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General Introduction

One of the biggest and most common problems we encounter in applied mathematics
and the computational field is the optimization of the studied function, or how to
minimize and maximize a function.
One thing that is useful to know is that “Optimization” comes from the same root
as “optimal”, which means best. When we optimize something, we are “making it
best”. The objective function, f(x), which is the output you’re trying to maximize
or minimize. and x1, x2, ..., xn are the variables of the said function. Mathematical
Optimization is a branch of applied mathematics which is useful in many different
fields : Engeneering, Mechanics, Finance and Networks to name a few.

1 Problematic

For several years, many optimization methods have been developed by the scientific
community, In this work we will be looking into particular optimization methods
called mataheuristics. These methods use the power of nature to solve more or less
complex problems.

2 Goals

Firstly we have to discuss some important related notions (Stochastic process, gen-
eral definition and classification of the algorithms) in order to understand the op-
erating of metaheuristics methods, then we will be applying our version of the said
methods on generic functions and look into the results and study their efficiency.

3 General Structure

1. Chapter 1 : We will be looking into general notions such as stochastic pro-
cesses,definition and classification of the algorithms in order to understand
the operating of metaheuristics. and introduce some of the famous algorithms

2. Chapter 2 : In this part we will make in-depth study of metaheuristics
algorithms as well as some of the benchmark function that we will be applying
the said algorithms into.

3. Chapter 3 : This chapter will be dedicated to the applications of our versions
of the metaheuristics into the selected functions and the study of the results,we
will also be adding a comparative study with other publications.
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Chapter 1

The basics of Metaheuristics
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1 Introduction

The term metaheuristic comes from the greek ”meta” (beyond) and heuriskein (to
find). There is no clear consensus on the exact definition of heuristics and meta-
heuristics, but we can adapt the following :

• A heuristics is a solving specialized technique for a problem. it does not
guarantee the quality of the point obtained.

• A metaheuristic is a generic heuristic that must be adapted to each problem

In this chapter we will be focusing on the definitions and basic notions needed
to understand the nature and the operating of some metaheuristics.

2 Stochastic Process

The best visualisation we can have of a stochastic process is when we think of the
collision of smoke particles with each other[1], these said collisions are unpredictable,
random and referred to as Brownian Motion[2].

Interest rate is a variable that changes its value over time. It is not easy to
predict its movements. There are two ways to classify a stochastic process[1]:

• Discrete: When changes in value of a variable are at fixed points in time.
Only certain values can be chosen for a discrete variable.

• Continuous: When changes in value of a variable are continuous. Value of
a continuous variable can take any value within a certain range.

Figure 1.1: Example of a stochastic process

2.1 Markov Stochastic Process

In the study of time series data, information from the past can be used to predict
future values. On the other hand, Markov processes are those where the past is
irrelevant. A variable can only be predicted based on its current value. To predict
future values of a variable, probability distributions must be used. As an example,
the variable might follow a normal or log-normal probability distribution[1].

9



Figure 1.2: Discrete Time Markov Chain are time and event discrete stochastic pro-
cess. Markov Chains rely on the Markov Property that there is a limited dependence
within the process

2.2 Wiener Process

Markov stochastic process can also have a normal distribution with a mean change
of 0 and variance rate of 1. This is known as Wiener process. It is a specialised
form of Markov Stochastic Process.

Therefore Wiener process is where a normally distributed variable is evolved.
Variable changes across two different time steps are not dependent on each other[3].

A variable follows Wiener process if following two conditions are met: Variable
Change = Normal Distribution Number(mean=0, variance=1) * Sqrt(Change In
Time)[1]

2.3 Gaussian Process

Gaussian process regression (GPR) models are nonparametric kernel-based prob-
abilistic models with a finite collection of random variables with a multivariate
distribution. Every linear combination is evenly distributed[4]. it is based on the
notion of the Gaussian distribution to be an infinite-dimensional generalization of
multivariate normal distributions. Gaussian processes are utilized in statistical
modeling, regression to multiple target values, and analyzing mapping in higher
dimensions[2].

