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Abstract

In the recent years Deep Learning has gained increasing attention, hence it’s
application in predictive maintenance. It is an evolving research area with
a potential to influence diverse application domains and hence its use for
system health management applications must put to research. This thesis
presents a systematic review of Artificial Intelligence (AI) based system health
management with emphasis on recent trends of Deep Learning (DL) within
the field : different kinds of Machine Learning (ML) models which can be
used to predict failure of a machine.At first a review of previous publications
is carried out, then different models (LSTM,GRU and SRN) are employed
on the NASA Turbofan data-set so as to determine the best model, CuDNN
(CuDNNLSTM, CuDNNGRU) versions are also applied and time of execution
is compared with the basic ones (LSTM, GRU). The CuDNNGRU is found to
be the best method due to it’s time of execution (30.6s) and it’s competitive
accuracy (0.9827) and precision (0.9452).

Key words : machine learning, artificial intelligence, failure , LSTM, GRU,
SRN, predictive maintenance, deep learning.

Résumé

Ces dernières années, le Deep Learning a attiré une attention croissante,
d’où son application dans la maintenance prédictive. Il s’agit d’un domaine
de recherche en évolution qui a le potentiel d’influencer divers domaines
d’application et, par conséquent, son utilisation pour les applications de
gestion de la santé des systèmes et équipements complexes et couteux doit
être mis à profit. Cette thèse présente une revue systématique de la gestion
de la santé du système basée sur l’intelligence artificielle (IA) en mettant
l’accent sur les tendances récentes de l’apprentissage profond (DL) dans le
domaine: différents types de modèles d’apprentissage automatique (ML) qui



peuvent être utilisés pour prédire la défaillance d’une machine .Au début,
la revue des publications précédentes est effectué, puis différents modèles
(LSTM, GRU et SRN) sont utilisés sur l’ensemble de données NASA Turbofan
afin de déterminer le meilleur modèle, les versions CuDNN (CuDNNLSTM,
CuDNNGRU) sont également appliquées et le temps d’exécution est comparé
aux temps de base (LSTM, GRU). Le CuDNNGRU s’avère être la meilleure
méthode en raison de son temps d’exécution (30,6 s) et de sa exactitude
compétitive (0,9827) et de sa précision (0,9452).

Mot clés : Apprentissage automatique, L’intelligence artificielle, defaillances,
LSTM, GRU, SRN, maintenance prédictive, L’apprentissage en profondeur.
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Chapter 1

Theoretical Framework

Introduction

In this chapter we are going to look at the reasons why machines ought to be

maintained and the types ofmaintenance that can be carried out.We are going

to see how the evolution of modern techniques (e.g., Internet of things,sensing

technology, artificial intelligence, etc.) influenced a transition of maintenance

strategies from Reactive Maintenance (RM) to Corrective Maintenance(CM) to

Predetermined Maintenance to Condition –based maintenance to Preventive

Maintenance (PM) and finally to Predictive Maintenance (PdM). RM is only

executed to restore the operating state of the equipment after failure occurs,

and thus tends to cause serious lag and results in high reactive repair

costs.PM is carried out according to a planned schedule based on time or

process iterations to prevent breakdown, and thus may perform unnecessary

maintenance and result in high prevention costs.In order to achieve the best

trade-off between the two, PdM is performed based on an online estimate

of the “health” and can achieve timely pre-failure interventions.In the same

chapter we are also going to look at machine learning and Deep Learning.

1.1 Maintenance

Maintenance, can be generally defined as the efforts or actions taken either

to maintain or improve the condition and performance of a machine.To fully
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1 Theoretical Framework

understand the different stages of maintenance, we need to define a few

concepts :

• Symptom: it is the abnormal deviation of an observable quantity

• Fault: it is the abnormal deviation of at least one characteristics of a

component or a system.

• Failure: it is when a component or a system stops permanently to

perform its function.Partial failure: deterioration of the ability of a

system to perform the required function.

• Complete failure: cessation of the ability of a system to perform the

required function [12].

The main goal of health management is relevant data collection from sensors,

processing the data which includes key feature extraction, fault diagnosis

and prediction. Based on this analysis, the system will be able to recommend

further actions according to user requirements. Recommended actions will

be issued: fault alarms, the human operator evaluates the risk associated

with the fault detected and will either choose to delay any action – if the failure

can be tolerated until the next scheduled maintenance, or take an immediate

action e.g. in the case of failures that can affect safety.This process has been

illustrated in Fig ??. A challenge often encountered in the implementation of

algorithms is normally as a result of uncertainties in the raw data collected

by the sensors. False alarms are a major annoyance during maintenance

activities [13]. This is when there is a fault calls, when no actual fault exists,

or a call for a maintenance action when none is needed. System models

and related algorithms that are used for health management need to be

updated from time-to-time so as to be able to account for any unanticipated

conditions. Typically, once a system model is developed it would remain

unchanged, therefore it is important to adapt models and algorithms to the

2



1.1 Maintenance

in-service performance, recording and storing acquired on-field knowledge so

it can be used for future application developments and improvements. There

are often problems associated with collection of meaningful information and

analysis of all the acquired knowledge to improve diagnosis and resilience,

these can render acquired data unusable, include: missing attributes, where

several parameters may not have been measured during failure manifestation,

improper data format, corrupt data, bad sensors or even the human operator

errors.

The essential components for the identification of abnormalities and defective

conditions include condition monitoring, detection, diagnosis and progno-

sis. Condition monitoring consists of monitoring the parameters to detect

anomalies, while the detection mechanism would make it possible to detect

these anomalies. The diagnostic process will be performed to determine

where this abnormality is located, so that the necessary action can be taken.

Finally, prognosis is a process of predicting and estimating the RUL of the

system based on its performance. Therefore, it is common practice to define

some minimum specifications for the operating health management system.

This may include details about the operating environment, sensor tolerance,

confidence levels, etc.

1.1.1 Why Should Machines Be maintained?

a. To prevent faults and breakdown

A machine should be regularly serviced, this significantly reduces the effects

of faulty machines as it ensures that parts are still intact and use-able.

Faults are identified and dealt with at defined instances not during produc-

3



1 Theoretical Framework

tion.This then eradicates Unnecessary downtime,expensive part replace-

ments,expensive repair bills and reduced productivity.

b. To keep machine working efficiently

machines have to be kept in good health, that is to say running efficiently

and smoothly, this results in high level of productivity, hence company can

meet its supply and demand, also offers reliability,reliable plant results in

high profit.

c. To prevent injuries

Unmaintained machines can be dangerous to operators, as they are not in

their proper functionality and their behaviour cannot be fully controlled.

1.1.2 The analysis of the different forms of maintenance is based

on 4 concepts:

• The events which are at the origin of the action: reference to a timetable,

relation to a type of event (self diagnosis, information from a sensor,

measurement of wear, etc.), the appearance of a failure.

