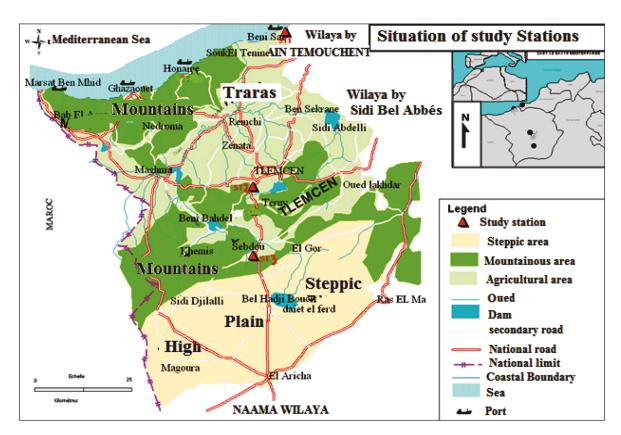


Figure 1. Study area: Tlemcen region (western Algeria).

Figure 2. *Phillyrea angustifolia* from the resort of Beni-Saf, Tlemcen region (western Algeria). Figure 3. *Phillyrea "media"* from the resort of Beni-Saf, Tlemcen region (western Algeria). Figure 4. *Phillyrea latifolia* from the resort of Zarifet, Tlemcen region (western Algeria).

Phillyrea latifolia is a small shrub of 0.5 to 1 meter, small twigs, and smooth brown-reddish bark. The leaves are 1 to 1.3 centimeters wide and 3 to 4 centimeters long, they are dark green, linear, narrow, the margins of the leaves have some very fine spines.

In the three locations studied, the *Phillyrea* populations were distributed as follows:

Beni-Saf station with *P. angustifolia*, *P. "media*" and *P. latifolia*.

Zarifet station represents two species: *P. angustifolia* and *P. latifolia*.

Sebdou station with only *P. angustifolia* and *P. latifolia*.

Phillyrea angustifolia and P. latifolia are very abundant in all resorts in the Tlemcen region, while the population attributable to P. "media" is present only in the Beni-Saf station.

CONCLUSIONS

It can be concluded that for the majority of authors, except Quezel & Santa (1962–1963), confirm the presence of this three morphotypes in the Tlemcen region (western Algeria).

The distinctions between these taxa are essentially based on traits of leaf morphology, characters that exhibit great variability: all intermediate forms

can be found between the leaf of *P. angustifolia* and that of *P. latifolia*.

Phillyrea angustifolia and P. latifolia are the most commonly accepted, while it remains very difficult to differentiate P. media from P. latifolia; the hybridization hypothesis has often been formulated on the basis of morphology (Clos, 1906; Regel, 1949; Sebastian, 1956).

Desplanque (1994) used chloroplastic markers (RFLP) to show that *P. angustifolia* and *P. latifolia* individuals from the same region shared the same chloroplastic types, and were closer to each other than individuals of the same species but from different regions (Languedoc, Morocco, Sicily). This result shows the existence of gene flow between *P. angustifolia* and *P. latifolia* (Vassiliadis, 1999).

REFERENCES

Battandier J.A. & Trabut L.C., 1902. Flore analytique et synoptique de l'Algérie et de la Tunisie. Giralt imprimeur-éditeur, Alger, 460 pp.

Clos D., 1906. Du genre *Phillyrea*, de la famille des Oléacées. Bulletin de la Société Botanique de France, 53: 357–368.

Coste H.J., 1900–1906. Flore descriptive et illustrée de la France de la Corse et des contrées limitrophes. Librairie des Sciences Naturelles Paul Klincksieck, 3 vol.

- Desplanque B., 1994. Variabilité cytoplasmique chez *Phillyrea* (Oleaceae). Contribution à l'étude 1 du paradoxe de l'androdioécie chez *Phillyrea angustifolia* 2 des relations de *P. angustifolia* avec *P. latifolia* et *P. media*. DEA. Université Montpellier II.
- Dobignard A. & Chatelain C., 2012. Index synonymique de la flore d'Afrique du Nord. Volume 4, Dicotyledoneae: Fabaceae Nymphaeaceae. Conservatoire et Jardin botaniques, Genève, 431 pp.
- Guinochet M. & de Vilmorin R., 1975. Flore de France. Fascicule 2. Editions du Centre National de la recherche scientifique, Paris, 818 pp.
- Piechura J.E. & Fairbrothers D.E., 1983. The use of protein serological characters in the systematics of the family Oleaceae. American Journal of Botany, 70: 780–789.
- Quezel P. & Santa S., 1962-1963. Nouvelle flore d'Al-

- gérie et des régions désertiques méridionales. Edition du centre Nationale de la recherche scientifique, Paris. 2 vol., 1170 pp.
- Regel C., 1949. Etudes biométriques sur le genre *Phillyrea*. Bulletin de la Société botanique de France, Mémoires, pp. 20–38.
- Sebastian C., 1956. Etude du genre *Phillyrea* Tournefort. Travaux de l'Institut scientifique chérifien et de la Faculté des sciences, 6: 1–120.
- Stambouli & Meziane H., 2010. Contribution à l'étude des groupements psammophytes de la région de Tlemcen (Algérie occidentale). Thèse doctorat, Université Abou bakr Belkaid. Tlemcen.
- Vassiliadis C., 1999. Evolution et maintien de l'androdioécie: etude théorique et approches expérimentales chez *Phillyrea angustifolia* L. Université des Sciences et Technologies de Lille I, UFR de Biologie, 177 pp.

Remerciement:

Au nom d'Allah le plus grand merci de m'avoir guidé vers le droit chemin de m'avoir aidée tout au long de mes années d'étude.

J'adresse toute ma gratitude et un grand merci à ma directrice de thèse Madame **STAMBOULI-MEZIANE Haciba** professeur à l'université Aboubekr Belkaid à Tlemcen ; pour sa patience, sa disponibilité, ses orientations et surtout ses judicieux conseils qui ont contribué à alimenter ma réflexion.

Je tiens à remercier Monsieur **MERZOUK Abdessamad** professeur à l'université de Tlemcen, de l'honneur qu'il m'a fait en acceptant de présider le jury de ma thèse.

A monsieur **CHERIFI Kouider** professeur à l'université de Djilali Liabes de Sidi Bel Abbes qui a assuré ma formation universitaire et qui m'a toujours encouragé, j'adresse mes sincères remerciements pour avoir bien voulu admettre d'examiner ma thèse.

Je tiens remercier vivement monsieur **BABALI Brahim** maitre de conférences à l'université de Tlemcen, pour son aide et pour son acceptation de juger cette étude.

Merci également à Madame **BELHACINI Fatima** maitre de conférences à l'université Belhadj Bouchaib d' Ain temouchent, pour son acceptation d'examiner ma thèse.

Mes sincères remerciements vont également à Madame **Feraoun Fatiha** Docteur maitre de conférence à l'université Djilali Liabes sidi bel abbés Pour son aide précieuse, sa gentillesse et son esprit scientifique.

Je remercie également Madame **BERRAHAL BELAHCENE Nadia**, a INRA Sidi Bel Abbes qui m'a aidé à faire les analyses granulométriques à INRAA.

Il m'est agréable de remercier aussi monsieur **BENABADJI Noury** professeur à l'université de Tlemcen pour son aide et précieux conseils.

Je remercie aussi tous les travailleurs de la bibliothèque de la faculté des sciences de la nature et de vie et de l'univers particulièrement à monsieur « **ARABI Moussa** » pour son aide.

Un grand merci à ma famille, mon grand-père, mes parents, mes tantes, mes sœurs, mon frère.

Ma reconnaissance envers mes amies et mes collègues.

J'adresse mon profond remerciement respectivement à tous ceux qui m'ont aidée soutenue et encouragée de près ou de loin de leur connaissances pendant toute la durée de mon parcours éducatif.

Dédicace :
Je dédie ce travail
A la mémoire de mes deux chères grands-mères.
A mes précieux parents qui m'ont encouragé aller de l'avant et qui m'ont donné tout leur amour pour prendre mes études.
A mes adorables sœurs et mon exceptionnel frère.
A mes tantes, mes cousins et cousines.
A mes amies, amis et tous ceux qui m'ont soutenu.
À tous ceux qui ont cru en mon succès et mes sacrifices.
A tous ceux qui sont fidèles à la science.
A tous ceux qui respectent la nature et l'environnement.
A tous ceux qui ont contribué à préserver la richesse végétale pour que nous puissions l'étudier aujourd'hui.

Amina BENMAISSA

العنوان: المساهمة في دراسة مجموعات Phillyrea (النرود) في منطقة تلمسان (غرب الجزائر): الجوانب البيئية النباتية ورسم الخرائط.

رُ يُ تُ كُرِّتُ الدراسة الحالية على خصائص تجمعات الزرود (الكتم محليا) في منطقة تلمسان من جانبين ، البيئة النباتية ومحاولة

رسم خرائط لتوزيع جنس الزرود في منطقة تلمسان. تظهر النتائج البيئية الذاتية التي تم الحصول عليها أن هذا الجنس يفضل مناخًا حيويًا شبه رطب وشبه جاف و يفضل تربة ذات درجة حموضة محايدة ذات قوام طميي رملي. تظهر دراسة الغطاء النباتي وجود الأنواع الثلاثة من الزرود، مع ملاحظة غلبة النباتات الحولية بنسبة 50٪.

سمح لنا تحليل المراسلات العاملية الذي تم إجراؤه بتمييز مجموعات الأنواع النباتية التي تصاحب الأنواع الثلاثة من .وكذلك الأنواع الشائعة للأنواع الثلاثة من Phillyrea angustifolia !Phillyrea media و Phillyrea angustifolia

الكلمات المفتاحية: Phillyrea، التجميع ، علم البيئة النباتية ، علم الاجتماع النباتي ، التنوع البيولوجي ، رسم الخرائط ، تلمسان (الجز ائر).

Résumé:

Titre : Contribution à l'étude des groupements à Phillyrea dans la région de Tlemcen (Algérie occidentale): Aspects phytoécologiques et cartographie.

La présente étude a porté sur les caractéristiques des groupements à *Phillyrea* dans la région de Tlemcen, avec deux aspects, à savoir, l'écologie végétale et un essai de cartographie pour la distribution du genre de *Phillyrea* dans la région de Tlemcen.

Les résultats auto-ecologiques obtenus montrent que ce genre préfère le bioclimat sub-humide et semi-aride et il préfère les sols d'un pH neutre et d'une texture limono-sableuse.

L'étude du couvert végétal montre la présence des trois espèces de *Phillyrea*, tout en notant la prédominance des plantes annuelles avec 50%.

L'analyse factorielle des correspondances réalisée nous a permis de distinguer les groupements d'espèces végétales qui accompagnent les trois espèces de Phillyrea angustifolia; Phillyrea latifolia et Phillyrea media ainsi que les espèces communes des trois espèces de

Phillyrea.

Mots clés:

Phillyrea, groupement, phytoécologie, phytosociologie, biodiversité, cartographie, Tlemcen (Algérie).

Abstract:

Title: Contribution to the study of groups of *Phillyrea* in the region of Tlemcen (western Algeria): Phytoecological aspects and cartography.

The present study focused on the characteristics of the *Phillyrea* groupings in the Tlemcen region, with two aspects, plant ecology and an attempt at mapping for the distribution of the genus of *Phillyrea* in the Tlemcen region.

The auto-ecological results obtained show that this genus prefers a sub-humid and semi-arid bioclimate and it prefers soils with neutral pH and sandy loam texture.

The study of the vegetation cover shows the presence of the three species of *Phillyrea*, while noting the predominance of annual plants with 50%.

The factorial correspondence analysis carried out allowed us to distinguish the groupings of plant species that accompany the three species of *Phillyrea angustifolia*; Phillyrea latifolia and Phillyrea media as well as the common species of the three species of Phillyrea.

Key words:

Phillyrea, grouping, phytoecology, phytosociology, biodiversity, cartography, Tlemcen (Algeria).

Introduction Generale	1
CHAPITRE 1 : synthese BIBLIOGRAPHIQUE	4
INTRODUCTION	4
La systématique des Oléacées	4
CLASSIFICATION	6
Caractères généraux des Oléacées :	8
Position Systématique du Genre Phillyria	10
Histoire de la nomenclature	11
DESCRIPTION selon BATTENDIAER et TRABUT, 1902	14
Caractéristique botanique du genre Phillyrea	15
Répartition	20
Habitat et phytosociologie	21
Écologie	21
STATUT DE PROTECTION	22
Les menaces	22
Menace bactérienne	22
Menace fongique	23
Menace entomologique	23
INTERET	23
Propriétés biochimiques	23
Phytothérapie	24
Alimentation	24
Bois	24
Horticulture	
Position systématique de <i>Phillyrea</i> dans la région de Tlemcen	
Les flores utilisées.	
Résultats	25
Description du genre Phillyyrea dans la région de Tlemcen	
Chapitra 2 · Milian physique	
Cantanta rágional et legal de la gane d'átude	
Contexte régional et local de la zone d'étude	
Relief et topographique	
Substrat géologique	
Cadre pédologique	32

Table de Matière

	Sols des Monts des Traras	-33
	Sols des Monts de Tlemcen	-33
	Sols steppiques	-34
ME	THODOLOGIE	34
	Méthode d'étude	-34
	Zonage écologique	-35
	L'échantillonnage	-36
	Méthodes des relevés floristiques	-37
	Choix des stations d'étude :	-38
	Station de Beni Saf	38
	Station de Honaine	- 39
	Station de Zarifet	-40
	Station de Terni:	-40
	Station de Sebdou	40
BIC	OCLIMATOLOGIE	41
	INTRODUCTION	-41
	METHODOLOGIE	-42
	FACTEURS CLIMATIQUES	-43
	Amplitude thermique (Indice de continentalité)	-48
	Synthèse bioclimatique	-50
	Indice de DEMARONNE	-50
	Diagrammes O mbrothermiques de BAGNOULS et GAUSSEN	- 51
	Indice xérothermique D'EMBERGER (1942)	-52
	Quotient Pluvio-thermique D'EMBERGER	-53
CO	NCLUSION	54
AP	ERÇU PEDOLOGIQUE	55
	INTRODUCTION	- 55
	MATERIELS et METHODES	-56
	Analyses physiques	-56
	Analyses chimiques	-57
	Résultats	-58
	DISCUSSIONS	-62
	CONCLUSION	-63

Table de Matière

Chapitre 3 : DIVERSITE FLORISTIQUE	65
DIVERSITE FLORISTIQUE	65
Introduction:	65
La composition floristique	65
Richesse floristique par gradient écologique	66
Caractéristiques biologiques	68
Types morphologiques	70
Indice de perturbation	71
Types biogéographiques	71
Rareté	74
Mesure de la biodiversité	76
Indice de Shannon (H):	76
Indice de l'Equitabilité (E)	76
Indice de réciprocité de Simpson	77
Indice de MARGALEF:	77
Richesse floristique	78
Conclusion	79
Chapitre 4 : Analyse de la végétation	82
Analyse statistique de la végétation	82
Introduction:	82
Méthode d'étude	83
Interprétation des Résultats	84
Signification écologique des facteurs	98
Conclusion	108
ESSAI CARTOGRAPHIQUE	109
CONCLUSION GENERALE	114
REFERENCES BIBLIOGRAPHIQUES	114
Annexes	127

Liste des illustrations

Figure 1: Diagramme florale des Oléacées (web master1)	9
Figure 2: Répartition des Oléacées (MEUSEL et al 1975)	10
Figure 3: Comparaison entre Olea europea et Phillyrea angustfolia (Web master 2)	14
Figure 4: les grains de pollen du genre <i>Phillyrea</i> sous le microscope photonique	19
Figure 5: Les fruits de <i>Phillyrea</i> selon SEBASTIEN, 1956	20
Figure 6: Répartition des Phillyrea selon(SEBASTIEN 1956)	21
Figure 7: Régime saisonnier nouvelle et ancienne période	
Figure 8: Diagrammes Ombrothermiques des stations d'étude	49
Figure 9: Climagramme Pluviothérmique des stations	51
Figure 10: Pourcentage des classes et sous-embranchements de la zone d'étude	62
Figure 11: Pourcentage des Familles dans la partie littorale de la région d'étude	62
Figure 12: Pourcentage des familles de la partie des monts de Tlemcen	63
Figure 13:Pourcentage des Familles de la partie Steppique	63
Figure 14:Pourcentage des types biologiques de lapartie littorale	64
Figure 15: Pourcentage des types biologiques de la partie des monts de Tlemcen	65
Figure 16: Pourcentage des types biologiques de la partie Steppique	66
Figure 17: types morphologiques des stations d'étude	67
Figure 18: Types biogéographiques de la zone d'étude	69
Figure 19:Types biogéographiques de la partie littorale	70
Figure 20: Types biogéographiques de la partie des monts de Tlemcen	70
Figure 21: Types biogéographiques de la partie Steppique	71
Figure 22: degré de rareté de la zone d'étude	73
Figure 23: Richesse floristique de la zone d'étude	76
Figure 24: type biologique des noyaux de la station de Béni-Saf	
Figure 25: type biologique des noyaux de la station de HONAINE	
Figure 26: type biologique des noyaux de la station de Zarifet	88
Figure 27: Type biologique des noyaux de la station de SEBDOU	90
Figure 28: les types biologiques des noyaux de L'AFC 1 de la station de TERNI 1	93
Figure 29: type biologique des noyaux de la station de Terni 02	94

Liste des Tableaux

Tableau 1: données géographiques des Stations	35
Tableau 2: données géographiques des stations météorologiques	39
Tableau 3: Moyennes mensuelles et annuelles des précipitations	
Tableau 4: coefficient relatif saisonnierde Musset	42
Tableau 5: Moyennes mensuelles et annuelles des températures	44
Tableau 6: moyenne des maxima du mois le plus chaud	44
Tableau 7: moyenne des minima du mois le plus froid	45
Tableau 8: l'indice de continentalité de DEBRACH	45
Tableau 9: Etage de végétation et type de climat	47
Tableau 10: indice d'aridité de DEMARTONNE	
Tableau 11: indice xérothermique D'EMBERGER	50
Tableau 12: Quotient Pluviométrique des stations d'étude	51
Tableau 13: le code de Munsell pour chaque échantillon du sol	
Tableau 14: Propriétés granulométriques pour chaque profil	55
Tableau 15: vitesse de perméabilité des sols étudiés	56
Tableau 16: capacité de rétention en eau des sols sous <i>Phillyrea</i>	56
Tableau 17 : humidité hygroscopique des sols sous <i>Phillyrea</i>	57
. Tableau 18: Acidité des sols étudiés	57
Tableau 19: Conductivité des sols étudiés	57
Tableau 20: Calcaire total des échantillons étudiés	57
Tableau 21: Teneur en calcaire actif des sols étudiés	58
Tableau 22: indice de perturbation de la zone d'étude	68
Tableau 23: les indices de biodiversité de la zone d'étude	75
Tableau 24: Fréquence des espèces dans le groupement (Ar) de la Station Béni-saf	. 127
Tableau 25: Fréquence des espèces dans le groupement (Br) de la station de Béni-Saf	.132
Tableau 26: Fréquence des espèces dans le groupement (Cr) de la station de Béni-Saf	.137
Tableau 27: Fréquence des espèces dans le groupement (Ar) de la Station de HONAINE	. 143
Tableau 28: Fréquence des espèces dans le groupement (Br) de la Station de HONAINE	. 145
Tableau 29: Fréquence des espèces dans le groupement (Cr) de la Station de HONAINE	. 147
Tableau 30: Fréquence des espèces dans le groupement (Ar) de la stationde Zarifet	. 150
Tableau 31: Fréquence des espèces dans le groupement (Br) de la Station de Zarifet	. 154
Tableau 32: Fréquence des espèces dans le groupement (Cr) de la Station de Zarifet	. 158
Tableau 33: Fréquence des espèces dans le groupement (Ar) de la Station de SEBDOU	. 164
Tableau 34: Fréquence des espèces dans le groupement (Cr) de la Station de SEBDOU	. 166
Tableau 35: Fréquence des espèces dans le groupement (Br) de la Station de SEBDOU	. 168
Tableau 36: Fréquence des espèces dans le groupement (Ar) de la Station de TERNI	. 171
Tableau 37: Fréquence des espèces dans le groupement (Br) de la Station de TERNI	. 174
Tableau 38: Fréquence des espèces dans le groupement (Cr) de la Station de TERNI	. 176
Tableau 39: Contribution des espèces et des reléves de la station de Béni-Saf	.178
Tableau 40: Contribution des espèces et des relevés de la station de Honaine	. 184
Tableau 41: Contribution des espèces et des relevés de la station de Zarifet	. 187
Tableau 42: Contribution des espèces et des relevés de la station de Terni	
Tableau 43 : inventaire floristique de la zone d'étude	.200

Liste des Cartes

Carte 1: la topographie de la région de Tlemcen (Web master 13)	27
Carte 2: la géologie de la région de Tlemcen	28
Carte 3: Situation géographique des Stations (BENZAIM 2018	37
Carte 4: essai cartographique de <i>Phillyria</i> dans la région de Tlemcen.	
Liste des photos	
Photos 1 : forme de <i>Phillyrea latifolia</i> (Web master 03)	15
Photos 3: Feuille de Phillyrea media (Web master 05	
Photos 2: Feuille de <i>Phillyrea angustifolia</i> (Partie supérieure et inférieure)	
Photos 4: Feuilles de Phillyrea latifolia (Web master 06)	
Photos 5: Ecorce de <i>Phillyrea angustifolia</i> (web master7)	17
Photos 6: L'inflorescence de <i>Phillyrea angustifolia</i> (Webmaster 08)	18
Photos 7: les fruits de la filaire (Web master 09)	19
Photos 8: Noyaude <i>Phillyrea</i> (Web master 10)	20
Photos 9: feuilles de <i>Ph. latifolia</i> infectée par <i>Xylella fastidiosa</i>	
Photos 10: les feuilles de <i>Ph. media</i> infectées par la chalarose	
Photos 11: Des jardins décorés avec la filaire (Web master 11),	
Photo 12: Phillyrea angustifolia dans la région de Tlemcen (cliché BENMAISSA, 2016)	
Photo 13: Phillyrea media dans la région de Tlemcen (cliché BENMAISSA, 2017)	
Photo 14 : Phillyrea latifolia dans la région de Tlemcen (cliché BENMAISSA, 2016)	27

INTRODUCTION GENERALE

L'environnement qui nous entoure change du vert, du brun ou du gris selon la saison et les endroits en raison de la propagation des végétaux sur la surface de la Terre. Ces organismes sont en harmonie avec les facteurs abiotiques formant de différents écosystèmes, citant le bassin méditerranéen dont l'étude de la flore et de la végétation présente un grand intérêt, vu sa grande richesse liée à l'hétérogénéité de facteur historique, paléogéographique, paléo climatique, écologique et géologique qui la caractérisent, ainsi qu'à l'impact séculaire de la pression anthropique (QUEZEL, GANISANS et GRUBER 1980).

Ces éléments de dégradation, très importants, perturbent gravement l'équilibre écologique déjà affecté dans cette région et se traduisent par une régression visible et parfois irréversible de ces écosystèmes extrêmement fragiles.

La végétation de la région de Tlemcen, présente un bon exemple d'étude de la diversité végétale ; dans tous les cas, la forêt semble céder la place à d'autres essences xérophiles et asylvatiques, et plus précisément à l'ordre de *PISTACIO RHAMNETALIA ALATERNI*, Cet ordre réunit les groupements pré-forestiers arborescents très ouverts ou arbustifs héliophiles qui peuvent en ambiances bioclimatiques humide et subhumide représenter des stades de dégradation (maquis élevé) ou des manteaux forestiers. (Torre 1955) définit comme des formations de plantes ligneuses dont la partie aérienne n'arrive pas à se différencier en tronc et en frondaison. Lorsque les conditions écologiques ne permettent pas à la forêt dense de se développer, ces groupements peuvent constituer les climax potentiels (Achhal1986).

Ainsi, plusieurs auteurs (Quezel et al 1980), (Dahmani 1989; 1997), (Alcaraz, 1982) ont identifié les états dynamiques de la végétation de la Méditerranée Occidentale, et ont constaté que ce genre constitue la caractéristique principale de cet ordre *PISTACIO RHAMNETALIA ALATERNI* considérée comme état initial des étapes dynamiques.

Le genre *Phillyrea* dans leurs différents stades d'évolution constitue l'élément caractéristique des formations de l'ordre des *PISTACIO-RHAMNETALIA ALATERNI*. Notre étude est portée donc sur l'étude des groupements à *Phillyrea sp* dans la région de Tlemcen : Aspects Phytosociologiques, Phytoécologiques et Cartographie.

Répondant aux objectifs que l'on s'est fixé, cette étude est répartie en quatre grands chapitres :

➤ Un premier, consacré à un aperçu bibliographique groupements à *Phillyrea sp* dans la région de Tlemcen, et la position systématique de cette dernière dans la région de Tlemcen.

- Quant au second, présente le cadre physique avec l'étude bioclimatique et la méthodologie du travail.
- ➤ Le troisième est réservé à l'analyse de la biodiversité floristique, du point de vue taxonomique, biologique, morphologique et biogéographique d'une part, et du point de vue indices de diversité d'autre part.
- ➤ et enfin, le quatrième chapitre assure une analyse statistique de la végétation par une analyse factorielle des correspondances, et un essai cartographique des groupements a *Phillyrea* de la région de Tlemcen

CHAPITRE 1 SYNTHESE BIBLIOGRAPHIQUE

INTRODUCTION:

Le Bassin méditerranéen est l'un des principaux centres de la biodiversité végétale de la Terre. Il abrite environ 10 %; 25000 des plantes vasculaires connues dans le monde sur une aire représentant 1,6 % de la surface de la Terre (MAIDEL et QUEZEL 1997)

La végétation des Monts de Tlemcen, offrent un paysage botanique très diversifié, lié aux circonstances du climat, du sol et du relief depuis le littoral jusqu' la steppe. Elle est caractérisée par les groupements mixtes à Chêne vert et Chêne Zeen dans la forêt de Hafir et Zarifet. Ailleurs, ce sont des groupements dégradés (DAHMANI 1997).

Dans la région de Tlemcen, le genre de *Phillyrea* constitue l'élément caractéristique des formations des *Pistacio-Rhamnetalia alaterni* dans leurs différents stades d'évolution ; c'est an type de formations de matorral qu'on trouve plus d'explication à son existence.

Plusieurs auteurs ((QUEZEL 1996), (DAHMANI 1996), (ALCARAZ 1991) ont identifié les états dynamiques de la végétation de la Méditerranée Occidentale, et ont constaté qu'il constitue la caractéristique principale de cet ordre (*Pistacio Rhamnetalia alaterni*) considérée comme état initial des étapes des dynamiques. Le genre *Phillyrea* est fait partie de l'étage supra-méditerranéen, c'est une essence héliophile qui peut vivre dans des endroits très secs RAMEAU et al, 2008).

La systématique des Oléacées

Les Oléacées forment une famille d'environ 600 espèces réparties en 24 genres, contenant principalement des arbres et des arbustes, et quelques lianes. Leur distribution géographique est très vaste : Eurasie principalement, Afrique, Australie, Amérique. Cette famille existe dès le Miocène supérieur (présence de pollen fossile) (JOHNSON 1957)

La classification présentée est la plus récente (WALLANDER; ALBERT 2000), elle fait état de 5 tribus, présentées dans le tableau 1 La plupart des genres sont hermaphrodites, mais il existe une grande variété de systèmes de reproduction, indiqués pour chaque genre.

La famille des *Oleaceae Olea* du grec *elaia* qui signifie olivier et *elation* qui signifie huile appartient à l'ordre des lamiales (QUEZEL et SANTA 1962); (BOTINEAU 2010). Formant des plantes ligneuses : arbres *Fraxinus*, *Olea*, arbustes *Ligustrum*, *Forsythia*, *Syringa*. Cette famille est divisée en deux sous-familles : *Jasminoideae* sont caractérisées par leurs ovules solitaires à nombreux par loge, généralement dressés, et quatre à douze pétales ; *Oleoideae* sont caractérisées par deux ovules penduleux par loge (SHAMARA 1993) et (BOTINEAU

2010). Les oléacées comprennent 600 espèces réparties en 29 genres. Ils sont caractérisés par une de sclérites généralement à glucosides phénoliques et des composés iridoides (JUDD et al 2001); (BOTINEAU 2010). Les oléacées sont distribuées largement dans les régions tropicales et tempérées, mais particulièrement dans le Sud-est asiatique et en Australie. Cette famille existe dès le Miocène supérieur (présence de pollens fossiles) (JOHNSON1957).

Les principaux genres sont *Jasminum* (230 espèces), *chionanthuss* (97), *Fraxinus* (60), *Ligustrum* (35), *Noronhia* (35), *Syringa* (30), *Menodora* (25), *Olea* (20), *Forestiera* (15)et

Osmanthus (15)

Dans le bassin d'Aix-en-Provence ; les scientifiques ont trouvé des fossiles de *Olea primordialis* remonte au début de miocène (il 'y a environ 25 millions d'années) ; cette espèce qui ressemble beaucoup au *Olea europaea*.

Au proche orient dans le croissant fertile ; 5000 ans que l'homme a domestiqué l'olivier en choisissant de bouture des oléastres qui produisent les plus gros fruits.

CLASSIFICATION:

La classification phylogénétique place cette famille dans l'ordre des Lamiales.

Liste des tribus

Selon NCBI et Angiosperm Phylogeny Website:

• tribu: Fontanesieae

• tribu: Forsythieae

• tribu: Jasmineae

• tribu : *Myxopyreae*

tribu : Oleeae

Liste des genres

Selon Kew Garden World Checklist:

• genre : *Abeliophyllum* Nakai(1919)

• genre : *Chionanthus* L. (1753)

• genre : *Comoranthus* Knobl.(1934)

• genre : *Dimetra* Kerr(1938)

• genre; Fontanesia Labill. (1791)

• genre : Forestiera Poir.(1810)

- genre : Forsythia Vahl(1804)
- genre : Fraxinus Tourn. ex L.(1753)
- genre: *Haenianthus* Griseb., Mem. Amer. Acad. Arts, n.s.(1863)
- genre: Hesperelaea A.Gray(1876)
- genre : *Jasminum* L.(1753)
- genre : *Ligustrum* L.(1753)
- genre: Menodora Humb. & Bonpl.(1812)
- genre : *Myxopyrum* Blume(1826)
- genre: Nestegis Raf.(1838)
- genre : *Noronhia* Stadman ex Thouars(1806)
- genre : *Notelaea* Vent.(1804)
- genre : *Nyctanthes* L. (1753)
- genre : *Olea* L.(1753)
- genre : Osmanthus Lour. (1790)
- genre : *Phillyrea* L.(1753)
- genre : *Picconia* DC.(1844)
- genre: *Priogymnanthus* P.S.Green(1994)
- genre : *Schrebera* Roxb.(1799)
- genre : Syringa L.(1753)

Selon Angiosperm Phylogeny:

- genre : AbeliophyllumNakai
- genre : *Chionanthus* L.
- genre : *Comoranthus* Knobl.
- genre : Dimetra
- genre : *Fontanesia* Labill.
- genre : ForestieraPoir.
- genre : *Forsythia* Vahl
- genre : Fraxinus L.
- genre : *Haenianthus* Griseb.
- genre : *HesperelaeaA*.Gray
- genre : *Jasminum*L.
- genre : *Ligustrum*L.

- genre : *Menodora*Bonpl.
- genre : *Myxopyrum*Blume
- genre : *Nestegis*Rafinesque
- genre : Noronhia Stadman ex Thouars
- genre : *Notelaea*Vent.
- genre : Nyctanthes
- genre; OleaL.
- genre : Osmanthus Lour.
- genre : *PhillyreaL*.
- genre : *Picconia*DC.
- genre : *Schrebera*Roxb.
- genre : Syringa L.
- genre : *Tessarandra*Miers
- genre : Tetrapilus Lour.

Selon NCBI : National Center for Biotechnology Information

- tribu: Fontanesieae
- o genre: Fontanesia
- tribu: Forsythieae
- o genre : Abeliophyllum
- o genre: Forsythia
- tribu : Jasmineae
- o genre : Jasminum
- o genre: Menodora
- tribu: Myxopyreae
- o genre: Dimetra
- o genre : *Myxopyrum*
- o genre: Nyctanthes
- tribu : Oleeae
- genre: Chionanthus
- o genre : Comoranthus
- genre: Forestiera
- genre: Fraxinus
- genre: Haenianthus
- o genre: Hesperelaea

o genre: *Ligustrum*

o genre: Nestegis

o genre: Noronhia

o genre: Notelaea

o genre : Olea

o genre: Osmanthus

o genre : *Phillyrea*

o genre : Picconia

o genre: Priogymnanthus

o genre: Schrebera

genre: Syringa

Caractères généraux des Oléacées :

La famille des Oléacées est originaire des régions tropicales et tempérées, avec concentration d'espèces en Asie du sud-est et en Australasie. Les genres de la famille des Oléacées sont constitués d'arbres et d'arbustes. Les feuilles de cette famille sont opposées, simples ou composées pennées, sans stipules. L'inflorescence des fleurs de la famille est une cyme bipare, souvent modifiée dans son apparence en grappe ou en panicule.

Les branches et les rameaux sont lenticelles les feuilles sont opposées, simples, composées pennées, ou trifoliolées, entière à dentées-serrées, à nervation pennées ; ex stipulées (JUDD et al 2001). Présence de des trichomes peltés, (qui sont parfois glanduleux et peuvent apparaître comme des points transparents ou enfoncés dans les feuilles) ; glandulaire, ou glandulaire (WATSON & DALLWITZ 1992).

Les fleurs sont tétramères, c'est-à-dire de type quatre, avec : 4 sépales, soudées entre elles, 4 pétales, mais cela peut varier de 2 à 6, 2 étamines, il peut y en avoir jusqu'à 4, ces dernières possèdent des filets courts fixées aux pétales et sont à déhiscence longitudinale, 2 carpelles, soudés en un ovaire supère à 2 loges, chacune avec 2, mais aussi 1 à 4 ou n, ovules anatropes en placentation axile, 1 seul style avec 2 stigmates.

Formule florale : (4-5) S + (4-5) P + 2 E + (2) C.

La pollinisation est généralement entomophile grâce à les couleurs et parfums splendides des fleurs. Le périanthe est réduit chez *Fraxinus* et *Forestiera*, il permet une pollinisation anémogame.

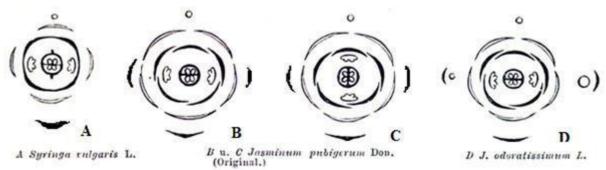


Figure 1: Diagramme florale des Oléacées (web master1)

Il 'y a une diversité des fruits ; lorsque plusieurs ovules se développent, c'est soit une capsule loculicide chez les espèces *Syringa* et *Forsythia*, soit une pyxide chez certains *Jasminum sp*, soit une baie chez *Ligustrum japonicum* ; quand tous les ovules avortent sauf un, c'est une samare *Fraxinus sp* où une drupe *Olea europaea*.

Les graines sont cylindriques ou comprimées, inadhérentes, inarillées (quelquefois ailées), suspendues, ou appendantes, anatropes ; tégument crustacé, ou corné, épais. L'embryon aussi long ou presque aussi long que le périsperme, axile, rectiligne, cotylédons minces, obtus ; radicule grêle, columnaire, supère, aussi longue que les cotylédons, ou plus courte (SPACH 1839). Les fruits charnus sont disséminés par les oiseaux ou les mammifères. Les samares de *Fraxinus*, de même que les graines des espèces à fruits capsulaires, sont disséminées par levent.

(WATSON & DALLWITZ 1992) ont bien décri l'anatomie du bois chez les oléacées. La moelle est homogène, ou hétérogène. Cavités sécrétoires absentes. Le lège cambium présent ; initialement enraciné (rarement), ou initialement superficiel. Les nœuds uni-lacunaires. Les tissus vasculaires primaires dans un cylindre, sans paquets séparés ; nantissement. Interne phloème absent. Présent de paquets cortical, ou absent. Paquets de Médullaire absents. Épaississement secondaire se développant d'un anneau de cambial conventionnel. Raies médullaire primaires étroites.

La famille d'olivier est presque cosmopolite, elle est distribuée dans tout le globe terrestre sauf à l'antarctique.

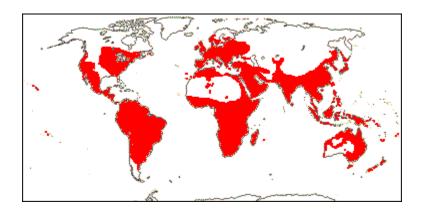


Figure 2: Répartition des Oléacées (MEUSEL et al 1975)

Position Systématique du Genre Phillyrea:

La filaire *Phillyrea angustifolia* qu'on appelle communément *el ktem*, *tamthoula* en berbère. C'est un arbre typiquement méditerranéen, il ressemble beaucoup à l'olivier dont la majeure partie de l'aire de distribution se trouve dans le tel algérien, il appartient à la famille des Oléacées. (QUEZEL et SANTA 1962-1963) Son intérêt économique est certain, Il est très utile aux animaux qui leurs servent d'aliment et d'abris et aux êtres humains comme sources médicinales.il est utilisé aussi dans l'horticulture.

Histoire de la nomenclature :

Tout au long de l'histoire, ils en avaient plusieurs prépositions qui varient la nomenclature de ce genre : *Phillyrea*, *Phyllyrea*, *Phyllyrea*, *Phillelaia* et *Phillyrea*. De Juana 2012 a collecté des informations sur l'histoire de la systématique et la nomenclature de ce genre, ce qui suit est un résumé de son article.

La première référence de ce genre que l'on connait aujourd'hui *Phillyrea*, semble revenant par le médecin pharmacologue et botaniste grecque **DIOSECORIDE** après l'avoir publié dans son premier livre de son ouvrage de « *Materia Medica* » dans la référence (FRANCIS et *al* 2009) Les anciens auteurs **du** 16 ^{éme} siècle quand ils traduisent ce terme latin, ils l'ont confondue avec *Philyra* un nom publié par (THEOPHRASTUS 1644) quand il a décrit le tilleul « *Tilia*».

Cependant le grand (MATTIOLI, 1559) un physicien et naturaliste italien après avoir étudié le travail de (DISCORIDES s.d.), dans des éditions successive (1548; 1559 et 1562) était le premier a remarqué l'erreur commise par les traducteurs précédents le terme *Phillirea* avec *Phillira* (tilleul).

Les modernes interprètes de DISCORIDES sont croyaient que la *Phyllirea* décrite par DISCORIDES, correspond en vrai à un arbre appelé « *Tilla* », trempant par la similarité des noms parce qu'en grec le tilleul est nommé *Phillira* et non pas *Phillirea* traduit par (MATTIOLI 1559) qui a même publiées des dessins de *Phillyrea* et ceux de tilleul pour montrer la différence.

ANDRES DE LAGUNA, un médecin espagnol quand il traduisait du « *Materia Medica* » venait de dire la même chose que (MATTIOLI, 1559) juste il a donna les noms grec *Philyrea* et *Philyra* au lieu *Phillirea* et *Phillira*.

Quand (GRANDSAGNE 1832) a publié l'histoire de PILINE, les auteurs qui ont collaboré au travail commentèrent « les fleurs du tilleul ne sont utilisés qu'on médecine moderne... les fruits sont astringents et l'écorce est diurétique ». DISCORIDES a mentionné ça non pas pour le tilleul mais pour la *Phillyrea*, on pense que PILINE, en copiant l'auteur grec a attribué à *Philyra* (tilleul en grec).

En traitant le même sujet, (CLOS 1890) dans un article réussi a commenté qu'on doit retourner au PILINE, pour trouver l'origine de cette confusion, puisque dans son livre XXIV « *Historia Natural* » ; chapitre XXX en ce qui concerne les propriétés d'une plante ligneuse, il l'appela *Tilia* variété *Oleastro*.

Une fois l'existence d'un groupe de plantes appelé *Phillyrea* a été clarifié pendant le 16 ème siècle, des auteurs comme (LUSITANICUS 1558), (DALECHAMPS 1586) et autre ont continué avec la même prononciation, à laquelle ils ont été ajout au 15 ème siècle, (L'Écluse 1601), (BAUHIN 1623), (AMBROSINI 1657), (JONCQUET 1665), (MATTIOLI 1674), (Magnol 1676),

(CHABREY1677;1678),(HERMANN1687),(TOURNEFORT1694),(PLUKENET1696)et (CUPANI 1696), parmi tant d'autres, jusqu'en (TOURNEFORT 1700) l'a établi comme genre dans « *institutiones rei herbariae* ».

D'un autre coté une autre ligne de pensée s'est établie en parallèle, l'idée que ce type d'arbuste doit être appelé *Phyllirea*, car selon ces partisans devrait être dérivé du grec *Phyllon* (feuille) d'autre auteurs rejoignaient comme (LINOCIER 1584), (MUNTING 1702), (DUHAMEL 1755), (DE JUSSIEU 1789), (THEIS 1810), (POIRET 1827), (MUTEL 1835), (SPACH 1839), et bien

d'autres cités par (CLOS 1890)

Le mot *Phyllyrea*, trouvé dans les œuvres de (PAULLI 1708), (VALENTINI 1715), le même (LINNE 1767; 1784; 1797), (GERARD 1761), (SEBASTIANI 1815), (BARCELO 1879-1881), (RIVAS GODOY 1964) et (MALAGARRIGA 1965), entre autres.

Continuant avec le manuscrit de (CLOS 1890) on peut vérifier qu'il y a deux autres variantes :

Au 17 ème siècle, LOBEL et PENA ont proposé de remplacer *Phillyrea* pour *Philelaia*, c'està- dire « l'ami des oliviers ». Cette proposition n'a pas été acceptée par les autres botanistes.

b) **KOCH** a remplacé *Phillyrea* par *Philyrea*, car selon lui, **LINNE** l'avait utilisé dans son premier ouvrage « *Sistema Naturel* ». Cependant, dans les éditions suivantes portent le nom de *Phillyrea*, respectant le nom établi par (TOURNEFORT 1700). D'autres auteurs tels que (LAGUNA 1563;1570) et (SUAREZ 1733) utilisent également cette expression lors de la traduction du mot grec DISCORIDE.

« La beauté, la permanence, l'éclat du feuillage des Filarias leur a fait donner le nom *Phillyrea*, feuille par excellence, du grec feuilles » (Histoire philosophique des plantes d'Europe. Selon (LIEUTAGHI 2004) *Philuréa* est l'ancien nom grec de ces plantes.

angustifolia:

Du latin feuille étroite (LIEUTAGHI 2004)

• media:

Du latin intermédiaire (LIEUTAGHI 2004)

• latifolia:

Du latin feuille large (LIEUTAGHI 2004)

Le genre de *Phillyrea* est découvert par (TOURNEFORT 1700) dans ses « *Institutions rei herbariae* », il a signalé quatorze espèces.

LINNE dans son « *Species plantarum* » (première édition **1747**) a inscrit deux espèces *P.angustifolia* et *P. latifolia*, puis il ajouta la troisième espèce P. media dans la deuxième édition en **1762** et autre diverses variétés et formes.

(BATTENDIER et TRABUT 1902) ont mentionné ce genre avec l'orthographie de *Phyllirea* dans la famille des jasminées. Ils ont décrit les trois espèces Linniénne : *P.angustifolia*, *P.media* et *P.latifolia*.

Selon (MAIRE 1948), (QUEZEL et SANTA 1962) ont mentionné qu'il existe une espèce

de *Phillyrea angustifolia* et trois sous espèces : *ssp eu-angustifolia* Maire, *ssp media* (L) Rouy et *ssp latifolia* (L)Maire.

Une étude morphologique et anatomique du genre *Phillyrea* était présentée par (SEBASTIEN 1956) ; il a décrit les six espèces le plus communément admises sont :

Phillyrea angustifolia. L, Phillyrea media. L, Phillyrea latifolia. L, Phillyrea Lowei. Dc, Phillyrea Vilmoriniana. Boiss et Bal,

Phillyrea stricta Bert.

Après ses résultats, **SEBASTIEN** a trouvé que l'espèce *Phillyrea angustifolia* possède trois variétés sont les suivantes : variété *lanceolata*. Ait, variété *rosmarinifolia*. Mill et variété *brachiata*. Ait.

Noms vernaculaires:

_ Arabe classique : *ez-zaroud*

_ Amazigh : *Tamthoula*

_ Dialecte algérien : *ktem*

_ Espagnol : *labiérnaga*

Suédois : Smultrontrad.

_ Allemand : Steintinde, Lorbeerlinde

_ Anglais : *Jasmine-box*, *Mock-privet*.

_ Français : filaire, alavart

DESCRIPTION selon BATTENDIAER et TRABUT, 1902:

Arbustes semblables à l'olivier (BATTENDIER et TRABUT 1902), La différence entre ces deux arbustes méditerranéens c'est les feuilles d'*Olea* sont vert cendré sur la face supérieure et argentées sur la face inférieure par la présence d'un feutrage de poils étroite; le fruit d'*Olea* plus gros et plus charnus avec un noyau dur cependant chez *Phillyrea* le fruit est plus petit et peu charnus et son endocarpe fragile. (SEBASTIEN 1956).

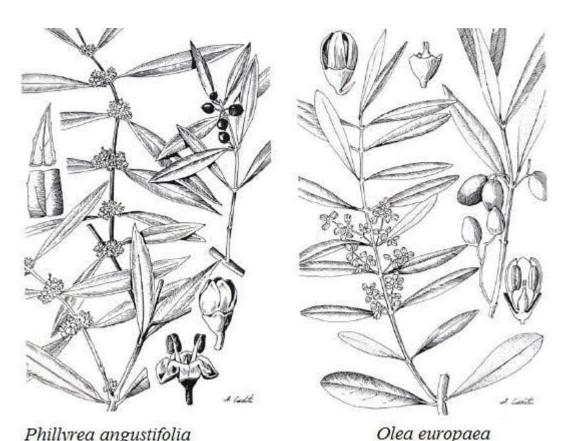


Figure 3: Comparaison entre *Olea europea* et *Phillyrea angustfolia* (Web master 2).

Les feuilles de *Phillyrea* sont opposées, coriaces, vertes, persistantes et très variables. Les inflorescences sont globuleuses, sub sessiles à l'aisselle des feuilles. Les fleurs sont verdâtres ou jaunâtres, petites de quatre à cinq et les corolles sont rotacées à tube très court. (QUEZEL et SANTA 1962) . Le fruit est une drupe globuleuse ou sub globuleuse, noir-bleuâtre. (GUINOCHET & VILMORIN 1975)

Caractéristique botanique du genre Phillyrea:

C'est un genre formant d'élégance buissons denses mais souples (BROSSE 1993) *Phillyrea angustifolia* est un nano phanérophyte de 1-2 mètres et *Phillyrea latifolia* est une micro phanérophyte de six à huit mètres de haut et une longévité plus de quatre sens ans. Feuilles opposées, coriaces, vertes persistantes (QUEZEL et SANTA 1962), entières ou dentées, glabres d'un pétiole de 1-4 cm (LIEUTAGHI 2004) ; ce sont des espèces polymorphes (DUHAMEL 1755). Fleurs petites 4-5mm verdâtres ou jaunâtres (QUEZEL et SANTA 1962); odorante (quatre pétales soudés en tube court à la base, deux grosses étamines, un style court), réunis en petits grappes à l'aisselle des feuilles. Le fruit est une petite drupe noir bleuâtre, charnue et globuleuse. La coque de son noyau est fragile (LIEUTAGHI2004).

Photo 1 : forme de *Phillyrea angustifolia* (BENMAISSA, 2014)

Feuilles et feuillage :

Les feuilles des filarias sont très polymorphes selon les espèces ; elles sont toujours simples, fermés, unies, luisantes, opposées et persistantes (DUHAMEL 1755).

Phillyrea angustifolia. Maire a des feuilles linéaires de 3-8 mm de large et de 20-40 mm de longue, 4-8 fois plus longues que larges (QUEZEL et SANTA 1962) très entière (BATTENDIER et TRABUT 1902). On peut citer aussi, les bordures des feuilles sont étroites et transparentes (COSTE in SEBASTIEN 1956) et la nervure dorsale seule saillante ; nervure secondaire peu distinctes et se détachants de la nervure principale selon un angle aigu (FIORE in SEBASTIAN 1956).

Photo 2: Feuille de *Phillyrea angustifolia* (Partie supérieure et inférieure)

Les feuilles de *Phillyrea media*. L sont ovales-lancéolées (QUEZEL et SANTA 1962), et (COSTE in SEBASTIEN 1956); lancéolées ou elliptiques (FIORE in SEBASTIAN 1956) de 3-6 cm de longue, 1-2,5cm de large, 2 à 3 fois plus langues que larges (QUEZEL et SANTA 1962), dentées ou entières (BATTENDIER et TRABUT 1902); plus au moins dentées (COSTE in SEBASTIEN 1956). Selon (COSTE in SEBASTIEN 1956) ces feuilles sont nettement pétiolées, arrondie ou à peine en cœur à la base; (FIORE in SEBASTIAN 1956) n'a pas mentionné ce caractère que pour l'espèce *latifolia* (SEBASTIEN 1956). (FIORE in SEBASTIAN 1956)a signalé que les feuilles sont atténuées aux extrémités avec un diamètre maximum au milieu. Nervure dorsale saillante (COSTE in SEBASTIEN 1956), nervures secondaires non distinctes se détachants de la nervure principale avec un angle assez aigu (FIORE in SEBASTIAN 1956)); feuilles sub-obtuses et mucronulées.

Photo 3: Feuille de *Phillyrea media* (Web master 05).

Les jeunes feuilles de *Phillyrea latifolia*. L sont cordiformes à la base plus en moins épineuses à la marge (QUEZEL et SANTA 1962) les autres sont ovales elliptiques; de 3-4 cm de longue et de 1-2 cm de large sub-entières selon (BATTENDIER et TRABUT 1902) et (ROUYin

SEBASTIAN 1956); finement dentées selon (COSTE in SEBASTIEN 1956). Nervures

secondaires généralement plus évidents, et se détachant avec un angle obtus ou presque droit (FIORE in SEBASTIAN 1956); feuilles supérieures parfois obliquement tordues (ROUY in SEBASTIAN 1956).

Photo 4: Feuilles de *Phillyrea latifolia* (Web master 06).

Tronc et écorce :

Photo 5: Ecorce de *Phillyrea angustifolia* (web master7).

La filaire à feuilles étroites est touffe à tronc court et à rameaux plutôt grêles et généralement dressés (BROSSE 1993) ; les rameaux sont grêles et élancés. D'une écorce grisâtre, tandis que le tronc de filaire à feuille large est flexueux, court avec des rameaux opposés, robustes et raides.

La racine :

Nombreux botanistes qui sont intéressé par le genre de *Phillyrea*, ils ont bien décrit la partie aérienne sans entamer l'enracinement. D'après (QUER et ORTEGA 1784), la racine de la filaire est épaisse, solide et enraciné profondément dans la terre.

> Fleurs et floraison :

Les fleurs de la filaire sont blanches verdâtres, assemblées aux aisselles des feuilles (QUER et ORTEGA 1784). Selon (DUHAMEL 1948) les fleurs sont composées d'un fort petit calice divisé en quatre et qui subsiste jusqu'à la maturité du fruit, il porte 4 pétales

soudées à l'intérieur il y a deux étamines forts courts et un pistil composé d'un embryon arrondi et d'un style terminé par un assez gros stigmate.

Phillyrea angustifolia possède des fleurs jaunâtres, ou blanchâtre, odorantes groupées à l'aisselle des feuilles ; ce sont un peu lâches portées par des rameaux courts, presque en corymbe (FIORE in SEBASTIAN 1956).

Photo 6: L'inflorescence de *Phillyrea angustifolia* (Web master 08)

Les fleurs de *Phillyrea* media en grappes axillaires courtes et serrées.

Les fleurs de *Phillyrea latifolia* en grappes axillaire courtes et peu fournies.

Les trois espèces sont androdioïques, avec des individus à fleurs hermaphrodites, d'autres dont les fleurs ont des pistils non fonctionnels, ce qui les rend fonctionnellement masculines ou staminées (LEPART 1992). L'androcée est un cas de polygamie dans lequel coexistent deux types d'individus, les uns à fleurs hermaphrodites, les autres à fleurs males. Selon (PANELLA 1991), l'androdioécie aurait évolué à partir de la dioécie et conférerait un avantage adaptatif à l'espèce, assurant la production de graines par autofécondation lors d'événements de colonisation.

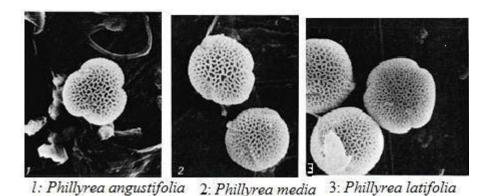
Phillyrea angustifolia fleurit entre février et mai (Arroyo, 1990), tandis que *Phillyrea latifolia* le fait un peu plus tard, entre avril et juin. La pollinisation se fait grâce au vent, favorisant les croisements entre individus relativement éloignés, mais aussi par les insectes.

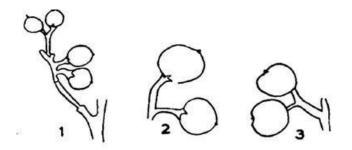
Le grain de pollen et la pollinisation :

L'importance de la palynologie dans la classification taxinomique des familles et sousfamilles a été démontrée dans diverses études. Elle permet de décrire les plantes fossiles, les modes de vie contemporains et de la vie éteinte.

Le grain de pollen du genre *Phillyrea* est tricolpé ; oblate-sphéroïdal pour les deux espèces *Ph angustifolia* et *Ph latifolia* et est complètement sphéroïdal pour *Ph media*.

Le grain de pollen de *Ph. angustifolia* est le plus petit ; la longueur de son axe polaire est d'environ 21 μ parfois varie entre 15 et 16 μ égale à son diamètre équatorial. Chez Ph. media l'axe polaire est de 22 μ en moyenne (20,5 à 26,5 μ), ainsi son diamètre équatorial atteint 22 μ et pour *Ph. latifolia* l'axe polaire mesure environ 24,3 μ et le diamètre équatorial atteint 22,6 μ .




Figure 4: les grains de pollen du genre *Phillyrea* sous le microscope photonique

\triangleright Le fruit :

(DUHAMEL 1948) est le seul qui a décrit le fruit des Filaria par une baie ronde, peu charnue possède un gros noyau rond. Ce sont des drupes sphériques et rondes de la taille des myrtes, noire à la maturité, d'un gout un peu doux mélangé amer, et assez pareil à celui des baies de Genièvres. La fructification de septembre à novembre.

Photo 7: les fruits de la filaire (Web master 09)

1) Phillyrea angustifolia : 2) Phillyrea media : 3) Phillyrea latifolia Figure 5: Les fruits de Phillyrea selon SEBASTIEN, 1956

Phillyrea angustifolia a des drupes groupées en paquets à la base des feuilles, de 3-5 mm (QUEZEL et SANTA 1962); glauques pruineuse, globuleuses (COSTE in SEBASTIEN 1956) ; (FIORE in SEBASTIAN 1956), ovoïdes (ROUY in SEBASTIAN 1956), apiculé, longtemps vertes, avant de devenir bleu sombre et recouvertes d'une pruine blanchâtre avec une chair rosée, à l'intérieur un noyau ovoïde ; à endocarpe fragile renfermant une graine.

Phillyrea media sa drupe de 5-8 mm, apicule, d'une pruine noire et chair rosée ; à noyau globuleux et une graine couvre par un endocarpe fragile.

Phillyrea latifolia sa drupe ombiliquée de 5-8 mm, de la grosseur d'un pois, noirâtre non apiculée déprimées au sommet à noyau globuleux.

Noyau:

A l'intérieur du fruit charnu, il y'a un noyau rond où globuleux dure qui porte une seule graine.

Disséminées par les oiseaux en automne-hiver (LEPART & DEBUSSCHE 1991).

Photo 8: Noyau de *Phillyrea* (Web master 10)

Répartition:

Le genre *Phillyrea* est typiquement méditerranéen, il ne s'écarte de son aire que très peu, à l'Est et à l'Ouest. L'espèce *Phillyrea angustifolia* est restreint à l'ouest du bassin méditerranéen, du Portugal jusqu'à l'ex-Yougoslavie (SEBASTIEN 1956) tandis que *Phillyrea media* est fréquente dans les pays méditerranés orientale. *Phillyrea latifolia* s'étend sur tout le bassin méditerranéen jusque dans sa partie orientale.

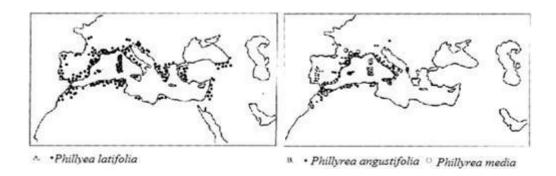


Figure 6: Répartition des *Phillyrea* selon (SEBASTIEN 1956)

Habitat et phytosociologie :

Filaria se trouvent dans les bois avec chênaie vert, chênaie pubescente, pinèdes, ... (LIEUTAGHI 2004). Ces arbustes présents dans les garrigues sur les coteaux arides, rocailleux et plus sur la silice que sur le calcaire; dans la même formation végétale, *Phillyrea angustifolia* se trouvée intégré dans la classe des *Rosmarinetea officinalis* dans les garrigues; et avec *Cisto- lavanduletea* dans les maquis; on cite aussi que *Phillyrea latifolia* dans les formations fruticées accompagne *Pistacio-Rhamnetalia alaterni*, *Prunetalia spinosae*. (RAMEAU et al 2008).

Écologie:

La filaire est typique du maquis méditerranéen ; on peut le trouver du niveau de la mer jusque vers700 m d'altitude. Il est circumméditerranéenne, de l'étage thermo-méditerranéen à l'étage supra-méditerranéen (alors en versant chaud) ; étage collinéen (RAMEAU et al 2008).

Pour la température, *Phillyrea* est relativement thermophile, liée aux variantes non froides des bioclimats humides et subhumides.

Cet arbuste est une essence héliophile, de ce fait il exige une forte insolation, il tolère un couvert plus ou moins léger.

Concernant le type de sol, la filaire peut vivre spontanément sur différents types de terre, sur un sol a humus mull à modéré, sur des roches calcaires ; argiles de décarbonations plus au moins riches en cailloux, mais se retrouve sur altérites issues de roches siliceuses. Taux de saturation en cations et pH est variables.

STATUT DE PROTECTION:

L'espèce *Ph. angustifolia* n'est pas mentionnée dans la liste IUCN tandis que Les deux autres espèces *Ph. media* et *Ph. latifolia* sont enregistrées sous la catégorie LC (Préoccupation mineur du l'anglais *least concern*); qui sont des espèces abondantes et largement distribuées et qui ne sont pas en voie de disparition dans un proche avenir.

Les menaces:

❖ Menace bactérienne :

Xylella fastidiosa une bactérie mortelle parmi les plus dangereuses bactéries à l'échelle mondiale, elle se développe dans le xylème d'une plante produit des agrégats ou biofilms, bloquant les mouvements de la sève brute au sein des vaisseaux. Cette bactérie attaque près de 60 espèces végétales appartenant à plus de 80 familles botaniques différentes : vigne, arbres fruitiers, agrumes. ect ; selon le FAO *Phillyrea* est l'un des hôtes de cette bactérie.

Photo 9: feuilles de Ph. latifolia infectée par Xylella fastidiosa

Menace fongique:

Autre problème c'est la maladie de chalarose à cause d'un champignon invasif pathogène viens de l'Asie c'est le *Chalara fraxinea* associée avec le champignon *Hymenoscyphus fraxicus*; il provoque les nécroses foliaires observées sur les arbres malades (ANDERSSON *et al*, 2010).

Photos 10: les feuilles de Ph. media infectées par la chalarose

Menace entomologique :

(ELISABETH 2010) a signalé le jaunissement et le flétrissement des feuilles de *Phillyrea* provoqués par les piqures de petite larve blanche *Siphoninus phillyreae*.

INTERET:

Propriétés biochimiques :

La fraction polyphénolique des feuilles de *Ph. angustifolia* est constituée des acides phénoliques tel que (Syringique, Caféique, Chlorogénique et vanillique) ; de flavonols (quercetin-3-O- glucoside) ; flavones (drivés de apigenine et luteoline) (Romani et al, 1996). Les trois espèces de *Phillyrea* sont riche protéine brute, en tanin et en saponine (MEBIROUK-BOUDECHICHE et al 2014). Le même auteur en (MEBIROUK-BOUDECHICHE 2020) ajoute que les feuilles de *Ph. latifolia* possèdent des antioxydants.