10



Figure 1.3: Example of Wiener process 2D

Figure 1.4: Example of Wiener process 3D
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Figure 1.5: Example of Gaussian process 2D

Figure 1.6: Example of Gaussian process 3D
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2.4 Poisson Process

A Poisson Process is a model for a series of discrete event where the average time
between events is known, but the exact timing of events is random[5]. The arrival
of an event is independent of the event before (waiting time between events is
memoryless).

Figure 1.7: Poisson distribution sample path

3 Stochastic optimization

Stochastic optimization is a large topic, and it has been applied across a variety
of fields. It includes the study of how non-deterministic or probabilistic data can
be incorporated into an objective function to minimize or maximize it. In some
cases, random variables representing uncertain parameters can be included in the
formulation[6].

3.1 Methods for stochastic functions

Random noise can arise in several different ways. For example, when modeling
physical systems, the true model may be unknown and there is uncertainty about
the system parameters[7]. Or one may not know exactly what model to use because
of incomplete knowledge of the problem at hand.

13



In addition, random errors are often present in measurements made under prac-
tical conditions. Some of those methods include :

• stochastic approximation (SA)

• stochastic gradient descent

• finite-difference SA

• simultaneous perturbation SA

• scenario optimization

3.2 Randomized search methods

While the exact data set consists of precise measurements, some methods introduce
randomness into the search-process to accelerate progress. Such randomness can
also make the method less sensitive to modeling errors. Further, the injected ran-
domness may enable the method to escape a local optimum and eventually approach
a global optimum. Some of these methods include :

• simulated annealing

• random search

• swarm algorithms

• evolutionary algorithms

• stochastic tunneling

• quantum annealing

These methods are the ones knows as Metaheuristics

4 Metaheuristics

4.1 Definition

In computer science and mathematical optimization, a metaheuristic is a high-
level problem-independent algorithmic framework, most of the time inspired by
natural phenomenons developed to solve complex optimization problems[8]. since
a few decades now, metaheuristics are emerging as successful alternatives to more
classical approaches also for solving optimization problems that include in their
mathematical formulation uncertain, stochastic, and dynamic information[9].

14



4.2 Properties of the metaheuristics

When we compare metaheuristics to optimization algorithms and iterative meth-
ods, metaheuristics do not guarantee in the results that an exact solution (global
optimum) can be found on some class of problems[8].

Although they can often find good solutions with less computational effort than
optimization algorithms, iterative methods, or simple heuristics.

For that reason they are considered to be very efficient approaches for optimiza-
tion problems. The implementation in a lot of metaheuristics algorithms of some
form of stochastic optimization is very current,it is so that the solution found is
dependent on the set of random variables generated.

Metaheuristics are especially used and shows great result when applied to com-
binatorial optimization in which an optimal solution is sought over a discrete search-
space[9].

Most Metaheuristics are characterised as the following :

• Metaheuristics are strategies that guide the search process.

• The goal is to efficiently explore the search space in order to find near–optimal
solutions.

• Techniques which constitute metaheuristic algorithms range from simple local
search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• Metaheuristics are not problem-specific.

4.3 Classification of the metaheuristics

There are many different types of metaheuristics algorithms, and they can be clas-
sified in many ways[9].

Nature-inspired vs. non-nature inspired

One way is by the algorithm’s origin, such as nature-inspired algorithms and non
nature-inspired ones. Nature-inspired algorithms include genetic algorithms and
ant algorithms, while Tabu Search and iterated local search are examples of non
nature-inspired algorithms .

Population-based vs. single point search

Metaheuristics can be classified based on the number of solutions they work on at
once: Population-based algorithms or single-solution algorithms(trajectory meth-
ods).

Dynamic vs. static objective function

Some metaheuristics can be classified based on how they use the objective function.
Some algorithms keep the objective function in its original form, while others modify
it during search.

15



One vs. various neighborhood structures :

In most metaheuristic algorithms, the fitness landscape topology does not change
in the course of the algorithm. Other metaheuristics use a set of neighborhood
structures to swap between different fitness landscapes.

Memory usage vs. memory-less methods

Very important to classify metaheuristics is how they use the search history. If they
do not use memory, then the algorithms are considered “memoryless”or “Marko-
vian”. And if they do use memory, then they are called “memory-based”.

