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Abstract

Electromyography is a technique for recording the electrical activity of skeletal
muscles by means of either surface electrodes or concentric needles. The non-
invasive technique surface electromyography sEMG has received significant at-
tention in the past decade: in biomechanics, rehabilitation, control of prosthetic
devices, for the development of emotion recognition systems, sports activities, and
the science of exercise. On the other hand, the invasive technique in electromyog-
raphy is employed for diagnosing neuromuscular disorders such as neuropathy and
myopathy. The stochastic nature of these EMG signals complicates the interpre-
tation, so it needs advanced methods for detection, processing, feature extraction,
and classification.
This dissertation aims to extract the pertinent characteristics which are essential
in the diagnosis and lead to correct prediction.
During gait, the muscular activation interval, onset and offset timings are very
important parameters used for studying the function of the muscle in healthy
patients and detecting the abnormalities when the gait data is abnormal.These
parameters have been precisely extracted by S-Transform.
We have also developed two automatic diagnosis approaches, one for soft tissue
knee injuries i.e. Anterior Cruciate Ligament ACL and Meniscus MN injuries
using surface electromyographic sEMG and goniometric signals, and the other
one for neuromuscular disorders i.e. neuropathy and myopathy using intramus-
cular electromyogram iEMG. These signals (sEMG/EMG) were collected and
preprocessed for extracting the newly developed parameters associated with the
different pathologies. The relevant features were selected using different criteria
and methods classified by supervised classifiers. The newly developed algorithms
are provided and shown through different applications and case studies.

Index Terms— Anterior ligament injury, classification, Electromyogram,
feature extraction, feature selection, iEMG, knee injuries, meniscus injury, my-
opathy, neuromuscular disorders, neuropathy, sEMG, S-Transform.
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Introduction

Scope of the dissertation

The biomechanics of human movement has been studied for several decades, to
understand the mechanics of the human body, how it moves, how joint movements
are controlled so one can measure, and diagnosis in real time joint problems and
their relation to pain. This process of data analysis and modeling allows for
identifying pathologies that are otherwise not seen by x-rays or current imaging
techniques. Indeed, the understanding of human joints kinematics/kinetics al-
lows for the design of better prostheses, clinical robots and improve the patient
quality of life. These voluntary movements are controlled by a nerve impulse that
travels along the axons to trigger the specific muscles. The signal or signals can
be measured by an Electromyogram.
In kinesiology, the electromyogram plays an important role in studying and eval-
uating the muscle function during movement, and in orthopedics it is used to
diagnose and discover the source of pain and injuries. The majority of knee
injuries that affect the elite athletes are anterior cruciate ligament (ACL) and
meniscus tear.
The EMG can be used as a detection technique to measure muscle feedback using
surface EMG, and for the neuromuscular disorders, intramuscular EMG is most
appropriate for detection of Myopathy and neuropathy.

Motivation and Objectives

The Early detection of diseases increases the patient’s survival and increase its
longevity; hence the computer-aided diagnosis plays an important role in the fu-
ture of medicine; assists the physicians and enhance their decision making in the
treatment of their patients.
To develop this new system, we need to address its integration and reliability
as well as the computation time and user interface to make accessible and use-
ful. For the patient, the cost is always an important criteria. As a researcher
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in biomedical engineering, we should study carefully these criteria before imple-
menting these newly developed technologies.
In this dissertation, we employed both sEMG and iEMG to develop an auto-
matic detection method for knee injuries and neuromuscular disorders diagnosis.
These EMG signals are weak in amplitude but contain rich information, using
the advanced processing and analysis techniques proposed and extracting the rel-
evant characteristics are key to correct prediction, whereas the low-cost of the
computerized system depends on both hardware components and software tools
that have an impact on the quality of data collection and processing. EMG is a
powerful technique when addressing its cost.

