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Abstract

The main purpose of this research is to develop highly efficient, daily streamflow time series
models based on the artificial neural networks approaches for five watersheds located in
different geographical and Hydro-Climatic regions in Algeria.
Different type of artificial neural networks including feed forward neural networks (FFNN),
adaptive neuro-fuzzy inference system (ANFIS), hybrid wavelet transformation-neural
networks, and reccurent neural networks models was be suggested. Also applying different
methods like genetic algorithm, particle swarm optimisation and k-fold cross validation to
enhance the performance of artificial neural network models.
The results obtained showed that the time series models based artificial neural networks are
found to be very promising alternative to modelling and forecasting of short term (one-step
ahead) and long term (multi-step ahead) streamflow.
Key words : Time series models, Daily streamflow forecasting, Artificial neural networks,
Watersheds, Algeria.
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Résumé

L'objectif principal de cette recherche est de développer des modéles efficaces de séries
chronologiques de débit journalier, basés sur les approches de réseaux de neurones artificiels
appliqué sur cing bassins versants situés dans différentes régions géographiques et hydro-
climatiques en Algérie.

Différents types de réseaux de neurones artificiels ont été proposés, notamment les réseaux de
neurones de type feed forward (FFNN), le systeme adaptatif d'inférence neuro-floue (ANFIS),
les réseaux de neurones hybrides avec la transformation en ondelettes et les modeles de
réseaux de neurones récurrents. L'application de différentes méthodes telles que l'algorithme
géneétique, l'optimisation des essaims de particules et la validation croisée k-folds a également
été proposée pour améliorer les performances des modéles de réseaux de neurones artificiels.
Les résultats obtenus ont montré que les modeéles de series chronologiques basés sur
I’approche de réseaux de neurones artificiels s'averent étre une alternative tres prometteuse a
la modélisation et a la prévision des débits a court terme (un pas en avant) et a long terme
(plusieurs pas en avant).

Mots clés : Modeles des séries chronologiques, Prévision du débit journalier, Réseaux de

neurones artificiels, Bassins versants, Algérie.
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General introduction

1. Overview

One of the declarations of the Rio Conference (June 1992) states:

"The comprehensive management of freshwater as a finite and fragile resource and the
integration of sectoral water plans and programmes into the framework of national economic
and social policies are of paramount importance for interventions in the 1990s and beyond.
Efficient and sustainable water management is not limited to guaranteeing, on average,
sufficient quantity and quality for human demands (drinking water, industrial water, irrigation
water, etc.) and for the needs of natural environments; it must also take into account the
occurrence of extreme events, such as low water levels and floods (Riad, 2004).

Considering the waters of rivers and valleys as one of the available water resources, so
accurate forecasting of these resources is considered a key element in drought analysis and the
design of water related infrastructures and the management of dam stocks. There is ongoing
research to enhance the accuracy and reliability of river flow forecasting. Many types of river
flow forecasting models was developed and investigate to better manage scarce water

resources and minimize the risk of potential floods.

2. Motivation

Algeria, is one of the southern countries of the Mediterranean basin that suffers from water
scarcity from one season to another, and from one year to another. The water potential is
globally estimated at 19 billion m3/year (corresponding to about 600 m/inhab/year) and Algeria
is in the category of water-poor countries with regard to the scarcity threshold set by the World
Bank at 1000 m?¥/inhab/year (UN 2002). Water flows are characterised by significant seasonal
and interannual irregularity, violence and rapidity of floods. The climate in Algeria is semi-arid
(200mm to 500mm) from which resources are increasingly limited and difficult to exploit.

(Kettab et al. 2004).
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Modelling approaches are needed to assess and compare water resources to changes in their
use and thus define the current and future capacity of resources to meet demands. Modelling
also allows analysing management scenarios and measuring possible trends (population
growth, climate change, etc.) with the implementation of flexible policies and measures,
regularly assessed and corrected (Droogers and Aerts quoted by Droogers et al. 2011).
Decision-makers need such methods to assess whether future water needs can be met and to
define the most appropriate adaptation strategies to meet demands and prevent tensions in

use.

3. Problematic and thesis objective

The transformation of rainfall into streamflow results from a number of complex mechanisms
that occur simultaneously at different spatial and temporal scales.

The performance of a flow prediction system depends on many factors, but first and foremost
on the adequacy of the technology used and the most influential physical processes of the
forecasting context (Fredric).

Physical models generally involve solving a system of differential equations to model the
different components of the hydrological cycle in the catchment area.

However, although these physically based models help to understand the underlying physics
of hydrological processes, their application is limited due to the large amount of input data and
computation time required (chouaib, 2016).

On the other hand, time-series models rely primarily on measured data and represent the
relationship between inputs (which represent the measured phenomenon values in the past)
and outputs (which represent the measured phenomenon value in the present) without taking

into account the complex nature of the underlying process.
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For this reason, the main purpose of this research is to develop highly efficient, reliable and
accurate daily streamflow time series models based on the artificial neural networks
approaches for five catchments located in different geographical and Hydro-Climatic regions
in Algeria.

In this study different type of artificial neural networks including feed forward neural
networks (FFNN), adaptive neuro-fuzzy inference system (ANFIS), hybrid wavelet-FFNN and
wavelet-ANFIS models will be developed. Also applying different methods like genetic
algorithm, particle swarm optimisation and k-fold cross validation to enhance the performance
of artificial neural network models.

We have considered each watershed as a separate case study than the other and the models and
methods applied for each case study are different from the other in order to vary the methods

to know the most efficient.
4. Structure of the thesis

This thesis contains a total of eight chapters divided on five key sections of the General
introduction, Material, Short term forecasting, Long term forecasting and General conclusion.
Section 1, General introduction

e This introduction reflects on the issue and the key motives for undertaking this study.

This highlights the main goals of the research and summarizes the topic.

Section 2, Material
e Chapter One- Atrtificial neural networks, describes the theoretical background of
artificial neural networks and some artificial neural networks types are described
briefly icluding feed forward neural network (FFNN), EImen network (ELN), long
short terme memory (LSTM), gated recurent unit (GRU), adaptive neuro-fuzzy system

(ANFI1S) and wavelet neural networks (W-FFNN, W-ANFIS).
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Section 3, Short term forecasting

Chapter Two- This chapter presents the application of artificial neural networks
models (FFNN, ANFIS, W-FFNN) on the catchment of Ain Safra to forecast one day
ahead.

Chapter Three - In this chapter, application of wavelet neural networks (wavelet-
FFNN, wavelet-ANFIS) were developed to forecast one day ahead of Sebaou river
flow. The results of this hybrid models were compared with convonsional models
(FFNN, ANFIS). Also an algorithme genetic was used to optimise the architecture of
our models.

Chapter Four - This chapter investigates the application of recurent neural networks
(ELN, LSTM and GRU) for one day ahead of Soummam and Chellif watersheds. The
results were compared with simple FFNN model. The best parameters of our models

were selectioned using particle swarm optimisation algorithm.

Section 4, Long term forecasting

Chapter Five- In this chapter the application of multi step ahead daily river flow
forecasting is used by applying FFNN, ANFIS and wavelet-FFNN models. The
selectioned models was applied on the Seybouss river flow to forecast three days ahead
in the futur. A novel approach based on the using of genetic algorithm with the k-
folds cross validation method was investigated to enhance the performance of our
models.

Chapter Six - In this chapter the application of wavelet-FFNN and standar FFNN are
investigated for various lead-times of 1 to 4 days ahead for the Chellif river based on
three evolutionary strategies [i.e., multi-input multi-output (MIMO), multi-input

single-output (MISO), and multi-input several multi-output (MISMO)]. As we done in
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the chapter seven, the models were improved using the hybridation of genetic

algorithm with k-fold cross validation to find the best parameters of our models.

Section 5, General conclusion

e Summary of research outcomes, review of study results and the generally result are

presented in this chapter.
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I.1. Introduction

Artificial neural network is considered as one of the modern mathematical computational
methods which are used to solve no-linear and dynamic problems, where research in the field
of neural networks are attracting increasing attention in recent years, And that's because it has
that ability to learn and to generalise data, by using the parallel processing neurvos units.

This chapter briefly describes the mechanism of the formal neuron In addition to the most
common neural networks including the feed forward network, Elmen network, long short

terme memory, gated recurent unit, adaptive neuro-fuzzy system and wavelet neural network.

I1.2. Basic Neural Network Components

ANN is a parallel computational system based on the architectural and functional standard of
biological networks (Imrie et al, 2000). Across the various neural network models that have
been developed over the years, all of them share a specific building block known as a neuron.
The most commonly used neuron model is based on the work of McCulloch and Pitts (1943)

and is shown in Figure I.1.
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Figure. 1.1. McCulloch and Pitts formal neuron structure.
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In Figure (1.1), each neuron consists of two parts: the net function and the activation function.
The net function determines how the network inputs are combined inside the neuron. In this
figure, a weighted linear combination is adopted:

u=wlx+b (1.1)
were: u represents the weighted sum of the inputs of the neuron, x represents the input
connected to the neuron, w denotes the weight of the connection connecting the input to the
neuron, and b the internal threshold of the neuron.

The output of the neuron, denoted by y in this figure, is related to the network input u via a
linear or nonlinear transformation called the activation function:

y=fw (1.2)
In various neural network models, different activation functions have been proposed. The

most commonly used activation functions are summarized in Table (1.1).

I.3. Some types of neural networks

I.3.1. Feed Forward Neural Networks

Artificial neural network can be seen as a mathematical model of distributed processing,
composed of several non-linear computational elements (neurons), operating in parallel and
connected to each other by weights. Each elementary processor calculates a single output
based on the information it receives. Through their parallel processing of information and their

mechanisms inspired by nerve cells (neurons), they infer emergent properties to solve problems once

described as complex.

10
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Table. 1.1. Most commonly used activation functions.

Function name Mathematic forme Geometric forme
A
Linear or Purline f=n
—_—
A
_ —1,ifn < -1
Satlins f=inif —1<n<1
Lif1 <n
ReLue f:{n ifn>0 +
0 if n<0
——
Sigmoide or Logsig fo efm —1 T
ekn +1 ‘
_mn2 2 ?
Radbas f=em/k ‘
T . 1-— e—Zn
ansig f=
1+ e2n

In the case of feed forward multi layer network, neurons are organized in layers. The input
information is transmitted by successive layers, to finally obtain the output result. In this
topology, neurons are divided into three classes: input neurons, hidden neurons and output
neurons. Each neuron in a layer is connected to all the neurons of the previous layer and of the
next layer (except for the input and output layers) Fig(l.2).

11
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If we consider a multi-layer model with N input neurons, activated by an input vector x (of
size N), and by wi‘}'l the weight corresponding to the connection between neuron i of layer 1
and neuron j of layer 2, the output h,; of each of the neurons of the first hidden layer will be
expressed by :

0} = g,(b} +Zi, Wi(}'lxi) (1.3)
Ou g; est la fonction d’activation décrite précédemment, et b} est un paramétre

supplémentaire appelé biais, et dont son role est de rajouter un degré de liberté
supplémentaire en agissant sur la position de la frontiere de décision.

This same process expressed by equation (1) can be repeated for the other layers.

Figure. 1.2. Conventional Feed Forward Neural Networks (FFNN) architecture.

12
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I.3.2. Recurent Neural Networks

The recurrent neural network (RNN) is designed to detect the sequential actions of the data set
in order to anticipate the next likely scenario. It is an efficient approach to the analysis of
sequential data, such as time series data.

In the traditional neural network (Feed forward) we assume that all inputs and outputs are
independent of each other, but in cases where it is necessary to forecast the next value of a
time series chain, the previous value is required and needs to be remembered by the model.
So, the idea behind the RNN is to make the model remember through the time, this memory

which captures information about what has been calculated so far Fig(l.3).

Output (O)
\
| VT U VT W] VT U VT U
Hidden Units (HU) D | — HU | HU > | HU | HU [~ ...
W e - | wi wi wl wi
Input (1)

Figure.l.3. Recurent Neural Networks processing.

1.3.2. 1. Elman RNNs (ERNN)

Elmann Recurrent Neural Networks (ELM) has been suggested by (Elman 1990) to generalize
feedforward neural networks in order to help handle organized data sequences including time-
series.

The fundamental configuration of the Elman Neural Network model is the input layer, the

hidden layer, the output layer and the context layer.

13
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The context layer is a feedback connection from the hidden layer to the input layer Fig (1.4).
Connections among the input layer, the hidden layer and the output layer can be considered as

a feed-forward network, this part is similar to the traditional feed forward network.

Figure. 1.4. EIman Recurent Neural Networks.

The feed back of the output of hidden layer to input layer named the context layer. After
Elman the recurrent connections whights valus of this layer are fixed (Kim and Kim, 2008;
Ren et al., 2018).

The output of the hidden layer of EIman network at time t can describe as folow :
h](t) = g](bl + Zﬁvzl xl.(t)wij + Z?I:l hft_l)Wij) (|4)
where i, j, = input and hidden layers units index; x,“’ = input vector for the sequence (t); h{’ =

output hiden layer for the sequance (t) ; h}t‘l) = output hiden layer for the sequence (t); g;(.)

= the transfer function of hiden layer, which provides the output of hidden layer; w;; = the

14
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weight between input and hidden layers; u;; = the weights betwen hiden layer of sequence (t-
1) and hiden layer of sequence (t) ; b, = the bias of hiden layer and N = number of sequences.

And the final of output layer at t time as follow:
07 = gie(bre + Xy APy ) (1.5)
O = output of output layer ; g, ()= the transfer function of hiden layer; b, = the bias of

output layer; v;, = the weight between output and hidden layers.

1.3.2. 2. Long Short Terme Memory (LSTM)

LSTM is extended version of simple recurrent neural network which effectively enhance the
memory. It was first suggested by Hochreiter and Schmidhuber (1997). Unlike the standard
RNN, the hidden layers of LSTM model consist of more complicated structures and describe
the feedback of information as a chain of repeated simple modules. The fundamental concept
of LSTM model is a memory cell that can hold the information regulated over time by specific
gate units. LSTM cell (Fig. 1.5) can be shown as memory block consisting of input gate, forget

gate, and output gate (Cheng et al, 2017).

Output gate

OO

Xt

h:.1 he

)

*
Input gate —4

®

Forget gate

A~
N
Ct-1 > Ct

Figure. 1.5. Long-short term memory (LSTM) gates processing.
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Input gate monitors the activation signal into the memory cell. This segment of network learns
the circumstances in which certain information must be maintained or updated. Forget gate
aims to reset memory cells by ignoring the past data when specific portions of the cell state are
to be replaced with more recent information using an activation function sets zero for values
(should be ignored) and 1 for values (should be remembered). Output gate learns and
determines which information will be propagated forward to deliver the activations to the final
node in the output network

Equations 4-8 explain the detail of all forward pass procedures of the LSTM unit.

P}(t) = Ug(sz + X5 xi(t)WiI}w + 25, hgt_l)US) (1.6)
Ij(t) = Ug(bil + X xi(t)Wiﬂ' + 2L, hgt_l)Uin) (1.7)
0f = a5 + Xy xOWG + ZiL I VUG) (1.8)
Cj(t) _ Fj(t) " Cj(t—l) + Ij(t) " Uc(bic n Zﬁv=1xl-(t)Wi§ n Zzivzl hlgt—l)Ug) (1.9)
R = 0 « ah(cj“)) (1.10)

where x is the input vector for the time t, (WF,W!, WO, W) and (UF,U',U° U) are the
weight matrices of input an hidden layers respectivly for different gats, (b", b?, b9, b®) are the
bias vector for different gats,h is the output vector of the hidden layer, F is the forget gate
vector, I is input gate vector, O is the output gate vector, C is the cell state vector, g is
sigmoid function, o, and o, are the hyperbolic tangent functions and (*) denotes the

Hadamard product.

1.3.2. 3. Gated Recurrent Unit (GRU) Network

GRU is a state-of-the-art version of recurrent neural network suggested by Cho et al. (2014).

The GRU model is a redesigned concept from the LSTM model based on the gating

16
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mechanism. Compared to the LSTM model, the GRU model reduces the usage of memory
cells and merges the forget and input gates into one gate (Gasparin et al., 2019, Yang et al.

2020). The GRU model limits the number of gating signals to two gates (Fig.l.6).

)

Reset gate

[ —
Update gate <+: ht

©
N

SISVAS

Figure.l.6. Gated recurrent units processing.

Updating the gate determines how often the device changes its configuration or information.
The reset gate decides to merge the current configuration information with the historical
memory. Also, configuration parameters are used in the GRU model configuration. The

calculation equations for the update gate, reset gate, and standard GRU model are as follows:

29 = (b7 + Xy xOWE + T, nEVUE) (1.11)
Rj(t) = O-R(bLR + Zy=1xl'(t)Wi§ + Z?’=1 hzgt_l)ug') (1.12)
H = o (bfl + T, x(W + T, ATVl ROT) (113)
RO = (1- ) + 2010 (1.14)
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where x = the input vector at time t; (W*,W® W™)and (U%,UR,U") = the weight matrices of
input and hidden layers for different gates. o, = the hyperbolic tangent function; o, and o =

the sigmoid functions; and * = the Hadamard product.