• The maintenance methods which will be respectively associated with

them: systematic preventive maintenance, conditional preventive main-

tenance, corrective maintenance etc.

• The actual maintenance operations: inspection, control, troubleshoot-

ing, repair, etc.

4



1.2 Types of Maintenance

• Related activities: improvement maintenance, renovation, reconstruc-

tion, modernization, new works, security, etc.

1.2 Types of Maintenance

a. Reactive Maintenance(RM)

Reactive Maintenance (RM) sometimes known as breakdown maintenance is

a run-to-failure maintenance method. Maintenance to repair equipment only

performed when equipment has broken down or been run to the point of

failure. In practical a few plants or companies use a true run-to-failure main-

tenance management philosophy. With RM you get the maximum utilization

and production output of the equipment since it’s used to its limits.When a

company opts for run-to-failure management, it does not spend any money

on maintenance until a machine or system fails to operate. However, the cost

of repairing or replacing a component would potentially be more than the

production value received by running it to failure. Furthermore, as compo-

nents begin to vibrate,overheat and break, additional equipment damage can

occur,potentially resulting in further costly repairs. In addition, a company

should maintain extensive spare inventories for all critical equipment and

components to react to all possible failures. The alternative is to rely on

equipment vendors that can provide immediate delivery of all required spare

equipment and components.

Advantages of RM

• No initial cost: poses no initial cost as machine is only repaired after

its run to failure.

5



1 Theoretical Framework

• No planning involved: Technicians repair equipment when it fails. Since

fails are unpredictable, no time is spent planning the repairs

Disadvantages of RM

• More expensive: unexpected failure may prove to be costly as a result of

late orders for replacing parts, hence damaged reputations and impacted

revenue. The unpredictable nature of RM means that labour and spare

parts may not be readily available so organizations can end up paying

a premium for emergency parts shipping, travel time, and after-hours

support.

• Safety issues: Machines that are left to run to failure may pose as a

risk to operators as their behaviour cannot be determined.

• Inefficient use of time: normally reactive maintenance catches the

owners of the machine unaware and may be time consuming, as they

gather information needed for reparation which may include searching

for personnel with the necessary expertise and also ordering of parts

which need to be replaced.

• Bad for back-log: Once things to be maintain are left to pile up this

may result in maintenance backlog which ends up being hard to solve.

• Higher energy costs: Failure to maintain machinery normal results in

more use of energy as most of the energy is lost due to overheating,

abrasive filing of parts etc, this can be avoided by doing simple acts

such as greasing machinery parts.

b. Corrective Maintenance(CM)

Corrective maintenance operations take place once the failure is identified.

It is basically a troubleshooting since corrective maintenance is performed

6



1.2 Types of Maintenance

after detection of a failure and intended to return an item to a state in which

it can perform a required function.The stages of corrective maintenance are

after failure, we do diagnosis, eliminate the part causing the failure then

order the replacement of the part, replace the part then conduct a test of

function and finally the continuation of use of the machine. The Flowchart

for Corrective Maintenance is shown in figure 1.1.

Corrective maintenance is employed after an additional problem is discov-

ered during a separate work order. For example, during one of the routine

inspections, a technician realizes that there is an issue that needs corrected

before other problems arise.

We have realized that corrective maintenance is performed “just in time,”hence

giving a machine benefit of reduced emergency maintenance orders thereby

increases employee safety, helps maintenance teams resolve problems before

delays in production or service interruptions occur.

Corrective maintenance helps an organization to extend the lifespan of its

equipment, reduce employee injury, and also optimize resource planning.

When to use Corrective Maintenance

• When asset failure doesn’t affect safety

• When a system has redundancies that allow it to operate properly even

if a part fails

• When non-critical assets can be allowed to run to failure and are inex-

pensive and easy to repair or replace

• When condition-based monitoring finds machine anomalies that signal

potential failure

• When preventive maintenance tasks identify potential faults

Advantages of CM

7
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Figure 1.1: Corrective Maintenance Flowchart [1]

• helps maintenance teams resolve problems before delays in production

or service interruptions occur

• reduced emergency maintenance orders as no piling of faults is done.

• increased employee safety as machines are repaired just in time hence

always in their best performance.

• Corrective maintenance consists of very targeted action on specific

components that are faulty hence requires very limited complex planning

Disadvantages

• Relying on corrective maintenance can be problematic if the equipment

is not monitored after purchase, leading to more failures that are highly

unpredictable and whose cause is unknown.

• Unexpected failures may be slowed down by not being able to access

materials which may lead to increased periods of inactivity.

8



1.2 Types of Maintenance

• It’s a short term solution for fixing assets hence this approach does not

protect or look after the equipment and therefore reduces the lifetime

of the assets.

• it can be an extremely costly for the organisation and slow process to

fix and may result in large periods of inactivity that may have negative

effects on reputation, client satisfaction, safety and as well as on the

ability to run a business efficiently and productively.

c. Predetermined Maintenance

Predetermined maintenance this not a very popular kind of maintenance

which solely relies on the programs that the manufacturers provides with

the machine. This type of maintenance is therefore implemented as per the

information provided by the manufacturers. The maintenance department

has to rely on the manufacturer’s program, this creates a risk of downtime

to occur which can affect productivity.

The programs are made on the basis of the knowledge of failure mechanisms

derived from historical observations of the equipment.

d. Condition –based maintenance

Condition-based maintenance can be considered to be the most complicated

form of maintenance to apply. This involves regular checks and a plan to avoid

failures. It monitors the actual condition of the equipment and determines

the necessary maintenance operations needed based on certain indicators:

performance, future failures, etc. Data is gathered automatically or remotely

9
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using a direct network connected to the equipment, this enables the mainte-

nance team to decide on whether to control constantly or on regular intervals

by comparing with the average values and performance. Maintenance is

initiated when indicators show that the equipment is deteriorating and that

failure probability is increasing. This type of maintenance, in the long run,

helps reduce drastically the costs associated with maintenance, thereby

minimizing the occurrence of serious faults and optimizing the available

economic resources.Condition based maintenance Flowchart is shown in

figure 1.2 Preventive Maintenance also referred to as planned maintenance,

Figure 1.2: Condition Based Maintenance Flowchart [2]

performed at predetermined intervals or according to prescribed criteria

with the intention to reduce the probability of failure or the deterioration of

the operation of a good or the deterioration of a service rendered [14].The

maintenance is executed even when the machine is still working and under

normal operation so that the unexpected breakdowns with the associated

downtime and costs would be avoided.

10



1.2 Types of Maintenance

PM could reduce the repair costs and unplanned downtime,but might result

in unnecessary repairs or catastrophic failures.Determining when a piece

of equipment will enter the wear out phase is based on the theoretical rate

of failure instead of actual stats on the condition of the specific equipment.

This often results in costly and completely unnecessary maintenance staking

place before there is an actual problem or after the potentially catastrophic

damage has begun.