Structure of the dissertation

This dissertation consists of five chapters. In the two first chapters, I provided
the basics information needed to understand the use of electromyograms including
anatomy, physiology, biomechanics, instrumentation recording technology, digital
signal processing, and analysis. The last chapters provides three applications of
EMG in clinical and orthopedic diagnostic techniques. Here’s a short description
of each chapter:
Chapter 1 provides the basic anatomy and physiology of skeletal muscle needed
for understanding the origin and the source of electromyogram and outlines the
fundamental concept of EMG, its types i.e. Intramuscular and surface EMG and
its applications.
Chapter 2 details the hardware and software used to develop the real-time sEMG
measurement system with low cost and in a simple manner, the signal processing
techniques used to extract statistical features in order to facilitate the interpreta-
tion. This chapter also gives you a glance at the effect of age, gender, handedness,
diabetes, obesity, and others on sEMG and how it influences on sEMG charac-
teristics.
Chapter 3 reviews in depth the interesting aspect of muscular activation on-
set/offset timing detection. The recent detection methods i.e. Teager-Kaiser
Energy Operator, Integrated Profile, Sample Entropy have been employed and
compared with our proposed method “S-transform technique”. The aim of on-
set/offset timing detection is to increase the detection performance, reduce the
error and extract the muscle activation intervals (MAIs) parameter to detect the
knee pathology during dynamic contraction as well.
Chapter 4 provides an automatic method for knee injury diagnosis using sEMG
and knee kinematics during gait. The features were extracted in time-domain and
frequency-domain then selected for classification. This chapter details the basic
anatomy and biomechanics of the knee joint, and the different injuries that affect
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the knee. The existing diagnosis techniques to understand clearly our concept,
the muscle activity, and the knee function during gait are described in detail.
Chapter 5 is devoted to the clinical application of EMG using iEMG. This chap-
ter reviews the decomposition methods apply on iEMG signal to extract features
and classify the neuromuscular disorders i.e. neuropathy and myopathy. A com-
parative study was made between two wavelet-transform techniques i.e. discrete
wavelet transform and packet wavelet transform using two databases i.e. simu-
lated database for evaluating and clinical database for validating the results.
Finally, the conclusion and future research provide a brief summary of these chap-
ters and potential research based on the developed techniques that could have
benefits on our future research.
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Basics of Electromyography

1.1 Introduction

The perfect integration of the brain, nervous system, and muscles appears clearly
in human body motion, these movements and gestures are controlled by electrical
signals which are transmitted from the brain to muscles via the peripheral nervous
system. The analysis of human movements and the study of these electrical
signals aid in discovering and diagnosing the abnormalities.
Electromyography is the recording of the electrical activity of muscle by means
of electrodes regarded as a diagnostic technique also as a tool for rehabilitation
and prosthetics control.
The focus of this chapter is on the anatomy and physiology of electromyography.
We will describe the structure of skeletal muscle and explain how the electrical
signals (action potential waves) are generated and transmitted for exciting the
muscles to contract and move the body. This chapter also will describe the types
of electromyographic techniques and their applications.

1.2 Structure and function of skeletal muscle

The muscle tissues are assists in moving the body or materials inside the body.
It exists three types of muscle tissue i.e. smooth muscle, cardiac muscle, and
skeletal muscle(see Figure.1.1).
Smooth muscle is found in the walls of internal organs and tubes such as intestines,
stomach, blood vessels, and internal passageways; and also, in the follicles at the
skin. the cardiac muscle is found in walls of heart in order to pump the blood
through the circulatory system; both cardiac and smooth muscles can be excited
and controlled by the nervous system or by the other stimuli such as hormones,
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1. BASICS OF ELECTROMYOGRAPHY

chemical signals like autocrine and paracrine agents. Whereas skeletal muscle is
concerned with voluntary control which completely relies on exciting from the
nervous system to contract and move the skeleton[14].

Figure 1.1: Types of muscle tissue [1].

Besides the excitability and contractility, the muscle tissue has other propri-
eties i.e. extensibility and elasticity. The extensibility allows the muscle tissues
to extend and due to elasticity, the muscles recoil to their original length.
The skeletal muscles represent 40% of body mass, named according to their
shapes, their fascicles or fibers arrangements i.e. parallel, fusiform, convergent,
triangular, circular, pennate (see Figure.1.2); to their location in body e.g. or-
bicularis oculi muscle which has an orbicular shape situated in the orbit; or to
their location in the bone like temporalis which is located on top of the temporal
bone [14].

Figure 1.2: Shapes and fiber arrangements for skeletal muscles [2].