1.3.3. Adaptive neuro-fuzzy inference system (ANFIS)

Neuro-fuzzy systems based on the integration of neural networks along with fuzzy inference
systems (FIS). The basic structure of the type of fuzzy inference system can be seen as a
model that maps input characteristics to input membership functions (MFs) (Moosaviet al,
2013). For building a FIS, the following processes are required: (1) fuzzification: the FIS
employs linguistic rules of the type (If-Then) which translate knowledge about the dynamic of
a system (Komori, 1992), (2) fuzzy database: defining the MFs, and (3) defuzzification: an
inference system that combines the fuzzy rules and produces the system results. The learning
procedure of neuro-fuzzy systems is carried out on account of the local information and
introduces only local changes to the original fuzzy system. Among various neuro-FIS,
Takagi-Sugeno (TS) systems (Takagi & Sugeno, 1985) have been applied successfully for
data-driven based fuzzy modeling. The TS approach has either a scalar or a function of input
variables as the consequent part of the If-Then inference rule. ANFIS is a multi-layer adaptive
network-based (TS) fuzzy model proposed by Jang (1993). It has five functional blocks, which
are generated using five layers of neurons. To explain the computations involved, we consider
a simple fuzzy inference system with two inputs x; and x, , one output y, and two MFs in each
input. A typical rule set for a first-order Sugeno-fuzzy model (Lohani et al, 2006; Nasr &
Bruen, 2008; Nayak et al, 2004; Talei et al, 2010; Yurdusev & Firat, 2009) that includes four

fuzzy If-Then rules can be expressed as:
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Ry If xq is ™ (and/ or) xz is ui® Then yi = f1(xq, X2)

Ry: If x1 is o™ (and/ or) X, is po® Then y, = fo(X1, X2)

Rs: If xy is ps™ (and/ or) x, is ps® Then ys = f3(X1, X2)

Ra: 1f xq is ™ (and/ or) x, is pa® Then ys = fa(X1, X2)

Figure (1.7) represents the principal operation of adaptive neural-fuzzy inference system
(ANFIS) that is based on the following layers:

Layer 1: every node in this layer is an adaptive node with a node function named MF.

u? (x. 8):x - [0. 1] (1.15)

Layer 2: nodes in this layer are labeled F, whose output represents a firing strength of a rule.
The node generate the output as follow:

e For the (And) rules we have two choices:

in(y® ,@
w; = (ugl). L.(Z))z mm(ﬂ(l)r & ) i=1-4 (1.16)

1(u®.12)

e For the (Or) rules we have also two choices:

™ @
w; = F(ul@. l.(z)) = max(u(;r & ) i=1-4 (1.17)

probOR(ui(l). ,ul.(z))
Layer 3: the ith node of this layer, labeled as N, normalized with respect to the other input,
where the output node i is equal to the input i divided by the sum of the inputs.
w; =w;/Yw i=1..4 (1.18)
Layer 4: the output of the node i is a linear function of the output and the signals input of the
controller.

wiy; = wilpixy +qixp +5) i=1..4 (1.19)
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Layer 5: the summation of the signals input.

y=Xwy= Ywy/¥w (1.20)

A;

X;

Bj

B>

Layer 1 Layer 2 Layer 3 Layer 4 Layer 3

Figure. 1.7. Operation principle of the ANFIS network based on the fuzzy inference system,
Takagi—Sugeno (TS) type.

1.3.4. Wavelet-based neural networks (WNN)

1.3.4. 1. Wavelet transform (WT)

A wavelet is a “small wave” function, usually named “mother wavelet.” The mother function
can be used to generate a whole family of wavelets by translating and scaling the mother
wavelet. A wavelet transformation is a signal processing tool, like Fourier transformation,
with the ability of analyzing both stationary as well as non-stationary data (Prahlada & Deka,
2011). The basic objective of the WT is to achieve a complete time scale representation of
localized and transient phenomena occurring at different time scales (Labat et al, 2000). The
power-of-two logarithmic scaling of the dilations and translations is known as a dyadic grid

arrangement, and is the simplest and most efficient case for practical purposes (Mallat, 1989).
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The signal time series is decomposed into one comprising low frequencies and its trend (the

approximation), and one comprising the high frequencies and fast events (the detail). The

detail signals can capture small features of interpretative value in the data; the approximation

represents the background information of data (Fig. 1.8).

Original time series
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W I | J

Figure.l.8. Wavelet transform mechanism.
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1.3.4. 2. Discrete wavelet transform (DWT)

WT is a mathematical function which is capable of decomposing the continuous or discrete
time signal into the higher- and low-frequency components of a signal (Mallat 1989). There
are two main categories of wavelet transforms [e.g., continuous wavelet transform (CWT) and
discrete wavelet transform (DWT)], respectively. CWT method treats with continuous
functions and can be applied for discrete functions or time series (Seo et al. 2015, 2018;
Nourani et al. 2009; Mallat 1989). In brief, CWT method is time-consuming and requires large
resources, while DWT method can be applied than CWT method easily (Nourani et al. 2009;
Mallat 1989). DWT method consists of two decompositions (e.g., lowpass and high-pass) and
reconstructions (e.g., low-pass and high-pass), respectively (Seo et al. 2015, 2018; Mallat
1989). For practical application of DWT method, two flters (e.g., low-pass and high-pass) are
utilized rather than two wavelets (e.g., father and mother) (Seo et al. 2015). The low-pass flter
allows for the analysis of low-frequency components, while the high-pass flter allows for the
analysis of high-frequency components (Seo etal. 2015). The multi-resolution approach
utilizing DWT method is a process to draw ‘approximations (show a conventional trend of
original sisnal)’ and ‘details (indicate the high-frequency compnents)’ for a given signal (Seo
et al. 2015, 2018; Mallat 1989). The feature report for DWT method can be collected from

Nason (2008). So we found the Discrete wavelet transform (DWT) by using the follow

equations :
a=2/
X b=mn2] X (1.21)
t-b\ _ 5 (t-nboag’
W () = a0” (S5
W (i,m) = 2% Spe 2(0) ¥/ (G = m) (1:22)
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where j and n are the entiers numbers, a is the scall factor , b is the translation parametr and
¥ (t) is the mother wavelet.

Some of the most important mother wavelets using for DWT are Haar, Daubechies (db),
Symlets (sym), Coiflets (Coif)...ect.

A WNN model is a combination of Wavelet transform WT and artificial neural networks
models ANN, where the original time series for each input neuron of the ANN model is
decomposed to some multi-frequency time series using the WT algorithm. The decomposed
details (D) and approximation (A) are formatted as new inputs to the ANN model architecture,
as shown in Fig(l.9). In the WNN, the number of decomposition levels (details and

approximation) of each input is calculated according to full data length (Nourani et al., 2009).

L = int[log(N)] (1.23)

where L defines the decomposition level, N denotes the number of time series data, and int[-]

depicts the integer-part function.

— Approximation p Xa(t)
X(t) . % > X(t+1)
xnlit}
— Details » Xoalt)
an(t}

Figure.l.9. The schematic diagram of WNN model.
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I.4. Conclusion

In this chapter, the background theory of artificial neural networks was briefly reviewed.
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Chapter. II

Applied Neuro-Wavelet and Neuro-Fuzzy systems on

the catchment of Ain Safra.
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11.1. Introduction

Sustainable development of human activities is based especially on an integrated management
of water resources. Hence, an efficient and sustainable management of water resources cannot
be limited to mere guarantee of sufficient quantity and quality of water to meet the needs of
humans (drinking, industry, irrigation, etc.), for it has to take into account the occurrence of
extreme events, such as drought flow and flooding. Like most countries on the southern shore
of the Mediterranean, Algeria, whose climate is essentially semi-arid to arid in the major parts
of its territory, is facing issues in development and management of its water resources. The

transformation of rainfall into runoff is the result of a number of complex mechanisms that are

to take place simultaneously at different spatial and temporal scales (Fortin et al,1997).
However, developing a rainfall-runoff model becomes a necessity in that, it is designed to
take into account the recorded data of rainfall which may enable the model to produce a runoff
as close as possible to the recorded data; in other words, we can reproduce (or predict) the
response in terms of runoff of the basin based on the records of rainfall. During the last 20
years, a large number of approaches were carried out for the purpose of modeling the process

of the transformation of rainfall into runoff.

However, the complexity of the hydrologic regimes requires the use of specific tools of non-
linear dynamic systems (Sivakumar et al, 2001). In this respect, we propose in this work, in
order to model this process, to use a wavelet based feed forward neural network (WFFNN)
and adaptive neuro-fuzzy inference system (ANFIS). The aim behind system modeling
incorporating neural networks and (wavelet/fuzzy inference systems FIS) lies in the fact that
their characteristics are complementary. Using the discrete wavelet transform, a series of
rainfall and streamflow are decomposed into a succession of approximation and details and
used as inputs in a model. The FIS make use of linguistic rules that translate knowledge of the
dynamic of a system. The performance of the adaptive Wavelet Neural Network (WNN) and

neuro-fuzzy inference system (ANFIS) has been proved in several fields of engineering and
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science. The most recent studies using WNN and neuro-fuzzy systems to model the rainfall—
runoff relationship, for example, are those of the authors in references (Aqil et al, 2007;
Chettih et al, 2012; Dastorani et al, 2010; Krishna et al, 2011; Nasr et al, 2008; Talei et al,
2010; Tiwari et al, 2010; ). This chapter includes partial contributions from the paper
(Zakhrouf et al, 2015).

I1.2. Materials and Methods

The models used in this chapter are : Feed forward neural network (FFNN) (see paragraphe
Feed forward neural network in chapter I), Adaptive Network-based Fuzzy Inference System
(ANFIS) (see paragraphe Adaptive Network-based Fuzzy Inference System in chapter 1) ,

Wavelet Feed forward neural network (see paragraphe Wavelet neural network in chapter 1)

I1.3. Study area and data used

The Ain Sefra watershed is forms the upstream part of the large catchment area of the Oued
Namous of the Sahara Basin, it is located in the south-west of Algeria between longitudes (1°
0' 0" and 0°03'00" W) and latitudes (32°30'22" and 33°00'00"N). The Ain Sefra watershed
covers an area of 1957 km2 for a perimeter of 236 km, with a compactness index of 1.49,
which characterizes a moderately elongated basin (Fig. I11.1). The Ain Sefra region is
characterized by a semi-arid climate, with dry and hot summers where rainfall is almost absent

and evaporation particularly strong (Derdour et al, 2016).
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Figure. 11.1. Ain Safra watershed (Derdour et al).

The database contains values of rainfall and daily streamflow of A1'n Hadjadj watershed (Fig.
6). The Ar'n Hadjadj watershed is located in the Saharan Atlas. The hydrometric station of
Ar'n Hadjadj coded (r 0,345) by the National Agency of Water Resources, is the feeding
source for the other sources such as: Ai1'n Melalek, Ain Esomam, Ai1'n Tessala, and Ai'n
Skhouna. The hydrometric data represent a chronicle of 25 years from 1 September 1973 until
31 August 1997. The rainfall station used for the study of the rainfall-runoff relationship in
the A1'n Hadjad]j basin is in the city of A1'n Sefra. The database was divided into two sets: (1)
a set for the training phase of the model corresponding to 60% of the data; (2) the other set for

the testing phase of the model corresponding to the remaining 40% (Fig. 11.2).
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Figure. 11.2. Average daily stramflow and cumulative rainfall measured at stations: Ain
Hadjadj - Ain safra, (period 1973/1999).

I1.4. Input selection

Based on the work done in the field of hydrology, the input parameters of the models are the
observed rainfall and runoff in previous instants (¢, t — 1, t — 2, ..., t — n) (Nayak et al, 2004,
ErolKeskin 2010).

Consequently, the output of the models represents the predicted value of the streamflow for

the next day (t + 1), i.e.:

Qt+1 = f (PtPe1...Pen Qb Qt-1....-Qen) (1.2)

Using the correlogram and variance spectral density, the time series of rainfall and discharge
of a hydrological system are analyzed in a descriptive way (Mangin, 1984). The results
obtained by the correlogram and the density spectrum in short term for the watershed are
shown in Figs. (1.3 and 11.4), where they showed the absence of memory effects which

modulated the input rainfall for short term (Figs. 11.3.a and 11.3.a), they should highlight a
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rapid decrease of correlogram, the values oscillate around zero after the tenth day, the density
spectrum of variance shows a fairly regular decrease which could be explained by the
dependence of successive variables (Fig.11.3.b and 11.3.b). In this case, A1'n Hadjadj system is
considered without memory, only the rainfall and the runoff measures of the same day were

exploited, i.e.:

Qt+1=Tf (P1,Qy) (11.2)
(€Y (b)
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Figure.11.3. (a) Simple Correlogram of rainfall, (b) density variance spectrum of rainfall
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Figure.l1.4. (a) Simple Correlogram of stramflow, (b) density variance spectrum of stramflow.
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IL.5. Implementation of ANN and WNN

A neural network with two layers having a sigmoidal activation function in the first layer
(hidden layer) and a linear function in the output layer allows to approximate any function of
interest with arbitrary precision, provided that there are enough neurons in the hidden layer
(Aqil et al, 2007, Wang et al, 2004). The optimal number of neurons in the hidden layer has
been identified through trying and error method varying the number of the hidden neurons. In
this case, we start with architecture of 1 neuron in the hidden layer, and constantly increasing
this number up to 16 neurons. Then, we take the architecture that gives the minimum error on
the test phase. In our study, several publications show that the Levenberg—Marquardt
Backpropagation (LMBP) algorithm gives the most efficiency (Aqil et al, 2007, Alpaslan et al,

2009, Wu et al, 2010).

With the LMBP optimization algorithm, an error function measuring the difference between
the observed (yi) and expected (dx) outputs can be minimized as follow:

E(w,x,dy) =5 2k (dy — y1)? (113)
This algorithm involves two steps: (1) a "forward move" during which network outputs are
estimated from inputs and (2) a "backward move" during which partial derivatives of a certain
cost function E with respect to parameters are replicated. Finally, the weights are modified
according to the following equations:

wij(n) = =(ijn + u)YREM) + wi(n — 1) (11.4)
Where J = the Jacobian matrix of E, | = the identity matrix, and x = learning parameter, w =

the weights and n = the iterations.
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The effect of the number changing in hidden neurons on the quality of results is shown in
Fig (11.5), it can be deduced that the optimal number of 11 neurons gives us the best results to

model streamflow.
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4,\’\’\‘/’/‘\/\‘\//\\—’
4,75 -

4,5 T T T T T T T T T T T T T 1

RMSE (m?/s)

Number of Neurons

Figure.Il.5. The optimal number of neurons for FFNN model in the testing phase.

For WFFNN, the wavelet decomposition can be iterated, with successive approximations
being decomposed in turn, so that the signal is broken down into many lower resolution
components, tested using different scales from 1 to 10 with different sliding window
amplitudes. In this context, dealing with a very irregular signal shape, an irregular wavelet, the
Daubechies wavelet of order 5 (DB5), has been used at level 10. The effect of the number
changing in hidden neurons on the quality of results is shown in Fig(l1.6), according to the
examination of Fig(11.6), it can be deduced that the optimal number of 8 neurons gives us the

best results to model streamflow.
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Figure.I1.6. The optimal number of neurons for WFFNN model in the testing phase.

II.6. Implementation of ANFIS

In the ANFIS model, each rule contains some parameters of membership functions (MFs) and
each variable may have some values (in terms of rules). For example, if each variable has two
rules and each rule contains three parameters, then there are 6n parameters (n variables x 2
rules x 3 parameters) for the determination in layer 1 (see chapter I). The ANFIS model
calibrates these MFs in relation to calibration data. These rules produce 2n nodes in layer 3. In
this part, the number of MFs varying from 2 to 7 was examined. The hybrid-learning approach
in the neuro-fuzzy model can be employed for a search of the optimal parameters of the
ANFIS. During the learning process, the premise parameters of membership functions J, and
the consequent parameters & are tuned until the desired response of the FIS is achieved.

The learning rule specifies how the premise parameters and consequent parameters should be

updated to minimize a prescribed error measure.
E(6,8) = Z5(di — %i)? (11.5)
Where yx = observed outputs and dix = expected outputs

The hybrid learning algorithms of ANFIS consist of the following two parts.
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In the forward pass of the hybrid learning algorithm, the least square method can be used to
determine the optimally values of the consequent parameters; the overall output can be
expressed as a linear combination of the consequent parameters as follow:

0* = (ATA)"14TY (11.6)
Where AT is the transpose of A and (ATA)*AT is the pseudo inverse of A if ATA is nonsingular.
The nonlinear or premise parameters in the layer 2 remain fixed in this pass. In the backward
pass, the error rates propagate backward from the output end towards the input end, and the
premise parameters are updated by the gradient descent. The update formula for simple

steepest descent for the generic parameter ¢ is:

Ser = 6 — a > (11.7)
Where, a = learning rate and 0E/0¢ = partial derivative of the function E.

Gaussian membership functions are used for each fuzzy rule in the ANFIS system. This choice
of functions is based on research work done by (Gautan and Holz, 2001) and (Lohani et al,
2006).

The effect of number change (MFs) on the quality of the results is shown in Fig(l1.7), the

ANFIS model having 4 MFs, have estimated minimum error.
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Figure.l1.7. The optimal number of MFs for ANFIS model in the testing
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I.7. Performance criteria

The statistical parameters used in this work are: the root mean square error (RMSE), the Nash-
Sutcliffe efficiency coefficient (NSE) (Abrahart et al, 2004) and the determination coefficient

(R?). These parameters are given by the following relationships:

RMSE = [SIL1(08 — 0t/ (18)
(4 _ Zﬁl(ati—éti)z)
NSE = (1 e ) - 100 (11.9)

I_V —A Ar._ A
RZ — ( 21=1(Qt1 Qt)(Qtl Qt) )2 (“10)
[EXien-002 5 (0t-00)?

Where Qt;is the measured flow rate value, Qt;is the flow rate calculated by the model, Qt is

the average flow measured, Qtis the average flow simulated and N is the number of data.

I1.8. Results and discussion

The performances of WFFNN, ANFIS, and FFNN in terms of the performance indices are
presented in Table (I11.1). To have a true evaluation of the potential of WFFNN compared to
ANFIS and FFNN models during training phase. Table (I11.1) suggests that though the
performance of both the WFFNN and the ANFIS models are similar during testing phase, the
WFFNN model show a slight improvement over the ANFIS model. It is evident from Table
(11.1) that the WFFNN model outperforms the FFNN model in terms of all performance
indices. Figs (11.8.a, 11.9.a, and 11.10.a) show the observed and simulated hydrographs for
WFFNN, ANFIS, and FFNN models during the testing phase, It was found that values

simulated from WFFNN and ANFIS models correctly matched with the observed values,
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whereas, FFNN model underestimated the observed values. The distribution of error along
with the magnitude of streamflow, computed by WFFNN, ANFIS, and FFNN models during
the testing phase, has been presented in Figs (11.8.b, 11.9.b, and 11.10.b). From Figs. (11.8.b,
11.9.b, and 11.10.b), it was observed that the estimation of streamflow was good using WFFNN

and ANFIS, because the error was minimum compared to the FFNN model.