Phytothérapie:

En phytothérapie, la décoction des feuilles de la filaire a été conseillé pour les maux des gorges ; les fleurs et l'écorce pour les fièvres intermittentes (LIEUTAGHI2004).

Alimentation:

Plusieurs botanistes ont indiqué que le fruit de *Phillyrea* est toxique ; mais (PIERONI et PACHALY 2000) ont signalé la consommation des fruits des filaires dans le passé. Dans l'Espagne, l'Europe méditerranéenne et le Nord d'Afrique, les gens ont utilisé l'infusion des

fruits et des feuilles comme un astringent pour les inflammations buccales (JANACKAT et AL- MERIE2002).

Bois:

Son bois est très lourd, très dur, homogène, blanc, jaunâtre, parfois brunâtre au centre chez le pied âgé, il est utilisé en charronnage, c'est un bon combustible (LIEUTAGHI 2004).

Horticulture:

La filaire était plantée au XX e siècle comme une plante ornementale grâce à son beau feuillage (LIEUTAGHI 2004).

Photo 11: Des jardins décorés avec la filaire (Web master 11),

Position systématique de Phillyrea dans la région de Tlemcen :

Introduction:

Selon Ramade 2002, la systématique ou bien la taxonomie (taxinomie) c'est une discipline dont l'objet est de créer et de faire progresser la classification des êtres vivants, donc de décrire tant au plan théorique qu'appliqué la diversité biologique et de l'ordonner au travers d'un système analytique dénommé classification.

Notre but dans ce chapitre est d'identifier la position systématique de *Phillyrea* dans la région de Tlemcen, nous avons choisi cinq station différentes, deux stations littorales Beni Saf et Honaine, deux station montagnards la forêt de Zarifet, Terny et la dernière station steppique de Sebdou.

Les flores utilisées :

Pour notre étude nous avons utilisé cinq flores pour décrire le genre *Phillyrea* dans la région de Tlemcen :

_ La flore analytique et synoptique de l'Algérie et de la Tunisie de BATTANDIER et

TRABUT (1902)

- La descriptive et illustrée de la France de la Corce de et des contrés limitrophes de L'ABBE COSTE (1902-1906).
- La nouvelle flore d'Algérie de Quzel et Santa 1962.
- _ La flore de France de Guinochet et Vilmorin (1975).
- L'index synonymique flore d'Afrique du Nord de DOBIGNARD et CHATELAIN (2012).

Résultats:

Description du genre Phillyrea dans la région de Tlemcen :

• Phillyrea angustifolia:

Arbrisseau de 0.5 à 2 m rameaux grêles et élancées, l'écorce lisse marron grisâtres. Les feuilles sont de 2 5 cm de longueur et de 0.5 1 cm de largeur, elles sont d'un vert foncés, lancéolées linéaires, étroites et entières. Les fleurs sont blanchâtres, le calice à tube très court à 4 divisions, la corolle 4 lobes étalés, 2 étamines saillantes, le style court stigmate conique. Le fruit est une drupe ressemble à celle de myrtille; bleuâtre, rond de 0.2 à 0.5 cm de diamètre; le mésocarpe d'un violet foncé contient un endocarpe beige sphérique et fragile l'intérieur une graine marron foncé un peu solide. cette espèce est dominante dans tous les stations appart la station de zarifet où elle est moins présente.

Photo 12: Phillyrea angustifolia dans la région de Tlemcen (cliché BENMAISSA, 2016)

• Phillyrea media:

Arbrisseau de 1 à 2 m à rameaux toujours grêles et élancées ; l'écorce lisse marron grisâtres. Les feuilles de 4 à 5 centimètres de longueur et de 1 à 2 centimètres de largeur ; elles sont d'un vert clair vif opaque, lancéolées linéaires, les bordures de la feuilles sont légèrement dentées. Le fruit de 0.5 à 1 centimètres de diamètre. Cette espèce est très rare où elle se trouve uniquement dans les stations de Beni Saf, Honaine et Terni.

Photo 13: Phillyrea media dans la région de Tlemcen (cliché BENMAISSA, 2017)

Phillyrea latifolia:

Arbuste de 0.5 à 3 mètre ; les rameaux grêles, l'écorce lisse marron grisâtre. Les feuilles de 3 à 4 centimètres de longueur et de 1 à 2 centimètres de largeur, ce sont d'un vert foncés, lancéolées linéaires, étroites, les marges possèdent quelques épines très fins de 3 à 8 épines. Le fruit de 0.4 à 0.7 centimètres de diamètre. Cette espèce se retrouve dans toutes les stations en très faible pourcentage, mais elle est morphologiquement développée dans la station de Sebdou, où elle atteint 3 mètres.

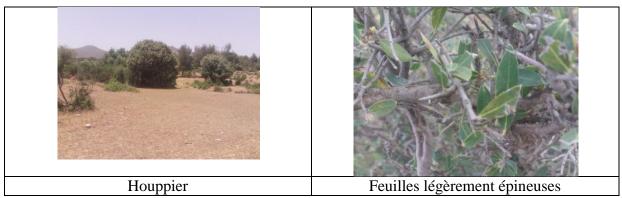


Photo 14: Phillyrea latifolia dans la région de Tlemcen (cliché BENMAISSA, 2016)

Conclusion:

On peut conclure que pour la majorité des auteurs, excepte QUEZL et SANTA (1962-1963), les sous espèces sont représentés par des espèces actuellement ; Les distinctions entre ces taxons sont essentiellement basé sur les traits de la morphologie des feuilles (BENMAISSA et SATMBOULI-MEZIANE, 2021), donc les trois espèces de *Phillyrea* existent dans la région de Tlemcen.

CHAPITRE 2:

MILIEU PHYSIQUE

Contexte régional et local de la zone d'étude :

La région de Tlemcen fait partie de l'Oranie, elle couvre la grande partie de la wilaya de Tlemcen et une station de la wilaya d'Ain-Témouchent. Le choix des stations dépend la présence du groupement de *Phillyrea* dans trois différents bioclimats.

La zone d'étude se situe entre 35° et 30° de latitude Nord et entre 1°20'et 2°30' de longitude Ouest. Elle est limitée géographiquement :

- -Au nord par la mer méditerranée ;
- -Au nord-est par la Wilaya d'Ain-Témouchent ;
- -A l'est par la Wilaya de Sidi-Bel-Abbès ;
- -Au sud par la Wilaya de Naama.

Relief et topographique :

Les reliefs méditerranéens représentent un vrai cocktail ; souvent radis et fragmentés, de vallées profondes, de hautes plaines ou de vastes bassins sédimentaires, de rivages sinueux, sur des substrats géologiques variés. Ils sont accusés les potentialités climatiques et microclimatiques à la suite une biodiversité végétale importante.

La nature topographique de Tlemcen est diversifiée grâce à sa position géographique entre la méditerranées méridionale et la steppe au sud de la wilaya ; on rencontre quatre ensembles physiques distincts :

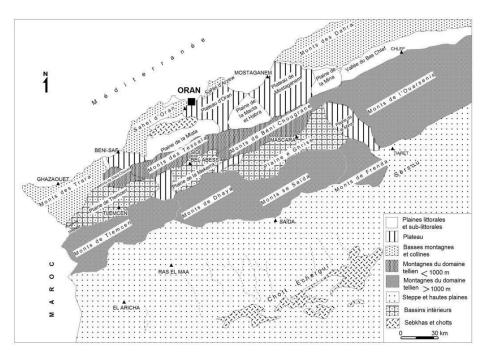
• Le littorale:

Les monts de Sbaa Chioukh à l'est orienté vers la limite des monts de Traras à l'Ouest ainsi que le haut piémont de Sidi Abdelli. Cette zone est caractérisée par une forte érosion à cause de la nature calcaire et friable de sa lithologie. Monts des Traras : c'est une chaine tellienne de moyenne altitude de 1081 m. 73% des terrains de Traras sont très accidenté avec une pente supérieure de 25%.

• Les plaines Telliennes :

Elles sont formées principalement par des structures géomorphologique plates, on distingue : plaine de Maghnia, plaine de Zenata, plaine d'Hennaya, plaine de Sidi Abdelli.ces plaines variés environ de 200à 400m d'altitude. Cette zone est caractérisée par une importante

potentialité agricole.


• Les Monts de Tlemcen:

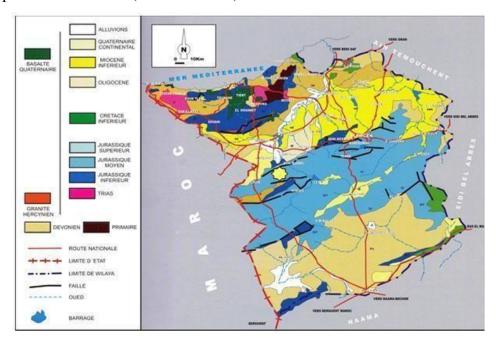
Ils sont localisés dans la partie occidentale de la chaine tellienne. Ils possèdent les altitudes les plus élevées de la région, en moyenne 900à 1000m, et culminent à 1843m au Djebel Ténouchfi. Ils s'étendent sur 317.600 ha soit 37% de l'ensemble de la Wilaya.

Ce massif montagneux s'érige en véritable barrière naturelle entre les hautes plaines steppiques et le tell. Il constitue une des réserves hydrauliques les plus importantes au niveau régional.

• La zone steppique :

Localisé à la frontière de la wilaya, elle rattaché géographiquement aux plains steppiques élevées, à une altitude de 1100m à 1200m. Cette zone ce termine au Nord par la cuvette de Dayat El-Ferd dont les pentes s'échelonnent entre 15% et 25%. Ce sont des terres à vocation pastoral.

Carte 1 : la topographie de la région de Tlemcen (Web master 13)


Substrat géologique :

Selon (DOUMERGUE 1910), (AUCLAIR et BIEHLER 1967) et (BENEST 1985) la région de Tlemcen constituée de terrain d'âge jurassique supérieur avec des affleurements ou dominent des calcaires fissurés. Les formations montagnardes de Tlemcen sont de nature gréseuse et poreuse.

La stratigraphie de ces formations sédimentaires jurassiques est caractérisée par des roches

carbonatées ; en distingue :

- Les calcaires de Zarifet (kimméridgion supérieur);
- Les dolomies de Terny (Tithonien inférieur);
- Un facies carbonaté, volcanique et métamorphique dans les monts de Traras. (BOUALI 1990 ; in ADJIM 2011)
- Un ensemble pliocène continental dans la région de Sebdou (BOUALI 1990 ; in ADJIM 2011) et présence du crétacé (BENEST 1985).

Carte 2: la géologie de la région de Tlemcen

Cadre pédologique :

On ne peut parler de la phytocenose, et principalement des végétaux ligneux, sans tenir compte du facteur édaphique qui revêt une importance capitale car c'est leur support et leur source alimentaire.

La couverture édaphique de l'Oranie est le résultat de facteurs actuels (végétation, climat, action anthropique, dynamique des versants...) qui se superposent à des héritages (géologie, oscillations climatiques quaternaires) qui ont conduit au développement de trois grands types de formations pédologiques : les sols rubéfiés, les encroutements calcaires et les sols salins (AIME 1991).

Dans la région d'étude, les sols sont extrêmement hétérogènes. Dans leurs majeurs partis ce sont des sols calcaires, et au sud dans les hauts plateaux ce sont par contre des sols calciques à croûtes qui dominent.

La diversité pédologique de la zone d'étude varie du Nord au Sud, nous distinguons :

Sols des Monts des Traras :

La chaîne littorale, représentée dans notre cas par les Monts des Traras, présente une diversité pédologique importante. Selon (KADIK 1987), les sols les plus répandus sur le littoral et le sublittoral restent des sols calci-magnésiques sur les marnes ou sur les calcaires fissurés. Le taux de matière organique varie en fonction de la richesse des strates végétales et de la composition floristique de la région. Les sols les plus répandus sont :

• Sols calcaires humifères :

Ce sont des sols riches en matière organique. Leur évolution est faite aux dépens d'anciens sols marécageux. Ces derniers se trouvent principalement à l'Ouest de Nedroma et sur la bande littorale de Ghazaouet (DURAND 1954).

• Sols calciques:

La principale caractéristique de ces sols est leur faible profondeur. Dans notre zone d'étude, on les rencontre au Sud de la chaîne littorale et à l'Est des Monts des Traras.

• Sols en équilibre :

Ils sont caractérisés par une faible épaisseur et une dureté de la roche mère.

• Sols décalcifiés :

Ce sont des sols à grande vocation céréalières.

• Sols insaturés :

Ce type de sols se développe avec les structures à schistes et à quartzites primaires.

Sols des Monts de Tlemcen:

Selon (BRICHETEAU 1954), les sols sont en général assez profonds, ceci est observé toujours en position de pente. Ces sols sont en général plus ou moins profonds de type brun forestier sur lequel se développent les grandes structures végétales de l'Ouest de l'Algérie. Cette végétation croît sur les sols :

• Sols fersialitiques (sols rouges méditerranéens) :

Ils sont largement répandus sur les Monts de Tlemcen et se rencontrent principalement sur les parties assez bien arrosées. Ce sont des sols riches en fer et en silice. Ils sont considérés comme anciens dont l'évolution est accomplie sous forêt caducifoliée en condition fraiche et humide. Leur rubéfaction correspond à une phase plus chaude à végétation sclérophylle et

donne des sols rouges fersialitiques ou terra rosa. Ce type de sols apparait lié à la présence de la roche-mère calcaire ou dolomitique dure et compacte.

• Sols lessivés et podzoliques :

Ils sont caractérisés par une faible profondeur et un lessivage assez accentué c'est principalement la perméabilité de la roche-mère et la présence d'un humus acide qui ont favorisé la formation de ce type de sols (BESTAOUI 2009).

(AINAD-TABET 1996) ajoute : « quant aux sols marrons, ils sont fréquemment localisés dans des zones de piémont relativement sèches et à pluviométrie faible, au pied de montagnes calcaires fortement érodées ».

Sols steppiques:

La partie Sud de notre zone d'étude chevauche sur les sols steppiques principalement au niveau de **Djebel Tenouchfi**, **Djebel dourdaz**, **Djebel Berouag**, **Djebel El-Hodachi**.

Les caractères généraux des sols de cette partie ont été dégagés de nombreux travaux, nous citons à titre d'exemple ceux de : (DURAND 1954, 1958) ; (RUELLAN 1970); (AUBERT 1978) ; (POUGET 1980); (DJEBAILI 1984) ; (HALITIM 1988) ; (BENABADJI 1991-1995) ; (BOUAZZA 1991-1995) ; (BENABADJI et al 1996) ; (BOUAZZA et al 2004) et (BENABADJI et al 2004).

(DUCHAUFFOUR 1976) classe les sols de la zone steppique en :

Sols peu évolué (régosols, lithosols) ; Sols calcimagnésiques (rendzine grise) ; Sols isohumiques ;Sols brunifères (sols halomorphes).

METHODOLOGIE:

Méthode d'étude :

Le genre *Phillyrea* est considéré comme l'une des essences forestières dont l'aire naturellement inextensible est étroitement limitée au bassin méditerranéen (LIEUTAGHI 2004).

En Algérie il est très commun dans tous le Tell (QUEZEL et SANTA 1962).

Le but essentiel de cette recherche est d'étudier ce genre de point de vue systématique et écologique ainsi qu'une identification des différentes composantes floristiques qui l'accompagnent dans ses habitats naturels dans la région de Tlemcen.

La zone d'étude est caractérisée par une grande biodiversité végétale liée aux facteurs écologiques qui sont aussi très variés.

Afin de répondre à l'objectif de cette étude nous avons suivi la méthode phytosociologique sigmatiste (BRAUN-BLANQUET 1951) dite aussi zuricho-montpelerienne.

Zonage écologique :

Il s'agit de l'inventaire et de l'analyse des paysages, de leurs composantes et leurs interrelations, les zones écologiques terrestres dépendent et sont définies par l'intensité des précipitations, leur variabilité et leurs quantités annuelles.

Ce zonage s'effectue grâce aux différentes sorties sur le terrain et grâce à différentes études comparatives menées au sein de notre laboratoire. Il nous a été possible de définir trois zones réparti ainsi :

Une zone littorale représentée par deux stations Béni-Saf et Honaine.

Une zone montagnarde représentée par deux stations Zarifet et Terni.

Une zone steppique représentée par la station de Sebdou.

Ces zones sont différentes les unes des autres par :

- La position géographique,
- La topographie,
- Le climat,
- Les conditions édaphiques,
- Les facteurs anthropiques et diversité végétale.

Chaque zone présente quatre strates : la strate arborescente, la strate arbustive, la strate herbacés et la strate muscinale qui est fortement présente dans la station de Terni ; pour cette étude on élimine la dernière. On cite par exemple :

- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Tetraclinis articulata
- Pinus maritima
- Chamaerops humilis

- Pistacialentiscus
- Lavandula dentata
- Lavandula multifida
- Lavandula stoechas

Ces espèces sont parmi les plantes qui caractérisent la zone littorale à Beni Saf et Honaine.

Pour la zone montagnarde (Zarifet et Terni) on peut citer :

- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Juniperus oxycedrus
- Quercus ilex
- Quercus suber
- Quercus faginea

Malgré la zone steppique est présentée par une seule station (Sebdou) dans cette étude et malgré sa végétation clairsemée influencée par des conditions écologiques et anthropiques dures, cette zone comporte une biodiversité végétale importante, nous pouvons citer :

- Phillyrea angustifolia
- Phillyrea latifolia
- Juniperus oxycedrus
- Quercus coccifera
- Pistacia lentiscus
- Ferula communis
- Phlomis herbayenti
- Artemisia herba-alba

L'échantillonnage:

L'échantillonnage est un processus au cours duquel on sélectionne un groupe d'individu sou une portion de la population pour représenter la population cible (GUMUCHIAN et MAROIS 2000).

(GOUNOT 1962) a proposé quatre types d'échantillonnage :

- Echantillonnage subjectif
- Echantillonnage systématique

- Echantillonnage stratifié
- Echantillonnage au hasard
- L'échantillonnage subjectif : consiste à choisir les échantillons qui paraissent les plus représentatifs et suffisamment homogènes, de sorte que le phyto- écologue ne fait généralement que reconnaitre quelques-uns des principaux aspects de la végétation.
- L'échantillonnage systématique : consiste à disposer des échantillons selon un mode répétitif pouvant être représentés par un réseau de mailles régulières de bandes ou de transects, de segments consécutifs, de grilles de points ou de points-quadrats alignés.
- L'échantillonnage stratifié : cette technique permet d'obtenir des stations susceptibles de traduire le maximum de situations écologiques tout en étant représentatives du plus grand nombre de cas.
- L'échantillonnage au hasard : consiste à prendre au hasard les diverses localisations des échantillons à étudier.

Dans le but d'apprécier la diversité spécifique du groupement à *Phillyrea* dans les cinq localités choisies, l'échantillonnage stratifié est utilisé, il permet d'obtenir des stations susceptibles de traduire le maximum de situations écologiques (GODRON 1971); (FRONTIER 1983).

Cet échantillonnage consiste à diviser la zone d'étude en plusieurs sous-zones prédéfinies (strates) qui présentent une homogénéité au regard de la distribution spatiale, à l'intérieur desquelles nous effectuons nos relevés floristiques.

Méthodes des relevés floristiques :

Les espèces qui constituent la flore d'un territoire ne sont pas réparties au hasard, indépendamment les uns des autres, mais elles sont groupées suivant leurs exigences écologiques. L'étude des groupements végétaux sur le terrain se fait à l'aide de la méthode de relevés, qui consiste à choisir des emplacements tout en notant les conditions du milieu. Les relevés ont été réalisés sur des surfaces floristiques homogènes (GUINOCHET 1973). La méthode phyto sociologique (BRAUN-BLANQUET 1951) consiste à choisir l'emplacement, et les surfaces de la végétation analysée, elle consiste à savoir quelle est la petite surface qui rende compte de la nature de l'association végétale en relation directe avec l'existence du genre *Phillyrea sp*.

Pour aborder ce travail, 250 relevés floristiques ont été effectués durant la période printanière des années 2016, 2017, 2018 et 2019.

La surface des relevés (l'aire minimale) est de 100m² pour les cinq stations. Cette aire minimale basée sur la méthode de la courbe aire-espèce, est déterminée par le nombre

d'espèces relevés sur des surfaces de plus en plus grandes, jusqu'à ce que le nombre d'espèces recensées n'augmente plus. (GUINOCHET 1968) souligne que l'intérêt principal porté à ces courbes est du à leur importance pour définir opératoirement des surfaces floristiquement homogène.

Chacun des relevés comprend des caractères écologiques d'ordre stationnels notamment l'altitude, la pente, l'exposition, la nature du substrat, la surface du relevé, la date et lieu d'échantillonnage. En plus de ces renseignements écologiques, les listes floristiques établies, sont complétées par des indications concernant la physionomie, la structure de la végétation, son recouvrement et la présence-absence.

L'identification des taxons a été faite à partir de la flore de l'Algérie (QUEZEL et SANTA 1962).

Choix des stations d'étude :

Notre objectif est d'étudier les groupements écologiques et la diversité de *Phillyrea* dans la région de Tlemcen. La phytocénose qui constitue un territoire n'est pas répartie au hasard, son installation dépend à ces exigences par rapport au milieu, c'est-à-dire suivant ces affinités écologiques. Durant le printemps 2016, nous avons choisie sur la base d'informations tirées d'une synthèse bibliographique relative à la répartition de *Phillyrea* 05 stations d'étude ; deux stations littorales Beni Saf et Honaine ; deux stations dans les monts de Tlemcen Zarifet et Terni ; et la steppe représentée par les deux stations Sebdou et Terni (Figure5).

Tableau 1: données géographiques des Stations

stations	Latitude N	Longitude W	altitude
Beni Saf	35°20'	1°20'	165
Honaine	35°04'	1°43'	413
Zarifet	34°50'	1°22'	1007
Terni	34°47'	1°21'	1034
Sebdou	34°37'	1°20'	961

Station de Beni Saf:

La commune de Béni Saf appartient au littoral ouest de la Wilaya de Ain Temouchent, elle couvre une superficie de 61,62 Km² soit 6 162 Ha, entre les coordonnées Lambert : X1=1° 18' Ouest X2 = 1° 28' Ouest de longitude. Y1= 35° 14' Nord Y2 = 35° 19' Nord de latitude. Elle est partagée entre la frontière avec la commune de Sidi Safi à l'Est et la commune d'Emir Abdel Kader au Sud et l'Oued Tafna à l'Ouest et la mer Méditerranéenne au Nord.

- Tetraclinis artriculata
- Pinus maritima
- Chamaerops humilis
- Quercus coccifera
- Calycotome spinosa
- Pistacia lentiscus
- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Lavandula dentata
- Lavandula multifida
- Lavandula stoechas

Station de Honaine:

Honaine est une commune de la wilaya de Tlemcen, située à l'extrême nord-ouest de l'Algérie, à 60 km au nord-ouest de Tlemcen et à 120 km à l'ouest de Sidi Bel Abbès. Il existe des belles plages situées près de Honaine.

La région de Honaïne, présente une morphologie singulière, délimitée par la mer méditerranée sur 12 Kilomètres, fortement accidentée avec des paysages calcaires. Les pentes sont variables, au Nord elles sont plus douces. Au sud les massifs sont plus abruptes et les pentes Nord-Sud varient entre 35 et 40% et constituent un ensemble montagneux fortement raviné et de parcours très difficiles. Au Nord, elles vont de 10 à 15% vers des pentes plus douces.

Les habitants définissent leurs côtes, comme « une façade sans fenêtres et avec une seule porte : Honaïne ». La morphologie de la région s'est formée à la faveur d'une succession de mouvements tangentiels et de soulèvement de l'orogénèse atlasique et /ou alpine. Néanmoins, subsiste le substratum primaire bien individualisé par le granite de Nedroma et son auréole métamorphique. Ces mouvements tectoniques profonds ont créé une importance métamorphisme régional. C'est cette tectogénèse atlasique qui est à l'origine des reliefs actuels, de la nature des faciès des formations et d'éventuels mouvements néotectoniques actuels. Les espèces qui dominent cette station.

- Tetraclinis artriculata
- Chamaerops humilis
- Quercus coccifera
- Pistacia lentiscus
- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Lavandula dentata
- Lavandula stoechas

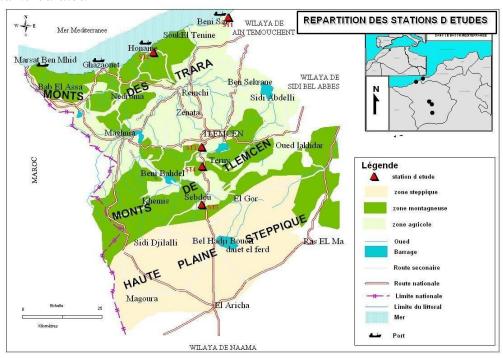
Station de Zarifet :

La forêt domaniale de Zarifet n'est qu'un prolongent de la forêt de Hafir vers l'Est. Elle située à l'Ouest de la ville de Tlemcen. Sa superficie est de 4611 Ha. Cette forêt appartient à la Conservation des forêts de la Wilaya de Tlemcen, à la circonscription forestière de Tlemcen, au district de Terny et au triage de Zarifet. Les espèces qui dominent cette station :

- Juniperus oxycedrus
- Populus alba
- Quercus coccifera
- Crataegus monogyna
- Cistus ladaniferus
- Arbutus unedo
- Phillyrea angustifolia
- Phillyrea latifolia

Station de Terni:

Formés de plateaux karstiques constitués de calcaires jurassiques plissés. Ces monts sont caractérisés par l'affleurement de formations calcaires qui font la richesse de cette zone en site naturels et en ressources en eau qui alimentaient les principales sources du « Haouz » de Tlemcen. Cet ensemble est l'un des domaines forestiers les plus importants de la wilaya.


- Juniperus oxycedrus
- Quercu scoccifera
- Quercus ilex
- Quercus suber
- Quercus faginea
- Rosa canina
- Crataegus monogyna
- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Lonicera implexa

Station de Sebdou:

La dernière station est formation végétale remarquée par l'implantation du pin d'Alep, avant le rentré de la commune de Sidi Yahia qui appartient à la Daira de Sebdou situé au centre de la wilaya de Tlemcen. Son chef-lieu est situé à 38 km au sud de Tlemcen.

- Juniperus oxycedrus
- Pistacia lentiscus
- Rhamnus lyciodes
- Ferula communis
- Phillyrea angustifolia

- Phillyrea latifolia
- Artemisia herba-alba

Carte 3 : Situation géographique des Stations (BENMAISSA, 2018)

BIOCLIMATOLOGIE

INTRODUCTION:

Étant donné au moins depuis HUMBOLDT (1807) que le climat joue un rôle essentiel dans les déterminismes de la répartition des plantes ; EMBERGER (1930, 1971) à particulièrement souligner ce rôle en ce qui concerne la végétation méditerranéenne. Ses recherches l'ont conduit à une méthode originale de caractérisation de ce que nous appellerons le Bioclimat (DJELLOULI et DAGET, 1988). Dans de nombreux travaux, dont les plus importants ont été repris en 1971, EMBERGER discute du climat méditerranéen et met progressivement au point cette méthode, dont l'efficacité, permet de le caractériser et d'y reconnaître les sous unités. Depuis lors, ces éléments ont été beaucoup travaillés, repris, discutés et appliqués, notamment dans les de DANTAS-BARRETO(1958), travaux LEHOUEROU(1959,1969),AKMAN(1962etal.1971,1981),AHDALI et al. (1976, 1981), DJELLOULI (1981), QUEZEL et BARBERO (1982).

Le climat d'Algérie a fait l'objet de nombreuses études analytiques et synthétiques, notamment par SELTZER (1946) ; BAGNOULS et GAUSSEN (1953) ; EMBERGER (1954) ; CHAUMONT et PAQIN (1971) ; STEWART (1975) ; BOTTNER (1981);LEHOUROU

(1995). En règle générale on distingue quatre grandes zones climatiques en Algérie entre les deux limites mer et désert (ALCARAZ, 1969) :

- La zone littorale: au climat chaud et humide, va du niveau de la mer jusqu'à 400m d'altitude.
- La zone des montagnes telliennes est tempérée sur ses versants nord ; froide ou fraiche sur les autres versants et en altitudes.
- La zone des hauts plateaux et des hautes plaines sèches et arides est caractérisée par des extrêmes, marquées par des froids rigoureux et des chaleurs excessives.
- La zone saharienne se distingue par des pluies rares et irrégulières.

Cette diversité climatique influence sur la faune et la flore, elle offre une biodiversité remarquable et très importante dans l'Algérie. Cette richesse se traduit par l'existence de forêts, de pré-forets, de matorrals et de steppe.

Le climat méditerranéen est un climat de transition entre la zone tempérée et la zone tropicale Souvent, barré par les chaînes montagneuses proches du littoral, (Atlas Tellien et Atlas Saharien), ce climat ne pénètre guère vers l'intérieur. Ces climats de bordure, presque linéaires, ne sont pas des climats maritimes, mais des climats contrastés traduisant, ainsi, plus d'influences continentales qu'océaniques et reflétant avant tout leur double appartenance aux franges de la zone tempérée et à celles de la zone tropicale.

Le Nord-ouest Algérien présente partout un climat méditerranéen où les précipitations sont de courte durée avec un premier maximum en automne et un second en hiver ou au printemps, et une sécheresse estivale (ALCARAZ, 1982 in MOURI, 1997).

La zone de Tlemcen (ouest Nord de l'Oranie) est l'influencé par le climat méditerranéen, défini selon (BENABADJI et BOUAZZA, 2000) comme un climat de transition entre la zone tempérée et la zone tropicale avec un été très chaud et très sec, tempéré seulement en bordure de la mer, l'hiver est très frais et plus humide. Ce climat est qualifié de xérothermique.

Dans ce chapitre nous essayons de développer le problème lié à la valeur bioclimatique des formations végétales à *Phillyrea* dans la région d'étude mais aussi de déterminer dans quel étage climatique ce groupement peut se développer.

METHODOLOGIE:

Le choix des stations a été fait de manière à ce que l'on puisse couvrir toute la zone d'étude, et dans un souci de bien cerner les influences climatiques régionales sur les

conditions locales.

L'étude bioclimatique est basée sur l'exploitation des données climatiques enregistrées pour les stations de : Béni-Saf, Ghazaouet et Zenâta dans la période de 1991 jusqu'à 2020 et de 1980 jusqu'à 2011 pour la station de Sebdou.

Pour compléter l'étude, il est nécessaire d'ajouter les données climatiques de l'ancienne période (1913-1938) obtenue à partir du recueil météorologique de SELTZER (1946).

Tableau 2: données géographiques des stations météorologiques

Stations	Latitude N	Longitude W	Altitude (m)	Wilaya
Béni-Saf	35°18'	1°21'	68	Ain Temouchent
Ghazaouet	35°06'	1°52'	4	Tlemcen
Zenata	35°01'	1°27'	249	Tlemcen
Sebdou	32°42'	1°27'	1100	Tlemcen

FACTEURS CLIMATIQUES:

Les facteurs climatiques sont considérés comme l'une des conditions naturelles les plus influentes dans la formation et la croissance du couvert végétal, et le changement climatique d'un endroit à un autre affecte la distribution, la diversité et la physionomie de la population végétale naturelle (HAMAMDHE, 2003).

Les composantes majeures du climat sont les précipitations et la température (BARRY et *al*, 1979), ils varient en fonction de l'attitude, de l'orientation des chaînes de montagnes et de l'exposition. Ces deux éléments constituent des "facteurs limitant" au sein de la région étudiée (DJELLOULI. 1990). Ils sont les éléments climatiques les plus influents sur le couvert végétal (HAMAMDHE, 2003).

• Précipitations :

Selon RAMADE (2002) c'est l'ensemble des formes sous lesquelles l'eau atmosphérique fait retour à la surface de l'écosphère : pluies, grêle neige rosée, givre

La répartition des pluies est plus importante que la quantité annuelle que la zone reçoit, car pour le végétal, l'eau utile est celle disponible durant son cycle de développement (DJEBAILI, 1984).

Au niveau des stations Ghazaouet, Zenata et Sebdou, on remarque une nette diminution des précipitations, Contrairement à la station de Béni Saf, elle a connu une amélioration remarquable des précipitations de 371 mm à 418.6 mm, elle est la plus pluvieuse pour la nouvelle période suivie de la station de Zenata avec 370.2 mm (Tableau 3).

Tableau 3: Moyennes mensuelles et annuelles des précipitations

Stations	Périodes	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Decembre	P (mm)
SEBDOU	AP (1913- 1938)	43	41	37	25	34	15	5	7	19	32	35	42	326
SEBDOO	NP (1980- 2011)	41,1	37,9	35,2	27,1	26,5	8,7	4	6,2	17,5	25	35,3	36,1	300,5
GHAZAOU	AP (1913- 1938)	65,7	49,8	51	44.2	35	13,3	1,1	1,1	21,5	47,6	66,9	69,1	433.9
ET	NP (1991- 2020)	55,3	33,5	30,8	35,0	21,6	6,6	1,8	8,6	20,3	38,7	53,4	43,6	349,2
ZENATA	AP (1913- 1938)	65	62	49	44	38	11	1	4	23	42	68	67	474
ZENATA	NP (1991- 2020)	50,4	37,8	41,9	41	29,5	6,8	2,8	18,2	19,2	32,3	48,2	42,2	370,2
DÉNI CAE	AP (1913- 1938)	49	40	37	30	24	9	1	2	15	39	57	68	371
BÉNI-SAF	NP (1991- 2020)	55,7	41,6	41,7	46,7	24,7	19,7	15,7	3,8	21,2	42,5	64,6	40,7	418,6

• Régime saisonnier :

D'après CHAABANE (1993), Musset est le premier qui a défini la notion de régime saisonnier. Cette méthode consiste à un aménagement des saisons par ordre décroissant de pluviosité, ce qui permet de définir un indicatif saisonnier de chaque station, en désignant chaque saison par l'initiale P.H.E. et A désignant respectivement le printemps, l'hiver l'été et l'automne.

$$Csr = Ps * 4/Pa$$

Ps : précipitation saisonnières Pa : précipitation annuelles

Crs: coefficient relatif saisonnier de Musset.

Tableau 4: coefficient relatif saisonnier de Musset

Saisons	Hiv	/er	Printe	mps	Eté		Automne		Pluviosité	Régime
Stations	P	Crs	P	Crs	P	Crs	P (mm)	Crs	annuelle	pluvial
	(mm)		(mm)		(mm)					
Beni-Saf	138	1,31	113,1	1,08	39,2	0,37	128,3	1,22	418.6	HAPE
Ghazaouet	132,4	1,51	87,4	1	17	0,19	112,4	1,28	349.2	HAPE
Zenata	130,4	1,4	112,4	1,21	27,8	0,3	99,7	1,07	370.2	HPAE
Sebdou	115,1	1,53	88,8	1,18	18,9	0,25	77,8	1,03	300.5	HAPE

D'après le tableau 4, les résultats montrent deux types de régime saisonnier pour la nouvelle période. Pour l'ancienne période (1913-1938), le type HAPE caractérise les stations de Béni-Saf, Ghazaouet et Sebdou, par contre la station de Zenata est caractérisée par le type HPAE.

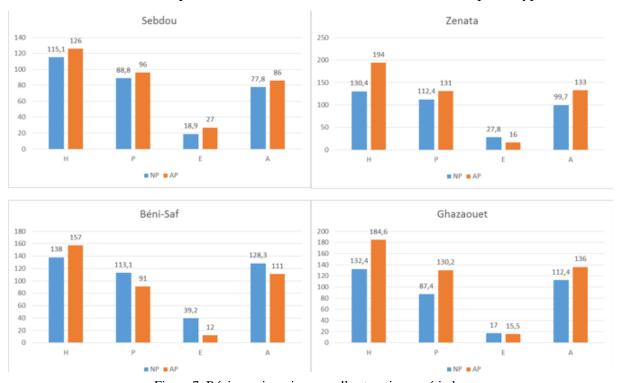


Figure 7: Régime saisonnier nouvelle et ancienne période

• Température :

La température représente un facteur limitant de toute première importance car elle contrôle l'ensemble des phénomènes métabolique et conditionne de ce fait la répartition de la totalité des espèces et des communautés des êtres vivants dans la biosphère (RAMADE, 2003).

L'objectif de cette étude climatique est d'expliquer la répartition des trois espèces du

Phillyrea dans la région de Tlemcen et leur influence sur la température.

La caractérisation de la température en un lieu donné se fait généralement à partir de la connaissance d'un moins quatre variables qui sont :

- les températures moyennes mensuelles;
- les températures maximales;
- les températures minimales;
- ➤ l'écart thermique.

Température moyennes mensuelles [(M+m)/2] :

Les moyennes mensuelles des températures confirment que Janvier est le mois le plus froid pour les deux périodes. Elles varient entre 7.5°C à Sebdou et 12.9°C à Béni Saf, pour l'ancienne période, et avec 8.1°C à Sebdou et 13.3°C à Béni Saf et Ghazaouet pour la nouvelle période.

Pour les températures moyennes les plus élevées ; elles sont situées au mois de juillet à Sebdou avec 30.5 °C et à Ghazaouat avec 33.4 °C et au mois d'Août à Zenata avec 26°C et à Béni Saf avec 25°C pour l'ancienne période, on remarque que les quatre station garde les même mois chauds pour la nouvelle période mais avec une augmentation de la température, le tableau comporte les moyennes mensuelles et annuelles enregistrées pour les deux périodes.

Tableau 5: Moyennes mensuelles et annuelles des températures

Stations	Périodes	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Dec	M (°C)	m (°C)	T
																Moy (°C)
	AP (1913- 1938)	7,5	9,9	8,5	12,2	12,1	21	30,5	23	23,2	18,8	14,5	19,1	36,7	3,8	16,7
SEBDO U	NP (1980- 2011)	8,1	9,8	12,1	15,7	20,1	35,4	41,7	41,4	35,7	28,1	22,6	14,0	36,8	3,9	23,7
	AP (1913- 1938)	11,4	11,8	12,9	15,0	17,4	20,6	33,4	24,2	22,1	18,7	15,2	12,3	29,0	7,0	17,9
Ghazaou et	NP (1991- 2020)	13,3	13,6	15,0	16,6	19,2	22,5	25,4	26,2	23,7	20,8	16,9	14,3	34.3	13,1	19,0
	AP (1913- 1938)	9,9	10	10,5	13	15	21	24	26	21,5	17	13	10	32	5,7	15,9
Zenata	NP (1991- 2020)	11,2	12	14,1	16	19,3	23	26,4	27,1	23,8	20,2	15,5	12,4	33,7	5,8	18,4
	AP (1913- 1938)	12,9	13	14,4	15,5	18,3	21,1	24,3	25,0	22,9	19,7	16,3	13,9	29,3	9,1	18,1
Béni-saf	NP (1991- 2020)	13,3	13,8	15	16,6	19,3	22,4	25,1	25,9	23,6	20,2	16,4	14,2	29,5	10,6	18,8

Les températures moyennes des maxima du mois le plus chaud « M » :

L'étude des deux périodes montre que les températures les plus élevées sont enregistrées aux mois d'Août pour les stations Béni saf, Zenata et la nouvelle période de Ghazaouet et aux mois de juillet pour le reste des stations.

Tableau 6: moyenne des maxima du mois le plus chaud

Stations	Altitude	M (°C)	M (°C)		Mois		
	(m)	AP	NP	AP	NP		
Béni-Saf	68	25	25.9	Août	Août		
Ghazaouet	04	33.4	26.2	juillet	Août		
Zenata	249	26	27.1	Août	Août		
Sebdou	1100	30.5	41.7	juillet	juillet		

Tableau 7: moyenne des minima du mois le plus froid

Stations	Altitudes	M (°C)	M (°C)		Mois		
		AP	NP	AP	NP		
Béni-Saf	68	12.9	13.3	Janvier	Janvier		
Ghazaouet	04	11.4	13.3	Janvier	Janvier		
Zenata	249	9.9	11.2	Janvier	Janvier		
Sebdou	1100	7.5	8.1	Janvier	Janvier		

EMBERGER utilise la moyenne des minima pour exprimer le degré et la durée de la période critique des gelées dans la classification des climats.

Pour les deux périodes, Janvier est les mois le plus froid pour toutes les stations, sa valeur varie de 7.5°C à Sebdou durant la période ancienne jusqu'à 13.3°C à Béni Saf pour la nouvelle période.

Amplitude thermique (Indice de continentalité) :

La continentalité correspond à l'écart entre la température maximales du mois le plus chaud et les températures minimales du mois le plus froid. Elle présente la limite thermique extrême à laquelle chaque année les végétaux doivent résister (DJEBAILI, 1984).

D'après DEBRACH (in ALCARAZ, 1982) quatre types de climats peuvent être calculés à partir de M et m.

• M-m<15°C: climat insulaire

• 15°C<M-m<25°C: climat littoral

• 25°C<M-m<35°C: climat semi continental

• M-m>35°C: climat continental

Tableau 8: l'indice de continentalité de DEBRACH

Stations	Période	Amplitude thermique	Type du climat	
Béni-Saf	1913-1938	20.2	littoral	
	1991-2020	18.9	littoral	
Ghazaouet	1913-1938	22	littoral	
	1991-2020	21.2	littoral	
Zenata	1913-1938	26.3	Semi continental	
	1991-2020	27.9	Semi continental	
Sebdou	1913-1938	32.9	Semi continental	
	1980-2011	32.9	Semi continental	

Après l'examen du Tableau, nous remarquons que le type de climat reste le même pour toutes les stations météorologiques durant les deux périodes. On note qu'il y a une diminution de l'amplitude thermique dans la station de Béni-Saf. Par contre on remarque une légère augmentation de l'écart thermique durant la nouvelle période pour la station de Zenata, on note aussi une stabilisation de l'amplitude thermique pour la station de Sebdou.

• Les autres facteurs climatiques :

Le vent :

Phénomène météorologique qui peut être localement un facteur écologique limitant dans certaines zones de montagnes ou littorales où son intensité est telle qu'il perturbe voire empêche la croissance des arbres.

Le brouillard:

Aérosol atmosphérique constitué de microgouttelettes d'eau souvent en surfusion, plus rarement de microcristaux de glace, se formant par temps calme lorsque l'air est saturé de vapeur d'eau. Toute source de pollution exclue, ce phénomène présente un maximum de fréquence sur les rivages marins, au bord des laces et dans les vallées des zones montagneuses.

La neige:

Phénomène météorologique résultant de la formation par condensation de la vapeur d'eau atmosphérique de cristaux bidimensionnels à symétrie radiaire hexaxiale.

La gelée blanche:

Formation de glace sur les substrats inertes et la végétation par suite de la perte calorifique de la surface par rayonnement lors de nuits froides par temps calme et ciel découvert.

L'évaporation:

Phénomène par lequel l'eau apportée à un sol dépourvu de végétation s'évapore dans l'atmosphère. Maximale dans les déserts, l'évaporation existe aussi dans les écosystèmes

pourvus d'une forte biomasse végétale, où l'eau de pluie passe directement dans l'air sous forme vapeur car elle s'évapore sans avoir été absorbée par la végétation.

L'humidité:

Désigne la teneur en eau d'un biotope, de constituants biotiques d'un habitat ou même d'un organisme.

Synthèse bioclimatique:

La combinaison des facteurs climatiques (températures et précipitation) ont permis à plusieurs auteurs de mettre en évidence des indices. Tel est le cas de DEMARTONNE (1926), EMBERGER (1936) et GAUSSEN (1958).

Classification des ambiances bioclimatiques en fonction de [T]et [m] :

La température moyenne annuelle T est utilisée par RIVAS MARTINEZ (1981) avec la température moyenne des minima comme critère de définition des étages de végétation.

Thermo-méditerranéen	T>16°C	m>+3°C
Méso-méditerranéen	12°C <t<16°c< td=""><td>$0^{\circ}\text{C}<\text{m}<+3^{\circ}\text{C}$</td></t<16°c<>	$0^{\circ}\text{C}<\text{m}<+3^{\circ}\text{C}$
Supra-méditerranéen	8°C <t<12°c< td=""><td>-32°C<m<0°c< td=""></m<0°c<></td></t<12°c<>	-32°C <m<0°c< td=""></m<0°c<>

Tableau 9: Etage de végétation et type de climat

Stations	Période	T (°C)	m (°C)	étage de végétation
Béni-Saf	1913-1938	18.1	9.1	Thermo-méditerranéen
	1991-2020	18.8	10.6	Thermo-méditerranéen
Ghazouat	1913-1938	17.9	7	Thermo-méditerranéen
	1991-2020	19	13.1	Thermo-méditerranéen
Zenata	1913-1938	15.9	5.7	Thermo-méditerranéen
	1991-2020	18.4	5.8	Thermo-méditerranéen
Sebdou	1913-1938	16.7	3.8	Thermo-méditerranéen
	1980-2011	23.7	3.9	Thermo-méditerranéen

A partir de la classification de Martinez, la végétation de la zone d'étude est de type thermoméditerranéen pour toutes les stations sans exception.

Indice de DEMARONNE:

Pour évaluer l'intensité de la sécheresse, l'indice de DEMARTONNE, calculé pour chaque station, il est exprimé par l'équation :

$$I = P/(T + 10)$$

P: pluviosité moyenne annuelle en (mm)

T : température moyenne annuelle en (°C)

DEMARTONNE a essayé de définir l'aridité du climat par un indice qui associe les précipitations moyennes annuelles aux températures moyennes annuelles. Le tableau regroupe les différents types de climats des stations selon leur indice de DEMARTONNE.

Tableau 10: indice d'aridité de DEMARTONNE

Stations	Périodes	T (°C)	P (mm)	I (mm/°C)	Type de climat
Béni-Saf	1913-1938	18.1	371	13.20	Semi-aride
	1991-2020	18.8	418.6	14.53	Semi-aride
Ghazaouet	1913-1938	17.9	433.9	15.55	Semi-aride
	1991-2020	19	349.2	12.04	Semi-aride
Zenata	1913-1938	15.9	474	18.30	Semi-aride
	1991-2020	18.4	370.2	13.03	Semi-aride
Sebdou	1913-1938	16.7	326	12.20	Semi-aride
	1980-2011	23.7	300.5	8.91	aride

On remarque que l'ensemble des stations sont enregistrées sous l'étage semi-aride à l'exception de station de Sebdou est aride pour la nouvelle période.

Diagrammes Ombro-thermiques de BAGNOULS et GAUSSEN:

Le diagramme Ombro-thermique de BAGNOULS et GAUSSEN (1953) permette de définir pour chaque station la durée de la période sèche, en mettant en regard précipitations et températures. La saison sèche est la suite successive des mois secs. En effet un mois sec est défini comme un mois où le total des précipitations P exprimé en millimètres est égal ou inférieur au double de la température moyenne T du mois exprimé en degrés centigrades :

$$P \leq 2T$$

On a établi les diagrammes Ombro-thermiques pour toutes les stations principales pour deux périodes (Figure 8). Les courbes de ces diagrammes montrent que toutes les stations sont caractérisées par une saison sèche qui s'étend sur 7 mois. Les graphes de la figure 8 permettent de distinguer une aire dont la surface est proportionnelle à l'ampleur de la sécheresse estivale.

L'évolution progressive de la période de sécheresse impose à la végétation une forte évapotranspiration ; ce qui lui permet de développer des systèmes d'adaptations (réduction de la surface foliaire, développement des épines...) modifiant ainsi le paysage en imposant une végétation xérophile (STAMBOULI- MEZIANE, 2004).

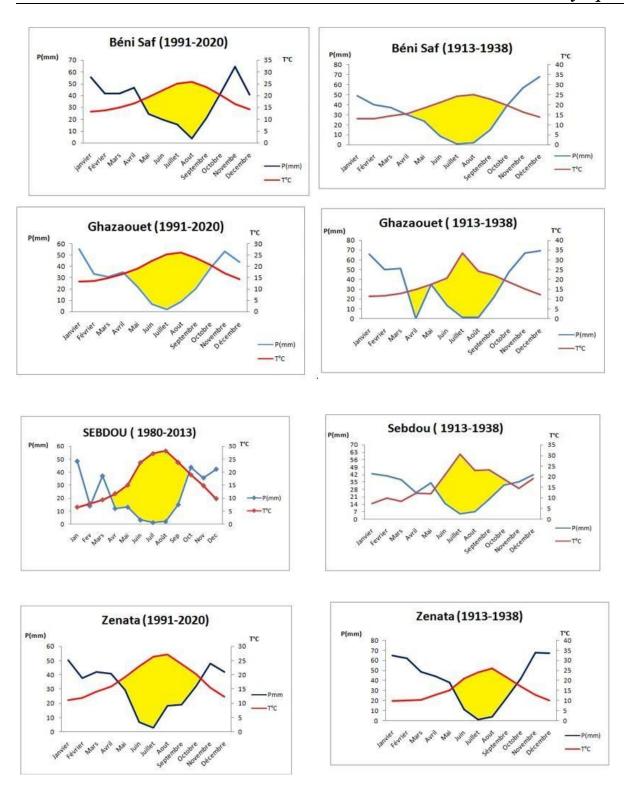


Figure 8: Diagrammes Ombro-thermiques des stations d'étude

Indice xérothermique D'EMBERGER (1942):

A la suite des travaux de GIACOBLE (1937), EMBERGER a été amené à caractériser l'intensité de la sécheresse estivale par l'indice

$$S = PE/M$$

PE : la somme des précipitations moyennes estivales

M : moyenne des températures maximales du mois le plus chaud

Un climat ne peut être réputé méditerranéen du point de vue phytogéographique si S<7 (EMBERGER, 1942).

Pour Auget (1975), le seuil est fixé à S<5 car entre 5 et 7, on inclut les zones étrangères à l'aire isoclimatique méditerranéenne.

Tableau 11: indice xérothermique D'EMBERGER

Station	PE (mm)	M (°C)	S = PE/M
Béni-Saf	12	25.9	0.46
Ghazaouat	15.5	26.2	0.59
Zenata	16	27.1	0.59
Sebdou	27	41.7	0.64

On remarque les valeurs de S varient entre 0.46 à Béni-Saf et 0.64 à Sebdou.il faut ajouter que ceci favorise le développement des espèces végétales très diversifiées généralement dominées par les espèces xérophiles telles que :

Juniperus oxycedrus Ampelodesma mauritanicum Thymus ciliatus

Quotient Pluvio-thermique D'EMBERGER:

Ce quotient est spécifique au climat méditerranéen et est plus fréquemment utilisé en Afrique de Nord. En effet, ce climat présente plusieurs variantes, et pour distinguer ces dernières, trois facteurs importants sont pris en considération par EMBERGER : la pluviométrie annuelle (P en mm), la moyenne des températures du mois le plus chaud (M en °C) et, la moyenne des températures du mois le plus frais (m en °C). Il est exprimé par la formule suivante :

$$Q2 = 2000P/M2 - m2$$

P : pluviosité moyenne annuelle

M: moyenne des maxima du mois le plus chaud M: moyenne des minima du mois le plus froid.

Tableau 12: Quotient Pluviométrique des stations d'étude

stations	P		M		m		Q2	
	AP	NP	AP	NP	AP	NP	AP	NP
Béni-Saf	371	358,5	29,3	30,3	9,1	8,4	62,8	55,9
Ghazaouet	466.79	349,2	29	34.3	7	13.1	72.91	74.21
Zenata	474	312,1	32	35,5	9,7	3,7	63,9	33,5
Sebdou	326	300,5	36,7	36,8	3,8	3,9	33,7	31,1

Dans la figure 9, on note que la station de Sebdou est dans l'étage bioclimatique semi-aride inférieur à hiver tempéré pour les deux périodes. La station de Ghazaouet est dans l'étage semi-humide inférieur à hiver tempéré pour l'ancienne période, et dans le même étage bioclimatique à hiver chaud pour la nouvelle période. La station de Zenata se situe dans l'étage semi-aride supérieur à hiver chaud pendant l'ancienne période, alors que pour la nouvelle période, la station se situe dans le semi-aride inférieur à hiver tempéré. Béni-saf, durant l'ancienne période est dans l'étage sub-humide inférieur à hiver chaud, et dans l'étage semi-aride supérieur à hiver chaud durant la nouvelle période.

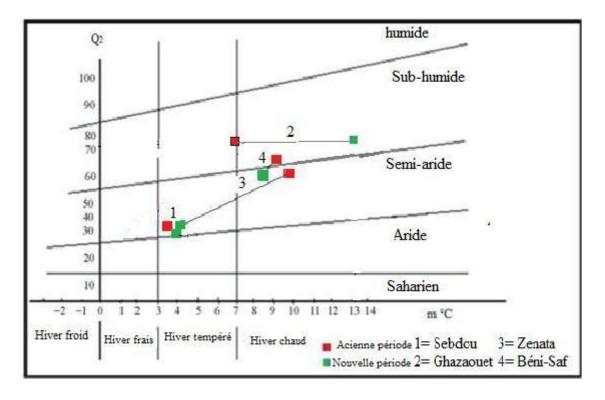


Figure 9: Climagramme Pluviothérmique des stations

CONCLUSION:

Cette étude a mis en évidence, au niveau du la région de Tlemcen un climat de type méditerranéen, pluvieuse en hiver et sec en été,

L'étude bioclimatique de la région d'étude nous permet d'avancer les remarques suivantes :

- > Une tendance vers l'aridité des stations et une semi-continentalité bien accentuée et amorcée.
- La classification des ambiances bioclimatiques en fonction de la température moyenne annuelle et de "m" montre que toutes les stations appartiennent à l'étage thermoméditerranéen pour les deux périodes étudiées.
- L'analyse des données thermiques et leur traitement montrent que le mois le plus froid est celui de «Janvier » avec des minima qui sont comprises entre 3,8 °C à13.1
- °C, alors que les moyennes maximales du mois le plus chaud varient entre 36,8 °C et
- 34.3 °C .Ces valeurs restent néanmoins plus élevées au niveau de la nouvelle période par apport à l'ancienne.
- La saison hivernale qui est courte et froide, elle s'étale de Novembre à Mars, et caractérisée par l'irrégularité de la pluviométrie et la saison estivale, longue et sèche, elle est caractérisée par une faible moyenne des précipitations et de fortes chaleurs et peut aller jusqu'à 8mois.
- Le régime saisonnier de la majorité des stations est de type HAPE.
- Une remarquable diminution des précipitations au niveau des quatre stations,

En comparant les deux périodes d'étude au niveau des quatre stations, et avec une nette diminution du quotient pluvio-thermique d'**Emberger** (Q₂), nous observons un décrochement vertical et horizontal des positions de chacune des stations, et qui se situent actuellement dans les emi-aride.

APERÇU PEDOLOGIQUE:

Introduction:

Un bon exemple pour étudier les interactions qui se déroulent dans la biosphère, se trouve sous nos pieds dans une fine couche appelées « sol » qui recouvre une grande partie de la surface de la Terre.

Selon Ramade (2002). La pédosphère ou bien le sol, représente la partie la plus superficielle de l'écorce terrestre, à l'interface entre géosphère, biosphère et atmosphère, car en effet il possède de constituants minéraux venant de l'altération de la roche mère, de constituants organiques, venus de la décomposition des êtres vivants et des constituants gazeux circulant dans ses interstices. Le sol est fondamental à la vie sur la Terre ; ou il contribue avec les plantes et le climat pour régler les cycles biogéochimiques.

Le sol est une ressource fondamentale pour notre survie. C'est une source de nourriture très importante, en raison des cultures qui y poussent, mais aussi parce que notre vie tourne autour de la disposition du territoire.

C'est un élément fondamental de l'équilibre des écosystèmes, il agit comme un filtre et un

tampon en retenant les substances, protège les eaux souterraines et les eaux de surface contre la pénétration d'agents nocifs et transforme les composés organiques e les décomposant ou e modifiant leur structure, réalisant la minéralisation.

Les sols sont l'une des principales réserves mondiales de la biodiversité, ils abritent plus de 25% de la diversité biologique de la planète. De même, plus de 40% des organismes vivants des écosystèmes terrestres sont associés aux sols au cour de leur cycle biologique.

Dans ce chapitre nous avons analysé les sols sous *Phillyrea* dans la région de Tlemcen afin de terminer d'identifier l'autoécologie de ce bel arbuste dans son habitat naturel.

I. Matériels et méthodes :

Pour chaque station étudiée, nous avons prélevé des échantillons de sol chaque 50 cm le long du profil, nous avons mis ces échantillons dans des sachets en plastiques étiquetés avec les noms et les numéros de chaque profil. Nous avons pu prélever 11 échantillons.

En Laboratoire, nous avons étalé nous échantillons et laisser sécher à l'air libre pendant 15 jours puis nous avons tamisé la terre par un tamis à mailles de 2 mm, pour séparer les éléments grossiers.

Nous avons subi à ces sols plusieurs analyses au niveau de laboratoire pédagogique de la pédologie de la faculté des sciences et de vie et de Terre et l'Univers de Abou-bkr BELKAID (Tlemcen).

Analyses physiques:

➤ La couleur :

Pour déterminer la couleur des sols, on utilise le code international de Munsel, l'échantillon doit être sec, sur un papier blanc et sous une bonne clarté pour distinguer les couleurs facilement.

> La granulométrie :

L'analyse granulométrique a pour principal objectif la détermination du type de texture. Cette analyse vise à calculer le pourcentage des différents fractions minérales du sol savoir les pourcentages de sable, de limon et d'argile. Pour cela il existe plusieurs méthodes, mais notre choix s'est porté sur la granulométrie par pipette Robinson, dont le principe est la biais dune attaque l'eau oxygénée à 20 Volumes. La méthode est basée sur la différence de vitesse de sédimentation entre les particules élémentaires minérales (Argile, Limon fin, Limon grossier et Sable).

> La perméabilité :

Mettre dans un cylindre au-dessus d'un récipient et un tamis à moins de 2 mm du sol avec une hauteur connue, puis ajouter une quantité d'eau bien précise, et d'une hauteur déterminé, laisser une heure puis mesurer la quantité d'eau drainée par le sol. Pour les calculs nous avons appliqué la formule suivante :

$$K=C\times V/H\times S$$

C=hauteur en cm de la colonne de terre.

V=volume en ml de l'eau recueillie pendant l'heure.

H=hauteur en cm de la charge d'eau.

S=section inférieure du tube en cm².

> La capacité de rétention en eau :

C'est la quantité d'eau maximale que peut absorber un sol avant qu'il ne perde sa cohésion; elle peut être exprimée en ml par 100g de terre (Aubert, 1978 in Limane, 2009). On l'appelle également la capacité de rétention au champ.

On dépose notre échantillon de sol dans un cylindre au-dessus d'un récipient et d'un tamis de moins de 2 mm de diamètre, puis on ajoute de l'eau jusqu'à saturation, on laisse le dispositif pendant 48h puis, on mesure la quantité d'eau qui se trouve à l'intérieur du récipient.

> L'humidité hygroscopique :

C'est la quantité d'eau en (%) retenue par la terre séchée à l'aire libre.

Analyses chimiques:

➤ Le pH du sol :

Le pH représente l'une des propriétés chimiques les plus importante pour un sol (FOX, 2008 in Faraoun, 2013). Le pH est mesuré par la méthode électrométrique, à l'aide d'un pH mètre à partir d'une solution de terre fine et d'eau distillée à un ration de 1/2.5.

La conductivité électrique (CE) :

La conductivité électrique exprimée en milli Siemens par centimètre (ms/cm) est déterminée à

57

l'aide d'un conductimètre de type HANNA Dist.WP4, sur un extrait aqueux au 1/5.

> Le calcaire total :

Le dosage du CaCO₃total est mesuré à l'aide du calcimètre de **BERNARD**, en décomposant les carbonates de calcium par l'acide chlorhydrique, et en mesurant le volume de CO₂ dégagé.

> Le calcaire actif :

Pour le calcaire actif, on utilise la méthode Drouineau-Galet (1951) : on agite la terre avec une petite quantité d'oxalate d'ammonium, on filtre, puis on titre au permanganate de potassium, cette solution avant et après son contact avec la terre. La différence entre les deux titrages correspond à la quantité de carbonate de calcium ayant réagi avec l'oxalate d'ammonium.

➤ Le carbone organique :

La méthode utilisée est celle d'Anne (1945) ; elle correspond à l'oxydation du carbone de la matière organique par le bichromate de potassium en présence d'acide sulfurique, puis la quantité du bichromate nécessaire de cette réaction doit être connue pour calculer le pourcentage de carbone organique.

Résultats:

La couleur :

La première observation des échantillons de terres prélevées concerne la couleur. Nous avons remarqué que notre sol variait du marron foncé au brun rougeâtre. Le tableau ci dessous présente les différents codes couleur des échantillons de sol:

Tableau 13 : le code de Munsell pour chaque échantillon du sol.