Also, they can be determined by their size, i.e. minimus meaning minimum,
medius (medium), and maximus (maximum) for example gluteus maximus; or
identified by their length: longus for long muscle and brevis for short muscle e.g.
radialis brevis. Other muscle’s names indicate their origins and or insertions like
biceps brachii that has two origins, and triceps brachii ( three origins). Some
of the others are related to their position, for example, tibialis posterior, tibialis
anterior, rectus (straight) femoris, and vastus medialis (toward the midline), or to
their action e.g. flexor /extensor, abductor/adductor muscles (see Figure.1.3).

1.2 Structure and function of skeletal muscle 5
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Figure 1.3: Anterior and posterior skeletal muscles of the body [2].

The skeletal muscles are also classified according to their action into four types
i.e. agonist, antagonist, synergist, and fixator. Agonistic muscle is the prime
mover that contracts and generates most of the force to produce the movement,
meanwhile, the antagonistic muscle opposes the action in order to maintain a
smooth movement; in the same time, the synergist contracts directly to action
and complement the prime mover in order to facilitate the movement. The fourth
type is the fixator, acting on joints to stabilize and provide posture, it can be
considered as a synergist type because it assists the agonistic muscle in movement.
In Figure.1.4, the agonistic muscle for flexion of knee joint are the hamstrings and
the antagonistic muscles are quadriceps because the hamstrings are contracted to
flex the knee meanwhile, quadriceps muscles are relaxed. However, for knee joint
extension, the quadriceps are the agonists and hamstrings are the antagonists.

1.2 Structure and function of skeletal muscle 6
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Figure 1.4: Agonistic and antagonistic muscles for flexion and extension of the

knee joint

The skeletal muscles act not only to move the body but also to stop and
control the movement, to stabilize the joints and maintain posture, act as a
protective shield against the exterior trauma for the internal organs and support
their weights, contribute to homeostasis processes by generating and balancing
the heat in the whole body as well.

1.2.1 Structure of skeletal muscle

Skeletal muscles differ in size, shape, and function, but their main structure is
basically the same (see Figure.1.5). Each muscle is wrapped in protective sheath
or layer called epimysium which separates the muscle from neighbor muscles and
protects it from the friction against the other tissues, organs and bones, it also
continues to the end of muscle and inter-meshes with bundles of collagen fibrous
tissue (fascia), and tendon in order to connect muscles with bones. Inside each
muscle, there are a number of bundles of muscle fibers called fasciculus which
is surrounded by another layer tissue called perimysium. A bundle of muscle
fibers contains 10 to 100 fibers, a large number of fibers are found generally in
the large strong muscles e.g. the muscles of quadriceps group, whereas a few
numbers of fibers found in small muscles those in hand which used for precision
movements. Each muscle fiber is covered by a connective tissue layer called
endomysium, which in turn insolate each fiber[6].
These three-layer tissues i.e. epimysium, perimysium, and endomysium provide
two main functions. They allow the whole skeletal muscle to exert tensile forces
due to muscle layer tissues-tendon connection; secondly, they group the units of
fibers or fasciculus together to integrate their action.
In addition, the skeletal muscle is also rich by nerve for innervation and blood
vessels to deliver the oxygen, nutrients e.g. glucose, and waste removal.
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Figure 1.5: Structure of skeletal muscle[3].

1.2.1.1 Muscle fiber structure

The individual muscle fiber is made of the multinucleated cell membrane called
the sarcolemma, and sarcoplasm which is the cytoplasm of muscle fiber con-
tained gelatinous fluids i.e. glycogen and fat, as well as mitochondria to produce
the energy, and surrounds many of cylindrical myofibrils.
Each myofibril is about 1µm in diameter and has the length of muscle fiber,
surrounded by a network of tubules and channels called sarcoplasmic reticulum
which store the calcium and controls the contraction/ relaxation of myofibrils.
Within the myofibril, there are a series of sarcomeres composed of thick and thin
filaments i.e. myosin and actin proteins, respectively (see Figure.1.6); and two
regulatory proteins: tropomyosin and troponin.
The sarcomere is the basis for the sliding filament theory of muscle contraction,
that’s because the interaction between myosin and actin proteins causes a sar-
comere contraction which in turn contracts the muscle fiber.