In a proactive approach, it takes into account several criteria to anticipate

malfunctions of a good or service:regulations affecting certain materials

and certain infrastructures to meet standards (in the pharmaceutical or

aeronautical industry for example), user feedback and machine reports,

manufacturers’ recommendations, to be taken into account in particular in

order to be able to apply the warranty or quality assurance in the event of a

breakdown.

There are two types of preventive maintenance: Systematic preventive main-

tenance

It is established according to a calendar or frequency of use (every month,

every 500 products manufactured, every 10,000 kilometers, etc.)

Conditional preventive maintenance

It is based on the condition, therefore the actual condition of the equipment,

via continuous or regular monitoring and direct connection. The deteriora-

tion of the asset is measured by self-diagnosis, the information from a sensor,

the measurement of wear, etc. It is very economical because it does not

require a big management of stocks, purchases and useless interventions.

The preventive maintenance flowchart is shown in figure 1.3

Advantages of PM

• Planning is the biggest advantage of a preventive maintenance program

over less complex strategies as unplanned maintenance have many

11
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Figure 1.3: Preventive Maintenance Flowchart [3]

overhead costs.

• Better margins and profits due to less downtime.

• Increased safety and reduced risk of injury as machines are maintained

at their best condition.

Disadvantages of PM

• Unlike reactive maintenance, preventive maintenance requires main-

tenance planning. This requires an investment in time and resources

that is not required with less complex maintenance strategies.

• Maintenance can be done too soon hence removing a part that could

still have more RUL.

• frequency of preventive maintenance is most likely to be too high

e. Prognostics/Predictive Maintenance

Prognostics is currently at the core of systems health management,the ulti-

mate goal is to catch breakdowns before they happen by monitoring equip-

12



1.2 Types of Maintenance

ment conditions,its major barrier is the time it takes to implement rather

than the cost of the technology [15].In this type of maintenance, the condi-

tion of a system is monitored using sensor devices.IoT sensor devices have

also made it possible to monitor the system remotely. Reliably estimating

remaining useful life (RUL)holds the promise for considerable cost savings (for

example by avoiding unscheduled maintenance and by increasing equipment

usage) and operational safety improvements. RUL estimates enable decision

makers to acquire information that allows them to decide on operational

characteristics (such as load) which in turn may prolong the life of the com-

ponent.

PdM enables organisations to reduce the frequency of unplanned RM and

also helps evict incurring costs associated with PM as parts are removed too

early.This concept has existed for many years, of recent emerging technologies

become both seemingly capable and inexpensive enough to make PdM widely

accessible [16]. PdM typically involves condition monitoring,fault diagnosis,

fault prognosis, and maintenance plans [17].Technological advancements

have the enhanced potential to detect, isolate, and identify faults of equip-

ment and components. The emerging that have revolutionized PdM are the

following:

• IoT : IoT makes it possible to gather huge amount of data from multiple

sensors installed on machines or components [6].

• Big data techniques for data preprocessing: since a huge amount of

data is collected from the machine, there is need for data preprocessing

so as to turn the big machinery data into actionable information, e.g

data cleaning and transforming, feature extraction and fusion, etc.

• Advanced Deep Learning (DL) methods for fault diagnosis and prognosis:

continuous research and publications have resulted in better deep

13



1 Theoretical Framework

learning methods that enable more accuracy of fault diagnosis and

prognosis e.g RUL prediction.

Figure 1.4 outlines all the stages from start to end of a predictive maintenance

workflow.

Figure 1.4: Predictive Maintenance Workflow [4]

Advantages of PdM

• Reduction or near elimination of unscheduled equipment.

• downtime caused by equipment or system failure.

• Increased labor utilization.

• Increased production capacity.

• Reduced maintenance costs.

• Increased equipment lifespan.

Disadvantages of PdM

• Data can be misinterpreted, leading to false maintenance requests,

14



1.2 Types of Maintenance

• It’s costly to establish a complete IoT system with sensors, transmission

costs and analysis,

• Predictive analysis may not take contextual information into account,

such as equipment age or weather,

• Predictive maintenance may discourage proactive physical inspection

and equipment maintenance,

• Preventative maintenance activities may be triggered by timelines rather

than genuine machine condition.
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1.3 Machine Learning

Machine Learning is a sub-domain of artificial intelligence. It is an artificial

intelligence (AI) technology that allows computers to learn without having

been explicitly programmed for it. To learn and develop, however, computers

need data to analyze and train on. In fact, Big Data is the essence of Machine

Learning, and it’s the technology that unlocks the full potential of Big Data.

Machine Learning is very effective in situations where insights need to be

discovered from large, diverse and changing data sets, that is, Big Data.

For the analysis of such data, it proves to be much more efficient than

traditional methods in terms of accuracy and speed. For example, based on

information associated with a transaction such as the amount and location,

and on historical and social data, Machine Learning can detect potential

fraud in a millisecond. This method is therefore significantly more efficient

than traditional methods for analyzing transactional data, data from social

networks or Customer Relationship Management (CRM) platforms.

Machine learning remains limited, however, depending on the amount of

input data that the information has. For example, to analyze a conventional

size image, several thousand pixels will be sent to the machine. It will there-

fore be necessary to create a system for receiving and grouping information

in order to be able to select those that interest the algorithm. And this is

where deep learning comes in.

1.4 Deep Learning

Deep Learning is itself a subcategory of machine learning. The most common

application example is visual recognition, computer vision,automatic speech
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recognition,natural language processing,audio recognition and bioinformat-

ics. For example, an algorithm will be a programmer to detect certain faces

from images coming from a camera. Depending on the database obtained, he

will be able to locate an individual wanted in a crowd, detect the satisfaction

rate at the exit of a store by detecting smiles, etc. A set of algorithms will also

be able to recognize voice, tone, the expression of questioning, an affirmation

and words. To do this, Deep Learning is mainly based on the reproduction

of a neural network inspired by the brain systems present in nature. The

developers decide according to the desired application what type of learning

they will implement. In this context, we speak of supervised learning, un-

supervised learning in which the machine will feed on data not previously

selected, semi-supervised, by reinforcement (linked to an observation), or by

transfer in which the algorithms will apply a solution learned in a situation

never seen before.

On the other hand, this technique needs a lot of data to train and obtain suc-

cess rates sufficient to be used. Deep learning also requires more computing

power to do its job.

Considering its wide application and potential,it is an ideal candidate to be

used for system health monitoring applications. A deep learning architecture

is capable to extract hierarchical representation of the data automatically

and then utilised the rest of the stacked layers to learn complex features from

the simpler ones.In addition,such an approach can be used to achieve an

end-to-end system that can automatically learn features from its raw inputs

and be able to process accordingly. In contrast to conventional machine

learning, deep learning may not require extensive human interaction and

knowledge for feature design. In fact, some architectures can be used to

learn a model of the input distribution from which one can generate samples.