Figs (I1.8.c, 11.9.c, and 11.10.c) shows the scatter plot between the observed and modeled
streamflow by WFFNN, ANFIS, and FFNN models during the testing phase. It was observed
that the streamflow forecasted by WFFNN model was close to the 45° line. From this analysis,

it was worth to mention that the performance of WFFNN was much better than ANFIS and

FFNN.
Training phase Testing phase
RMSE 2 RMSE 2
0, 0,
NC NSE (%) R NEN NSE (%) R
WFFNN 0.461 99.27 0.9920 3.772 77.89 0.802
ANFIS  1.249 94.66 0.9467 3.992 75.25 0.794
FFNN 3.405 60.37 0.6448 4.750 64.96 0.630

Table. 11.1. Results obtained by the models: WFFNN, ANFIS and FFNN.

Figs (11.11, 11.12 and 11.13) show the observed and simulated peak streamflow hydrographs,
and relative peak error in each year for WFFNN, ANFIS, and FFNN models. It was observed
that WFFNN and ANFIS models estimated the peak value of river flow to a reasonable
accuracy (peak flow during the study was 250 m3 /s of year 1989) (Figs. 15 and 16), but from
Fig. 17, it was observed that FFNN model is not well-trained, and simulated peak values

consistently underestimated the observed peak values.

36



Chapter 11

(@) ()
T T T T T T T 280
""""" Q sim Re=0.8028
Py 200 2 abs Y
[%2]
o
[= 180 F - ’c'\n‘
~ ™
% 100 i é
= e
% g0} § 7
O _ (@4
(7) ] T L :ﬂl Jél li L 11 2l i Lo IJ Jll Lob el
A00 1000 1500 2000 2500 3000 3600
Time in days Qobs (m%/s)
(b)
200 . .

100+

-100

Streamflow (m*/s)
F
H
—
3
r

-200

1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500
Time in days

Figure.11.8. Plot of (a). Observed and simulated hydrographs, (b). Error plots along the
magnitude of streamflow, (c). Scatter of observed and simulated streamflow for WFFNN
model during testing phase.
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Figure.11.10. Plot of (a). Observed and simulated hydrographs, (b). Error plots along the
magnitude of streamflow, (c). Scatter of observed and simulated streamflow for FFNN model
during testing phase.
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testing phase.
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Figure.11.13. Peak flow estimate and relative peak error for FFNN model during
testing phase.

I1.9. Conclusion

The results obtained in this study showed the effectiveness of artificial intelligence algorithms
for modeling the rainfall-runoff relationship for streamflow forecasting. Wavelet-feed forwarf
neural network and adaptive neuro-fuzzy inference systems have a good predictive power. The
performance of WFFNN and ANFIS in hydrological forecasting exceeds those of other
models based on three different statistical indices (i.e., root mean squared error (RMSE),

Nash-Sutcliffe efficiency (NSE), determination coefficient (R2)) for training and testing

42



Chapter 11

phases. The values of RMSE NSE and R? for the WFFNN model ( RMSE = 3.772 m® /sec,
NSE = 0.779and R? = 0.802 for testing phase) were lower than those of ANFIS (RMSE =
3.992m® /sec, NSE = 0. 753 and R2 = 0.794 for testing phase) models and FFNN (RMSE =
4.750 m® /sec, NSE = 0. 649 and Rz = 0.630 for testing phase). The use of these hybrid
methods is an alternative fully justified for good water management and especially to
minimize the risk of flooding within the watershed. In spite of these difficulties, modeling by
WFFNN and ANFIS led to satisfactory results in forecasting the hydrological phenomena.
This type of model represents a very powerful means for an estimated management of the
surface water resources in a semi-arid to arid area particularly in the period of rise. These
encouraging results open a number of perspectives; it would be interesting to try hybrid

models by coupling wavelet transform with neuro-fuzzy systems.
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Chapter. III

Applied Evolutionary Wavelet-ANFIS And Wavelet-
FFNN On The Sebaou River.
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II1.1. Introduction

Sustainable development of human activities is based especially on an integrated management
of water resources (Koudstaal, Rijsberman, & Savenije, 1992). Hence, an efficient and
sustainable management of water resources cannot be limited to the simple guarantee of
sufficient quantity and quality of water to meet the needs of humans (e.g. drinking, industry
and irrigation) because it has to take into account the occurrence of extreme events, such as
drought flow and flooding (Zakhrouf, Bouchelkia, & Stamboul, 2015). The complex nature of
streamflow and the significant variability in spatial and temporal aspects have led to the
development and application of stochastic concepts for modeling, forecasting, and other
purposes (Martins, Sadeeq, & Ahaneku, 2011). Time series forecasting is one of the most and
important methods used in hydrological modeling because it is does not require understanding
the internal structure of the physical processes (Krishna, Satyaji Rao, & Nayak, 2011). A time
series is a sequence of regularly sampled quantities from an observed system, and a reliable
time series prediction method can help researchers model the system and forecast its behaviors
(Chen, Wang, Zou, Yuan, & Hou, 2014; Zhang, Chung, & Lo, 2008). Different mathematical
methods have been suggested to solve time series forecasting, such as Linear Regression, Auto
Regressive Integrated Moving Average (ARIMA), and ARIMA with exogenous input.
However, the complexity of the hydrological time series requires specific tools for non-linear
and non-stationarity dynamic systems (Sivakumar, Berndtsson, Olsson, & Jinno, 2001). In
recent years, the field of computational intelligence has promoted revolutionary changes in the
development of new non-conventional techniques of data processing and simulation
(Chandwani, Vyas, Agrawal, & Sharma, 2015). In this study, wavelet-based datadriven
approaches are suggested for modeling the hydrologic time series. The combination of wavelet

transform (WT) and artificial neural networks approaches has been successful applied to
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hydrological modeling and forecasting in the literature (Nourani, Baghanam, Adamowski, &
Gebremichael, 2013). A wavelet-based artificial neural networks model is started from both
WT and various artificial intelligence (Al) modeling techniques. Wavelet-based data-driven
models, such as wavelet auto regressive moving average, wavelet artificial neural network
(WANN), wavelet support vector regression, and wavelet adaptive neuro fuzzy inference
system (WANFIS), have been applied as effective tools for forecasting complex and nonlinear
hydrological time series (Kamruzzaman, Metcalfe, & Beecham, 2013; Liu, Niu, Wang, & Fan,
2014; Partal, 2009; Partal & Kisi, 2007; Seo, Kim, Kisi, & Singh, 2015; Seo, Kim, Kisi,
Singh, & Parasuraman, 2016; Wang, Wang, Chen, Zhao, & Yang, 2013). Many studies have
attempted to forecast time series of streamflow using wavelet-based artificial neural networks
models (Badrzadeh, Sarukkalige, & Jayawardena, 2013; Guo, Zhou, Qin, Zou, & Li, 2011;
Nourani, Baghanam, Adamowski, & Kisi, 2014; Tiwari & Chatterjee, 2010).The design of the
optimal architecture of wavelet-based artificial neural networks models can be treated as a
search problem in architectural space. In general, the architecture of artificial neural networks
models is selected by trial and error without universal rules. Evolutionary algorithms (EAS)
are a class of stochastic searches and optimization techniques obtained by natural selection
and genetics. EAs mainly include evolutionary strategy, evolutionary programming, and a
genetic algorithm (GA). The three EAs are consistent with the goal of using biological
evolution mechanisms to improve the ability of using computers to solve the specific problems
(Ding, Li, Su, Yu, & Jin, 2013). In this study, a method for designing wavelet-based artificial
neural networks models, using GAs, was developed for forecasting streamflow. The
performance of evolutionary wavelet-based artificial neural networks models has been
investigated in several fields of engineering and science. The most recent studies using

evolutionary wavelet-based artificial neural networks approaches for modeling hydrologic
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systems are found in the literature (Asadi, Shahrabi, Abbaszadeh, & Tabanmehr, 2013;
Danandeh Mehr, Kahya, & Olyaie, 2013; Kalteh, 2015; Kisi & Shiri, 2012; Ravansalar,
Rajaee, & Zounemat-Kermani, 2016; Ravansalar, Rajaee, & Kisi, 2017; Sahay & Srivastava,
2014). The second section of this chapter provides the study area and data. The third suggests
tools, including feed forward neural network (FFNN), adaptive neuro-fuzzy inference system
(ANFIS) and GA. The fourth section explains the methodology, and the fifth presents results
and discussion. Conclusions are found in the last section. This chapter includes partial

contributions from the paper (Zakhrouf et al,2018).
III.2. Study area and data

Data derived from the Sebaou River were employed for calibration and testing all of the
models developed in this study. The Sebaou River basin is located in the central part of
northern Algeria (Algiers-Hodna-Soummam watershed), between 36.0 N and 37.0 N (latitude)
and 3.0 E and 4.0 E (longitude). It covers a total catchment area of 871.54 km?, with a
perimeter of 248.5 km and compactness index equal 1.40 (Fig.111.1).

The region is characterized by a Mediterranean climate with cold winters and hot summers.

Figure. I11.1. Sebaou watershed (Tarmoul et al, 2018).
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Daily streamflow data, obtained from the National Agency of Water Resources (Algeria) of
the Baghlia gaging station, were used in this study Daily streamflow data of 14 years were
used. The first 12 years (75% of the data) were used for training of the model, and the

remaining 3 years (25% of the data) were used for testing (Fig.I11.2).
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Figure. 111.2. Average daily stramflow measured at Baghlia gaging station.

I11.3. Materials and Methods
In this chapter we suggested the use of :Feed forward neural network (FFNN) (see chapter 1),

Adaptive Network-based Fuzzy Inference System (ANFIS) (see chapter 1), Wavelet — FFNN

and Wavelet — ANFIS (see chapter I) to forecast the streamflow of Sebaou river flow.

I11.3.1. Genetic algorithm
Evolutionary algorithms [e.g., genetic algorithm (GA), evolutionary strategy (ES), and
programming (EP)] are a class of stochastic searches and optimization technigques (Ding et al.

2013).
A GA is considered to be a heuristic and stochastic optimization technique based on

evolutionary theory and genetic principles. GA has been for the most part techniques applied
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by computer scientists and engineers to solve practical problems. However, Holland’s (1975)
original work on the subject was meant not only to develop adaptive computer systems for
problem solving but also to shed light, via computer models, on the mechanisms of natural
evolution (Dong, Wang, Sun, & Zhao, 2010).
Compared with other search techniques, GA is easy to use because it does not require
derivative information or definite initial estimates in the solution space. Applying GA
operators in the reproduction stage requires six components:
(1) Encoding,
Genetic algorithms traditionally use finite size binary, integer or real bit strings to represent
chromosomes.
(2) Generating the initial population,
We define an initial population of individuals that corresponds to the first generation.
(3) Calculating the fitness values,
The fitness function measures the power of each chromosome to adapt, it describes the ability
of a population chromosome to optimize the objective. This function is chosen according to
the value of the objective function to be processed.
(4) Genetic operators,
e Selection options specify how the genetic algorithm chooses parents for the next
generation.
e Crossover options specify how the genetic algorithm combines two individuals, or
parents, to form a crossover child for the next generation.
e Mutation options specify how the genetic algorithm makes small random changes in
the individuals in the population to create mutation children.

(5) Replacement,
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Replacement the old solutions by the new best ones,
(6) stopping criteria.
I11.4. Methodology

In this chapter, an effort has been made to use the combination model to forecast the daily
streamflow of river located in the north of Algeria. In general, the time series models are used
to describe the stochastic structure of the time sequence of a hydrological variable measured
over time. In this case, the time series is decomposed into one comprising low frequencies and
its trend (Qa) and one comprising the high frequencies and the fast events (Qp1, Qpz... Qon)-
Decomposed streamflow time series were imposed using the previous times (lag) as inputs to
the FFNN and ANFIS models for predicting flow of one day ahead. The sub-time series with
lags are inputs and the original time series at time (t + 1) is output (Figure 5), which can be
represented as:

Q(t)= FFNN/ANFIS [Qa(t-t1), Qp1(t-tz), Qpz(t-t3), ..., Qn(t-tn)] (11.2)
Where, t3, t, t3...t, = the lags of each sub-time series.

In parallel, GA is employed to find the best architecture and the best parameters of the
WANFIS and WFFNN models. As a result of the combinations, four models (FFNN,
WFFNN, ANFIS and WANFIS) have been developed and compared. The methodology for
designing and training wavelet based artificial neural networks models (WFFNN and
WANFIS) adopts a real coded GA strategy and hybrid with a back-propagation (BP)
algorithm, by integrating the global searching advantage of GA and the local searching ability
of BP algorithm.

GA is applied to optimize the initial topology of BP algorithm. Then, it utilizes the BP
algorithm to train the artificial neural networks models more accurately. Using GA, each gene

represents one parameter and a chromosome is constructed from a series of genes.
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Accordingly, all the weights and biases of the WFFNN were codified. GA starts by randomly
generating a set of genes. Using the standard genetic operations, the optimal solution that
corresponds to the optimal structure of the model was obtained. FFNN and ANFIS training
methods provide a non-linear mapping between inputs and outputs and are extremely useful in
recognizing patterns in complex data. The idea is to use a fitness function that tests how well
an architecture learns from the data (Fig.I11.3). As regards to the fitness function, it is based on
the root mean square error (RMSE) over a test dataset, which is represented by the following

expression:

RMSE(G) = [S4(0t ~ 0t/ (n2)

Where, Qt;= the measured flow rate value and Qt;= the flow rate calculated by the model

obtained by testing dataset for jth chromosome C(j).
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Figure. 111.3. The flowchart of the optimization process of GA.

This research was focused on the combination between the methods of holdout cross
validation and early stopping to calibrate the parameters of our models. Early stopping is a
method for avoiding overfitting and requires the cross validation method to assess the
relationship between the generalization accuracy of the learned model and the training
accuracy. Holdout cross validation is one of the methods for estimating the generalization
accuracy of a supervised learning algorithm (Prechelt., 1997; Arlot et al., 2010).

In this study, the calibration data (the 75% of the data) was separated into two sets, called the

training and validation sets. The validation score can be used as a generalized measure. The
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percentage of each set (training and validation) was determined by the GA to find the most
appropriate validation values for generating the training performance of models. Then, the
accuracy of the calibrated models was estimated using the testing (the remaining 25 % of the
data) for the reliable confirmation. This study compares the effects of 20 selected wavelet
functions on the performance of wavelet based artificial neural networks models. Wavelet
functions were determined from the five most frequently used wavelet families. These five
families are called as Haar (Har), Daubechies (Db), Coiflets (Coif), Symlets (Sym) and
Biorthogonal (Bior), respectively. The effects of activation functions on the performance of
FFNN was demonstrated by the following four selected activation functions including Linear
(Purelin), Symmetric saturating linear (Satlins), Log-sigmoid (Logsig), and Hyperbolic
tangent sigmoid (Tansig) transfer functions, respectively. For the membership function type,
five membership functions (MFs) were investigated including IT-shaped (Pimf), Trapezoidal-
shaped (Trapmf), Triangular-shaped (Trimf), Gaussian curve (Gaussmf), and Built-in Gaussian
function (Dsigmf), respectively.

To find the optimal architecture for WFFNN and WANFIS, the standard codification of the
parameters were applied for WFFNN and WANFIS. WFFNN applied the normal feed forward
neural network that has five inputs and 20 neurons (maximum) in hidden layer, and one
neuron in the output layer. A chromosome was constructed from a series of genes (as shown in
Fig.111.4) to find the important parameters including type of mother wavelet, number of inputs
and the lag of each input, dataset into validation, number of neurons, an activation function
type in two layers, learning and momentum factor, the connexion input-output layers, the
biases connexion, and the initial weight coefficients, respectively. In case of WANFIS, the
important parameters can be divided as type of mother wavelet, number of inputs, the lag of

each input, dataset into training and validation, number and type of membership functions,
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learning and momentum factor, firing strength of a rule (min, max, prod, probor), and the

definition of if—then rules (and/or) It can be created under a chromosome by a series of genes

as shown in Fig(111.5).

Genes Descreption Values
gl Mother wavelet type {har, db, sym, coif, bior}
g2 Input 1; Lagt; {0,1}; {1, 2, ...,20}
g3 Input 2 ; Lagt, {0,1}; {1,2, ...,20}
g4 Input 3 ; Lag t3 {0,1}; {1, 2, ...,20}
g5 Input 4 ; Lagty {0,1}; {1,2, ...,20}
g6 Input5; Lagts {0,1}; {1,2, ...,20}
g7 Validation data set [5, 25]%
g8 Number of neurones {2,3,...,20}
g9 Activation functions in hidden layer {satlins, purelin, logsig, tansig, radbas}
gl10 Activation functions in output layer { satlins, purelin, logsig, tansig}
gll Learning factor [01]
gl2 Momentum factor [01]
g13 Connexion input-output layers {0,1}
gl4 Biases connexion in hidden layer {0,1}
g15 Biases connexion in output layer {0,1}
gl6 [01]
gl7 [01]
; Intial weight and biase coefficients )
Gn [01]

Figure 111.4. Chromosome encoding of WFFNN.