1.2 Structure and function of skeletal muscle 8
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Figure 1.6: Structure of a single skeletal muscle fiber [4].

The muscle fibers are classified on the base of their metabolic, histochemical,
and mechanical proprieties into two categories: slow-twitch fibers and fast-twitch
fibers[15].
The slow-twitch fibers or type I are red fibers with high resistance to fatigue, they
are appropriate for long term sustained contractions and product the energy by
using aerobic metabolism.
The fast-twitch fibers or type II is divided into two types: fast-twitch oxidative
(type IIA) and fast-twitch glycolytic (type IIB) Type IIA fibers are pale with
a low resistance to fatigue compared to type I, use both aerobic and anaerobic
metabolisms to produce energy and generate sustained contractions of the short
term. While type IIB fibers are white and fatigue faster than type IIA, use only
the anaerobic metabolism to produce energy and generate quick contractions.

1.2.1.2 Motor unit structure

Motor unit is a number of muscle fibers innervated by one α motor neuron via a
neuromuscular junction (NMJ) (see Figure.1.7). The α motor neuron located in
the spinal cord transmits an electrical signal along its axon to NMJ. at the NMJ,
the motoneuron termini and sarcolemma are connected by chemical synapses.

1.2 Structure and function of skeletal muscle 9
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Figure 1.7: Structure of the motor unit[5].

The size of the motor unit effects the strength and the degree of muscle move-
ments. In the small motor unit, the single motor neuron supplies a few numbers
of muscle fibers to produce precise movements such as the muscles of the extraoc-
ular eye that move the eyeballs. For the large motor unit, the single motor neuron
is connected to a large number of muscle fibers in order to produce gross move-
ments such as the quadriceps muscle that move the thigh. As strong contraction
is needed, the nervous system excites more than one motor unit, these stimulated
motor units increase the strength of contraction known as recruitment.

1.2.2 Physiology of skeletal muscle

1.2.2.1 Action potential and motor unit action potential

Before stimulation, the neuron potentials are negatively polarized, it means that
the intracellular fluid has a high concentration of potassium K+ and large an-
ions compared with extracellular fluid that has a high concentration of sodium
Na+ and chloride ion Cl−. These ions and anions distributions create a positive
charge on the outside and a negative charge on the inside. During the resting
state, two specific channels work to establish the resting potential. The leakage
channels allow to slowly flow Na+ into the cell membrane or K+ out the cell, also
the Na+/K+pump is powered by metabolic energy i.e. adenosine triphosphate
(ATP) to pump Na+ outside and restore K+, this aid to maintain the resting
potential (-70 mV typical value in human neuron cell).[6].
The neurons are excitable cells divided into two portions: soma and dendrites
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designed as analog portion, and the digital portion consists of axon, from axon
hillock to axon terminals (see Figure.1.8), their dendrites are received information
from other neurons synapses i.e. electrical synapses with direct connection and
chemical synapses which release the neurotransmitters to open up the chemically-
gated channels and generate the graded potentials. Some of these transmitters
and postsynaptic receptors are excitatory, allow the Na+ or Ca2+ to come in the
cell, pushing the membrane potential toward the threshold and depolarize the
neuron. Others are inhibitory, allow the K+ to leave the cell or Cl− to enter the
cell, and generate the hyperpolarizing graded potentials that move away from
the threshold. The summation of all these signals i.e. Excitatory and inhibitory
postsynaptic potentials (EPSP and IPSP) leads the neuron to fire an action po-
tential if their sum reaches the threshold [14].

Figure 1.8: Structure of myelinated Neuron [6].