16



Figure 1.8: Classification of Metaheuristics
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5 Nature Based metaheuristics

As we already know, the large majority of metaheuristics are Nature based. There
are two main paradigms for the biological metaphores : evolutionary and swarm

• Evolutionary Algorithms (EAs) : simulate the biological progression of
evolution at the cellular level employing selection

• Swarm intelligence (SI) : mimics the collective behavior of agents in a
community, such as birds and insects.

5.1 Particule Swarm Algorithm

Particle swarm optimization, or PSO, was developed by Kennedy and Eberhart in
1995 and has become one of the most widely used swarm-intelligence-based algo-
rithms due to its simplicity and flexibility[10].

Rather than use the mutation/crossover or pheromone, it uses real-number ran-
domness and global communication among the swarm particles. Therefore, it is also
easier to implement because there is no encoding or decoding of the parameters into
binary strings as with those in genetic algorithms where real-number strings can
also be used.

5.2 Differential Evolution

Differential Evolution (DE) is a vector-based meta-heuristic algorithm, which has
some similarity to pattern search and genetic algorithms due to its use of crossover
and mutation[11]. In fact, DE can be considered as a further development to genetic
algorithms with explicit updating equations, which make it possible to do some
theoretical analysis.

DE is a stochastic search algorithm with the self-organizing tendency and does
not use the information of derivatives. Thus, it is a population-based, derivative-free
method[12].

5.3 Artificial Bee Colony

An Artificial Bee Colony (ABC) is one of the most recently defined algorithms
by Dervish Karaboga under the larger umbrella of swarm intelligence, motivated
by the intelligent behavior of honey bees, who aim to discover food sources with
progressively higher amounts of nectar[13].

5.4 Genetic Algorithm

The genetic algorithm is a specific algorithm in the family of evolutionary algo-
rithms. Each algorithm works on the same premise of evolution but have small
“tweaks” in the different parts of the lifecycle to cater for different problems[14].
Genetic algorithms are used to evaluate large search spaces for a good solution. It’s
important to note that a genetic algorithm isn’t guaranteed to find the absolute best
solution. It attempts to find the global best while avoiding local best solutions.[12]

18



6 Physics Based Metaheuristics

Despite the Nature dominance in the metaheuristics research There have been pro-
posed many physics based algorithms afterwards. In fact, the number of the pro-
posed physics based metaheuristics algorithms is not less than that of algorithms
based on biology.

6.1 Gravitational Search Algorithm

GSA is inspired from Newton’s laws of gravity and motion. In this algorithm, every
agent is considered object. These objects’ performances are measured by their
masses, it is expected that at the end of the GSA run, position of the object with
the heaviest mass will show the global solution[15].

6.2 Particle Collision Algorithm

PCA was inspired by nuclear collision reactions, especially scattering and absorp-
tion. The structure of PCA resembles a SA structure but it does not rely on
user-defined parameters and it does not have cooling schedule[15].

6.3 Simulated Annealing

SA derived its name from the physical annealing process. Thus, like annealing
initial state the algorithm is lenient and could move to a worse solution. At each
iteration, the algorithm becomes more stringent for getting a better solution at each
step[12].

7 Conclusion

In this chapter we have covered the basics as well as the definitions necessary for
understanding metaheuristics as well as their classification and properties. we have
also talked about some of the most famous algorithms that we will be looking more
in the upcoming chapter.
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Figure 1.9: Classification of nature based metaheuristics

Figure 1.10: New classification of metaheuristics
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Chapter 2

Algorithms and benchmark
study
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1 Introduction:

In this chapter we are going to look into the algorithms we previously mentioned
which are the PSO,DE and GSA. we will also introduce the benchmark function
that we will be using in our calculations later on.

2 The Algorithms:

2.1 Particule Swarm Optimization (PSO)

Optimizing parameters of multivariate systems is a general problem in computa-
tional biology. One of the many methods developed for parameter optimization is
Particle Swarm Optimization (PSO), which was introduced by Kennedy and Eber-
hart in 1995 .