The performances of WFFNN and WANFIS for streamflow forecasting were compared those

of FFNN and ANFIS. FFNN and ANFIS used original series as input data of the models

without decomposition by WT. FFNN and ANFIS models were applied to forecast the

streamflow using the previous flows as inputs, which can be represented as:

Q(t)= FENN/ANFIS [Q(t-t1), Q(t-tp), ..., Q(t-tn)]

(111.3)

Where, t1, t, t3...7,= the lag time series of previous flow.
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Genes Descreption Values
gl Mother wavelet type {har, db, sym, coif, bior}
g2 Input 1 ; lag t; {0,1}; {1,2,...,20}
g3 Input 2 ; lag t; {0,1}; {1,2,...,20}
g4 Input 3 ; lag t3 {0,1}; {1,2,...,20}
g5 Input 4 ; Lag t4 {0,1}; {1,2,...,20}
g6 Input 5 ; lag ts {0,1}; {1,2,...,20}
g7 Validation data set [5, 25]%
g8 Number of membership functions {2,3}
g9 Type of membership functions {pimf, trapmf, trimf, gaussmf}
gl0 Learning factor [01]
gll Momentum factor [0 1]
.. {(prod, max); (prod, probor); (min,
gl2 Firing strength of a rule max) - (min, probor)}
g13 Definition of if-then rules type { and, or }

Figure.I11.5. Chromosome encoding of WANFIS.

To assess the performance of the models (WANFIS, WFFNN, ANFIS and FFNN) to forecast

daily streamflow during the testing phase, several measures of accuracy were applied. The

mean absolute relative error (MARE), the root mean square error (RMSE), the NASH

efficiency coefficient (NSE), the correlation between observed and predicted streamflows was

expressed by means of the correlation coefficient (R), and the coefficient of determination (R?)

describe the proportion of the total variance in the observed data that can be explained by the

models.

N

MARE = —

Qt;—Qt;
Qt;

.100

RMSE = \/Zﬁvzl(Qti — Qt)?/N

N —ArN2
NSE = (1_M>_100

N, (Qti—Qt)2

(111.4)
(111.5)
(111.6)
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Where, Qt;= the measured flow rate value, Qt;= the flow rate calculated by the model, Qt =
the average flow measured, Qt= the average flow simulated and N = the number of data
I11.5. Results and application

The best structures and the optimal parameters of the four models were reported in Tables
(1M1.1) and (I11.2), respectively. Table (111.1) can explain that the best structure of FFNN
corresponds to: (i) two input variables (Q (t-1), Q (t-11)) that are the streamflow at one (t-1)
and eleven (t-11) previous day; (ii) seventeen neurons in the unique hidden layer; and (iii)
partitioning the data set into training, validation and test with 55%, 20% and 25% provided the
best results. Furthermore, the best structure of the WFFNN corresponds to: (i) four input
variables (QD; (t-1), QD (t-1), QD4 (t-17), QA (t-1)); (ii)thirteen neurons in the unique hidden
layer; (iii) 'sym3' as a wavelet mother function; and (iv) partitioning the data set into training,

validation and test with 60%, 15% and 25% provided the best results.
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Table. 111.1. Optimal structure of FFNN and WFFNN obtiened by GA.

FFNN WFFNN
QD; (t-1), QD; (t-1),

Input Q (t-1), Q (t-11) | Input QD (t-17), QA (t-1)
Conexion input-output No Conexion input-output | No
Hidden biais Yes Hidden biais No
Output biais No Output biais No
Number of neurons H-L | 17 Number of neurons H-L | 13
Activation function H-L | Tansig Activation function H-L | Radbas
Activation function O-L | Satlins Activation function O-L | Purelin
Learning factor 0,5186 Learning factor 0.1936
Momentum factor 0,8282 Momentum factor 0.1108
Training set 55% Training set 60 %
Validation set 20% Validation set 15%
Testing set 25% Testing set 25%

Wavelet mother 'sym3'’

The best structure of ANFIS and WANFIS were suggested in Table (I11.2). It can conclude
that the best structure of ANFIS corresponds to: (i) two input variables (Q (t-1), Q (t-8)) that
are the streamflow at one (t-1) and eight (t-8) previous day; (ii) three membership functions;
(iii) triangular membership functions; and (iv) partitioning the data set into training, validation
and test with 70%, 5% and 25% provided the best results. Regarding the WANFIS, the best
structure corresponds to: (i) four input variables (QD; (t-4), QD, (t-2), QD3 (t-1), QA (t-1); (ii)
two membership function; (iii) 'sym6' as a wavelet mother function; and (iv) partitioning the

data set into training, validation and test with 70%, 5% and 25% provided the best results.
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Table. 111.2. Optimal structure of ANFIS and WANFIS obtiened by GA.

ANFIS

WANFIS

Input

Q (t-1), Q (t-8).

Input

QD: (t-4), QD2 (t-2),
QD3 (t-1), QA (t-1).

Number of membership

Number of membership

) ) 2
functions 3 functions
Membership functions Trimf Membership functions | Gaussmf
Definition of if-then Definition of if-then

or rules and rules

rules (and/or)

rules (and/or)

Firing strength of a rule

or method = max

Firing strength of a rule

and method = min

Learning factor 0.3878 Learning factor 0.1819
Momentum factor 0.9217 Momentum factor 0.0498
Training set 70% Training set 70%
Validation set 5% Validation set 5%
Testing set 25% Testing set 25%
Wavelet mother 'symé’

Results in testing phase for FFNN, WFFNN, ANFIS and WANFIS models were shown in

Table (111.3). According to Table (I11.3), it is apparent that all the models provide different

accuracies for different input combinations. It is clear from the Table (I11.3) that the best

results are obtained using WANFIS models, with R = 0.934 and NSE = 0.87%; followed by

the WFFNN; the FFNN in the third place and the ANFIS is the worst model. In terms of

RMSE and MARE, the best performances were obtained using WANFIS and WFFNN at the

same time, with RMSE = 12.15 m®/sec and 15.72 m®/sec, respectively. It can be imagined

from results that WANFIS model can be chosen as the best model in this study.
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Table. 111.3. Comparison betwen the performance results obtained by the models:
WANFIS, ANFIS, WFFNN, and FFNN in the testing phase.

227:'5 (')\/QARE R R? NSE
WANFIS ~ 12.1545 106.785 0.934 0.872 0.873
ANFIS 23.1326 324.413 0.748 0.560 0.541
WFFNN 15.7299 209.706 0.888 0.789 0.788
FFNN 22.4265 140.841 0.755 0.570 0.569

Figure (111.6) expresses the hydrography and scatter plot for WANFIS and ANFIS, during the
testing phase. And, figure (111.7) represents the hydrography and scatter plot for WFFNN and
FFNN during the testing phase. It was observed that the flow forecasted by WANFIS model
was close to the 45° line. From this analysis, it was worth to mention that the performance of
WANFIS was much better than other models. The magnitude of systematic over estimation or
under estimation of a model is evaluated using the error and relative error indices.

Figure (111.8) presents the distribution of error and relative error along with the magnitude of
streamflow computed by WANFIS and ANFIS during the testing phase.

Additionally, figure (111.9) shows the distribution of error and relative error along with the
magnitude of streamflow, computed by WFFNN and FFNN during the testing phase. The
figures provided that WANFIS forecasted the streamflow approximate to the general behavior
of observed data. In particular, the peaks of the testing period were satisfactorily estimated by
the WANFIS. The performance of WANFIS in the forecasting of peak flow was superior to
the WFFNN and also to the conventional ANFIS and FFNN. Although WFFNN forecasted the
streamflow close to the general behavior of observed data, peak flow could not be estimated

satisfactorily by the WFFNN.
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Figure. 111.6. Hydrograph and scatter plot in the testing phase (a) WANFIS, (b) ANFIS.
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Figure. 111.7. Hydrograph and scatter plot in the testing phase (a) WFFNN, (b) FFNN.

The reason for the better performance of WFFNN and WANFIS can be expressed that
WFFNN and WANFIS used sub-time series as input data of the models, while FFNN and
ANFIS models used original series as input data of the models without decomposition. Sub-
time series can captures the high variations that existed in the original series, especially help to
understand and capture the seasonality effect which include various information about the

studied phenomenon, also wavelet transformation is reducing the noise in the streamflow time

series causing forecasts to be more reliable and accurate (Tiwari and Chatterjee, 2010).
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II1.6. Conclusion

In this work, wavelet based feed forward neural network (WFFNN) and wavelet based
adaptive neuro-fuzzy inference system (WANFIS) models using genetic algorithm (GA) are
developed and used for forecasting the streamflows using the previous values of time series.
Wavelet transform (WT) decomposes the original series into a sub-time series at different
level. WFFNN and WANFIS models were also compared with the conventional feed forward
neural network (FFNN) and adaptive neuro-fuzzy inference system (ANFIS) models,
respectively. The forecasting accuracy of combination models (i.e. WANFIS and WFFNN)
are significantly superior to the ones obtained by the conventional models (i.e. ANFIS and

FFNN).
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Sub-time series decomposed by WT as input data of the conventional models can improve the
performance of the FFNN and ANFIS.

The accuracy and effectiveness of developed models (i.e. WFFNN, WANFIS, and FFNN,
ANFIS) are evaluated based on four statistical indices, including root mean square error
(RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (R).

WANFIS (RMSE = 1215 m3/s, NSE = 0873, R = .934) and WFFNN
(RMSE = 15.73 m3/s, NSE = 0.788, R = .888) models improved the performances of
ANFIS (RMSE =23.13m3 /s, NSE =0.541, R=.748) and FFNN (RMSE =22.43 m3 /s,
NSE = 0.569, R =.755) during the test period.

WANFIS model presents a good fit to the observed data, especially for the peak values in the
testing period.

This result is quite significant since the conventional models can face the difficulties for
forecasting the daily extreme values of the observed streamflow. The results obtained in this
study expresses the effectiveness of combinations (i.e. wavelet transformation, artificial neural
networks models and genetic algorithm) to forecast the daily streamflow. These encouraging
results open a number of perspectives; it would be interesting to try hybrid models by coupling
wavelet transform with other artificial intelligence models, simultaneously optimizing by
genetic algorithm, and comparing the performance of our models with wavelet-genetic

programming model.
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Chapter. IV

Applied Evolutionary Recurent Neural Networks. A
case study: Chellif and Soummam Watersheds.
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IV.1. Introduction

Streamflow forecasting and modeling procedures are the important and fundamental activity
of hydrological sciences and engineering field, and define a primary non-structural category of
flood prevention or water resource management (Seo et al., 2015a; Zakhrouf et al., 2018;
2020). Several researchers, engineers, professor, and hydrologists are frequent users of
mathematical techniques based on stochastic and statistical processes because of nonlinear
complexities of diverse events including streamflow, rainfall, evaporation, water stage,
groundwater table, and lake inflow etc. (Lawrance and Kottegoda, 1977). In the past decades,
time series analysis has received the considerable interest from many researchers in various
fields including hydrological domain. Time series models are more simple than the complex
mathematical and conceptual models because it does not require the internal relationship of
physical procedures when the modeling frameworks are necessary (Salas, 1993). Streamflow
forecasting, one of the popular time series techniques, has utilized the physical, statistical, and
stochastic methods. Also, the conventional machine learning methods have proved that the
model performance is quickly degraded when the data available include a unexplainable
distortion and ambient noise (Le et al., 2019). Therefore, the significant researches have been
investigated to improve the accuracy of time sereis models. Artificial neural network (ANN)
has received a great deal of popularity under the banner of machine learning. Machine
learning models including feedforward connection (e.g., feedforward neural network (FFNN))
are the most popular architectures. Recently, researches utilizing deep neural network
strategies for time series analysis have suggested and displayed the promising results. In
particular, the Elman recurrent neural network (ERNN), long short-term memory (LSTM),
and gated recurrent unit (GRU) models have succeeded in sloving the complex problems such

as energy demand forecasting (Torres et al., 2018; Gb6kg6z and Filiz, 2018), speech

69



Chapter IV

recognition (Cheng et al., 2019; Shewalkar et al., 2019), financial and stock market forecast
(Sethia and Raut, 2019; Qiu et al., 2020), wind speed forecasting (Khodayar et al., 2017; Chen
et al., 2019). Also, they have been tested successfully for overcoming the potential weakness
of streamflow forecasting (Fu et al., 2020; Kimura et al., 2020; Liu et al., 2020; Zuo et al.,
2020; Zhu et al., 2020). The performance of evolutionary optimization methods (e.g., ant
colony (AC), genetic algorithm (GA), and particle swarm optimization (PSO) etc.) has been
investigated to optimize the parameters and hyperparameters of artificial neural networks
models in various fields (Baldominos et al., 2018; Fielding and Zhang, 2018; Elmasry et al.,
2020; Zakhrouf et al., 2020). Because of simple implementation and higher capacity to find
the global optimization value, the evolutionary optimization methods are recommanded. The
PSO is a computational method that optimizes the solution of addressed problems by using on
a population of candidate particles and pushing these particles around in the search-space for
the location and velocity of best solution. The key contribution of this work is to forecast the
streamflow focused on an approach that combines the PSO to detect the most appropriate
artificial neural networks components and correct input lag-times. In this chapter, four
artificial neural networks (i.e., FFNN, ERNN, LSTM, and GRU) models are applied to
forecast the streamflow with lag-times at Sidi Aich and Ponteba Defluant stations, Algeria. To
obtain the optimal parameters and hyperparameters of applied models, adaptive moment
estimation (ADAM) algorithm, an extension of stochastic gradient descent that has recently
been widely implemented for the artificial neural networks approaches, is utilized to train the
networks. The rest of the chapter is arranged as follows: section Il arrays the materials and
methods. The research area and dataset analysis are shown in the section Ill. The results and

discussion are presented in section IV. Conclusion is followed in the last part of chapter.
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IV. 2. Materials and Methods

In this chapter, four artificial neural networks (i.e. FFNN, ERNN, LSTM, and GRU) models
are used (see chapter | for more detail). Also, the adaptive moment estimation (ADAM)
algorithm is applied for model training and particle swarm optimization (PSO) is utilized for

parameters and hyperparameters selection.

IV.3. Parameters and Hyperparameters Tunning

IV.3.1 Adaptive moment estimation (ADAM) algorithm

Backpropagation (BP) and backpropation through time (BPTT) algorithms are one of the
easiest ways for controlling training procedure in the machine learning. BP allows the users to
calculate an effective error for each hidden layer based on a derivative method. Adaptive
moment estimation (ADAM), a process of optimization to minimize the cost function,
optimization algorithm is one of the most popular gradient descent optimization algorithms
within artificial neural networks category because it produces accurate and fast results
(Kingma and Ba, 2014; Wang et al., 2019). With the ADAM algorithm, an error function
measuring the difference between observed (yk) and expected (dk) outputs can be minimized

as follow:

E(w,x,dy) =3 5(dy = y)? (IV.1)
ADAM algorithm involves two steps: (1) a "forward move" during which network outputs are
estimated from inputs and (2) a "backward move™ during which partial derivatives of a certain

cost function E with respect to parameters are replicated. Finally, the weights are modified

according to the following equations:

Aw;j(n) = —s% (n) + aAw;j(n — 1) (IV.2)
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n_ ., n-1_ V1-B3 m%}'_l
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ij

Where « = the learning rate, w = the weights, 0k and ow; = the partial derivatives of error and

weights for each layer, g and g, = first-order and second-order momentum, and n = the

iterations.

IV.3.2. Particle swarm optimization (PSO) optimization algorithm

Evolutionary optimization algorithm inspired from the observation of natural behavior is one
of popular schemes to determine the optimized hyperparameters and parameters for artificial

neural networks models. It usually provide an efficient solution (Bouktif et al., 2020).

Particle swarm optimization (PSO) optimization algorithm is developed to imitate the social
actions of birds and fish first suggested by Eberhart and Kennedy (1995). Compared with
other metaheuristic and evolutionary optimization algorithm, PSO has two imoprtant
advantages and properties. First, PSO algorithm is easily implemented. Second, it can keep a
memory of good solution until the global solution of problem is found (Seo et al, 2016; Hu et
al., 2019).

The swarm of particls that defined by a sets of vectors of N dimension, can be considered as a
candidate solution of the problem. Every particle in the swarm has three compound vectors. (1)
the position (P) identifies the current position of that particle, (2) the velocity (V) determines

direction ans speed of that particle, and (3) the personal best (Pbest) indicates the best position
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of particle between all swarms. Also, the global best (Gbest), a significant swarm vector,
stores the best location tested over the swarm.

Each particle is evaluated using an iterative method, so the personal best (Pbest) for each
particle and the global best (Gbest) for the swarm are updated at the end of each iteration. For

each iteration, the position (P) and velocity (V) of particle are modified using the following

equations:
Vit =V +rand(0,1). (PP — Pf) + rand(0,1). (Gpese — Pf) (IV.7)
Pit+1 — Pit + Vit+1 (IV8)

where rand(0,1) = the random values uniformly distributed in [0,1].

IV.4. Research area and data analysis

IV.4.1. Soummam and Chellif River Watersheds

The Soummam watershed is located in the northeastern Algeria and bordered by the
Mediterranean Sea (North), Djurdjura (West), coastal massifs of Bejaia (Northwestern), high
plains of Sétifien (East), and Bouira plateau (South), respectively. It is drained by the Bou-
Sellam and the Sahel rivers which form the Soummam River. Also, it extends over an area of
9125 Km?® based on the longitudes (between 3°60' E and 5°57' E) and latitudes (between
35°75' N and 36°77' N). In addition, the perimeter and compactness index are 554 km and
1.62 (Fig. IV.1).