Profile	Béni	Béni	Honaine1	Honaine2	Zarifet1	Zarifet2	Terni1	Terni	Terni	Sebdou	Sebdou
	Saf 1	Saf 2						a2	b2	1	2
Code	5YR	25	10 YR	10 YR	75	75	75	10 R	10 R	10	5 YR
	3/3	Y	4/4	3/6	YR	YR	YR	4/8	2/2	YR	4/4
		5/6			25/2	25/3	3/4			3/6	

> La granulométrie :

Les résultats d'analyse granulométrique obtenus pour tous les profils étudiés sont illustrés par le tableau suivant :

Le tableau 14 : les propriétés granulométriques pour chaque profil.

symbole	station	Sable	Limon	Argile	Texture
•	Béni Saf 1	50	45	5	Limono-sableuse
•	Béni Saf 2	52	41	7	Limono-sableuse
•	Honaine 1	61.5	38.5	15	Limono-sableuse
	Honaine 2	65	10	25	Limono-argilo-sableuse
•	Zarifet 1	42	27	30	Limono-argileuse
	Zarifet 2	46	25	28	Limono-argilo-sableuse
•	Terni 1	40	20	5	Limono- fin
•	Terni a2	55	40	5	Limono-sableuse
	Terni a3	57	35	8	Limono-sableuse
•	Sebdou 1	83	12	5	Sablo-limoneuse
•	Sebdou 2	85	10	5	Sablo-limoneuse

59

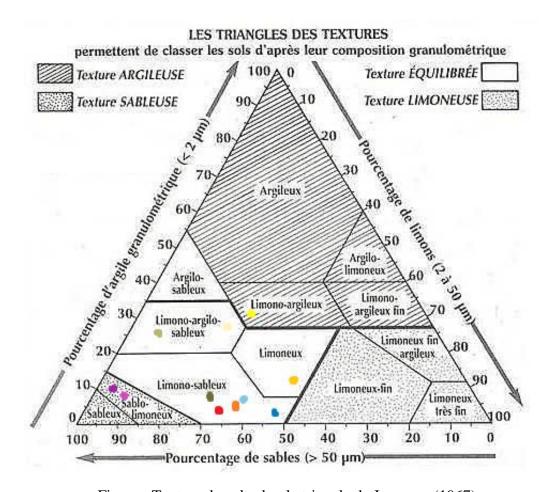


Figure : Texture du sol selon le triangle de Jamagne (1967).

> La perméabilité :

La perméabilité des sols est évaluée selon leurs vitesses d'infiltrations. Les échantillons des stations de Zarifet et Terni ont une vitesse d'infiltration très lente, tandis que les échantillons de Beni saf, Honaine et Sidi yahia ont une vitesse d'infiltration assez lente.

La vitesse la plus importante est enregistrée pour les sols de la station Honaine 1 avec (3.340), la vitesse d'infiltration la moins importante est notée pour les sols de la station de Zarifet 2 avec uniquement (0.147).

Tableau 15 : la vitesse de perméabilité des sols étudiés

Profile	Béni	Béni	Honaine	Honaine 2	Zarifet	Zarifet	Terni1	Terni	Terni b2	Sebdou	Sebdou
	Saf 1	Saf 2	1		1	2		a2		1	2
CC	1.2	1.88	3.340	1.02	0.56	0.14	0.56	0.95	0.484	1.588	0.688
	18	0			7	7	7	8			

La capacité de rétention en eau :

La valeur la plus basse de la capacité de rétention en eau est celle des sols de la station de Sebdou avec seulement (3.6%), les valeurs les plus élevées ont concernes les sols de la station de Terni 1, avec un taux de (28.67%).

Tableau 16 : la capacité de rétention en eau des sols sous *Phillyrea*.

Profile Béni Béni	Honaine1	Honaine2	Zarifet1	Zarifet2	Terni1	Terni	Terni	Sebdou	Sebdou
Saf 1 Saf 2						a2	b2	1	2
% 11.43 8.71	7.67	8.34	26.67	11.471	28.67	7	10	3.6	3.6

L'humidité hygroscopique :

Nos échantillons présentent un faible taux d'humidité hygroscopique. La valeur la plus faible est de 0.547 %, elle a été enregistrée au niveau des sols de la station de Sebdou2 a. Par contre le taux le plus élevée est estimé à 3.968 %, il concerne les sols de la station de Honaine 1.

Tableau 17 : l'humidité hygroscopique des sols sous *Phillyrea*

Profile	Béni Saf 1	Béni Saf 2	Honaine1	Honaine2	Zarifet1	Zarifet2	Terni1	Terni a2	Terni b2	Sebdou 1	Sebdou 2
НН	0.725	0.260	3.9817	2.155	2.030	2.003	1.4	0.79	2.415	2.230	0.547

➤ Le pH:

Le pH des 11 échantillons de sol est compris entre 7.23 et 7.58, ils sont tous classé comme étant neutres. Le pH le plus bas a été estimé à 7.23, il a été enregistré au niveau de Zarifet 2. La valeur de pH la plus élevée est de 7.58, elle a été enregistrée au niveau de Beni Saf. Selon la classification de (Gagnard et al, 1988 in Kandouli et Khaither, 2013)

Tableau 18: l'acidité des sols étudiés.

Profile	Béni	Béni	Honaine1	Honaine2	Zarifet1	Zarifet2	Terni1	Terni	Terni	Sebdou	Sebdou
	Saf 1	Saf 2						a2	b2	1	2
pН	7,51	7,58	7,40	7,27	7,23	7,35	7,46	7,35	7,35	7,32	7,50

La conductivité électrique CE:

La conductivité électrique permet d'estimer la teneur globale en sels dissous. La CE la la plus élevée a été enregistrée à Honain 1 avec (109.5), tandis que les valeurs les plus basses ont été

enregistrées au niveau de Zarifet 1 avec seulement (31)

Les sols des stations de Honain et de Sebdou sont de nature salée contrairement aux sols des zones montagnards Zarifet et Terni.

Tableau 19 : la conductivité des sols étudiés

Profile	Béni	Béni	Honaine1	Honaine2	Zarifet1	Zarifet2	Terni1	Terni	Terni	Sebdou	Sebdou
	Saf 1	Saf 2						a2	b2	1	2
	73,6	75,9	109,5	94	31	38,2	47,1	47,6	63,1	84,9	78,2

> Le calcaire total :

Selon les résultats, obtenus, les sols des 11 échantillons sont moyennement calcaire. La valeur la plus importante (2.1) est enregistrée pour le site 2 la station de Honaine et pour le site 1 de la station de Sebdou, la valeur de calcaire total la moins importante est notée pour la station de Zarifet avec 0.42 pour le site 1 et 0.48 pour le site 2.

Tableau 20 : le calcaire total des échantillons étudiés

Profile	Béni Saf 1	Béni Saf 2	Honaine1	Honaine2	Zarifet1	Zarifet2	Terni1	Terni a2	Terni b2	Sebdou 1	Sebdou 2
	1,5	2	0,72	2,1	0,42	0,48	1,38	1,2	1,32	2.1	1,62

> Le calcaire actif :

Vu que l'ensemble des échantillons de sol présentent des valeurs de calcaire total inférieures à 5%, il est inutile de procéder à l'analyse du calcaire actif.

Discussions:

Selon les analyses granulométriques (tableau 2), la moitié des échantillons présentent une texture « Limono-sableuse ».

Du point de vue textural, près de 81% des échantillons ont une fraction limoneuse et les presque 19% restants sont à texture sablo-limoneuse.

L'eau joue un rôle considérable; elle est d'abord un facteur fondamental de la genèse du sol et de son évolution, elle est également considérée comme le vecteur des éléments nutritifs et le produit indispensable à la vie des plantes.

Selon nos résultats, nous pouvons dire que nos sols retiennent assez bien l'eau avec une vitesse d'infiltration assez rapide pour les deux premiers horizons et moyenne pour les deux derniers.

La capacité de rétention en eau est la quantité d'eau capable d'être conservée par un sol en place (Gaucher, 1968). Duchauffour (1965) a précisé que la capacité au champ est une

valeur approchée par excès de la capacité de rétention. Selon nos résultats, nous pouvons dire que nos sols retiennent assez bien l'eau avec une vitesse d'infiltration qui varie entre lente et assez lente.

Le pH des échantillons est neutre. Selon, **Boularas et Bouklikha** (2001), les sols neutres montrent une forme d'équilibre entre l'acidité issue de la dégradation bactérienne et le taux du calcaire total présent dans le sol. nos échantillons sont faiblement pourvus en calcaire.

La conductivité électrique permet d'obtenir une estimation de la teneur globale en sels dissous (**Aubert**, **1978**), qui sont, en général, les chlorures, les sulfates, les carbonates, les bicarbonates et parfois les nitrates. Les sols de nos échantillons sont variables. Les sols de nos échantillons sont variables.

Conclusion:

Ce chapitre est consacré à la caractérisation édaphique du peuplement du *Philyrea* dans la région de Tlemcen.

L'étude du terrain a révélé l'identification du plusieurs types de sols dont la couleur, les propriétés physico-chimiques, la profondeur et la charge en éléments grossier sont variables d'un sol à l'autre.

L'étude des propriétés physiques révèle que la vitesse d'infiltration est très voisine pour tous les sols, elle varie de « assez rapide » à « moyenne ». Elle est en relation avec le type de texture qui est limono-sableuse ainsi que la faible charge en éléments grossiers.

L'étude des propriétés chimiques des échantillons prélevés montrent une faible teneur en calcaire, un pH neutre et une teneur en matière organique qui varie du pauvre au moyen.

CHAPITRE 3 : DIVERSITE FLORISTIQUE

CHAPITRE 3: DIVERSITE FLORISTIQUE

DIVERSITE FLORISTIQUE

Introduction:

Le mot « écologie » « *Okologie* » a été utilisé pour la première fois en 1869 par le biologiste allemand Ernst Haeckel, se référant à la relation des animaux avec les composants organiques et inorganiques de l'environnement. Cependant cette science n'est devenue autonome qu'au début du XX e siècle. Il y a seulement cinquante ans, ce mot était utilisé dans les articles scientifiques et même dans les quotidiens. Le mot écologie tire sa signification du mot grec *oikos*, qui signifie maison, et la vérité est que son sens littéraire est d'étudier les êtres vivants où ils se trouvent. L'écologie est souvent définie comme l'étude de l'interrelation entre les organismes vivants entre eux d'une part et entre l'environnement dans lequel ils vivent d'autre part.

La biodiversité qui est un terme composé de « diversité et biologie » comprend trois niveaux de variabilité biologique : complexité de l'écosystème, richesse en espèces et variation générique. (ROBERTO et *al*, 2000).

La biodiversité végétale méditerranéenne est produite pour beaucoup, d'une utilisation traditionnelle et harmonieuse du milieu par l'homme (QUEZEL *et al*, 1999).

Mesurer la biodiversité, telle qu'elle a été définie à l'origine par WILSSON (1988), signifie compter l'ensemble des espèces présentes dans un lieu précis.

Afin de compléter les informations sur le milieu naturel du genre de *Phillyrea* dans la région de Tlemcen. Nous avons réalisé un inventaire floristique selon la méthode de BRAUN BLANQUET (1951) ,les espèces végétales inventoriées sont classées par type morphologique, biologique et biogéographique ainsi que de rareté et d'habitat selon la nouvelle flore de QUEZEL et SANTA (1962-1963) dans la première partie de ce chapitre ; tandis que la deuxième section est consacrée pour la mesure de la biodiversité végétale de la région étudiée.

La composition floristique:

Les relevés effectués sur les cinq stations retenues ont permis d'établir une liste de plus de 300 taxons répartis en 53 familles et 195 genres, ils appartiennent aux deux sous-embranchements Gymnospermes et Angiospermes et deux classes (Monocots et Eudicots).

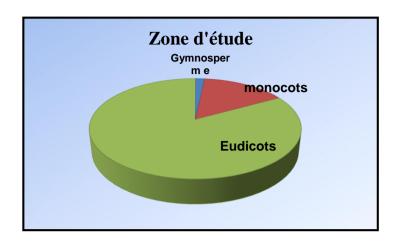


Figure 10: Pourcentage des classes et sous-embranchements de la zone d'étude

Richesse floristique par gradient écologique :

Partie littorale:

La section littorale est présentée par les deux stations Béni-Saf et Honaine, elle comprend 181 espèces, 141 genres et 52 familles. Nous avons signalé **les trois espèces de** *Phillyrea* ; *Ph. angustifolia*, *Ph. latifolia* et *Ph. media*.

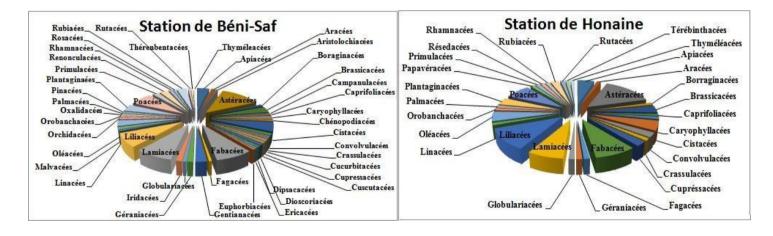


Figure 11: Pourcentage des Familles dans la partie littorale de la région d'étude

La partie littorale de la zone d'étude montre la dominance des Astéracées avec 13% à 15% suivi des Liliacées 8% à 11%; Lamiacées 8%; Fabacées 8% et enfin les Poacées avec 7%.

Le reste des Familles présentent un faible pourcentage et sont généralement mono-générique et parfois même mono- spécifique pour les deux stations de la partie du littorale.

Partie des Monts de Tlemcen:

La complexité des montagnes est étroitement associée à une biodiversité élevée (PERIGO et al; 2019). Plusieurs auteurs sont attirés par les biotopes montagnards nous citons en particulier

OZENDA (1975).

La richesse floristique se concentre dans la partie des monts de Tlemcen pour les deux stations de Zarifet et Terni avec 212 espèces, 150 genres et 46 familles.

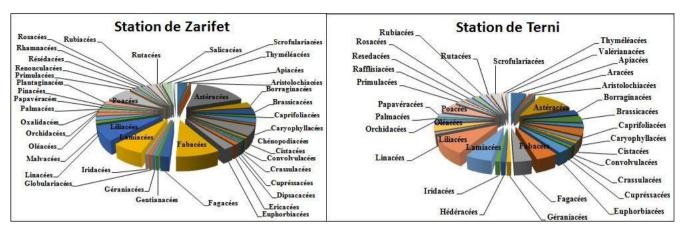


Figure 12: Pourcentage des familles de la partie des monts de Tlemcen

Concernant, la partie des monts de Tlemcen, elle est marquée par la dominance toujours des Astéracées avec 16%; suivi des Fabacées 7% et les Liliacées 8%; Lamiacées 7% et enfin les Poacées 7% pour la station de Zarifet.

La station de Terni présente 16% des Astéracées; suivi des Liliacées 10%; Fabacées 5%; les Lamiacées 6% et enfin les Poacées 6% les autres familles présentent un très faible pourcentage des espèces pour les deux stations de la partie des monts de Tlemcen.

Partie steppique:

Pour la steppe, la région de Sebdou abrite quelques phanérophytes et Chamaephyte tels que : *Juniperus oxycedrus Phillyrea angustifolia* et *Phillyrea latifolia*.

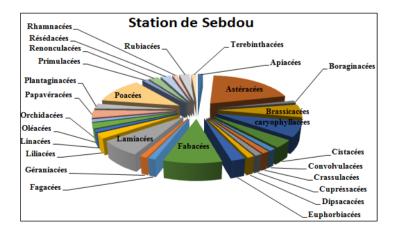


Figure 13: Pourcentage des Familles de la partie Steppique

La station de Sebdou qui présente la partie steppique est dominé par la famille des Astéracées

avec 20%; suivi des Poacées 12%; Fabacées 9%; les Lamiacées 7%; Caryophyllacées 7% et enfin les Brassicacées avec 6% les autres familles présentent un très faible pourcentage des espèces pour la station de la partie steppique.

Caractéristiques biologiques :

Le type biologique se caractérise par l'adaptation des plantes à certaines conditions écologiques et constitue un attribut physionomique important qui a été largement utilisé dans les études de la végétation. HUMBOLDT (1886) a formulé pour la première fois le concept des types biologiques pour lesquelles il a considéré l'emplacement des bourgeons ou des organes pérennes. RAUNKIAER (1934) l'a utilisé comme outil descriptif pour classer les formes de vie végétale en fonction de la position et du degré de protection des bourgeons en renouvellement, qui sont responsables de la régénération de la partie aérienne de la plante lorsque la saison favorable arrive.

Partie littorale:

La partie littorale présente une hétérogénéité de point de vue type biologique.

La station de Béni- Saf est caractérisée par la dominance des Thérophytes avec 46% et un faible pourcentage des Phanérophytes avec 6%. Elle suit le schéma suivant : TH>CH>HE>GE>PH.

La station de Honaine montre un faible pourcentage des Géophytes avec 10% et un pourcentage très élevé des Thérophytes 45%.

La partie littorale est marqué par une thérophytisation très élevé dû probablement à l'action anthropozoogène dans ces stations liée principalement à l'exploitation du sable pour la construction ; surpâturage ; l'installation des usines de la cimenterie (cas de la station de Béni-Saf).

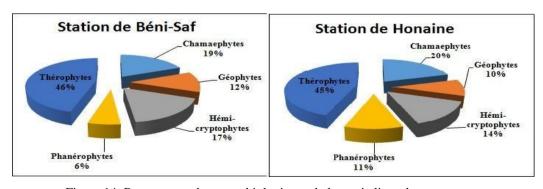


Figure 14: Pourcentage des types biologiques de la partie littorale

Partie des monts de Tlemcen:

Les deux stations qui forment la partie des monts de Tlemcen montre la dominance des Thérophytes avec un pourcentage entre 48% et 38% pour la station de Terni.

Les Phanérophytes présentent un pourcentage de 8% et sont marqué par la présence des Quercus coccifera, Quercus suber, Quercus ilex, Olea europaea, Phylleria angustifolia, Phylleria latifolia et Phylleria media.

La partie des monts de Tlemcen présente les schémas suivant : TH>CH>HE>GE>PH pour la station de Terni.

TH>CH>HE>PH>GE pour la station de Zarifet.

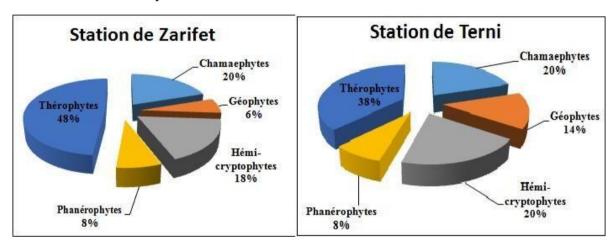


Figure 15: Pourcentage des types biologiques de la partie des monts de Tlemcen

Partie Steppique

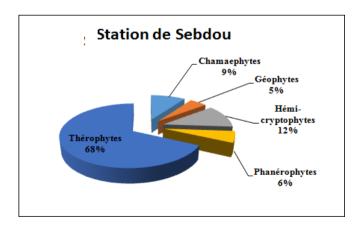


Figure 16: Pourcentage des types biologiques de la partie Steppique

Contrairement aux autres parties littorale et monts de Tlemcen, la partie steppique qui regroupe la station de Sebdou présente un pourcentage très élevé des Thérophytes de 68%;

les autres types biologiques présentent un faible pourcentage qui varie entre 6% pour les Phanérophytes et 12% pour les Hémi-cryptophytes.

La partie steppique montre une thérophytisation très élevé par-apport aux autres parties étudiées.

Pour l'ensemble des stations, les Thérophytes présentent le taux plus élevé. Le schéma est de type : TH>HE>CH>PH>GE.

Types morphologiques:

Le développement de la tige et la ramification déterminent le port où l'aspect de la plante, reconnaissable par la forme qu'elle présente. Une première distinction est faite entre plante ligneuse et plante herbacée. La plante ligneuse a une tige lignifiée et souvent des rameaux constitués de bois solide et dur, tandis que la plante herbacée ne possède pas de bois (TROUPIN, 1971 in MUGUNDA, 1987).

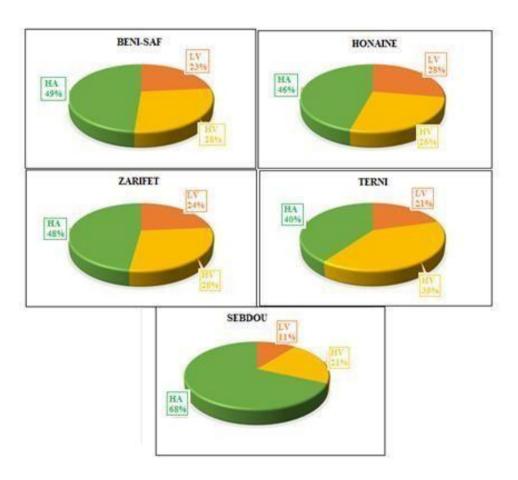


Figure 17: types morphologiques des stations d'étude

Dans les cinq stations étudiées ; nous avons remarqué la dominance toujours des herbacées

annuelles qui correspondent aux espèces Thérophytes aux détriments des herbacées vivaces et des ligneux vivaces.

Indice de perturbation :

Pour déterminer l'état de dégradation des groupements végétaux dans la zone d'étude ; nous avons calculé l'indice de perturbation, il permet de quantifier la thérophytisation d'un milieu (LOISEL et *al*.1993) ; la formule est la suivante :

IP= (nombre des Chamaephytes + nombre des Thérophytes)/ nombre total des espèces.

Le Tableau 23 regroupe les résultats des calculs de l'indice de perturbation pour les cinq stations ainsi pour la zone d'étude.

Tableau 22: indice de perturbation de la zone d'étude

Station	СН	TH	Total	IP
Béni-Saf	34	79	162	69,7530864
Honaine	16	38	83	65,060241
Zarifet	39	77	161	72,0496894
Terni	12	41	102	51,9607843
Sebdou	6	58	85	75,2941176
Zone d'étude	55	152	301	68,7707641

D'après nos résultats, le taux le plus élevé est enregistré dans la station de Sebdou avec 75.29% suivi de la station de Zarifet avec 72.04%.

Dans la station de Terni qui est une partie des monts de Tlemcen, elle présente le taux le plus faible avec 51.96%.

Pour toute la zone d'étude ; l'indice de perturbation est de l'ordre 68.77% ; ceci montre nettement la forte dégradation. Cette perturbation est d'origine anthropozoïque, elle résulte une succession régressive du couvert végétal de la matorralisation jusqu'à la désertification passant par la steppisation (BARBERO et *al* ; 1990).

Types biogéographiques:

Selon RAMADE (2002) la biogéographie est une discipline faisant partie intégrante de l'écologie dont l'objet est l'étude de la répartition des êtres vivants dans les divers écosystèmes continentaux et océaniques. La biogéographie peut se subdiviser en deux sous-disciplines : la géonémie, dont l'objet est de décrire la répartition des êtres vivants, et la chorologie qui a pour but d'expliquer les causes de la distribution des êtres vivants dans les

diverses régions de la biosphère actuelle. L'étude des espèces vivantes, des peuplements et des biocénoses montre que chacune de ces unités taxonomiques ou écologiques possède une distribution géographique d'étendue variable selon son rang mais bien définie car associée à des biotopes précis.

La phytogéographique de la flore algérienne appartient à l'empire holarctique, à la région méditerranéenne et à la région saharienne (MAIRE, 1926).

La flore de notre étude est très hétérogène de point de vue type biogéographique (Figure 18).

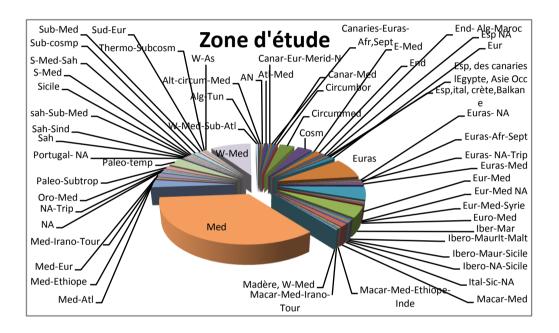


Figure 18: Types biogéographiques de la zone d'étude

La zone d'étude montre la dominance des espèces de type Méditerranéen suivi d'ouest Méditerranéen et Eurasiatique en troisième position.

• Eléments méditerranéen :

L'élément le plus important avec 160 espèces (53.51%). Ces éléments regroupent les autochtones avec 104 espèces suivi des ouest-méditerranéens, des ibéro-mauritaniens, et les circumméditerranéens subméditerranéens,

• Eléments endémique :

Ces ensembles formés de 11 espèces (3.67%) dont 3 sont endémiques nord-africains, 5 endémiques algériennes strictes, 2 endémiques larges Algéro-marocaines et une seule espèce endémique large Algéro-tunisienne.

• Eléments Nordique :

Ce groupe renferme un nombre appréciable 41 (13.71%), les éléments Eurasiatiques en

première position avec 24, viennent ensuite les Paléos tempérés avec 8 espèces, les Paléos subtropicaux avec 4 espèces et les Européens 3 espèces, les Circum-boréaux et les sud Européens avec seulement une espèce.

Partie Littorale:

Selon la figure (19), cette partie qui regroupe deux stations du littorale est marqué par la dominance de l'élément méditerranéen avec 88 espèces suivi de l'élément ouest méditerranéen et Eurasique en troisième position avec 22 espèces.

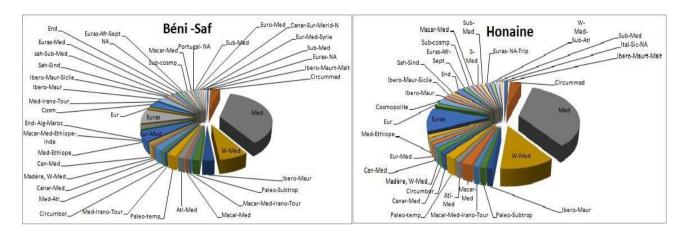


Figure 19: Types biogéographiques de la partie littorale

Partie des monts de Tlemcen :

Selon la figure (20), nous remarquons la dominance toujours de l'élément méditerranéen pour chaque station des monts de Tlemcen. Ceci confirme bien l'appartenance du territoire étudié à l la flore méditerranéenne (QUEZEL, 1979).

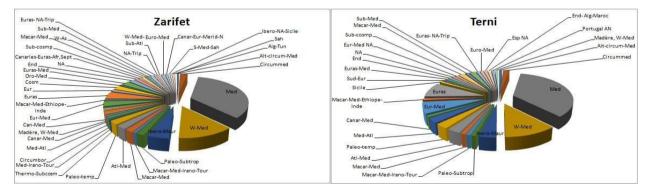


Figure 20: Types biogéographiques de la partie des monts de Tlemcen.

Les Ibero-mauritanien occupent la troisième place pour la station de Zarifet; ceci a été confirmé par certains auteurs (BENABADJI et *al.* 2007) que leur présence est marquée dans des régions où les températures sont basses. Selon Maire (1928), les espèces nordiques ont été introduit dans le l'Afrique du nord pendant des périodes humides plus anciennes que le quaternaire, par de voies de diffusions, une voie ibériques (pont amalour-rifain) et une voie

italienne (pont sicilio-tunisien)

Malgré le peu d'espèces endémiques, elles sont présentes dans toutes les stations.

Partie Steppique:

Qui regroupe la station de Sebdou (Figure 21), dominé toujours par l'élément méditerranéen avec 27 espèces suivi des Eurasiatiques avec 09 espèces et en troisième position ouest méditerranéen avec 06 espèces.

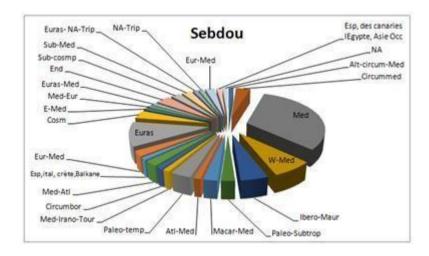


Figure 21: Types biogéographiques de la partie Steppique

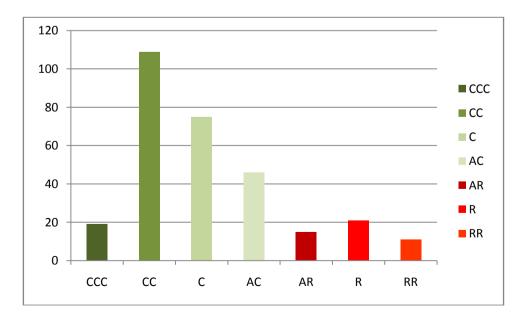
L'élément endémique strict est représenté avec seulement 03 espèces et absence totale d'endémique large dans la partie steppique et plus précisément dans la station de Sebdou.

Rareté:

Selon GASTON (1997) ; la rareté n'est que l'état actuel d'un organisme existant qui, par toute combinaison de facteurs biologiques et physiques, est limité en nombre ou en superficie à un niveau qui est apparemment moins que la majorité des autres organismes de entités taxonomiques.

Il existe deux formes de rareté chez les espèces vivantes. La première est celle de taxa qui peuvent se rencontrer en un assez grand nombre d'habitats géographiquement éloignes mais qui présentent toujours une très faible densité de population. A l'oppose, il existe des taxa très *sténooeciques*, dont les niches écologiques sont elles-mêmes peu fréquentes. Ces espèces peuvent avoir dans leur habitat une forte densité mais ne se rencontrent qu'en un très faible nombre de biotopes. Elles peuvent être de ce fait particulièrement vulnérables à cause du petit nombre de zones où elles se rencontrent ; un seul dans les cas les plus critiques ; de orte qu'un accident écologique ; climatique ou autre ; peut mettre en danger l'espèce considérée voire la

conduire aux franges de l'extinction (RAMADE, 2002).


Le nombre important d'espèces rares et le manque de connaissances sur ces espèces conduit souvent à les considérer comme menacées. Cependant, une espèce rare n'est pas forcément menacé (LAVERGNE et *al.* 2006 ; in CHIHAB, 2019).

Ajoute TRIPLET (2017) ; la rareté d'une espèce a plusieurs formes et causes et, pour cette raison, il est difficile de l'isoler et de l'identifier. Plusieurs raisons font qu'une espèce puisse être estimée comme étant rare, y compris :

- un faible nombre d'individus à l'étendue du paysage;
- des besoins très spécifiques en matière d'habitat;
- de faibles populations d'individus résultant de la prédation ou de la maladie;
- l'immobilité d'une espèce qui ne peut se déplacer dans d'autres zones;
- une zone qui ne peut supporter que peu d'individus de l'espèce en question.

1818 taxa rare dans la flore algérienne dont 1185 espèces, 455 sous-espèces et 178 variétés (VELA et BOUHOUHOU, 2007).

Les résultats de notre étude montrent qu'environ 16.44% d'espèces présentent des degrés différents de rareté et les restes sont communes à des degrés différents. 11 espèces très rares (RR) Orchis mascula , 21 espèces rares (R) Orchis morio et 15 espèces assez rares (AR) Pinus maritima (Figure 22).

CHAPITRE 3 : Diversité floristique

Figure 22: degré de rareté de la zone d'étude

Mesure de la biodiversité :

La deuxième partie de ce chapitre est consacrée pour mesurer la biodiversité du cortège

floristique qui accompagne le genre *Phillyrea* dans la région de Tlemcen.

Plusieurs indices de mesure de diversité ont été mesurés : l'indice de Shannon (H),

représentant la diversité spécifique du milieu (SHANNON et WEAVER, 1964), et

l'Equitabilité (E), qui traduit la qualité d'organisation d'une communauté (PIELOU, 1966).

Indice de Shannon (H):

L'indice de SHANNON et WEAVER (1949) est l'indice de diversité le plus couramment

utilisé. C'est celui qui a été entamé pour étudier les données récoltées pour l'évaluation de la

diversité spécifique (SHANNON, 1964).

Il est défini par l'équation suivante :

 $H' = -pi \times log2pi$

H': diversité spécifique.

N : somme des effectifs des espèces

ni : Effectif de la population de l'espèce i

La valeur H' égale zéro si l'ensemble contient une seule espèce, et sont égale à Log2(S) si

toutes les espèces contiennent le même nombre d'individus, savant que les deux valeurs sont

les limites d'un intervalle dans laquelle H' est variable, (BARBAULT, 1995).

Indice de l'Equitabilité (E) :

Appelé, aussi l'indice de régularité de PIELOU (1966), il traduit la qualité d'organisation

d'une communauté : il varie entre 0 lorsqu'une seule espèce domine et 1 quand toutes les

espèces ont la même abondance et sont bien représentées. L'évaluation de l'Equitabilité est

utile pour détecter les changements dans la structure d'une communauté et a quelquefois

prouvé son efficacité pour détecter les changements d'origine anthropique.

La mesure de l'Equitabilité correspondant à l'indice de SHANNON-WEAVER est réalisée

selon la formule suivante :

76

$$\frac{H'}{Hmax}$$
 Avec H max = log2(S)

H max : La valeur maximale que peut atteindre l'indice de Shannon pour un nombre d'espèces donnés.

S : Est le nombre d'espèces formant le peuplement.

Elle varie entre 0 et 1, tend vers 0 quand la quasi-totalité des effectifs est concentrée sur une espèce ; elle est de 1 lorsque toutes les espèces ont la même abondance.

Indice de réciprocité de Simpson

Cet indice permet la mesure du nombre effectif d'individus très abondants. La formule est la suivante :

$$I_{S} = 1 / \sum Pi^{2}$$

La valeur de cet indice commence par 1 comme chiffre le plus bas possible (communauté contenant une seule espèce), une valeur plus élevée indique une plus grande diversi

té. La valeur maximale est le nombre d'espèces dans l'échantillon.

Indice de MARGALEF:

Cet indice présente l'avantage d'être simple à calculer. Toutefois, il peut s'avérer malgré tout sensible à l'effort d'échantillonnage (MAGURRAN, 2004).

L'indice de Margalef tient compte du nombre total d'espèces et de l'effectif total des individus présents dans un écosystème.

$$Dmg = (S - 1)/In(n)$$

D= 0 quand tous les individus appartiennent à la même espèce.

D est maximum quand chaque individu appartient à une espèce différente (S=N).

Tableau 23: les indices de biodiversité de la zone d'étude

Stations	Béni- Saf	Honaine	Zarifet	Terni	Sebdou	Zone d'étude
Richesse Spécifique	47	32	43	37	28	52
Individuals	162	83	161	102	85	300
Simpson_1-D	0.9485	0.9357	0.9381	0.9508	0.9218	0.9477
Shannon_H	3.352	3.068	3.22	3.304	2.914	3.376
Margalef	9.042	7.015	8.265	7.784	6.077	8.941
Equitability_J	0.8706	0.8853	0.8561	0.915	0.8746	0.8543

Richesse floristique:

La composition floristique de la zone d'étude varie toujours d'une station à l'autre et d'un écosystème à l'autre. Selon la classification de (DAJOZ, 1982), les cinq stations sont qualifiées comme flore particulièrement riche.

La richesse floristique montre que la station de Béni-Saf est la plus diversifiée en espèces (162), genres (128) et familles (47) ; vient ensuite ; La station de Zarifet est en deuxième position avec 162 espèces, 123 genres et 43 familles et enfin la station de Honaine avec une faible diversité en espèces 83, 73 genres et 32 familles.

La station de Terni est un exemple d'une forêt méditerranéenne de l'étage subalpin, elle est dominée par *Quercus faginea*, *Quercus ilex*, *Juniperus oxycedrus*. Cet endroit regroupe plus de 102 espèces, 87 genres et 37 familles.

La station de Sebdou a une formation végétale clairsemée, dominée par des plantes éphémères. Elle comprend 85 espèces 74 genres et 28 familles.

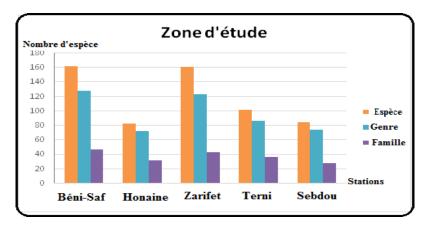


Figure 23: Richesse floristique de la zone d'étude

L'abondance relative de la totalité des espèces est relativement élevée (H = 3.35). à Béni- Saf en première place vient ensuite la station de Terni avec H = 3.30, la station de Zarifet avec H = 3.22, et H = 2.91 pour la station de Sebdou. Il est de même en ce qui concerne l'Equitabilité, varie de 0.91 pour la station de Terni à 0.85 à Zarifet.

La valeur la plus élevé pour l'indice de MARGALEF est de 9.04 pour la station de Béni-Saf, cette valeur diminue pour atteindre 6.077 pour la station de Sebdou passant par les valeurs 8.26; 7.78; 7.01 pour les trois autres stations

Conclusion

La région de Tlemcen montre une biodiversité végétale importante influencée par de nombreuses contraintes écologiques (topographie, action anthropique, climat...etc.). Notre objectif est d'analyser la phyto-diversité qui accompagne le genre de *Phillyrea* dans cinq stations de la région de Tlemcen.

Du point de vue floristique l'étude de la végétation dans les différentes stations a montré une composition assez variée, elle est dominée surtout par des espèces appartenant aux familles Astéracées, Poacées, Apiacées et Lamiacées.

Sur le plan biologique, la zone d'étude est dominée par les Thérophytes.

Au niveau des stations d'études, le schéma de la répartition des types biologiques est comme suit

TH>CH>GE>PH>HE dans les stations de Béni-Saf, Honaine et Zarifet

TH>GE>HE>PH>CH dans la station de Terni

TH>HE>CH>PH>GE dans la station de Sebdou

L'indice de perturbation étant de l'ordre de 57% pour toute la région d'étude ; ceci montre nettement la forte dégradation liées à plusieurs facteurs du milieu notamment l'action conjuguée de l'homme et ses troupeaux.

Du point de vue morphologique, les formations végétales de la zone d'étude, sont marquées par une nette hétérogénéité entre les ligneux et les herbacées et entre les vivaces et les annuelles. Les espèces herbacées annuelles présentent un pourcentage position nous trouvons les ligneux vivaces avec 24%.

Du de 48%. Les herbacées vivaces viennent en deuxième position avec 28%. En troisième point de vue phytogéographique, l'élément méditerranéen est le plus dominant avec un taux de

53.51%.l'élément nordique présente un taux de 13.71%, ce pourcentage est très limité à cause de l'aridité du milieu.

Les indices de diversité calculés, nous ont permis de retenir les points suivants :

- ➤ La station de Béni-Saf est la plus riche et diversifiée du point de vu richesse spécifique (S) et nombre total d'espèce(N).
- ➤ L'abondance relative de chaque espèce est moyennement élevée dans la station de Béni-Saf avec H = 3.35, et que leur répartition est presque régulière et équilibrée vu que l'équitabilité qui est de l'ordre de0.87.
- ➤ Le nombre effectif des individus très abondants est retenu pour la station de Terni grâce a son chiffre qui est élevé (I_s = 0.95), et les différences d'abondance des individus entre chaque espèce sont fortes au niveau de cette station (E_H=0,91).
- \triangleright L'indice de Margalef montre bien que chaque individu appartient à une espèce différente, dans la station de Béni-Saf grâce à D_{mg} =9.04.
 - Notre zone d'étude présente une richesse assez importante et diversifiée, l'abondance relative des espèces est élevée, et leur répartition est régulière, avec des individus très abondant ($I_s = 0.947$), et des différences d'abondance bien fortes. Et $D_{mg} = 8.94$ prouve clairement que ce sont des individus d'espèces différentes.

CHAPITRE 4: ANALYSE DE LA VEGETATION

Chapitre 4 : ANALYSE DE LA VEGETATION

Analyse statistique de la végétation

Introduction:

L'ensemble des données floristiques a été traité par l'analyse factorielle des correspondances (AFC) combinée à la classification hiérarchique ascendante (CAH) qui est le complément de toute analyse factorielle des correspondances.

Cette étude a été effectuée sur la base des relevés floristiques, afin de déterminer les affinités des différents groupes végétaux liées à la présence de *Phillyrea angustifolia*; *Phillyrea latifolia*; *Phillyrea media*.

L'analyse factorielle des correspondances est utilisée depuis longtemps en phytosociologie et en phytoécologie décrite par de nombreux auteurs : GUINOCHET (1952) ;

DAGNELIE (1960, 1965); CORDIER (1965); BENZECRI (1973); PERRICHAUD et BONIN (1973); CELLES (1975); BRIANE *et al.* (1977); BONIN ET ROUX (1978); POUGET (1980); BASTIN *et al.* (1980); LEGENDRE (1984); DJEBAILI (1984); DAHMANI (1984); CHESSEL ET BOURNAUD (1987); KENT et BALLARD (1988) et LOISEL *et al.* (1990); BONIN et TATONI (1990), DAHMANI (1997), BENABADJI et *al.* (2004), MERZOUK (2009-2010), (STAMBOULI, 2010), ABOURA(2011), HASSAINE (2011-2014), SARI-ALI (2012).

Elle permet grâce à des représentations graphiques, de construire des nuages de points représentant les espèces dans un espace à dimensions (nombre de relevés) et réciproquement. Le logiciel calcule la distance statistique entre les relevés en fonction des fréquences des espèces recensées.

Le nuage « points lignes » où de « points colonnes » s'étire le long d'une direction privilégiée qui correspond à l'axe factoriel de l'analyse. Chaque axe factoriel est caractérisé par une valeur propre qui traduit l'inertie du nuage de point le long de l'axe. Le taux d'inertie représente le pourcentage de l'axe dans l'inertie totale du nuage. La valeur propre et le taux d'inertie sont d'autant plus élevés que le nuage de points est bien structuré le long d'un axe factoriel **ESCOFIER et PAGES (1990).**

Cette analyse est considérée comme étant le traitement statistique inévitable sur des données de végétations, soit en abondance-dominance-sociabilité soit en présence- absence. Et c'est à partir de cette technique que l'on a pu identifier des gradients écologiques qui agissent sur la distribution des végétaux CHESSEL et GAUTHIER(1979).

Méthode d'étude :

Pour inventorier et quantifier les groupements à *Phillyrea*, en particulier dans la région de Tlemcen, nous avons élaboré une interprétation par l'analyse des correspondances (A.F.C), qui a pour but de recensées les groupes d'espèces liées directement à la présence de *Phillyrea angustifolia*; *Phillyrea latifolia*; *Phillyrea media*.

Sur les cinq stations choisis (deux stations du littoral ; deux stations dans les monts de Tlemcen et la cinquième dans la steppe), Nous avons réalisés 50 relevés par station, au total de 250 relevés.

Traitement des données :

Codage:

En vue du traitement informatique des données, un numéro est attribué à chacun des relevés, dans l'ordre de leur exécution par exemple: Relevé1 → R1.

De même, les taxons ont été codés par la première lettre caractérisant le genre suivi par un chiffre selon ordre de répétition du genre correspondant, de la manière suivante :

- *Phillyrea media* PM.→
- Quercus faginea QF→

L'AFC globale portant sur 250 relevés et chaque relevé a été effectué suivant la méthode stigmatique (BRAUN BLANQUET 1951). La surface du relevé est de 100 m² comme surface de prélèvement. Ces espèces ont été traitées à l'aide du logiciel **Minitab16**.

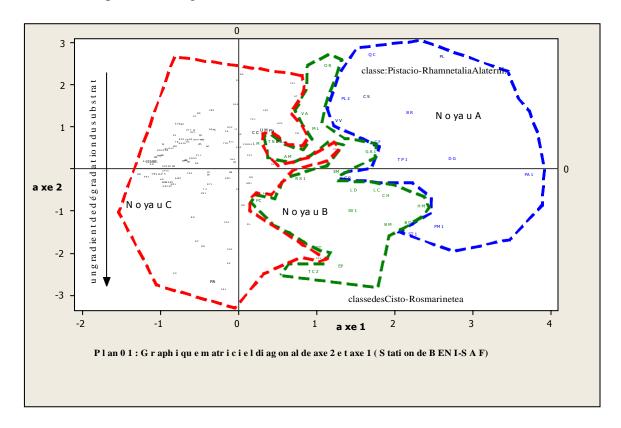
D'une manière générale, l'interprétation des résultats est basée sur l'inertie du système qui indique le pouvoir explicatif d'un axe factoriel et la contribution qui mesure l'importance d'un point ligne (espèce) ou d'un point colonne (relevé) par rapport à un axe factoriel.

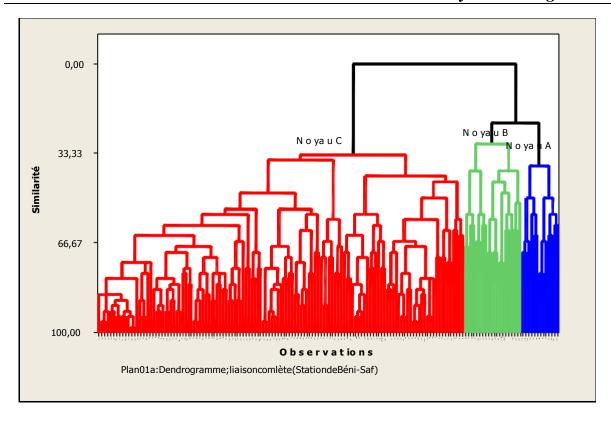
En utilisant l'A.F.C., nous avons pu mettre en relief :

- Analyse des espèces à fortes contributions dans les A.F.C. sur les facteurs écologiques de la diversité du tapis végétal (BONIN et VEDRENNE, 1979).
- La dynamique de végétation et la nature de leur évolution dans le milieu d'étude.
- ➤ Individualiser des ensembles de relevés qui présentent les mêmes affinités, c'est- à-dire de préciser les structures de végétation différenciées au niveau de ces peuplements

Dans notre cas, le traitement se fait par station dans le but de bien déterminer les groupes d'espèces végétales qui accompagne les *Phillyrea angustifolia*; *Phillyrea latifolia*; *Phillyrea media*.

Interprétation des Résultats


Station de BENI-SAF


Variance 10,051 2,871 2,524 15,446 % var 0,201 0,057 0,050 0,309

Les valeurs propres de l'axe (1 et 3) sont respectivement de 0,201 et 0,050. Elles témoignent d'une structuration hétérogène du nuage.

L'examen des cartes factorielles illustrant les plans de projections 2/1 et 3/1 permet de constater l'existence de 03 ensembles très contrastés et moins nette dans le plan 3/2.

Malgré le faible pourcentage des valeurs propres, la majorité des espèces possèdent une contribution supérieure ou égale à 0,50.

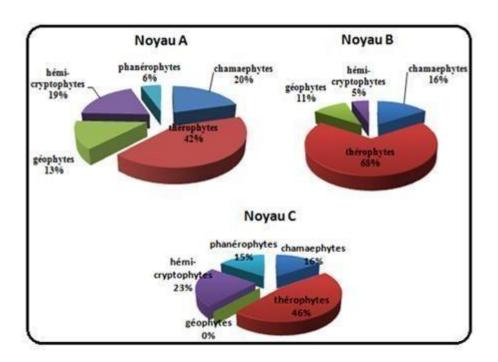
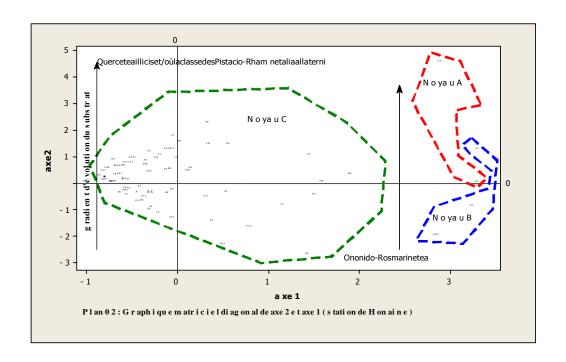


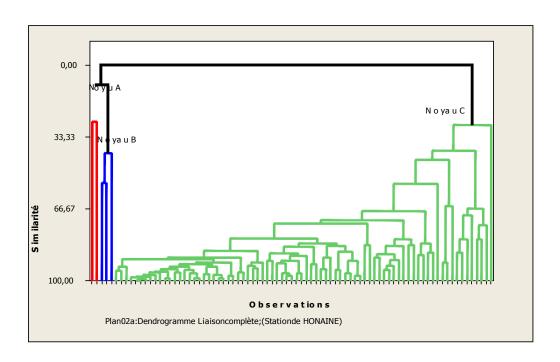
Figure 24: type biologique des noyaux de la station de Béni-Saf

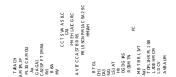
Le plan de l'axe2/axe1 et les types biologiques des noyaux montrent la prédominance des thérophytes dans les trois noyaux, avec l'absence totale des géophytes dans le noyaux C et la présence des phanérophytes avec 15% liée surtout à la présence des différentes espèces de *Phillyrea, Pistacia lentiscus* et *Juniperus phoenicea*.

• Le plan axe2/axe1 : est marqué par la présence de:

Côté négatif d noyau A	luCôté positif du noyau A	Côté négatif du noyau B	ıCôté positif du noyau B	ıCôté négatif d noyau C	uCôté positifdu noyauC
Stipa torilis	Quercus coccifera	Stipa tenacissima	Asphodelus microcarpus	Tetraclinis articulata	Juniperus phoenicea
Polypogon monspeliensis	Pistacia lentiscus	Chamaerops humilis	Ononis reclinata	Rhamnus lycioides	Pinus maritima
Carduus pycnocephalus	lantogo lagopus	Lavandula dentata	ledicago littoralis	Cistus villosus	Asparagus stipularis
Phillyrea angustifolia	Calycotome spinosa	Thymus ciliatus	Vella annua	Cistus albidus	Phillyrea media Phillyrea latifolia


- <u>Le côté positif</u>: dominé par les espèces caractérisant une formation pré forestière dégradé se rapportant généralement à l'ordre des *Pistacio-Rhamnetalia Alaterni* PARADIS et *al* (2005), RIVAS-MARTINEZ (1974).
- Le côté négatif : caractérisé par la présence des espèces indiquant un matorral ouvert sur substrat mélangé se rapportant généralement à la classe des *Cisto-Rosmarinetea* RIVAS-MARTINEZ(1974).


Le plan axe2/axe1 : traduit un gradient de dégradation du substrat dans le sens inverse de l'axe liés généralement à la l'action conjuguée de l'homme et ses troupeaux et ceux-ci est confirmé par la présence d'*Asphodelus microcarpus*.


Station de HONAINE

Variance 13,430 5,642 4,169 23,241 % var 0,269 0,113 0,083 0,465

Les valeurs propres de l'axe (1 et 3) sont respectivement de 0,269 et 0,083. Elles témoignent d'une structuration plus où moins hétérogène du nuage.

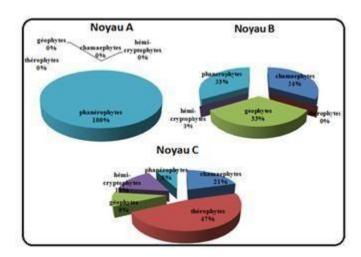


Figure 25: type biologique des noyaux de la station de HONAINE

Le plan 02 et la Figure 25 de la station de HONAINE montre que le noyau A est marqué par la présence de deux espèces phanérophytiques et l'absence totale des autre types biologiques

Le noyau B montre une diversification dans les types biologiques avec l'apparition des géophytes avec 33% et les Chamaephytes avec 34%

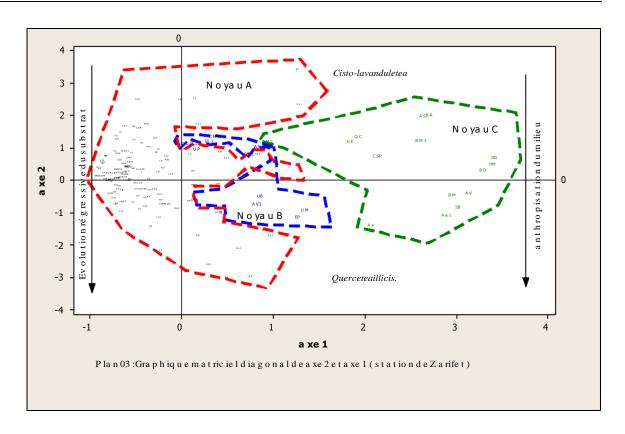
Le noyau C montre la présence de tous les types biologiques, avec la dominance des thérophytes 47% et 8% pour les phanérophytes

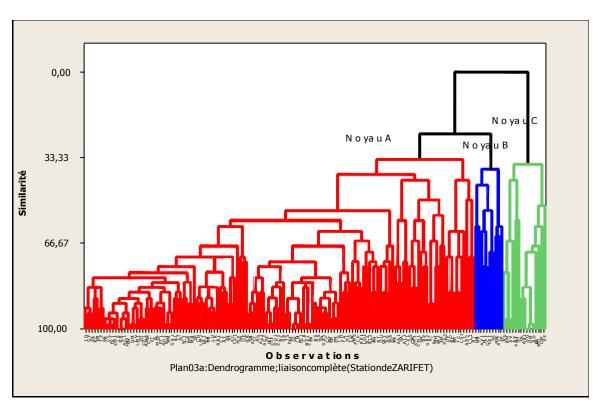
En passant u noyau A vers le noyau C ; on peut dire qu'il y a une évolution du tapis végétal vers le sens positif des noyaux

Le plan axe2/axe1 de la station de HONAINE montre

Côté négatif d noyau A	uCôté positif du noyau A	ıCôté négatif d noyau B	uCôté positi du noyau B	fCôté négatifdu noyauC	Côté positifdu noyauC
//	etraclinis articulata	Chamaerops humilis	Pistacia lentiscus	hillyrea latifolia	Phillyrea media
//	Phillyrea angustifolia	Asphodelus microcarpus		Quercus coccifera	Vibernum tinus
				Juniperus phoenicea	Retama retama
				Calycotome villosa	Olea europaea
				Thymus ciliatus	Rhamnus lycioides

Le côté Positif: est marqué par la présence des espèces Phanérophytiques et Chamaephytiques caractérisant une formation forestière et/ ou forestière dégradé se rapportant généralement à la classe des *Quercetea illicis* BRAUN BLANQUET (1947,1936) et /ou la classe des *Pistacio-Rhamnetalia allaterni* (RIVAS MARTINEZ 1974)


Le côté Négatif: regroupent les espèces Chamaephytiques, Phanérophytiques et Géophytes caractérisent une formation à Matorral dégradé sur substrat calcaire se rapportant généralement à la classe des *Ononido-Rosmarinetea*. (BRAUN BLANQUET (1947)


Le plan axe2/axe1 de la station de Honaine traduit un gradient d'évolution du substrat dans le sens de l'axe ceci a été confirmé par l'évolution des pourcentages des types biologiques dans les trois noyaux considérés.

Station de ZARIFET

Variance 15,462 2,524 2,040 20,026 % var 0,309 0,050 0,041 0,401

Les valeurs propres de l'axe (1 et 3) sont respectivement de 0,309 et 0,041. Elles témoignent d'une structuration plus ou moins hétérogène du nuage.

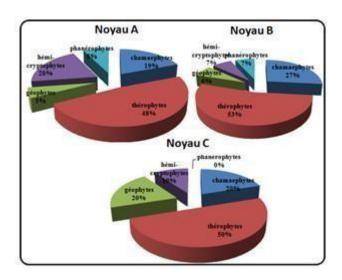


Figure 26: type biologique des noyaux de la station de Zarifet

Les trois noyaux A; B; C montrent un équilibre entre les différents types biologiques.

Absence totale des phanérophytes dans le noyau C et une faible présence dans les deux autres noyaux.

Le pourcentage des Hémi-cryptophytes et des Géophytes diminuent pour atteindre 7% et 6% dans le noyau B.

Le pourcentage des Thérophytes augmentent pour atteindre 53% dans le noyau B.

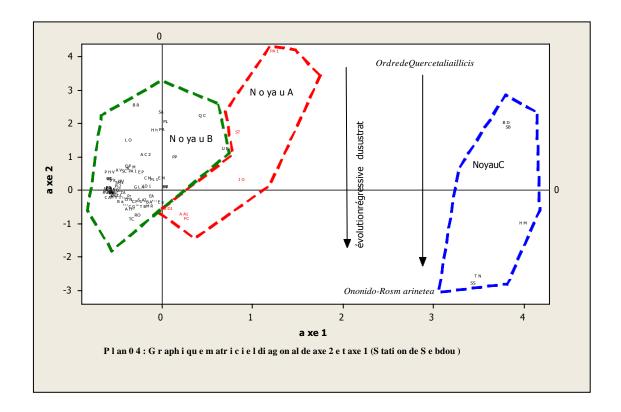
Les types biologiques des noyaux évoluent progressivement du noyau C vers le noyau A passant par le noyau B.

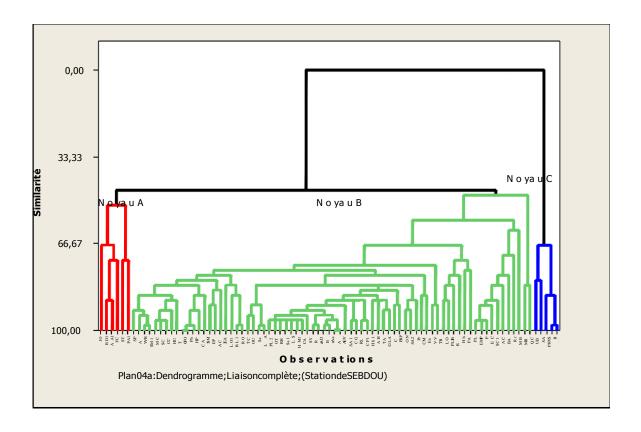
Le plan axe2/axe1 de la station de Zarifet montre

Côté négatif du	Côté positif du	Côté négatif du	Côté positif du	Côté négatif du	Côté positif du noyau C
noyau A	noyau A	noyau B	noyau B	noyau C	
Erica arborea	Phillyrea angustifolia	Urginea maritima	Anthyllis vulneraria	Asparagus albus	
Juniperus oxycedrus	Phillyre	Muscari	Cistus salviifolius	Asparagus acutifolius	-
Quercus ilex	Arbutus unedo	Ulex boivinii	Plantago lagopi	Briza minor	Quercus coccifera
Quercus suber	Olea europaea	Plantago serrari	Centaure coeruleus		- · · · · · · · · · · · · · · · · · · ·
Crateagus monogyna	-			Aegilops ventricosa	Calycotome spinosa

Le côté Positif : ce côté des trois noyaux regroupent les espèces généralement Phanérophytiques ; chamaephytiques et géophytes préférant un substrat riche en silice.

Ces espèces se rattachent à la classe des *Cisto-lavanduletea* BRAUN-BLANQUET (1940-1952) avec la présence de *Lavandula stoachas* ; *Cistus salviifolius* et les différents genres d'Hélianthème.


Le côté Négatif : montre la dominance des espèces se rapportant à la classe des *Quercetea illicis*.


Ce côté montre aussi la présence des espèces indicatrices d'un milieu fortement anthropisée tels que : *Asphodelus microcarpus ; Urginea maritima*. La présence de ces deux espèces indique un sol fortement piétiné par les troupeaux et leurs structure est dégradé.

Donc le plan axe2/axe1 traduit un gradient d'évolution régressive dans le sens de l'axe et/ où une action d'anthropisation dans la forêt de Zarifet.

Station de SEBDOU

Les valeurs propres de l'axe (1 et 3) sont respectivement de 0,333 et 0,054. Elles témoignent d'une structuration plus ou moins hétérogène du nuage.

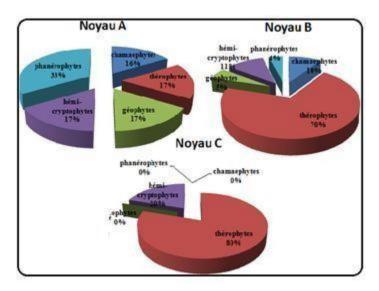


Figure 27: Type biologique des noyaux de la station de SEBDOU

Les types biologiques des trois noyaux de la station de SEBDOU montrent une évolution régressive du tapis végétale.

Les Phanérophytes passent d'un pourcentage de 33% dans le noyau A à 4% dans le noyau B et complètement absent dans le noyau C.

Contrairement aux Thérophytes ; passent de 17% dans le noyau A à 80% dans le noyau C. Le schéma montre le passage d'une formation forestière voire même pré-forestière

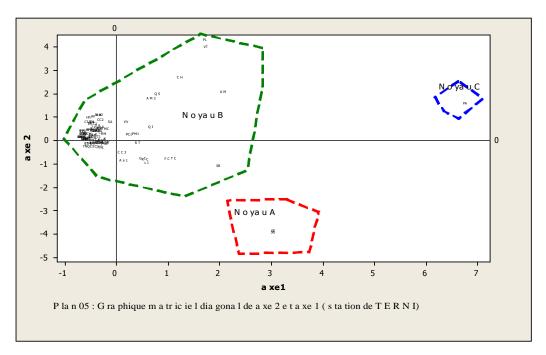
(PH=33%) vers une thérophytisation où les Thérophytes présentent une valeur de 80% et une absence totale des Chamaephytes et des Phanérophytes dans le noyau C.