Emerging from simulations of dynamic systems such as bird flocks and fish
swarms, the original algorithm is grounded on a stochastic search in multimodal
search space. The idea of PSO is to have a swarm of particles ”flying” through a
multidimensional search space, looking for the global optimum.

By exchanging information the particles can influence each others’ movements.
Each particle retains an individual (or ”cognitive”) memory of the best position it
has visited, as well as a global (or ”social”) memory of the best position visited by
all particles in the swarm.

A particle calculates its next position based on a combination of its last move-
ment vector, the individual and global memories, and a random component[10].

Figure 2.1: The movement of particles

The movement of particles is schematically represented in the figure above,
where xi(t) : the best current for particle i, and gminf(xi)for (i = 1, 2, .., n) : is
the best global current at t.
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An advantage of PSO is its ability to handle optimization problems with multi-
ple local optima reasonably well and its simplicity of implementation – especially
in comparison to related strategies like genetic algorithms (GA).

In the field of cheminformatics, PSO has successfully been applied to Quantita-
tive Structure-Activity Relationship (QSAR) modeling, including k-nearest neigh-
bor and kernel regression, minimum spanning tree for piecewise modeling, partial
least squares modeling, and neural network training [10].

Ever since its capability to solve global optimization problems was discovered,
the PSO paradigm has been developed further and improved and several variations
of the original algorithm have been proposed. These include the Constriction type
PSO (CPSO) amongst various others .

For this method each particle is initialized at a random position in search
space. The position of particle i is given by the vector xi = (xi1, xi2, ..., xiD)
where D is the dimensionality of the problem. Its velocity is given by the vector
vi = (vi1, vi2, ..., viD).

Two kinds of memory were implemented that influence the movement of the
particles: In the cognitive memory pi = (pi1, pi2, ..., piD) the best previous position
visited by each individual particle i is stored.
The vector pbest = (pbest1, pbest2, ..., pbestD), also called ”social memory”, contains
the position of the best point in search space visited by all swarm particles so far.
In each epoch the particle velocities are updated according to equation:

vi(t+ 1) = wvi(t) + n1r1(pi − xi(t)) + n2r2(pbest− xi(t))

(1)

Where w is the inertia weight, a weighting factor for the velocity, n1 and n2 are
positive constants called ”cognitive” and ”social” parameter weighting the influence
of the two different swarm memories, and r1 and r2 are random numbers between
0 and 1.

The PSO algorithms has 3 main parameters :

• Population size

• N number of iterations

• K neighbourhood
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2.2 PSO Algorithm and Pseudocode

The essential steps of the PSO can be summarized as the pseudocode
below:
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The PSO algorithm follows the scheme below :

Figure 2.2: PSO algorithm
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2.3 Differential Evolution (DE)

Differential Evolution is a stochastic global search optimization algorithm. It is a
type of evolutionary algorithm and is related to other evolutionary algorithms such
as the genetic algorithm. Unlike the genetic algorithm that represents candidate
solutions using sequences of bits.

Differential Evolution is designed to work with multi-dimensional real-valued
candidate solutions for continuous objective functions[16].

The algorithm does not make use of gradient information in the search, and as
such, is well suited to non-differential nonlinear objective functions.

The algorithm works by maintaining a population of candidate solutions rep-
resented as real-valued vectors. New candidate solutions are created by making
modified versions of existing solutions that then replace a large portion of the pop-
ulation each iteration of the algorithm[11].

New candidate solutions are created using a “strategy” that involves selecting
a base solution to which a mutation is added, and other candidate solutions from
the population from which the amount and type of mutation is calculated, called a
difference vector. For example, a strategy may select a best candidate solution as
the base and random solutions for the difference vector in the mutation[16].

Differential evolution consists of three main steps: mutation, crossover, and
selection.

Figure 2.3: DE mutation scheme
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Mutation is carried out by the mutation scheme.
For each vector (xi): at any time or generation t, we first randomly choose three
distinct vectors : (xp, xq, and xr at t as seen by the figure above, and then we
generate a so-called donor vector by the mutation scheme

(2)

Where F in [0,2] is a parameter (differential weight). In principle, F in [0,1] is
more efficient and stable.