The Cellif River watershed is located in the northwestern Algeria and bounded by the
Mediterranean Sea (North), Oranie-Chott-Chergui region (West), Desert (South), and Algerian
Chott-Hodna region (East). The area of Cellif River watershed is 43700 km? based on the
longitudes (between 0°0' E and 3°5' E) and latitudes (between 33°5' N and 36°5' N). Also,

1383 km of perimeter and its compactness index is equal to 1.85 (Fig. IV.2).
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The climates of two watersheds are under the influence of three climatic regimes including
coastal temperature, Tellian Atlas, and High Plateau climates. The annual rainfall of two

watesheds varies from 300mm (the Setif plateaus) to 1000mm (Coast).
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Figure. IV.1. Soummam watershed (Allili-Ailane et al, 2015).
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Figure. 1V.2. Chellif watershed (Benhattab et al, 2011)

1V.4.2. ACF and PACF analysis

The purpose of this research is to evaluate the perforamce of artificial neural networks models
including the feedforward neural network (FFNN), Elman recurrent neural network (ERNN),
long short-term memory (LSTM), and gated recurrent unit (GRU) for forecasting one-day-
ahead streamflow based on the previous streamflow.

A dataset containing the daily streamflow during six years were collected from Sidi Aich
(Sommam watershed) and Ponteba Defluent (Chellif watershed) stations of the National Water
Agency of Algeria. They were subdivided into training and testing groups, respectively. The
first five year data (83% of the total dataset) was utilized for model training, and the last one
year data (17% of the total dataset) was utilized for model testing. Figures (I1V.3)-( 1V.4) show

the observed streamflow hydrograph for Sidi Aich and Ponteba Defluent stations.
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Figure. 1V.3. Observed streamflow hydrograph (6years) of Ponteba Defluent station.
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Figure. 1V.4. Observed streamflow hydrograph (6years) of Sidi Aich station.

The choice problem of appropriate lag-time is the most important task for the successful
modeling (Seo et al., 2015b; Sudheer et al., 2002). Autocorrelation function (ACF) and partial
autocorrelation function (PACF) are one of conventional techniques that utilized to define the
best lag-time for forecasting model. ACF and PACF for the lag-times correponding to 30 days
and 95% confidence band for the Sidi Aich and Ponteba Defluent stations are provided in Figs

(IV.5. a-h), (IV.6. a-b).
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Figure. 1V.5. a) Autocorrelation and b) partial autocorelation correlograms for Ponteba

Defluent streamflow time series.
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Chapter IV

Figures (IV.5. a-b) and (IV.6. a-b) indicated that the values of ACF rapidly decreased from 1
to 4 lag-times and gradually reduced after 5 lag-time at both stations. Also, the analysis of
PACF values showed that the high values of 1, 3, and 4 lag-times provided a significant
correlations by the dependence of successive variable at Sidi Aich station, whileas the high
values of 1-3 lag-times at Ponteba Defluent station. Using the analysis of ACF and PACF
correlograms, the lag-times were condisered from one-day-ahead to four-day-ahead for

streamflow forecasting at both stations (Table. IV.1).

Table. IV.1. Model based inputs propositions.

Models Inputs propositions

| Qtr1= f(Qr1)

I Qer1 = f(Qr1, Qt2)

1 Q1= f(Qt1, Qe2, Qr3)

\Y; Qt+1= f(Qr1, Qt2, Qt3, Qta)

IV.5. Statistical Indices

In this chapter, three statistical indices (i.e., root mean squart error (RMSE), signal-to-noise
ratio (SNR), and Nash-Sutcliffe efficiency (NSE)) are hired to evaluate the forecasting
accuracy and show the capacity and performance of different models. RMSE indice is
frequently used to evaluate how closely the forecasted values match the observed ones based
on the measure of square root of mean errors between the forecasted and observed values
using equation (1VV.9). SNR indice can be addressed as the ratio of meaning information to the
undesirable one using equation (IV.10). If SNR indice equals to zero, it indicates the perfect
performance between observed and forecasted streamfow. However, the higher value can be

explains the poor performance (Bormann, 2005; Moriasi et al., 2007). NSE (ASCE, 1993;
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Legates and McCabe, 1999) indice a normalized statistic that determines the relative
magnitude of residual variance using equation (IVV.11). NSE values providing close to zero
indicates the unacceptable performance, Whereas NSE values showing near one considered as

good performance.

RMSE = \[ZN M (IV.9)
fZIi\Ll(Qti—@ti)z/V
NSR = : (IV.10)
N _A+)2
NASH = 1 — 2z(@iz0t” (IV.11)

N (Qti—Qt)?

where Qt = the observed streamflow value, Qt;= the forecasted streamflow value, Qt = the

mean observed streamflow, Qt = the mean forecasted streamflow, N = the number of data, y =

the number of degrees of freedom, and ¢ = the standard deviation of observed streamflow.

IV.6. Implementation of developed models

Artificial neural networks models have become exceedingly popular for solving forecasting
problems. Selecting an appropriate architecture can significantly affect model performance.
When designing the artificial neural networks models, choosing the hidden structure (e.g.,
number of hidden layers, hidden nodes, and activation function type etc.) is the important
priority befor model training. Also there are an other kind of hyperparmaters related to the
optimization algorithm that can ameliorate the model performance such as momentum and
learning rate.

In this chapter, PSO optimization algorithm was hired to select the hyperparameters of
artificial neural networks models. Also, ADAM optimization algorithm was utilized to train
the model and determine the parameters such ad weights and biases. The flowchart applying

the models for streamflow forecasting in this work can be found in fig (1V.7).

80



Chapter IV

s |
}

Loading data and normalising
betwen [0, 1]

)

Data segmentation betwen
training and testing sets

l

Model selection using training

set
FFNN-FS0 ELM-PSO LSTM-FSO GRU-PS0O
based ADAM based ATIAN based ADAMN based ADAMN
Best model Best model Best model Best model
FFNN | | ELM . LSTM | GRU
- --_________ """- _____'d I
— O~
Testing set predection
v
Model performance
comparison
—

End |

Figure. 1\V.7. The flow chart on applying the models in forecasting streamflow.

The research steps for this purposes can be described as follows:

[stepl] Encoding: In this step, the hyperparameters need to be optimized are encoded into
fixed-length vectors. For artificial neural networks models, there are eight key parameters
including number of hiden layers (NHL), number of neurons in hidden layers (NNHL),
activation function type in hidden layers (AFHL), activation function type in output layer

(AFOL), larning rate (LR), first-order momentum (FOM), second-order momentum (SOM),
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and the batch size (BS), respectively. The effects of activation functions on models
performance demonstrated utilizing four activation functions including linear transfer function
(Linear), rectified linear unit (ReLU), sigmoid transfer function (Sigmoid), and hyperbolic
tangent sigmoid transfer function (Tansig), respectively. Table (IV.2) shows the defined
variables and domains.

[step 2] Initializing randomly individual position and velocity.

[step 3] Training the artificial neural networks models using the ADAM algorithm for each
particle, and calculate the fitness score of each model. In this chapter, each optimized model
will be chosen based on NSE statistical indice as fitness function of PSO optimization
algorithm.

[step 4] Update personal best (Pbest) for each particle and the global best (Gbest) of swarm.
[step 5] Update position (P) and velocity (V) for each particle utilizing equations (1V.7) and
(1V.8).

[step 6] Stopping criteria; otherwise, go to step 3.
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Table. 1VV.2. Variabls encoded and their default domains.

Hyperparameter Interval values Type
Input model based lags (IM)* Model{l, II...IV} Discret
Number of hiden layer (NHL) {1,2...6} Discret
Number of neurones in hidden layers (NNHL) {2,3,...200} Discret
Activation function type in hidden layer (AFHL) { ReLU, Tansig, Sigmoide} | Discret
Activation function type in output layer (AFOL) | {Linear, Tansig} Discret
Larning rate (Lr) [0.01 0.1] Continue
First-order momentum (FOM) [0.9 1] Continue
Second-order momentum (SOM) [0.9 1] Continue
Batch size (BS) {1,2...200} Discret

*See table (1)

IV.7. Results and Disussion

IV.7. 1. Sidi Aich station

Table (IV.3) presents the optimized structures of ERNN, LSTM, GRU, and FFNN models

based on PSO algorithm for Sidi Aich station. It can be seen from table (IV.3) that the

applying hyperparameters of optimized models were provided for artificial neural networks

models, respectively. GRU model with two-day-lag was selected as an optimal model for

streamflow forecasting, and the hyperparameters can be chosen as follows: number of hidden

layer = 1, number of neurons in hidden layer = 66, transfer function type in hidden layer =

rectified linear unit (ReLU), transfer function type in output layer = linear (Linear), learning

rate = 0.0312, first-order momentum = 0.8486, second-order momentum = 0.8139, and batch

size = 46, respectively.
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Sidi Aich station.

Table. IV.3. The optimal structure for FFNN, ELM, LSTM and GRU models using PSO for

Hyper parameter FFNN ELM LSTM GRU

IM Model | Model IV | Model Il Model Il
NHL 2 1 1 1
NNHL 9 8 61 66
AFHL RelLU ReLU ReLU ReLU
AFOL Linear Linear Linear Linear
Lr 0.0229 0.0116 0.0425 0.0312
FOM 0.9246 0. 8439 0.8881 0.8486
SOM 0.9307 0. 8564 0.8689 0.8139
BS 59 14 194 46

The results of RMSE, SNR, and NSE indices for different artificial neural networks models at
Sidi Aich station are provided in table (IV.5). It can be found that GRU model with two-day-
lag (RMSE = 35.620 m3 /sec, SNR = 0.6493, and NSE = 0.5783 for training phase and
RMSE = 35.241 m3 /sec, SNR = 0.5159, and NSE = 0.7337 for testing phase) was better than
other optimized models (i.e., ERNN model with four-day-lag, LSTM model with two-day-lag,
and FFNN model with one-day-lag) during training and testing phases. On the other hand, the
machine learning model (i.e., FFNN model with one-day-lag) provided the worst results
(RMSE = 36.778 m3 /sec, SNR = 0.6706, and NSE = 0.5502 for training phase and RMSE =
37.440 m3 /sec, SNR = 0.5481, and NSE = 0.6994 for testing phase). Figure (IV.8. a-d) show
the hydrographs and scatter diagrams between observed and forecasted streamflow using the
optimized models at Sidi Aich station. It can be seen from figure (IV.8. a-d) that GRU model
with two-day-lag yielded the best results compared to ERNN model with four-day-lag, LSTM
model with two-day-lag, and FFNN model with one-day-lag, whereas FFNN model with one-

day-lag showed the unexpected visual presentation for forecasting streamflow.
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Table. 1V.5. Comparison betwen the performance results obtained by the: FFNN, ELM,

LSTM and GRU models in the training and testing phases for Sidi Aich and Ponteba Defluent

stations.
Traning phase Testing phase

RMSE SNR NASH RMSE SNR NASH

(m3/s) (m3/s)
FFNN 36.778 0.6706 0.5502 37.440 0.5481 0.6994
g ELM 36.069 0.6573 0.5678 35.558  0.5206 0.7289
= LSTM 36.083 0.6577 0.5673 36.181 0.5297 0.7193
” GRU 35.620 0.6493 0.5783 35.241 0.5159 0.7337
FFNN 8.0989 0.5429 0.7052 11.976  0.3898 0.8480
% § ELM 8.141 0.5457 0.7021 11.964 0.3894 0.8483
5 § LSTM 8171 05477  0.6999 12072 03929  0.8456
GRU 7.796  0.5226  0.7268 11.074  0.3600 0.8703
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Figure. 1V.8. Observed and simulated hydrographs and scater plots during testing phase for
Sidi Aich station : a) FFNN model, b) RELM model, ¢c) ANFIS model, d) GRU model.

IV.7. 2. Ponteba Defluent station

Table (1V.4) shows the optimized structures of FRNN, LSTM, GRU, and FFNN models based

on PSO algorithm for Ponteba Defluent station. It can be found from table (I1V.4) that the

hiring parameters of optimized models were suggested for artificial neural networks models,

respectively. GRU model with two-day-lag was selected as an optimized model, and the
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hyperparameters for GRU model with two-day-lag can be written as follows: number of
hidden layer = 2, number of neurons in hidden layer = 196, transfer function type in hidden
layer = sigmoid (Sigmoid), transfer function type in output layer = linear (Linear), learning
rate = 0.0204, first-order momentum = 0.8269, second-order momentum = 0.8329, and batch
size = 106, respectively. The results of RMSE, SNR, and NSE indices for different artificial

neural networks models at Ponteba Defluent station are suggested in table (IV.5).

Table. 1V.4. The optimal structure for FFNN, ELM, LSTM and GRU models using PSO for
Ponteba Defluent station.

Hyper parameter FFNN ELM LSTM GRU

IM Model | Model | Model | Model Il
NHL 1 1 2 2

NNHL 6 3 174 196
AFHL RelLU RelLU RelLU Sigmoide
AFOL Linear Linear Linear Linear
Lr 0,0186 0,0147 0,0691 0,0204
FOM 0,9220 0,8076 0,9130 0,8269
SOM 0,9033 0,8067 0,8184 0,8329
BS 36 55 194 106

It can be judged that GRU model with two-day-lag (RMSE = 7.796 m3 /sec, SNR = 0.5226,
and NSE = 0.7268 for training phase and RMSE = 11.074 m3 /sec, SNR = 0.3600, and NSE =
0.8703 for testing phase) was better than other optimized models (i.e., ERNN model with one-
day-lag, LSTM model with one-day-lag, and FFNN model with one-day-lag) during training
and testing phases, whereas LSTM model with one-day-lag yielded the worst results (RMSE =
8.171 m3 /sec, SNR = 0.5477, and NSE = 0.6999 for training phase and RMSE = 12.072 m3
/sec, SNR = 0.3929, and NSE = 0.8456 for testing phase). Table 5 expresses that results of

GRU model, were more accurate and efficient than ERNN, LSTM, and FFNN models for lag-
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times streamflow forecasting. Figure (IV.9. a-d) show the hydrographs and scatter diagrams
between observed and forecasted streamflow using the optimized models at Ponteba Defluent
station. It can be found from figure (1V.9. a-d) that GRU model with twoday-lag provided the
best results compared to ERNN model with one-day-lag, LSTM model with one-day-lag, and
FFNN model with one-day-lag. While the forecasted streamflow using FFNN model with one-

day-lag provided the worst accuracy.
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Figure. 1V.9. Observed and simulated hydrographs and scater plots during testing phase for
Ponteba Defluent station : a) FFNN model, b) ELM model, ¢) LSTM model, d) GRU model.

IV.8. Conclusion

This research invetigated the accuracy of artificial neural networks (i.e., FFNN, ERNN,

LSTM, and GRU) models. To accomplish this research, daily streamlow data are collected

from Sidi Aich and Ponteba Defluant stations, Algeria. The training and testing dataset were

83% and 17% of whole data (six years). Also, three statistical indices are utilized to compare

the performance of artificial neural networks models for the different lag-times (i.e., one-,
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two-, three-, and four-day-lag) streamflow forecasting. The model hyperparameters are
optimized using particle swarm optimization (PSO) algorithm. Also, adaptive moment

estimation (ADAM) is applied for model training.

The addressed models were assessed and evaluated by root mean square error (RMSE), signal-
to-noise ratio (SNR), and Nash-Sutcliffe efficiency (NSE) statistical indices. Evaluating all
models explained that the GRU model (RMSE = 35.241 m3 /sec, SNR = 0.5159, and NSE =
0.7337 at Sidi Aich station and RMSE = 11.074 m3 /sec, SNR = 0.3600, and NSE = 0.8703 at
Ponteba Defluant station) was found to produce the accurate results compared to ERNN,

LSTM, and FFNN models during testing phase for forecasting streamflow at both stations.
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Chapter. V

Evolutionary Neuro-Wavelet and Neuro-Fuzzy
systems for multi step ahead forecasting : case study
in the Seybous River.
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V.1. Introduction

Streamflow forecasting based on accurate measurements can be used to design flood
mitigation structures for agricultural and urban basins, and build water allocation systems for
agricultural, industrial, and commercial purposes (RezaieBalf et al., 2019; Samsudin et al.,
2011). The complex and significant variability of streamflow can be explained using spatial
and temporal characteristics. It has guided the evolution and application of different
approaches for estimation, modeling, forecasting, and prediction (Martins et al., 2011).
Forecasting of hydrological time series (e.g., streamflow, water stage, evaporation, and
groundwater stage etc.) is important for understanding the internal relationship of natural
processes (Krishna et al., 2011). Since the complexity of hydrological time series requires
specific tools of nonlinear and non-stationary dynamic systems, the diverse forecasting

methods have been proposed for hydrological forecasting (Sivakumar et al., 2001).

Data-driven approaches, although credible for hydrological forecasting, don’t have the
capability to depict physical processes, because they only consider an adequate selection of
hydrological variables with temporal and input-output modification. Therefore, these
approaches can be categorized as two types (i.e., classicial and computational intelligence
approaches) typically. The classical approaches can be exemplified as linear regression (LR),
auto regressive integrated moving average (ARIMA), and ARIMA with exogenous input
(ARIMAX) etc. The machine learning approaches can be classified as artificial neural
networks (ANN), adaptive neurofuzzy inference systems (ANFIS), genetic programming
(GP), gene expression programming (GEP), model tree (MT), extreme learning machines
(ELM), support vector machines (SVM), and multivariate adaptive regression spline (MARS)
etc. The field of machine learning approaches has undergone innovative changes for novel

techniques of data simulation and processing (Chandwani et al., 2015).
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For three decades, the ANN model based on neuron systems has been used for different types
of hydrological forecasting. Various approaches have been applied to validate the accuracy
and effectiveness of the ANN model for streamflow forecasting (Biswas and Jayawardena,
2014; Badrzadeh et al., 2013; Moradkhani et al., 2004; Cigizoglu, 2003; Abrahart and See,
2000). The ANFIS model (Jang, 1993), which has the merits of the ANN model and the fuzzy
system, has been employed for streamflow forecasting (Talei et al., 2010; Nasr and Bruen,
2008; Keskin et al., 2006; Lohani et al., 2006).