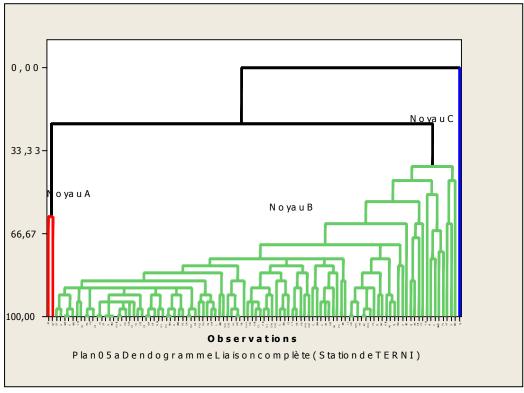
Le plan axe2/axe1 de la station de SEBDOU montre

Côté négatif	Côté positif du	Côté négatif du	Côté positifdu	Côté négatif du	Côté positif du
du	noyau A	noyau B	noyauB	noyau C	noyau C
noyau A					
	1		Phillyrea latifolia	Hordeum murinum	Schismus barbatus
communis	oxycedrus	lycioides			
Artemisiaherba	Stipa	osmarinus	Quercus coccifera	Torilis nodosa	ıchypodium
alba	tenacissima	officinalis			distachyum
scutella didyma	Phillyrea	Thymus ciliatus	Ulex boivinii	cabiosa stellata	
	angustifolia				
		Ononis natrix	Pistacia lentiscus		

Le côté Positif: regroupent les espèces pré-forestière avec la présence de deux espèces de *Phillyrea*; *Juniperus oxycedrus*; *Quercus coccifera* et *Pistacia lentiscus* se rapportant généralement à l'ordre de *Quercetalia illicis* sur un sol évolué.

Le côté Négatif: regroupent les espèces à matorral dégradé par la présence Artemisia herba alba; Ferula communis; Thymus ciliatus et quelques espèces Thérophytiques.


Ces espèces se rattachent à la classe des *Ononido-Rosmarinetea* sur substrat calcaire.


Le plan axe2/axe1 de la station de SEBDOU montre une évolution régressive dans le sens de l'axe avec une dégradation structural de substrat.

Station de TERNI

Variance 7,2950 4,1365 3,1890 14,6204 % var 0,146 0,083 0,064 0,292

Les valeurs propres de l'axe (1 et 3) sont respectivement de 0,146 et 0,064. Elles témoignent d'une structuration plus ou moins hétérogène du nuage.

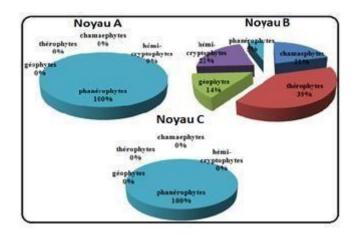
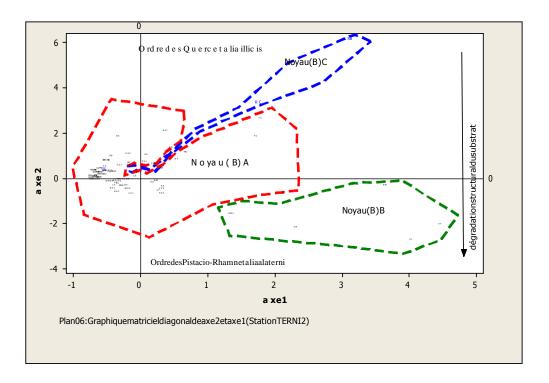
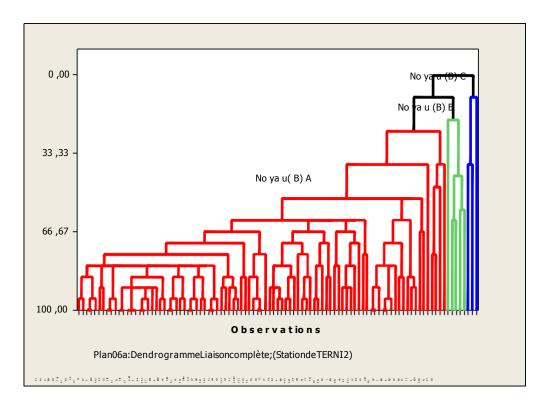




Figure 28: les types biologiques des noyaux de L'AFC 1 de la station de TERNI 1

Vu la présence de deux noyaux A ; C présentant un seul type biologique Phanérophytes.

Nous avons procédés à un deuxième AFC de la même station pour expliquer correctement la répartition du noyau B ; tout en gardant le premier AFC.

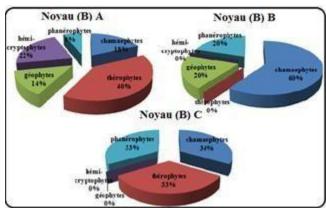


Figure 29: type biologique des noyaux de la station de Terni 02

Le plan axe2/axe1 de la station de TERNI montre

	_	Côté négatif du noyau B	Côté positifdu noyauB	Côté négatif noyau C	du Côté positif du noyau C
Quercus faginea		Asphodelus microcarpus	//	//	Phillyrea angustifolia
Juniperus oxycedrus	Genista cinerea	Chamaerops humilis	//	//	Quercus ilex
Quercus suber	Quercus coccifera	Ampelodesma mauritanicum	//	//	Schismus barbatus
Lavandula dentata	Phillyrea media	Phillyrea latifolia	//	//	Rosa canina
Hedera helix	Ferula communis	Viburnum tinus	//	//	

Le côté Positif : regroupent les espèces indiquant une formation forestière et dégradé par la présence de *Ferula communis*.

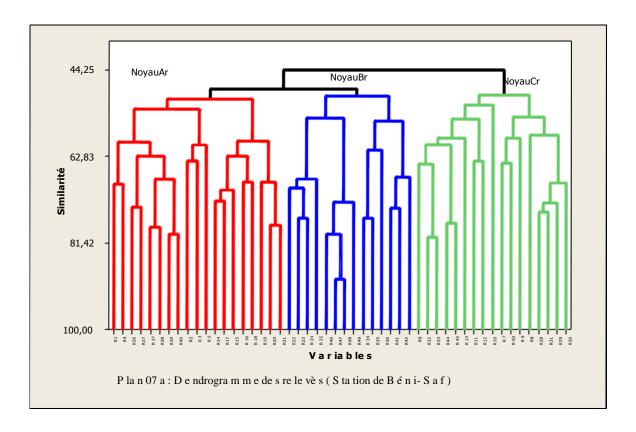
Les espèces du côté positif se rapportant à l'ordre des *Quercetalia illicis* BRAUN-BLANQUET (1936-1947) sur substrat équilibré et un sol fortement piétiné.

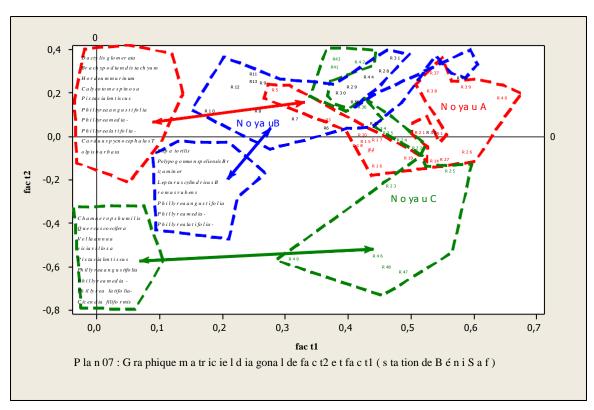
Le côté Négatif: regroupent les espèces indiquant une formation Pré-forestière se rapportant à l'ordre des *Pistacio-Rhamnetalia alaterni* et ceux par la présence des espèces forestières tels que *Quercus suber*; *Quercus faginea*; *Viburnum tinus*.

Chamaerops humilis ; Ampelodesma mauritanicum deux espèces héliophiles indiquent un milieu dégradé et/ ou la lumière pénètre facilement pour donner naissance à une formation forestière dégradé.

Donc le plan axe2/axe1 traduit un gradient de dégradation du substrat dans le sens de l'axe

Signification écologique des facteurs.

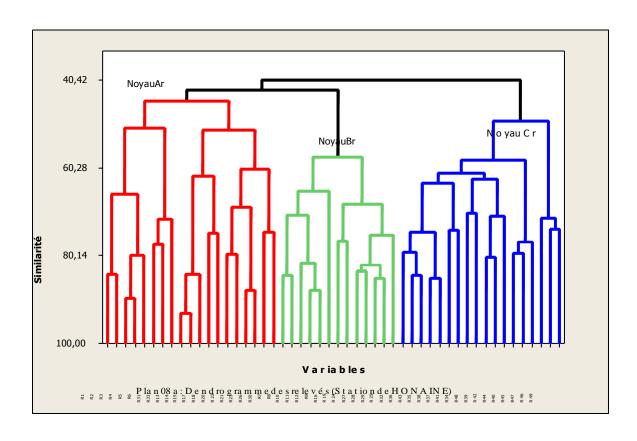

La recherche de la signification écologique des facteurs s'appuiera sur la confrontation des relevés qui regroupent plusieurs espèces à fortes contributions relatives. Nous tenterons ainsi de préciser quels seront les facteurs écologiques majeurs de la diversification du tapis végét*al*.

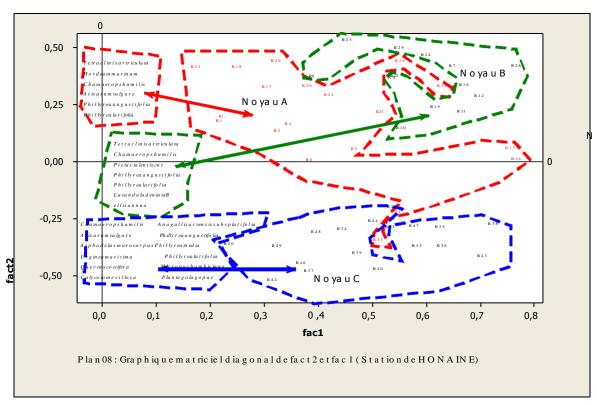

Dans le but de déterminer les espèces caractéristiques et qui accompagne toujours *Phillyrea angustifolia*; *Phillyrea media*; et *Phillyrea latifolia*. Nous avons réalisé un A.F.C des relevés floristique; calculé la fréquence de chaque espèce dans les noyaux de l'A.F.C ensuite la fréquence des relevés principales pour chaque station étude.

Ceux-ci nous aident à réaliser un essai cartographique de la répartition du genre *Phillyrea* avec les trois espèces déterminer dans la région de Tlemcen.

Station de Béni- Saf

A partir du dendrogramme de la station de Béni-Saf (**Plan 07a**) qu'on a pu séparer le noyau Ar, Br, Cr appelés groupements du Genre *Phillyrea* (Tableaux 24 ; 25 ; 26).


Les tableaux (24 ; 25 ; 26) et le (Plan7) montrent des fréquences élevés variant entre 60% et 100% pour certaines espèces de chaque noyau des relevés.

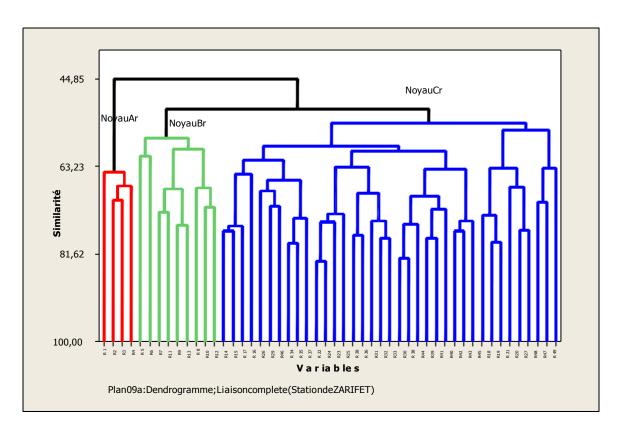

- Noyau A : les fréquences les plus élevés sont
- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Brachypodium distachyum
- Hordeum murinum
- Calycotome spinosa
- Dactylis glomerata
- Carduus pycnocephalus
- Tolpis barbata
- Noyau B: les espècessont
- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Stipa torilis
- Polypogon menspeliensis
- Briza minor
- Lepturus cylindrus
- Bromus rubens
- Noyau C: les espècessont
- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Chamaerops humilis
- Quercus coccifera
- Vella annua
- Vicia villosa
- Cicendia filiformis

A partir de ces données des trois noyaux (A; B; C), nous pouvons conclure, que pour la station de Béni-Saf, les espèces qui accompagnent les trois espèces de *Phillyrea* sont généralement [Quercus coccifera; Chamaerops humilis; Cicendia filiformis; Calycotome spinosa et Dactylis glomerata]

Station de HONAINE

A partir du dendrogramme de la station de Béni-Saf (**Plan 08a**) qu'on a pu séparer le noyau Ar, Br, Cr appelés groupements du Genre *Phillyrea*.

Les tableaux (27 ; 28 ; 29) et le (Plan 8) montrent des fréquences élevés variant entre 50% et 100% pour certaines espèces de chaque noyau des relevés.


- Noyau A : les fréquences les plus élevés sont
- Phillyrea angustifolia
- Phillyrea latifolia
- Tetraclinis articulata
- Hordeummurinum
- Chamaerops humilis
- Arisarum vulgare
- Noyau B: les fréquences les plus élevés sont:
- Phillyrea angustifolia
- Phillyrea latifolia
- Tetraclinis articulalta
- Chamaerops humilis
- Lavandula dentata
- Cistus monspeliensis
- Urginea maritima
- Asphodelus microcarpus
- Olea euroapea
- Noyau C: les fréquences les plus élevés sont:
- Phillyrea angustifolia
- Phillyrea latifolia
- Phillyrea media
- Quercuscoccifera
- Chamaeropshumilis
- Calycotome villosa subs pintermedia
- Micropus bonbicinus
- Urginea maritima
- Asphodelus microcarpus


Phillyrea angustifolia; *Phillyrea latifolia* sont accompagnée des espèces thermophiles sur substrat siliceux.

Alors que *Phillyrea media* accompagne le cortège floristique indiquant un milieu dégradé par l'action surtout anthropozoogène.

Station de Zarifet

A partir du dendrogramme de la station de Zarifet (**Plan 09a**) qu'on a pu séparer le noyau Ar, Br, Cr appelés groupements du Genre *Phillyrea*.

Les Tableaux (30,31, 32) et le **Plan 09** montrent la présence de ces espèces avec une fréquence très élevés et qui accompagne *Phillyrea angustifolia* :

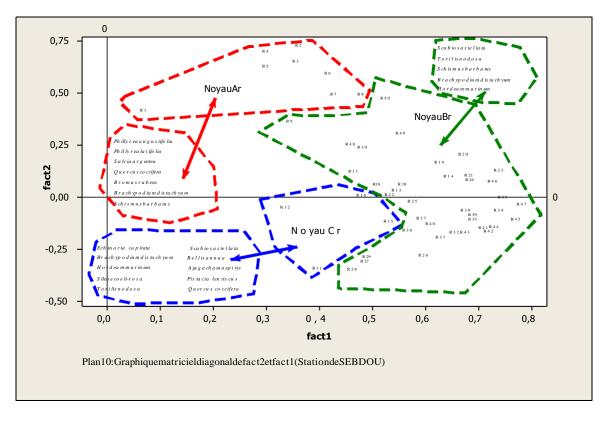
Novau A

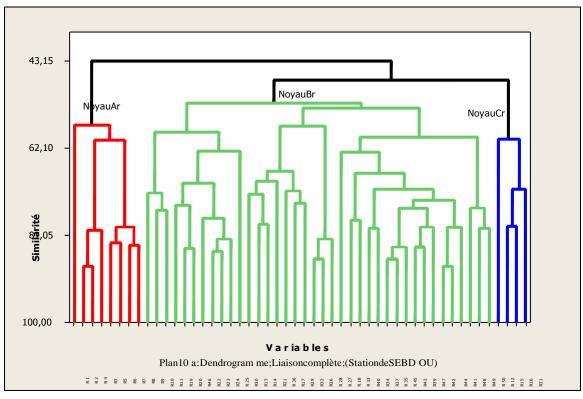
- Quercus coccifera
- Quercus suber
- Ampelodesma mauritanicum
- Phillyrea angustifolia
- Asparagus acutifolius
- Asphodelus microcarpus
- Tulipa sylvestris
- Dactylis glomerata

Novau B

- Quercus coccifera
- Phylleria angustifolia
- Euphorbia peplus
- Dactylis glomerata
- Brachypodium distachyum

➤ Novau C


- Phylleria angustifolia
- Phylleria latifolia
- Quercus coccifera
- Asparagus acutifolius
- Dactylis glomerata
- Brachypodium distachyum


D'après la répartition des espèces à travers les trois noyaux, nous pouvons constater que *Phillyrea* se trouve avec deux espèce qui sont : *P.angustifolia* ;*P.latifolia* dans la station de Zarifet.

Cette espèce accompagne toujours une formation forestière dégradé par la présence des espèces qui indique la présence de cette dernière (*Asphodelus microcarpus*; *Ampelodesma mauritanicum*)

Station de SEBDOU

A partir du dendrogramme de la station de SEBDOU (**Plan 10a**) qu'on a pu séparer le noyau Ar, Br, Cr appelés groupements du Genre *Phillyrea*.

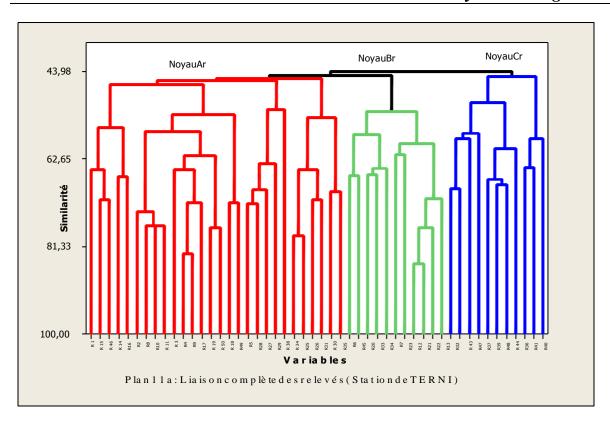
Les Tableaux (33, 34,35) et les **Plans (10, 10a)** montrent la dominance des espèces suivantes et qui accompagnent toujours *Phillyrea angustifolia*; *Phillyrea latifolia* dans la station de SEBDOU.

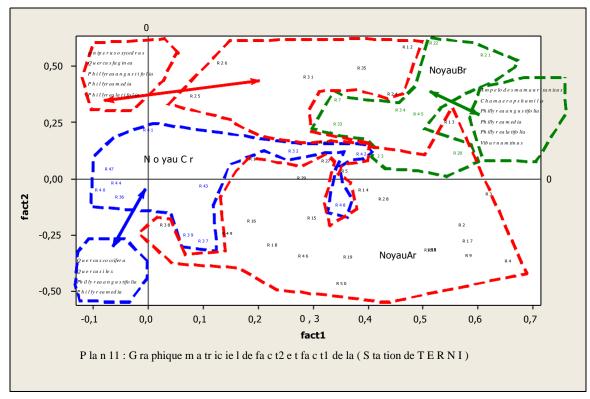
Novau A

- Phillyrea angustifolia
- Phillyrea latifolia
- Quercus coccifera
- Salvia argentea
- Brachypodium distachyum

Novau B

- Phillyrea angustifolia (faible fréquence)
- Phillyrea latifolia (faiblefréquence)
- Torilis nodosa
- Brachypodium distachyum
- Scabiosa stellata
- Schismus barbatus


Novau C


- Phillyrea latifolia (faiblefréquence)
- Pistacia lentiscus
- Quercus coccifera
- Ajuga chamaepytis
- Bachypodium distachyum

Pour la station de SEBDOU, nous pouvons conclure les deux espèces de *Phillyrea* sont présent malgré le faible pourcentage de fréquence est accompagné toujours les espèces indiquant une formation pré forestière tels *Pistacia lentiscus*; *Quercus coccifera* et *Ajuga Chamaepytis*.

Station de TERNI

Apartir du dendrogramme de la station de TERNI (**Plan 11a**) qu'on a pu séparer le noyau Ar, Br, Cr appelés groupements du Genre *Phillyrea*.

Les Tableaux (36, 37,38) et les Plan (11 ; 11a) montrent toujours la dominance des trois espèces de *Phillyrea* dans la station de TERNI.

- On peut affecter un nom à ces espèces pour dire que ce sont des espèces accompagnatrice.
- Une fois la présence de ces espèces se répète toujours avec *Phillyrea*, ces dernières deviennent caractéristiques.

> Novau A

- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Juniperus oxycedrus
- Quercus faginea ssp tlemcenensis

Novau B

- Phillyrea angustifolia
- Phillyrea media
- Phillyrea latifolia
- Viburnum tinus
- Chamaerops humlis
- Ampelodesma mauritanicum

Novau C

- Phillyrea angustifolia
- Phillyrea media (faible pourcentage)
- Phillyrea latifolia
- Quercus coccifera
- Quercus ilex

La station de TERNI montre la présence des trois espèces de *Phillyrea*. Elle accompagne un cortège floristique forestier dominé surtout par les différents chênaies (*Quercus coccifera*; *Quercus faginea ssp tlemcenensis*; *Quercus ilex*).

Conclusion

Dans ce chapitre, nous avons réalisé deux types d'Analyse Factoriel des Correspondances, la première pour étudier la répartition des espèces à travers les axes et la relations entre les différentes espèces en prenant en considération certains facteurs écologiques stationnels qui influent sur ces dernières.

La deuxième la répartition des relevés dans le but de faire ressortir les espèces qui dominent à travers les noyaux du dendrogramme et accompagne toujours les espèces de *Phillyrea angustifolia*; *Phillyrea latifolia*; *Phillyrea media*.

La deuxième partie d'A.F.C facilite la tâche pour tracer un essai cartographique de la répartition des trois espèces de *Phillyrea* dans la région de Tlemcen.

ESSAI CARTOGRAPHIQUE:

Pour compléter l'étude de l'analyse floristique de la végétation et après avoir déterminer les espèces caractéristiques et qui accompagne les trois espèces du genre *Phillyrea*. Un essai cartographique a été établi dans ce sens.

Une carte de la végétation peut être considérée sous différents aspects, en tant que carte de la physionomie montrant l'état présent de la végétation, ou comme, une carte de l'utilisation du territoire. Selon (BURGER, 1957) : « Une carte aussi complète soit-elle n'est toujours qu'une schématisation de la réalité»

La cartographie est la base de l'aménagement écologique des écosystèmes (LONG, 1975) ; (OZENDA, 1982 ; 1986) ; (MEDIOUNI et LETREUCH-BELAROUCI,1987).

Elle permet une connaissance approfondie du milieu, de ses potentialités et de ses utilisations optimales.

L'objectif de notre travail est démontrée la répartition des trois genres de *Phillyrea* à travers la région de Tlemcen.

Pour la partie littorale qui regroupe deux stations d'étude (Béni-Saf et Honaine), les trois espèces sont présentes et qui sont :

- Phillyrea angustifolia
- Phillyrea latifolia
- Phillyrea media

Ces trois espèces sont accompagnée d'un cortège floristique à base de :

- Tetraclinis articulata
- Chamaerops humilis
- Arisarum vulgare
- Pistacia lentiscus
- Lavandula dentata
- Asphodelus microcarpus
- Urginea maritima
- Quercus coccifera
- Calycotome villosa subspintermedia

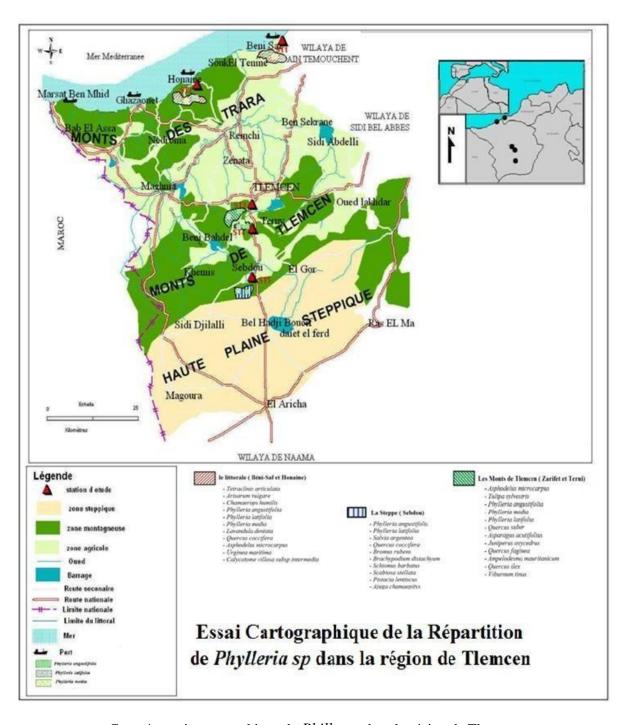
La partie des monts de Tlemcen regroupent deux stations d'étude (Zarifet et Terni), les trois espèces sont présentes et qui sont :

- Phillyrea angustifolia
- Phillyrea latifolia
- Phillyrea media

On note dans cette partie, la dominance des deux premières espèces alors que la troisième est marqué seulement par quelques individus.

Ces espèces sont accompagnée d'un cortège floristique à base de :

- Quercus ilex
- Quercus faginea ssp tlemcenensis
- Quercus coccifera
- Quercus suber
- Viburnum tinus
- Juniperus oxycedrus
- Asparagus acutifolius
- Ampelodesma mauritanicum
- Asphodelus microcarpus
- Tulipa sylvestris


La dernière partie est représentée seulement par la station de Sebdou, est marqué par la présence de deux espèces qui sont :

- Phillyrea angustifolia
- Phillyrea latifolia

Ces deux espèces de *Phillyrea* sont accompagné par des espèces caractéristiques à base de :

- Quercus coccifera
- Pistacia lentiscus
- Ajuga chamaepitys
- Salvia argenta
- Bromus rubens
- Schismus barbatus
- Brachypodium distachyum
- Scabiosa stellata

Les espèces communes pour les trois parties et qui accompagnent toujours le genre *Phillyrea* sont représentées par : *Quercus coccifera ; Pistacia lentiscus ; Asparagus acutiflius*. Ces espèces se rapportant généralement à la classe des *QUERCETEA ILLICIS* et à l'ordre des *QUERCETALIA ILLICIS*.

Carte 4: essai cartographique de *Phillyrea* dans la région de Tlemcen

CONCLUSION GENERALE

CONCLUSION GENERALE:

L'analyse bibliographique a montré l'histoire de la classification du genre *Phillyrea* à travers le temps, avec de multiples nomenclatures dus à des erreurs linguistiques de la traduction.

Il ressort de l'étude pédologique que *Phillyrea* croît sur un sol de texture limono-sableuse et un pH neutre.

L'étude bioclimatique a fait ressortir que le climat de la zone d'étude est de type méditerranéen, dont deux étages bioclimatiques (sub-humide et semiaride) pour les quatre stations météorologiques étudiées, avec la saison hivernale qui est caractérisée par l'irrégularité de la pluviométrie, et la saison estivale marquée par de fortes chaleurs combinées à de longues périodes de sécheresse.

Le quotient pluvio-thermique diminue considérablement, et le positionnement de chacune des stations étudiées se trouve dans le semi-aride excepté la station de Ghazaouet où sa position est sous-étage bioclimatique subhumide à hiver qui varie de tempéré à chaud. Ce type de climat, d'une manière générale, favorisent l'installation des espèces thérophytiques xériques au détriment des espèces forestières et pré-forestières qui demande un milieu stable et très diversifié.

Ceci a été confirmé par l'abondance des différentes familles telle que : des Astéracées, Fabacées, Poacées et enfin Apiacées sont à l'origine de la dominance des thérophytes. Sur le plan biologique, la zone d'étude est dominée par les Thérophytes.

Au niveau des stations d'études, le schéma de la répartition des types biologiques est comme

suit:

TH>CH>GE>PH>HE dans les stations de Béni-Saf, Honaine et Zarifet

TH>GE>HE>PH>CH dans la station de Terni

TH>HE>CH>PH>GE dans la station de Sebdou

Du point de vue phytogéographique, l'élément méditerranéen est le plus dominant avec un taux de 53.51%. l'élément nordique présente un taux de 13.71%, ce pourcentage est très limité à cause de l'aridité du milieu.

Les indices de diversité calculés nous ont permis de conclure que notre zone d'étude présente une richesse assez importante et diversifiée, l'abondance relative des espèces est élevée, et leur répartition est régulière, avec des individus très abondant (Is = 0.947), et des différences d'abondance bien fortes. Et Dmg = 8.94 prouve clairement que ce sont des

individus d'espèces différentes.

Dans cette Analyse Factoriel des Correspondances, la première pour étudier la répartition des espèces à travers les axes et la relations entre les différentes espèces en prenant en considération certains facteurs écologiques stationnels qui influent sur ces dernières. Pour les stations du littoral (Béni-Saf; Honaine) montre la présence des trois espèces *Phillyrea angustifolia*; *Phillyrea media*; *Phillyrea latifolia* avec un cortège floristique lié à la classe des *Quercetea illicis* et à l'ordre des *Pistacio-Rhamnetalia alaterni*. Les stations des monts de Tlemcen et Sebdou montrent surtout la dominance de *Phillyrea angustifolia* alors que l'effectif de *Phillyrea media*; *Phillyrea latifolia* est faible. La répartition des relevés à travers les plans statisitique a pour but de faire ressortir les espèces qui dominent à travers les noyaux du dendrogramme et accompagne toujours les espèces de *Phillyrea angustifolia*; *Phillyrea latifolia*; *Phillyrea media*; ce qui nous facilité la tâche pour tracer un essai cartographique de la répartition des trois espèces de *Phillyrea sp* dans la région de Tlemcen.

Pour l'essai cartographique, Les espèces communes pour les trois parties et qui accompagnent

toujours le genre *Phillyrea* sont représentées par : *Quercus coccifera ; Pistacia letiscus ; Asparagus acutifolius*. Ces espèces se rapportant généralement à la classe des *QUERCETEA ILLICIS* et à l'ordre des *QUERCETALIA ILLICIS*.

Notre étude sur les groupements à *Phillyrea* a été menée jusqu'au bout ; pour montrer que le cortège floristique où bien le groupement est le même pour les trois espèces de *Phillyrea sp* Dans notre région de Tlemcen.

L'effectif faible du *Phillyrea media* et *Phillyrea latifolia* prouve facilement que ce sont des milieux perturbés par le surpâturage, fréquenté par l'homme et ses énormes engins. Pour limiter le risque de leur extinction, l'étude doit être élargie du point de vue géographique afin de comprendre la dynamique de la distribution de ces deux espèces. Il faut aussi prévoir leur protection et leur conservation, ainsi que pour le reste des espèces qui apparaissent peu ou rarement dans leur cortège floristique.

En général, l'aménagement paysager nécessite des soins intensifs car le déversement irrégulier des déchets doit être éliminé et éloigné des écosystèmes naturels en particulier dans les stations de béni Saf, Zarifet et Terni.

Une stratégie efficace doit être également programmée pour réduire le surpâturage, notamment dans la station de Beni Saf et Sabdou.

Nous devons respecter notre environnement pour vivre dans des bonnes conditions et

transmettre cette culture aux générations montantes.

ABOURA R., 2011 - Contribution à l'étude des Atriplexaies en Algérie occidentale, aspects physionomiques et phytodynamiques. Thèse. Doc. Ecol. Univ. Tlemcen. 156 p.

ACHHAL A., 1986 - Etude phytosociologique et dendrométrique des écosystèmes forestiers du bassin versant du N'Fis (teut-Atlas Central). Thèse Doct. Es Sc. Fac St-Jérôme Marseille. 204 p. + annexes.

AIME S., 1991 – Etude écologique de la transition entre les bioclimats sub-humide, semi-aride et aride dans l'étage thermo méditerranéenne du tell oranais (Algérie occidentale). Th. Doc éssciences. 189p+annexes.

AINAD TABET M., (1996) - Analyse éco-floristique des grandes structures de végétation dans les monts de Tlemcen. Approche phyto- écologique. Thèse Mag. Univ Tlemcen ,111p.

ALCARAZ C., 1969 - Etude géobotanique du pin d'Alep dans le tell Oranais. Th. Doct. 3^{ème} cycle. Fac. Sc. Montpellier. 183p.

ALCARAZ C., 1982 – La végétation de l'ouest Algérien. Thèse Doctorat ès-sciences univ. Perpignan 415 p + annexes, cartes.

AMBROSINI G., 1657 - Hortus Studiosorum: Bononiae Consitus ; Éditeur : Kessinger Publishing (10 août 2009) ; ISBN-10 : 1104868083 ; ISBN-13 : 978-1104868086 ; 106 pages.

ANNE P., 1945 - Sur le dosage rapide du carbone organique des sols. Ann. agron., 15, 161-172.

ANDERSON C.A., AKIKO SHIBUYA, NOBUKO IHORI, EDWARD L WING, BRAD J BUSHMAN, AKIRA SAKAMOTO, HANNAH R ROTHSTEIN, MUNIBA SALEEM., 2010

- Violent video game effects on aggression, empathy, and prosocial behavior in eastern and western countries: a meta-analytic review; Review Psychol Bull ,Mar;136(2):151-73.doi: 10.1037/a0018251

AUBERT G., 1978 – Méthodes d'analyses des sols, centre national de documentation pédologiques. CNDP Marseille 198p.

AUCLAIR D et BIEHLER J., 1967 – Chanzy, Volume 272 of Notice explicative de la carte géologique au 1 :50.000, D. Auclair Algérie / Ministère de l'industrie lourde, Direction des mines et de la géologie, Service de la carte géologique de l'Algérie.

AKMAN, Y., 1962 - Türkiye bioklimi. Botanik Institüsü, Ankara. 49 p.

AKMAN, Y. & DAGET PH., 1971 - Quelques aspects synoptiques des climats de la Turquie. *Bulletin de la Société Languedocienne de Géographie* 5, 269–300.

AKMAN, Y. & DAGET PH., 1981 - PROBLEMES POSES PAR LA DETERMINATION DES CLIMATS MEDITERRANEENS. COMMUN. FAC. SCI. UNIV. ANKARA, SER. C2 BOT.; ISSN 0253-2190; TUR; DA. VOL. 24; NO 2; PP. 15-27; BIBL. 2 P.

AHDALI L. & TAYEB O., 1976.- ETUDE AGROCLIMATOLOGIQUE DES PAYS ARABES. 1. GENERALITES. O.A.D.A. KHARTOUM 820 P. (EN ARABE).

AHDALI L. DAGET PH. & TAYEB O., 1981 - AGROECOLOGIC MAP OF THE ARAB CONTRIES, O.A.D.A., KHARTOUM, 200P.

AUBERT G., 1978 – Méthodes d'analyses des sols, centre national de documentation

pédologiques. CNDP Marseille 198p.

BARRY P. &STOREY T. S., 1979 - Influence of Some Cultural Practices on the Yield, Development and Quality of Field Beans (*Vicia faba* L.); Irish Journal of Agricultural Research, pp. 77-88 (12 pages) Published By: TEAGASC-Agriculture and Food Development Authority; https://www.jstor.org/stable/25555931.

BARBERO M., LOISEL R., et QUEZEL P., 1990 - Les apports de la phyto-écologie dans l'interprétation des changements et perturbations induits par l'homme sur les écosystèmes forestiers méditerranéen. Forêts méditerranéenne, SII : 194-215.

BARBAULT R., 1995 - Biodiversity dynamics : from population and community ecology approaches to a landscape ecology point of view, Landscape and Urban Planning, 31, 89-98. **BARCELO F., 1879-1881**- Flora de las Islas Baleares, seguida de un diccionario de los nombres baleares, castellanos y botánicos de las plantas espontáneas y de las cultivadas ; éditeur Wentworth Press (1 août 2018) ; ISBN-10 : 0274461617 ; ISBN-13 : 978-0274461615. 718 pp. **BASTIN Ch., BENZECRI J.P., BOURGARIT Ch. & CAZES P., 1980** - Pratique de l'analyse des données, T.2 : Abrégé théorique, études de cas modèle. Dunod Ed., 466 p.

BATTANDIER J.A. et TRABUT L.C., 1902. Flore analytique et synoptique de l'Algérie et de la Tunisie. Giralt imprimeur-éditeur, Alger, 460 pp.

BAUHIN G., 1623 - dans Dictionnaire historique de la médecine, ancienne et moderne, **BAGNOULS F. & GAUSSEN H., 1953 -** Saison sèche et indice xérothermique. Doc. Carte prot. Veg. art.8 : 47 p. Toulouse.

BENABADJI N., 1991 - Etude phyto-écologie de la steppe à Artemisia inculta au su de Sebdou (Oranie-Algérie). Thèse. Doct. Sciences et technique. St Jérôme. Aix- Marseille III, 1 1.9P. **BENABADJI N., 1995** - Etude phyto-écologique des steppes à Artemisia herba alba. Asso. et à Salsola vermiculata L. au Sud de Sebdou (Oranie, Algérie). Thèse doct. és Sci., Univ. Tlemcen, 225 p.

BENABADJI N. ABOURA R. et BENCHOUK F.Z., 1996 - La régression des steppes méditerranéennes : le cas d'un faciès à Lygeum spartum L. d'Oranie (Algérie) Ecologia Mediterranea Année 2009 35 pp. 75-90.

BENABADJI N. & BOUAZZA M., 2000- Contribution à une étude bioclimatique de la steppeà *Artemisia herba-alba* Asso. Dans l'Oranie (Algérie Occidentale). Cahier Sécheresse n°2,Vol.11:117-123.

BENABADJI, N. BOUAZZA, M. METGE, G. et LOISEL, R. 2004. Les sols de la steppe à *Artemisia herba-alba* au sud de Sebdou (Oranie, Algérie). Rev. Sci et Tech. Synthèse. N° 13. Juin 2004. Pp :20-28.

BENABADJI N. & BOUAZZA M., 2007- L'impact de la sécheresse sur les massifs préforestiers, Algérie occidentale, XXe siècle. Forêt et eau XIIIe -XIIe siècle. Éd. Harmattan : 85-100

BENEST M., 1985 - Evolution de la plate-Forme de l'ouest algérien et du Nord-Est marocain au cours du Jurassique supérieur et au début du crétacé : stratigraphie, milieu de dépôt et dynamique de sédimentation. These DOCT. Lab. géol. N° 59. Université Claude Bernard. Lyon, 1-367.

BENMAISSA A., 2014- Etude autoécologique et cartographie de l'arbousier Arbutus unedo L. dans la forêt de Bouhriz, la commune de Tenira wilaya de Sidi Bel Abbes. Algérie occidentale. Mém Mas. Univ. Djilali Liabes- Sidi Bel Abbes. 40p+annexes.

BENMAISSA A. & STAMBOULI-MEZIANE H., 2021- The genus *Phillyrea* L. (Lamiales Oleaceae) in the Tlemcen Region (western Algeria). *Biodiversity Journal*, 2021, 12 (1): 231–234. **BENZECRI J.P., 1973-** L'analyse des données, T.II : L'analyse des correspondances. Dunod Ed., 619 p.

BESTAOUI KH; **2009** – Contribution à une étude écologique et dynamique de la végétation des monts de Tlemcen par une approche cartographique, Th. doctorat en biologie. Ecol. Vég. Dép. Bio. Fac. Sci. Univ. Abou Bakr Belkaïd Tlemcen.289 p + annexes.

BONIN G. & ROUX M., 1978 - Utilisation de l'analyse factorielle des correspondances dans l'étude phytoécologique de quelques pelouses de l'Apennin lucano-calabrais. Acta OE-cologica OEcol. Plant., 13, 121-128.

BONIN, G. & VEDRENNE, G., 1979 - Les pelouses culminales du Gran Sasso d'Italia analyse dynamique et relations avec les facteurs du milieu – Ecol. Medit. 4: 95-108.

BONIN G. et TATONI T., 1990 - Réflexions sur l'apport de l'analyse factorielle des correspondances dans l'étude des communautés végétales et de leur environnement. EcologiaMediterranea. 16pp. 403-414. Volume jubilaire du Professeur P. Quézel 1990

BOTINEAU M., 2010 - Botanique systématique et appliquée des plantes à fleurs ; 1336 pages, parution le 15/07/2010 ; Lavoisier ; Librairie Eyrolles - Paris 5 édition.

BOUALI T., 1990 - Possibilités d'extension de Juglans negia L. dans la wilaya de Tlemcen. Mém. Ing. For., Univ. Tlemcen, 96p.

BOUAZZA M., BENABADJI N., LOISEL R., METGE G. 2004 - Évolution de la végétation steppique dans le sud-ouest de l'Oranie (Algérie) ; Ecologia Mediterranea 30(2) :219-231 DOI:10.3406/ecmed.2004.1461

BOUAZZA M., 1991- Etude phyto-écologique de la steppe à Stipa tenacissima L. au sud de Sebdou (Oranie, Algérie). Thèse Doct. En sciences, Fac. Sc. Marseille- Saint-Jérôme, 119 p.+ Annexes

BOUAZZA M., 1995 - Etude phyto-ecologique de la steppe à Stipa tenassicima L. et à Lygeum spartum L. au sud de Sebdou (Oranie- Algérie). Thèse de doctorat. Es-sciences Biologie des organismes et populations. Univ. Tlemcen. 153P.

BOUDY P., 1955 - Economie forestière nord-africaine "description forestière de l'Algérie et de la Tunisie". Ed. Larousse, Paris, 483p.

BOULARAS M. & BOUKLIKHA M., 2001- étude physico-mécanique des sols sableux amandé en sciure de bois. Ecosystèmes, (1), pp 57-63

BOTTNER P., 1982 -Biodégradation du matériel végétal en milieu herbacé. Acta Oecol/Oceol Generalis 3:155-182.

BRAUN-BLANQUET J., 1936 - La chênaie d'Yeuse méditerranéenne (Quercion ilicis). Monographie phytosociologique. Comm. SIGMA, 150 p.

BRAUN-BLANQUET J., 1940 - Prodrome des groupements végétaux. Classe Cisto -

Lavanduletea, Comité Int. Prodrome Phytosoc. Montpellier, 53 p.

BRAUN-BLANQUET J., 1947 - Les groupements végétaux supérieurs de la France. In BRAUN-BLANQUET, EMBERGER, MOLINIER : Instructions pour l'établissement de la carte des groupements végétaux. Montpellier : 19-32.

BRAUN-BLANQUET J., 1951 - Les groupements végétaux de la France méditerranéenne. C.N.R.S. Paris ; 297 p.

BRAUN-BLANQUET J., 1952 - Prodrome des groupements végétaux de la France méditerranéenne. Éd. CNRS, 300 p.

BRIANE J.P., LAZARE J. J. & SALANON R., 1977- Le traitement des très grands ensembles de données en analyse factorielle des correspondances, proposition d'une méthodologie appliquée à la phytosociologie. Doc. int. Lab. Taxonomie végétale expérimentale et numérique, Paris XI, 38 p. + annexes

BRICHETEAU J., 1954 - Esquisse pédologique de la région de Tlemcen-Terni. Publication de l'Inspection Générale de l'Agriculture.

BROSSE J., 1993-Mythologie des arbres, petite bibliothèque Payot, Paris

BURGER A., 1957 - Photographie aérienne et aménagement de territoire. Ed. dunod. Paris, C.N.R.S. Paris, 297p.

CELLES J.C., 1975 - Contribution à l'étude de la végétation des confins Saharo-constantinois (Algérie). Thèse d'état. Univ de Nice. Centrale de recherche en Ecologie forestière CNREF., I.N.R.A. d'Algérie. 7P.

CHAABANE A., 1993 - Etude de la végétation du littoral septentrional de Tunisie ; typologie, syn-taxonomie et éléments d'aménagement. Thèse Doct. ès Sc., Univ. Aix-Marseille, 205 p +annexes

CHABREY D., 1677-Omnium stirpium sciagraphia et icones, quibus plantarum et radicum nomina, figura, natura, natales, synonima, usus et virtutes docentur; sumptibus Samuelis de Tournes.

CHABREY D., 1678 - Stirpium icones et sciagraphia : cum scriptorum circa eas consensu et dissensu, ac caeteris plaerisque omnibus quæ de plantarum natura, natalibus, synonymis, usu & virtutibus, scitu necessaria ; 661 pages.

CHAUMONT M. & PAQUIN C., 1971 - Carte pluviométrique de l'Algérie, (moyenne 1913-1963), 1/500 000, 4 planches, Alger.

CHESSEL D. & BOURNAUD M., 1987- Progrès récents en analyse de données écologiques. IV° Coll. AFIE : La gestion des systèmes écologique, Bordeaux, 65-76.

CHESSEL, D., & GAUTIER N., 1979 - La description des communautés végétales : exemples d'utilisation de deux techniques statistiques adaptés aux mesures sur grilles ou transects. Pages 87-102 in *Actes du 7* ^{eme} *Colloque Informatique et Biosphère*. Association Informatique et Biosphère, Paris.

CLOS D., 1890 - Phillyrea, *Phyllirea*, *Philyrea*, Bulletin de la Société Botanique de France, p 37:2

CORDIER B., 1965 - Sur l'analyse factorielle des correspondances. Thèse. Rennes. **CUPANI, F. 1696** - Hortus Catholicus, cum supplemento ad eundem Hortum. Napoli.

DAGET PH., 1975 a - Remarques sur la structure des images matricielles de la végétation ; livre ; IF27183 ; CNRS, CEPE, note 32/h, 7 p.

DAGET PH., 1975 b - Sur quelques coefficients utilisés dans les classifications climatiques. IV - Climats secs dans le système de Koppen ; livre ; IF24635 ; <u>Sciences Terre Climatologie.</u>

DAGNELIE P., 1960 - Contribution à l'étude des communautés végétales par l'analyse factorielle. Bull. Serv. Carte Phytogéogr., sér. B, 5, 7-71.

DAGNELIE P., 1965 - L'étude des Communautés Végétales par L'analyse Statistique des Liaisons Entre les Espèces et les Variables Écologiques : Principes Fondamentaux : exemple. Biometrics 21, 890-907.

DAHMANI-MEGROUCHE M., 1984 - Contribution à l'étude des groupements de chêne vert des Monts de Tlemcen (Ouest Algérien). Approche phytosociologique et phyto - écologique. Thèse. Doct.3e cycle. Univ. H.Boumediène, Alger, 238p+annexes.

DAHMANI M., 1989 – Les groupements végétaux des monts de Tlemcen (ouest Algérien) : Syn-taxonomie et phyto-dynamique. Biocénose. T.4, N°1.2,: 28-69.

DAHMAN I-MEGREROUCH E M., 1996a – Diversité biologique et phytogéographique des chênaies vertes d'Algérie Ecologia Méditerranea, XXII (3/4).

DAHMANI-MAGREROUCHE M., 1996 b – Groupements à chêne vert et étages de végétation. Ecologie Mediterranea, XXII (3/4).

DAHMANI-MAGREROUCHE M., 1997 - Le chêne vert en Algérie ; Syntaxanomie, Phytoécologie et dynamique des peuplements. Thèse Doct. Es. Sci. U.S.T.H.B., Alger, 383 p.

DAHMANI-MAGREROUCHE M., 1998 - Les chênaies vertes en Algérie : approche syntaxonomique, bioclimatique et syndynamique ; Thèse de doctorat en Écologie ; Soutenue en 1998 à Aix-Marseille.

DAJOZ R., 1982. Précis d'écologie. ''Ecologie fondamentale et appliquée''. Quatrième Ed. Gauthier Villars. Bordas. Paris. 493p.

DALECHAMPS, J. 1586- illustrations très différentes du bananier et deux de l'ananas. Historia plantarum 2 1841.png.Nana, vol. 2, p. 1841, [[Ananas comosus]] (copié de Thevet).

<u>De Juana Clavero</u> J I., 2012- Breve historia taxonómica del género Phillyrea L. (Oleaceae). Bouteloua 12: 32-97 (XII-2012). ISSN 1988-4257.

DE MARTONNE., 1926 – Une nouvelle fonction climatologique : l'indice d'aridité. La météo. Pp : 449-459.

DIOSCORIDE P., 1548 - de ll'eccellente Dottor medico M. P. Andrea Matthioli ... con suoi discorsi... con l'aggiunta del sesto libro dei rimedi di tutti i veleni da lui nuovamente tradotto, et con doctissimi discorsi per tutto commentato ... / In Vinegia, appresso Vincenzo Valgrisi, alla bottega d'Erasino. M.D.X.LVIII,

DIOSCORIDE, voir MATTIOLI (P.-A.)

DIOSCORIDE P., 1559 - Les six livres de Pedacion Dioscoride d'Anazarbe de la matiere medicinale, translatez de latin en francois. A chacun chapitre sont adioustees certaines annotations fort doctes, & recueillies des plus excellens medecins, anciens, & modernes / Lyon : Chez Thibault Payan

DJEBAILI S., 1984- Steppe Algérienne, phytosociologie et écologie O.P.U. Alger. 139 p. + Annexes.

DJELLOULI Y., 1981 - Etude climatique et bioclimatique des hautes plateaux au sud Oranaise (Wilaya de Saïda) " comportement des espèces vis avis des éléments du climat" Thèse, Doct, en Scien Biolo, Univ des Scien et de la Techn Houari Boumediene El Djazaïr.

DOUMERGUE., 1910 – Carte géologique détaillée de l'Algérie au 1/50.000.Feuille de Terni n°300.

DOGAR, Y., 1997- Türkiye'de Spor Yönetimi. Öz Akdeniz Ofset, s. 4

DUCHAUFOUR P., 1965 - Précis de pédologie. Masson, Paris, France

DUCHAUFOUR PH., 1976 - Atlas écologique des sols du Monde. Ed.Masson et Cie: 178P. Paris.

DUHAMEL M., 1755 - un exemplaire du traité des arbres et arbustes qui se cultivent en plein terre de l'académie royale des sciences certifié à Paris le 16 Aout 1755 (2 vol., Paris) t. II. P 386.

DUHAMEL P. A., 1948 -Sidney's "Arcadia" and Elizabethan Rhetoric; Studies in Philology Vol. 45, No. 2 pp. 134-150 (17 pages) Published By: University of North Carolina Press. https://www.jstor.org/stable/4172839

DURAND H., 1954 – « Les sols d'Algérie », Alger S.E.S ; 243p

DURAND H., 1958 – Du nouveau au sujet de la formation des croûtes calcaires. Bull. Soc. Hist. Nat. Afri. Nord. 49, pp.196-203.

DJELLOULI, Y., 1990 - Flore et climat en Algérie septentrionale. Déterminisme climatique de la répartition des plantes. Thèse d'Etat, USTHB (Algérie), 210 p. + annexes.

DJELLOULI Y., et DAGET P., 1993 -Conséquences de la sécheresse des deux dernières décennies sur les écosystèmes naturels algériens, Publication Association International Climatologique, 6, p105-14.

DANTAS BARRETO, R. R., 1958 - Os carvalhais da Serra da Peneda. Agronomia lusitanica, 20: 83-152.

DROUINEAU, G., LEFEVRE, G., 1951 - Economie de l'azote dans les sols calcaires sous climat mkditerranéen. II. Congr. mond. engrais chim., Rome.

ELISABETH J., 2010 - Projet D31-1235 : Etablissement du bilan de carbone d'une exploitation agricole pratiquant le système allaitant : effets du climat et de la gestion du pâturage. Rapport d'activités ; Université de Liège - Gembloux Agro-Bio Tech ; Gembloux ; Belgique ; 8 pages ; http://hdl.handle.net/2268/146693.

EMBERGER L ; **1930** –**A-** Sur une formule climatique applicable en géographie botanique. C.R.A cad. Sc. ; 1991 pp : 389 – 390

EMBERGER L ; **1930** – **B** – La végétation de la région Méditerranéenne. Essai d'une classification des groupements végétaux. Rev. Géo. Bot. 42 pp : 341 – 404.

EMBERGER, L., 1936 - Remarque critiques sur les étages de végétation dans les montagnes marocaines. Bull. Soc. Bot. Suisse, vol. jub. Inst. Rubel 46. Pp 614-631.

EMBERGER L., 1942 - Un projet de classification des climats du point de vue phytogéographique. Bull. Sx. Hist. Nat. Toulouse, 77 : 97 - 124.

EMBERGER L., 1954 - Projet d'une classification biogéographique des climats. In : Les divisions Scologiques du Monde, C.N.K.S., Paris.

EMBERGER L., 1971 - Travaux de botanique et d'écologie, Masson et C^{ie}, Paris, 520p. **ESCOFIER** *B* & PAGES *J.P.*, **1990** - *Analyses factorielles simples et multiples* : *objectifs, méthodes et interprétation, Dunod. Paris.*

FERKA-ZAZOU, N., 2006 - Impact de l'occupation spatio-temporelle des espaces sur la conservation de l'écosystéme forestier : Case de la commune de Tessala, wilaya de sidi Bel Abbes, Algerie.Mémoire Mag. Univ. Tlemcen, pp : 154.

FRANCIS, D., P. JEAN-MARIE, 2009 - Plantes Médicinales ; Secrets et remèdes d'autrefois. Debaisieux (Ed), Paris,pp: 127.

FRONTIER S., 1983- Stratégies d'échantillonnage en écologie.Ed.Mars et Cie. Coll. Décol. Press. Univ. Laval. Quebec pp : 26-48.

GAGNARD J, HUGUET C, RYSER JP.; 1988 - L'analyse du sol et du végétal dans la conduite de la fertilisation. Le contrôle de la qualité des fruits; International Organization for Biological Control of Noxious Animals and Plants, Paris (France). West Palaearctic Regional Section eng

GAUCHER G., 1968 - Traité de pédologie agricole. Infoscience. Information ; Usage statistics ; Files. Traité de pédologie agricole Le sol et ses caractéristiques agronomiques. Publisher : Paris, Dunod. Keywords : Pédologie ; Propriété du sol

GAUSSEN, H. & VERNET, A., 1958 - CARTE INTERNATIONALE DU TAPIS VEGETAL. FEUILLE DE TUNIS-SFAX L/L 000 OOOEME, BULL. SERV. CARTES PHYTOGEOGR., SER. A, 3 (2), 34 P», CNRS, PARIS

GASTON K.J., 1997- WHAT IS RARITY? IN KUNIN, W.E. & GASTON, K.J. (CD.): THE BIOLOGY OF RARITY. - LONDON, CHAPMAN & HALL, 30-47.

GÉRARD L., 1761 - L'Abbé Jean-Baptiste Nicolas Arnoult prêtre apostat cauchois. Mannevile- la-Goupil, Liturge éditions, 1998, 89 p.

GIACOBBE A., 1937 - Ricerche ecologiche e tecniche sul Pinus laricio Poir. et sul Pinus austriaca Hoess; 166 p.: tabl. graph. phot. bibliogr.; 23 cm; (Extrait de: Nuovi annali dell'agricoltura, vol. 17). Italien (*ita*).

GODRON M., 1971- Essai sur une approche probabiliste de l'écologie des végétaux. Thèse Doct. Univ. Sci. Techn. Languedoc, Montpellier. 247p

GOUNOT M., 1962 - Etude statistique d'une pelouse à Brachypodium ramosum II, étude de la distribution des espèces au moyen d'un test non paramétrique. Bull. Serv. Carte phytogéographique, sér. B, 7 (1), 65-84.

GOUNOT R., 1962 - Revue d'histoire de la pharmacie, 50 année, n°175. Les grands pharmaciens. www.persee.fr/issue/pharm_0035-2349_1962_num_50_175.

GRANDSAGNE A., 1832 - Historie naturelle de Pline. Tom 15. Paris.

GUINOCHET M., 1954 - Nomenclature phytosociologique. Remarques et recommandations. VII1" Congrès inter. Bot. Sections 7 et 8. 15-20. Paris.

GUINOCHET M., 1968 – Continu ou discontinu en phytosociologie. The botanical review, 34, 3, 273- 290

GUINOCHET M., 1973 - Phytosociologie. Ed. Masson. Et Cie, Paris. 227 p+ annexe. **GUINOCHET, M. et VILMORIN, R., 1975** - Flore de France : fascicule 2, inventaire

2008 : Pointé en rayon le 04/06/2008 (2 tomes 1, 2 tomes 2, 2 tomes 3, 2 tomes 4 et 2 tomes 5), Vol. 1 :

1-366 - Vol. 2: 368-818 - Vol. 3: 820-1199 - Vol. 4: 1202-1595 - Vol. 5: 1598-1879.

GUMUCHIAN H. & MAROIS C., 2000- Les méthodes d'échantillonnage et la détermination de la taille de l'échantillon. Chapitre 6. In Initiation à la recherche en géographie : Aménagement, développement territorial, environnement. Presse de l'Université de Montréal, p : 265-294.

HAMAMDHE F.G., 2003 - Climate and Surface Impact on Plant Cover; No Thumbnail [100%x80]. View/Open. climate_surface.pdf (11.15Mb). Author. Metadata. Show full item record.

HALITIM A., 1988 - Sols des régions arides d'Algérie, O.P.U Alger. Algérie 384 pages **HASSAINE CHA., 2011** - Etude floristique à partir d'un model linéaire dans la région Nord de Tlemcen.mag Univ de Tlemcen p 145.

HASSAINE CHA., ABOURA R., MERZOUK A. ET BENMANSOUR DJ., 2014 - Study of

Halophytes Dispersion in the North-West Region of Algeria, Open Journal of Ecology, 2014, 4, p 628- 640 Published Online July 2014 in SciRes.

HERMANN P., 1687- Horti academic;i Lugduno-Batavi catalogus. apud Cornelium Boutesteyn, 699 p. -Nos 4, 13. 23 et 107.

HUMBOLDT A. V., 1807- und A[imé] Bonpland. Bearbeitet und hg. von dem Erstern. Mit einer Kupfertafel. Tübingen/Paris. [4.8.2].

HUMBOLDT A. V., 1886 - Monatsschrift Für Die Gesamten Naturwissenschaften; classic Reprint Series.by Georg Krebs(Inglés) Tapa dura – 12 agosto 2018.

_ |

JANAKAT S, AL-MERIE H. 2002 a- Evaluation of Hepatoprotective Hffect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca, Ethnopharmacol; 83(1-2):135-8. PubMed PMID:12413719.

JANAKAT S, AL-MERIE H., 2002 b- Optimization of the dose and route of injection, and characterisation of the time course of carbon tetrachloride-induced hepatotoxicity in the rat.Journal of Pharmacological and Toxicological Methods, Volume 48, Issue 1,July—August 2002, Pages41-44

JOHNSON L.A.S., 1957- A review of the family Oleaceae. Contr. New. South. Wales. Nat. Herb.2. (5) 395-518.

JONCQUET, D. 1665- Hortus regius. Paris.

JUAN RUIZ DE LA TORRE., 1955 - El matorral en Yebala (Marruecos Español).

Descripción: CSIC,, Madrid. 133pp.Láminas y mapas. Nº de ref. Del artículo: 34408

JUDD, S. J., LE CLECH, P., TAHA, T., and CUI, Z. F., 2001 - Theoretical and experimental representation of a submerged MBR system. Proc., MBR 3 Conf., Cranfield, 1–13.

JUSSIEU, A.L. 1789 – les sciences naturelles de XVIIIe siècle, classification naturelle ; Genera plantarum ; pour la partie botanique. Culinaria. Stockholm, 1778, 2 volumes in-8°

KADIK B., 1987 - Contribution à l'étude du Pin d'Alep (Pinus halepensis Mill.) en Algérie : Ecologie, dendrométrie, morphologie. Office des publications universitaires. Ben Aknoun. Alger. 313p + annexes.

KENT M. & BALLARD J., 1988 - Trends and problems in the application of classification and ordination methods in plant ecology. Vegetatio, 78, 104-124.

LAGUNA A., (1563 et 1570) - Dioscórides, Pedacio Dioscorides anazarbeo. Acerca de la materia medicinal y de los venenos mortíferos. Salamanca.

LAVERGNE S, MOLINA J, DEBUSSCHE M., 2006 - Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Glob. Change Biol. 12:1466—

78 L'ÉCLUSE, C. 1601- Variorum plantarum historia. Antuerpiae.

LEGENDRE L. & LEGENDRE P., 1984 - Ecologie numérique (deuxième édition). Masson Ed., 335 p.

LEPART J, DOMMEE B., 1992- Is Phillyrea latifolia L. (Oleaceae) an androdioecious species? Botanical Journal of the Linnean Society, 108, 375-387.

LEPART, J and DEBUSSCHE, M 1991- Invasion processes as related to succession and disturbance. In: Groves, R.H. and Castri, F. (Eds), Biogeography of Mediterranean invasions. Cambridge University Press, Cambridge, pp 159-177.