We can see that the perturbation

(3)

To the vector xp is used to generate a donor vector vi, and such perturbation is
directed.The crossover is controlled by a crossover parameter Cr [0, 1], controlling
the rate or probability for crossover.
The actual crossover can be carried out in two ways: binomial and exponential.
The binomial scheme performs crossover on each of the d components or vari-
ables/parameters. By generating a uniformly distributed random number ri[0, 1],
the j-th component of vi is manipulated as

(4)

This way, it can be decided randomly whether to exchange each component with
a donor vector or not. In the exponential scheme, a segment of the donor vector is
selected, and this segment starts with a random integer k with a random length L,
which can include many components. Mathematically, this is to choose k[0, d1] and
L[1, d] randomly, and we have:

(5)

Selection is essentially the same as that used in genetic algorithms.
We select the fittest and, for the minimization problem, the minimum objective
value. Therefore, we have:
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(6)

The DE algorithms has 3 main parameters :

• Population size

• N number of iterations

• Crossover probability

2.4 DE Algorithm and Pseudocode

The essential steps of the DE can be summarized as the pseudocode
below:
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The DE algorithm follows the scheme below :

Figure 2.4: DE Algorithm
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2.5 Gravitational Search Algorithm (GSA)

Gravitational search algorithm is a nature-inspired algorithm based on the mathe-
matical modelling of the Newton’s law of gravity and motion[17].
In a decade, researchers have presented many variants of gravitational search algo-
rithm by modifying its parameters to efficiently solve complex optimization prob-
lems.

GSA is one of the famous physics inspired algorithms which has shown promising
performance on numerous real-world problems.
The Gravitational Search Algorithm (GSA), proposed by Rashedi et al., is a new
algorithm based on the law of gravity. The agents in GSA are considered as objects
with masses. Agents attract each other by the gravity force. The greater the quality,
the stronger the gravity. Therefore, the location of the agent with the largest mass
is the optimal solution[18].

Suppose that there are N agents with d-dimension. The position of thei-th agent
is

(7)

At the t-th time, the force acting on the i-th agent from the j-th agent is defined
as follows:

(8)

whereMi(t) and Mj(t) are the masses of the i-th agent and the j-th agent,
respectively, G(t) is the gravitational constant at the t-th time, is a small constant,
and Rij is the Euclidian distance between the i-th agent and the j-th agent.

At the t-th time, total force acting on the i-th agent is defined as follows:

(9)

where rand is a uniform random variable in the interval [0,1].
According to the law of motion, the acceleration of the agent at the t-th time

can be defined as follows:

(10)
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In each iteration process, velocity and position of the i-th agent are updated by
the following two equations:

(11) and (12)

Where rand is a uniform random variable in the interval [0,1] and xi and vi are its
current position and velocity, respectively.

GSA algorithms has 3 main parameters :

• Population size

• N number of iterations

• K neighbourhood

2.6 GSA Algorithm and Pseudocode

The GSA pseudocode follows the steps below :
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The GSA algorithm follows the scheme below :

Figure 2.5: GSA Algorithm
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3 The Benchmark Functions

Benchmark functions are The function, which can be used to test performance of
any optimization approach and the related problem, such as constrained and un-
constrained, continuous and discrete variables, and unimodal and multimodal prob-
lems[19]. In applied mathematics, these functions, known as artificial landscapes,
are useful to evaluate characteristics of optimization algorithms, such as:

• Convergence rate.

• Precision

• Robustness

• General performance

In this work, we will use the Rastrigin, Ackley and Alpine functions.
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3.1 Rastring function

The Rastrigin global optimization problem is a multimodal minimization problem
defined as follows:

fRastrigin(x) = 10n

n∑
i=1

[
x2i − 10 cos(2πxi)

]
(13)

Here, n represents the number of dimensions and xi ∈ [-5.12, 5.12] for i=1,...,n.
Global optimum for this function is : f(xi) = 0 for xi = 0 for i=1, ..., n

Figure 2.6: Two dimensional Rastring function
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3.2 Arckley function

The Ackley global optimization problem is a multimodal minimization problem
defined as follows:

(14)

Here, n represents the number of dimensions and xi ∈ [-32, 32] for i=1,...,n.
Global optimum: f(xi) = 0 for xi = 0 for i = 1, ..., n

Figure 2.7: Two dimensional Arckley function
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3.3 Alpine function

The Alpine global optimization problem. is a multimodal minimization problem
defined as follows:

(15)

The variable εi, (i = 1, ..., n) is a random variable uniformly distributed in [0, 1].
Here, n represents the number of dimensions and xi ∈ [-10, 10] for i=1,...,n.