Methodologies combining wavelet and machine learning approaches have been utilized for
streamflow forecasting. Combined approaches have outstripped conventional models (Nourani
et al., 2014). The wavelet-based machine learning approaches, including wavelet-based eed
forward neural networks (WFFNN), wavelet-based support vector regression (WSVR), and
waveletbased adaptive neuro fuzzy inference system (WANFIS), have been effectively
implemented for hydrological forecasting, including streamflow, water stage, runoff, and
groundwater etc. (Seo et al., 2015; Kamruzzaman et al., 2013; Partal, 2009; Partal and Kisi,
2007). Many researchers have attempted to forecast streamflow using wavelet-based machine
learning approaches (Zakhrouf et al., 2016, 2020; Shoaib et al.F, 2014; Badrzadeh et al., 2013;
Nourani et al., 2013; Guo et al., 2011; Tiwari and Chatterjee, 2010).

The optimal structure of wavelet-based machine learning approaches can be constructed as a
search method. A method for designing machine learning approaches using evolutionary
optimization algorithm is proposed to format the best models. Evolutionary machine learning
approaches for modeling hydrologic systems have been suggested by Zakhrouf et al. (2018),
Kalteh (2015), Sahay and Srivastava (2014), Asadi et al. (2013).

K-fold cross validation (CV) method is one of the methods to assess the algorithmic

generalization. The out-of-sample cross validation (OOS-CV) method is a frequently used
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method for hydrological modeling. This paper attempts to develop a new approach combining
wavelet transformation, machine learning approach, evolutionary optimization algorithm, and
k-fold cross validation method for multi-step (days) (i.e., t+1, t+2, and t+3 days) streamflow
forecasting in the Seybous River, North Algeria. The paper is divided into five chapters. The
first part provides a brief introduction. The second part discusses data and application tools,
including FFNN, ANFIS, WFFNN, GA, and k-fold CV, respectively. The third part applies
the methodology, and results and discussion are presented in the fourth part. Conclusions are
stated in the concluding part. This chapter includes partial contributions from the paper

(Zakhrouf et al, 2020).

V.2. Materials and Methods

The aims of this chapter is to forecasting the streamflow of Seybous river flow using :
Feedforward neural networks (FFNN), Adaptive neuro-fuzzy inference system (ANFIS),
Wavelet-based neural networks (WFFNN) (see chapter 1) and Genetic algorithm (GA) (see

chapter 11I).

V.2.1. K-fold cross validation (CV)

The CV is a statistical methodology for comparing and evaluating training algorithms by
separating data into two parts. One is utilized to train a model and the other is utilized to test it
(Stone, 1974). K-fold CV assesses the generalization of algorithms in the evolutionary
machine learning approach. Based on the category of k-fold CV, the data is first separated into
k equally measured parts. Subsequently, k iterations of training and testing phases are
performed such that a different part of the data is held-out for testing phase within each
iteration, while the remaining (k-1) parts are used for training phase (Zhao et al., 2018)

Suppose we have a model with one or more unknown parameters parametersf («), and a data
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set y to which the model can be fitted. The primary method to estimate the tuning parameter
a using k-fold CV divides the data into rougher parts (Fig. V.1). Since the model computes
the mean squared error (MSE) for each i= 1, 2, ..., k, the cross validation error (CVE) can be

calculated as Eq. (V.1).

i=1 | Valid [ Train | Train | Train | Train [ Train [ Train | Train | Train | Train |

i=2 | Train | Valid | Train | Train | Train [ Train [ Train | Train | Train | Train |

i=k | Train | Train | Train | Train | Train | Train | Train | Train | Train | Valid |

Figure. V.1. Representation of k-fold cross validation method

V.3. Study area and data description

The data for training and testing phases of the developed models were obtained from the
Seybous River basin, Algeria. The basin is positioned between 36.0 N and 38.0 N (latitudes),
and between 7.0 E and 8.0 E (longitudes), Algeria, North Africa, and covers a total catchment
area = 6862,39 km? and Perimeter = 509.24 km and had a compactness index = 1,72. Seybous
watershed drained by the Seybous river and which flows into the Mediterranean. The study
area is characterized by a Mediterranean climate with hot and dry summer, and cold and rainy

winter (Fig. V.1).

Daily streamflow data for 14 years (September, 1982 - August, 1996) were obtained from
National Agency of Water Resources of Mirebeck (14 06 01) gauging station and were
utilized for multi-step (days) streamflow forecasting. These selected multi-step (days) can be
adequate, considering the rapid surface streamflow in the Mediterranean basin and the

watershed size. For this purpose, the first ten years (70% of data) were utilized for the training
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phase, and the second four years (30% of data) were utilized for the testing phase as shown in

Fig (V.2).
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Figure. V.2. Observed streamflow hydrograph (14years)

V.4. Methodology

This study focuses on optimizing the structure of three machine learning approaches (i.e.,
FFNN, ANFIS, and WFFNN) using the evolutionary optimization algorithm (i.e., GA). The
first step is to choose the GA chromosome. Each individual in the population represents a
possible configuration for architecture of the machine learning approach. Based on the concept
of evolutionary optimization theory, GA starts with a population of chromosomes, which
evolve towards optimum solutions by GA operators, including selection, crossover, and
mutation. These steps are reiterated from one generation to the next with the aim of arriving at

the general optimal solution (Kim and Kim, 2018).

V.4.1 Models development

The machine learning approaches (i.e., FFNN, ANFIS, and WFFNN) were utilized for multi-
step (days) streamflow forecasting using previous time series values. The training phase of
machine learning approaches provides a non-linear matching between inputs and outputs, and

is useful in identifying patterns utilizing complicated data (Liu and Chung, 2014). Since the
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backpropagation (BP) algorithm cannot be guaranteed to find the minimum error margin, the
convergence cannot occur with fast track. The solution for this problem can be applied with a
fitness function that tests how well an architecture learns from the data. The fitness function

can be expressed as Eq. (V.2).

F = Min[CVE] (V.2)
where CVE is the cross validation error given by the equation (V.1) and F denotes the fitness
function.

In general, GA can significantly reduce the weakness of BP algorithm. The data utilized for
the training phase (the 75% of the data) were sub-divided into 10 subsets (10-fold cross
validation). Real coding was utilized to find the favorable topology for the FFNN, ANFIS, and
WFFNN models. The coding to find the best architecture and parameters of machine learning

approaches (i.e., FFNN, ANFIS, and WFFNN) is described as follows.

V.4.2 Coding for the FFNN, ANFIS, and WFFNN models

Feedforward neural networks (FFNN) models with two hidden layers and one neuron in final
layer were utilized. A chromosome was built from a series of genes (Fig. V.3) to find: the
input delay (D), the number of neuron in the hidden layers (NHL1 and NHL?2), the activation
functions in the hidden and final layers (AFHL1, AFHL2, and AFOL) including linear transfer
function (Purelin), symmetric saturating linear transfer function (Satlins), log-sigmoid transfer
function (Logsig), and hyperbolic tangent sigmoid transfer function (Tansig), respectively, and

the initial connection coefficients of weights and bias (IWB).
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Genes Descreption Values
01 D {1,2, ..., 5}
g2 NHL1 {2,3,..., 10}
g3 NHL2 {2,3,..., 10}
04 AFHL1 {Satlins, Purelin, Logsig, Tansig}
Os AFHL2 {Satlins, Purelin, Logsig, Tansig}
Js AFOL { Satlins, Purelin, Logsig, Tansig}
g7 [-11]
Js [-11]
; IWB :
On ['1 1]

Figure. V.3. Chromosome encoding for FFNNs model

A chromosome of ANFIS model using a series of genes was created to find different
parameters (Fig. V.4): the input delay (D); the number of membership functions (NMF); the
type of membership functions (TMF) including II-shaped (Pimf), Trapezoidal-shaped
(Trapmf), Triangular-shaped (Trimf), Gaussian curve (Gaussmf), and Built-in Gaussian
function (Dsigmf); the definition of if-then (AND operation/OR operation) rules type (DRT);
and the firing strength of a rule (FSR). In this study, two methods were used as firing strength
of AND rule, including Minimum (Min) and Product (Prod). Also, two methods were used as
firing strength OR rule, including Maximum (Max) and the probabilisticOr method (Probor).

For the membership functions type, there are many kinds of membership functions (MFs).
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Genes Descreption Values
01 D {1,2, ..., 5}
g2 NMF {2, 3}
03 TMF {Pimf, Trapmf, Trimf, Gaussmf, Dsigmf}
o FSR {(Prod, Max); (Prod, Probor); (Min, Max); (Min,
Probor)}
Os DRT {And, Or}

Figure.V.4. Chromosome encoding for ANFIS model

A chromosome of different parameters for wavelet-based neural networks (WFFNN) model

was created from a series of genes (Fig. V.5) to find: the input delay (D); the type of mother

wavelet (TMW) based on the five most frequently used wavelet families, including Haar

(Har), Daubechies (Db), Coiflets (Coif), Symlets (Sym), and Biorthogonal (Bior); the number

of neuron in hidden layers (NHL1 and NHL2); the activation functions in hidden and output

layers (AFHL1, AFHL2, and AFOL), including linear transfer function (Purelin), symmetric

saturating linear transfer function (Satlins), logsigmoid transfer function (Logsig) and

hyperbolic tangent sigmoid transfer function (Tansig); and the initial connection weights and

bias coefficients (IWB).
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Genes Descreption Values

01 D {1,2, ..., 5}

o MWT {Har, Db(4...9), Sym(3... 8), Coif(2... 5), Bior(1.3, 1.5,
2.2)}

g3 NHL1 {2,3,..., 10}

04 NHL2 {2,3,..., 10}

Os AFHL1 {Satlins, Purelin, Logsig, Tansig}

Js AFHL2 {Satlins, Purelin, Logsig, Tansig}

g7 AFOL {Satlins, Purelin, Logsig, Tansig}

Js [01]

99 [01]

; IWB :
On [0 1]

Figure. V.5. Chromosome encoding for WFFNNs model

V.5. Measures of accuracy

To assess the performance of three different machine learning approaches (i.e., FFNN,
ANFIS, and WFFNN) to forecast multi-step (days) streamflow during the testing phase, four
statistical indices (measures of accuracy) were applied, including root mean square error
(RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria

(PFC).

RMSE would vary from zero to a large value which presents prefect forecasting by the
difference between observed and forecasted streamflow. NSE is considered for evaluating the
ability of hydrological models (Rezaie-Balf et al., 2019; Nash and Sutcliffe, 1970). R is an
assessment of the precision of hydrologic modeling and is used for comparisons of alternative
models. A perfect matching produces R = 1.0 (Kim and Kim, 2008). These statistical indices
(i.e., RMSE, NSE, and R) may not provide the model performance for extreme streamflow

events (e.g., floods and drought). Therefore, it is fundamental to evaluate the extreme
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distributions using PFC for forecasting extreme events (Rezaie-Balf et al., 2019). PFC plays
an important role in following the extreme events to achieve the efficient model. The RMSE,

NSE, R, and PFC indices can be represented as Egs. (V.3- V.6).

(Qt;—Qt))?
RMSE = 2§V=1# (V.3)
N (Qt-—@t-)2>
NSE = (1 — & it V.4
S ( ¥V (0t;-Qt)? (V.4)

N —A ~ '_~
P Z(0t-00(@ti=0) V.5)
JE.(eti-a02 B (061

(1P (Qt—Qt)2.t )
_ O (V.6)
E1P Qe

PFC
where Qt;is the measured flow rate value, Qt;is the flow rate calculated by the model, Qt is
the average flow measured, Qtis the average flow simulated and N is the number of data, and

Tp is the number of peak stream flows greater than one third of the observed mean peak flow.

V.6. Results and Discussion

Table (V.1) presents the optimal structure of FFNN model using GA which can be found from
table (V.1) for (t+1) day forecasting as follows; input delay = 3, number of neurons (1% hidden
layer) = 9, number of neurons (2" hidden layer) = 8, activation function (1* hidden layer) =
log-sigmoid transfer function, activation function (2" hidden layer) = linear transfer function,
and activation function (final layer) = linear transfer function. For (t+2) day forecasting, the
following can be suggested; input delay = 3, number of neurons (1* hidden layer) = 9, number
of neurons (2" hidden layer) = 8, activation function (1* hidden layer) = log-sigmoid transfer

function, activation function (2" hidden layer) = log-sigmoid transfer function, and activation
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function (final layer) = linear transfer function. For (t+3) day forecasting, the following can be
provided; input delay = 5, number of neurons (1% hidden layer) = 5, number of neurons (2™
hidden layer) = 8, activation function (1% hidden layer) = symmetric saturating linear transfer
function, activation function (2" hidden layer) = log-sigmoid transfer function, and activation

function (final layer) = linear transfer function.

Table. V.1. The optimal structure for FFNNs model using GA.

FFNNs parameters t+1 t+2 t+3
D 3 3 5
NHL1 9 9 5
NHL2 8 8 8
AFHL1 Logsig | Logsig | Satlins
AFHL2 Purelin | Logsig | Logsig
AFOL Purelin | Purelin | Purelin

Table (V.2) shows the optimal structure of ANFIS model using GA which can be expressed
from table (V.2) for (t+1) day forecasting as follows; input delay = 1, number of membership
functions = 3, type of membership functions = Gaussian curve, firing strength of a rule =
product, and definition of if-then rules type = and. For (t+2) day forecasting, the following can
be suggested; input delay = 2, number of membership functions = 3, type of membership
functions = trapezoidal-shaped, firing strength of a rule = product, and definition of if-then
rules type = and. For (t+3) day forecasting, the following can be provided; input delay = 2,
number of membership functions = 2, type of membership functions = Gaussian curve, firing

strength of a rule = probabilisticOr, and definition of if-then rules type = or.
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Table. V.2. The optimal structure for ANFIS model using GA

ANFIS parameters t+1 t+2 t+3
D 1 2 2
NMF 3 3 2
TMF Gaussmf | Trapmf | Gaussmf
FSR Prod Prod Probor
DRT And And Or

Table (V.3) proposes the optimal structure of WFFNN model using GA which can be
supposed from table (V.3) for (t+1) day forecasting as follows; input delay = 4, type of mother
wavelet = Symlets 7, number of neurons (1st hidden layer) = 5, number of neurons (2nd
hidden layer) = 10, activation function (1st hidden layer) = log-sigmoid transfer function,
activation function (2nd hidden layer) = log-sigmoid transfer function, and activation function
(final layer) = linear transfer function. For (t+2) day forecasting, the following can be
suggested; input delay = 4, type of mother wavelet = Daubechies 9, number of neurons (1st
hidden layer) = 8, number of neurons (2nd hidden layer) = 10, activation function (1st hidden
layer) = symmetric saturating linear transfer function, activation function (2nd hidden layer) =
log-sigmoid transfer function, and activation function (final layer) = linear transfer function.
For (t+3) day forecasting, the following can be provided; input delay = 5, type of mother
wavelet = Symlets 6, number of neurons (1st hidden layer) = 8, number of neurons (2nd
hidden layer) = 7, activation function (1st hidden layer) =linear transfer function, activation
function (2nd hidden layer) = symmetric saturating linear transfer function, and activation

function (final layer) = linear transfer function.
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Table.V.3. The optimal structure forWWNNsmodel using GA

WNNSs parameters t+1 t+2 t+3
D 4 4 5
MWT sym7 db9 Sym6
NHL1 5 8 8
NHL2 10 10 7
AFHL1 Logsig | Satlins | purelin
AFHL2 Logsig | Logsig | Satlins
AFOL Purelin | Purelin | pyrelin

Table (V.4) suggests the performances of FFNN, ANFIS, and WFFNN models for different
multi-step (days) (i.e., t+1, t+2, and t+3 days) forecasting. The statistical results of standalone
(i.e., FFNN and ANFIS) models yielded similar performances based on RMSE, NSE, R, and
PFC indices for training and testing phases. The performances of standalone models were not
better than those of hybrid model (i.e., WFFNN). For example, the values of RMSE and PFC
for the WFFNN model (RMSE = 8.590 m3 /sec and PFC = 0.252, (t+1) day forecasting) were
lower than those of FFNN (RMSE = 19.120 m3 /sec and PFC = 0.446, (t+1) day forecasting)
and ANFIS (RMSE = 18.520 m3 /sec and PFC = 0.444, (t+1) day forecasting) models in the
testing phase. In addition, the values of NSE and R for the WFFNN model (NSE = 92.000%
and R = 0.969, (t+1) day forecasting) were higher than those of FFNN (NSE = 60.400% and R
= 0.783, (t+1) day forecasting) and ANFIS (NSE = 62.860% and R = 0.793, (t+1) day
forecasting) models in the testing phase. The performances of hybrid model were superior to
those of standalone models. As the multi-step (days) for the three models increased from (t+1)
to (t+3) days, the model accuracy decreased. The hybrid model applied sub-time series by
using WT as model input, while the standalone models utilized the original time series as

model input without WT. It can be suggested from table (V.4) that the hybrid model using
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sub-time series as input data of the standalone models can improve the performance of

conventional standalone models.

Table. V4. Comparison betwen the performance results obtained by the models:
FFNNs, ANFIS and WFFNNSs in the training and testing phases.

Training Testing

RMSE NSE R PFC RMSE NSE R PFC

(m3/s) (m3/s)
t+1 23,85 0,701 0,837 0,463 19,12 0,604 0,783 0,446
ANN  t+2 30,99 0,495 0,704 0,513 2539 0,302 0,560 0,501
t+3 37,27 0,270 0,520 0,645 30,80 -2,71 0,352 0,552
t+1 25,61 0,655 0,810 0,479 18,52 0,628 0,793 0,444
ANFIS t+2 3591 0,322 0,568 0,626 26,09 0,263 0,535 0,510
t+3 38,47 0,222 0,472 0,653 27,14 0,202 0,457 0,546
t+1 353 0,993 0,997 0,103 859 0,9200 0,969 0,252
WNN  t+2 523 0,985 0,993 0,128 13,36 0,807 0,917 0,318
t+3 795 0,966 0,983 0,103 12,95 0,818 0,907 0,391

Fig (V.6) shows the scatter diagrams for the FFNN, ANFIS, and WFFNN models in the
testing phase. Fig (V.7) presents the relative errors of peak flow for the FFNN, ANFIS, and
WFFNN models in the testing phase. Figs (V.6) and (V.7) show that the performance of

hybrid model was superior to that of standalone models.
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Figure. V.6. Scatter diagram for FFNNs, ANFIS and WFFNNs models (testing phase)
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Figure. V.7. Relative errors of the peak flows for FFNNs, ANFIS and WFFNNs models

V.7. Conclusion

(testing phase)

This study suggests three artificial neural networks approaches, including feed forward neural

networks (FFNN), adaptive neurofuzzy inference system (ANFIS), and wavelet-based neural
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networks (WFFNN) models for multi-step (days) streamflow forecasting in Seybous River
basin, Algeria. The accuracy and effectiveness of developed models (i.e., FFNN, ANFIS, and
WFFNN) are evaluated based on four statistical indices, including root mean square error
(RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria
(PFC).