The neurons always obey ‘ all or no law ’, depend on threshold not on the
strength of stimuli, that is, when a stimuli with sub-threshold intensity (less than
-55 mV) is applied to axon hillock, no action potential is fired; when the stimuli
hit the threshold even if the strength of stimuli is much more than threshold
value, the produced action potential is looking exactly the same with no increase
in the amplitude.
At the threshold -55 mV, the Na+ voltage-gated channels open up and allow a
rush of sodium to enter the cell membrane, this large amount of sodium causes a
depolarization and increase the voltage to +30 mV when the Na+ voltage-gated
channels become inactivated, the K+ voltage-gated channels open and allow the
passage of potassium to outside which causes repolarization. During this phase,
the Na+ voltage-gated channels close at -55 mV, while potassium continues to
rush the cell until the closing of K+ voltage-gated-channel at -50 mV. During
this short delay, the influx of K+ results in undershoot (hyperpolarization). The
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leakage channels and Na+/K+ pump (Figure.1.9) re-establish that overshoot
gradient to -70 mV in order to return to resting state.

 

Figure 1.9: Ion channels [7].

The period in which the Na+ voltage-gated channels are inactivated is known
as the absolute refractory period, during this period, the neuron does not respond
to any stimulus no matter how strong it may, and another action potential cannot
be fired. Once the Na+ voltage-gated channels close, the neuron can respond only
to the stimulus that has a greater threshold than the normal threshold, this is
because of the rush of K+ , the amount Na+ that should depolarize the neuron
will only retain it from hyperpolarizing (see Figure.1.10).
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Figure 1.10: Action potential.
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The action potential generated at the axon hillock travels down towards the
axonal termini in order to excite the muscle fiber. As the Na+ voltage-gated
channels of the current section close, the action potential propagates to the adja-
cent section and moves along the axon. Due to the absolute refractory period, the
action potential does not move in the reverse direction. These continuous prop-
agations are found in unmyelinated axons (the short axon). The long axons are
insulated by myelin sheath to speed up the transmission of the action potential.
In these myelinated axons, the action potential jumps from one Ranvier node to
the next, this sort of propagation is termed saltatory conduction.
When an action potential reaches the motoneuron termini, it depolarizes the
synaptic end bulb membrane (see Figure.1.11), opens the voltage-gated calcium
channels and allows the calcium ions (Ca2+ ) to enter inside. These Ca2+ ions
dock with the surface of synaptic vesicles to maintain the connection of vesicles
with docking proteins and facilitate their merging with the presynaptic mem-
brane.
As the vesicles merge with the presynaptic membrane, they start to release neu-
rotransmitters acetylcholine (Ach) through the synaptic cleft. These neurotrans-
mitters bind to ACh receptors at the motor end-plate of the sarcolemma and
trigger a depolarization. Then, they are quickly dissociated and recycle back to
the synaptic vesicles or degraded and hydrolyzed by acetylcholinesterase (AChE )
enzyme in order to prevent an excessive firing of the action potential, and regulate
the timing and the degree of contraction as well.

 

Action 

potential 

Nucleus 

Myelinated axon 

of motor neuron 

Neuromuscular 

     Junction 

Sarcolemma 

Ca2+ 
Ca

2+
 

Synaptic end bulb 

Mitochondrion 

Synaptic cleft 

ACh 

ACh receptor 

Synaptic vesicle 

Figure 1.11: Neuromuscular junction and chemical synapse.

As known that all the neuromuscular junctions’ potentials that depolarized the
sarcolemma are excitatory. While the sarcolemma is depolarized, the sodium and

1.2 Structure and function of skeletal muscle 13



1. BASICS OF ELECTROMYOGRAPHY

potassium voltage-gated channels become activated to trigger an action potential
that propagates in both directions along the muscle fiber, called the muscle fiber
action potential (MFAP). The Spatio-temporal summation of these potentials of
the same motor unit called motor unit action potential MUAP (Figure.1.12).

 

Figure 1.12: An example of triphasic motor unit action potential [8].

1.2.2.2 Contraction and relaxation of muscle

The muscle contraction begins when the muscle fiber action potential propagates
along the sarcolemma and penetrates into the transverse network of tubules (T-
tubules) to stimulate the sarcoplasmic reticulum. Once the sarcoplasmic reticu-
lum is excited, the Ca2+ voltage-gated channels open and allow the Ca2+ to move
into the sarcoplasm. The released Ca2+ ions bind to troponin, which in turn
forces the tropomyosin to move away from binding sites and allow the myosin
and actin to bind and form the cross-bridges. Then myosin heads start to pull
the actin filaments but only for a short distance, and to reach the sarcomere
center, they must be detached, reattach to other binding sites and pull again.
This repeated action is known as the cross-bridge cycle (Figure.1.13) that cannot
be accomplished without ATP and ATP Hydrolysis that used for detaching and
reattaching of the cross-bridges, respectively.
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Figure 1.13: Cross-bridge cycle [9].