Global optimum: f(xi) = 0 for xi = 0 for i = 1, ..., n

Figure 2.8: Two dimensional Alpine function
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4 Constrained Benchmark functions

Most optimization problems have some sort of constraint, which limits the shape
of the search space. Over the last few years, a wide variety of metaheuristics have
been designed and applied to solve constrained optimization problems.
Metaheuristics are naturally unconstrained techniques for optimization. They there-
fore require an additional mechanism to incorporate constraints into their fitness
function[20].

4.1 Definitions

Optimization problems with constraints we are using are all transformed into the
following format:

(16)

subject to the following constraints :

(17)

A solution x is regarded as feasible if gi( x) ≤ 0, fori = 1, ..., q .
In our case we will be looking into two Constrained Real-Parameter func-

tions which we will be naming G1 and G2 respectively.

• G1 : is a quadratic function that goes as follow :

(18)
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Subject to :

(19)

Where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45(i = 3, 4, 5).
The optimum solution is x = 78, 33, 29.9952560256815985, 45,
36.7758129057882073) where f(x*) = -30665.53867178332. Two constraints are
active (g1 and g6).

• G2 : is a nonlinear function that goes as follow :

(20)

Subject to :

(21)

Where n = 20 and 0 ≤ xi ≤ 10 (i = 1, ..., n).
The global minimum x* = (3.16246061572185, 3.12833142812967, 3.09479212988791,
3.06145059523469, 3.02792915885555, 2.99382606701730,2.95866871765285,
2.92184227312450, 0.49482511456933, 0.48835711005490, 0.48231642711865,
0.47664475092742, 0.47129550835493, 0.46623099264167, 0.46142004984199,
0.45683664767217, 0.45245876903267, 0.44826762241853, 0.44424700958760,
0.44038285956317),
The best we found is f(x*) = -0.80361910412559 (which, to the best of our knowl-
edge, is better than any reported value), constraint g1 is close to being active.
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As additional information for G01 and G02 respectively,

• n(1st column) is the number of decision variables,

• ρ (3rd column) is the estimated ratio between the feasible region and the
search space,

• LI (4th column) is the number of linear inequality constraints,

• NI (5th column) the number of nonlinear inequality constraints,

• LE(6th column) is the number of linear equality constraints and

• NE (7th column)is the number of nonlinear equality constraints.

• a (8th column) is the number of active constraints at x.

5 Conclusion

In this chapter we saw the main algorithms based on biology, evolution and physics
and explained how they worked, we also choose benchmark function with and with-
out constraints to study that had a lot of common point with other function we
encounter a lot in the field of computational physics.
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Chapter 3

Applications and
comparative study
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1 Introduction

Now we will begin the practical part of the project, after looking into the meta-
heuristics algorithms in the previous chapter, we are now going to apply them onto
the benchmark functions and study the results in this chapter.

2 Problematic studied

The optimization problem we can find in any mathematical problem in computa-
tional field, is finding the global optimum without having to undergo heavy calculus
on multidimensional functions.

3 Process of this chapter

For this work we choose 3 metaheuristics and applied them on a 30 dimensional (n =
30) regular benchmark function, as well as two other Constrained Real-Parameter
function with n = 5 and n = 20 respectively. After showing the results we will
discuss and lay out observations for each one of them and compare our version of
the algorithms to previous ones used in other publications.