Based on the combination of evolutionary optimization algorithm and k-fold cross validation,
the statistical results of hybrid (i.e., WFFNN) model are superior to those of standalone (i.e.,
FFNN and ANFIS) models for different multi-step (days).

The values of RMSE and PFC for the WFFNN model (e.g., RMSE = 8.590 m3 /sec, PFC =
0.252 for (t+1) day, testing phase) were lower than those of FFNN (e.g., RMSE = 19.120 m3
/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 m3 /sec,
PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WFFNN
model were higher than those of FFNNs and ANFIS models.

Also, the results of (t+1) day streamflow forecasting are superior to those of (t+2) and (t+3)
days, based on statistical indices and scatter diagrams. The combination of machine learning
approach and data pre-processing technique based on the evolutionary optimization algorithm
and k-fold cross validation can be a potential implement for accurate multistep (days)
streamflow forecasting. Hybrid methodologies combining diverse machine learning
approaches and data preprocessing technique based on other evolutionary optimization

algorithms and cross validations can be recommended for further studies.
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Chapter. VI

Applied Evolutionary Neuro-Wavelet by three
diffrents strategies for multi step ahead forecasting.
Case study : Chellif River.
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V.1. Introduction

Accurate estimates of streamfow can be utilized in several water engineering problems such as
designing food protection works for urban areas and agricultural land, and optimizing the
water allocation for diferent purposes including agriculture, municipalities, and hydropower
generation (Rezaie-Balf et al. 2019; Seo et al. 2018; Samsudin et al. 2011). The complexity of
natural processes and the lack of data available for modeling streamfow require the utilization
of specifc implements for nonlinear and non-stationary natural phenomenon (Chu et al. 2016;
Shoaib et al. 2015). Time series forecasting is one of the most and important methodologies
utilized in streamfow modeling (Rezaie-Balf and Kisi 2017a; Seo et al. 2015; Krishna et al.
2011). The problem complexity rises when the models are applied for days/months forecasting
in advance. Streamfow forecasting utilizing available multi-time-ahead series is a common

task (Ghorbani et al. 2018; Karimi et al. 2018; Wang et al. 2009).

In recent years, the feld of computational intelligence has promoted revolutionary changes to
forecast the streamfow of complex and non-stationary time series in the development of non-
conventional techniques (Delafrouz et al. 2018; Yu et al. 2018; Shafaei and Kisi 2016). In
addition, various data pre-processing techniques have been utilized to enhance the accuracy of
streamfow forecasting. The underlying techniques include principal component analysis
(PCA) (Ravikumar and Somashekar 2017; Hu et al. 2007), continuous wavelet transform
(CWT) (Deo et al. 2017; Rezaie-Balf et al. 2017; Sang et al. 2013), moving average (MA)
(Yuan etal. 2017), wavelet multi-resolution analysis (WMRA) (Zakhrouf et al. 2018),
maximum entropy spectral analysis (MESA) (Benedetto et al. 2015) and singular spectrum
analysis (SSA) (Wu and Huang 2009; Baydaroglu et al. 2018). Recently, the combination of

discrete wavelet transform (DWT) and artifcial neural networks (ANNS) approaches has been
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accomplished as the successful alternative for hydrological modeling and forecasting from the

previous literatures (Abdollahi et al. 2017; Ravansalar et al. 2016, 2017; Zakhrouf et al. 2016).

In many engineering problems, since streamfow forecasting utilizing simple time series (e.g.,
one-day-ahead) may not provide enough information, the multi-day-ahead (e.g., 2, 3, and 4-
day-ahead etc.) forecasting is required to understand the physical processes of streamfow time
series clearly (Chang et al. 2007). For this purpose, this research is designed to investigate the
efciency and capability of the hybrid model to forecast the multi-day-ahead streamfow. The
wavelet-based feedforward neural networks (WFFNNs) model optimized by genetic algorithm
(GA) is developed to forecast the multi-day-ahead streamfow in the Chellif River, Algeria.
Also, this study applies the reconstruction of three evolutionary strategies [i.e., multi-input
multi-output (MIMO), multi-input single-output (MISO), and multi-input several multi-output
(MISMO)] utilizing the WFFNNs-GA model. The contributions of this research can be
classifed as two parts. First, the combinational approaches (i.e., DWT, FFNNs, and GA) based
on three evolutionary strategies (i.e., MIMO, MISO, and MISMO) are proposed, respectively.
Second, the authors present the hybrid model for forecasting the multi-day-ahead streamfow
of the Chellif River, Algeria. The performance of developed models is evaluated utilizing fve
statistical indices and diagnostic plots. Finally, the conclusion and future research are given.

This chapter includes partial contributions from the paper (Zakhrouf, et al 2020 b).

VI.2. Materials and Methods

In this chapter we proposed to forecast the streamflow of Ponteba Defluent gauging station the
folowing models and methods : The Feedforward neural networks (FFNNs), the wavelet
Feedforward neural networks (WFFNNs) models (see chapter 1), the genetic algorithm (see

chapter I11) and the k-fold cross validation (see chapter V).
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VIL.3. Methodology description

For a given time series { Qi, Q2 ..., O: } to perform H step ahead streamfow forecasting,
independent method consists of estimating a set of H forecasting networks, each returning a
direct forecasting of Qi+, with h €{1, ..., H}. Joint approach replaces the H networks of direct
approach with one multi-output networks { Qi1, Qw2 ..., Qwn } MISMO strategy can be
expressed as a combination between two approaches. The independent and joint approach can
be indeed seen as two distinct instances of the same forecasting approach. In the independent
case, the number of forecasting tasks is equal to the size of the horizon H, and the size of the
outputs is 1. In the joint case, the number of forecasting tasks is equal to one, and the size of
the output is H, respectively. Intermediate confgurations can be considered by transforming
the original task into n = H/s forecasting tasks, each with multiple outputs of size s, where s €
{I, ..., H}. MISMO trades of the property of preserving the stochastic dependency between
future values with a greater fexibility of the predictor (Ben Taieb et al. 2010). In this study, for
the multi-day-ahead streamfow forecasting utilizing the FFNNs-GA and WFFNNs-GA
models, three evolutionary strategies, including multi-input multioutput (MIMO), multi-input
single-output (MISO), and multi-input several multi-output (MISMO), were applied. In this
category, the MISO strategy was employed utilizing independent method (Fig. VI.1.a), and the
MIMO and MISMO strategies were suggested utilizing joint method (Fig. VI.1.b) (Kline

2004).
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Figure. VI.1. Conventional FFNNs architecture (a) Independent method, (b) Joint method.

VI1.4. FFNNs-GA and WFFNNs-GA models

Evolutionary algorithms [e.g., genetic algorithm (GA), evolutionary strategy (ES), and
programming (EP)] are a class of stochastic searches and optimization techniques (Ding et al.
2013). This study aims to take advantage of GA properties including selection, crossover, and
mutation to fnd the global minimum errors (Kim and Kim 2008; Jain and Srinivasulu 2004;
Holland 1992; Goldberg and Deb 1991; Goldberg and Holland 1988). Therefore, a method for
designing the FFNNs and WFFNNs models’ structures utilizing GA was proposed to construct
the best models. The GA and BP algorithms were applied to optimize the FFNNs and
WFFNNs model. In addition, the ability of BP algorithm can fnd local minimum errors. For

this purpose, the steps can be described as follows:
Step 1, Encoding
The diferent parameters of WFFNNs model are coded by a chromosome model developed

from a series of genes as shown in Fig(V1.2). Each gene represents the input delay (D), type of
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the mother wavelet (TMW), decomposition levels (L), number of neurons in the hidden layers
(NHL1 and NHLZ2), activation functions in hidden and output layers (AFHL1, AFHL2, and
AFOL), and the initial connection weights and bias coefcients (IWB), respectively. This study
compared the efects of 20 selected wavelet functions from the most frequently utilized mother
wavelets [e.g., Haar (Har), Daubechies (Db), Coifets (Coif), Symmlets (Sym), and
Biorthogonal (Bior)]. For analysis of DWT method, Daubechies, Symmlets, and Coifets
wavelets have been commonly utilized as mother wavelets in waveletbased hydrologic studies
(Seo et al. 2015; Evrendilek 2014; Santos et al. 2014; Adamowski and Sun 2010; Tiwari and
Chatterjee 2010). In addition, the efects of activation functions for the accuracy of WFFNNs-
GA model were demonstrated utilizing the four activation functions, including linear transfer
function (Purelin), symmetric saturating linear transfer function (Satlins), log-sigmoid transfer

function (Logsig), and hyperbolic tangent sigmoid transfer function (Tansig), respectively.

Genes Descreption Values
01 D (1,2,..., 14}
g2 MWT {Har, Db(4...9), Sym(3... 8), Coif(2... 5), Bior(1.3, 1.5, 2.2)}
g3 L {1,2, ..., 6}
04 NHL1 {2,3,...,10}
Os NHL2 {2,3,...,10}
Js AFHL1 {Satlins, Purelin, Logsig, Tansig}
g7 AFHL2 {Satlins, Purelin, Logsig, Tansig}
Os AFOL {Satlins, Purelin, Logsig, Tansig}
J9 [-11]
J10 [-11]
; IWB :
On ['1 1]

Figure. VI1.2. Chromosome encoding for WFFNNs model
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Step 2, Initializing random individual topology (chromosomes).
Step 3, Training each individual by BP algorithms utilizing k-fold cross-validation.

Step 4, Calculating the ftness values With regard to the ftness function, it is based on the mean
squared error (MSE) over a training dataset. With k-fold cross-validation method, datasets are

divided into k parts.

Note that each dataset should be divided into two parts of the calibration and validation
phases. In each run, one fold of dataset is allocated for the validation phase, and k-1 folds are
allocated for calibrating the model. This process is repeated k times. Real error of this model
can be estimated by averaging the error of k runs of the model, which is represented by

Eq. (VI.1)

E ==Y, MSE, (V1.1)
where MSE; is the mean squared error for each i= 1, 2,... k. In the case of our study the
number of folds is equal a 10 folds.

Step 5, Selecting the best individual mechanism.

Step 6, Crossover and mutation operators.

Step 7, Replacing the current population by the newly generated ofsprings.

Step 8, Stopping criteria; otherwise, go to step 3.

VL5. Study area and data

The description of study watershed is showed in the chapter IV.

The datasets (14 years) were collected from Ponteba Defuent station (01 22 03) of the
National Agency of Water Resources. The frst 10-year data (70% of the whole dataset) were

employed for the model calibration, and the remaining 4 years (30% of the whole dataset)

116



Chapter VI

were applied for the model validation in this study (Fig. V1.3). The size and rapid slope of the
Chellif River basin can restrict the ranges of multi-time-ahead streamfow as 1-, 2-, 3-, and 4-
day-ahead forecasting. Also, the authors applied three evolutionary strategies as MISO (four

model), MISMO (two models), and MIMO (one model), respectively.
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|
|
|
|
|
200 | :
|
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Figure. V1.3. Observed streamflow hydrograph (14years)

VI.6. Measures of accuracy

To assess the performance of the stand-alone and hybrid models for streamfow forecasting
based on the diferent strategies during the calibration and validation phases, five statistical
indices are presented in equations (VI.2-V1.6), including root mean squared error (RMSE),
signal-to-noise ratio (SNR), correlation coefficient (R), Nash—Sutcliffe efficiency (NSE), and
peak fow criteria (PFC). In forecasting models, the discrepancy between observed and
forecasted values can be shown utilizing RMSE index. This metric would vary from zero to a
large value which presents prefect forecasting by the diference between observed and
forecasted values. NSE index is taken into account to evaluate the ability of hydrological
models. The higher value of it demonstrates a perfect ft between observed and forecasted

streamfow (Nash and Sutclife 1970).
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SNR index can be defined as the ratio of meaningful information to the unwanted one. It
enables the comparison of modeling uncertainty to the efects of hydrologic scenarios. If SNR
index is equal to zero, it indicates the perfect performance between observed and forecasted
streamfow. However, the higher value of it explains the unacceptable performance (Bormann
2005). R index is a measure of the accuracy of a hydrologic modeling and is utilized for
comparisons of alternative models. A high R value addresses a good model performance, and
vice-versa. A perfect match between the observed and forecasted streamfow yields R=1.0
(Kim and Kim 2008). NSE index can range from negative infnite (—) to 100%. If NSE equal
to 100%, it corresponds to a perfect fts of forecasted streamfow. If NSE index is equal to zero,
it has no more accurate forecasting, and the model performance cannot be acceptable. If NSE
can range from minus 100% to zero, it indicates the unacceptable performance. The addressed
statistical indices (e.g., RMSE, SNR, R, and NSE) may not illustrate the models’ performance
in case of the extreme events (e.g., food and drought) of streamfow. That is, one model may
forecast the mean values of streamfow accurately, but cannot forecast the high and low values
of streamfow. As a result, the statistical indices such as NSE, RMSE, Willmott’s index of
agreement (WI) (Willmott 1984), and Legates—McCabe’s index (LMI) (Legates and McCabe
1999) cannot present an adequate diagram. Therefore, it is essential to assess and monitor the
extreme values utilizing PFC index for forecasting the extreme events. PFC index plays a
signifcant role in monitoring the extreme events including food to achieve the efcient model. It

is noticeable to say that PFC equal to zero represents a perfect ft of model.

RMSE = \/Zévzl(Qti — Qt;)?/N (V1.2)
’Z{-\Ll(Qti—QAti)z/V
NSR = 5 (VI.3)
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N ‘_— ~ ‘_~
R — lel(Qtl_ Qt)(Qtl AQt)~ (V|.4)
[E.(eti-a02 B (0600
N (Qt'—@t-)z)
NSE = (1 —&i=iimer VI,
S ( ¥ (0t;-Q1)? (VL5)

_(EIP(t-Qt)2.ot )

T et)V?

PFC (V1.6)

Where Qt; is the measured flow rate value, Qt; is the flow rate calculated by the model, Qt is
the average flow measured, Qt is the average flow simulated and N is the number of data,y is
the number of degrees of freedom, and § is the standard deviation of the observed flow, Tp is

the number of peak stream flows greater than one third of the observed mean peak flow.

VI.7.Results and discussion

Table (VI.1) presents the optimal structure of WFFNNs-GA model based on the MISO
strategy in this study. It can be found from Table (VI.1) that the variables of WFFNNs-GA
model were demonstrated for the multi-day-ahead (e.g., 1-, 2-, 3-, and 4-day-ahead)
forecasting, respectively. For example, the variables of WFFNNs-GA model with 1-dayahead
streamfow forecasting were determined as follows; input delay=12, the type of mother
wavelet=Db9, decomposition level = 4, number of neuron in the first hidden layer=9, number
of neuron in the second hidden layer=5, activation function in the frst hidden layer=log-
sigmoid transfer function, activation function in the second hidden layer=linear transfer

function, and activation function in output layer = linear transfer function, respectively.
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Table. VI.1. The optimal structure for WFFNNs model based MISO strategy using GA

Parametres | Model (t+1) | Model (t+2) | Model (t+3) | Model (t+4)
D 12 11 12 11
MWT Db9 Coif5 Db6 Db9

L 4 5 4 5
NHL1 9 6 6 10
NHL2 5) 5) 4 8
AFHL1 Logsig Tansig Logsig Tansig
AFHL2 Purelin Logsig Satlins Logsig
AFOL Purelin Purelin Purelin Purelin

Table (VI1.2) proposes the optimal structure of WFFNNs-GA model based on the MISMO

strategy in this study. It can be seen from Table 3 that the variables of WFFNNs-GA model

with 1- and 2-day-ahead streamfow forecasting were provided as follows: input delay=12, the

type of mother wavelet= Db9, decomposition level=5, number of neurons in the frst hidden

layer=9, number of neurons in the second hidden layer=2, activation function in the frst

hidden layer=symmetric saturating linear transfer function, activation function in the second

hidden layer=symmetric saturating linear transfer function, and activation function in output

layer=symmetric saturating linear transfer function, respectively.
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Table. V1.2. The optimal structure for WFFNNs model based MISMO strategy using GA

Parametres Model (t+1, t+2) Model (t+3, t+4)
D 12 11

MWT Db9 Db9

L 5 6

NHL1 9 2

NHL2 2 6
AFHL1 Satlins Logsig
AFHL2 Satlins Satlins
AFOL Satlins Satlins

Table (VI1.3) provides the optimal structure of WFFNNs-GA model based on the MIMO
strategy in this study. It can be judged from Table (V1.3) that the variables of WFFNNs-GA
model with 1, 2, 3, and 4 day-ahead streamfow forecasting were suggested as follows: input
delay=10, the type of mother wavelet=Sym?7, decomposition level=4, number of neuron in frst
hidden layer=4, number of neuron in second hidden layer=6, activation function in the frst
hidden layer = log-sigmoid transfer function, activation function in the second hidden
layer=symmetric saturating linear transfer function, and activation function in output
layer=symmetric saturating linear transfer function, respectively. Tables (VI.1), (VI.2), and
(VL.3) explain that the wavelet transform utilizing Daubechies 9 (Db9) contributed the
selection of optimal model’s structure based on three evolutionary strategies (i.e., MISO,
MIMO, and MISMO) and improved the efciency of the FFNNs model consequently. This
fnding followed the recent literature of Seo et al. (2015) closely. Also, GA determined all of
parameters including wavelet transform that could yield the best performance without the

intervention of human activity.
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Table. V1.3. The optimal structure for WFFNNs model based MIMO strategy using GA