LINNE C.V., 1747 – Flora Zeylanica Sistens Plantas indicas Zaylenae insulae - Kessinger's rare reprints-

LINNE., (1707-1778) - Le prince des botanistes, Paris, Belin, coll. « Un savant, une époque », 1986, 350 p.

LINOCIER, G. 1584- L'Histoire des plantes. Paris.

LUSITANICUS, A. 1558- In Dioscorides Anazarbei De medica materia libros quinque. Lugduni.

LE HOUEROU, H.N., 1959 - Bioclimatologie et biogéographie des steppes arides du Nord de l'Afrique. Diversité biologique, développement durable et désertification. Options méditerranéennes. Série B : étude et recherche, 10 : 1-396.

LE HOUEROU, H.N., 1969 - La végétation de la Tunisie steppique (avec références au Maroc, à l'Algérie et à la Libye). Annales de l'I.N.R.A.T. Tunisie, 42 (5): 1-617.

LE HOUEROU H. N., 1995 – Bioclimatologie et biogéographie des steppes arides du Nord de l'Afrique. Options méditerranéennes, série B, N°10, C.I.H.E.A.M., Montpellier, 396 p.

LOISEL R. & GAMILA H., 1993 - Traduction des effets du débroussaillement sur les écosystèmes forestiers et pré-forestier par un indice de perturbation. Ann. Soc. Sci. Nat. Archéol. De Toulon de la var. pp : 123-132.

LOISEL R., AUBERT G., BERKANI A., GOMILA H. et ROLANDO Ch., 1990 - Relations

sol végétation dans le vignoble de Vidauban (Var) -Nat. 1 - Analyse Toulon et phytoécologique du Var, 42 : 35-53.

LONG G., 1975 - Diagnostic phytoécologique et aménagement du territoire : principles généraux et methods. Collection Ecologie, Ed. Masson, T 1. 225 p.

MAGNOL P., 1676 - Botanicum monspeliense. Lugduni.

MAGURRAN A.E., 2004 - Measuring biological diversity. Blackwell Science; Oxford : MAIRE R. 1926 a - Carte phytogéographique de l'Algérie et de la Tunisie. Baconnier, Alger, 78p.

MAIRE R., 1926 b - Principaux groupements de végétaux d'Algérie.

MAIRE R., 1928 - La végétation et la flore du Hoggar ; Note ; (Extrait des Comptes Rendus de l'Académie des Sciences, 186, p. 1680- 1682 ; 18 juin 1928). ALGER imprimerie Minerva 5, rue Clauzel.

MALAGARRIGA R., 1965 - Flora analítica de Barcelona. I Fanerógamas. Barcelona. MATTHIOLI P A., 1562 - Commentarii denuo aucti in libros sex Pedacii Dioscoridis Anazarbei de medica materia. Adjectis quamplurimis plantarum, & animalium imaginibus, quae in prioribus editionibus non-habentur, eodem authore. His accessit ejusdem Apologia adversus Amathum Lusitanum, quin & censura in ejusdem enarrationes / Lugduni: Apud Gabrielem Coterium. M. D. LXII.

MATTIOLI P., 1674 - Opera quae extant omnia. Basileae.

MATTIOLI P., 1559 - Commentarii secundo aucti, in libros sex Pedacii Dioscoridis Anazarbei de medica materia. Lugduni.

MEDAIL F. & QUEZEL P., 1997 - Hot-Spots Analysis for Conservation of Plant Biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden. Vol. 84, No. 1, pp. 112- 127 (16 pages).

MERZOUK A., BENABADJI N., BENMANSOUR D. ET THINON M., 2009 - Quelques

aspects édapho- floristiques des peuplements halophiles de l'Algérie occidentale. Bull. Soc. Linn. Provence, N° 60, pp : 58-98.

MERZOUK A., 2010 - Contribution à l'étude phytoécologique et bio-morphologique des peuplements végétaux halophiles de la région occidentale de l'Oranie (Algérie). Thèse. Doc. Univ. Abou Bakr Belkaid-Tlemcen. Fac. Sci. Départ. Bio. Lab. Ges. Ecosys. Nat. 261 p + annexes.

MEDIOUNI K. ET LETREUCH-BELAROUCI N., 1987 - Problématique de l'aménagement agro-sylvo- pastoral : cas d'une zone pilote de 5000 Ha du massif de Hassasna. Ann. D'Inst. Nat. Agro. Vol. 11(2). p : 79-121

MUNTING A., 1702 - Phytographia curiosa [...]. Pars prima. Lugduni Batavorum.

MUTEL P., 1835 - Flore française [...] Tome second. Paris.

OZENDA P., 1975 - Sur les étages de végétation dans les montagnes du bassin méditerranéen

Documents de cartographie écologique 16, p. 1-32.

OZENDA P., 1982. Les végétaux dans la biosphère. Doin Editeurs. Paris. 431p.

OZENDA P., 1986. La cartographie écologique et ses applications. Ed. Masson. Paris.160 p.

PAÑELLA, J., 1991 - Las plantas de jardín cultivadas en España. Floraprint S. A.

PARADIS G. & M.-L. POZZO DI BORGO, 2005 - Etude phytosociologique et inventaire floristique de la réserve naturelle des Tre Padule de Suartone (Corse). Journal de Botanique de la Société Botanique de France, 30 : 27-96.

PAULLI S., 1708 - Quadripartitum botanicum. Francofortum.

PERICHAUD L. & BONIN G., 1973- L'analyse factorielle des correspondances appliquées aux groupements végétaux du Gran Sasso d'ITALIA. Not. Fitosoc., 7, 29-43.

PERIGOA E.A., JACIMOVICB J., GARCIA FERREB F., SCHERFB L.M., 2019-Additive

manufacturing of magnetic materials; Contents lists available at ScienceDirect; Additive Manufacturing; journal homepage: www.elsevier.com/locate/addma;; https://doi.org/10.1016/j.addma.2019.100870.

PIELOU, D. P., 1966 - The Fauna of *Polyporous betulinus* (Bulliard) Fries (Basidiomycetes: Polyporaceae) in Gatineau Park, Quebec. *Can. Ent.* 98: 1233–1237.

PIERONI A., PACHALY P., 2000 - Studies on anti-complementary activity of extracts and isolated flavones from Ligustrum vulgare and Phillyrea latifolia leaves (Oleaceae) Journal of Ethnopharmacology Volume 70, Issue 3, Pages 213-217.

PLUKENET L., 1696 - Almagestum botanicum. London.

POIRET, J. L. M., 1827- Histoire philosophique, littéraire, économique des plantes d'Europe. Tome V. Paris

POUGET M., 1980 - "Les relations sol-végétation dans les steppes sud algéroises" Travaux et documents de l'O.R.S.T.O.M. N°16/555P.

Q

QUER Y MARTINEZ, J. & GOMEZ ORTEGA C., 1784. Continuación de la Flora española, ó Historia de las plantas de España, que escribía Don Joseph Quer [...], 2 vols. Madrid, impr.

Joachin Ibarra.

QUEZEL P., 1979 - La Région Méditerranéenne Française et ses essences forestières. Signification écologique dans le contexte Circumméditerranéen. Forêt méditerranéenne, tome1, numéro 1

QUEZEL P., BARBERO M. BONIN G. et LOISEL R., 1980 (a) - Essais de corrélations phytosociologiques et Bioclimatiques entre quelques structures actuelles et passées de la végétation méditerranéenne. Nat. Monspeliensa, N° Hors-série, 89 - 100.

QUEZEL P., BARBERO M. et AKMAN Y., 1980(b) - Contribution à l'étude de la végétation forestière d'Anatolie Septentrionale. Phytocoenologia. 8 (3 - 4) : 365.

QUEZEL P. & BARBERO M., 1982 - Definition and characterization of Mediterranean-type ecosystems, Ecol. Medit., 8, 1-2:15-29.

QUEZEL P., MEDAIL F., LOISEL R. et BARBERO M., 1999- Biodiversité et conservation des essences forestières du bassin méditerranéen. Rev. Unasylva. La Forêt Méditerranéenne N° 197, Vol. 50. Site Web.

\mathbb{R}

RAMADE, **F.**, **2002** - Dictionnaire encyclopédique de l'écologie et des sciences de l'environnement. Dunod Sciences ed, Paris, 1085 pp

RAMADE F., 2003 - Elément d'écologie, écologie fondamentale. 3ème édition, Ed. Dunod, Paris, 690p.

RAMEAU J.C. et al., 2008, - De nombreuses données d'ordre écologique et concernant l'utilisation des arbres proviennent de la flore forestière. Flore forestière

française, tome 3, Région méditerranéenne, édition. Institut pour le développement forestier.

RAMEAU, J.C. MANSION, D. DUME G., - 2008 - Flore forestière française, guide écologique illustré 3 région méditerranéen. Institut pour le développement forestier. CNPPF RIVAS GODAY, S., 1964 - Vegetación y flórula de la cuenca extremeña del Guadiana. Madrid. RIVAS-MARTINEZ S., 1974 - La végétatión de la classe des Quercetea ilicis en España y Portugal. Anal. Inst. Bot. Cavanilles. Madrid. (31) 2 : 341-405.

RIVAS-MARTINEZ, S., 1975 - La vegetación de la classe Quercetea ilicis en España y Portugal. Anales Inst. Bot. Cavanilles 31, 2. 205-259.

RIVAS-MARTINEZ S., 1981 – Les étages bioclimatiques de la pennisule Iberique, Anal. Gard. Bot. Madrid 37 (2). Pp : 251 – 268.

ROBERTO D., et LEILA DA COSTA F., 2000 - Sustainability in the Period of conferences on the, environment and development – an insight into ecology and economics.

RUELLAN A., 1970 - Quelques réflexions sur la paléopédologie. In : Bulletin de l'Association française pour l'étude du quaternaire, vol. 7, n°2-3. Travaux du Colloque de Grignon sur les paléosols (19-20 avril 1969) pp. 179-180.

RANKIAER C., 1904 - Biological types with reference to the adaptation of plants to survive the unfavourable season. In Raunkiaer, 1934, pp: 1-2.

RANKIAER C., 1907-The life from of plants and their bearing on geography, clarendon. Press, Oxford (1934).

RAUNKIAER C., 1934 – The life forms of plants and statistical plant. Geography. Claredon press, Oxford, 632 P.

SARI-ALI A., 2012 - Contribution à l'étude des Peuplements à *Arthrocnemum glaucum* (Del.) Ung de l'Oranie (Algérie occidentale) taxonomie et bio-écologie. Thèse. Doc. Ecol. Univ. Tlemcen. 245p + annexes

SEBASTIAN C., 1956. Etude du genre Phillyrea Tournefort. Travaux de l'Institut scientifique chérifien et de la Fa¬culté des sciences, 6: 1–120.

SEBASTIANI F. A., 1815 - Romanarum plantarum fasciculus alter. Roma.

SHAMARA. S., 1993- 'Ecology is A Sistah's Issue Too: The Politics of Emergent Afrocentric Womanism,' in Carol Adams (ed.) Ecofeminism and the Sacred, New York: Continuum Press. Ritvo, Harriet.

SHANNON, R. D., 1964 - The Kinetics and Mechanism of the Anatase Rutile Transformation Ph. D. Thesis University of California.Berkeley.

SHANNON, C.E. & WEAVER W., 1949 - The Mathematical Theory of Communication. University of Illinois Press, Urbana.

SHANNON, C.E. &WEAVER W., 1964 - The mathematical theory of communication. Urbana

: The University of Illinois Press.

SPACH M., 1839 - Histoire Naturelle Des Végétaux. Phanerogames. V. Paris

SUÁREZ DE RIBERA F., 1733 - Pedacio Dioscorides Anazarbeo annotado por el Doctor Andres Laguna [...] Tomo Primero. Madrid.

SELTZER P., 1946 -Le climat de l'Algérie .Inst.Météor, et de Phys- Du globe. Univ Alger.219p.

SELTZER P., 1975- Prévost et son Cleveland : essai de mise au point historique. In: Dixhuitième Siècle, n°7, 1975. pp. 181-208; doi : https://doi.org/10.3406/dhs.1077 https://www.persee.fr/doc/dhs_0070-6760_num_7_1_1077.

STAMBOULI-MEZIANE H., 2010 – Contribution à l'étude des groupements à psammophiles de la région de Tlemcen (Algérie occidentale). Thèse. Doct. Univ. Abou Bakr Belkaid-Tlemcen, p 226.

THÉIS A., 1810 - Glossaire de botanique ou Dictionnaire Etymologique De Tous Les Moms Et Termes Relatifs A Cette Science. Paris.

THEOPHRASTE. 1949 - Historia Plantarum. [Texte grec et trad, anglaise par Sir Arthur Hort, Loeb Classical Library, Cambridge, Harvard University Press, 2 vol.; texte grec et trad, française par S. Amigues, Belles Lettres, Paris.

THEOPHRASTUS 1644 - De historia plantarum libri decem. Amstelodami.

TOURNEFORT J. P., 1694 - Eléments de botanique [...] [Tome I] Paris.

TOURNEFORT J. P., 1700 - Phillyrea in Institutiones rei herbariae. París.

TOURNEFORT J., 1797 - Eléments de botanique [...]. Édition augmentée [...] Par N. Jolyclerc [...] Tome troisième. Lyon.

TRIPLET P., 2017 - Dictionnaire encyclopédique de la diversité biologique et de la conservation de la nature, (troisième édition) ; Dictionnaire encyclopédique de la diversité biologique et de la conservation de la nature. 1056p.

TROUPIN G., 1971 - Syllabus de la flore du Rwanda, Spermatophytes. *Tervuren, Belgium* Musée Royal de l'Afrique Centrale, p. 143

VALENTINI C., 1715 - Tournefortius contractus. Paris vol. 1, 1828, p. 312.

VELA E. ET BENHOUHOU S., 2007. Evaluation d'un nouveau point chaud de biodiversité végétale dans le bassin méditerranéen (Afrique du Nord). C. R. Biologies, 330 : 589-605.

WALLANDER E. & ALBERT V. A., 2000 - Phylogeny and clasification of Oleaceae based on RPS16 and TRNL-F sequence data. American Journal of Botany 87(12): 1827-1841.

WATSON, L. & DALLWITZ, M. J., 1992 - The grass genera of the world.plants, Poaceae. Pp. ref.#8194. pp.1038. Wallingford, Oxfordshire.

WILSON E.O., 1988 - Biodiversity. National Academy Press. Washington. D.C. USA

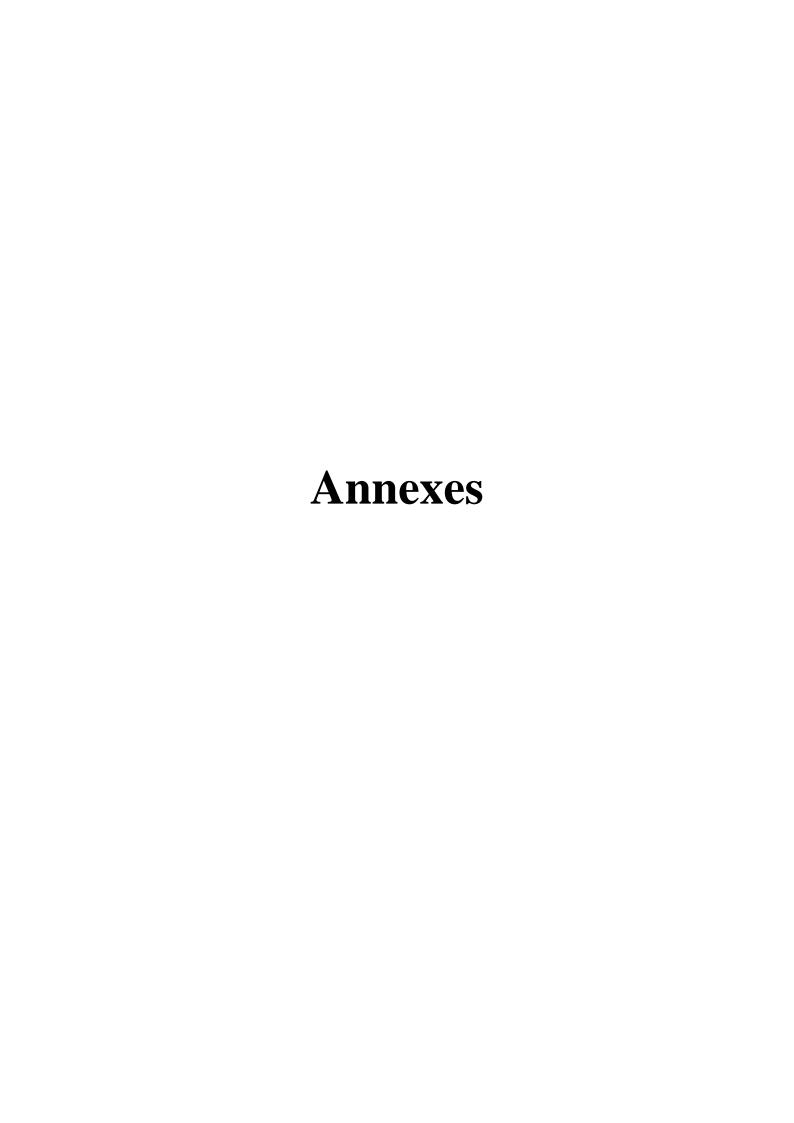


Tableau 24: Représentation de la fréquence des espèces dans le groupement (Ar) de la Station Béni-saf

Genres Espèces	code	R1	R4	R2	R3	R5	R14	R15	R16	R17	R18	R19	R20	R21	R26	R27	R37	R38	R39	R40	Présence	Fréquence
Juniperus phoenicea	JP	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	15,79
Pinus maritima	PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	3	15,79
Stipa tenacissima	ST	0	1	0	0	0	1	0	1	1	0	0	1	1	0	1	0	0	0	1	8	42,11
Stipa torilis	ST1	1	0	1	0	0	1	0	0	0	0	0	1	1	1	1	1	1	1	1	11	57,89
Polypogon monspeliensis	PM1	1	1	0	1	0	1	0	0	0	1	1	0	1	1	1	0	1	1	1	12	63,16
Avena sterilis	AS	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	1	1	1	1	9	47,37
Dactylis glomerata	DG	1	0	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	15	78,95
Briza minor	BM	0	1	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0	1	11	57,89
Bromus rubens	BR	1	0	1	1	0	1	1	1	0	1	0	0	0	1	1	1	1	1	1	13	68,42
Brachypodium distachyum	BD	1	1	0	1	1	1	1	1	0	0	1	0	0	1	1	1	1	1	1	14	73,68
Lepturus cylindricus	LC	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	0	0	0	1	13	68,42
Aegilops triuncialis	AT	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	1	1	1	1	9	47,37
Hordeum murinum	НМ	1	1	1	0	1	1	0	1	1	1	0	0	0	1	1	1	1	1	1	14	73,68
Chamaerops humilis	СН	1	1	1	0	1	1	1	1	1	1	0	1	1	0	0	1	0	0	1	13	68,42
Asphodelus microcarpus	AM	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0	5	26,32
Tulipa sylvestris	TM	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	10,53
Scilla peruviana	SP	0	0	0	0	0	1	1	0	1	1	1	1	1	0	0	0	0	0	0	7	36,84
Urginea maritima	UM	0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0	1	6	31,58
Muscari comosum	MC	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	10,53
Asparagus albus	Aa	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	10,53
Asparagus acutifolius	Aa1	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	4	21,05
Allium hirsutum	AH	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	3	15,79
Allium nigrum	AN	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	2	10,53
Smilax aspera	SA	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	15,79
Tamus communis	TC	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	3	15,79
Gladiolus segetum	GS	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Ophrys speculum	OS	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	10,53

Ophrys apifera	OA	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	5,26
Quercus coccifera	QC	1	0	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	1	1	10	52,63
Aristolochia longa	AL	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	3	15,79
Chenopodium album	CA	0	1	0	0	0	1	1	0	1	0	0	0	0	0	0	1	1	0	0	6	31,58
Herniaria hirsuta	Hh	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	3	15,79
Paronychia argentea	PA	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	0	0	0	0	5	26,32
Adonis dentata	AD	0	0	0	1	1	1	0	1	0	0	0	0	1	0	0	0	0	0	0	5	26,32
Adonis aestivalis	Aa2	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	2	10,53
Ranunculus spicatus	RS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	4	21,05
Ranunculus repens	Rr	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	5	26,32
Vella annua	VA	1	1	1	0	0	0	0	0	0	0	1	1	1	0	1	1	0	0	0	8	42,11
Lobularia maritima	LM	0	0	0	0	0	0	1	0	1	0	0	1	1	0	0	0	0	0	0	4	21,05
Raphanus raphanistrum	Rr1	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	3	15,79
Sedum acre	SA1	0	1	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	5	26,32
Ulex boivinii	UB	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Ulex parviflorus	UP	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	3	15,79
Genista numidica	GN	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Ononis reclinata	OR	1	1	0	1	0	0	0	0	0	0	1	1	1	0	0	1	1	0	0	8	42,11
Calycotome spinosa	CS	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	0	1	0	14	73,68
Medicago littoralis	ML	1	0	0	0	0	1	1	1	1	1	0	1	1	1	0	1	1	0	1	12	63,16
Trifolium compestre	TC1	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	1	1	5	26,32
vicia villosa	VV	1	0	1	0	1	0	0	1	0	1	1	0	1	0	1	0	0	1	1	10	52,63
Hippocrepis multisiliquosa	HM1	1	1	0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	7	36,84
Geranium pratense	GP	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Erodium moschatum	EM	0	0	1	0	0	1	1	0	0	0	1	0	0	1	1	1	1	0	0	8	42,11
Euphorbia peplus	EP	1	1	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1	0	8	42,11
Euphorbia bivubellata	EB	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	3	15,79
Pistacia lentiscus	PL	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	17	89,47
Rhamnus lycioides	RL	1	1	0	0	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	6	31,58
Malva aegyptiaca	MA	1	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	5	26,32

Malva sylvestris	MS	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	5	26,32
Daphne gnidium	DG1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Eryngium maritimum	EM1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	4	21,05
Thapsia garganica	TG	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	10,53
Torilis nodosa	TN	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	3	15,79
Ammoides verticillata	AV2	0	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1	0	0	1	7	36,84
Oenanthe (globulosa)	OG	0	0	0	1	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	5	26,32
Kundmannia sicule	KS	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	10,53
Oxalis pes-caprae	OP	1	1	0	0	0	1	0	1	0	0	0	0	1	0	1	1	1	0	0	8	42,11
Cistus villosus	CV	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	4	21,05
Cistus salvifolius	CS1	0	0	1	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	6	31,58
Cistus albidus	CA1	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	3	15,79
Halimium halimifolium	Hh1	0	0	0	0	0	1	0	0	1	0	1	1	1	0	1	0	0	0	0	6	31,58
Helianthemum hirtum	Hh2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	4	21,05
Helianthemum virgatum	HV	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	3	15,79
Fumana thymifolia	НТ	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	10,53
Erica multiflora	EM2	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	10,53
Coris monspeliensis	CM1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	5,26
Anagallis arvensis subsp phoenicea	Aa3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Anagallis arvensis subsp latifolia	Aa4	0	0	1	0	0	1	1	1	1	1	1	1	1	0	0	1	1	0	0	11	57,89
Phillyrea angustifolia	PA1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	19	100,00
Phillyrea media	PM2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	5,26
Phillyrea latifolia	PL1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	10,53
Olea europea	OE	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Cicendia filiformis	CF	1	0	0	0	0	1	0	0	1	1	0	0	0	1	1	1	0	1	1	9	47,37
Cuscuta sp	CSP	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	4	21,05
Convolvulus althaeoides	CA2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	26,32
Convolvulus arvensis	CA3	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	4	21,05
Teucrium polium	TP	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	10,53

Rosmarinus officinalis	RO	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2	10,53
Lavandula dentata	LD	1	1	0	1	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	12	63,16
Lavandula multifida	LM1	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	5	26,32
Lavandula stoechas	LS1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	5,26
Sidertis montana	SM1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	21,05
Marrubium vulgare	MV	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	15,79
Thymus ciliatus	TC2	0	1	0	0	0	1	1	1	1	1	1	1	1	0	0	1	0	0	0	10	52,63
Orobanche purpurea	OP1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	2	10,53
Plantago psyllium	Pp	1	1	0	0	1	0	0	1	0	0	1	0	0	1	1	1	0	1	1	10	52,63
Plantago alypum	PA2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Plantago coronopus	PC	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	3	15,79
Plantago serraria	PS	0	1	1	1	0	1	1	1	0	0	0	1	0	1	0	1	1	0	1	11	57,89
Plantago lagopus	PL2	1	1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	11	57,89
Plantago ovata	РО	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	10,53
Rubia peregrina	RP	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	3	15,79
Rubia tinckorum	RT	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	10,53
Gallium verum	GV	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	3	15,79
Gallium aparine	GA1	1	1	1	0	1	1	1	1	0	1	1	0	1	1	0	0	0	1	1	13	68,42
Sherardia arvensis	SA2	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	6	31,58
Lonicera implexa	LI	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	0	5	26,32
Scabiosa stellata	Ss	1	0	0	0	0	0	1	1	0	1	0	0	0	1	1	0	0	0	0	6	31,58
Bryonia dioica	BD1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	3	15,79
Campanula trachelium	CT	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	15,79
Bellis sylvestris	BS	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	2	10,53
Bellis annua	BA	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	1	4	21,05
Micropus bombicinus	MB	0	0	1	0	0	1	0	1	0	1	1	1	1	0	0	1	0	0	1	9	47,37
Gnaphalium lueo-album	GLA	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	4	21,05
Pallenis spinosa	PS1	0	0	1	0	0	1	1	0	1	0	0	0	0	1	1	0	1	1	1	9	47,37
Asteriscus maritimus	AM1	0	1	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	5	26,32
Senecio vulgare	SV1	1	0	1	1	0	1	0	1	1	0	1	0	1	1	1	0	1	0	0	11	57,89

Chrysanthemum grandiflorum	CG	1	1	0	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	6	31,58
Chrysanthemum coronarium	CC	0	0	0	0	1	0	0	0	0	0	1	1	1	0	1	0	0	1	1	7	36,84
Xeranthemum inapertum	XI	1	0	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	6	31,58
Carduus pycnocephalus	CP	1	0	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	0	15	78,95
Centaurea pullata	CP1	0	1	0	1	1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	6	31,58
Centaurea incana	CI1	0	1	0	0	1	0	0	0	0	0	1	1	1	1	1	0	1	1	0	9	47,37
Catananche coerulea	CC1	0	0	0	0	0	1	0	0	1	1	0	1	0	0	0	1	0	0	0	5	26,32
Tolpis barbata	TP1	1	1	1	1	0	0	1	1	0	0	1	1	1	1	1	0	1	1	1	14	73,68
Rhagadiolus stellatus	RS1	0	0	0	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	6	31,58
Taraxacum officinalis	TO1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,26
Reichardia picroides	RP1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	10,53
Reichardia tingitana	RT1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3	15,79

Tableau 25: Représentation de la fréquence des espèces dans le groupement (Br) de la station de Béni-Saf

genres espèces	code	R22	R23	R24	R25	R46	R47	R48	R49	R34	R35	R36	R41	R42	R43	Présence	Fréquence
Tetraclinis articulata	TA	0	0	0	0	1	0	0	0	0	0	0	1	0	1	3	21,43
Juniperus phoenicea	JP	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2	14,29
Pinus maritima	PM	0	0	0	0	0	0	0	0	1	1	1	0	0	0	3	21,43
Stipa tenacissima	ST	0	1	0	1	0	1	1	1	1	1	0	1	0	0	8	57,14
Stipa torilis	ST1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	11	78,57
Polypogon monspeliensis	PM1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	13	92,86
Avena sterilis	AS	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7,14
Dactylis glomerata	DG	1	1	0	1	1	1	1	0	1	1	0	1	1	1	11	78,57
Briza minor	BM	0	1	0	1	1	1	1	1	1	1	0	1	1	1	11	78,57
Bromus rubens	BR	1	1	1	1	0	0	0	0	1	1	1	1	1	1	10	71,43
Brachypodium distachyum	BD	1	1	1	1	1	1	1	0	1	1	0	0	0	0	9	64,29
Lepturus cylindricus	LC	1	1	1	1	1	0	0	0	1	1	1	1	1	1	11	78,57
Aegilops triuncialis	AT	1	0	1	0	0	0	0	0	1	1	0	0	1	1	6	42,86
Hordeum murinum	НМ	1	1	1	0	1	1	1	1	1	0	1	0	1	1	11	78,57
Chamaerops humilis	СН	0	1	0	1	1	1	1	0	0	0	0	0	0	1	6	42,86

	1	1			1							1	1		1		1
Arisarum vulgare	AV	1	1	0	0	0	0	0	0	1	0	0	0	0	0	3	21,43
Arum italicum	AI	1	1	1	0	0	0	0	0	0	0	0	0	0	0	3	21,43
Asphodelus microcarpus	AM	1	0	1	0	0	0	0	1	0	1	1	1	1	0	7	50,00
Urginea maritima	UM	1	0	0	1	0	0	0	0	0	0	0	0	0	1	3	21,43
Ornithogalum umbellatum	OU	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	14,29
Muscari comosum	MC	0	0	0	0	0	0	0	0	1	0	0	1	0	0	2	14,29
Asparagus albus	Aa	0	0	0	0	0	0	0	0	1	0	1	0	0	0	2	14,29
Asparagus stipularis	AS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	7,14
Asparagus acutifolius	Aa1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2	14,29
Allium nigrum	AN	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7,14
Gladiolus segetum	GS	0	0	0	0	0	0	0	0	1	0	0	0	1	1	3	21,43
Iris xiphium	IX	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	7,14
Ophrys speculum	OS	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7,14
Ophrys apifera	OA	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	14,29
Quercus coccifera	QC	0	0	1	1	0	0	0	0	0	0	0	1	1	1	5	35,71
Aristolochia longa	AL	0	0	0	0	0	0	0	0	1	0	0	1	1	0	3	21,43
Paronychia argentea	PA	0	0	0	0	1	1	1	1	0	0	0	0	0	0	4	28,57
Arenaria emarginata	AE	0	0	0	0	0	0	0	0	0	1	0	1	1	0	3	21,43
Adonis dentata	AD	0	1	0	0	0	0	0	0	0	0	0	0	0	1	2	14,29
Adonis aestivalis	Aa2	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	14,29
Ranunculus spicatus	RS	0	0	0	0	0	0	0	0	0	0	0	1	1	1	3	21,43
Ranunculus repens	Rr	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	14,29
Vella annua	VA	0	0	0	0	0	0	0	0	1	0	1	0	0	0	2	14,29
Lobularia maritima	LM	1	1	0	1	0	0	0	0	0	0	1	0	0	0	4	28,57
Raphanus raphanistrum	Rr1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	2	14,29
Sedum acre	SA1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	4	28,57
Ulex parviflorus	UP	0	0	1	0	0	0	0	0	0	0	0	1	1	1	4	28,57
Genista numidica	GN	0	1	0	0	1	1	0	1	0	0	0	0	0	0	4	28,57
Ononis reclinata	OR	0	0	0	0	0	0	0	0	1	1	1	1	1	1	6	42,86
Calycotome spinosa	CS	1	0	0	1	0	0	0	0	0	0	0	1	1	0	4	28,57
Medicago littoralis	ML	0	0	0	1	0	0	0	0	0	0	1	0	0	1	3	21,43

Trifolium aamnastra	TC1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	2	14,29
Trifolium compestre	AV1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	7,14
Anthylis vulneraria	VV		0		0	0			0		0				0	_	,
vicia villosa		1		1		_	0	0		1		0	0	1		4	28,57
Hippocrepis multisiliquosa	HM1	0	1	0	0	0	0	0	0	1	0	0	0	1	0	3	21,43
Erodium moschatum	EM	1	0	1	1	0	1	1	0	0	1	1	1	1	1	10	71,43
Ruta chalepensis	RC	0	0	0	0	1	1	1	0	1	0	0	0	0	0	4	28,57
Euphorbia peplus	EP	1	1	1	1	1	1	1	1	1	0	0	0	0	0	9	64,29
Pistacia lentiscus	PL	1	0	1	0	0	0	0	0	0	0	1	1	1	1	6	42,86
Rhamnus lycioides	RL	0	1	0	1	1	0	0	1	0	0	0	0	1	0	5	35,71
Malva sylvestris	MS	1	1	1	1	0	0	0	0	1	1	1	0	1	1	9	64,29
Torilis nodosa	TN	0	0	1	0	1	0	0	0	1	1	1	1	0	0	6	42,86
Ammoides verticillata	AV2	1	1	1	0	0	0	0	0	0	0	0	1	0	1	5	35,71
Oenanthe (globulosa)	OG	0	0	0	0	1	0	0	1	1	1	0	0	1	0	5	35,71
Kundmannia sicule	KS	0	0	0	0	1	1	1	1	1	1	0	0	0	0	6	42,86
Oxalis pes-caprae	OP	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	7,14
Cistus villosus	CV	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2	14,29
Cistus salvifolius	CS1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	7,14
Cistus albidus	CA1	1	0	1	1	0	1	1	0	0	0	0	0	0	0	5	35,71
Halimium halimifolium	Hh1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	2	14,29
Helianthemum hirtum	Hh2	0	0	0	0	0	0	0	0	1	1	0	1	1	1	5	35,71
Helianthemum virgatum	HV	0	0	0	0	0	0	0	0	0	0	0	1	1	1	3	21,43
Fumana thymifolia	НТ	0	0	0	0	0	0	0	1	0	0	0	1	0	1	3	21,43
Coris monspeliensis	CM1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7,14
Anagallis arvensis subsp latifolia	Aa4	1	1	1	0	0	0	0	0	0	0	1	0	0	0	4	28,57
Phillyrea angustifolia	PA1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	14	100,00
Phillyrea media	PM2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	7,14
Phillyrea latifolia	PL1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	3	21,43
Olea europea	OE	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	7,14
Blakstonia perfoliata	BP	0	0	0	0	0	0	0	0	0	0	1	1	1	1	4	28,57
Centaurium umbellatum	CU	0	0	0	0	1	1	1	1	0	0	0	0	0	0	4	28,57

Cicendia filiformis	CF	1	1	0	0	1	1	0	0	1	1	0	1	0	0	7	50,00
Convolvulus althaeoides	CA2	1	0	0	1	0	1	1	1	0	0	0	0	0	0	5	35,71
Convolvulus arvensis	CA3	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	14,29
Borago officinalis	ВО	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	7,14
Echium vulgare	EV	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	14,29
Ajuga iva	AI1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	2	14,29
Teucrium polium	TP	0	1	1	0	1	0	0	0	0	0	0	0	0	0	3	21,43
Rosmarinus officinalis	RO	1	0	0	1	0	0	1	1	0	0	0	0	0	0	4	28,57
Lavandula dentata	LD	0	1	0	0	1	1	0	0	1	0	1	1	1	0	7	50,00
Lavandula multifida	LM1	0	0	1	0	0	0	0	0	1	1	1	0	0	1	5	35,71
Marrubium vulgare	MV	0	0	0	0	0	0	0	1	1	1	0	0	0	0	3	21,43
Thymus ciliatus	TC2	1	0	0	0	1	1	1	1	0	1	1	0	0	0	7	50,00
Satureja calamintha susbsp nepeta	SCN	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	14,29
Ballota hirsuta	ВН	0	1	1	0	0	1	0	1	0	0	0	0	0	0	4	28,57
Orobanche purpurea	OP1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	7,14
Globularia alypum	GA	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	7,14
Plantago coronopus	PC	1	1	0	0	1	0	1	0	0	1	1	0	0	1	7	50,00
Plantago serraria	PS	1	1	1	1	0	0	0	0	1	0	0	0	1	0	6	42,86
Plantago lagopus	PL2	1	0	0	1	0	0	0	0	1	0	0	1	1	0	5	35,71
Plantago ovata	PO	0	0	0	0	0	0	0	0	1	1	1	0	0	0	3	21,43
Rubia peregrina	RP	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	7,14
Gallium verum	GV	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7,14
Gallium aparine	GA1	0	1	1	0	0	1	0	0	0	1	1	0	1	1	7	50,00
Sherardia arvensis	SA2	0	0	0	1	0	0	0	0	0	0	0	1	0	0	2	14,29
Lonicera implexa	LI	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	14,29
Fedia cornucopiae	FC	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2	14,29
Scabiosa stellata	Ss	1	1	1	0	0	0	0	0	0	0	0	1	1	0	5	35,71
Bellis sylvestris	BS	0	1	0	0	0	0	0	0	1	0	0	0	0	0	2	14,29
Bellis annua	BA	1	1	1	0	0	0	0	0	1	1	0	1	1	0	7	50,00
Gnaphalium lueo-album	GLA	0	0	0	0	0	0	0	0	0	1	1	0	0	1	3	21,43

Pallenis spinosa	PS1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	7	50,00
Asteriscus maritimus	AM1	1	1	1	1	0	0	0	0	0	0	0	0	1	0	5	35,71
Senecio vulgare	SV1	0	1	1	1	0	1	0	1	1	1	0	1	0	1	9	64,29
Anacyclus radiatus	Ar1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	3	21,43
Chrysanthemum grandiflorum	CG	0	0	0	1	0	0	0	0	0	0	0	0	1	0	2	14,29
Chrysanthemum coronarium	CC	1	1	0	0	0	0	0	0	0	0	0	0	1	1	4	28,57
Xeranthemum inapertum	XI	0	1	1	1	0	0	0	0	0	0	0	0	0	0	3	21,43
Carduus pycnocephalus	CP	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2	14,29
Centaurea pullata	CP1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	8	57,14
Centaurea incana	CI1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	3	21,43
Catananche coerulea	CC1	0	1	1	1	0	0	0	0	0	0	1	1	0	0	5	35,71
Tolpis barbata	TP1	1	0	0	1	0	0	1	1	1	1	0	0	1	1	8	57,14
Rhagadiolus stellatus	RS1	0	1	1	1	1	0	0	0	1	1	1	0	0	0	7	50,00
Taraxacum officinalis	TO1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	4	28,57
Reichardia picroides	RP1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	3	21,43
Reichardia tingitana	RT1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	4	28,57
Sisymbrium irio	SI1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	14,29
Capsella bursa-pastoris	CBP	0	0	0	0	0	0	0	0	1	0	0	1	1	1	4	28,57

Tableau 26: Représentation de la fréquence des espèces dans le groupement (Cr) de la station de Béni-Saf

genres espèces	code	R6	R7	R8	R9	R10	R11	R12	R13	R28	R29	R30	R31	R32	R33	R44	R45	R50	Présence	Fréquence
Tetraclinis articulata	TA	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	5,88
Juniperus phoenicea	JP	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	3	17,65
Pinus maritima	PM	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	3	17,65
Stipa tenacissima	ST	1	0	1	1	0	0	1	0	0	1	0	0	0	1	0	0	1	6	35,29
Stipa torilis	ST1	1	1	0	0	1	0	1	1	1	0	0	0	1	1	1	1	1	10	58,82
Polypogon monspeliensis	PM1	1	1	1	0	1	1	0	0	0	1	1	0	1	1	1	1	1	11	64,71
Avena sterilis	AS	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	2	11,76
Dactylis glomerata	DG	1	0	1	1	0	1	0	1	1	0	1	1	1	1	1	1	1	12	70,59
Briza minor	BM	0	0	0	1	0	0	1	0	1	0	0	1	1	1	1	1	1	9	52,94

Bromus rubens	BR	1	1	0	0	1	0	1	1	0	1	0	0	1	1	1	1	1	10	58,82
Brachypodium distachyum	BD	0	1	0	0	1	0	0	0	1	1	1	1	1	1	0	0	1	9	52,94
Lepturus cylindricus	LC	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1	5	29,41
Aegilops triuncialis	AT	0	0	0	0	1	0	0	1	1	0	1	1	0	0	0	0	0	5	29,41
Hordeum murinum	НМ	0	0	1	0	0	0	0	1	1	1	1	1	0	1	0	1	1	9	52,94
Chamaerops humilis	СН	1	1	1	0	1	1	0	1	1	1	1	1	1	1	0	1	0	12	70,59
Arisarum vulgare	AV	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	4	23,53
Arum italicum	AI	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	2	11,76
Asphodelus microcarpus	AM	1	0	0	0	1	0	0	0	1	0	0	0	1	0	1	1	1	6	35,29
Tulipa sylvestris	TM	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	11,76
Scilla peruviana	SP	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	2	11,76
Urginea maritima	UM	1	1	1	0	0	1	1	0	1	0	1	0	0	1	0	0	0	7	41,18
Ornithogalum umbellatum	OU	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	11,76
Muscari comosum	MC	0	1	1	0	1	1	0	1	1	1	0	0	0	1	0	0	1	9	52,94
Muscari neglecum	MN	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	3	17,65
Asparagus albus	Aa	0	0	1	0	0	1	0	0	1	1	0	1	0	0	0	0	0	5	29,41
Asparagus stipularis	AS1	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	5	29,41
Asparagus acutifolius	Aa1	0	1	1	0	0	0	1	1	0	1	0	1	1	0	1	0	0	8	47,06
Smilax aspera	SA	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	3	17,65
Tamus communis	TC	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	3	17,65
Gladiolus segetum	GS	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0	4	23,53
Iris xiphium	IX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	11,76
Quercus coccifera	QC	0	1	0	1	1	1	2	0	1	1	1	1	1	1	1	1	1	15	88,24
Aristolochia longa	AL	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	3	17,65
Chenopodium album	CA	0	1	0	1	1	0	0	0	1	0	1	1	0	0	0	0	1	7	41,18
Herniaria hirsuta	Hh	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	3	17,65
Arenaria emarginata	AE	1	1	1	1	1	1	0	0	0	0	0	0	1	1	0	0	1	8	47,06
Adonis dentata	AD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2	11,76
Adonis aestivalis	Aa2	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	11,76
Ranunculus spicatus	RS	0	0	1	0	1	0	1	0	1	1	1	1	0	0	0	0	0	7	41,18
Ranunculus repens	Rr	0	0	0	1	1	0	0	0	1	1	1	1	0	0	0	0	0	6	35,29

Vella annua	VA	1	1	0	0	1	1	0	1	1	1	0	1	0	1	1	1	1	11	64,71
Lobularia maritima	LM	0	0	1	1	0	1	0	0	1	0	0	1	1	1	0	1	1	9	52,94
Raphanus raphanistrum	Rr1	1	1	0	1	1	0	1	0	0	0	0	0	1	1	1	0	1	8	47,06
Sedum acre	SA1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	5,88
Rosa sempervirens	RS1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	17,65
Ulex boivinii	UB	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	5,88
Genista numidica	GN	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	3	17,65
Retama retama	Rr2	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	2	11,76
Ononis reclinata	OR	1	1	0	1	0	0	0	1	1	1	1	1	0	0	1	1	1	10	58,82
Calycotome spinosa	CS	0	1	1	1	1	1	0	0	1	1	0	1	0	1	1	1	1	12	70,59
Scorpiurus muricatus	SM	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2	11,76
Medicago littoralis	ML	0	1	1	0	0	0	1	0	1	0	1	1	0	0	0	0	1	7	41,18
Trifolium rugosa	TR	1	0	0	0	1	1	1	0	1	0	1	0	1	0	0	0	0	6	35,29
Trifolium compestre	TC1	0	0	0	1	0	1	1	1	1	0	1	0	1	1	0	0	1	9	52,94
Anthylis vulneraria	AV1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	3	17,65
vicia villosa	VV	1	1	0	1	1	0	0	1	0	1	1	0	1	1	1	1	1	11	64,71
Hippocrepis multisiliquosa	HM1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	3	17,65
Geranium pratense	GP	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	5,88
Erodium moschatum	EM	0	1	0	1	0	0	0	0	1	1	1	1	0	0	0	0	0	6	35,29
Linum strictum	LS	1	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	3	17,65
Ruta chalepensis	RC	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	3	17,65
Euphorbia peplus	EP	1	1	1	0	1	0	0	0	1	1	1	1	0	0	0	0	0	7	41,18
Euphorbia bivubellata	EB	0	1	0	1	0	1	0	1	1	0	0	0	0	0	0	0	1	6	35,29
Pistacia lentiscus	PL	2	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	15	88,24
Rhamnus lycioides	RL	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	3	17,65
Ziziphus lotus	ZL	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2	11,76
Malva aegyptiaca	MA	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	5,88
Malva sylvestris	MS	0	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1	0	5	29,41
Daphne gnidium	DG1	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	4	23,53
Thapsia garganica	TG	1	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	3	17,65
Torilis nodosa	TN	0	1	0	0	0	0	0	1	1	0	0	1	0	0	1	1	1	7	41,18

Ammoides verticillata	AV2	0	0	1	0	1	1	0	0	0	1	1	1	1	0	0	0	0	7	41.18
Oenanthe (globulosa)	OG	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	2	11,76
Kundmannia sicule	KS	0	1	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	4	23,53
Oxalis pes-caprae	OP	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	2	11.76
Cistus villosus	CV	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	4	23,53
Cistus salvifolius	CS1	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	3	17,65
Cistus albidus	CA1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	3	17.65
Cistus monspeliensis	CM	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	11,76
Halimium halimifolium	Hh1	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	1	1	7	41,18
Helianthemum hirtum	Hh2	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	3	17,65
Helianthemum virgatum	HV	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	3	17,65
Fumana thymifolia	НТ	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	5,88
Erica multiflora	EM2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	5,88
Coris monspeliensis	CM1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	3	17,65
Anagallis arvensis subsp phoenicea	Aa3	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	7	41,18
Jasminum fruticans	JF	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	11,76
Phillyrea angustifolia	PA1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	17	100,00
Phillyrea media	PM2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	5,88
Phillyrea latifolia	PL1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	2	11,76
Olea europea	OE	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	2	11,76
Blakstonia perfoliata	BP	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	3	17,65
Cicendia filiformis	CF	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	13	76,47
Convolvulus althaeoides	CA2	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	2	11,76
Borago officinalis	ВО	1	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0	1	8	47,06
Echium vulgare	EV	0	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	4	23,53
Ajuga chamaepitys	AC	0	0	1	0	1	0	0	0	1	1	1	0	0	0	0	0	0	5	29,41
Ajuga iva	AI1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2	11,76
Teucrium polium	TP	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	4	23,53
Rosmarinus officinalis	RO	1	1	1	0	1	1	1	0	1	1	1	1	0	0	0	0	1	10	58,82
Lavandula dentata	LD	1	0	0	1	1	1	1	1	1	1	0	0	1	1	0	0	0	9	52,94

Lavandula multifida	LM1	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1	1	0	7	41,18
Lavandula stoechas	LS1	0	0	1	1	0	0	0	1	1	1	1	1	0	0	0	0	0	7	41,18
Sidertis montana	SM1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,88
Marrubium vulgare	MV	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	8	47,06
Thymus ciliatus	TC2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	5	29,41
Satureja calamintha susbsp nepeta	SCN	0	0	0	1	1	0	1	0	1	1	0	0	0	0	0	0	0	5	29,41
Ballota hirsuta	ВН	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	4	23,53
Orobanche purpurea	OP1	1	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	1	5	29,41
Globularia alypum	GA	1	1	1	0	0	0	0	0	0	0	1	1	0	1	0	0	0	5	29,41
Plantago psyllium	Pp	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1	1	0	5	29,41
Plantago coronopus	PC	1	1	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	5	29,41
Plantago serraria	PS	0	1	1	1	0	0	1	1	0	0	0	0	0	1	0	1	1	8	47,06
Plantago lagopus	PL2	1	0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0	9	52,94
Plantago ovata	PO	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	4	23,53
Rubia peregrina	RP	1	0	1	0	1	0	0	1	1	1	0	0	1	0	0	0	0	6	35,29
Rubia tinckorum	RT	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	2	11,76
Gallium verum	GV	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	3	17,65
Gallium aparine	GA1	0	1	1	1	0	0	0	0	1	1	1	1	1	0	0	0	1	9	52,94
Sherardia arvensis	SA2	1	0	1	1	0	1	1	0	0	0	0	0	0	1	0	0	0	5	29,41
Lonicera implexa	LI	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	1	0	6	35,29
Fedia cornucopiae	FC	0	0	0	0	0	1	1	1	1	1	0	0	0	0	1	0	1	7	41,18
Scabiosa stellata	Ss	1	0	0	0	0	0	1	1	0	0	0	0	1	1	0	1	0	5	29,41
Bryonia dioica	BD1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3	17,65
Campanula trachelium	CT	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	11,76
Bellis sylvestris	BS	0	0	0	0	1	0	1	1	0	0	0	0	1	0	1	0	0	5	29,41
Bellis annua	BA	1	1	0	0	1	1	1	1	0	0	0	0	1	1	0	1	1	9	52,94
Micropus bombicinus	MB	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	11,76
Gnaphalium lueo-album	GLA	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	5	29,41
Pallenis spinosa	PS1	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	1	4	23,53
Asteriscus maritimus	AM1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	11,76

Senecio vulgare	SV1	1	1	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	6	35,29
Anacyclus radiatus	Ar1	0	1	1	0	1	0	0	1	0	1	1	1	0	0	0	0	1	8	47,06
Chrysanthemum grandiflorum	CG	0	0	0	0	0	1	1	0	1	0	0	0	0	1	0	1	0	5	29,41
Chrysanthemum coronarium	CC	1	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	1	4	23,53
Xeranthemum inapertum	XI	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	4	23,53
Carduus pycnocephalus	CP	1	1	1	0	1	0	0	1	0	0	0	0	1	1	1	1	0	8	47,06
Centaurea pullata	CP1	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	7	41,18
Centaurea incana	CI1	1	0	0	1	1	1	0	0	0	0	0	0	1	1	1	1	0	7	41,18
Catananche coerulea	CC1	0	1	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	5	29,41
Tolpis barbata	TP1	1	0	1	1	0	1	1	1	1	0	1	1	0	1	0	1	0	10	58,82
Rhagadiolus stellatus	RS1	1	0	0	0	1	0	1	0	1	1	0	0	0	1	1	1	0	7	41,18
Taraxacum officinalis	TO1	0	1	1	1	1	0	0	0	1	1	0	1	0	0	0	0	1	8	47,06
Reichardia picroides	RP1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2	11,76
Reichardia tingitana	RT1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	3	17,65
Sisymbrium irio	SI1	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	0	1	5	29,41
Capsella bursa-pastoris	СВР	0	1	0	1	0	1	1	1	0	0	0	0	1	1	0	0	1	8	47,06

Tableau 27: Représentation de la fréquence des espèces dans le groupement (Ar) de la Station de HONAINE

Genres Espèces	code	R1	R2	R3	R4	R5	R6	R13	R14	R15	R17	R18	R20	R21	R22	R23	R26	R30	R31	R33	Présence	Fréquence
Tetraclinis artriculata	TA	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	0	15	78,9
Stipa tenacissima	ST	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	10,5
Avena sterilis	AS	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5	26,3
Schismus barbatus	SB	0	0	0	1	0	0	0	0	1	1	1	1	0	0	0	1	1	0	0	7	36,8
Dactylis glomerata	DG	0	0	0	1	1	1	0	0	0	0	1	1	0	0	0	0	0	1	1	6	31,6
Bromus rubens	BR	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	2	10,5
Hordeum murinum	HM	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	1	0	0	8	42,1
Chamaerops humilis	СН	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	1	0	1	1	8	42,1

Arisarum vulgare	AV	0	1	1	1	1	0	1	1	1	0	0	1	0	0	1	0	0	1	0	10	52,6
Aphyllanthes monspeliensis	AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	5,3
Asphodelus microcarpus	AM1	0	0	0	0	1	0	1	1	1	0	0	0	0	0	0	0	1	1	1	7	36,8
Tulipa sylvestris	TS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	10,5
Urginea maritima	UM	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	1	0	1	7	36,8
Asparagus stipularis	AS1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	3	15,8
Allium hirsutum	AH	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	3	15,8
Quercus coccifera	QC	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	1	1	5	26,3
Cytinus hypocistus	CH1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	5,3
Silene coeli-rosa	SC	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	3	15,8
Ranunculus spicatus	RS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5,3
Vella annua	VA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	5,3
Sinapis arvensis	SA	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,3
Retama retama	Rr1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5,3
Calycotome villosa subsp. intermedia	CV	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	6	31,6
Scorpiurus muricatus	SM	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	21,1
Lathyrus cicera	LC	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	5,3
Lathyrus articulatus	LA	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	4	21,1
Anthyllis tetraphylla	AT	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2	10,5
Geranium lucidum	GL	0	1	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	4	21,1
Pistacia lentiscus	PL	0	1	0	0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	5	26,3
Rhamnus lyciodes	RL1	0	1	1	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	6	31,6
Daphne gnidium	DG1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	4	21,1
Torilis nodosa	TN	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	26,3
Ferula communis	FC	1	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	8	42,1
Cistus monspeliensis	CM	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	5	26,3
Anagallis arvensis sub sp latifolia	Aal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	10,5
Olea europea	OE	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	3	15,8
Phillyrea angustifolia	PA	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0	1	1	15	78,9

Phillyrea latifolia	PL1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	26,3
Convolvulus althaeoïdes	CA1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	2	10,5
Rosmarinus officinalis	RO	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	21,1
Lavandula dentata	LD	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1	1	1	8	42,1
Lavandula stoechas	LS1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	10,5
Thymus ciliatus	TC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	5,3
Plantago lagopus	PL2	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	7	36,8
Sherardia arvensis	SA2	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2	10,5
Vibernum tinus	VT	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	21,1
Bellis annua	BA	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	1	1	1	0	6	31,6
Micropus bombicinus	MB	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	21,1
Calendula arvensis	CA3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	5,3
Lonas annua	LA1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	5,3
Chrysanthemum grandiflorum	CG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2	10,5
Tolpis barbata	ТВ	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5	26,3
Hypochoeris radicata	HR	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	4	21,1
Taraxacum officinalis	ТО	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	3	15,8
Reichardia tingitana	RT	0	0	0	0	0	0	1	0	1	1	1	0	0	1	0	0	0	0	0	5	26,3

Tableau 28: Représentation de la fréquence des espèces dans le groupement (Br) de la Station de HONAINE

Genres Espèces	Code	R7	R8	R9	R10	R11	R12	R16	R19	R24	R25	R27	R28	R29	Présence	Fréquence
Tetraclinis artriculata	TA	1	1	1	0	1	1	1	1	1	1	1	1	1	12	92,3
Avena sterilis	AS	0	1	0	0	1	1	0	0	0	0	0	0	1	4	30,8
Schismus barbatus	SB	0	0	0	0	0	0	1	1	1	1	1	1	1	7	53,8
Dactylis glomerata	DG	1	1	0	1	0	0	0	1	0	0	0	0	0	4	30,8
Bromus rubens	BR	0	0	0	1	0	1	0	0	0	0	0	0	0	2	15,4
Hordeum murinum	HM	0	0	0	0	0	0	0	0	1	0	1	1	0	3	23,1
Chamaerops humilis	СН	1	1	0	1	1	1	1	1	0	0	1	1	1	10	76,9
Arisarum vulgare	AV	1	0	0	1	1	1	0	0	1	0	0	0	1	6	46,2

Asphodelus microcarpus	AM1	0	0	0	1	1	1	0	1	1	0	1	1	0	7	53,8
Urginea maritima	UM	1	1	0	1	1	1	0	0	1	0	1	1	1	9	69,2
Quercus coccifera	QC	0	0	0	0	0	0	1	0	0	0	0	0	0	1	7,7
Cytinus hypocistus	CH1	0	0	0	0	0	0	0	0	0	0	0	1	1	2	15,4
Silene coeli-rosa	SC	0	0	0	0	0	0	0	0	1	1	1	0	0	3	23,1
Raphanus raphanistrum	Rr	0	0	0	0	0	1	0	0	0	0	0	0	0	1	7,7
Sinapis arvensis	SA	0	0	1	0	0	0	0	0	0	0	0	0	0	1	7,7
Reseda alba	RA	0	0	0	0	0	0	0	1	0	0	0	0	0	1	7,7
Sedum acre	SA1	1	1	0	0	0	1	0	0	0	0	0	0	0	3	23,1
Retama retama	Rr1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	7,7
Calycotome villosa subsp. intermedia	CV	0	0	0	0	0	0	0	1	1	0	0	1	0	3	23,1
Scorpiurus muricatus	SM	1	1	1	1	0	1	0	0	0	0	0	0	0	5	38,5
Lathyrus articulatus	LA	0	0	0	0	0	0	0	0	1	1	1	1	1	5	38,5
Anthyllis tetraphylla	AT	0	1	1	1	1	1	1	0	0	0	0	0	0	6	46,2
Hippocrepis multisiliquosa	HM1	0	0	0	0	0	0	0	0	1	1	1	0	1	4	30,8
Geranium lucidum	GL	1	0	1	1	0	0	0	0	0	0	0	0	0	3	23,1
Pistacia lentiscus	PL	1	0	1	1	0	1	1	1	1	1	1	1	1	11	84,6
Rhamnus lyciodes	RL1	1	0	0	1	1	1	0	0	0	1	0	0	0	5	38,5
Daphne gnidium	DG1	1	1	1	1	0	0	0	1	0	0	0	0	0	5	38,5
Torilis nodosa	TN	0	0	1	0	0	0	0	0	0	0	0	0	0	1	7,7
Ferula communis	FC	1	1	0	0	0	1	0	0	0	0	0	0	0	3	23,1
Cistus monspeliensis	CM	1	0	0	1	0	0	0	1	0	1	1	1	1	7	53,8
Halimium hulmifolium	Hh	0	1	1	1	1	1	1	0	0	0	0	0	0	6	46,2
Fumana thymifolia	FT	0	0	0	0	0	0	0	0	0	0	1	0	0	1	7,7
Olea europea	OE	0	1	1	1	1	1	1	0	1	1	0	0	0	8	61,5
Phillyrea angustifolia	PA	1	1	1	0	1	1	1	0	0	1	0	1	0	8	61,5
Phillyrea latifolia	PL1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	7,7
Rosmarinus officinalis	RO	0	1	0	0	0	1	0	0	0	0	0	0	0	2	15,4
Lavandula dentata	LD	1	1	1	1	1	1	0	1	1	1	1	1	0	11	84,6
Lavandula stoechas	LS1	1	1	0	1	0	1	0	0	0	0	0	0	0	4	30,8

Plantago lagopus	PL2	0	0	0	0	0	0	0	0	0	0	1	0	0	1	7,7
Sherardia arvensis	SA2	0	0	0	0	0	0	1	0	1	0	0	0	0	2	15,4
Vibernum tinus	VT	0	0	0	1	0	0	0	0	0	0	0	0	0	1	7,7
Bellis annua	BA	1	1	0	1	1	1	1	1	1	1	1	1	1	12	92,3
Micropus bombicinus	MB	1	1	0	1	1	1	0	0	0	0	0	0	0	5	38,5
Inula montana	IM	0	0	0	0	0	0	0	0	0	1	1	0	0	2	15,4
Calendula arvensis	CA3	1	1	0	0	0	1	0	1	0	0	1	1	1	7	53,8
Tolpis barbata	TB	1	1	1	1	1	1	0	0	0	0	0	0	0	6	46,2

Tableau 29: Représentation de la fréquence des espèces dans le groupement (Cr) de la Station de HONAINE

Genres Espèces	code	R32	R34	R35	R36	R37	R38	R39	R40	R41	R42	R43	R44	R45	R46	R47	R48	R49	R50	Présence	Fréquence
Tetraclinis artriculata	TA	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2	11,1
Juniperus phoenicea	JP	0	1	0	1	0	0	1	0	1	0	0	0	0	0	1	0	0	0	5	27,8
Stipa tenacissima	ST	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	0	1	0	5	27,8
Avena sterilis	AS	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	11,1
Dactylis glomerata	DG	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	11,1
Bromus rubens	BR	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	4	22,2
Hordeum murinum	HM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Chamaerops humilis	СН	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	17	94,4
Arisarum vulgare	AV	1	1	1	1	1	1	1	1	0	1	1	0	1	0	1	1	0	0	13	72,2
Asphodelus microcarpus	AM1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	0	15	83,3
Tulipa sylvestris	TS	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Scilla peruviana	SP	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	2	11,1
Urginea maritima	UM	0	1	0	1	0	1	1	1	1	0	1	1	1	1	1	1	1	0	13	72,2
Ornithoglum umbellatum	OU	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Asparagus stipularis	AS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Asparagus acutifolius	Aa	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Quercus coccifera	QC	1	1	1	1	1	0	0	0	1	1	1	1	0	1	0	0	1	1	12	66,7
Ranunculus spicatus	RS	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	5	27,8