This procedure results in sliding filament theory (Figure.1.14), sarcomere
shortens , and the muscle contracts.

 

Figure 1.14: Sliding filament theory [4].

When the action potential ends, the muscle fiber membranes repolarize, and
the voltage-gated Ca2+ channels close. The Ca2+ ions are then restored to sar-
coplasmic reticulum by ATP-driven pumps. Without these ions, the myosin-
action binding is broken down, meanwhile, the tropomyosin recovers the binding-
sites. As a consequence, the sarcomere returns to its resting state and the muscle
relaxes.
In resting state, the muscles don’t become flaccid because of muscle tone which
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is a random asynchronous contraction that provides a closely constant state of
low-level tension and resistance to stretch, maintain posture and stabilize the
joints.

1.2.2.3 Type of muscle contractions

The muscle contractions are characterized by tension across the muscle, the length
of the muscle, and the amount of energy required by the muscle. There are three
types of contractions: isotonic, isometric, and isokinetic contractions.

− Isotonic contractions are the regular weight loading contractions, while the
length of the muscle and the required energy change, the muscle tension
stay the same. It is also divided into two types of contractions: concentric
and eccentric contractions.

− Concentric contraction occurs when the tension across the muscle is greater
than the load, and the muscle shortens.

− Eccentric contraction occurs when the tension across the muscle is less than
load, and the muscle lengthens.

− Isometric contraction: the muscle length stays the same meanwhile the
tension across the muscle and the energy may change.

Figure 1.15: Types of muscle contractions.

1.3 Electromyography

The electromyography is an electrodiagnostic technique for measuring and eval-
uating the electrical activities of skeletal muscle. its records are known as elec-
tromyograms or electromyographic signals which represent the sum of motor unit
action potentials at a given area, detected either by intramuscular electrodes or
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surface electrodes. The choice of these electrodes types i.e. invasive or non-
invasive depends on the domains of application, and the needs of clinicians as
well.

1.3.1 Intramuscular and surface EMG

There are two types of EMG: intramuscular electromyography (iEMG) and sur-
face electromyography (sEMG). The iEMG signals are recorded by invasive elec-
trodes whereas the non-invasive electrodes are used for sEMG (Figure.5.3). The
quality of EMG signals is related to the shape, the size, and the placement of
electrodes, and also to the proper skin preparation.
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Figure 1.16: Types of EMG electrodes.

1.3.1.1 Intramuscular and surface electrodes

The intramuscular electrodes i.e. needle, and fine wire are applied on thin, and
deeper muscles to evaluate the single motor unit action potentials (MUAPs), can
be used in a clinical investigation such as neuromuscular disorders diagnosis.

1.3.1.1.1 Needle electrode It exists three types of needle electrodes.

− The monopolar needle is manufactured from stainless steel cover by Teflon,
his small diameter and finely sharpened point decrease the level of pain
during the implantation. However, the distance between the needle (active
electrode) and the surface electrode used for reference increase the back-
ground of noise.

− The concentric needle contains an insulated wire used as an active electrode
in the cannula with a diameter of 0.5 mm. and the reference outside of
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it, these small active electrode-reference distances reduce the background
noise. But it is painful due to its large diameter.

− The single-fiber needle consists of a fine platinum wire with a diameter of
25µm inside the stainless-steel cannula (0.5-0.6 mm of diameter).

Figure 1.17: Types of needle electrodes.

1.3.1.1.2 Fine wire electrode It’s produced by inserting two insulate fine
wires with a small diameter of 0.025 mm through the cannula of a hypodermic
needle. The preferable alloys which are used for wires are 90% platinum and 10%
iridium to ensure the rigidity of wires and make them handle easily. Also, the
nylon, polyurethane, and Teflon are used as insulations. This kind of electrode
is more comfortable than needle electrodes.

Figure 1.18: Fine wire electrode.