They can also be seen as unsupervised feature learning algorithms and
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hence be used to pre-train features from labelled or unlabelled data. Such

features can then be used as initialisation for supervised networks.
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1.4 Deep Learning

1.4.1 Types of Machine Learning Algorithms

a. Supervised Machine Learning Algorithms

Supervised machine learning algorithms are the most commonly used. With

this model, a data scientist serves as a guide and teaches the algorithm

the conclusions it must draw. Examples of supervised machine learning

include algorithms such as classification , linear and logistic regression, and

machines with support vectors.

In this mode of machine learning, there is no question of relying on pre-

defined elements, and the task is for the machine to proceed by itself to

categorize the data. To do this, the system will cross the information sub-

mitted to it, so as to be able to gather in the same class the elements having

certain similarities. Thus, depending on the goal sought, it will be up to the

operator or the researcher to analyze them in order to deduce the different

hypotheses.

Just as a child learns to identify different types of fruits by memorizing them

from a picture book, in supervised learning, the algorithm learns thanks to

a data set already labeled and whose result is predefined [18].

In figure 1.5 labeled data is fed into a machine learning algorithm producing

a model, with the training data the machine adjusts itself by changing

parameters thereby constructing a logical model.In figure 1.6 this built

model is then fed with a new set of data to predict outcome.

b. Unsupervised Machine Learning Algorithms

Unsupervised machine learning uses a different approach, input is data

without labels or specific defined results, a computer learns to identify on
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Figure 1.5: Supervised Machine Learning Step1

Figure 1.6: Supervised Machine Learning Step2

it’s own complex the similarities and distinctions within these data, and

to group together those which share common characteristics without any

constant and rigorous human guidance. Examples of unsupervised machine

learning are principal component , association rule and cluster analysis.

Unsupervised machine learning can be compared to a child who gets to

learn to identify the type of fruit by observing pattern and color, instead of

memorizing names with the help of one another person. He/She looks for

similarities between the images hence separates them into groups, thereby

assigning each group its own label [18]

.

In figure 1.7 data is fed to the machine learning algorithm which then

predicts the outcome as a class label in which the input belongs,clusters

are formed by finding similarities among the inputs.

c. Reinforcement Machine Learning Algorithms

Reinforcement Machine Learning works using feedback, as shown in fugure

1.8, system learns by trial and error using information from its previous
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Figure 1.7: Unsupervised Machine Learning

actions and experiences. Reinforcement learning is an iterative process. The

accuracy is dependent on the number of feedback.

A good example of reinforcement learning is when a child is playing video

games where the players complete certain levels of a game and earn reward

points. The game provides feedback to this child through bonus moves to

improve his/her performance.Normally used to train self driving cars,robots

etc.

Figure 1.8: Reinforcement Learning, Agent and Environment [5]
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1.4.2 Recurrent Neural Networks(RNN)

The RNN is a framework used to deal with sequential data, hence its capa-

bilities for health management systems due to their time series nature. RNN

overcome limitations of simple neural nets by using information from the past

network results to produce the output as illustrated in 1.9. There exists many

RNN variations; the two more popular ones are networks that incorporate

Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU). These

variations were introduced to address the vanishing or exploding gradient

problem in RNNs. Some authors advocate that these variations are better

than traditional RNNs due to their ability to store long-term dependencies

and non linear dynamics in time series data; making them ideal for time

series sensor, data processing and health monitoring.
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1.4 Deep Learning

Figure 1.9: Sequential structure independence in a simple neural network
[6]

• xi : input state.

• yi : output state.

• hi : hidden state.

• vi and wi : weights of network.

1.4.3 Application of Deep learning

Deep Learning is used in many fields:

• image recognition,

• automatic translation,

• autonomous car,

• medical diagnosis,
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• personalized recommendations,

• automatic moderation of social networks,

• financial prediction and automated trading,

• identification of defective parts,

• detection of malware or fraud,

• chatbots (conversational agents),

• space exploration,

• intelligent robots.

1.5 Previous Papers review

Rui Zhao et Al in 2016 [19] used LR, SVR, MLP, RNN, Basic LSTMs, Deep

LSTMs.A comparison is conducted of LSTMs with several benchmark meth-

ods, MAE and RMSE of all methods are noted. They deduced that among

regression models including LR, SVR and MLP based on expert features, LR

had the worst performance, the reason being the limitation of linear models.

SVR with RBF kernel and MLP models, these models based on expert features

all under-perform compared to LSTMs models. LSTMs models all work on

raw signals instead of expert features. Especially, deep LSTMs achieve a sig-

nificant performance gain compared to these models. Basic LSTMs perform

slightly better than RNN. The reasons may be the fact that gate functions

employed in LSTMs can enable it to capture long-term dependency better

than RNN. Among all these models, deep LSTMs were proved to achieve

the best and robust performance. Compared to basic LSTMs, deep LSTMs

stacked three LSTM layers and is more capable to learn robust and abstract

representations from raw data .
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In 2017 Rui Zhao et Al [20] repeated the same research only that this time,

they proposed CBLSTM model in addition to the models used in 2016. It

is shown that the proposed CBLSTM model achieves the best performance

among all compared methods. Compared to the most competitive model,

deep BLSTMs, CBLSTM adopts convolutional neural network to address the

raw signal and then builds recurrent modules on top of CNN. The CNN is

adopted to extract local features, which can filter the noise in the raw signal

effectively. In addition, CNN can also reduce the length of sequential data

.

Shuai Zheng et Al 2017 [21] proposed a deep learning approach for Remain-

ing Useful Life (RUL) estimation which they showed its benefits by taking

sequence information when estimating RUL. The approach involved sequence

of layers of LSTM followed by feed forward networks. They did experiments on

3 widely used data sets, C-MAPSS Data Set, PHM08 Challenge Data Set and

Milling Data Set. The experiments showed that the LSTM model outperforms

other approaches and gives the best performance in RUL estimation.

Long Wen et Al 2017 [22] used a new CNN based on LeNet-5 for fault diagnosis

using 3 different data-sets the motor bearing data set,self centrifugal pump

data set and the Axial piston hydraulic pump data set,and achieved pre-

diction accuracy of 99.79%, 99.481%, and 100%, respectively.This method

is compared with other deep learning methods : Support Vector Machines

(SVM), multi-objective deep belief networks ensemble (MODBNE), Deep ANN

(DNN), LSTM, Deep CNN (DCNN) , Deep LSTM and Stacking Ensemble. The

results showed that the proposed method showed significant improvement
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Xiang Li et Al 2018 [23]used DCNN method to determine the RUL using the

same Turbofan NASA Data set. The method was then compared with the

following methods for estimation of RUL, basic neural network (NN), deep

neural network (DNN), recurrent neural network (RNN) and long short-term

memory (LSTM).The proposed deep CNN was seen to be more suit for RUL

prediction as it gave better accuracy, with RNN being the second best and

the rest did not give satisfactory results.