4 Presentation of tools

4.1 The software : Spyder

Spyder is an open source cross-platform IDE and was built specifically for data
science.
It integrates the essentials libraries for data science, such as NumPy, SciPy, Mat-
plotlib and Pandas.
Features : Spyder contains features like a text editor with syntax highlighting,
code completion and variable exploring, which you can edit its values using a Graph-
ical User Interface (GUI). The image below shows the interface of spyder :
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4.2 The Hardware

The experiments were all carried out on a computer which offers acceptable perfor-
mance, the characteristics of which are as follows :

CPU : Intel(R) Core(TM) i5-6300U (2.50 GHz)
RAM : 8.00 GB
System type : 64-bit operating system, x64-based processor

5 Applications

5.1 Rastrigin test

We applied the PSO, GSA and DE algorithms all together on the 30 dimensional
Rastrigin function (seen in the second chapter of this work) to find the global
optimum, first with 500 then 10000 iterations, and got the following results :
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500 iterations :

Figure 3.1: The evolution curve of the optimal solution compared to the number of
iterations for the Rastrigin function at 500 iterations

The results and duration for each experimentation are as follows :
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Observations

For a number of 500 iterations and n = 30, The PSO shows great results by being
the only algorithm to find the optimal f(x) = 0 with values of x1, x2...xn close to
the optimum values 0.
The optimum result for GSA was f(x) = 10 although with the best time perfor-
mance, and DE results f(x) = 3.5with the longest time performance.

10000 iterations :

Figure 3.2: The evolution curve of the optimal solution compared to the number of
iterations for the Rastrigin function at 10k iterations
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The results and duration for each experimentation are as follows :

Observations

For a more significant number of iterations which is 10k and n = 30, The PSO shows
again the best results by being the only algorithm to find the optimal f(x) = 0 with
values of x1, x2...xn close to the optimum values 0.
The other two algorithms do not reach the value, in regards of time the GSA still
shows the best performance.
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5.2 Ackley test

We applied PSO, GSA and DE algorithms all together on the 30 dimensional Ackley
function (seen in the second chapter of this work) to find the global optimum, first
with 500 then 5000 iterations, and we got the following results :

500 iterations :

Figure 3.3: The evolution curve of the optimal solution compared to the number of
iterations for the Ackley function at 500 iterations
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The results and duration for each experimentation are as follows :

Observations

For the Ackley test with a number of 500 iterations and n = 30, none of the three
algorithm finds the exact value of f(x) = 0. Althought the algorithms all get to a
close result from the best with PSO being the closest.
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5000 iterations :

Figure 3.4: The evolution curve of the optimal solution compared to the number of
iterations for the Ackley function at 5000 iterations

The results and duration for each experimentation are as follows :
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Observations

Even with a greater number of iterations which was 5k and n = 30, once again none
of the three algorithm finds the exact value of f(x) = 0. Here again PSO being
the closest to the global optimum value and GSA taking the least time to find the
result.

5.3 Alpine test

We applied PSO, GSA and DE algorithms all together on the 30 dimensional Alpine
function (seen in the second chapter of this work) to find the global optimum, first
with 100 then 1000 iterations, and got the following results :

500 iterations :

Figure 3.5: The evolution curve of the optimal solution compared to the number of
iterations for the Alpine function at 500 iterations
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The results and duration for each experimentation are as follows :

Observations

For the Alpine function using 500 iterations with n = 30. The PSO and DE both
get the best results by find the optimal f(x) = 0 with values of x1, x2...xn = 0 , the
GSA is the only one that doesn’t find that result.

2000 iterations :

Figure 3.6: The evolution curve of the optimal solution compared to the number of
iterations for the Alpine function at 2000 iterations

50



The results and duration for each experimentation are as follows :

Observations

This time for 2K iterations and n = 30, all three algorithms get to the global
optimum f(x) = 0 with values of x1, x2...xn = 0. With GSA showing the best
performance in time.
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5.4 Constrained G1 test

We applied PSO, GSA and DE algorithms all together on the 5 dimensional Con-
strained G1 function (seen in the second chapter of this work) to find the global
optimum, first with 500 then 3000 iterations, and got the following results :

500 iterations :

Figure 3.7: The evolution curve of the optimal solution compared to the number of
iterations for the constrained G1 function at 500 iterations

The results and duration for each experimentation are as follows :

Observation

We notice in this case that the DE function is the metaheuristics that approaches the
most the given optimal solution thought being at the bottom in time performance.
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3000 iterations :

Figure 3.8: The evolution curve of the optimal solution compared to the number of
iterations for the constrained G1 function at 3000 iterations