Papaver rhoeas	PR	٥	1	Λ	0	0	0	0	0	1	0	Λ	0	1	Λ	0	0	0	0	2	16,7
^	VA	0	1	0		0	-	0		1	-	0		1	0	-	0	0		3	
Vella annua		1	0		0	1	0	0	0	-	0	0	0	0	0	0	0	1	0	3	16,7
Raphanus raphanistrum	Rr	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	3	16,7
Sinapis arvensis	SA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5,6
Reseda alba	RA	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	11,1
Retama retama	Rr1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Calycotome villosa subsp. intermedia	CV	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	15	83,3
Hippocrepis multisiliquosa	HM1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	11,1
Linum strictum	LS	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	4	22,2
Ruta chalepensis	RC	0	1	0	0	1	0	1	0	0	1	1	1	1	0	0	1	0	0	8	44,4
Pistacia lentiscus	PL	1	0	1	1	0	1	0	0	0	0	1	1	1	1	1	1	1	0	11	61,1
Rhamnus lyciodes	RL1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Daphne gnidium	DG1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	3	16,7
Daucus carota	DC	0	1	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	6	33,3
Ammoides verticillata	AV1	1	0	0	0	1	1	1	1	0	0	1	1	1	1	0	1	1	0	11	61,1
Cistus albidus	CA	1	0	0	1	1	1	1	0	0	1	0	1	0	1	0	0	0	0	8	44,4
Cistus monspeliensis	CM	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	3	16,7
Anagallis arvensis sub sp latifolia	Aa1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	16	88,9
Olea europea	OE	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	5,6
Phillyrea angustifolia	PA	1	1	3	1	0	1	1	1	1	0	1	1	1	0	1	0	1	0	15	83,3
Phillyrea media	PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	5,6
Phillyrea latifolia	PL1	1	0	0	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	5	27,8
Convolvulus arvensis	CA2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	11,1
Echium horridum	EH	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	2	11,1
Rosmarinus officinalis	RO	1	1	0	0	0	0	1	0	0	0	0	1	0	1	0	1	1	0	7	38,9
Lavandula dentata	LD	1	1	1	1	0	1	1	0	0	0	1	1	0	0	1	0	0	0	9	50,0
Marrubium vulgare	MV	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	2	11,1
Thymus ciliatus	TC	1	0	0	0	1	0	1	1	0	1	1	0	1	0	0	0	1	0	8	44,4
Satureja calamintha susbsp nepeta	SCN	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2	11,1
Plantago lagopus	PL2	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	15	83,3

Plantago lanceolata	PL3	1	1	0	1	0	0	0	0	0	0	1	0	0	0	1	1	0	0	6	33,3
Plantago major	PM1	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	4	22,2
Gallium aparine	GA1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Sherardia arvensis	SA2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	11,1
Vibernum tinus	VT	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5,6
Bellis annua	BA	1	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	14	77,8
Micropus bombicinus	MB	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	3	16,7
Lonas annua	LA1	0	1	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	5	27,8
Anthemis cotula	AC	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	4	22,2
Chrysanthemum grandiflorum	CG	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	3	16,7
Chrysanthemum coronarium	CC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5,6
Tolpis barbata	TB	1	1	1	0	1	1	1	0	0	1	0	1	0	1	0	0	0	0	9	50,0
Hypochoeris radicata	HR	0	0	1	0	0	1	0	1	0	0	0	1	1	0	1	0	0	0	6	33,3
Taraxacum officinalis	ТО	1	1	1	1	1	1	0	1	1	1	0	1	0	1	1	0	1	0	13	72,2

Tableau 30: Représentation de la fréquence des espèces dans le groupement (Ar) de la station de Zarifet

Genres Espèces	code	R1	R2	R3	R4	Présence	Fréquence
Juniperus oxycedrus	JO	0	1	0	1	2	50
Lagurus ovatus	LO	1	0	1	0	2	50
Ampelodesma mauritanicum	AM	1	1	1	1	4	100
Schismus barbatus	SB	1	1	1	1	4	100
Dactylis glomerata	DG	1	1	1	1	4	100
Bromus madritensis	BM1	1	1	1	1	4	100
Bromus rubens	BR	1	1	1	1	4	100
Brachypodium distachyum	BD	1	1	1	1	4	100
Hordeum murinum	HM	1	1	1	1	4	100
Chamaerops humilis	СН	0	0	0	1	1	25
Asphodelus microcarpus	AM1	1	1	1	1	4	100
Tulipa sylvestris	TS	1	1	1	1	4	100
Ornithogalum umbellatum	OU	1	1	0	1	3	75

Muscari neglectum	MN	1	1	1	0	3	75
Asparagus albus	Aa	1	0	0	1	2	50
Asparagus aculeatus	Aa1	1	1	1	1	4	100
Ruscus aculeatus	RA	0	0	0	1	1	25
Gladiolus segetum	GS	0	1	1	1	3	75
Populus alba	PA	0	1	0	0	1	25
Quercus coccifera	QC	1	1	1	1	4	100
Quercus ilex	QI	0	0	1	0	1	25
Quercus suber	QS	1	1	1	1	4	100
Aristolochia longa	AL1	0	0	0	1	1	25
Chenopodium album	CA	1	1	1	1	4	100
Paronychia argentea	PA1	1	1	1	1	4	100
Cerastium dichotomum	CD	0	1	1	1	3	75
Silene coeli-rosa	SC	1	1	1	0	3	75
Adonis annua	Aa2	1	0	0	1	2	50
Papaver rhoeas	PR	1	1	1	0	3	75
Glaucium flavum	GF	0	0	0	1	1	25
Biscutella didyma	BD1	1	1	1	1	4	100
Lobularia maritima	LM	0	1	1	0	2	50
Sinapis arvensis	SA1	0	0	0	1	1	25
Brassica nigra	BN	0	0	1	1	2	50
Reseda alba	RA1	0	1	0	0	1	25
Reseda luteola	RL	1	1	0	0	2	50
Crataegus monogyna	CM	1	0	0	0	1	25
Ulex boivinii	UB	1	0	0	1	2	50
Ulex parviflorus	UP	1	0	0	1	2	50
Calycotome sp	CSP	0	1	1	0	2	50
Cytisus triflorus	CT	1	0	0	0	1	25
Lotus ornithopodioides	LO1	0	1	0	1	2	50
Lotus hispidus	LH	0	0	1	0	1	25
Scorpiurus muricatus	SM	1	0	0	1	2	50

Medicago sp	MSP	1	0	0	0	1	25
Trifolium angustifolium	TA	0	1	0	0	1	25
Anthyllis vulneraria	AV1	1	1	1	1	4	100
Vicia sicula	VS	0	0	1	0	1	25
Erodium moschatum	EM	1	1	0	1	3	75
Oxalis corniculata	OC	1	0	0	0	1	25
Linum strictum	LS	0	0	1	0	1	25
Euphorbia peplus	EP	1	0	1	0	2	50
Euphorbia nicaeensis	PN	0	1	0	0	1	25
Rhamnus lycioides	RL1	0	0	0	1	1	25
Altaea lycioides	AL2	0	1	0	0	1	25
Malva sylvestris	MS	1	0	0	0	1	25
Daphni gnidium	DG1	1	0	0	0	1	25
Eryngium maritimum	EM1	0	0	1	0	1	25
Daucus carota	DC	0	1	0	1	2	50
Ammoides verticillata	AV2	1	0	1	1	3	75
Ammi visnaga	AV3	1	1	0	0	2	50
Cistus ladaniferus	CL1	1	1	1	0	3	75
Cistus villosus	CV1	0	0	0	1	1	25
Cistus salviifolius	CS1	1	1	1	1	4	100
Cistus monspeliensis	CM1	0	0	1	1	2	50
Tuberaria guttata	TG	0	0	1	1	2	50
Helianthemum helianthemoides	Hh	1	0	0	0	1	25
Helianthemum hirtum	Hh1	0	1	0	0	1	25
Helianthemum ledifolium	HL	1	0	0	0	1	25
Olea europea	OE	1	1	1	0	3	75
Phillyrea angustifolia	PA2	1	0	0	1	2	50
Convolvulus althaeoides	CA1	1	1	1	1	4	100
Echium vulgare	EV1	0	0	1	1	2	50
Cynoglossum cheirifolium	CC2	0	1	0	0	1	25
Cynoglossum clandestinum	CC3	1	0	0	0	1	25

Teucrium fruticans	TF	0	0	1	1	2	50
Sideritis montana	SM1	1	1	0	0	2	50
Prasium majus	PM	0	0	1	0	1	25
Thymus ciliatus	TC	1	0	0	0	1	25
Satureja calamintha	SC2	0	0	1	1	2	50
Veronica persica	VP	1	1	0	0	2	50
Antirrhinum orontium	AO	0	0	0	1	1	25
Bellardia trixago	BT	1	1	1	1	4	100
Plantago serraria	PS	1	0	1	0	2	50
Plantago albicans	PA3	1	1	0	1	3	75
Plantago lagopus	PL1	0	1	1	1	3	75
Rubia peregrina	RP	1	0	1	0	2	50
Galium aparine	GA2	0	0	1	0	1	25
Asperula hirsuta	AH	0	1	0	1	2	50
Scabiosa stellata	SS	0	1	1	1	3	75
Bellis sylvestris	BS	1	1	1	1	4	100
Bellis annua	BA	0	1	0	1	2	50
Micropus bombycinus	MB	0	0	1	1	2	50
Evax argentea	EA1	1	0	0	0	1	25
Inula montana	IM	1	1	0	0	2	50
Pallenis spinosa	PS1	1	1	1	0	3	75
Senecio vulgaris	SV	1	0	0	0	1	25
Calendula arvensis	GA3	0	1	1	1	3	75
Chrysanthemum coronarium	CC	0	1	1	1	3	75
Echinops spinosus	ES	0	0	1	0	1	25
Atractylis cancellata	AC2	1	0	0	1	2	50
Atractylis gummifera	AG	0	1	0	0	1	25
Carduus pycnocephalus	CP	1	0	1	1	3	75
Centaurea pungens	CP2	0	1	0	0	1	25
Centaurea caeruleus	CC1	0	0	0	1	1	25
Hypochaeris radicata	HR	1	1	1	1	4	100

Traxacum oficinalis	TO	0	0	1	0	1	25
Reichardia picroides	RP1	1	0	0	1	2	50
Reichardia tingitana	RT	0	1	1	0	2	50

Tableau 31: Représentation de la fréquence des espèces dans le groupement (Br) de la Station de Zarifet

Genres Espèces	code	R5	R6	R 7	R8	R 9	R10	R11	R12	R13	présence	Fréquence
Juniperus oxycedrus	JO	0	1	0	0	1	0	0	1	0	3	33,3
Pinus halepensis	PH	1	0	0	1	0	1	0	0	1	4	44,4
Schismus barbatus	SB	1	1	1	1	1	1	1	1	1	9	100,0
Dactylis glomerata	DG	1	1	1	1	1	1	1	1	1	9	100,0
Briza minor	BM	1	1	1	1	1	1	1	1	1	9	100,0
Bromus madritensis	BM1	1	1	1	1	1	1	1	1	1	9	100,0
Bromus rubens	BR	1	1	1	0	0	0	1	1	1	6	66,7
Brachypodium distachyum	BD	1	1	1	1	1	1	1	1	1	9	100,0
Agropyron repens	AR	0	0	0	1	1	1	1	1	1	6	66,7
Aegilops ventricosa	AV	1	1	1	1	1	1	1	1	1	9	100,0
Hordeum murinum	HM	1	1	1	1	1	1	1	1	1	9	100,0
Asphodelus microcarpus	AM1	0	0	0	1	0	1	0	1	0	3	33,3
Anthericum liliago	AL	0	1	0	0	0	0	0	0	0	1	11,1
Scilla peruviana	SP	0	0	0	0	0	0	1	1	1	3	33,3
Urginea maritima	UM	1	1	0	0	1	0	1	0	1	5	55,6
Ornithogalum umbellatum	OU	1	1	1	1	0	0	0	1	0	5	55,6
Muscari neglectum	MN	1	1	1	1	1	1	1	0	0	7	77,8
Asparagus albus	Aa	1	1	1	1	1	0	0	0	0	5	55,6
Asparagus stipularis	AS1	0	0	1	1	1	1	1	1	1	7	77,8
Asparagus aculeatus	Aa1	0	0	1	1	1	1	1	1	1	7	77,8
Smilax aspera	SA	0	0	1	1	1	1	1	1	1	7	77,8
Ruscus aculeatus	RA	1	1	1	0	0	0	0	0	0	3	33,3
Gladiolus segetum	GS	1	0	0	0	0	0	0	0	0	1	11,1

Populus alba	PA	0	1	0	0	0	1	0	1	0	3	33,3
Quercus coccifera	QC	1	1	1	1	1	1	1	1	0	8	88,9
Quercus ilex	QI	0	1	0	1	0	0	1	0	0	3	33,3
Quercus suber	QS	1	0	1	0	1	0	1	0	1	5	55,6
Aristolochia longa	AL1	1	1	1	1	1	1	0	0	0	6	66,7
Chenopodium album	CA	1	0	0	0	0	0	0	0	0	1	11,1
Cerastium dichotomum	CD	1	0	0	0	0	1	0	0	1	3	33,3
Silene colorata	SC1	0	1	1	0	0	0	1	1	0	4	44,4
Adonis annua	Aa2	0	0	0	1	0	0	0	0	0	1	11,1
Glaucium flavum	GF	0	0	0	0	1	0	0	0	0	1	11,1
Biscutella didyma	BD1	1	0	0	0	0	0	0	0	0	1	11,1
Sinapis arvensis	SA1	0	1	0	0	0	0	0	1	0	2	22,2
Brassica nigra	BN	1	0	0	0	0	0	0	0	0	1	11,1
Reseda alba	RA1	0	0	1	0	0	1	0	0	0	2	22,2
Reseda luteola	RL	0	1	0	0	0	0	0	0	0	1	11,1
Sedum tenuifolium	ST	1	0	0	1	0	0	1	0	0	3	33,3
Crataegus monogyna	CM	0	1	1	0	1	0	0	0	1	4	44,4
Ulex europaeus	UE	0	0	1	0	1	1	1	1	1	6	66,7
Ulex boivinii	UB	0	0	0	1	0	0	0	0	1	2	22,2
Ulex parviflorus	UP	0	0	0	0	0	0	1	0	0	1	11,1
Calycotome sp	CSP	1	1	0	0	1	1	0	1	0	5	55,6
Cytisus triflorus	CT	0	0	1	0	0	0	0	0	0	1	11,1
Lotus ornithopodioides	LO1	0	0	0	1	0	0	0	1	0	2	22,2
Lotus hispidus	LH	1	0	0	0	0	1	0	0	0	2	22,2
Scorpiurus muricatus	SM	0	1	0	0	1	0	1	0	1	4	44,4
Psoralea bituminosa	PB	0	0	1	1	0	0	0	1	0	3	33,3
Trifolium angustifolium	TA	1	0	0	0	0	0	0	0	0	1	11,1
Anthyllis tetraphylla	AT	0	0	1	0	0	1	0	0	0	2	22,2
Anthyllis vulneraria	AV1	0	1	0	1	0	0	1	0	0	3	33,3

				1		1						
Erodium moschatum	EM	1	0	0	0	1	0	0	0	0	2	22,2
Oxalis corniculata	OC	0	0	1	1	0	1	0	1	0	4	44,4
Linum strictum	LS	0	1	0	0	0	0	0	0	0	1	11,1
Linum usitatissimum	LU	0	0	0	1	0	0	1	0	0	2	22,2
Euphorbia peplus	EP	1	1	1	1	1	1	1	1	1	9	100,0
Euphorbia nicaeensis	PN	1	0	1	1	1	1	0	0	1	6	66,7
Rhamnus lycioides	RL1	0	1	0	0	0	0	1	0	0	2	22,2
Altaea lycioides	AL2	0	0	0	1	0	1	0	0	0	2	22,2
Malva sylvestris	MS	1	0	0	0	1	0	0	1	1	4	44,4
Daphni gnidium	DG1	0	1	0	0	0	1	0	0	0	2	22,2
Eryngium maritimum	EM1	0	0	1	0	0	0	0	0	0	1	11,1
Eryngium tricuspidatum	ET1	0	0	0	0	0	0	0	1	0	1	11,1
Daucus carota	DC	0	0	0	1	0	0	0	0	0	1	11,1
Ammoides verticillata	AV2	1	0	1	0	1	0	1	0	1	5	55,6
Ammi visnaga	AV3	0	1	0	1	1	1	0	1	1	6	66,7
Cistus villosus	CV1	1	0	1	0	1	0	1	0	1	5	55,6
Cistus salviifolius	CS1	1	1	0	1	0	1	0	1	0	5	55,6
Cistus monspeliensis	CM1	1	0	1	0	1	0	1	0	0	4	44,4
Tuberaria guttata	TG	0	0	0	0	0	1	0	1	0	2	22,2
Helianthemum helianthemoides	Hh	0	1	0	1	0	0	0	0	1	3	33,3
Helianthemum ledifolium	HL	1	0	0	0	0	0	0	0	0	1	11,1
Erica arborea	EA	0	0	0	0	1	0	1	1	0	3	33,3
Olea europea	OE	1	0	0	0	1	0	0	0	0	2	22,2
Phillyrea angustifolia	PA2	0	0	1	0	0	0	1	0	1	3	33,3
Convolvulus althaeoides	CA1	1	0	0	0	0	0	0	0	0	1	11,1
Cynoglossum cheirifolium	CC2	0	1	0	0	0	0	0	0	0	1	11,1
Cynoglossum clandestinum	CC3	0	0	0	0	0	1	0	0	0	1	11,1
Anchusa azurea	Aa4	1	0	0	1	0	0	0	0	0	2	22,2

T. C. C. C.	TE	0	1	0	0	0	0	0	0	0	1	11.1
Teucrium fruticans Sideritis montana	TF SM1	0	1	0	0	0	0	0	0	0	$\frac{1}{4}$	11,1 44,4
					-							,
Prasium majus	PM	1	0	0	0	0	1	0	0	1	3	33,3
Satureja calamintha	SC2	0	0	1	1	0	0	1	1	0	4	44,4
Veronica persica	VP	1	1	0	0	1	0	0	0	0	3	33,3
Linaria reflexa	LR	0	0	1	1	0	1	0	0	0	3	33,3
Antirrhinum orontium	AO	0	0	0	0	0	1	0	0	0	1	11,1
Plantago serraria	PS	1	0	0	1	0	0	0	1	1	4	44,4
Plantago albicans	PA3	0	0	1	0	1	1	0	0	0	3	33,3
Plantago lagopus	PL1	0	1	0	1	0	0	1	1	0	4	44,4
Rubia peregrina	RP	0	0	0	0	1	1	0	0	0	2	22,2
Galium aparine	GA2	0	1	0	0	0	1	1	1	0	4	44,4
Asperula hirsuta	AH	0	0	0	1	1	0	0	0	0	2	22,2
Fedia cornucopiae	FC	1	1	1	0	1	0	1	0	0	5	55,6
Scabiosa stellata	SS	1	0	0	0	0	0	0	0	0	1	11,1
Bellis annua	BA	0	0	0	0	0	1	0	0	0	1	11,1
Micropus bombycinus	MB	1	0	0	0	0	0	0	0	0	1	11,1
Inula montana	IM	0	0	0	1	0	0	0	0	0	1	11,1
Senecio vulgaris	SV	0	0	0	0	1	0	0	0	1	2	22,2
Calendula arvensis	GA3	1	0	0	0	0	0	0	0	0	1	11,1
Echinops spinosus	ES	0	0	1	0	1	0	0	0	0	2	22,2
Carlina racemosa	CR	1	0	0	0	0	0	0	1	0	2	22,2
Atractylis cancellata	AC2	0	0	0	1	0	0	1	0	0	2	22,2
Atractylis gummifera	AG	1	1	0	0	0	1	0	1	0	4	44,4
Atractylis humilis	AH1	0	0	0	0	1	0	0	0	0	1	11,1
Carduus pycnocephalus	CP	0	0	1	0	0	0	0	0	0	1	11,1
Centaurea parviflora	CP1	1	0	0	0	0	0	0	0	1	2	22,2
Centaurea pungens	CP2	0	0	0	1	0	0	0	0	0	1	11,1
Centaurea caeruleus	CC1	0	1	0	0	0	0	1	0	0	2	22,2

Hypochaeris radicata	HR	0	0	0	1	1	0	0	1	1	4	44,4
Traxacum oficinalis	TO	1	0	0	0	0	0	0	0	0	1	11,1
Sonchus arvensis	SA2	0	1	1	0	0	1	0	0	0	3	33,3
Reichardia tingitana	RT	1	0	0	1	0	0	1	0	0	3	33,3

Tableau 32: Représentation de la fréquence des espèces dans le groupement (Cr) de la Station de Zarifet

Genres Espèces	R14	R15	R16	R17	7 F	R18	R19	R20	R2°	1 R	22	R23	R24	R25	R26	R27	R2	28 F	R29	R30	R31	R32	R33	3 R:	34 1	R35	R36	R37	R38	R39	R40	R41	R42	2 R4	3 R	44 R	45	R46	R47	R4:	8 R4	9 R5	50	Présence	Fréquence
Ampelodesma mauritanicum	0	0	() (0	1	1	1		1	0	1	0	0	0	C)	0	0	0	0	() ()	0	0	0	0	0	0	1	1	()	0	0	0	1	0	C	0	0	1	9	24,3
Avena sterilis	1	1			1	1	1	1		,	1	1	1	1	1	1		1	1	1	1	1			1	1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	0	36	97,3
Schismus barbatus	1	1	,		1	1	0	0	(0	1	1	1	1	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1		1	0	0	32	86,5
Dactylis glomerata	1	1	1		1	1	1	1		1	1	1	1	1	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	37	100,0
Briza minor	1	1	,		1	1	1	1		,	1	1	1	1	1	1		1	1	1	1	,			1	1	1	1	1	1	1	1			1	1	1	1	0		n	0	0	33	89,2
Bromus madritensis	1	1			1	1	1	1		1	0	0	0	1	1	1		1	1	1	1	() ()	0	1	1	1	1	1	1	1	(0	1	1	1	1		1	1	1	29	78,4
Bromus rubens	1	1			1	1	1	1		1	1	1	1	0	0	()	0	0	1	1	,			1	1	1	1	1	1	1	1	,	1	1	1	1	1	1		1	1	1	32	86,5
Brachypodium distachyum	1	1	1		1	1	1	1		1	1	1	1	1	1	1		1	1	1	1	1		1	1	1	0	1	1	1	1	1	,	1	1	1	1	1	1		1	1	1	36	97,3
Agropyron repens	0	0	() (0	0	0	0	(0	1	1	1	1	1	1		0	0	0	0	() (0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	(0	0	0	10	27,0
Aegilops ventricosa	1	1	,	,	1	1	1	1		1	1	1	1	1	1	1		1	1	1	1	,		1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	,	1	0	0	35	94,6
Hordeum murinum	1	1	1		1	1	1	1		1	1	1	1	1	1	1		1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	37	100,0
Chamaerops humilis	0	0	(,	0	1	0	0	,)	0	0	0	0	0	C		0	1	0	0	()	0	0	0	0	0	0	0	0	(0	0	0	0	0		2	0	1	3	8,1
Asphodelus microcarpus	1	0			0	1	1	1		1	1	1	1	1	0			0	0	1	1	1			1	1	1	0								0	0	0	0				0	16	43,2
Tulipa sylvestris	0	0	C) ()	0	1	0	()	0	0	0	0	0	C)	0	0	0	0	C)	0	0	0	0	0	0	0	0	() ()	0	0	0	0	С) ()	0	1	2,7
Anthericum liliago	0	0	() ()	0	0	0	1	ı	0	0	0	0	0	C)	1	0	0	0	C)	0	0	0	0	0	0	0	0	C) ()	0	0	0	1	C) ()	0	3	8,1
Scilla peruviana	0	0	() ()	0	0	0	()	0	0	0	0	0	C)	0	0	0	0	C)	0	0	0	0	1	1	1	1	C) ()	0	0	0	0	C) (0	0	4	10,8

Urginea maritima	0	0	1	1	0	1	0	0	1	1	1	1	0	0	0	1	1	1	1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	19	51,4
Ornithogalum umbellatum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	3	8,1
Muscari neglectum	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	9	24,3
Asparagus albus	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	25	67,6
Asparagus stipularis	1	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	21,6
Asparagus aculeatus	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	32	86,5
Smilax aspera	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	13	35,1
Gladiolus segetum	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Iris sisyrinchium	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1
Orchis mascula	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2,7
Quercus coccifera	1	1	0	1	0	1	1	1	1	0	1	0	0	1	0	0	1	0	1	0	1	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	22	59,5
Quercus ilex	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Quercus suber	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Aristolochia longa	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	12	32,4
Chenopodium album	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Paronychia argentea	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Silene colorata	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Adonis annua	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Biscutella didyma	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Raphanus raphanistrum	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1	11	29,7
Sinapis arvensis	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	4	10,8
Brassica nigra	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	3	8,1
Reseda alba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	3	8,1
Reseda luteola	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	4	10,8
Sedum tenuifolium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	5,4

Crataegus monogyna	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	4	10,8
Ulex europaeus	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	24	64,9
Ulex boivinii	0	0	1	0	0	1	0	0	1	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	16	43,2
Ulex parviflorus	1	1	0	1	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	10	27,0
Calycotome sp	0	0	1	0	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	0	1	1	0	1	27	73,0
Cytisus triflorus	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	5	13,5
Lotus ornithopodioides	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	6	16,2
Lotus hispidus	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	6	16,2
Scorpiurus muricatus	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	1	1	1	0	0	1	0	0	0	0	1	0	1	10	27,0
Medicago sp	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Psoralea bituminosa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2,7
Trifolium tomentosum	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Trifolium angustifolium	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	8,1
Anthyllis tetraphylla	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	4	10,8
Anthyllis vulneraria	0	0	0	1	0	1	0	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0	0	1	0	1	1	1	0	0	1	1	0	1	0	0	0	14	37,8
Erodium moschatum	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	12	32,4
Oxalis corniculata	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	1	0	1	0	0	0	0	0	10	27,0
Linum strictum	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,7
Ruta chalepensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1
Euphorbia dendroides	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	3	8,1
Euphorbia peplus	0	1	0	1	0	1	0	1	1	0	0	1	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	1	0	1	1	1	16	43,2
Euphorbia nicaeensis	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	7	18,9
Euphorbia paralias	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	4	10,8
Rhamnus lycioides	1	1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1	13	35,1
Altaea lycioides	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	6	16,2

Mathine Mathematic Mathine Mat	,																																							,
matrissess	Malva sylvestris	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	5	13,5
Exergine more intersiphishim between the content of		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	5,4
Interpretation of the presentation of the pres	Daphni gnidium	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	5,4
Amounished Servicialization	, 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	5,4
versicitifields 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1	Daucus carota	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	6	16,2
Ammi vinagea 1 0 0 0 0 0 0 0 0 0		0	0	0	1	1	1	0	1	1	0	0	1	1	0	1	0	1	1	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	17	45.9
Cistus villouis					0								-			0		-					-		-						0									-,-
Cistus Ci	Cistus														•								•							•	1						-			,
Salviglofius	Cistus villosus	0	1	0	1	0	0	0	0	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1	1	16	43,2
Cistus O		1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0	0	1	1	0	1	0	0	1	0	0	1	1	0	0	0	0	0	12	
Taberaria guiltata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	1		0												0						0	0					0	0		0								,
Helianthemomic belianthemoides Felianthemomic Feliant																																								,
Iedifolium O O I O O O O O O O O O O O O O O O O																																								·
Angaellis arvensis 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	4	10,8
Arvensis O O O O O O O O O O O O O O O O O O	Arbutus unedo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1	6	16,2
Phillyrea angustifolia 0 0 0 0 0 0 0 0 0		0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
angustifolia 0 <t< td=""><td>Olea europea</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>8</td><td>21,6</td></t<>	Olea europea	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	8	21,6
Phillyrea Latifolia O O O O O O O O O		0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	5	13.5
althaeoides 1 1 0 1 0 <th< td=""><td>-</td><td></td><td>,</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-,-</td></th<>	-		,					0																																-,-
officinalis 0 0 0 0 1 1 1 0 <th< td=""><td></td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3</td><td>8,1</td></th<>		1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1
clandestinum 0 <t< td=""><td>officinalis</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3</td><td>8,1</td></t<>	officinalis	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1
Teucrium fruitcans 0 1 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,7
fruiticans 0 1 0	Anchusa azurea	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,7
		0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1
	Teucrium polium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1

Lavandula multifida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	3	8,1
Lavandula	1	0	1	1	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	12	32,4
stoechas Sideritis																																							
montana	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	3	8,1
Marrubium	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	0	1	0	1	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	10	27,0
vulgare																																							,
Thymus ciliatus	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	1	1	10	27,0
Satureja calamintha	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Ballota hirsuta	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	11	29,7
Veronica persica	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	8,1
Antirrhinum												_						_																					-,
majus	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Antirrhinum orontium	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	4	10,8
Bellardia																																							
trixago	1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	0	0	1	1	0	0	0	1	0	0	0	1	0	1	1	0	1	0	0	1	1	1	22	59,5
Globularia alypum	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Plantago serraria																																							
	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	8	21,6
Plantago albicans	1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	1	0	0	0	1	1	0	0	0	1	1	0	0	0	1	0	0	1	1	0	1	15	40,5
Plantago lagopus	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	1	0	0	1	0	9	24,3
Rubia							_								•								_						0				0			•			
peregrina Galium	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0	5	13,5
verticillatum	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1
Galium aparine	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	6	16,2
Asperula hirsuta	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	5,4
Viburnum tinus	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Lonicera	0	1	0	4	0	0	0	0	0	0	0	0	0	4	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	4	0	0	0	1	0	1	10	20.4
implexa Fedia	U	1	U	1	2	2	U	U	U	U	U	U	U	1	U	U	U	U	- 1	U	U	0	- 1	U	U	U	U	U	U	U	1	U	U	U	ı	0	1	12	32,4
cornucopiae	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,8
Scabiosa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
stellata	_	-	-	-		1	1	1	1	_	-	-	-	-	-				-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-			_		- ,

Bellis sylvestris	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3	8,1
Bellis annua	1	0	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	8	21,6
Micropus bombycinus	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Evax argentea	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3	8,1
Inula montana	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Pallenis spinosa	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Asteriscus maritimus	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Senecio vulgaris	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Calendula arvensis	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,7
Chrysanthemum grandiflorum	0	0	0	0	0		0			0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0		0	0	2	5,4
Chrysanthemum coronarium	0	0	0	0	0		0			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	2,7
Echinops spinosus	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	5,4
Carlina	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	4	10,8
racemosa Atractylis cancellata	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	4	10,8
Atractylis gummifera	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	8,1
Atractylis humilis	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	8,1
Carduus pycnocephalus	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	5	13,5
Centaurea	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	6	16,2
parviflora																																							
Centaurea pungens	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,4
Centaurea dimorpha	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	3	8,1
Centaurea caeruleus	0	0	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	7	18,9
Hypochaeris radicata	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	6	16,2
Traxacum oficinalis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0	1	0	6	16,2

Sonchus arvensis	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	6	16,2
Reichardia picroides	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	5	13,5
Reichardia tingitana	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	5	13,5

Tableau 33: Représentation de la fréquence des espèces dans le groupement (Ar) de la Station de SEBDOU

Genres espèces	code	R 1	R 2	R 3	R 4	R 5	R 6	R 7	R 8	présence	Fréquence
Juniperus oxycedrus	JO	1	0	1	0	0	0	0	0	2	25
Stipa tenacissima	ST	0	0	0	1	0	0	0	0	1	12,5
Stipa parviflora	SP	0	0	0	0	0	1	0	0	1	12,5
Lagurus ovatus	LO	0	0	0	0	1	1	1	1	4	50
Schismus barbatus	SB	0	1	1	1	1	1	1	1	7	87,5
Echinaria capitata	EC	1	0	0	0	0	0	0	0	1	12,5
Bromus rubens	BR	1	1	1	1	1	1	0	0	6	75
Brachypodium distachyum	BD	1	1	1	1	1	1	1	1	8	100
Aegilops ventricosa	AV	0	0	0	0	0	0	1	0	1	12,5
Hordeum murinum	НМ	0	0	0	0	0	1	1	1	3	37,5
Quercus coccifera	QC	0	1	0	1	1	1	1	1	6	75
Herniaria hirsuta	Hh	1	1	1	1	0	0	0	0	4	50
Paronychia argentea	PA	1	1	1	1	0	0	0	0	4	50
Stellaria media	SM	0	0	0	0	1	0	0	0	1	12,5
Ulex boivinii	UB	0	1	0	0	0	1	0	0	2	25
Lotus ornithopodioides	LO1	0	0	0	1	0	0	0	0	1	12,5
Vicia villosa	VV	0	0	0	0	0	0	0	1	1	12,5
Eroduim moschatum	EM	1	0	0	0	0	0	1	0	2	25
Euphorbia peplis	EP	0	0	0	0	0	1	0	0	1	12,5

Pistacia lentiscus	PL	0	1	1	1	0	0	0	0	3	37,5
Ferula communis	FC	1	0	0	0	0	0	0	0	1	12,5
Helianthemum pilosum	HP	1	0	0	0	0	0	0	0	1	12,5
Phillyrea angustifolia	PA1	1	1	1	1	1	1	1	1	8	100
Phillyrea latifolia	PL1	0	0	0	0	1	1	1	0	3	37,5
Salvia argentea	SA	3	0	0	0	1	1	1	1	7	87,5
Phlomis herba venti	PHV	3	0	0	0	0	0	0	0	3	37,5
Plantago psyllium	PP	0	1	0	1	0	0	0	0	2	25
Micropus bombycinus	MB	1	0	0	0	0	0	0	0	1	12,5
Senecio vulgaris	SV	0	0	0	0	0	0	0	1	1	12,5
Atractylis cancellata	AC2	0	0	1	0	0	1	0	0	2	25
Carduus pinnatiifidus	СР	0	0	0	1	0	0	1	0	2	25
Carthamus multifidus	СМ	0	0	0	0	1	0	0	0	1	12,5
Reichardia picrioides	RP	0	0	0	1	0	0	0	0	1	12,5

Tableau 34: Représentation de la fréquence des espèces dans le groupement (Cr) de la Station de SEBDOU

Genres espèces	code	R1 2	R1 5	R1 6	R3 1	Présence	équenc e
Stipa parviflora	SP	1	0	0	0	1	25
Schismus barbatus	SB	0	1	1	0	2	50
Echinaria capitata	EC	1	1	1	0	3	75
Brachypodium distachyum	BD	1	1	1	0	3	75
Hordeum murinum	НМ	1	1	1	1	4	100
Ornithoglum umbellatum	OU	0	0	1	1	2	50
Muscari comosum	MC	0	1	0	0	1	25
Quercus coccifera	QC	1	0	1	0	2	50

Paronychia argentea	PA	1	0	0	0	1	25
Stellaria media	SM	1	0	1	0	2	50
Silene coeli-rosa	SC1	1	1	1	0	3	75
Adonis aestivalis	Aa	1	0	0	0	1	25
Raphanus raphanistrum	Rr	1	1	0	0	2	50
Eruca vesicaria	EV	1	0	0	0	1	25
Sinapis arvensis	Sa	0	0	1	1	2	50
Ulex boivinii	UB	1	0	1	0	2	50
Euphorbia peplis	EP	1	0	0	0	1	25
Pistacia lentiscus	PL	0	1	1	0	2	50
Torilis nodosa	TN	1	1	1	1	4	100
Anagallis arvensis	AA	1	0	0	0	1	25
Phillyrea latifolia	PL1	0	0	0	1	1	25
Lithospermum apulum	LA	0	0	1	0	1	25
Ajuga chamaepitys	AC	0	1	1	0	2	50
Stachys arvensis	SA1	1	0	0	0	1	25
Plantago lagopus	PL2	0	0	1	0	1	25
Asperula hirsuta	AH	0	1	0	1	2	50
Scabiosa stellata	SS	1	1	1	1	4	100
Bellis annua	BA	1	1	1	1	4	100
Micropus bombycinus	MB	1	0	1	0	2	50
Artemisia alba	AA1	1	0	0	0	1	25

Tableau 35: Représentation de la fréquence des espèces dans le groupement (Br) de la Station de SEBDOU

Genre espèces	R9	R10	R11	R13	R14	R17	R18	R19	R20	R21	R22	R23	R24	R25	R26	R27	R28	R29	R30	R32	R33	R34	R35	R36	R37	R38	R39	R40	R41	R42	R43	R44	R45	R46	R47	R48	R49	R50	Présence	Fréquence
Juniperus																																								1
oxycedrus	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	39,5
Stipa tenacissima	1	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	14	36,8
Stipa parviflora	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	7,9
Schismus barbatus	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	34	89,5
Bromus rubens	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
Brachypodium distachyum	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	34	89,5
Aegilops ventricosa	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	3	7,9
Hordeum murinum	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	37	97,4
Fritillaria oriensis	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
Ornithoglum umbellatum	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	3	7,9
Muscari comosum	0		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
Ophrys tenthredinifera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2,6
Quercus coccifera	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	6	15,8
Herniaria hirsuta	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	7,9
Paronychia argentea	0	1	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	13,2
Stellaria media	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,3
Silene conica	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,3
Silene coeli-rosa	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
Velezia rigida	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,3
Adonis dentata	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
Papaver	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
hybridum Papaver rhoeas	0		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0		0		0	0	-	0	0	0	0	0			-			3	7,9
Roemeria hybrida			-																-	0	1		0				0	1		0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	2,6

· · · · · · · · · · · · · · · · · · ·																																									•
Biscutella didyma	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	8	21,1
Raphanus raphanistrum	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0		0	0	3	7,9
Eruca vesicaria	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	2,6
Sinapis arvensis	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	2	5,3
Brassica nigra	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	2	5,3
Reseda alba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	2	5,3
Resedea lutea	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	_	+	0	0	1	2,6
Sedum acre	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	2,6
Ulex boivinii	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0			1	1	10	26,3
Ononis natrix	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0		0	0	3	7,9
Lotus ornithopodioides	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0		0	0	4	10,5
Medicago	,	,	-			Ŭ		Ŭ			,							,	J						Ü	-	Ŭ		Ü		Ü			Ť		T	1	Ť			10,3
rugosa	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	١.	0	0	6	15,8
Trifolium	0	-	U	1	1	0	0	0	0	-	-	-	0	0	0	0	0	1	U	- 0	U	U	- 0	1	0	J	0	U	U	1	U	U	J	- 0	0		†			U	15,0
arvense	0	0	0	0	0	0	0	0	0	0		0	,	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	4	10,5
Trifolium glomeratum		0		0							1		1	0		1	0		0	0		0	0	0	0	0	0	0	U	0	0	0	0	0	0	1		0	U	4	10,5
Ü	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	+	0	0	4	10,5
Vicia villosa	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0		0	0	5	13,2
Hippocrepis unisiliquosa	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	4	10,5
Eroduim moschatum	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0		0	0	6	15,8
Linum strictum	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	2,6
Euphorbia peplis	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1	0	4	10,5
Euphorbia exiga	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	1	1	0		+	0	0	5	13,2
Pistacia lentiscus	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	1	5	13,2
Rhamnus lyciodes			1						Ü								0					Ü				-			-	0	Ü										
-	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0		_	-	0	6	15,8
Torilis nodosa	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0		0	0	35	92,1
Ferula communis	1	1	1	1	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0		0	0	11	28,9
Helianthemum Murbeckii	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	2,6
Helianthemum pilosum	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	1	2,6
Helianthemum helianthemoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		0	0	1	2,6

																																								-
Anagallis	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
arvensis	0	U	1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	2,6
Phillyrea angustifolia	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	15	39,5
Phillyrea latifolia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	3	7,9
Convolvulus	0		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
arvensis																																								,
Lithospermum						1																																		-
apulum																					0					0	0		0		0					0		0		2.6
Rosmarinus	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
officinalis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	13,2
Salvia argentea	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,5
Thymus ciliatus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10,5
Phlomis herba	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
venti				-		<u> </u>									ļ											Ü						0					- 0			
Stachys arvensis	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
Plantago psylluim	0	0	0	0	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	6	15,8
Plantago lagopus	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	5,3
Asperula hirsuta	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2,6
Sherardia	0	0	0	0	0		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	4	10,5
arvensis			U	U	U	1	U	U	U	U	1	U	U		U	U	U	U	U	0	U	1	U	U	U	U	U	U		U	1	U	0	Ü	U	0		U	-	10,5
Scabiosa stellata	0		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	34	89,5
Bellis annua	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	7,9
Micropus																																								
bombycinus	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	6	15,8
Evax argentea	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	5	13,2
Gnaphalium																																					ĺ			
luteo-album	0	0	0	0	_1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	_4	10,5
Calendula arvensis					_	_					_						_										_							_						
Chrysanthemum	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	10,5
grandiflorum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3	7,9
Artemisia alba	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	9	23,7
Atractylis cancellata	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	7,9
Silybum marianum	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	n	0	0	0	0	0	3	7,9
		<u> </u>		V		·		U		U							·	V	v	J	v	U	J	J	J			V	v	V	v	V	J		J	J	V	v		,,,,

Carduus pinnatiifidus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	5,3
Centaurea pullata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	3	7,9
Carthamus multifidus	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	4	10,5
Catananche coerula	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	5,3
Tolpis barbata	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	5	13,2
Reichardia picroides	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	3	7,9

Tableau 36: Représentation de la fréquence des espèces dans le groupement (Ar) de la Station de TERNI

Genres espèces	R1	R2	2 R3	R4	R5	R8	R9	R10	R11	R14	R15	R16	R17	R18	R19	R24	R25	R26	R27	R28	R29	R30	R31	R35	R38	R46	R49	R50	Présenc e	Fréquenc e
juniperus oxycedrus	0	1	0	1	0	1	1	1	1	0	0	0	1	1	1	0	0	0	0	1	0	1	0	0	0	0	1	1	13	46,4
Stipa tenacissima	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	3,6
Ampelodesma mauritanicus	0	C	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	4	14,3
Avena sterilis	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	3,6
Schismus barbatus	1	1	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	9	32,1
Echinaria capitata	0	C	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6
Arisarum vulgare	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	2	7,1
Asphodelus microcarpus	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	2	7,1
Tulipa sylvestris	0	C	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	7,1
Scilla peruviana	0	C	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	3	10,7
Muscari comosum	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3	10,7
Gladiolus segetum	0	C	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2	7,1
Iris xiphium	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	3,6
Ophrys atlantica ssp haykii	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3,6
Quercus ilex	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	3,6
Quercus suber	0	C	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	6	21,4
Quercus faginea	0	C	1	1	0	1	1	1	1	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1	13	46,4
Cytinus hypocistus	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	3,6
Paronychia argentea	0	C	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6

_																														
Spergula flaccida	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	3,6
Silene mollissima	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	3,6
Calepina irregularis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	3,6
Sinapis arvensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3,6
Biscutella auriculata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	3,6
Alliaria offinalis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	3,6
Sedum acre	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	3,6
Rosa canina	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	5	17,9
Crataegus monogyna	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	10,7
Genista cinerea ssp ramosissima	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	0	0	1	1	0	0	7	25,0
Anthyllis vulnéraria	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	3,6
vicia villosa	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6
Hippocrepis multisiliquosa	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6
Geranium molle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	3,6
Daphne gnidium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	3,6
Hedera helix	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	3,6
Eryngium maritimum	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6
Eryngium campestre	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	7,1
Ferula communis	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	6	21,4
Ammoides verticillata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	3,6
Cistus salvifolius	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	2	7,1
Anagallis arvensis subsp phoenicea	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	4	14,3
Anagallis arvensis subsp latifolia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	2	7,1
Jasminum sp	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	3	10,7
Phillyrea angustifolia	0	1	1	1	1	1	1	1	1	1	0	0	1	0	0	1	0	0	1	1	1	0	0	1	0	0	0	0	15	53,6
Phillyrea media	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6
Phillyrea latifolia	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	0	7	25,0
Convolvulus triclor	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6
Teucrium fruticans	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	3,6
Salvia verbenaca	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	3,6

Thymus ciliatus	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	1	0	0	0	1	1	9	32,1
Nepeta multibracteata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2	7,1
Scrophularia laveigata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	3,6
Plantago coronopus	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	7,1
Plantago serraria	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	3,6
Gallium aparine	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	7,1
Viburnum tinus	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	0	5	17,9
Lonicera implexa	0	1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	14,3
Fedia coronucopiae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	3,6
Bellis sylvestris	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	3,6
Micropus bombycinus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	3,6
Pallenis spinosa	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	7,1
Calendula arvensis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	2	7,1
Cirsium acarna	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	7,1
Centauria pullata	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3,6
carthamus caeruleus	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	7,1
Reichardia tingitana	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	4	14,3

Tableau 37: Représentation de la fréquence des espèces dans le groupement (Br) de la Station de TERNI

Genres Espèces	R6	R7	R1 2	R1 3	R2 0	R2	R2 2	R2 3	R3 3	R3	R4 5	Présence	Fréquenc
juniperus oxycedrus	0	0	0	0	0	0	0	1	0	0	0	1	<u>е</u> 9,1
Ampelodesma mauritanicus	1	0	1	1	1	1	0	0	1	1	1	8	72,7
Avena sterilis	0	0	0	0	0	0	0	0	0	0	1	1	9,1
Schismus barbatus	0	0	0	0	0	0	0	0	0	1	1	2	18,2
Chamaerops humilis	0	1	1	1	0	1	1	1	0	0	1	7	63,6
Asphodelus microcarpus	0	0	0	1	0	0	1	1	1	0	0	4	36,4
Ornithogalum umbellatum	0	0	0	0	0	0	0	0	0	1	0	1	9,1
Ruscus aculeatus	0	0	1	0	0	0	0	0	0	0	0	1	9,1

Smilax aspera	0	0	0	1	0	0	0	0	0	1	0	2	18,2
Orchis morio	0	0	0	0	0	0	0	0	1	0	0	 1	9,1
Quercus ilex	0	0	0	0	0	0	0	0	1	1	0	2	18,2
Quercus suber	1	0	0	0	0	0	0	0	0	0	1	2	18,2
Quercus faginea	0	0	0	1	1	0	0	0	0	0	0	2	18,2
Aristolochia longa	1	0	0	0	0	0	0	0	0	0	0	1	9,1
Paronychia argentea	1	0	0	0	0	0	0	0	0	0	0	1	9,1
Papaver rhoeas	0	0	1	0	0	0	0	0	0	0	0	1	9,1
Papaver duium	0	0	0	1	0	0	0	0	0	0	0	1	9,1
Sinapis arvensis	0	1	0	0	0	0	0	0	0	0	0	1	9,1
Biscutella auriculata	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Reseda alba	0	0	0	0	0	0	0	1	0	0	0	1	9,1
Rosa canina	0	0	0	1	0	0	0	0	0	0	0	1	9,1
vicia villosa	0	0	0	0	0	0	1	0	0	1	0	2	18,2
Linum strictum	0	0	0	0	0	0	0	1	0	0	0	1	9,1
Euphorbia squamigera	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Eryngium maritimum	0	1	0	0	0	0	0	0	0	0	0	1	9,1
Ferula communis	0	0	0	0	1	1	0	0	0	0	0	2	18,2
Anagallis arvensis subsp latifolia	0	0	0	0	0	0	0	0	0	1	0	1	9,1
Phillyrea angustifolia	1	1	1	1	1	1	1	1	1	1	1	11	100,0
Phillyrea media	1	0	0	0	1	0	0	0	0	0	0	2	18,2
Phillyrea latifolia	0	1	1	0	0	1	1	0	0	0	0	4	36,4
Teucrium fruticans	1	0	0	0	0	0	0	0	0	0	0	1	9,1
Lavandula dentata	0	1	0	0	0	0	0	0	0	0	0	1	9,1
Nepeta multibracteata	0	0	0	0	0	0	0	0	0	0	1	1	9,1
Plantago coronopus	0	0	0	0	1	0	0	0	1	0	0	2	18,2
Plantago serraria	1	0	0	0	0	0	0	0	0	0	0	1	9,1

Viburnum tinus	0	0	1	1	1	1	1	0	0	1	0	6	54,5
Fedia coronucopiae	0	0	0	0	0	0	0	1	0	0	0	1	9,1
Micropus bombycinus	0	1	0	0	0	0	0	0	0	0	0	1	9,1
Chrsanthemum coronarium	0	0	1	0	1	0	0	0	0	0	0	2	18,2
Reichardia tingitana	1	0	0	0	0	0	0	0	0	0	0	1	9,1

Tableau 38: Représentation de la fréquence des espèces dans le groupement (Cr) de la Station de TERNI

Genres espèces	R32	R36	R37	R39	R40	R41	R42	R43	R44	R47	R48	Présence	Fréquenc e
juniperus oxycedrus	0	0	1	1	0	0	0	0	0	0	1	3	27,3
Stipa tenacissima	0	0	0	1	0	0	0	0	0	0	0	1	9,1
Polypogon monspeliensis	0	1	0	0	0	1	0	0	0	0	0	2	18,2
Avena sterilis	0	1	1	0	0	0	0	0	0	1	0	3	27,3
Schismus barbatus	0	1	0	0	0	0	0	1	0	0	0	2	18,2
Echinaria capitata	0	0	1	0	0	0	0	0	0	0	0	1	9,1
Arisarum vulgare	0	0	0	0	0	1	0	0	0	0	0	1	9,1
Aphyllantes monspeliensis	0	0	1	0	0	0	0	0	1	0	1	3	27,3
Asphodelus microcarpus	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Ornithogalum umbellatum	1	0	1	0	0	0	0	0	0	1	0	3	27,3
Asparagus acutifolius	0	0	0	1	0	0	0	0	0	0	0	1	9,1
Gladiolus segetum	1	0	0	0	0	1	0	0	0	0	0	2	18,2
Quercus coccifera	0	1	1	1	0	1	0	0	1	0	1	6	54,5
Quercus ilex	1	1	1	1	0	0	1	1	1	1	1	9	81,8
Quercus suber	0	0	0	0	0	1	0	0	0	0	0	1	9,1
Quercus faginea	0	0	1	1	0	0	0	0	0	0	0	2	18,2
Aristolochia longa	0	0	0	1	0	0	0	0	1	0	0	2	18,2
Melandrium album	0	1	0	0	0	0	0	0	0	0	0	1	9,1
Calepina irregularis	0	0	0	0	0	0	0	0	0	1	0	1	9,1

Sinapis arvensis	0	0	0	0	0	0	0	1	0	0	0	1	9,1
Reseda phyteuma	0	0	0	0	1	0	0	0	0	0	0	1	9,1
Rosa canina	0	1	0	0	1	1	0	0	1	0	0	4	36,4
Crataegus monogyna	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Anthyllis vulnéraria	1	0	0	1	0	0	0	0	0	0	0	2	18,2
Hippocrepis multisiliquosa	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Astragalus caprinus subsp lanigerus	0	0	1	0	0	0	1	0	0	0	0	2	18,2
Ruta chalepensis	0	0	0	0	1	0	0	0	0	0	0	1	9,1
Malope malacoides	0	1	0	1	0	0	0	0	0	0	0	2	18,2
Daphne gnidium	1	0	0	0	0	0	0	0	0	0	0	1	9,1
Hedera helix	0	0	0	0	0	1	0	0	0	0	0	1	9,1
Torilis nodosa	0	1	1	1	0	0	0	0	1	0	0	4	36,4
Cistus salvifolius	0	0	1	0	0	0	0	0	0	0	0	1	9,1
Helianthemum cinereum	0	0	0	1	0	0	0	0	0	0	1	2	18,2
Anagallis arvensis subsp latifolia	0	0	0	1	0	0	0	0	0	0	0	1	9,1
Jasminum sp	0	0	0	0	1	0	0	0	0	0	0	1	9,1
Phillyrea angustifolia	1	0	0	0	0	0	1	0	0	0	1	3	27,3
Phillyrea media	0	0	0	0	0	0	1	0	0	0	0	1	9,1
Cynoglossum cheirifolium	0	1	0	0	1	0	0	0	0	0	0	2	18,2
Cynoglossum creticum	0	0	0	0	0	0	0	1	0	0	0	1	9,1
Rochelia disperma	0	1	0	0	0	0	0	0	0	0	0	1	9,1
Phlomis crinita	0	0	1	0	0	0	0	0	0	0	0	1	9,1
verbascum blattaria	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Linaria tristis	0	0	0	0	0	0	0	0	0	1	0	1	9,1
Rubia peregina	0	1	0	0	0	1	0	0	0	0	0	2	18,2

Gallium aparine	0	0	0	0	0	0	0	0	0	1	0	1	9,1
Viburnum tinus	0	0	0	0	0	1	0	0	0	0	0	1	9,1
Bellis sylvestris	0	0	0	0	1	1	0	0	0	1	0	3	27,3
Calendula suffruticosa	0	0	1	1	0	0	0	0	0	0	0	2	18,2
Cirsium acarna	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Cirsium acarna	0	0	0	0	0	0	0	0	1	0	0	1	9,1
Centaurea nana	0	0	0	0	0	0	0	0	0	0	1	1	9,1
Reichardia tingitana	0	0	1	0	0	0	0	0	0	0	0	1	9,1

Tableau 39 : Contribution des espèces et des reléves de la station de Béni-Saf

Genre Espèce	Code	axe1	axe2	axe3		Facteur1	facteur 2	facteur 3
Tetraclinis articulata	TA	-0,94399445	-0,25556855	0,29224838	R1	0,5609853	0,01915954	0,08475478
Juniperus phoenicea	JP	-0,58247162	0,70559782	0,04281138	R2	0,43886525	0,09222799	-0,16914308
Pinus maritima	PM	-0,25293081	0,53664002	1,10755088	R3	0,37081648	0,04499577	0,06239409
Stipa tenacissima	ST	1,05451405	-2,04269477	0,22137248	R4	0,43772624	0,10152888	-0,07656095
Stipa torilis	ST1	2,25572195	-1,70397683	1,73468633	R5	0,2841392	0,18065518	-0,22598159
Polypogon monspeliensis	PM1	2,59681335	-1,53495428	1,33734699	R6	0,36820185	0,00579891	0,31712934
Avena sterilis	AS	0,03650557	0,66382401	-0,81312921	R7	0,3168503	0,04974632	-0,17187101
Dactylis glomerata	DG	2,75545433	0,07887295	0,37756365	R8	0,2578374	0,08741173	-0,39077358
Briza minor	BM	1,94003067	-1,49414263	0,61434305	R9	0,27794925	0,21518699	0,06449744
Bromus rubens	BR	2,21504477	1,16466671	1,63156324	R10	0,18026851	0,0844987	0,07362261
Brachypodium distachyum	BD	2,18235341	-1,45259417	-0,48171063	R11	0,2516708	0,25714156	0,16444128
Lepturus cylindricus	LC	1,78666919	-0,65259005	-0,73235254	R12	0,22124162	0,19744325	0,21040049
Aegilops triuncialis	AT	0,74888425	1,58059289	-0,42356675	R13	0,2522816	0,21900497	0,23284183
Hordeum murinum	HM	2,3608386	-1,03613976	-1,21852389	R14	0,53929289	0,14786962	-0,21457029
Chamaerops humilis	СН	1,90385511	-0,81468715	-1,92268895	R15	0,4288714	0,06177005	-0,23519888
Arisarum vulgare	AV	-0,64734249	-0,19071859	1,44849294	R16	0,44598058	0,16687179	-0,09116089
Arum italicum	AI	-0,78843551	-0,36642227	0,24798349	R17	0,45260152	0,05194412	-0,27635464
Asphodelus microcarpus	AM	0,65523012	0,12645099	1,13650355	R18	0,41606429	-0,07811925	-0,2257382
Tulipa sylvestris	TM	-1,00527399	0,02836541	-0,55967416	R19	0,49756142	-0,13104836	-5,8377E-05

Scilla peruviana	SP	-0,36813842	-0,28108661	-1,27226192	R20	0,42493163	-0,02742932	-0,1482396
Urginea maritima	UM	0,31863227	0,49120192	-0,38339185	R21	0,51473969	-0,01426083	-0,09121095
Ornithogalum umbellatum	OU	-0,93938983	-0,08904932	0,52227199	R22	0,51025997	-0,08322482	-0,08206373
Muscari comosum	MC	-0,18601107	0,77084073	0,24127988	R23	0,46975231	-0,26272745	-0,08358841
Muscari neglecum	MN	-1,04913013	0,12926849	-0,52652249	R24	0,48603921	-0,04611261	-0,13797433
Asparagus albus	Aa	-0,45094342	0,48786162	-1,16767412	R25	0,56305449	-0,19620696	-0,08337291
Asparagus stipularis	AS1	-0,80181308	0,45880477	0,17593367	R26	0,58940907	-0,10442395	0,16217434
Asparagus acutifolius	Aa1	-0,05358738	0,07393782	-0,27985993	R27	0,55486437	-0,13894673	0,19311282
Allium hirsutum	AH	-0,9704255	-0,40542055	-0,58030749	R28	0,45737117	0,26862882	-0,30551429
Allium nigrum	AN	-0,945526	-0,47044728	-0,18462378	R29	0,40646075	0,19587444	-0,40868551
Smilax aspera	SA	-0,69136428	0,03680913	-0,67472782	R30	0,38862623	0,1705118	-0,36920068
Tamus communis	TC	-0,81756802	-0,21441505	-0,44944364	R31	0,4760377	0,3312229	-0,42813767
Gladiolus segetum	GS	-0,5256902	0,54386645	1,68354593	R32	0,44274859	0,02646682	0,4931499
Iris xiphium	IX	-0,94120106	0,35374374	0,67139021	R33	0,54841895	-0,01588591	0,48877715
Ophrys speculum	OS	-0,9259132	-0,45979475	-0,13193925	R34	0,45332721	0,0023463	0,47841317
Ophrys apifera	OA	-0,96149036	-0,56043966	-0,25618133	R35	0,46385324	-0,0149483	0,18983783
Quercus coccifera	QC	1,72983167	2,54218101	0,53784434	R36	0,42508975	0,10573583	-0,16344801
Aristolochia longa	AL	-0,48609854	0,43589972	1,23934384	R37	0,53938138	0,26019997	-0,17973371
Chenopodium album	CA	-0,0575342	0,73643029	-1,75957686	R38	0,53396917	0,17799034	0,06335021
Herniaria hirsuta	Hh	-0,78051198	-0,19172079	-0,33039252	R39	0,5882896	0,19511001	0,17766431
Paronychia argentea	PA	-0,20709575	-3,02392914	0,16007208	R40	0,64667088	0,14487584	-0,0123421
Arenaria emarginata	AE	-0,33660297	0,79754865	1,47149053	R41	0,38144895	0,28754003	0,16543769
Adonis dentata	AD	-0,40390927	0,00154932	-0,29460011	R42	0,42032599	0,31366235	0,23599956
Adonis aestivalis	Aa2	-0,77979365	0,33352897	-0,0859973	R43	0,38394662	0,32577418	-0,02820433
Ranunculus spicatus	RS	0,06178088	2,10463359	-1,00576605	R44	0,43428394	0,24084234	0,26034382
Ranunculus repens	Rr	-0,00084664	1,94540953	-0,97385541	R45	0,58156281	0,2385794	0,21732352
Vella annua	VA	0,86414512	1,14346104	0,33848117	R46	0,44767424	-0,58460714	0,08418462
Lobularia maritima	LM	0,40431984	0,44021018	-0,74321514	R47	0,48941693	-0,65895306	-0,01695921
Raphanus raphanistrum	Rr1	-0,03804746	0,48905977	1,43310149	R48	0,46321596	-0,63623578	-0,05335749
Sedum acre	SA1	-0,17397275	-3,0204399	-0,33265699	R49	0,31424949	-0,5959436	0,08226898
Rosa sempervirens	RS1	-1,10785612	-0,01758654	-0,00327995	R50	0,41333799	0,12268938	0,04084213
	•							