Parametres Model (t+1, t+2, t+3, t+4)
D 10

MWT Sym7

L 4

NHL1 4

NHL2 6

AFHL1 Logsig

AFHL2 Satlins

AFOL Satlins

Table (V1.4) suggests the performance of WFFNNs-GA model based on the three evolutionary
strategies (i.e., MISO, MIMO, and MISMO) for the multi-day-ahead (e.g., 1-, 2-, 3-, and 4-
day-ahead) streamfow forecasting. For the multiday-ahead streamfow forecasting, the
calibration and validation phases of WFFNNs-GA model, the forecasting results of the 1-day-
ahead streamfow yielded the best performance based on RMSE, SNR, CC, NSE, and PFC
indices for three evolutionary strategies (i.e., MISO, MIMO, and MISMO), respectively. As
the multi-time-ahead streamfow forecasting for three evolutionary strategies (i.e., MISO,
MIMO, and MISMO) were varied from 1- to 4-day-ahead one by one, it can be seen that the
model accuracy decreased defnitely. Also, it can be concluded that the 1-day-ahead streamfow
forecasting can produce the least errors than the other multi-day-ahead (e.g., 2-, 3-, and 4-day-
ahead) in this study. Table (V1.4) produces that the values of RMSE (e.g., 1.550, 4.659, 6.414,
and 6.707 m3 /sec) and SNR (e.g., 0.066, 0.198, 0.273, and 0.285) indices for the WFFNNs-
GA model based on the MISMO evolutionary strategy were lower than those of the WFFNNs-
GA model based on the MISO and MIMO evolutionary strategies for the validation phase. In

addition, the values of NSE and CC indices for the WFFNNs-GA model based on the MISMO
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evolutionary strategy were higher than those of the WFFNNs-GA model based on the MISO
and MIMO evolutionary strategies. It can be judged that the results of the WFFNNs-GA
model based on the MISMO evolutionary strategy were superior to those of the WFFNNs-GA
model based on the MISO and MIMO evolutionary strategies defnitely. Since the structure of
MISMO evolutionary strategy is more complex and complicated than that of MISO and
MIMO evolutionary strategies, it is diffcult to converge the global minimum errors utilizing
few iterations numbers of MISMO evolutionary strategy for the calibration phase. However,
the calibration phase utilizing the sufcient iterations number can improve the accuracy of

WFFNNs-GA model utilizing MISMO strategy in this study.

123



Chapter VI

Table. V1.4. Comparison betwen the performance results obtained by the MISO, MIMO, and
MISMO strategies in the training and testing phases for WFFNNs models.

Training phase Testing phase

RMSE NSR NSE R PFC RMSE NSR NSE R PFC

(m®/s) (%) (m*/s) (%) (m*/s)

t+1 1.491 0.047 99.783 0.999 0.053 1576 0.067 99.550 0.998 0.072

o t+2 3687 0.115 98.672 0.994 0.186 6.820 0.290 91.579 0.959 0.199
(é) t+3 6.584 0.206 95.766 0.979 0.201 7553 0.321 89.670 0.947 0.190
t+4 5222 0.163 97.337 0.987 0.052 24355 1.036 -7.398 0.714 0.315
t+1 3389 0.106 98.878 0.995 0,206 3.448 0.147 97.848 0.989 0.121

O t+2 6.232 0.195 96.206 0.981  0.229 6.236 0.265 92.958 0.966 0.179
% t+3 7.441 0.233 94592 00973 0.245 7.660 0.326 89.376 0.953 0.198
t+4 6520 0.204 95.847 0.979 0.169 11.017 0.469 78.023 0.883 0.250
t+1 2.047 0.064 99.591 0.998 0.131 1550 0.066 99.565 0.998 0.081

Q t+2 6805 0.213 95477 0978 0.179 4659 0.198 96.070 0.981 0.135
‘é’ t+3 5573 0.174 96.967 0.985 0.199 6.414 0273 92552 0.962 0.172
t+4 5913 0.185 96.585 0.983 0.136 6.707 0.285 91.856 0.958 0.164

Table (VI1.5) shows the performance of FFNNs-GA models based on the three evolutionary
strategies (i.e., MISO, MIMO, and MISMO) for the multi-day-ahead (e.g., 1-, 2-, 3-, and 4-
day-ahead) streamfow forecasting. For the calibration and validation phases of FFNNs-GA
model based on the multi-day-ahead forecasting, the results of FFNNsSGA model based on the
MISO evolutionary strategy were superior to those of FFNNs-GA model based on the MIMO
and MISMO evolutionary strategies for 1- and 2-day-ahead forecasting. However, the results
of FFNNs-GA model based on the MISMO evolutionary strategy were superior to those of

FFNNs-GA model based on the MISO and MIMO evolutionary strategies for 3 and 4 day
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ahead forecasting. In addition, since the values of NSE index in the FFNNs-GA model based
on the MIMO evolutionary strategy produced the negative values, they presented the

unacceptable performance in the validation phase.

Table. VI.5. Comparison betwen the performance results obtained by the MISO, MIMO and
MISMO strategies in the training and testing phases for FFNNs models.

Training phase Testing phase
RMSE NSR NSE R PFC RMSE NSR NSE R PFC
(m®/s) (%) (m*/s) (%) (m*/s)
t+1 17.113 0535 71.395 0.846 0.446 11.486 0489 76.113 0.879 0.243
o t+2 21.302 0.666 55.676 0.747 0.506 15301 0.651 57.610 0.760 0.290
(é) t+3 27.481 0.859 26.235 0.513 0.657 17.727 0.754 43.100 0.685 0.298
t+4 22.592 0.706 50.149 0.715 0.451 39.643 1686 -184.5 0.322 0.314
1 17819 0557 68986 0834 0404 59780 2543 -547.0 0593 0.540
O t+2 19.279 0.602 63.695 0.800  0.348 68.370 2.908 -746.3 0.458 0.525
§ t+3 24518 0.766 41.284 0.647 0.555 37.009 1574 -147.9 0.4838 0.377
t+4 25.872 0.808 34.623 0.596  0.505 45122 1919 -268.6 0.435 0.389
t+1 17.389 0543 70.463 0.841 0.395 22.847 0972 5485 0.814 0.350
Q t+2 24370 0762 41990 0648 0.582 20.763 0.883 21.941 0.717 0.311
‘é’ t+3 27.508 0.860 26.090 0511  0.651 17.106 0.728 47.018 0.693 0.300

t+4 27.809 0.869 24.465 0.496 0.642 17.736 0.754 43.043 0.657 0.305

Comparison between Tables (V1.4) and (V1.5) revealed that the results of WFFNNs-GA
model were superior to those of FFNNs-GA for corresponding evolutionary strategy,
respectively. In addition, because sub-time series captured the high variation that existed into

the original series of inputs data, it can be seen that utilizing sub-time series decomposed by
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DWT method as input data of WFFNNs-GA model can improve the performance of FFNNs-

GA model clearly.

Figure (V1.4) presents the scatter diagrams for the WFFNNsSGA model based on the
evolutionary MISO, MIMO, and MISMO strategies, respectively. The straight line in
Fig(V1.4) represents best-ft line equation. It was clearly seen from the best-ft line and R2
values that the WFFNNs-GA model with 1-day-ahead based on the three evolutionary
strategies (i.e., MISO, MIMO, and MISMO) could forecast the daily streamfow better than
other multi-step-ahead (e.g., 2, 3, and 4 day ahead) forecasting clearly. It can be also judged
that the WFFNNs-GA model based on the MISMO evolutionary strategy can forecast the
daily streamfow better than the corresponding WFFNNs-GA model based on the MISO and

MIMO evolutionary strategies from the viewpoint of the best-ft line and R? values.
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Figure. V1.4. Scatter diagram for WFFNNs models using MISO, MIMO, and

MISMOstrategies (Testing phase)
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Figure (VI.5) produces the scatter diagrams for the FFNNsGA model based on the
evolutionary MISO, MIMO, and MISMO strategies, respectively. It can be seen from the
bestft line and R? values that the FFNNs-GA model with 1 and 2 day ahead based on the
MISO evolutionary strategy can forecast the daily streamfow better than the corresponding
FFNNs models based on the MIMO and MISMO evolutionary strategies. It can be also
derived, however, that FFNNs-GA model with 3 and 4 day-ahead utilizing the MISMO
evolutionary strategy can forecast the daily streamfow better than the corresponding FFNNs-
GA models based on the MISO and MIMO evolutionary strategies from the viewpoint of the
best-ft line and R® values, respectively. In the current research, the authors developed a
heuristic model combined a data pre-processing technique and an optimization algorithm

based on three evolutionary strategies (i.e., MISO, MIMO, and MISMO).
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It can be found that this combination can be applied the complex and non-stationary natural
phenomenon including the nonlinear hydrologic time series (e.g., rainfall, groundwater,
evaporation, and water stage etc.). In addition, an addressed attempt to forecast the daily
streamfow based on three evolutionary strategies (i.e., MIMO, MISO, and MISMO) is unique
process compared to the previous researches following the category of multi-day-ahead
streamfow forecasting (Seo etal. 2018; Zakhrouf etal. 2018; Abdollahi etal. 2017;
Ravansalar et al. 2016, 2017; Zakhrouf et al.2016; Kalteh 2015; Seo et al. 2015; Nourani et al.
2014; Sahay and Srivastava 2014). The forecasted results can be accepted based on the diverse
statistical indices and scatter diagrams. In addition, the various heuristic models (e.g.,
multilayer perceptron (MLP), generalized regression neural networks (GRNNS), support
vector machines (SVMs), extreme learning machines (ELMs), multivariate adaptive
regression spline (MARS), and genetic programming (GP) etc.) combined data pre-processing
techniques and optimization algorithms based on evolutionary strategies can be proposed to
confrm the accuracy and efciency of multistep-ahead streamfow forecasting for the further

researches.

VL.8. Conclusion

This study suggests the wavelet-based feed forward neural networks (WFFNNs) model
optimized utilizing genetic algorithm (GA) based on the three evolutionary strategies [i.e.,
multi-input multi-output (MIMO), multi-input single-output (MISO), and multi-input several
multi-output (MISMO)], for streamfow forecasting in the Chellif River basin, Algeria. The
WFFNNs-GA model based on the three evolutionary strategies evaluates the forecasting
accuracy for multi-step-ahead (e.g., one, two, three, and four step ahead) streamfow utilizing
fve statistical indices including root mean squared error (RMSE), signal-to-noise ratio (SNR),

correlation coefcient (R), coefcient of efciency (NSE), and peak fow criteria (PFC). The
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optimal structure of WFFNNs-GA model is categorized utilizing the input delay, the type of
mother wavelet, decomposition level, number of neuron in hidden layers, and activation
functions in the hidden, and output layers, respectively. Also, the optimal values of each

variable are determined utilizing the calibration dataset.

It can be concluded that the WFFNNs-GA model based on the three evolutionary strategies
produces the best results with 1 day ahead streamfow forecasting. Within the category of 1-
day-ahead streamfow forecasting, the WFFNNsGA model based on the MISO evolutionary
strategy provides the values of RMSE=1.576 (m3 /sec), SNR=0.067, R=0.998, NSE=99.550
(%), and PFC=0.072 for the validation phase. In the MIMO evolutionary strategy, it gives the
values of RMSE=3.443 (m3 /sec), SNR=0.146, R=0.990, NSE=97.853 (%), and PFC=0.119
for the validation phase. In addition, it also yields the values of RMSE=1.550 (m3 / sec), SNR
= 0.066, R = 0.998, NSE = 99.565 (%), and PFC=0.081 within the MISMO evolutionary
strategy for the validation phase. It can be suggested from the WFFNNsGA model that the
results of MISMO evolutionary strategy are superior to those of MISO and MIMO
evolutionary strategies based on the statistical indices and scatter diagrams. The WFFNNs-GA
model based on the MISMO evolutionary strategy can forecast the accurate and efcient
streamfow compared with the other WFFNNs-GA models based on the MISO and MIMO
evolutionary strategies in this study. Results also indicate that the application of sub-time
series decomposed by DWT as the input data of WFFNNSGA model can improve the
performance of FFNNs-GA models, and forecast the accurate streamfow in Chellif River

basin, Algeria.
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General conclusion

Within this thesis, an effort is made to build highly reliable flow forecasting models using
advanced models of artificial neural networks. Unlike conventional model-based physical
methods, time series models do not require a number of variables to model dynamic

hydrological processes.

Time series models are capable of extracting information from only previous values in order
to achieve accurate future values. The implementation of numerous models of artificial neural
networks, including feed forward neural networks, adaptive neuro-fuzzy inference systems,

hybrid wavelet neural networks and recurrent neural networks models, is investigated.

Five different catchements with different characteristics are selected as case studies; Ain Safra
bassin in south Algeria, Seybouss bassin, Soummam bassin, Sebaou bassin and Chellif bassin

in north of Algeria.

Chapter One of this thesis provides background material and theoretical descriptions of
artificial neural networks. Each of the remaining chapters (2 to 6) of this thesis deals with a

case study of one or more watersheds.

Chapter Two present an application of the wavelet based feed forward neural networks model
(WFFNN), adaptive Neuro-Fuzzy Inference systems (ANFIS) and the simple feed forward
neural network (FFNN) for modeling the streamflow of a catchment located in the south west
of Algeria namly Ain Safra watershed. This catchment is prone to a semi-arid climate and a
strong variability in runoff. The time series of its daily rainfall-runoff are used for our models.

In the first model (WFFNN), the time series of rainfall and streamflow are decomposed into a
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succession of approximation and details using the discrete wavelet transform and used as
inputs for the feed forward neural network. The second model corresponds to Adaptive
Network-based Fuzzy Inference System (ANFIS), which generates an input—output based on
both fuzzy rules and stipulated rainfall-runoff data pairs. The obtained results show that the

performances of (WFFNN) and (ANFIS) models exceed those of (FFNN) model.

In chapter Three, an effort has been made to develop a conjunction model — wavelet
transformation, artificial neural networks models, and genetic algorithm (GA) — for
forecasting the daily streamflow of a river in northern center of Algeria using the time series
of runoff. This catchment represented by the Sebaou watershed. The original time series was
decomposed into multi-frequency time series by wavelet transform algorithm and used as
inputs to feed forward neural network (FFNN) and adaptive neuro-fuzzy inference system
(ANFIS) models. Several factors must be optimized to determine the best model structures.
Wavelet based artificial neural networks models using a (GA) are designed to optimize model
structure. The performances of wavelet-based artificial neural networks models (i.e. WANFIS

and WFFNN) were superior to those of conventional models.

Chapter Four investigated four artificial neural networks models (i.e., EIman recurrent neural
network (ERNN), long shortterm memory (LSTM), and gated recurrent unit (GRU)) models
to forecast streamflow at Sidi Aich and Ponteba Defluant stations, represented by Soummam
and Chellif watercheds respectivly, Algeria. Also, feedforward neural network (FFNN) was
implemented to compare the accuracy of our models. The particle swarm optimization (PSO),
one of popular evolutionary optimization methods, was combined to determine the automated
optimal hyperparameters. The results shows that the (GRU) model with two-day-lag

forecasted the daily streamflow accurately compared to other models at Sidi Aich station.
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Also, (GRU) model with two-day-lag performed the daily streamflow forecasting efficiently at

Ponteba Defluant station.

Chapter Five aims to develop and apply three different artificial neural networks approaches
(i.e., feed forward neural networks (FFNN), adaptive neuro-fuzzy inference systems (ANFIS),
and wavelet-based feed forward neural networks (WFFNN)) combined with an evolutionary
optimization algorithm and the k-fold cross validation for multi-step (days) streamflow
forecasting at the catchment of Seybouss watershed located in north est of Algeria. The results
performance creteria for the WFFNN model were best than those of FFNN and ANFIS

models.

In the last chapter (six), the feed forward neural networks (FFNNSs) were proposed to forecast
the multi-day-ahead streamfow streamfow for the Chellif River, Algeria. The parameters of
FFNNs model were optimized utilizing genetic algorithm (GA). Moreover, discrete wavelet
transform was utilized to enhance the accuracy of FFNNs model’s forecasting. Therefore, the
wavelet-based feedforward neural networks (WFFNNs-GA) model was developed for the
multi-day-ahead streamfow forecasting based on three evolutionary strategies [i.e., multi-input
multi-output (MIMO), multi-input single-output (MISO), and multi-input several multi-output
(MISMO)]. Results provided that the statistical values of WFFNNs-GA model based on
MISMO evolutionary strategy were superior to those of WFFNNs-GA model based on
(MISO) and (MIMO) evolutionary strategies for the multi-day-ahead streamfow forecasting.
Results indicated that the performance of (WFFNNs-GA) model based on (MISMO)
evolutionary strategy provided the best accuracy. Results also explained that the hybrid model

suggested better performance compared with stand-alone model based on the corresponding
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General conclusion

evolutionary strategies. Therefore, the hybrid model can be an efcient and robust implement to

forecast the multi-day-ahead.

Finally we can summarized conclusions of this study as Following;

e In modelling and forecasting of short term (one-step ahead) or long term (multi-step
ahead) streamflow, time series models based artificial neural networks are found to be
very promising alternative.

e The wavelet based artificial neural networks hybrid models are often outperformed
then traditional models of artificial neural networks for both short term and long term
forecasting.

e In the case of reccurent neural networks this study prouved that the GRU model gives
the highest accuracy to forecast streamflow time series in Algeria.

e The MISMO strategie was found to outperform to forecast multi step ahead

streamflow.
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