Yanting Zhou et Al 2019 [24], this paper studies the influence of temperature

and voltage on the aging trend of supercapacitors combined with the degrada-

tion mechanism model of supercapacitors so as to evaluate the reliability of

supercapacitor system and determine possible failure times in advance.The

methods applied are the LSTM RNN,GRU and the SIM RNN. It’s proved

that LSTM RNN performs high prediction accuracy and good robustness.

Moreover, the proposed method is compared with GRU and SIM RNN for the

prediction of offline data, which verifies the validity and applicability of the

proposed method.

Conclusion

In this subsection, we summarize the types of maintenance strategies in

benefits, challenges, suitable applications. It can be found that RM has the

lowest prevention cost due to using run-to-failure management, PM has the

lowest repair cost due to well scheduled downtime while PdM can achieve the

best trade-off between repair cost and prevention cost. Ideally, PdM allows

the maintenance frequency to be as low as possible to prevent unplanned
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RM, without incurring costs associated with doing too much PM. Note that

prevention cost mainly contains inspection cost, preventive replacement

cost, etc., while the repair cost denotes the corrective replacement cost

after failure occurred. After analysis we realize that predictive maintenance

has more advantages if it is adopted as compared to all other forms of

maintenance. Finally I looked at papers published in the past 5 years, I

took note of the methods used for RUL predictions.From all this we see a

very significant improvement as years go by in the methods used for RUL

estimation propagated by continous scientist research.All the papers reviewed

either use Convolutional Neural Network (CNN), a Deep Belief Network (DBN)

or Long-Short Term Memory (LSTM) in the proposed deep architecture.The

method that gave the best results is the LSTM.
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Chapter 2

Case Study

Introduction

In this chapter we are going to look at our data set, how it was acquired, the

different elements that form our data-set. So we are going to summarize the

different modeling methods used to acquire the data.Furthermore we will

look at the different model architectures applied.

2.1 Software and Hardware Environment

• Experiments done on a personal computerwith Intel core i7-4500U(2.64GHz)

CPU, 16GB RAM, and Windows operating system.

• All codes written on python 3.7 with "tensorflow" library and deep

learning library "Keras"

2.2 Modeling Of Data-set

2.2.1 System Modeling

A simulation of the turbofan engine was done using the C-MAPSS (Commer-

cial Modular Aero Propulsion System Simulation), coding on this software

is coded in the MATLAB, in collaboration with the Simulink library. The

software possesses a number of editable input parameters, which enable
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user to change operational conditions. The engine diagram in figure 2.1

shows the main elements of the engine model and the flow chart in figure 2.2

shows how various subroutines are assembled in the simulation.

Figure 2.1: Simplified diagram of engine simulated in C-MAPSS [7]

Figure 2.2: A layout showing various modules and their connections as
modeled in the simulation [8]

• LPC : Low pressure compressor

• HPT : High pressure turbine

• LPT : Low pressure turbine
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CMAPSS can be operated either in open-loop (without any controller) or in

closed loop (with the engine and its control system) configurations. For this

research a closed loop configuration was used [25].

2.2.2 Damage Propagation Modeling

After getting the system model, we now have to model the propagation of

damage. Common models used across different application domains include

the Arrhenius model, the Coffin-Manson mechanical crack growth model,

and the Eyring model. The details of these models will not be discussed

here.

a. Specifications of Data Set

The data sets consist of several multivariate time series that contain subsets

of the training, test, and ground truth data sets. Each time series comes

from a different engine, that is, the data can be considered as coming from a

fleet of engines of the same type. Each engine starts with different degrees of

initial wear and manufacturing variation unknown to the user. This wear and

variation is considered normal; it is not considered a fault condition. Three

operational parameters have a substantial effect on engine performance.

These parameters are also included in the data. Data is contaminated with

sensor noise.

The engine operates normally at the start of each time series and develops a

fault at some point during the series. In the training set, the fault increases

in magnitude until the system fails. In the test set, the time series ends

some time before the system fails.
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2.2 Modeling Of Data-set

unit-time cycle setting1 setting2 setting3 s1 s2 s3 .... s21

Tableau 2.1: Colonnes of our dataset

The training data consists of several multivariate time series with "cycle"

as the unit of time, as well as 21 sensor readings for each cycle. Each time

series can be assumed to be generated from a different engine of the same

type. Each row is a snapshot of the data taken during a single operational

cycle, each column is a different variable as shown in table 2.1. The test

data has the same data schema as the training data. The only difference is

that the data does not indicate when the failure occurs. Finally, the ground

truth data provides the number of remaining working cycles for the engines

in the test data.

b. Data Preparation

Feature scaling is an important preprocessing step in machine learning.

Many machine learning algorithms use some sort of an optimization algorith-

min order to adjust the feature weights. Such optimization algorithms might

be gradient descent or the Levenberg-Marquardt algorithm [26]. Originally,

the different features in the data-set often range between different values and

have different units. For instance, there could be a data-set with a feature

measuring temperature, typically between -30 to 40 degrees, and then have

another feature measuring pressure within the range of 500 to 2000 Pa. The

difference in the range of values of these features is large, and without any

form of scaling, it might result in certain feature weights updating faster

than others. This will then lead to a lower prediction accuracy [27]. There is

mainly two ways to scale the data:

• Standardization, is when the features are scaled in a way that they
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have the properties of a standard normal distribution with mean value

= 0 and standard deviation = 1. When performing this standardization,

the creator is assuming that the data-set fits the Gaussian distribution

with a well behaved mean and standard deviation. It is possible to

standardize a data-set that doesn’t have this assumption, but the result

might not be reliable.

• Normalization, is when the features are scaled to a fixed range, often

[0,1] or [-1,1].

Due to the heterogeneous data, normalization has been performed on the

data-set, ranging it’s values from 0 to 1. Many machine learning approaches,

and especially neural networks are sensitive to the input data range, making

the scaling step a necessity [28]. In real data applications, enormous raw

sensor data, operating parameters, loads, and failure times will be given.

Due to the fact that the Variables that are measured at different scales do

not contribute equally to the model fitting and model learned function, this

might end up creating a bias, sensor data will need to undergo normaliza-

tion with respect to each sensor before training and testing. The MinMAx

normalization is performed to our data-set. Normalization is used to scale

the data between 0 and 1, meaning that the minimum and maximum value

of a feature/variable is going to be 0 and 1, respectively. In this technique

of data normalization, linear transformation is performed on the original

data. Minimum and maximum value from data is fetched and each value is

replaced according to the following formula.

Yi = Xi −min(X)
max(X)−min(X)

Where Xi is the iþdata point and min represents the minimum and Maximum

represents maximum. So Xi converts to Yi
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2.3 Models used

2.3.1 Model Configuration

• Error metric: Mean-Squared Error

• Number of epochs: The number of epochs refers to how many times

the model has trained on the training set. 13 epochs were used in this

research.