Ulex boivinii	UB	-1,00467008	-0,25669171	-0,15537757		
Ulex parviflorus	UP	-0,511456	0,10024241	0,36516349		
Genista numidica	GN	-0,44043001	-1,99266182	1,08865766		
Retama retama	Rr2	-1,17899805	-0,02273079	0,22269643		
Ononis reclinata	OR	1,16354004	2,27786077	0,06273383		
Calycotome spinosa	CS	1,65593259	1,54487097	-1,4601939		
Scorpiurus muricatus	SM	-1,10302546	-0,04727783	0,54136676		
Medicago littoralis	ML	1,00660024	0,78202548	-2,51358383		
Trifolium rugosa	TR	-0,77996809	0,47191087	0,51319347		
Trifolium compestre	TC1	0,20319212	1,01913797	0,9704952		
Anthylis vulneraria	AV1	-0,87193823	-0,17672265	1,30995306		
vicia villosa	VV	1,29723678	0,98312918	1,20079165		
Hippocrepis multisiliquosa	HM1	0,14273307	-0,50117294	1,4640071		
Geranium pratense	GP	-1,15041998	0,03360945	0,01296943		
Erodium moschatum	EM	1,27707292	-0,22887755	-1,71655071		
Linum strictum	LS	-0,94355581	-0,20378775	1,18636557		
Ruta chalepensis	RC	-0,52695166	-1,87910443	1,48325277		
Euphorbia peplus	EP	1,32881261	-2,46903766	-1,17219937		
Pistacia lentiscus	EB	-0,5909088	0,51716191	-0,44107672		
Rhamnus lycioides	PL	2,62168039	2,49204488	-0,70624192		
Ziziphus lotus	RL	0,14078666	-1,48217736	0,00910453		
Malva aegyptiaca	ZL	-1,04724204	-0,0197278	0,37125405		
Malva sylvestris	MA	-0,74335543	-0,09697013	-0,16018021		
Daphne gnidium	MS	0,8034176	0,47203211	1,37722671		
Eryngium maritimum	DG1	-0,90627147	0,34678932	-0,94602442		
Thapsia garganica	EM1	-0,82143898	-0,51096232	-0,5520649		
Torilis nodosa	TG	-0,85068917	0,17239942	0,5615352		
Ammoides verticillata	TN	0,32985541	0,58043963	0,22483441		
Oenanthe (globulosa)	AV2	0,54433723	0,92594277	-1,60782788		

Kundmannia sicule	OG	0,06983227	-1,02610497	1,96980932		
Oxalis pes-caprae	KS	-0,10609872	-2,39498851	1,22269318		
Cistus villosus	OP	-0,0395168	-0,00099156	-0,63050409		
Cistus salvifolius	CV	-0,36796672	-0,24056621	-0,56617029		
Cistus albidus	CS1	-0,30778972	-0,12969321	-1,93879648		
Cistus monspeliensis	CA1	-0,13583342	-1,42627788	-0,9956587		
Halimium halimifolium	CM	-1,08517729	-0,01410101	0,08936477		
Helianthemum hirtum	Hh1	0,23356939	0,43090721	-0,55911552		
Helianthemum virgatum	Hh2	-0,11433255	0,84819245	1,23588423		
Fumana thymifolia	HV	-0,49596242	0,46359547	0,62470363		
Erica multiflora	HT	-0,73836354	-0,37606885	0,0381587		
Coris monspeliensis	EM2	-1,00109989	-0,27406676	-0,17857683		
Anagallis arvensis subsp phoenicea	CM1	-0,79964746	-0,09974826	-0,12133582		
Anagallis arvensis subsp latifolia	Aa3	-0,69278099	0,53905	0,51643807		
Jasminum fruticans	JF	-1,1500357	-0,17618694	-0,45226088		
Phillyrea angustifolia	PA1	3,74233153	-0,31134351	-0,11682345		
Phillyrea media	PM2	-0,92159534	0,28076205	0,45793319		
Phillyrea latifolia	PL1	-0,49265395	0,17281826	1,18816685		
Olea europea	OE	-0,94417674	0,01684247	0,72339162		
Blakstonia perfoliata	BP	-0,65509303	0,9116132	0,42338473		
Centaurium umbellatum	CU	-0,80370072	-2,64412723	0,12202356		
Cicendia filiformis	CF	1,79377405	0,47702626	0,91096187		
Cuscuta sp	CSP	-0,86819809	-0,56568145	-0,74207173		
Convolvulus althaeoides	CA2	-0,10182457	-2,07394187	-0,20784895		
Convolvulus arvensis	CA3	-0,60869328	-0,25461326	0,43404408		
Borago officinalis	ВО	-0,49370652	1,17314258	-0,26036842		
Echium vulgare	EV	-0,8096142	0,65210773	0,20135135		
Ajuga chamaepitys	AC	-0,90932944	0,3247363	-1,17953813		

Ajuga iva	AI1	-0,96067693	0,02515374	0,1540344		
Teucrium polium	TP	-0,4196546	-0,64417511	0,09492882		
Rosmarinus officinalis	RO	0,17843402	-0,3520889	-1,24506538		
Lavandula dentata	LD	1,49059193	-0,66922495	0,80236059		
Lavandula multifida	LM1	0,36687659	1,23872264	-1,67954421		
Lavandula stoechas	LS1	-0,62865003	0,78993972	-1,57683508		
Sidertis montana	SM1	-0,79124896	-0,47026673	-0,11297366		
Marrubium vulgare	MV	-0,15397025	0,53144128	-0,34260438		
Thymus ciliatus	TC2	0,97473763	-2,6210796	-1,39645184		
Satureja calamintha susbsp nepeta	SCN	-0,76527055	0,93149415	-0,12001369		
Ballota hirsuta	ВН	-0,57841349	-1,29741606	-0,75446611		
Nepeta multibracteata	NM	-1,27034704	-0,27747038	0,02133753		
Orobanche purpurea	OP1	-0,57137952	0,72103741	0,38186859		
Globularia alypum	GA	-0,63429415	0,04743818	-0,55970081		
Plantago psyllium	Pp	0,38403009	0,60526253	1,13823916		
Plantago albicans	PA2	-1,1689624	-0,35205834	-0,13423391		
Plantago coronopus	PC	0,27995899	-0,92604063	-0,57902729		
Plantago serraria	PS	1,24503529	0,30922087	0,14868956		
Plantago lagopus	PL2	1,38630207	1,49875524	1,91336463		
Plantago ovata	PO	-0,46358728	0,65353424	1,04064623		
Rubia peregrina	RP	-0,36762136	0,53004315	-0,25215947		
Rubia tinctorum	RT	-0,8780617	0,15050747	-0,56376619		
Gallium verum	GV	-0,53350217	0,05676487	0,79575015		
Gallium aparine	GA1	1,68826955	0,25286049	-2,07790842		
Sherardia arvensis	SA2	0,01407088	0,36991923	0,30413244		
Lonicera implexa	LI	-0,03108823	0,79565479	0,90683975		
Fedia cornucopiae	FC	-0,5462598	1,10839136	0,35873221		
Scabiosa stellata	Ss	0,44684002	-0,05264906	1,68657697		

Bryonia dioica	BD1	-0,71953759	0,54104152	-0,12628985		
Campanula trachelium	CT	-0,80973473	-0,17591869	-0,43144261		
Bellis sylvestris	BS	-0,51576314	-0,02731947	1,30531847		
Bellis annua	BA	0,68090657	0,6935976	1,79593465		
Micropus bombicinus	MB	-0,08306004	-0,2369566	-1,39876097		
Gnaphalium lueo-album	GLA	-0,01721582	1,38638148	-0,56508411		
Pallenis spinosa	PS1	1,04070533	-2,28643159	0,35542473		
Asteriscus maritimus	AM1	-0,12138761	-0,37950155	-1,58530571		
Senecio vulgare	SV1	1,48606634	-1,16393077	0,96483785		
Anacyclus radiatus	Ar1	-0,36814837	0,38308057	-1,48486266		
Chrysanthemum grandiflorum	CG	0,08953409	0,42853002	0,39876703		
Chrysanthemum coronarium	CC	0,29607631	0,65642227	0,12139137		
Xeranthemum inapertum	XI	0,00124693	-0,63918994	-1,90252065		
Carduus pycnocephalus	СР	1,41168863	-0,38420438	0,67043296		
Centaurea pullata	CP1	0,70943162	1,88927876	-1,18076585		
Centaurea incana	CI1	0,76287463	0,6932647	2,20504563		
Catananche coerulea	CC1	0,15902811	0,16106286	-2,3076394		
Tolpis barbata	TP1	2,104517	0,05549498	0,77064505		
Rhagadiolus stellatus	RS1	0,79717365	-0,41063529	-0,06588495		
Taraxacum officinalis	TO1	-0,14580129	0,46370108	-1,87777934		
Reichardia picroides	RP1	-0,42504831	-0,72657883	0,55623852		
Reichardia tingitana	RT1	-0,35946573	-0,51108986	-0,4386337		
Sisymbrium irio	SI1	-0,59068798	0,09038749	0,81169778		
Capsella bursa-pastoris	CBP	-0,32783556	1,24868767	2,06579665		
		•				

Tableau 40: Contribution des espèces et des relevés de la station de Honaine

Genres espèces	code	axe1	axe2	axe3	code1	facteur1	facteur 2	facteur 3
Tetraclinis artriculata	TA	2,89399841	4,39530751	-0,74923212	R1	0,21928511	0,14357876	0,66062919
Juniperus phoenicea	JP	-0,44019841	-0,5132751	-0,38584912	R2	0,32686431	0,09751633	0,74040704
Stipa tenacissima	ST	-0,4058523	-0,3172263	-0,36979191	R3	0,22436824	0,15824761	0,76981593
Avena sterilis	AS	-0,11780603	0,31303777	1,51352406	R4	0,34683904	0,12817072	0,71161518
Schismus barbatus	SB	0,3370189	2,1147241	-1,43597993	R5	0,46921161	0,02028957	0,50880714
Dactylis glomerata	DG	0,15059419	0,37853589	1,00801236	R6	0,38509676	-0,02896334	0,32863693
Bromus rubens	BR	-0,22901535	-0,24458565	-0,14578247	R7	0,65124438	0,38283726	0,26581159
Hordeum murinum	HM	0,02590322	1,38853511	-0,37310095	R8	0,53701997	0,33246697	0,38801505
Chamaerops humilis	СН	3,23957119	-1,01854329	1,14986644	R9	0,39201867	0,33574651	0,38855969
Arisarum vulgare	AV	1,51252663	-0,62150523	0,59184203	R10	0,55537461	0,11234901	0,21471737
Aphyllanthes monspeliensis	AM	-0,77965838	-0,01296637	-0,13838822	R11	0,66880495	0,18738285	0,13190635
Asphodelus microcarpus	AM1	2,85348183	-2,12626695	-1,07418774	R12	0,69996335	0,25102375	0,20622129
Tulipa sylvestris	TS	-0,62755651	-0,22138334	-0,00635123	R13	0,75797933	0,02310436	-0,10412495
Scilla peruviana	SP	-0,6619306	-0,10388315	-0,19176473	R14	0,76843696	-0,02468162	-0,05918469
Urginea maritima	UM	1,59121317	-0,11371986	-1,00358394	R15	0,63212966	0,29484259	-0,08641476
Ornithoglum umbellatum	OU	-0,78085944	-0,00229865	-0,13173681	R16	0,67260029	0,29884022	-0,07202611
Asparagus stipularis	AS1	-0,60806334	0,18055848	-0,12656397	R17	0,30631639	0,29355303	-0,0727908
Asparagus acutifolius	Aa	-0,78085944	-0,00229865	-0,13173681	R18	0,25034017	0,37744581	-0,03083299
Allium hirsutum	AH	-0,69586417	0,70988226	-0,59188612	R19	0,61853924	0,20423862	-0,1618992
Quercus coccifera	QC	1,43661474	-2,84449532	-1,18269047	R20	0,3234849	0,40391972	-0,30707046
Cytinus hypocistus	CH1	-0,56650693	0,58909976	-0,75054294	R21	0,42156785	0,25487441	-0,15487951
Silene coeli-rosa	SC	-0,29754153	1,00856446	-0,99496078	R22	0,17480315	0,37759955	-0,19283772
Ranunculus spicatus	RS	-0,37999003	-0,62199884	-0,31734279	R23	0,51892536	0,18152548	-0,13126512
Papaver rhoeas	PR	-0,62209558	-0,2027423	-0,42727462	R24	0,60193832	0,43271536	-0,37716154
Vella annua	VA	-0,56139421	-0,41327131	-0,27435615	R25	0,4554242	0,49745751	-0,19932488
Raphanus raphanistrum	Rr	-0,55754867	-0,27915551	-0,31030111	R26	0,55361327	0,40571408	-0,21877522
Sinapis arvensis	SA	-0,68016929	0,14023423	0,32797071	R27	0,5446528	0,33931953	-0,31751729
Reseda alba	RA	-0,58545681	-0,02208261	-0,33065135	R28	0,76779568	0,38373459	-0,26017285
Sedum acre	SA1	-0,59392048	0,43752057	0,18253892	R29	0,55070709	0,4639773	-0,22952452

Retama retama	Rr1	-0,57756409	-0,03624429	-0,27888864	R30	0,37990651	0,29785422	-0,43971874
Calycotome villosa subsp.								
intermedia	CV	1,16667223	-1,00574008	-2,32411083	R31	0,5457071	-0,25578131	0,13051231
Scorpiurus muricatus	SM	-0,22702092	0,7723847	1,92881508	R32	0,58530566	-0,40454558	0,17694098
Lathyrus cicera	LC	-0,81031217	0,27457418	-0,22021725	R33	0,51308578	-0,37984615	0,13833893
Lathyrus articulatus	LA	-0,04248075	1,60382754	-1,67458019	R34	0,44544658	-0,33192387	-0,08076563
Anthyllis tetraphylla	AT	-0,18955713	0,8891069	0,31750182	R35	0,62678949	-0,31970835	0,04893601
Hippocrepis multisiliquosa	HM1	-0,35393706	0,52771406	-0,67797673	R36	0,63149204	-0,40288557	-0,10491855
Geranium lucidum	GL	-0,42928507	0,79936159	1,23516276	R37	0,38547086	-0,5131115	-0,16922232
Linum strictum	LS	-0,5504785	-0,5029307	-0,42970976	R38	0,72517263	-0,30664747	0,08095815
Ruta chalepensis	RC	-0,29665528	-1,04803845	-0,45311777	R39	0,47367737	-0,43588264	0,109012
Pistacia lentiscus	PL	3,30405062	1,10195758	-0,69573579	R40	0,51198226	-0,50425137	-0,14117006
Rhamnus lyciodes	RL1	0,05451081	1,09350657	0,97044894	R41	0,53927857	-0,2336124	-0,24042908
Daphne gnidium	DG1	0,12387052	0,28233478	1,91002322	R42	0,31589824	-0,55337118	0,06876389
Daucus carota	DC	-0,35065299	-0,68778338	-0,40524224	R43	0,70615702	-0,44818846	-0,18692045
Torilis nodosa	TN	-0,51790884	0,48464211	1,8715396	R44	0,50386933	-0,29682867	0,09731935
Ferula communis	FC	-0,00457464	0,77239503	1,91196822	R45	0,53449414	-0,31981847	-0,13252367
Ammoides verticillata	AV1	-0,049702	-1,46703803	-0,53437002	R46	0,36900145	-0,48037835	-0,09711682
Cistus albidus	CA	-0,28315014	-1,07388859	-0,15254708	R47	0,58009239	-0,31787901	-0,0440356
Cistus monspeliensis	CM	0,34026625	1,28140539	-0,93074285	R48	0,39841919	-0,3439266	-0,20900608
Halimium hulmifolium	Hh	-0,33936985	0,66404326	0,39977131	R49	0,3244907	-0,40428125	-0,12398736
Fumana thymifolia	FT	-0,76241217	0,25371055	-0,37479027	R50	0,23542114	-0,3947692	-0,12152168
Anagallis arvensis sub sp		0.50220224	2.47025121	0.67526001				
latifolia	Aa1 OE	0,50328324		-0,67526991				
Olea europea		0,57034547	1,30034106	·				
Phillyrea angustifolia	PA	3,29023016	-					
Phillyrea media	PM	-0,72557817	-0,14583354	-0,41981554				
Phillyrea latifolia	PL1	0,32406393	-0,66913097	3,65260495				
Convolvulus althaeoïdes	CA1	-0,76016521	0,38897545	-0,25860096				
Convolvulus arvensis	CA2	-0,69970596	-0,10704901	-0,22043415				

Echium horridum	EH	-0,72878612	-0,20716034	-0,39758493			
Rosmarinus officinalis	RO	-0,04783028	-0,42541752	1,5431113			
Lavandula dentata	LD	1,45555471	0,89119209	-0,45179973			
Lavandula stoechas	LS1	-0,42531206	0,57707394	1,06811009			
Marrubium vulgare	MV	-0,71696398	-0,12542618	-0,38878566			
Thymus ciliatus	TC	-0,20726258	-1,31607687	-0,35397594			
Satureja calamintha susbsp nepeta	SCN	-0,72231082	-0,2106399	-0,23096499			
Globularia alypum	GA	-0,85394822	0,11795698	-0,20290608			
Plantago lagopus	PL2	0,79414885	-1,82085851	1,2094472			
Plantago lanceolata	PL3	-0,36149925	-0,66951407	-0,43615884			
Plantago major	PM1	-0,56262078	-0,46664464	-0,28090508			
Gallium aparine	GA1	-0,78362376	-0,03609359	-0,1507753			
Sherardia arvensis	SA2	-0,305296	0,27566767	-0,55482286			
Vibernum tinus	VT	-0,39438558	-0,04208826	1,19962255			
Bellis annua	BA	1,90447472	0,16245862	-1,65793413			
Micropus bombicinus	MB	0,01085184	0,35687889	1,87613605			
Inula montana	IM	-0,68632639	0,45155018	-0,48205204			
Calendula arvensis	CA3	-0,11353812	1,12412456	-0,6224756			
Lonas annua	LA1	-0,42541687	-0,85094822	-0,28394142			
Anthemis cotula	AC	-0,626018	-0,51466047	-0,36072105			
Chrysanthemum grandiflorum	CG	-0,4836896	-0,38199649	-0,63988585			
Chrysanthemum coronarium	CC	-0,80116229	-0,03859893	-0,26787257			
Tolpis barbata	ТВ	0,5360485	-0,50696142	2,28448601			
Hypochoeris radicata	HR	-0,11136542	-0,55821537	0,95125242			
Taraxacum officinalis	TO	0,38219281	-1,60750739	-0,62582655			
Reichardia tingitana	RT	-0,5013324	0,73343097	-0,50928915			

Tableau 41: Contribution des espèces et des relevés de la station de Zarifet

Genres Espèces	code	axe1	axe2	axe3	code1	facteur 1	facteur 2	facteur 3
Juniperus oxycedrus	JO	-0,63139789	-0,36399562	-1,0291798	R1	0,30624375	0,18741424	-0,47572938
Pinus halepensis	PH	-0,64474713	-1,15097052	-0,14923655	R2	0,21853339	0,29016083	-0,64253943
Lagurus ovatus	LO	-0,83778148	0,32157975	-0,28389974	R3	0,21605369	0,26322519	-0,55157516
Ampelodesma mauritanicum	AM	-0,00391988	2,29362903	-1,10238439	R4	0,26380465	0,25776847	-0,42380472
Avena sterilis	AS	2,65170348	1,71822666	3,22654546	R5	0,40327823	-0,14930784	-0,28711311
Schismus barbatus	SB	3,04033463	-1,0387042	-0,52926918	R6	0,41275465	-0,1693625	-0,24644019
Dactylis glomerata	DG	3,42039126	0,28654331	-0,56961176	R7	0,49138671	-0,35434926	-0,11849283
Briza minor	BM	2,96777947	-0,66242877	2,0068053	R8	0,40317269	-0,36955246	-0,26642765
Bromus madritensis	BM1	2,63207459	1,0154141	-2,00295779	R9	0,53682575	-0,41930974	-0,18301362
Bromus rubens	BR	2,73133665	1,79179591	-0,37545412	R10	0,4446713	-0,30208473	-0,21074473
Brachypodium distachyum	BD	3,30395816	0,10041784	-0,74996826	R11	0,5270095	-0,26882723	-0,0749344
Agropyron repens	AR	0,50961232	-3,1821856	1,2039231	R12	0,4871798	-0,25976642	-0,20223255
Aegilops ventricosa	AV	3,15293919	-0,60380125	1,80283111	R13	0,52869263	-0,39228122	-0,06668528
Hordeum murinum	HM	3,42039126	0,28654331	-0,56961176	R14	0,59423543	0,21774063	0,05330654
Chamaerops humilis	СН	-0,59605181	0,07753268	-0,05966569	R15	0,51987803	0,27369974	0,13002791
Asphodelus microcarpus	AM1	0,95038792	0,97320858	-0,28628668	R16	0,53991798	0,14273508	0,14834216
Tulipa sylvestris	TS	-0,69653393	1,1789	-1,15969898	R17	0,60254468	0,30876116	0,06164775
Anthericum liliago	AL	-0,56124477	0,22871697	0,6509797	R18	0,4255281	0,3133789	0,17147177
Scilla peruviana	SP	-0,25190593	-0,71193971	0,29092801	R19	0,51401798	0,44629548	0,18107634
Urginea maritima	UM	1,36513686	-1,1276169	1,74913274	R20	0,49909229	0,43807316	-0,05583354
Ornithogalum umbellatum	OU	-0,22384613	-0,59452159	-1,50745716	R21	0,53203152	0,39927056	0,0579476
Muscari neglectum	MN	0,55133677	-1,2547272	-2,76829331	R22	0,673392	-0,24589872	0,14928713
Asparagus albus	Aa	2,077851	-1,60661692	0,86113135	R23	0,48882808	-0,27218374	0,14308961
Asparagus stipularis	AS1	0,312761	-2,78924143	0,81504535	R24	0,61112101	-0,2855881	0,08307997
Asparagus aculeatus	Aa1	2,89777577	-1,27726912	-0,47521051	R25	0,5501074	-0,35165651	0,23050511
Smilax aspera	SA	0,77208923	-3,1491512	0,07711114	R26	0,58663029	-0,09860995	0,17237942
Ruscus aculeatus	RA	-0,68368049	-0,43693062	-0,37682899	R27	0,66993604	-0,03986427	0,02992802
Gladiolus segetum	GS	-0,59245943	-0,02361236	-0,92979844	R28	0,61313324	0,05011535	0,12105268

RL ST CM UE UB UP CSP	-0,4181788 -0,5133886 -0,2093251 1,85353198 0,88148805 0,12855573 2,15306171	0,95503552 -0,88616576 -0,92493317 0,97058248 -0,7038234 0,77382363 0,51482396	-0,32906767 -0,04641516 -0,06223995 1,31158093 1,23571404 1,32735837 -0,25607515				
RL ST CM UE UB	-0,4181788 -0,5133886 -0,2093251 1,85353198 0,88148805	0,95503552 -0,88616576 -0,92493317 0,97058248 -0,7038234	-0,32906767 -0,04641516 -0,06223995 1,31158093 1,23571404				
RL ST CM UE	-0,4181788 -0,5133886 -0,2093251 1,85353198	0,95503552 -0,88616576 -0,92493317 0,97058248	-0,32906767 -0,04641516 -0,06223995 1,31158093				
RL ST CM	-0,4181788 -0,5133886 -0,2093251	0,95503552 -0,88616576 -0,92493317	-0,32906767 -0,04641516 -0,06223995				
RL ST	-0,4181788 -0,5133886	0,95503552 -0,88616576	-0,32906767 -0,04641516				
RL	-0,4181788	0,95503552	-0,32906767	100			
				1130	,		
IKAI	-0.47959458	-U 28481522	-0.49728768	・ドラ ()	LU.4ZT89653	0,00301602	-0,12696169
			•				-0,08234917
	, , , , , , , , , , , , , , , , , , ,					· · · · · · · · · · · · · · · · · · ·	-0,11745192
	·					-	-0,05111691
	-					-	-0,05431607
						<i>'</i>	0,01510281
						-	-0,06233618
	-0,80843247	0,560312	•		0,58804971	-0,012038	0,31608082
RB	-0,90749896	-0,04758678			0,56919306	-0,03247347	0,20833436
Aa2	-0,57797779	0,08947009	•	R41	0,64062986	0,01825043	-0,1172282
SC1	-0,42960341	-1,08206229	0,25744442	R40	0,64863223	0,16953966	0,05297861
SC	-0,80843247	0,560312	-0,93794278	R39	0,58593642	0,02023121	0,00793893
CD	-0,60886124	-0,1626761	-1,50344566	R38	0,65117436	-0,00739223	0,00626864
PA1	-0,46302958	2,30985872	-0,96010662	R37	0,67246691	0,14984286	0,08553483
CA	-0,27665095	1,11827254	-1,2748437	R36	0,66454112	0,17340214	0,13581452
AL1	0,63724184	-2,29976163	-0,47044007	R35	0,65471883	0,10718881	-0,02024114
					· 1		0,09733687
	,	*			· 1		0,01712925
	,	,	,		· ·		0,14415567
	,	,	· · · · · · · · · · · · · · · · · · ·		· ·	· · · · · · · · · · · · · · · · · · ·	0,13655467
						·	-0,12630258 -0,00139138
	CA PA1 CD SC SC1 Aa2 RB PR GF BD1 LM Rr SA1 BN	OM -0,80133004 PA -0,67888185 QC 1,9412267 QI -0,32428033 QS -0,00743874 AL1 0,63724184 CA -0,27665095 PA1 -0,46302958 CD -0,60886124 SC -0,80843247 SC1 -0,42960341 Aa2 -0,57797779 RB -0,90749896 PR -0,80843247 GF -0,79420912 BD1 -0,36340089 LM -0,84913398 Rr 0,14133849 SA1 -0,3795865 BN -0,50184353	OM -0,80133004 -0,0612826 PA -0,67888185 -0,47341061 QC 1,9412267 1,14840744 QI -0,32428033 -1,64128521 QS -0,00743874 -0,91636114 AL1 0,63724184 -2,29976163 CA -0,27665095 1,11827254 PA1 -0,46302958 2,30985872 CD -0,60886124 -0,1626761 SC -0,80843247 0,560312 SC1 -0,42960341 -1,08206229 Aa2 -0,57797779 0,08947009 RB -0,90749896 -0,04758678 PR -0,80843247 0,560312 GF -0,79420912 -0,212046 BD1 -0,36340089 1,54913716 LM -0,84913398 0,4077162 Rr 0,14133849 1,00989796 SA1 -0,3795865 0,00464436 BN -0,50184353 0,03680427	OM -0,80133004 -0,0612826 0,68860312 PA -0,67888185 -0,47341061 -0,63650988 QC 1,9412267 1,14840744 -1,82896904 QI -0,32428033 -1,64128521 0,26045793 QS -0,00743874 -0,91636114 -1,92496733 AL1 0,63724184 -2,29976163 -0,47044007 CA -0,27665095 1,11827254 -1,2748437 PA1 -0,46302958 2,30985872 -0,96010662 CD -0,60886124 -0,1626761 -1,50344566 SC -0,80843247 0,560312 -0,93794278 SC1 -0,42960341 -1,08206229 0,25744442 Aa2 -0,57797779 0,08947009 -0,22239338 RB -0,90749896 -0,04758678 0,75676966 PR -0,80843247 0,560312 -0,93794278 GF -0,79420912 -0,212046 0,12771832 BD1 -0,36340089 1,54913716 -1,20002321 LM -0,849	OM -0,80133004 -0,0612826 0,68860312 R30 PA -0,67888185 -0,47341061 -0,63650988 R31 QC 1,9412267 1,14840744 -1,82896904 R32 QI -0,32428033 -1,64128521 0,26045793 R33 QS -0,00743874 -0,91636114 -1,92496733 R34 AL1 0,63724184 -2,29976163 -0,47044007 R35 CA -0,27665095 1,11827254 -1,2748437 R36 PA1 -0,46302958 2,30985872 -0,96010662 R37 CD -0,60886124 -0,1626761 -1,50344566 R38 SC -0,80843247 0,560312 -0,93794278 R39 SC1 -0,42960341 -1,08206229 0,25744442 R40 Aa2 -0,57797779 0,08947009 -0,22239338 R41 RB -0,90749896 -0,04758678 0,75676966 R42 PR -0,80843247 0,560312 -0,93794278 R43	OM -0,80133004 -0,0612826 0,68860312 R30 0,71086385 PA -0,67888185 -0,47341061 -0,63650988 R31 0,65462748 QC 1,9412267 1,14840744 -1,82896904 R32 0,66877273 QI -0,32428033 -1,64128521 0,26045793 R33 0,63077316 QS -0,00743874 -0,91636114 -1,92496733 R34 0,61605516 AL1 0,63724184 -2,29976163 -0,47044007 R35 0,65471883 CA -0,27665095 1,11827254 -1,2748437 R36 0,66454112 PA1 -0,46302958 2,30985872 -0,96010662 R37 0,67246691 CD -0,60886124 -0,1626761 -1,50344566 R38 0,65117436 SC -0,80843247 0,560312 -0,93794278 R39 0,58593642 SC1 -0,42960341 -1,08206229 0,25744442 R40 0,64863223 Aa2 -0,57797779 0,08947009 -0,222239338 R4	OM -0,80133004 -0,0612826 0,68860312 R30 0,71086385 0,07571812 PA -0,67888185 -0,47341061 -0,63650988 R31 0,65462748 -0,04937 QC 1,9412267 1,14840744 -1,82896904 R32 0,66877273 0,12396433 QI -0,32428033 -1,64128521 0,26045793 R33 0,63077316 -0,08219777 QS -0,00743874 -0,91636114 -1,92496733 R34 0,61605516 0,02267865 AL1 0,63724184 -2,29976163 -0,47044007 R35 0,65471883 0,10718881 CA -0,27665095 1,11827254 -1,2748437 R36 0,66454112 0,17340214 PA1 -0,46302958 2,30985872 -0,96010662 R37 0,67246691 0,14984286 CD -0,60886124 -0,1626761 -1,50344566 R38 0,65117436 -0,00739223 SC -0,80843247 0,560312 -0,93794278 R39 0,58593642 0,02023121 SC1 </td

Cytisus triflorus	CT	-0,33756931	-0,16099703	0,71135492		
Lotus ornithopodioides	LO1	-0,09425589	-0,00181189	-0,4968887		
Lotus hispidus	LH	-0,20379439	0,39224334	-0,56275147		
Scorpiurus muricatus	SM	0,41015667	-0,31415671	-0,3224299		
Medicago sp	MSP	-0,68186847	0,12649683	0,60544588		
Psoralea bituminosa	PB	-0,63927081	-0,87227816	-0,04246719		
Trifolium tomentosum	Tt	-0,53166949	0,65935355	1,24259394		
Trifolium angustifolium	TA	-0,56972589	-0,21145212	-0,10283032		
Anthyllis tetraphylla	AT	-0,37934348	-1,00037574	1,05484704		
Anthyllis vulneraria	AV1	0,86344786	0,8224041	-1,42435674		
Vicia sicula	VS	-0,87848298	0,16898395	0,19531946		
Erodium moschatum	EM	0,42883429	0,66888313	-1,45915365		
Oxalis corniculata	OC	0,39572462	-1,17960419	0,63591957		
Linum strictum	LS	-0,74539852	-0,23101095	0,08494456		
Linum usitatissimum	LU	-0,77132592	-0,61642732	0,38383009		
Ruta chalepensis	RC	-0,58310131	0,24113588	0,96801157		
Euphorbia dendroides	ED	-0,60175759	-0,12824755	1,44520448		
Euphorbia peplus	EP	1,28268632	-1,34214244	-1,92476536		
Euphorbia nicaeensis	PN	0,19877889	-1,90892623	-0,52262421		
Euphorbia paralias	EP1	-0,53246458	-0,16521629	1,04265525		
Rhamnus lycioides	RL1	0,51102053	0,47958086	0,43317314		
Althaea hirsuta	AL2	-0,1435622	0,55015394	-0,09009105		
Malva sylvestris	MS	-0,12320645	-0,90871958	0,37587767		
Lavatera maritima	LM1	-0,72210281	-0,21950158	0,71175345		
Daphni gnidium	DG1	-0,60856402	-0,01967305	-0,14009545		
Eryngium maritimum	EM1	-0,8057638	-0,152274	0,0624122		
Eryngium tricuspidatum	ET1	-0,64972058	0,13769646	0,74201079		

Daucus carota	DC	-0,24840112	0,65562864	-0,01354746		
Ammoides verticillata	AV2	1,1924063	-0,11707963	0,24691241		
Ammi visnaga	AV3	0,83849374	-0,95149703	-1,8906748		
Cistus ladaniferus	CL1	1,30783799	2,15905092	1,60844136		
Cistus villosus	CV1	0,98285927	-1,90691418	1,05624668		
Cistus salviifolius	CS1	0,74638005	0,59568191	-2,66093464		
Cistus monspeliensis	CM1	0,37521287	1,11521472	0,51346034		
Tuberaria guttata	TG	-0,61740337	-0,47481034	-0,42265812		
Helianthemum helianthemoides	Hh	-0,45857839	-0,67060268	-0,33045491		
Helianthemum hirtum	Hh1	-0,87814996	0,19114547	0,10272662		
Helianthemum ledifolium	HL	-0,4623903	0,1176814	0,10903158		
Arbutus unedo	AU	-0,38341617	0,01874481	0,33415761		
Erica arborea	EA	-0,67732369	-0,90713742	0,23922712		
Anagallis arvensis	Aa3	-0,59715718	1,49208056	1,16151944		
Olea europea	OE	0,13526679	0,10454578	-1,25415344		
Phillyrea angustifolia	PA2	-0,13106518	0,43166944	-0,34825603		
Phillyrea latifolia	PL	-0,42851985	0,06755366	1,84012197		
Convolvulus althaeoides	CA1	-0,44869021	1,41100515	-1,37763117		
Echium vulgare	EV1	-0,84342187	0,37886333	-0,23159418		
Borago officinalis	ВО	-0,68641773	1,08170052	1,08783282		
Cynoglossum cheirifolium	CC2	-0,81800144	0,03994716	-0,16946544		
Cynoglossum clandestinum	CC3	-0,69669785	-0,11664111	0,19723519		
Anchusa azurea	Aa4	-0,72113314	-0,74626239	0,32880336		
Ajuga chamaepitys	AC1	-0,90749896	-0,04758678	0,75676966		
Teucrium fruticans	TF	-0,49652048	1,05584382	-0,16548235		
Teucrium polium	TP	-0,57563669	0,26056074	0,91643423		

Lavandula multifida	LM2	-0,63806329	0,02496449	0,62716497		
Lavandula stoechas	LS1	0,20263122	1,53919797	1,47735988		
Sideritis montana	SM1	-0,30397366	-0,48356683	-0,95807267		
Marrubium vulgare	MV	0,13894093	-0,32866092	2,04517436		
Prasium majus	PM	-0,67327136	-0,61128773	-0,42248899		
Thymus ciliatus	TC	0,10213473	0,62131366	0,09514734		
Satureja calamintha	SC2	-0,21618844	-0,62914176	-0,24729621		
Ballota hirsuta	ВН	0,16092622	0,8804143	1,16545554		
Veronica persica	VP	-0,38048026	-0,75051825	-1,02740439		
Linaria reflexa	LR	-0,71143369	-0,965831	0,09928323		
Antirrhinum majus	AM2	-0,55844102	0,48593214	1,21661501		
Antirrhinum orontium	AO	-0,50289985	0,19986665	0,53470916		
Bellardia trixago	BT	1,27937379	3,24490532	0,8718626		
Globularia alypum	GA1	-0,59089245	0,71817221	1,50586976		
Plantago serraria	PS	0,18738105	-0,83019603	-1,43499054		
Plantago albicans	PA3	0,85323272	0,63740854	-1,36066296		
Plantago lagopus	PL1	0,32297218	0,97409774	-1,23564995		
Rubia peregrina	RP	-0,21259179	-0,7987747	-0,63469283		
Galium verticillatum	GV	-0,64649823	-0,089503	1,24099287		
Galium aparine	GA2	-0,03340963	-1,07030317	-0,64669759		
Asperula hirsuta	AH	-0,54183257	-0,58032447	-0,71605597		
Viburnum tinus	VT	-0,51207577	0,35508641	0,90556814		
Lonicera implexa	LI	0,15843011	2,34113325	1,81873616		
Fedia cornucopiae	FC	-0,20399894	-2,3571074	0,47347523		
Scabiosa stellata	SS	-0,55920782	0,33295147	-1,16397785		
Bellis sylvestris	BS	-0,50613591	1,45832678	-1,1300443		
Bellis annua	BA	-0,08643155	0,91520122	0,40115858		

Micropus bombycinus	MB	-0,58846152	0,20671911	-0,16603003		
Evax argentea	EA1	-0,61430233	0,3049931	0,33379051		
Inula montana	IM	-0,57518757	-0,15884917	-0,27512286		
Pallenis spinosa	PS1	-0,63156276	1,29601481	-0,93168587		
Asteriscus maritimus	AM3	-0,72999448	-0,19150343	0,89408422		
Senecio vulgaris	SV	-0,47775892	-0,44569252	0,1797386		
Calendula arvensis	GA3	-0,67289389	0,62896063	-1,00961495		
Chrysanthemum	CG	-0,71074887	-0,16907888	0,54047241		
grandiflorum						
Chrysanthemum coronarium	CC	-0,70950433	0,72247552	-0,91013981		
Echinops spinosus	ES	-0,54049938	-0,82519806	0,21734093		
Carlina racemosa	CR	-0,42365947	-0,26873116	0,40550577		
Atractylis cancellata	AC2	-0,33151333	0,11797084	-0,69658647		
Atractylis gummifera	AG	-0,36040718	-0,47106848	-0,72057496		
Atractylis humilis	AH1	-0,58021083	0,20864238	0,847469		
Carduus pycnocephalus	CP	-0,23447676	0,73061124	-0,79225548		
Centaurea parviflora	CP1	-0,23214895	-1,34564833	1,18187462		
Centaurea pungens	CP2	-0,65468626	0,43975786	-0,076233		
Centaurea dimorpha	CD1	-0,59977727	-0,09269782	1,15985746		
Centaurea caeruleus	CC1	-0,01410455	0,91559045	0,91946723		
Hypochaeris radicata	HR	0,09706555	-0,82620576	-1,79342313		
Taraxacum officinalis	ТО	-0,24281649	0,05961997	0,31608269		
Sonchus arvensis	SA2	-0,09686009	-0,46955397	0,41620825		
Reichardia picroides	RP1	-0,34196408	0,82224052	-0,20859637		
Reichardia tingitana	RT	-0,18240591	0,19269309	-0,92055086		

Tableau 42: Contribution des espèces et des relevés de la station de Terni

Genres espèces	code	axe1	axe2	axe3	CODE1	facteur 1	facteur 2	facteur 3
Juniperus oxycedrus	JO	3,06595608	-4,23007238	-1,19368721	R1	0,19196743	0,05369715	0,62091114
Stipa tenacissima	ST	-0,54670683	-0,39404594	-0,21752921	R2	0,57173887	-0,23864505	-0,06728109
Polypogon monspeliensis	PM	-0,61495157	0,10230794	0,46739449	R3	0,62095426	-0,10229623	0,32078933
Ampelodesma mauritanicus	AM	2,10513528	1,84184189	1,44922015	R4	0,6562312	-0,39755715	0,03099649
Avena sterilis	AS	-0,27210928	-0,25707423	0,0319617	R5	0,35973755	0,0001651	-0,35173985
Schismus barbatus	SB	2,01610133	-1,34779785	3,83166488	R6	0,32965495	0,17573871	-0,1515297
Echinaria capitata	EC	-0,27039747	-0,50731455	-0,52479771	R7	0,34631689	0,31990242	-0,15895384
Chamaerops humilis	СН	1,24878095	2,44328779	-0,12560006	R8	0,52463396	-0,3435676	-0,21592163
Arisarum vulgare	AV	-0,24814886	0,7043312	0,48517524	R9	0,5855616	-0,37342543	-0,17994428
Aphyllantes monspeliensis	AM1	-0,3886728	-0,36222629	-0,59403169	R10	0,52218382	-0,34988523	-0,25930163
Asphodelus microcarpus	AM2	0,69695361	1,54168811	-0,24292709	R11	0,51305463	-0,34894675	-0,22917832
Tulipa sylvestris	TS	-0,01559995	-0,56559185	-0,32540167	R12	0,47263458	0,5519507	0,04376407
Scilla peruviana	SP	0,09085035	-0,34183382	-1,18944533	R13	0,55028999	0,22061641	0,20711698
Ornithogalum umbellatum	OU	-0,21491775	0,15611312	-0,71196561	R14	0,39254976	-0,08325456	0,05432646
Muscari comosum	MC	0,04695059	0,22900655	1,117954	R15	0,29993851	-0,2080217	0,50034086
Ruscus aculeatus	RA	-0,35390885	0,5310445	-0,09762047	R16	0,19042425	-0,22182617	0,41535653
Asparagus acutifolius	Aa	-0,563765	-0,16571939	-0,23713833	R17	0,58151993	-0,30828593	0,07712355
Smilax aspera	SA	-0,10760791	0,45558347	0,12421845	R18	0,22734891	-0,3272375	-0,05507076
Gladiolus segetum	GS	-0,13036033	0,18849606	0,81181153	R19	0,36607813	-0,38246017	0,32293591
Iris xiphium	IX	-0,39563537	0,44898952	-0,22582287	R20	0,56605742	0,0821638	0,10016174
Ophrys atlantica ssp haykii	Oa	-0,41504658	-0,40755341	0,36498294	R21	0,61427551	0,51646508	0,14263144
Orchis morio	OM	-0,41794722	0,22586893	-0,41805838	R22	0,52245147	0,57027538	-0,03065501
Quercus coccfera	QC	-0,37996586	-0,4999733	-0,06694464	R23	0,41909375	0,06925238	-0,2723224
Quercus ilex	QI	0,67770489	0,3053868	-1,65772516	R24	0,44619323	0,34437455	-0,05734476
Quercus suber	QS	0,80897926	1,72539919	1,73747581	R25	0,08572432	0,33506243	0,09899603
Quercus faginea	QF	3,06855617	-4,15694738	2,14430559	R26	0,13500819	0,48351972	0,26963678
Cytinus hypocistus	CH1	-0,45126898	0,01180404	-0,39307705	R27	0,32574433	0,04806627	-0,33635963

Aristolochia longa	AL	-0,42939233	-0,05527948	-0,31313043	R28	0,42950659	-0,12316204	-0,22382234
Paronychia argentea	Pa	-0,18237121	0,18642237	-0,88056497	R29	0,28074466	-0,02834621	-0,21079621
Spergula flaccida	SF	-0,39563537	0,44898952	-0,22582287	R30	0,32120616	0,13171966	0,2961224
Silene mollissima	SM	-0,52010163	-0,21092224	-0,07153476	R31	0,2931488	0,41817924	0,37775271
Melandrium album	MA	-0,61509565	-0,04647628	0,06713075	R32	0,26570046	0,09186596	-0,27772661
Papaver rhoeas	Pr	-0,35390885	0,5310445	-0,09762047	R33	0,34641948	0,21089014	-0,23231969
Papaver dubium	PD	-0,3290649	0,22428005	0,0794429	R34	0,46048368	0,27272037	0,04069975
Calepina irregularis	CI	-0,55239217	0,54280406	0,07904048	R35	0,39039457	0,46024704	-0,0666929
Sinapis arvensis	Sa	-0,15629536	-0,18291857	0,38275803	R36	-0,05050808	-0,11202624	0,22255651
Biscutella auriculata	BA	-0,2706048	0,33242639	-0,10732401	R37	0,1015418	-0,31122987	-0,12117719
Alliaria offinalis	AO	-0,52010163	-0,21092224	-0,07153476	R38	0,03161589	-0,23996066	0,01588755
Reseda alba	RA1	-0,36759215	0,10306257	-0,48452781	R39	0,07321137	-0,281251	-0,09481791
Reseda phyteuma	RP	-0,64426329	-0,04570671	0,06207062	R40	-0,08719823	-0,08105969	0,15871671
Sedum acre	SA1	-0,39669018	-0,06246681	-0,38328216	R41	0,00031411	0,18391773	0,38144174
Rosa canina	RC	0,58651474	-1,09141168	3,85474232	R42	0,38923776	0,07815697	-0,37557481
Crataegus monogyna	CM	-0,22437114	-0,36634249	2,00804283	R43	0,10231083	-0,06435585	0,13309743
Genista cinerea ssp								
ramosissima	GC	0,52937793	-1,0130953	-1,116169	R44	-0,05707891	-0,05171127	0,09366254
Anthyllis vulnéraria	AV1	-0,35557113	0,301524	-0,46237892	R45	0,49314596	0,256194	0,1036764
vicia villosa	VV	0,21368982	0,5246039	-0,41079383	R46	0,28346065	-0,37764034	0,47001586
Hippocrepis multisiliquosa	HM	-0,34106193	-0,33347092	-0,34056521	R47	-0,06848163	0,01186662	-0,10543255
Astragalus caprinus ss								
lanigerus	ACL	-0,27992766	-0,08354263	-0,86205911	R48	0,35020988	-0,15050914	-0,34551206
Geranium molle	GM	-0,57665358	-0,19115877	-0,12880633	R49	0,14508036	-0,27726243	0,06623907
Linum strictum	LS	-0,36759215	0,10306257	-0,48452781	R50	0,35213644	-0,49701506	0,44233517
Ruta chalepensis	RC1	-0,64426329	-0,04570671	0,06207062				
Euphorbia squamigera	ES	-0,41794722	0,22586893	-0,41805838				
Euphorbia platyphylla	EP	-0,59371176	0,03716778	-0,14841544				
Malope malacoides	MM	-0,5851489	-0,24936344	-0,02159213				
Daphne gnidium	DG	-0,42261876	-0,09723608	-0,49712031				

Hedera helix	Hh	-0,51529922	0,68029699	0,60943374		
Eryngium maritimum	EM	-0,12511723	0,00863863	-0,66464486		
Eryngium campestre	EC1	-0,24934776	0,04409065	-0,07254779		
Torilis nodosa	TN	-0,56906366	-0,50554557	-0,04076209		
Ferula communis	FC	0,99845567	-1,06065082	2,03549698		
Ammoides verticillata	AV2	-0,52010163	-0,21092224	-0,07153476		
Cistus salvifolius	CS	-0,25285118	0,19213647	-0,03672015		
Helianthemum cinereum	HC	-0,37481129	-0,30893134	-0,66358461		
Anagallis arvensis subsp phoenicea	Aa1	0,1555809	-1,11812958	1,42260258		
Anagallis arvensis subsp latifolia	Aa2	-0,00625229	0,8226008	-0,13216654		
Jasminum sp	jsp	-0,05080479	-0,50973898	-0,81783192		
Phillyrea angustifolia	PA	6,79123826	1,33966469	-4,11530607		
Phillyrea media	PM1	0,47962882	-0,02168395	-0,76437082		
Phillyrea latifolia	PL	1,74488245	4,01681679	1,36797211		
Convolvulus triclor	CT	-0,2237647	-0,37889629	-0,40847877		
Cynoglossum cheirifolium	CC	-0,66564718	-0,12935077	0,27761682		
Cynoglossum creticum	CC1	-0,52181382	-0,04258984	0,06554751		
Rochelia disperma	RD	-0,61509565	-0,04647628	0,06713075		
Teucrium fruticans	TF	-0,29273048	0,16085402	-0,55978142		
Salvia verbenaca	SV	-0,57665358	-0,19115877	-0,12880633		
Lavandula dentata	LD	-0,40685848	0,34156024	-0,34460331		
Thymus ciliatus	TC	1,28768368	-1,02764794	1,26301226		
Phlomis crinita	PC	-0,55346069	-0,18040428	-0,25829767		
Nepeta multibracteata	NM	-0,04356997	0,82884022	-0,14898963		
verbascum blattaria	VB	-0,61787758	-0,00144229	-0,05770318		
						

Linaria tristis	LT	-0,63066063	0,04845906	-0,27854496		
Scrophularia laveigata	SL	-0,4293808	-0,34892735	0,47490764		
Plantago coronopus	PC1	0,28851451	-0,05800457	-0,82932882		
Plantago serraria	PS	-0,22937398	0,23977235	-0,80124144		
Rubia peregina	RP1	-0,61495157	0,10230794	0,46739449		
Gallium aparine	GA	-0,10091364	-0,37722331	-0,52007154		
Viburnum tinus	VT	1,78167388	3,7532913	2,79455005		
Lonicera implexa	LI	0,60912249	-1,22058686	-1,11505663		
Fedia coronucopiae	FC1	-0,3134331	0,47638326	-0,34145442		
Bellis sylvestris	BS	-0,6640099	-0,11395777	0,35181396		
Micropus bombycinus	MB	-0,20983691	0,24192564	-0,57947002		
Pallenis spinosa	PS1	-0,13683308	-0,43661767	0,55864121		
Calendula arvensis	CA1	-0,23904209	-0,37921883	0,03519235		
Calendula suffruticosa	CS1	-0,52351394	-0,38329144	-0,34702055		
Cirsium acarna	CA2	-0,25947699	-0,32099558	0,57164707		
Chrysanthemum grandiflorum	CG	-0,59371176	0,03716778	-0,14841544		
Chrsanthemum coronarium	CC2	-0,06670556	0,60456336	0,01863272		
Centaurea nana	Ca2	-0,61787758	-0,00144229	-0,05770318		
Centaurea pullata	Ср	-0,40475804	-0,10604417	-0,57486173		
carthamus caeruleus	CC3	-0,3168961	-0,29486085	-0,43127748		
Reichardia tingitana	RT	0,13030105	-0,75717852	-0,37022153		

Tableau 43: Contribution des espèces et des relevés de la station de Sebdou

Genres espèces	code	axe1	axe2	axe3	CODE1	facteur 1	facteur 2	facteur 3
Juniperus oxycedrus	JO	0,88653373	0,12133063	3,59620771	R1	0,06976521	0,38014655	0,1328869
Stipa tenacissima	ST	0,85788768	1,54477091	2,72871062	R2	0,36316811	0,69203597	-0,05420354
Stipa parviflora	SP	-0,34414141	0,38250968	-0,29682646	R3	0,35674757	0,61501996	0,20312558
Lagurus ovatus	LO	-0,36496177	1,29616864	-1,06374657	R4	0,30102216	0,66352146	0,13881929
Schismus barbatus	SB	3,82633566	1,80917294	-1,89375784	R5	0,30121036	0,5910475	-0,21821792
Echinaria capitata	EC	-0,44609937	-0,21031337	-0,96204111	R6	0,41744962	0,55661925	-0,34254926
Bromus rubens	BR	-0,26851307	2,33696431	-0,29252627	R7	0,42932815	0,45887626	-0,17400857
Brachypodium distachyum	BD	3,82112664	1,83738386	0,32389558	R8	0,4804564	0,45901617	-0,19731538
Aegilops ventricosa	AV	-0,38455654	0,38968264	0,13178635	R9	0,34506268	0,32891493	0,11342872
Hordeum murinum	HM	4,00321861	-1,18688761	-0,92701433	R10	0,55194229	0,02456535	0,27546246
Fritillaria oriensis	FO	-0,55842908	-0,12146618	0,25094553	R11	0,46665909	0,08787278	-0,0037587
Ornithoglum umbellatum	OU	-0,24887611	-0,54699679	-0,60798811	R12	0,33768602	-0,08873119	-0,30900756
Muscari comosum	MC	-0,49768478	-0,29339653	-0,40899693	R13	0,54650985	-0,0037194	-0,03437601
Ophrys tenthredinifera	ОТ	-0,55765255	0,1375032	0,00754227	R14	0,64552802	0,06300685	-0,04645191
Quercus coccifera	QC	0,45601476	2,0266796	-2,58051336	R15	0,53101257	-0,15589361	-0,32354392
Herniaria hirsuta	Hh	-0,13305977	1,5868402	1,40779786	R16	0,48126874	-0,0305092	-0,46076799
Paronychia argentea	PA	0,01163605	1,62380017	0,93934724	R17	0,59371296	-0,14158828	-0,12096166
Stellaria media	SM	-0,31043093	0,43253708	-0,55318686	R18	0,50550851	0,02588831	-0,04701509
Silene conica	SC	-0,49019949	-0,28103668	-0,19767775	R19	0,62883185	0,12802243	0,28739173
Silene coeli-rosa	SC1	-0,3581086	-0,46870332	-1,17168939	R20	0,67427426	0,16984138	0,33740561
Velezia rigida	VR	-0,52455708	0,01265417	0,32621132	R21	0,68439178	0,06697197	0,24423594
Adonis dentata	AD	-0,59604228	-0,15622338	-0,03807456	R22	0,53302508	-0,02990663	0,43325525
Adonis aestivalis	Aa	-0,61212751	-0,25477956	-0,30366605	R23	0,74030764	0,0924046	0,3018291
Papaver hybridum	Ph	-0,55842908	-0,12146618	0,25094553	R24	0,68598228	0,0451123	0,4460362
Papaver rhoeas	Pr	-0,31692251	-0,38088743	0,0882153	R25	0,57730244	-0,05949303	0,52058054
Roemeria hybrida	RH	-0,52559417	-0,30389402	-0,08654043	R26	0,59852649	-0,31751861	0,19983074
Biscutella didyma	BD1	0,08789891	-0,75409995	2,57204894	R27	0,48901796	-0,34593204	0,44482889

Raphanus raphanistrum	Rr	-0,22483526	-0,53867747	-1,28390613	R28	0,46456325	-0,38613068	0,27355086
Eruca vesicaria	EV	-0,53054238	-0,25701578	-0,33537193	R29	0,49200553	-0,32957697	0,12431736
Sinapis arvensis	Sa	-0,34039595	-0,50507523	-0,94342776	R30	0,48227215	0,20151016	-0,07561557
Brassica nigra	Bn	-0,51445716	-0,1584596	-0,06978044	R31	0,39779622	-0,3788067	-0,23932648
Reseda alba	Ra	-0,45375904	-0,58621444	0,04463933	R32	0,6557333	-0,20646727	-0,04556005
Resedea lutea	RL	-0,51214665	-0,3694821	-0,20395027	R33	0,69014748	-0,14312012	0,07736899
Sedum acre	Sa1	-0,52179263	-0,35040835	-0,09148223	R34	0,7402491	-0,10265459	-0,11144353
Ulex boivinii	UB	0,71510239	1,04441478	-2,11360633	R35	0,74764257	-0,03730038	-0,19783935
Ononis natrix	ON	-0,34250414	-0,51301017	0,44291878	R36	0,56790964	-0,19687892	-0,31842235
Lotus ornithopodioides	LO1	-0,15885304	-0,0897128	0,48797278	R37	0,62963193	-0,22997721	-0,2670574
Medicago rugosa	MR	-0,02131484	-0,66873348	-0,280353	R38	0,67637852	-0,09927459	-0,23023707
Trifolium arvense	TA	-0,29285466	-0,25692634	1,29052567	R39	0,69082717	-0,12719967	-0,04306091
Trifolium glomeratum	TG	-0,27966294	-0,64290536	0,99894675	R40	0,61053769	-0,17111587	-0,21054749
Vicia villosa	VV	0,06172857	-0,10392399	0,0268059	R41	0,7104154	-0,18671025	-0,04718235
Hippocrepis unisiliquosa	HU	-0,36776733	-0,00506088	0,10379456	R42	0,72134589	-0,20034469	-0,13378922
Eroduim moschatum	EM	0,00169197	0,13370316	0,89264726	R43	0,67777157	-0,20554901	-0,11522811
Linum strictum	LS	-0,56066284	-0,24556279	0,51665958	R44	0,74936622	-0,18266064	-0,08784201
Euphorbia peplis	EP	-0,15167772	0,31499315	-1,07017703	R45	0,77186115	-0,14468844	-0,23719648
Euphorbia exiga	Ee	0,01331206	-0,60298491	-0,8818699	R46	0,72739995	0,03680765	0,0515668
Pistacia lentiscus	PL	0,04948097	1,84298878	-0,42469609	R47	0,78258608	-0,07023389	0,07149771
Rhamnus lyciodes	RL1	-0,02779274	-0,60312971	0,66650794	R48	0,46082077	0,21599744	-0,00425651
Torilis nodosa	TN	3,50499353	-2,78947393	0,12932846	R49	0,55526851	0,26825291	-0,15474387
Ferula communis	FC	0,28851809	-1,06391425	1,06526362	R50	0,52563944	0,43752541	0,03540384
Helianthemum Murbeckii	HM1	-0,57385301	-0,22386369	0,39602861				
Helianthemum pilosum	HP	-0,55083804	0,04512123	0,34027937				
Helianthemum								
helianthemoides	Hh1	-0,52289736	-0,40566417	-0,39331143				
Anagallis arvensis	AA	-0,54850511	-0,20653001	-0,30683212				
Phillyrea angustifolia	PA1	1,25535397	3,96414017	2,26737581				
Phillyrea latifolia	PL1	-0,07696047	0,09895446	-1,11713491				

Convolvulus arvensis	CA	-0,57853518	-0,43561204	0,42104264		
Lithospermum apulum	LA	-0,50773898	-0,22466798	-0,48268964		
Ajuga chamaeprlys	AC	-0,50122758	-0,32659415	-0,78261739		
Rosmarinus officinalis	RO	-0,2457958	-1,01223831	0,96823557		
Salvia argentea	SA	-0,00096347	2,13697074	-1,01156826		
Thymus ciliatus	TC	-0,31779127	-1,13339255	1,03797776		
Phlomis herba venti	PHV	-0,56300818	0,3105281	0,1906382		
Stachys arvensis	SA1	-0,53054238	-0,25701578	-0,33537193		
Plantago psyllium	PP	0,15361306	0,76798748	0,89101606		
Plantago lagopus	PL2	-0,43574351	-0,10351374	-0,55243182		
Asperula hirsuta	AH	-0,35344996	-0,82182173	-1,02733243		
Sherardia arvensis	SA2	-0,20307247	-0,55656258	0,00392485		
Scabiosa stellata	SS	3,45228203	-2,99183157	0,02227475		
Bellis annua	BA	-0,12601776	-0,60313475	-1,43358865		
Micropus bombycinus	MB	0,06074548	-0,08924251	-0,95317155		
Evax argentea	EA	-0,0930729	-0,37750998	0,2989372		
Gnaphalium luteo-album	GLA	-0,23404383	-0,10526383	0,11320652		
Senecio vulgaris	SV	-0,56642133	0,15430069	-0,27149837		
Calendula arvensis	CA1	-0,30470362	0,38177775	0,95201809		
Chrysanthemum grandiflorum	CG	-0,29230319	-0,68967983	-0,5115799		
Artemisia alba	AA1	0,26151948	-0,98908645	2,13642279		
Atractylis cancellata	AC2	-0,17378027	0,8673413	-0,64256274		
Silybum marianum	SM1	-0,39919936	-0,0614475	0,06257341		
Carduus pinnatifidus	CP	-0,35953925	0,50884555	0,04273644		
Centaurea pullata	CP1	-0,27678616	-0,58323653	-0,4713941		

Carthamus multifidus	CM	-0,13668284	0,1520342	-0,01972332		
Catananche coerula	CC	-0,45424452	-0,34989419	-0,2155269		
Tolpis barbata	TB	-0,08756003	-0,70370088	-0,14778862		
Reichardia picroides	RP	-0,35631039	0,42022772	0,32463824		

Tableau 43 : inventaire floristique de la zone d'étude

	Т	Т				
Taxons	mor	bio	T bgr	famille	statut	Répartition
Tetraclinis articulata	LV	Ph	Ibero-Maurit-Malt	Cupressaceae	CC	O1-2-3; AC:A1-2;H1;RR:K1
Juniperus oxycedrus	Lv	Ph	Alt-circum-Med	Cupressaceae	CC	dans toute l'Algérie, R:H1-2
Juniperus phoenicea	LV	Ph	Circummed	Cupressaceae	С	littoral, H1-2,AS1-2-3;RR:ailleurs
						dans toute l'Algérie, sauf dans
Pinus halepensis	Lv	Ph	Med	Pinaceae	CC	le Tell constantinois
Pinus maritima	LV	Ph	W-Med	Pinaceae	AR	K2-3
						abondant sur tous les hauts
						plateaux et lAtlas saharien; manque sur le littoral
						constantinois et algrois, trèès
Stipa tenacissima	HV	Ge	Ibero-Maur	Poaceae	С	abondant en Oranie
Stipa retorta	НА	Th	Circummed	Poaceae	С	du littoral au Sahara
,						littoral oranais; de l'Atlas tellien
						au Sahara dans les trois
Stipa parviflora	HV	Ge	Med	Poaceae	С	provinces; R:SC en montagne
Polypogon monspeliensis	НА	Th	Paleo-Subtrop	Poaceae	CC	du littoral au Sahara central
Lagurus ovatus	HV	Th	Macar-Med	Poaceae	CC	du littoral à l'Atlas saharien
Ampelodesma		_		_		
mauritanicus	HV	Ge	W-Med	Poaceae	CC	dans le tell; AR AS2-3
Avena sterilis	НА	Th	Macar-Med-Irano- Tour	Poaceae	СС	partout, sétend jusqu'au Sahara central
Schismus barbatus	НА	Th	Macar-Med	Poaceae	С	Tell oranais, H1-2,AS,SS,SC
Echinaria capitata	HA	Th	Atl-Med	Poaceae	С	Tell, Hts pl,;Atl,Sah
Dactylis glomerata	HV	He	Paleo-temp	Poaceae	С	du littoral l'Atlas saharien
Briza minor	HA	Th	Thermo-Subcosm	Poaceae	СС	dans le Tell
Bromus rubens	НА	Th		Poaceae	C	du littoral au Sahara
Brachypodium	пА	111	Paleo-SubTrop	Poucede	C	du littoral au grand Erg
distachyum	НА	Th	Paleo-SubTrop	Poaceae	СС	occidental
Lepturus cylindricus	НА	Th	Med	Poaceae	С	dans le Tell
Agropyron repens	HV	Ge	Circummed	Poaceae	AC	dans le Tell, R:ailleurs:AS
Aegilops ventricosa	НА	Th	W-Med	Poaceae	С	dans le Tell, AR: ailleurs
Aegilops triuncialis	НА	Th	Med-Irano-Tour	Poaceae	С	Tell (plus rare à lEst)
Hordeum murinum	НА	Th	Circumbor	Poaceae	AR	O1: oran; O3; AS1-2
Chamaerops humilis	LV	Ch	W-Med	Palmaceae	СС	dans le Tell
Arisarum vulgare	HV	Ge	Circummed	Araceae	С	dans le Tell occidental
						Tell, assez rare à l'Ouest
Arum italicum	HV	Ge	Med-Atl	Araceae	С	d'Algrie
Aphyllanthes						Tell et Hts pl, oranais; RA1:
monspeliensis	HV	Ge	W-Med	Liliaceae	AC	Bouzaréa
Asphodelus microcarpus	HV	Ge	Canar-Med	Liliaceae	CC	Tel,Hts pl,;Alt,sah
Fritillaria messanensis	ши	Ca	Esp,ital,	Liliacocc	ΛD	V1 A2 O1 O2
var atlantica	HV	Ge	crète,Balkane	Liliaceae	AR	K1,A2,O1,O3
Tulipa sylvestris	HV	Ge	Eur-Med	Liliaceae	CC	dans toute l'Algérie
Scilla peruviana	HV	Ge	Madère, W-Med	Liliaceae	С	Tell, Hts Pl,Atl, Sah