The results and duration for each experimentation are as follows :

Observations :

with 3k iteration the DE function is the only metaheuristic to gets the optimal
results to a precision of 10e− 12, while the two others are close to that number.
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5.5 Constrained G2 test

We applied PSO, GSA and DE algorithms all together on the 20 dimensional Con-
strained G2 function (seen in the second chapter of this work) to find the global
optimum, first with 500 then 3000 iterations, and got the following results :

500 iterations :

Figure 3.9: The evolution curve of the optimal solution compared to the number of
iterations for the constrained G2 function at 500 iterations

The results and duration for each experimentation are as follows :

Observation

We notice in this case again that the DE function is the metaheuristics that ap-
proaches the most the given optimal solution thought being at the bottom in time
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performance. while the other two show quite a poor precision performance.

3000 iterations :

Figure 3.10: The evolution curve of the optimal solution compared to the number
of iterations for the constrained G2 function at 3000 iterations

The results and duration for each experimentation are as follows :

Observations

with 3k iterations the DE function is the only metaheuristic to gets the optimal
results to a precision of 10E-4, while the two others barely approach that result.

55



6 General discussion of the results

The algorithms we used on test function show very good efficiency in both result
accuracy and time performance. For the regular benchmark function the PSO has
proven itself the most efficient by finding the global optimum expected nearly every-
time.
In the case of Constrained function the DE algorithms is the only metaheuristic to
get to the global optimum despite showing the poorest time performances.
The GSA algorithms does the expected work of a metaheuristic job by ”approach-
ing” the global optimum by only with a significant among of iterations.
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7 Comparaison with other publications

In their gray wolf optimizer article published in 2014, Seyedali Mirjalili, Seyed
Mohammad Mirjalili and Andrew Lewis, propose a comparative study between
multiple metaheuristics which are the Gray Wolf Optimizer(GWO), PSO, GSA and
DE[21].
These metaheuristics were applied to multiple benchmark functions, two of these
function were the Rastrigin and the Ackley functions.
The table below showcases the result of the article version of the PSO, GSA and
DE applied on the said benchmark functions for a standard number of iterations
along side with results of our version :

From the table above we can clearly notice the performance of our version being
superior as they are by far closest to the optimum result which is 0.

There is another comparative study, this time only between the PSO and GSA
in another article published in 2009 by Esmat Rashedi, Hossein Nezamabadi-pour
and Saeid Saryazdi, GSA: A Gravitational Search Algorithm[18].
Both Algorithms were applied on the Rastrigin and the Ackley functions with 1000
iterations.
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The table below showcases the results of the article results along side with our ver-
sions of the algorithms results applied on the same functions with the same number
of iterations :

The table above shows how much our version of the PSO is delivering better per-
formances.
As for the GSA, both results are close to one another.

By looking at both of the studies shown above, we can clearly see how metaheuris-
tics have improved in delivering precise results.
The algorithm showcased in this work are more efficient and robust than their pre-
decessors as the study and results shown prove.

8 Conclusion

In this chapter we have completed the practical study of our algorithms applied to
the selected function and discussed all the results found, as well as a comparative
study with previous publications.
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Conclusion and Perspective

In recent years, various Heuristic optimization methods have been developed. Some
of these algorithms are inspired by swarm behaviors in nature others but Evolution
and others are Physics based.

In the first chapter of this work we covered the basic notions and definition that
helped us understand the operating of metaheuristics

In the second chapter we studied the methods that we were going to base our
applications on as well as benchmark functions we used to test the performances of
the said methods.

And finally in the last chapter we put three metaheuristics to test by applying
them to both constrained and unconstrained benchmark functions we showcased
and discussed the results and compared them with previous studies.

The three metaheuristics are :

1. The particle swarm algorithm inspired by swarm behavious.

2. The differential evolution inspired by evolutionary process.

3. The gravitational search algorithm inspired by Newtonian physics.

The three algorithms showcased in this report have all proven themselves efficient
methods to turn to when it comes to not only on unconstrained problems but also
on constrained problems.
For these reasons it would be very interesting to apply these methods on real existing
physics problems.
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