• Batch size: The entire dataset is not computed in the network at the

same time. It is partitioned into batches of 200 samples. This means

that after every 200th sample a back-propagation is performed and

feature weights are updated.

• Optimizer: The ADAgrad optimizer is used for the regression problem,

while the ADAM optimizer is used for the classification problem.

• Activation function: The ReLU activation function is used for the re-

gression problem and the sigmoid activation function is used for the

classification problem.

• Dropout: A technique that randomly chooses and deactivates a given

percentage of the nodes in the hidden layers. It is commonly used to

reduce model overfitting, and as described in chapter 4.3.3, it can be

used to implement Monte Carlo dropout.

• Validation set: 20% of the training set is split into a validation set.

In this research different forms of recurrent neural cells have been used,

which include the basic Recurrent Neural Network (RNN) cells,Gated Re-

current Units (GRU) cells and Long Short Term Memory (LSTM) cells.To

prevent models from over-fitting, we take droupout and training process
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early stopping mechanism.Probability of dropping out neurons at output are

set at 0.5. The Adam optimizer is used to carry out experiments.

Figure 2.3: Recurrent Neural Network [9]

• xt : input

• ht : output

• A : Adam optimizer
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2.3.2 Gated Recurrent Units (GRU)

GRU is a variant RNN architecture, that uses gating mechanisms to con-

trol and manage the flow of information between cells in the neural net-

work [18],developed in 2014 by Yoshua Bengio et al are a variation of RNN

cells that are easier to train while avoiding the vanishing gradients prob-

lem [29, 30],were simply created to solve the short term memory problem

[31].The special attribute of a GRU is that it can be trained to keep old infor-

mation, without degrading it through time or removing relevant information

necessary for prediction [31]. The vanishing gradient problem arise when

the gradient becomes too small, which in-turn prevents the weight from

changing its value. This means that it becomes harder to the model to learn

long-term dependencies in the input time-series [32, 33].This problem can

solved by using either LSTM or GRU in place of the basic RNN cell which

deliver promising results in many sequence learning tasks through sophisti-

cated network designs [30].

GRUs possess one hidden state which is transferred between time steps.

The hidden state has the ability to hold onto both the long-term and short-

term dependencies simultaneously due to it’s gating mechanisms which

are trained to selectively filter out any irrelevant information,only guarding

useful one. These gates are important vectors and contain values between 0

to 1 which will be multiplied with the input data and/or hidden state, if the

corresponding data is important a one value in the gate vector means that

the corresponding data is important and will be used.

GRU cells are used to build this model with number of epochs and the

number of layers being varied, so as to carefully note the influence of the

changes to the accuracy and precision of the model.

35



2 Case Study

Figure 2.4: Gated Recurrent Network(GRU) [10]

Variables :

• xt: input vector

• ĥt: candidate activation vector

• zt: update gate vector

• rt: reset gate vector

Activation functions:

• σg: The original is a sigmoid function.

• φh: The original is a hyperbolic tangent.

2.3.3 Long Short Term Memory(LSTM)

Learning to store information over long extended intervals via recurrent back

propagation takes a very long time mostly due to insufficient,decaying error

back-flow,the problem is addressed by using a gradient based method which

is called LSTM [34].

LSTM networks are a form of recurrent neural network which is capable

of learning order dependence in sequence prediction problems and this is

very essential in complex problem domains like machine translation, speech

recognition, and many others [35].
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LSTM advantages include the ability to bridge very long time lags as a result

of the constant error back propagation within memory cells,as well as not

needing parameter fine tuning hence work over broader range of parameters

such learning rate,input gate bias,output gate bias [34].

An LSTM layer comprises of a set of recurrently connected blocks called

memory blocks. Each block contains one or more recurrently connected

memory cells, as well as three multiplicative units – the input, output and

forget gates, which are responsible for providing continuous analogues of

write, read and reset operations for the cells. The net is designed to only

interact with the cells via the gates [35].

Figure 2.5: Long Short Term Memory (LSTM) [11]

Variables:

• xt: input vector to the LSTM unit

• ft ∈ Rh: forget gate’s activation vector

• ht ∈ Rh: hidden state vector also known as output vector of the LSTM

unit

• ct ∈ Rh: cell input activation vector

• ct ∈ Rh: cell state vector

Activation Function
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– σ: sigmoid function.

2.3.4 Simple Recurrent Network(SRN)

The Simple Recurrent Network (SRN) is believed to have been first used by

Jeff Elman. The SRN is a specific type of back-propagation network with feed-

forward architecture, contains units in input, hidden, and output pools,as

well as special type of hidden layer called a “context” layer. Here there is

simple multiplication of Input and Previous Output. Passed through Tanh

activation function. No Gates present.

"The beauty of the SRN is its simplicity. In fact,

it is really just a three-layer, feed-forward

back propagation network. The only proviso is

that one of the two parts of the input to the

network is the pattern of activation over the

network’s own hidden units at the previous time

step." [36]

‘
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Figure 2.6: Simple Recurrent Neuron(SRN) [9]

• xt: input

• ht−1: previous Output

• ht: ouput

2.3.5 The Use of CuDNN

The introduction of Powerful hardwares for complex computing as a result

of rapid development of semiconductor technology, the powerful hardwares,

such as graphics processing unit (GPU) and tensor processing units (TPU),

has greatly influenced the significantly reduction of time of execution of Deep

Learning(DL) algorithms. For example, Sunet al [37] achieved a 95-epoch

train. After training using the normal LSTM andGRU cells, then changed and

used CuDNN versions which are the CuDNNLSTM and CuDNNGRU known for

being quick at processing large data"...the area of Deep Neural Net-

works (DNNs). The success of DNNs has been greatly accelerated

by using GPUs, which have become the platform of choice for train-

ing large, complex DNN-based ML systems"[38].
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"... DNNs and CNNs require large amounts of com-

putation, especially during the training phase....

DNNs require a large amount of training data to

achieve high accuracy, meaning hundreds of thou-

sands to millions of input samples will have to

be run through both a forward and backward pass.

Because neural networks are created from large

numbers of identical neurons they are highly par-

allel by nature. This parallelism maps naturally

to GPUs, which provide a significant speed-up

over CPU-only training..." [38]

The speed of execution was noted and tabulated in table 3.6.