Urginea maritima	HV	Ge	Can-Med	Liliaceae	С	Tell
Ornithogalum						
umbellatum	HV	Ge	Atl-Med	Liliaceae	С	partout
Muscari comosum	HV	Ge	Med	Liliaceae	С	Tell, Hts Pl,Atl, Sah
						en Oranie et dans le
Muscari neglecum	HV	Ge	Eur-Med	Liliaceae	AC	Constantinois
Asparagus albus	HV	Ge	W-Med	Liliaceae	С	dans le Tell
Asparagus stipularis	HV	Ge	Macar-Med	Liliaceae	С	du littoral jusquà lAtlas, Sah
Asparagus acutifolius	HV	Ge	Med	Liliaceae	CC	dans le Tell , AR Atlas sahrien
						sur le littoral et les montagnes
Allium subhirsutum	HV	Ge	Med-Ethiope	Liliaceae	С	du Tell
Allium nigrum	HV	Ge	Med	Liliaceae	С	dans le Tell
			Macar-Med-Ethiope-			
Smilax aspera	HV	Ge	Inde	Liliaceae	С	Tell
Tamus communis	HV	Ge	Atl-Med	Dioscoreace	С	dans le Tell
Gladiolus segetum	HV	Ge	Med	Iridaceae	С	dans le Tell
Iris sisyrinchium	HV	Ge	Paleo-subtrop	Iridaceae	CC	Tell, Hts pl,; Atl, Sah
						Tell, du Zaccar de Miliaina au
Iris tingitana	HV	Ge	End,Alg-Mar	Iridaceae	AC	Maroc
Ophrys speculum	HV	Ge	Circummed	Orchidaceae	AC	dans le Tell
Ophrys apifera	HV	Ge	Euras	Orchidaceae	AC	dans le Tell
Ophrys tenthredinifera	HV	Ge	Circummed	Orchidaceae	С	Tell
Ophrys atlantica ssp						K1-2, C1, A2,O3: MTs de
haykii	HV	Ge	Sicile	Orchidaceae	AR	Tlemcen
Orchis mascula	HV	Ge	Eur	Orchidaceae	RR	K2
Orchis morio	HV	Ge	Euras	Orchidaceae	R	O1: Nemours, Beni Saf, O3
Populus alba	LV	Ph	Paleo-Temp	Salicaceae	CC	dans toute lAlgérie
•						dans le Tell à l'Est d'Alger,
						surtout sur grès et terrains
						primaires R. et dispersé à l'W
Quercus coccifera	LV	Ph	W-Med	Fagaceae	С	d'Alger: Aurès, Dj. Amour
						dans le Tell (surtout à l'E.
						d'Alger), R: ailleurs: Aurès,
Quercus ilex	LV	Ph	Med	Fagaceae	С	Dj.Amour
						dans le Tell en montagne,
Quercus suber	LV	Ph	W-Med	Fagggaga	С	surtoutsubcalcaire R et dispersé ailleurs
Quercus suber	LV	FII	vv-ivieu	Fagaceae		dans les forêts des montagnes du
Quercus faginea ssp						Tell à l'E d'Alger. R. et dispersé
tlemcenensis	LV	Ph	Med-atl	Fagaceae	AC	ailleurs. Aurès
						das le Tell sur les cistess à fleurs
Cytinus hypocistus	HV	Ge	Med	cytinaceae	С	blanches
Aristolochia longa	HV	Ge	Med	Aristolochiaceae	AC	01-2-3
Chenopodium album	НА	Th	Cosm	Chenopodiaceae	AC	dans le Tell
						dans toute l'Algérie: var. cinerea
Herniaria hirsuta	HA	Th	Paleo-temp	Caryophllaceae	AC	(DC.) Lor. et Bar.
Paronychia argentea	НА	Th	Med	Caryophllaceae	С	dans toute l'algérie
Spergula flaccida	НА	Th	Med	Caryophllaceae	С	dans toute lAlgérie
Stellaria media	НА	Th	Cosm	Caryophllaceae	С	dans de Tell et sur les hauts

						plateaux
						en Algérie, sauf dans le Tell où il
Cerastium dichotomum	НА	Th	Med-Irano-Tour	Caryophllaceae	AC	est rare
						A1: IAlma, Reghaia, O1: Litt,
Arenaria emarginata	HA	Th	Ibero-Maur	Caryophllaceae	R	oranais, O3: Ghar Rouban
						Commun dans tout le Tell. AR:
Melandrium album	HA	Th	Paléo-Temp	Caryophllaceae	С	sur l'Atlas saharien
Silene conica	НА	Th	Euras	Caryophllaceae	R	O3: Tlemcen, H1,AS1-2
Silene coeli-rosa	НА	Th	W-Med	Caryophllaceae	R	en Oranie
Silene colorata	НА	Th	Med	Caryophllaceae	С	01-2-3; R: ailleurs.
						Kl-2, Cl, A2: Ouarsenis, 03: Mts
Silene mollisima	HA	Th	W-Med	Caryophllaceae	AR	de Tlemcen
Velezia rigida	НА	Th	Med	Caryophllaceae	AC	dans le Tell, R: ailleurs
Adonis annua	НА	Th	Euras	Renonculaceae	AC	dans le Tell
Adonis dentata	НА	Th	Med	Renonculaceae	AC	dans le Tell, R: ailleurs
						dans toute l'Algrie sauf dans le
Adonis aestivalis	НА	Th	Euras	Renonculaceae	С	Tell
Ranunculus bullatus	НА	Th	Med	Renonculaceae	CC	dans le Tell
						dans toute lAlgrie, surtout
						littorale, RR: sur les hauts
Ranunculus spicatus	HA	Th	Ibero-Maur-Sicile	Renonculaceae	С	plateaux
						Aurès, Atlas de Blida, Hautes
Ranunculus repens	HV	He	Paleo-temp	Renonculaceae	R	plaines d'Oranie
Papaver hybridum	HA	Th	Med	Papaveraceae	С	dans toute l'Algérie
Papaver rhoeas	HA	Th	Paleo-temp	Papaveraceae	С	dans toute l'Algérie
Papaver duium	HA	Th	Med	Papaveraceae	С	dans toute l'Algérie
						partout sauf sur le littoral à l'E
Roemeria hybrida	HA	Th	Med-Irano-Tour	Papaveraceae	AC	dArzew
				_		partout sauf sur le littoral àl'E
Glaucium flavum	HA	Th	Med	Papaveraceae	AC	d'Arzew
						Montagnesdu Tell algérois et
						oranais; Kabylie, Atlas de Blida, Zaccar, Dahra, Monts de
Calepina irregularis	НА	Th	Sud-Eur	Brassicaceae	R	Tlemcen
Carepina irregularis	11/1		Jud Edi	Drassicaccac	11	dans toute l'Algrie, sauf dans les
Vella annua	НА	Th	Med	Brassicaceae	AC	zones bien arrosées
						dans toute l'Algérie jusque dans
Biscutella didyma	НА	Th	Med	Brassicaceae	CC	le Sahara septentrional
						dans toute lAlgrie, surtout sur le
Lobularia maritima	HA	Th	Med	Brassicaceae	CC	littoral
Capsella bursa-pastoris	НА	Th	Med	Brassicaceae	С	partout
Raphanus raphanistrum	НА	Th	Med	Brassicaceae	AC	dans le Tell R: ailleurs
Eruca vesicaria	НА	Th	Med	Brassicaceae	С	dans toute l'Algérie, AR:SS
Sinapis arvensis	НА	Th	Paleo-Temp	Brassicaceae	AC	dans le Tell, R: ailleurs
brassica nigra	НА	Th	Euras	Brassicaceae	R	çà et là dans le Tell algérien
<u> </u>						Kl-2-3. A2: Atlas de Blida, Teniet.
Alliaria offinalis	НА	Th	Euras	Brassicaceae	AC	AS3: Aurès
						jusque dans le Sahara
Sisymbrium irio	HA	Th	Med-Iran-Tour	Brassicaceae	С	septentrional

Reseda alba	НА	Th	Euras	Resedaceae	AC	dans le Tell jusque dans le Sahara septentrional
Reseda luteola	НА	Th	Euras	Resedaceae	AC	dans le Tell, R: ailleurs
Reseda phyteuma	НА	Th	Med	Resedaceae	R	çà et là dans toute l'Algérie
Sedum tenuifolium	НА	Th	Oro-Med	Crassulaceae	R	Tell, Aurès
						C1, AS3, Aurès, A2: Atlas de lida
Sedum acre	HV	Не	Euras	Crassulaceae	AR	O3 Mts de Tlemcen
Rosa sempervirens	LV	Ph	Med	Rosaceae	AC	K-C-A, R: O, Aurès
Rosa canina	LV	Ph	Euras	Rosaceae	С	dans le Tell. R: Aurès
						dans toute l'Algérie sauf sur les
Crataegus monogyna	LV	Ph	Eur-Med	Rosaceae	С	hauts plateaux
Ulex europaeus	LV	Ch	Eur	Fabaceae	С	Al: Alger, KI: Fort National
Ulex boivinii	LV	Ch	Iber-Mar	Fabaceae	R	Mts de Tlemcen
Ulex parviflorus	LV	Ch	W-Med	Fabaceae	AR	01
Genista cinerea ssp						
ramosissima	LV	Ch	W-Med	Fabaceae	AC	01-2-3.
Genista numidica	LV	Ch	End	Fabaceae	R	O1: Ain Tedeles
Retama retam	LV	Ch	Sah-Sind	Fabaceae	С	Hd, AS et H, SS et SO
Ononis natrix	HA	Th	Med	Fabaceae	С	dans le Tell
_						dans toute IAlgrie surtout dans
Ononis reclinata	HA	Th	Med	Fabaceae	С	le Tell
Calvantamananinana	11/	Ch	147 mand	Farbara a a		dans le Tell jusque dans le
Calycotome spinosa	LV	Ch	W-med	Fabaceae	CC	Dahra, Aurès
Lotus ornithopodioides	HA	Th	Med	Fabaceae	С	dans le Tell
Scorpiurus muricatus	HA	Th	Med	Fabaceae	С	dans le Tell
Medicago rugosa	НА	Th	E-Med	Fabaceae	RR	Constantine, Bibans, Alger, Daya
Wiedicago ragosa	11/	111	L-IVIEU	Tubuceue	IXIX	sur le littoral_AC:H1-2; AS1-2-3;
Medicago littoralis	НА	Th	Med	Fabaceae	СС	SS,R: dans le Tell
Trifolium compestre	НА	Th	Paleo-temp	Fabaceae	СС	dans le Tell. R: ailleurs: AS
Trifolium tomentosum	НА	Th	Med	Fabaceae	С	dans le Tell. AR: ailleurs
Trifolium angustifolium	НА	Th	Med	Fabaceae	С	dans le Tell, Aurès
Trifolium arvense	НА	Th	Paléo-Temp	Fabaceae	CC	dans le Tell, AR: AS, Aurès
, , , , , , , , , , , , , , , , , , , ,						dans le Tell, RR: ailleurs, AS:
Trifolium glomeratum	НА	Th	Med-atl	Fabaceae	AC	Aurès
Anthyllis tetraphylla	НА	Th	Med	Fabaceae	С	dans le Tell. R: ailleurs
Anthylis vulneraria	НА	Th	Eur-Med	Fabaceae	CC	dans le Tell, AR: ailleurs
Vicia sicula	НА	Th	W-Med	Fabaceae	CC	dans tout le Tell R: Hl-2
vicia villosa	НА	Th	Eur-Med	Fabaceae	С	dans le Tell
Lathyrus cicera	НА	Th	Med	Fabaceae	СС	dans le Tell R: ailleurs
,						dans toute l'Algérie mais
Lathyrus articulatus	НА	Th	Med	Fabaceae	CC	surtout dans le Tell.
Hippocrepis						
multisiliquosa	HA	Th	Med	Fabaceae	С	dans toute l'Algérie
Astragalus caprinus ss	, <i>.</i>					T.II A
lanigerus	HV	He	Med	Fabaceae	С	Tell, Aurès et Bellezma
Geranium pratense	НА	Th	Med-Atl	Geraniaceae	СС	en montagne dans toute l'algérie
Geramani pratense	ПΑ	111	ivieu-Ali	Geraniaceae	_ ((l algerie

Erodium moschatum	Geranium molle	НА	Th	Euras	Geraniaceae	сс	dans toute l'Algérie
Oxalis corniculata HV Ge Cosm Oxalidaceae CC dans tout le Tell Oxalis pes-caprae HV Ge Cosm Oxalidaceae CC dans tout le Tell Linum usitatissimum HA Th Med Linaceae CC dans toute l'Algérie Ruta chalepensis HV Ch Med Rutaceae C dans toute l'Algérie Euphorbia dendroides HV Ch Med Euphorbiaceae C dans toute l'Algérie Euphorbia dendroides HV Ch Med Euphorbiaceae R C dans toute l'Algérie Euphorbia dendroides HV He Ibero-Mar Euphorbiaceae R C dans toute l'Algérie Euphorbia peplus HA Th Cosm Euphorbiaceae R C dans toute l'Algérie Euphorbia peplus HA Th Cosm Euphorbiaceae R R X2-3 Euphorbia pelpus HA Th Cosm Euphorbiaceae R							
Oxalis pes-caprae							
Linum strictum HA Th Med Linaceae AC dans toute l'Algérie Linum usitatissimum HA Th Med Linaceae CC dans toute l'Algérie Ruta chalepensis HV Ch Med Rutaceae CC dans toute l'Algérie Euphorbia dendroides HV Ch Med Euphorbiaceae R de Bougie, K2: Cap Carbon de Buphorbia squamigera HV He libero-Mar Euphorbiaceae R Cuphorbia squamigera HV He libero-Mar Euphorbiaceae R Cuphorbia pepilis HA Th Med-Atl Euphorbiaceae R Cuphorbia pepilis HA Th Med-Atl Euphorbiaceae R Cuphorbia pepilis HA Th Cosm Euphorbiaceae R Cuphorbia pepilis HA Th Euras Euphorbiaceae R R Al : Kouba, Koléa Euphorbia pidiphylla HA Th Euras Euphorbiaceae R K2-3 Euphorbia pidiphylla HA Th W-Med Euphorbiaceae R K2-3 Euphorbia pidiphylla HA Th W-Med Euphorbiaceae R K2-3 Euphorbia pidiphylla HA Th Med-Atl Euphorbiaceae R K2-3 Euphorbia pidiphylla HA Th Med-Atl Euphorbiaceae R K2-3 Euphorbia pidiphylla exiga HA Th Med-Eur Euphorbiaceae C dans toute l'Algérie Euphorbia pidiphylla exiga HA Th Med-Eur Euphorbiaceae C dans toute l'Algérie Pistacia lentiscus LV PH Med Anacordiaceae CC dans toute l'Algérie Altace hirsuta HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Altace hirsuta HA Th Med Molvaceae C SS Altace hirsuta HA Th Med Molvaceae C C Gans toute l'Algérie, mais Malope malacoides HV He Med Molvaceae C C H1-2, SS Maloy sylvestris HA Th Euras Molvaceae C C Gans toute l'Algérie, mais Malope malacoides HV He Med Molvaceae C C Gans toute l'Algérie, sell Molva aegyptiaca HA Th Euras Molvaceae C C Gans toute l'Algérie, sell Molva graphica HV CH W-Med Aplaceae C C Gans toute l'Algérie, SS Lavatera maritima HV CH W-Med Aplaceae C C Gans toute l'Algérie, SS Lavatera maritima HV CH W-Med Aplaceae C C Gans toute l'Algérie, SS Lavatera maritima HV CH W-Med Aplaceae C C Gans toute l'Algérie Eryngium maritimum HV CH W-Med Aplaceae C C Gans toute l'Algérie Molvaceae C C Gans toute l'Algérie C Gans toute l'Alg							
Linum usitatissimum	· · · · ·		1				
Ruta chalepensis HV Ch Med Rutaceae C dans toute l'algérie Luphorbia dendroides HV Ch Med Euphorbiaceae RR Al: Cap Ténès, K2: Cap Carbon de Bougle, K3: Cap Carbon de Carbon de K2: Cap			-				
Euphorbia dendroides HV Ch Med Euphorbiaceae RR RR de Bougle, K3: Cap Garbon de Bougle, K3: Cap Garbon de Bougle, K3: Cap de Garde Euphorbia squamigera HV He Ibero-Mar Euphorbiaceae RR O1-3 Euphorbia peplis HA Th Med-Atl Euphorbiaceae Ac sur tout le littoral dans toute l'Algérie, Oasis Sahariennes Euphorbia platphylla HA Th Euras Euphorbiaceae RR Al : Kouba, Koléa Euphorbia platphylla HA Th W-Med Euphorbiaceae RR Al : Kouba, Koléa Euphorbia biumbellata HA Th W-Med Euphorbiaceae RR Al : Kouba, Koléa Euphorbia incaeensis HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch W-Med Euphorbiaceae C C sable maritime Euphorbia paralios HV Ch W-Med Anaccardiaceae CC dans toute l'Algérie dans toute l'Algérie Al Indiana Pristacia lentiscus IV PH Med Anaccardiaceae CC dans toute l'Algérie Al Indiana Philippi Al Indiana Philip							
Euphorbia dendroides HV Ch Med Euphorbiaceae RR de Bougie, K3: Cap de Garde Euphorbia squamigera HV He Ibero-Mar Euphorbiaceae R O1-3 Euphorbia peplius HA Th Med-Atl Euphorbiaceae CC sahariennes Euphorbia platphylla HA Th Cosm Euphorbiaceae RR Al : Kouba, Koléa Euphorbia platphylla HA Th W-Med Euphorbiaceae RR Al : Kouba, Koléa Euphorbia pimbellato HA Th W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch M-Med Euphorbiaceae C sable maritime Euphorbia paralios HV Ch M-Med Euphorbiaceae C dans toute l'Algérie Euphorbia paralios HV Ch M-Med Anacardiaceae CC dans toute l'Algérie Euphorbia paralios paralios LV PH W-Med Rhamnaceae AC de l'Atlas saharianen <	Ruta chalepensis	пν	CII	ivieu	Rutuceae	C	
Euphorbia squamigero HV He Ibero-Mar Euphorbiaceae R O1-3 Euphorbia peplis HA Th Med-Atl Euphorbiaceae Ac sur tout le littoral Euphorbia peplis HA Th Med-Atl Euphorbiaceae Ac sur tout le littoral Euphorbia platphylla HA Th Cosm Euphorbiaceae RR Al : Kouba, Koléa Euphorbia incaeensis HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch Med-Atl Euphorbiaceae C sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Rhamnaceae AC dans toute l'Algérie Pistacia lentiscus LV PH W-Med Rhamnaceae AC Gè et là dans toute l'Algérie	Funhorhia dendroides	HV	Ch	Med	Funhorhiaceae	RR	1
Euphorbia peplis HA Th Med-Atl Euphorbiaceae Ac sur tout le littoral dans toute l'Algérie, Oasis dans toute l'Algérie, Oasis sahreinnes Euphorbia polatphylla HA Th Euras Euphorbiaceae RR Al : Kouba, Koléa Euphorbia biumbellata HA Th Euras Euphorbiaceae R K2-3 Euphorbia nicaeensis HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia exiga HA Th Med-Atl Euphorbiaceae C sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Rhamnus lycioides LV PH Med Rhamnaceae C SS de l'Atlas saharien Ziziphus lotus LV PH Med Rhamnaceae C SS de l'Aldisa saharien Altaea hirsuta HA Th Med Malvaceae							·
Euphorbia peplus HA Th Cosm Euphorbiaceae C dans toute l'Algérie, Oasis sahariennes Euphorbia platphylla HA Th Euras Euphorbiaceae RR Al : Kouba, Koléa Euphorbia biumbellata HA Th W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch Med-Atl Euphorbiaceae C Sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae C Sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae C dans toute l'Algérie Euphorbia exiga HA Th Med-Eur Euphorbiaceae C dans toute l'Algérie Euphorbia paralios HV PH Med Anacardiaceae C dans toute l'Algérie Euphorbia exiga HA Th Med-Eur Euphorbiaceae C dans toute l'Algérie Euphorbia exiga HA Th Med-Eur Anacardiaceae C C dans toute l'Al					1		
Euphorbia peplus HA Th Cosm Euphorbiaceae CC sahariennes Euphorbia platphylla HA Th Euras Euphorbiaceae RR Al : Kouba, Koléa Euphorbia nicacensis HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia nicacensis HV Ch Med-Atl Euphorbiaceae C sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Rhamnus lycioides LV PH W-Med Rhamnaceae AC de l'Atlas saharien Ziziphus lotus LV PH Med Rhamnaceae C SS Altaea hirsuta HA Th Med Malvaceae R çà et là dans tout le Tell Malope malacoides HV He Med Malvaceae C H1-2, SS Malva sylvestris HA	Ευρποιδία μερίις	11/		IVICU-ALI	Lapitorbiaceae	AC	
Euphorbia platphylla HA Th Euras Euphorbiaceae RR AI: Kouba, Koléa Euphorbia biumbellata HA Th W-Med Euphorbiaceae R K2-3 Euphorbia nicaeensis HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch Med-Atl Euphorbiaceae C Sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae C Gaans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Rhamnus lycioides LV PH Med Rhamnaceae C de l'Atlae saharien Ziziphus lotus LV PH Med Rhamnaceae C SS Altaea hirsuta HA Th Med Malvaceae R Çà et là dans toute l'Algérie, mais Malope malacoides HV He Med Malvaceae C Surtout dans le Tell Malva aegyptiaca HA Th Euras Malvaceae C dans toute l'Algérie, SS Lavatera maritima HV CH Med Malvaceae C dans toute l'Algérie, SS Lavatera maritima HV CH Med Malvaceae C dans toute l'Algérie, SS Lavatera maritima HV CH Med Malvaceae C dans toute l'Algérie, SS Eryngium maritimum HV CH Eur-Med Apiaceae C dans toute l'Algérie, sauf dans Eryngium maritimum HV CH Med Apiaceae C sur tout le Ititoral Eryngium rompestre HV He Eur-Med Apiaceae C dans toute l'Algérie Daucus carota HA Th Med Apiaceae CC dans toute l'Algérie Daucus carota HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Coenanthe (globulosa) HA Th Eur-Med Apiaceae CC dans toute l'Algérie Coenanthe (globulosa) HA Th Med Apiaceae CC dans toute l'Algérie	Euphorbia peplus	НА	Th	Cosm	Euphorbiaceae	CC	<u> </u>
Euphorbia biumbellata HA Th W-Med Euphorbiaceae R K2-3 Euphorbia nicaeensis HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch Med-Atl Euphorbiaceae C Sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Rhamnus lycioides LV PH W-Med Rhamnaceae AC dans toute l'Algérie, jusqu'au S Altaea hirsuta HA Th Med Malvaceae C SS Altaea hirsuta HA Th Med Malvaceae C Gans toute l'Algérie, mais Malope malacoides HV He Med Malvaceae C Gans toute l'Algérie, mais Malva aegyptiaca HA Th Sah-Sub-Med Malvaceae C Gans toute l'Algérie, SS Malva sylvestris HA Th Euras Malvaceae C Gans toute l'Algérie, SS Lavatera maritima HV CH Med Thymelaceae C Gans tout le Tell et Bur le littoral Daphne gnidium HV CH Med Apiaceae C C sur tout le ITell Hedera helix HA PH Eur-Med Apiaceae C C sur tout le l'Itelral Eryngium campestre HV He Eur-Med Apiaceae C C dans tout le Tell Eryngium tricuspidatum HV CH W-Med Apiaceae C C dans tout le l'Algérie Daucus carota HA Th Med Apiaceae C C dans tout le l'Itelral Ferula communis LV Ch Med Apiaceae C C dans tout le l'Itelral Ferula communis LV Ch Med Apiaceae C C dans tout l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie Oenanthe (globulosa) HA Th Med Apiaceae C C dans tout le l'Algérie			-				
Euphorbia nicaeensis HV Ch W-Med Euphorbiaceae R K2-3 Euphorbia paralios HV Ch Med-Atl Euphorbiaceae C sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Rhomnus lycioides LV PH Med Rhamnaceae AC de l'Atlas saharien Ziziphus lotus LV PH Med Rhamnaceae C SS Altaea hirsuta HA Th Med Malvaceae R çà et là dans tout le Tell Malope malacoides HV He Med Malvaceae C SS Altaea hirsuta HA Th Sah-Sub-Med Malvaceae C H1-2, SS Malva seylvestris HA Th Euras Malvaceae C dans tout le l'Algérie, SS Lavatera maritima HV CH			-		•		·
Euphorbia paralios HV Ch Med-Atl Euphorbiaceae C sable maritime Euphorbia exiga HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Rhamnus lycioides LV PH W-Med Rhamnaceae C SS Altaea hirsuta HA Th Med Malvaceae R Çà et là dans tout le Tell dans toute l'Algérie, mais Malope malacoides HV He Med Malvaceae C Sustout dans toute l'Algérie, mais Malva aegyptiaca HA Th Sah-Sub-Med Malvaceae CC dans toute l'Algérie, SS Lavatera maritima HV CH W-Med Malvaceae CC dans tout le Tell et sur le littoral Daphne gnidium HV CH W-Med Malvaceae CC dans tout le Tell et sur le littoral Daphne gnidium HV CH Med Thymelaceae CC dans tout le Tell et sur le littoral Hedera helix HA PH Eur-Med Apiaceae CC sur tout le littoral Eryngium maritimum HV CH Eur-Med Apiaceae CC dans tout le l'Algérie, sauf dans le Tell Eryngium tricuspidatum HV CH W-Med Apiaceae CC dans tout le l'Algérie Daucus carota HA Th Med Apiaceae CC dans tout l'Algérie Daucus carota HA Th Med Apiaceae CC dans tout l'Algérie, sauf dans le Tell Ferula communis LV Ch Med Apiaceae CC dans tout l'Algérie, sauf dans le Tell dans tout l'Algérie, sauf dans le Tell dans tout l'Algérie dans tout l'Al							
Euphorbia exiga HA Th Med-Eur Euphorbiaceae CC dans toute l'Algérie Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie Rhamnus lycioides LV PH W-Med Rhamnaceae AC de l'Atlas saharien Ziziphus lotus LV PH Med Rhamnaceae AC de l'Atlas saharien Maloa pirsuta HA Th Med Malvaceae R çà et là dans tout le Tell Maloa pirsuta HA Th Med Malvaceae C Surtout dans le Tell Malva segyptiaca HA Th Sah-Sub-Med Malvaceae C H1-2, SS Malva sylvestris HA Th Euras Malvaceae AC dans tout l'Algérie, sa Lavatera maritima HV CH W-Med Malvaceae AC dans tout le Tell et sur le littoral Hedera helix HA PH Eur-Med Araliaceae CC dans tout le Tell et sur le littoral <t< td=""><td>·</td><td>1</td><td>1</td><td></td><td>•</td><td></td><td></td></t<>	·	1	1		•		
Pistacia lentiscus LV PH Med Anacardiaceae CC dans toute l'Algérie dans toute l'Algérie dans toute l'Algérie, jusqu'au S de l'Atlas saharien Rhamnus lycioides LV PH W-Med Rhamnaceae AC de l'Atlas saharien Ziziphus lotus LV PH Med Rhamnaceae C SS Altaea hirsuta HA Th Med Malvaceae R çà et là dans tout le Tell Malope malacoides HV He Med Malvaceae C surtout dans le Tell Malva aegyptiaca HA Th Sah-Sub-Med Malvaceae C H1-2, SS Malva sylvestris HA Th Euras Malvaceae CC dans toute l'Algérie, SS Lavatera maritima HV CH W-Med Malvaceae CC dans toute l'Algérie, SS Lavatera maritima HV CH Med Arbiaceae CC dans tout le Tell et sur le littoral Hedera helix HA PH Eur-Med Ariaceae CC	, ,		1		•		
Rhamnus lycioides LV PH W-Med Rhamnaceae AC de l'Atlas saharien Ziziphus lotus LV PH Med Rhamnaceae C SS Altaea hirsuta HA Th Med Malvaceae R Çà et là dans tout le Tell Malope malacoides HV He Med Malvaceae C surtout dans le Tell Malva aegyptiaca HA Th Sah-Sub-Med Malvaceae C surtout dans le Tell Malva sylvestris HA Th Euras Malvaceae C dans tout l'Algérie, SS Lavatera maritima HV CH W-Med Malvaceae C dans tout le Tell et sur le littoral Daphne gnidium HV CH Med Thymelaceae C dans tout le Tell et sur le littoral Hedera helix HA PH Eur-Med Apiaceae C sur tout le littoral Eryngium ricuspidatum HV CH W-Med Apiaceae C sur tout le littoral Eryngium tricuspidatum HV CH Med Apiaceae C dans toute l'Algérie Thapsia garganica HV CH Med Apiaceae C dans toute l'Algérie Daucus carota HA Th Med Apiaceae C dans toute l'Algérie Torilis nodosa HA Th Euras Apiaceae C dans tout le Tell dans toute l'Algérie, sus dans lu C dans toute l'Algérie dans toute l'Algérie dans toute l'Algérie C dans toute l'Algérie							
Rhamnus lycioides LV PH W-Med Rhamnaceae AC de l'Atlas saharien Ziziphus lotus LV PH Med Rhamnaceae C SS Altaea hirsuta HA Th Med Malvaceae R çà et là dans tout le Tell dans tout le Tell dans toute l'Algérie, mais surtout dans le Tell Malope malacoides HV He Med Malvaceae C H1-2, SS Malva sylvestris HA Th Euras Malvaceae CC dans toute l'Algérie, SS Lavatera maritima HV CH W-Med Malvaceae AC dans toute l'Ell et sur le littoral Daphne gnidium HV CH W-Med Malvaceae C dans tout le Tell et sur le littoral Hedera helix HA PH Eur-Med Araliaceae CC dans tout le Tell et sur le littoral Eryngium maritimum HV CH Eur-Med Apiaceae C sur tout le littoral Eryngium tricuspidatum HV CH W-Med Apiaceae CC<	Pistuciu ieritiscus	LV	РΠ	ivieu	Anacaraiaceae	CC	
Ziziphus lotusLVPHMedRhamnaceaeCSSAltaea hirsutaHAThMedMalvaceaeRçà et là dans tout le TellMalope malacoidesHVHeMedMalvaceaeCsurtout dans le TellMalva agyptiacaHAThsah-Sub-MedMalvaceaeCH1-2, SSMalva sylvestrisHAThEurasMalvaceaeCCdans tout le Tell et sur le littoralLavatera maritimaHVCHW-MedMalvaceaeACdans tout le Tell et sur le littoralDaphne gnidiumHVCHMedThymelaceaeCdans tout le Tell et sur le littoralHedera helixHAPHEur-MedAraliaceaeCCles régions arides:Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeCCdans toute l'AlgérieEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThEurasApiaceaeCCdans toute l'Algérie, sauf dansTorilis nodosaHAThEurasApiaceaeCCdans toute l'Algérie, sauf dansFerula communisLVChMedApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThEur-MedApiaceae </td <td>Rhamnus lycioides</td> <td>ıv</td> <td>PH</td> <td>W-Med</td> <td>Rhamnaceae</td> <td>ΔC</td> <td></td>	Rhamnus lycioides	ıv	PH	W-Med	Rhamnaceae	ΔC	
Altaea hirsutaHAThMedMalvaceaeRçà et là dans tout le TellMalope malacoidesHVHeMedMalvaceaeCsurtout dans le TellMalva aegyptiacaHAThsah-Sub-MedMalvaceaeCH1-2, SSMalva sylvestrisHAThEurasMalvaceaeCCdans toute l'Algérie, SSLavatera maritimaHVCHW-MedMalvaceaeACdans tout le Tell et sur le littoralDaphne gnidiumHVCHMedThymelaceaeCdans tout le Tell et sur le littoralHedera helixHAPHEur-MedAraliaceaeCCdans tout le 'Algérie, sauf dansEryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeCCdans toute l'AlgérieEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThEurasApiaceaeCCdans toute l'Algérie, sauf dansTorilis nodosaHAThEurasApiaceaeCCdans toute l'Algérie, sauf dansFerula communisLVChMedApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMed<	,		 				
Malope malacoidesHVHeMedMalvaceaeCsurtout dans le TellMalva aegyptiacaHAThsah-Sub-MedMalvaceaeCH1-2, SSMalva sylvestrisHAThEurasMalvaceaeCCdans toute l'Algérie, SSLavatera maritimaHVCHW-MedMalvaceaeACdans tout le Tell et sur le littoralDaphne gnidiumHVCHMedThymelaceaeCdans tout le Tell et sur le littoralHedera helixHAPHEur-MedAraliaceaeCCdans toute l'Algérie, sauf dansEryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVCHW-MedApiaceaeCCdans toute l'AlgérieEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieVundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceae	,	1	-				
Malope malacoidesHVHeMedMalvaceaeCsurtout dans le TellMalva aegyptiacaHAThsah-Sub-MedMalvaceaeCH1-2, SSMalva sylvestrisHAThEurasMalvaceaeCCdans toute l'Algérie, SSLavatera maritimaHVCHW-MedMalvaceaeACdans tout le Tell et sur le littoralDaphne gnidiumHVCHMedThymelaceaeCdans tout le Tell et sur le littoralHedera helixHAPHEur-MedAraliaceaeCCles régions arides:Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeRRdans toute l'AlgérieEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCdans toute l'AlgérieTorilis nodosaHAThEurasApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThEur-MedApiaceaeCCdans toute l'AlgérieCenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCC<	Altaea Illi Sata	11/		IVIEU	Walvaceae	11	-
Malva aegyptiacaHAThsah-Sub-MedMalvaceaeCH1-2, SSMalva sylvestrisHAThEurasMalvaceaeCCdans toute l'Algérie, SSLavatera maritimaHVCHW-MedMalvaceaeACdans tout le Tell et sur le littoralDaphne gnidiumHVCHMedThymelaceaeCdans tout le Tell et sur le littoralHedera helixHAPHEur-MedAraliaceaeCCles régions arides:Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeCCdans toute l'AlgérieEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCdans toute l'AlgérieTorilis nodosaHAThEurasApiaceaeCCdans toute l'Algérie, sauf dansFerula communisLVChMedApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCC	Malope malacoides	HV	He	Med	Malvaceae	С	
Malva sylvestrisHAThEurasMalvaceaeCCdans toute l'Algérie, SSLavatera maritimaHVCHW-MedMalvaceaeACdans tout le Tell et sur le littoralDaphne gnidiumHVCHMedThymelaceaeCdans tout le Tell et sur le littoralHedera helixHAPHEur-MedAraliaceaeCCles régions arides:Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeCCdans toute l'AlgérieEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieVundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans toute l'AlgérieCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2,01,03:Cistus villosusLVChIbero-MaurCistacea							
Lavatera maritimaHVCHW-MedMalvaceaeACdans tout le Tell et sur le littoralDaphne gnidiumHVCHMedThymelaceaeCdans tout le Tell et sur le littoralHedera helixHAPHEur-MedAraliaceaeCCles régions arides:Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeRRdans le TellEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans toute l'Algérie, sauf dansFerula communisLVChMedApiaceaeCCdans toute l'Algérie, sauf dansAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans toute l'AlgérieCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2,01,03:Cistus villosusLVChMedCistac	-,,		-		1		,
Daphne gnidiumHVCHMedThymelaceaeCdans tout le TellHedera helixHAPHEur-MedAraliaceaeCCles régions arides:Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeRRdans le TellEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans tout le TellAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACAl-2, 01, 03:	,		СН				
Hedera helixHAPHEur-MedAraliaceaeCCdans toute l'Algérie, sauf dans les régions arides:Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeRRdans le TellEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCRocailles maritimes, RR; ailleursDaucus carotaHAThEurasApiaceaeCCdans toute l'AlgérieTorilis nodosaHAThEurasApiaceaeCCdans toute l'Algérie, sauf dansFerula communisLVChMedApiaceaeCCdans toute l'AlgérieAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans toute le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACAl-2, 03							dans tout le Tell
Eryngium maritimumHVCHEur-MedApiaceaeCsur tout le littoralEryngium campestreHVHeEur-MedApiaceaeRRdans le TellEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans tout le TellFerula communisLVChMedApiaceaeCCl'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACAl-2, 03					,		
Eryngium campestreHVHeEur-MedApiaceaeRRdans le TellEryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans tout le TellFerula communisLVChMedApiaceaeCCl'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACAl-2, 03	Hedera helix	НА	РΗ	Eur-Med	Araliaceae	CC	les régions arides:
Eryngium tricuspidatumHVCHW-MedApiaceaeCCdans toute l'AlgérieThapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans tout le TellFerula communisLVChMedApiaceaeCCl'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACA1-2, 03	Eryngium maritimum	HV	СН	Eur-Med	Apiaceae	С	sur tout le littoral
Thapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans tout le TellFerula communisLVChMedApiaceaeCCl'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACA1-2,03	Eryngium campestre	HV	He	Eur-Med	Apiaceae	RR	dans le Tell
Thapsia garganicaHVCHMedApiaceaeCCdans toute l'AlgérieDaucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans tout le TellFerula communisLVChMedApiaceaeCCl'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACA1-2,03	Eryngium tricuspidatum	HV	СН	W-Med	Apiaceae	CC	dans toute l'Algérie
Daucus carotaHAThMedApiaceaeCCRocailles maritimes, RR; ailleursTorilis nodosaHAThEurasApiaceaeCCdans tout le TellFerula communisLVChMedApiaceaeCCl'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACA1-2,03	Thapsia garganica	HV	СН	Med	Apiaceae	CC	dans toute l'Algérie
Torilis nodosaHAThEurasApiaceaeCCdans tout le TellFerula communisLVChMedApiaceaeCCl'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03:Cistus villosusLVChMedCistaceaeACA1-2,03		НА	Th	Med	•		-
Ferula communis LV Ch Med Apiaceae CC I'extreme Ammoides verticillata HA Th Med Apiaceae CC dans toute l'Algérie Oenanthe (globulosa) HA Th Eur-Med Apiaceae CC dans toute l'Algérie Kundmannia sicule HV CH Med Apiaceae CC dans toute l'Algérie Ammi visnaga HA Th Med Apiaceae CC dans toute l'Algérie Cistus ladaniferus LV Ch Ibero-Maur Cistaceae AC Al-2, 01, 03: Cistus villosus LV Ch Med Cistaceae AC A1-2,03			Th		•		
Ferula communisLVChMedApiaceaeCCI'extremeAmmoides verticillataHAThMedApiaceaeCCdans toute l'AlgérieOenanthe (globulosa)HAThEur-MedApiaceaeCCdans toute l'AlgérieKundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03 :Cistus villosusLVChMedCistaceaeACA1-2,03							
Oenanthe (globulosa) HA Th Eur-Med Apiaceae CC dans toute l'Algérie Kundmannia sicule HV CH Med Apiaceae CC dans toute l'Algérie Ammi visnaga HA Th Med Apiaceae CC dans tout le Tell Cistus ladaniferus LV Ch Ibero-Maur Cistaceae AC Al-2, 01, 03 : Cistus villosus LV Ch Med Cistaceae AC A1-2,03	Ferula communis	LV	Ch	Med	Apiaceae	CC	I -
Kundmannia sicule HV CH Med Apiaceae CC dans toute l'Algérie Ammi visnaga HA Th Med Apiaceae CC dans tout le Tell Cistus ladaniferus LV Ch Ibero-Maur Cistaceae AC Al-2, 01, 03 : Cistus villosus LV Ch Med Cistaceae AC A1-2,03	Ammoides verticillata	НА	Th	Med	Apiaceae	CC	dans toute l'Algérie
Kundmannia siculeHVCHMedApiaceaeCCdans toute l'AlgérieAmmi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03 :Cistus villosusLVChMedCistaceaeACA1-2,03	Oenanthe (globulosa)	НА	Th	Eur-Med	Apiaceae	CC	dans toute l'Algérie
Ammi visnagaHAThMedApiaceaeCCdans tout le TellCistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03 :Cistus villosusLVChMedCistaceaeACA1-2,03		HV	СН	Med	•	CC	
Cistus ladaniferusLVChIbero-MaurCistaceaeACAl-2, 01, 03 :Cistus villosusLVChMedCistaceaeACA1-2,03			1		•		
Cistus villosus LV Ch Med Cistaceae AC A1-2,03					•		
	-	1					
Santa announded EV Sall Lucia ivica Cambrelle CC Calla C	Cistus salvifolius	LV	Ch	Euras-Med	Cistaceae	CC	dans le Tell

Cistus albidus	LV	Ch	Med	Cistaceae	AC	A1-2,C1,O3,H1-2
Cistus monspeliensis	LV	Ch	Med	Cistaceae	CCC	dans toute l'Algérie
Halimium halimifolium	LV	Ch	W-Med	Cistaceae	AC	O1-3,H1,K1-2-3, RR ailleurs
Tuberaria guttata	HA	Th	Med	Cistaceae	C	Çà et là dans le Tell
Helianthemum sp	HV	Ch	ivieu		C	Ça et la dalis le Tell
•	HV	Ch	Ibero-Maur	Cistaceae	СС	01.2 AD:A2
Helianthemum virgatum				Cistaceae		O1-3,AR:A2
Helianthemum pilosum	HA	Th	End	Cistaceae	CC	en Oranie, AR : ailleurs
Helianthemum sp	НА	Th		Cistaceae		
Helianthemum hirtum	HV	Ch	NA	Cistaceae	CCC	partout
Halianth and was ladifalisms	114	Th	Canaries-Euras-	Ciatarana	•	Clairières des forêts, champs
Helianthemum ledifolium	HA	Th	Afr,Sept	Cistaceae	С	incultes, pâtw-ages
Helianthemum cinereum	Lv	Ch	Eur-Med NA	Cistaceae	RR	AS3: Aurès, Sgag
Fumana thymifolia	НА	Th	Euras-Afr-Sept	Cistaceae	CC	partout
Arbutus unedo	LV	Ph	Med	Ericaceae	CC	dans le Tell. RR ailleurs:
Erica multiflora	LV	Ph	Med	Ericaceae	CC	sur tout le littoral
		DI.	8.4 - J	5.4	•	dans le Tell. RR: ailleurs: Aurès,
Erica arborea	LV	Ph	Med	Ericaceae	С	Monts des Ksour
Coris monspeliensis	HA	Th	Med	Primulaceae	С	dans toute l'Algérie
Anagallis arvensis subsp	НА	Th	Sub cosmo	Primulaceae	СС	dans toute l'Algérie, surtout
phoenicea Anagallis arvensis subsp	пА	III	Sub-cosmp	Primulaceae	CC	dans le Tell, R: SS: Oasis
latifolia	НА	Th	Sub-cosmp	Primulaceae	С	dans tout le Tell
Jasminum fruticans	LV	Ch	Med	Oleaceae	СС	Sauf sur les Hauts plateaux
-	LV	Ph	Med	Oleaceae	CC	dans toute l'Algérie, R: SS
Olea europea	LV	FII	ivieu	Oledcede	CC	Atlas Tellien et Saharien RR
Phylleria angustifolia	LV	Ph	Med	Oleaceae	R	ailleurs: K2
				0 7000000		dans toute l'Algérie tellienne,
Phylleria media	LV	Ph	Med	Oleaceae	CC	Aurès
						dans le Tell, RR ailleurs: Aurès,
Phylleria latifolia	LV	Ph	Med	Oleaceae	CC	Bellezma
						dans toute l'Algérie, R: sur les
Blakstonia perfoliata	HA	Th	Med	Genitianceae	CC	hauts plateaux
Centaurium umbellatum	HA	Th	Eur-Med	Genitianceae	CC	dans tout le Tell
Cicendia filiformis	HA	Th	Med-Atl	Genitianceae	RR	A1, K1, O3 à Daya
						dans toute l'Algérie, Parasite sur
Cuscuta epithmum	HA	Th	Cosm	Convolvulaceae	CC	de très nomreux végétaux
Convolvulus triclor	НА	Th	Med	Convolvulaceae	CC	dans tout le Tell
Convolvulus althaeoides	HA	Th	Macar-Med	Convolvulaceae	CC	dans toute l'Algérie
Convolvulus arvensis	HA	Th	Euras	Convolvulaceae	CC	dans toute l'Algérie
Echium horridum	НА	Th	S-Med	Boraginaceae	AR	AS, SS. R: SC
Echium vulgare	HV	He	Med	Boraginaceae	CC	dans tout le Tell
Borago officinalis	НА	Th	W-Med	Boraginaceae	CC	dans tout le Tell
Rochelia disperma	НА	Th	Med	Boraginaceae	CC	H, AS. R: dans le Nord:Cl, 03
Cynoglossum						
cheirifolium	НА	Th	Med	Boraginaceae	С	dans toute l'Algérie
Cynoglossum						
clandestinum	HA	Th	W-Med	Boraginaceae	CC	dans toute l'Algérie

Cynoglossum creticum	HV	He	Med	Boraginaceae	CC	dans tout le Tell. RR : ailleurs
Lithospermum apulum	НА	Th	Med	Boraginaceae	CC	dans toute l'Algérie
Anchusa azurea	НА	Th	Eur-Med	Boraginaceae	CC	dans toute l'Algérie
Ajuga chamaepitys	НА	Th	Euras-Med	Lamiaceae	AR	dans toute l'Algérie
Ajuga iva	НА	Th	Med	Lamiaceae	CC	dans le tout Tell, RR ailleurs
Teucrium fruticans	Lv	Ch	Med	Lamiaceae	R	01-3, HI
Teucrium polium	Lv	Ch	Eur-Med	Lamiaceae	CC	partout
Rosmarinus officinalis	Lv	Ch	Med	Lamiaceae	С	dans toute l'Algérie
Salvia verbenaca	HV	He	Med-Atl	Lamiaceae	С	dans toute l'Algérie,
Salvia argentea	HV	He	Med	Lamiaceae	С	H1-2: Montagnes
						O1-2-3, A1 à l'ouest de
Lavandula dentata	Lv	Ch	W-Med	Lamiaceae	CC	Chenoua, RR:: ailleurs
						ça et là dans toute l'Algérie sauf
Lavandula multifida	Lv	Ch	Med	Lamiaceae	AC	dans le Tell algéro-constantinois
Lavandula stoechas	Lv	Ch	Med	Lamiaceae	CC	dans tout le Tell
Sidertis montana	Lv	Ch	Med	Lamiaceae	CC	H; AS; RR: ailleurs
Marrubium vulgare	Lv	Ch	Cosm	Lamiaceae	CC	dans toute l'Algérie
Prasium majus	Lv	Ch	Med	Lamiaceae	CC	dans toute l'Algérie
Thymus ciliatus	Lv	Ch	Ibero-Maur	Lamiaceae	С	dans le Tell
Satureja calamintha		CI-	E		4 D	çà et là dans le Tell; surtout en
susbsp nepeta	Lv	Ch	Euras	Lamiaceae	AR	montagne dans toute l'Algérie et surtout
Phlomis crinita	Lv	Ch	Ibero-Maur	Lamiaceae	С	dans l'ouest
Phlomis herba venti	HV	He	Med	Lamiaceae	R	çà là dans toute l'Algérie
Stachys arvensis	НА	Th	Eur-Med	Lamiaceae	AR	littoral, RR: à l'intérieur: A1, C1
Ballota hirsuta	Lv	Ch	Ibero-Maur	Lamiaceae	AC	01-2-3; AS;SS;SC
Banota misata		Cii	ibero ividai	Zamaccac	710	dans toutes les zones
Nepeta multibractesta	HV	Не	Portugal- NA	Lamiaceae	AC	montagneuses
veronica persica	Lv	Ch	W-As	Scorfulariaceae	RR	et épars dans le Tell
Verbascum blattaria	HV	He	Med	Scorfulariaceae	R	A2, KI-2-3, 03, CI, ASI-3
Linaria reflexa	Lv	Ch	Circummed	Scorfulariaceae	CCC	dans toute l'Algérie
Linaria tristis	HV	Не	Ibero-Maur	Scorfulariaceae	RR	A2: Bou Zegza.
Antirrhinum majus	HV	Ch	Eur-Med	Scorfulariaceae	AC	dans le Tell
						dans l'Algérie,RR: sommets du
Antirrhinum orontium	HA	Th	Med	Scorfulariaceae	AC	Hoggar
Bellardia trixago	HA	Th	Med	Scorfulariaceae	CC	dans tout le Tell
O set to set			-	O contract		O2:Ste Barbe du Tlélat; AS3:
Orobanche purpurea	HA	Th	Euras	Orobanchaceae	RR	Aurès
Globularia alypum	LV	Ch	Med	Globulariaceae	CC	dans toute l'Algérie
Plantago psyllium	HA	Th	Sub-Med	Plantaginaceae	CC	dans toute l'Algérie; AS:SS; R:SC
Plantago major	HV	He	Euras	Plantaginaceae	CC	dans tout le Tell, Railleurs.
Plantago coronopus	HA	Th	Euras	Plantaginaceae	CC	dans toute l'Algérie
Plantago serraria	HV	He	W-Med	Plantaginaceae	CC	dans tout le Tell
Plantago albicans	НА	Th	Med	Plantaginaceae	CC	dans toute l'Algérie mais plus rare dans le Tell littoral
Plantago lagopus	HV	He	Med	Plantaginaceae	CC	
Plantago lagopus Plantago lanceolata	<u> </u>					dans toute l'Algérie
Piuntugo iunceolata	HV	He	Euras	Plantaginaceae	AC	dans toute l'Algérie

	1	I 1		l i		dans toute l'Algérie sauf dans le
Plantago ovata	НА	Th	Med	Plantaginaceae	CC	Tell algéro-constantinois; SS
Traintago ovata	11/4		IVICU	Trantaginaceae		dans toute l'Algérie; sauf sur les
Rubia peregrina	HV	He	Med-Atl	Rubiaceae	CC	hautss plateaux
Rubia tinckorum	НА	Th	Med	Rubiaceae	AR	dans le Tell; RR: ailleurs
Gallium verum	НА	Th	Euras	Rubiaceae	AR	H, AS, RR: ailleurs, K1: Djurdjura
Galium verticillatum	НА	Th	Med	Rubiaceae	CC	dans toute l'Algérie
Gallium aparine	НА	Th	Paleo-Temp	Rubiaceae	CC	dans toute l'Algérie.
Asperula hirsuta	НА	Th	W-Med	Rubiaceae	CC	dans toute l'Algérie.
Sherardia arvensis	НА	Th	Euras	Rubiaceae	CC	dans toute l'Algérie
Vibernum tinus	LV	РН	Med	Caprifoliaceae	CC	dans tout le Tell
Lonicera implexa	LV	PH	Med	Caprifoliaceae	CC	dans tout le Tell; RR: ailleurs
Fedia cornucopiae	НА	Th	Med	Valrianaceae	CC	dans toute l'Algérie
Scabiosa stellata	НА	Th	W-Med	Dipsacaceae	CC	dans toute l'Algérie
Bryonia dioica	НА	Th	Euras	Cucurbitaceae	CC	dans tout le Tell
,						dans le Tell, l'Aurès et les Monts
Campanula trachelium	HV	Ch	Eur	Campanulaceae	AC	de Hodna
Bellis sylvestris	НА	Th	Circummed	Asteraceae	CCC	Tell
Bellis annua	НА	Th	Circummed	Asteraceae	CCC	Tell
Micropus bombicinus	HA	Th	Euras- NA-Trip	Asteraceae	CCC	Partout dans l'Algérie
						O2:Perrégaux, O3: Ain Sefra,
Evax argentea	HA	Th	NA-Trip	Asteraceae	R	A2: Ain Kherman, SS: Mzab
Gnaphalium lueo-album	HA	Th	Cosm	Asteraceae	AC	Algérie et Sahara
Inula montana	HV	He	W-Med-Sub-Atl	Asteraceae	AC	das toute lAlgérie
Pallenis spinosa	HV	Ch	Euro-Med	Asteraceae	CC	Tell
Asteriscus maritimus	HV	Ch	Canar-Eur-Merid-N	Asteraceae	CCC	Tell
Senecio vulgare	HV	Ch	Sub-cosmp	Asteraceae	CCC	Partout
Calendula arvensis	HA	Th	Sub-Med	Asteraceae	CCC	Partout
						Rochers et rocailles, littoral et
Calendula suffruticosa	HA	Th	Esp NA	Asteraceae	CC	intérieur
Lonas annua	HA	Th	Ital-Sic-NA	Asteraceae	AR	KI-2, CI, AI, 03
Anthemis cotula	HA	Th	Cosm	Asteraceae	R	Al : Alger
Anacyclus radiatus	HA	Th	Eur-Med-Syrie	Asteraceae		O3: Mascara
Chrysanthemum		T I.	e. d	A . /	66	d I. . II
grandiflorum	HA	Th	End	Asteraceae	CC	dans le Tell
Chrysanthemum coronarium	НА	Th	Med	Asteraceae	СС	dans le Tell
Coronariani	IIA	111		Asteraceae		H,SS, AR: O1-2-3, C1, SC: en
Artemisia alba	HV	He	Esp, des canaries lEgypte, Asie Occ	Asteraceae	CCC	montagne
Echinops spinosus	HV	He	S-Med-Sah	Asteraceae	СС	dans toute l'Algérie.
Xeranthemum						3
inapertum	HA	Th	Euras- NA	Asteraceae	CC	partout
Carlina racemosa	НА	Th	Ibero-NA-Sicile	Asteraceae	CCC	Broussailles, pelouses du Tell
Atractylis cancellata	НА	Th	Circummed	Asteraceae	CCC	toute l'Algérie
Atractylis gummifera	HV	Ch	Med	Asteraceae	CC	Tell
Atractylis humilis					66	
	HV	Ch	Ibero-Maur	Asteraceae	CC	H, AS,

Cirsium acarna	HV	Ge	Med	Asteraceae	AC	dans le Tell
Silybum marianum	HV	Не	Cosm	Asteraceae	CCC	dans tout le Tell
Carduus pinnatiifidus	HV	He	Ibero-Maur	Asteraceae	AC	H1-2, AS, O3:Boussuet
Centaurea nana	HV	Не	End- Alg-Maroc	Asteraceae	CCC	tout le Tell
Centaurea pullata	НА	Th	Med	Asteraceae	CCC	tout le Tell
Centaurea parviflora	HV	Не	Alg-Tun	Asteraceae	AR	A2, 03, Cl, Hl-2
Centaurea pungens	HV	Не	Sah	Asteraceae	RR	AC, SC, SO,
Centaurea incana	HV	Не	Ibero-Maur	Asteraceae	CC	dans toute l'Algérie
Centaurea dimorpha	HV	He	NA	Asteraceae	С	SS
Carthamus multifidus	HV	Не	AN	Asteraceae	CCC	tout le Tell
Catananche coerulea	НА	Th	Med	Asteraceae	CCC	partout
Tolpis barbata	НА	Th	Med	Asteraceae	СС	dans toute l'Algérie et surtout dans le littoral
Rhagadiolus stellatus	НА	Th	Eur-Med	Asteraceae	CCC	partout
Hypochaeris radicata	HV	He	End	Asteraceae	CC	das toute lAlgérie
Taraxacum officinalis	НА	Th	W-Med	Asteraceae	AC	Tell,Hauts plateaux
Sonchus arvensis	HV	Ch	Sub-cosmp	Asteraceae	AC	danns le tell
Reichardia picroides	НА	Th	Med	Asteraceae	CCC	dans le Tell
Reichardia tingitana	НА	Th	Med	Asteraceae	CC	Littoral oranais

العنوان: المساهمة في دراسة مجموعات Phillyrea (النرود) في منطقة تلمسان (غرب الجزائر): الجوانب البيئية النباتية ورسم الخرائط.

رُ يُ تُ كُرِّتُ الدراسة الحالية على خصائص تجمعات الزرود (الكتم محليا) في منطقة تلمسان من جانبين ، البيئة النباتية ومحاولة

رسم خرائط لتوزيع جنس الزرود في منطقة تلمسان. رسم خرائط لتوزيع جنس الزرود في منطقة تلمسان. تظهر النتائج البيئية الذاتية التي تم الحصول عليها أن هذا الجنس يفضل مناخًا حيويًا شبه رطب وشبه جاف و يفضل تربة ذات درجة حموضة محايدة ذات قوام طميي رملي. تظهر دراسة الغطاء النباتي وجود الأنواع الثلاثة من الزرود، مع ملاحظة غلبة النباتات الحولية بنسبة 50٪.

سمح لنا تحليل المراسلات العاملية الذي تم إجراؤه بتمييز مجموعات الأنواع النباتية التي تصاحب الأنواع الثلاثة من .وكذلك الأنواع الشائعة للأنواع الثلاثة من Phillyrea angustifolia !Phillyrea media و Phillyrea angustifolia

الكلمات المفتاحية: Phillyrea، التجميع ، علم البيئة النباتية ، علم الاجتماع النباتي ، التنوع البيولوجي ، رسم الخرائط ، تلمسان (الجز ائر).

Résumé:

Titre : Contribution à l'étude des groupements à Phillyrea dans la région de Tlemcen (Algérie occidentale): Aspects phytoécologiques et cartographie.

La présente étude a porté sur les caractéristiques des groupements à *Phillyrea* dans la région de Tlemcen, avec deux aspects, à savoir, l'écologie végétale et un essai de cartographie pour la distribution du genre de *Phillyrea* dans la région de Tlemcen.

Les résultats auto-ecologiques obtenus montrent que ce genre préfère le bioclimat sub-humide et semi-aride et il préfère les sols d'un pH neutre et d'une texture limono-sableuse.

L'étude du couvert végétal montre la présence des trois espèces de *Phillyrea*, tout en notant la prédominance des plantes annuelles avec 50%.

L'analyse factorielle des correspondances réalisée nous a permis de distinguer les groupements d'espèces végétales qui accompagnent les trois espèces de Phillyrea angustifolia; Phillyrea latifolia et Phillyrea media ainsi que les espèces communes des trois espèces de

Phillyrea.

Mots clés:

Phillyrea, groupement, phytoécologie, phytosociologie, biodiversité, cartographie, Tlemcen (Algérie).

Abstract:

Title: Contribution to the study of groups of *Phillyrea* in the region of Tlemcen (western Algeria): Phytoecological aspects and cartography.

The present study focused on the characteristics of the *Phillyrea* groupings in the Tlemcen region, with two aspects, plant ecology and an attempt at mapping for the distribution of the genus of *Phillyrea* in the Tlemcen region.

The auto-ecological results obtained show that this genus prefers a sub-humid and semi-arid bioclimate and it prefers soils with neutral pH and sandy loam texture.

The study of the vegetation cover shows the presence of the three species of *Phillyrea*, while noting the predominance of annual plants with 50%.

The factorial correspondence analysis carried out allowed us to distinguish the groupings of plant species that accompany the three species of *Phillyrea angustifolia*; Phillyrea latifolia and Phillyrea media as well as the common species of the three species of Phillyrea.

Key words:

Phillyrea, grouping, phytoecology, phytosociology, biodiversity, cartography, Tlemcen (Algeria).