Conclusion

A case study was completed in order to test and evaluate different techniques

reviewed in the literature. Data was required, and the PHM challenge looked

like a suitable approach. We would have wanted to test the same methods on

real data, but we faced challenges acquiring it. As mentioned in chapter ??,

the task was to calculate the remaining life of aircraft engines. The resulting

case study implemented multiple deep learning methods, evaluated their

performances and to some extent described the confidence level of the predic-

tions. Although, the collected results weren’t particularly impressive,which

was as a result of our computational limitation, valuable experience with

the implementation of data-driven prognostic models was obtained.
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Chapter 3

Results and Analysis

Introduction

This chapter focuses on the experimental results obtained, will further

compare between results of different models.The results were obtained after

application of the LSTM,GRU and SRN models to the Nasa Turbofan data-

set. Furthermore the CuDNN (CuDNNLSTM and CuDNNGRU) versions are

applied and finally stacking of the GRU and LSTM cells is performed. Some

of the results were due to variation in the number of epochs and layers. The

activation function used: sigmoid,the optimizer: Adam and the loss function:

binary cross entropy.

3.1 Long Short Term Memory(LSTM) Model

The results for LSTM model with 2 layers and 13 epochs. Figure 3.1a shows

the accuracy of the model, 2 curves are used to show this accuracy, the

first being accuracy of training (blue) and the second one is the test (orange).

We remark that for training, the model starts directly at 90% and rises to

approximately 98% ,its average is approximately 93%. For test, we realize

that the curve is a bit unstable starting at approximately 97% with maximum

reaching almost 99.5%, the average still maintains at approximately 93%.

Training of this method is good enough.

Figure 3.1b shows the model loss, for training (blue curve), the loss starts at

approximately 25% and decreases up to almost 5%, on average it is between
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5% and 10%. In test (orange curve), the loss starts at around 7% decreases to

approximately 4%, with maximum approximately 10% , minimum of about

2% and having an average of around 5%, it is highly unstable though it

decreases better than the one for training.

Figure 3.2 is a comparison of the predicted outcome (blue) and the actual

outcome (red), we can observe that in most parts of the given range, the

curve in blue is totally superposed with the curve in red, hence excellent pre-

diction which confirms the accuracy (0.9802) and precision (0.9583) shown

in table 3.1, with the exception of just a small portion where the predicted

value deviates a bit from the actual value.

Number
of Epochs

Number
of layers

Accuracy Precision Time of Execu-
tion(s)

13 2 0.9802 0.9583 162.7

Tableau 3.1: LSTM model results with 13 epochs and 2 layers

(a) Model Accuracy (b) Model Loss

Figure 3.1: Figures for the LSTM Model with 13 epochs and 2 layers.
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3.1 Long Short Term Memory(LSTM) Model

Figure 3.2: Predicted( ) and Actual data( )

3.1.1 CuDNNLSTM

The results for CuDNNLSTM model with 2 layers and 13 epochs. Figure 3.3a

shows the accuracy of the model, 2 curves are used to show this accuracy,

the first being accuracy of training (blue) and the second one is the test

(orange). We remark that for training, the model starts at around 89% and

rises to approximately 98% ,its average is approximately 92%. For test, we

realize that the curve is a bit unstable (more unstable than the LSTM Model

above) starting at approximately 94% with maximum reaching almost 99%,

the average still maintains at approximately 92%. Training of this method is

good enough.

Figure 3.3b shows the model loss, for training (blue curve), the loss starts at
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approximately 25% and decreases up to almost 5%, on average it is between

5% and 10%. In test (orange curve), the loss starts at around 14% decreases

to approximately 5%, with minimum of about 2% and having an average of

around 5%, it is highly unstable though it decreases better than the one for

training.

Figure 3.4 is a comparison of the predicted outcome (blue) and the actual

outcome (red), we can observe that in most parts of the given range, the curve

in blue is totally superposed with the curve in red, hence excellent prediction

which confirms the accuracy (0.9717) and precision (0.8799) shown in ta-

ble 3.2, with the exception of just a small portion where the predicted value

deviates a bit from the actual value.The accuracy for the cuDNNLSTM is

almost the same as that of LSTM, though it’s precision is very low compared

to the one of LSTM, nevertheless cuDNNLSTM is preferable because of its

less time of execution (33.02s) as compared to the 142.8s of LSTM.

Number
of Epochs

Number
of layers

Accuracy Precision Time of Execu-
tion(s)

13 2 0.9717 0.8799 33.02

Tableau 3.2: CuDNNLSTM model results with 13 epochs and 2 layers
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3.1 Long Short Term Memory(LSTM) Model

(a) Model Accuracy (b) Model Loss

Figure 3.3: Figures for the CuDNNLSTM Model with 13 epochs and 2
layers.

Figure 3.4: Predicted( ) and Actual data( )
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3 Results and Analysis

3.2 Gated Recurrent Unit(GRU) Model

The results for GRU model with 2 layers and 13 epochs. Figure 3.5a shows

the accuracy of the model, 2 curves are used to show this accuracy, the first

being accuracy of training (blue) and the second one is the test (orange). We

remark that for training, the model starts at 88.5% and rises to approximately

98% ,its average is approximately 93%. For test, we realize that the curve

is a bit unstable starting at approximately 92% increases to approximately

98% with maximum reaching almost 98.5%, the minimum 93.5% and the

average approximately 96%. Training of this method is also good enough.

Figure 3.5b shows the model loss, for training (blue curve), the loss starts

at approximately 25% and decreases up to almost 5%, on average it is be-

tween 5% and 10%. In test (orange curve), the loss starts at around 20%

decreases to approximately 4% (min) and having an average of around 10%,

it is moderately unstable.

Figure 3.6 is a comparison of the predicted outcome (blue) and the ac-

tual outcome (red), we can observe that in most parts of the given range, the

curve in blue is totally superposed with the curve in red, hence excellent pre-

diction which confirms the accuracy (0.9829) and precision (0.9433) shown

in table 3.3, with the exception of just a small portion where the predicted

value deviates a bit from the actual value.

Number
of Epochs

Number
of layers

Accuracy Precision Time of Execution(s)

13 2 0.9829 0.9433 149.58

Tableau 3.3: GRU model results with 13 epochs and 2 layers
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3.2 Gated Recurrent Unit(GRU) Model

(a) Model Accuracy (b) Model Loss

Figure 3.5: Figures for the GRU Model with 13 epochs and 2 layers.

3.2.1 CuDNNGRU

The results for cuDNNGRU model with 2 layers and 13 epochs. Figure 3.7a

shows the accuracy of the model, 2 curves are used to show this accuracy,

the first being accuracy of training (blue) and the second one is the test

(orange). We remark that for training, the model starts at 90% and rises to

approximately 98% ,its average is approximately 96%. For test, we realize

that the curve is a bit unstable starting at approximately 98% decreases to

97% with maximum reaching almost 99.5%, the average approximately 98%.

Training of this method is also good enough.

Figure 3.7b shows the model loss, for training (blue curve), the loss starts at

approximately 25% and decreases up to almost 5%, on average it is between

5% and 10%. In test (orange curve), the loss starts at around 5% increases

to approximately 7% (max) and having an average of around 6%, it is unstable.

Figure 3.8 is a comparison of the predicted outcome (blue) and the ac-

47



3 Results and Analysis

Figure 3.6: Predicted( ) and Actual data( )
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3.2 Gated Recurrent Unit(GRU) Model

tual outcome (red), we can observe that in most parts of the given range, the

curve in blue is totally superposed with the curve in red, hence excellent pre-

diction which confirms the accuracy (0.9756) and precision (0.9683) shown

in table 3.4, with the exception of just a small portion where the predicted

value deviates a bit from the actual value.

Number
of Epochs

Number
of layers

Accuracy Precision Time of Execution(s)

13 2 0.9827 0.9452 30.6

Tableau 3.4: CuDNNGRU model results with 13 epochs and 2 layers

(a) Model Accuracy (b) Model Loss

Figure 3.7: Figures for the CuDNNGRUModel with 13 epochs and 2 layers.
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3 Results and Analysis

Figure 3.8: Predicted( ) and Actual data( )

3.3 Simple Recurrent Network(SRN)

The results for SRN model with 2 layers and 13 epochs. Figure 3.9a shows

the accuracy of the model, 2 curves are used to show this accuracy, the first

being accuracy of training (blue) and the second one is the test (orange). We

remark that for training, the model starts at 91% and rises to approximately

98% ,its average is approximately 94%. For test, we realize that the curve is

a bit unstable starting at approximately 94% increases to 98% (max), the

average approximately 95%. Training of this method is also good enough.

Figure 3.9b shows the model loss, for training (blue curve), the loss starts at

approximately 21% and decreases up to almost 5%, on average it is between
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3.3 Simple Recurrent Network(SRN)

5% and 10%. In test (orange curve), the loss starts at around 11% and there

is drastic increase to approximately 30% (max), finallt decreases to about

4% having an average of around 10%, it is unstable.

Figure 3.10 is a comparison of the predicted outcome (blue) and the ac-

tual outcome (red), we can observe that in most parts of the given range, the

curve in blue is totally superposed with the curve in red, hence excellent pre-

diction which confirms the accuracy (0.9797) and precision (0.9344) shown

in table 3.5, with the exception of just a small portion where the predicted

value deviates a bit from the actual value.

Number
of Epochs

Number
of layers

Accuracy Precision Time of Execution(s)

13 2 0.9797 0.9344 96.9

Tableau 3.5: SRN model results with 13 epochs and 2 layers

(a) Model Accuracy (b) Model Loss

Figure 3.9: Figures for the SRN Model with 13 epochs and 2 layers.
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3 Results and Analysis

Figure 3.10: Predicted( ) and Actual data( )

3.4 Discussion

3.4.1 Overall Table of Results

All the achieved results are presented in the table 3.6.

3.4.2 Interpretation

The models are executed using a personal computer with the characteristics

Intel core i7-4500U(2.64GHz) CPU, 16GB RAM, and Windows operating

system on the Turbofan dataset.
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3.4 Discussion

Tableau 3.6: Overall Table of Results
Model Used Number

of
Epochs

Number
of Layers

Accuracy Precision Time of Execution(s)

LSTM 13 2 0.9802 0.9583 162.7
CuDNNLSTM 13 2 0.9717 0.8799 33.02

GRU 13 2 0.9829 0.9433 149.58
CuDNNGRU 13 2 0.9827 0.9452 30.6

SRN 13 2 0.9797 0.9344 96.9

From the table 3.6 we can deduce that CUDA Deep Neural Network(CuDNN)

makes execution of models faster, for example training an LSTM model took

162.7s, of which the CuDNNLSTM took 33s which 4 times less. In all modls,

the predicted outcome given in blue and the actual outcome in red can be

seen to be superposing except on small positions were there is a slight devi-

ation from the actual expected outcome hence the models are all applicable

methods for RUL estimations.

Figure ?? shows the time of execution of the 3 models LSTM, GRU and

SRN. As we can see LSTM takes longer to execute as compared the others,

and SRN takes the least time for execution. LSTM has three gates (input,

output and forget gate) whilst GRU has two gates (reset and update gate)

and SRN has no gates, hence there are fewer computations for a SRN-cell

than an GRU-cell which in turn has fewer compared to LSTM. SRN trains

faster though doesn’t have competitive accuracy hence not the best model

to use. GRU use less training parameters and therefore use less memory,

execute faster and train faster than LSTM’s whereas LSTM is more accurate

on data-sets using longer sequence. In short, if sequence is large or accuracy

is very critical, please go for LSTM whereas for less memory consumption

and faster operation go for GRU. It all depends on your training time and

accuracy trade off.
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3 Results and Analysis

Figure 3.11: Graph showing time of execution of LSTM, GRU and SRN
models with 13 epochs, 2 layers

Compared to LSTMs, GRU are found to be less computationally expensive

due having fewer number of internal gates.LSTM and GRU outperform simple

RNN in long term predictions or short term predictions.

All the models have competitive accuracy with GRU giving the highest 0.9829

and CuDNNLSTM giving the lowest. Our choice of models is then going to be

based on the time of execution, as rapidity is one of the major requirements

of a predictive maintenance model. It was hard to compare with the models

reviewed in chapter ?? due to the fact the we used classification method and

we could not calculate the RMSE which is the one used for evaluation of the

best method in the papers.
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Chapter 4

Future Work

4.1 Stacking LSTM cell, SRN cell and GRU cell

Cell stacking of the LSTM cell, SRN cell and GRU cell was perfomed to create

models, practical the methods worked and some of them gave excellent

results compared to the commonly used methods. The research was not

included in this thesis because we could not get enough time to investigate

its feasibility in real life application. In my future work i hope to continue

with this research. The different models that were gotten after stacking are

the LGR, LRG, RLG, RGL, GRL and GLR with:

• G-Gated Recurrent Neuron

• L- Long Short Term Memory

• SRN- Simple Recurrent Neuron

The figure 4.1 shows how the GLR model looks like. In our future work, we

hope to implement all these methods on rel life data not simulated data.

Figure 4.1: stacked cells
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Chapter 5

Conclusion

In this thesis, Experiments were carried out on the popular NASA Turbofan

dataset to show the effectiveness of the proposed methods. The CuDNN

was seen to have great influence on the time of execution with it taking

approximately 4 times less time to execute as compared to the normal none-

CuDNN models. It is also important to note that the time of execution we got

for all the models is less than 2 minutes, of which one can ask, why consider

time of execution when they are all small (< 2 minutes)? the thing is as we

increase number of layers and epochs, the model will take hours to execute

and that’s where the real need for CuDNN versions is seen, we couldn’t do it

here because of computational limitations. In a bid to investigate on which

one is faster between CuDNN versions and traditional methods, we had to

do the study with low epoch number and layers, then conclude that the

behavior gotten is the same when we add more layers and increase number

of epochs. From the experiment we can conclude that CuDNNGRU gives the

best results as it has a favorable accuracy and also takes a shorter time to

execute compared to the rest of the proposed methods. All other methods

gave favorable results which makes them also capable of being used for RUL

estimations.
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