Whereas, the surface electrodes are applied to the surface of the skin and mea-
sure only the superficial muscles. The choice criteria of their materials depend on
electrode-skin contact, electrode-skin impedance, stability, and allergic reaction.
There are three sorts of material: silver, conductive polymer and gold described
below.

− Silver/silver chloride electrode: The Ag/AgCl is a non-polarized electrode
with low junction potentials and high stability. It can be manufactured
easily, hence it is not expensive.
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− Conductive polymer electrode: it has conductive and adhesive properties,
which means that it doesn’t need for gel or adhesive, also it becomes con-
ductive when joining to Silver foil or Aluminum. However, it is not appro-
priate for low noise due to its high resistivity and has not a good connection
compared to Ag/AgCl electrode.

− Gold electrode: its conductivity is very high with low impedance, and more
expensive compared to Ag /AgCl where is often used for EEG.

Figure 1.19: Example of pre-gelled disposable sEMG electrodes.

1.3.1.2 The electrode sites and skin preparation

To obtain a high quality of EMG signals, the EMG recording electrodes should
be well positioned and required on cleaned skin. For iEMG, the intramuscular
electrodes insert into cleaned skin away from nerve trunks, blood vessels, and
viscus at 45◦ angle, approximately. Whereas, the pair of sEMG electrodes or
more are placed on the surface of the skin parallel to the muscle fibers at the
belly of muscle with detecting surface of 1-2 cm measuring from the center of
electrodes in order to reduce the electrical cross-talk from the adjacent muscles.
Also, the skin should be prepared beforehand by removing the body hair and
using alcohol to clean the skin; for the dry electrodes, the gel should be used
to reduce the electrode-skin impedance. Figure.1.20 shows the different sites for
surface electrode and fine wire electrode.
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Figure 1.20: Anatomical position of fine wire and surface electrode sites [10].

The iEMG and sEMG do not differ only in recording electrodes but also in
bandwidths. The iEMG bandwidth ranges from 0 -1000 Hz, whereas the sEMG
bandwidth ranges from 20 to 600 Hz [16].

1.3.2 EMG applications

The sEMG is very comfortable during movement and easy to use, hence it has re-
cently received significant attention in medical research, sports science, biometry,
and ergonomics.

− Medical research such as gait and posture analysis [17] [18][19][20][21], con-
trol of prosthetics [22][23][24][25], pregnancy Monitoring by measuring uter-
ine EMG [26] [27][28], orthopedics . . . etc.

− Rehabilitation: Post-surgery, physical therapy, neurological rehabilitation
[29] [30]. . . etc.

− Sports medicine: Biomechanics [31], movement analysis, sports rehabilita-
tion [30][29]. . . etc.

− Biometrics: personal identification [32][33], gait analysis, pattern recogni-
tion [34] . . . etc.

− Ergonomics: analysis of demand, ergonomics design [35][36] . . . etc.
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The iEMG measures the deep and specific muscles, used for diagnosing neuro-
muscular disorders such as neuropathy and myopathy [37].

1.4 Conclusion

In this chapter, the basic physiology and anatomy of skeletal muscle, the mecha-
nism of muscle contraction are described to understand the origin and the source
of electromyographic signals. The action potential travels down from the neuron
located in the brain to muscle through the myelinated axon in order to excite
the contractile unit i.e. sarcomere. the sliding of thin and thick filaments results
in the muscle contractions. The spatiotemporal summation of these potentials is
recorded by EMG electrodes.
Two different EMG techniques are used to detect these motor unit action po-
tentials: intramuscular EMG and surface EMG. The iEMG is used for specific
muscle especially for the deep and thin muscle whereas the sEMG is used on the
surface of the skin and measure the activity of many motor units. Recently, the
EMG technique is widely applied to different applications not only in studying
the muscle state.
In the next chapter, we will present the sEMG measurement system which is
developed in order to recover and analysis the sEMG signals and studying the
effect of the muscle weakness on sEMG.
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Development of real-time sEMG

system

2.1 Introduction

Nowadays various commercial sEMG systems are available with high quality and
precision. Our aim is to develop a low-cost real-time sEMG acquisition system
with a single channel and collect real sEMG data. These collected data are used
for studying the effect of age, gender, patient’s health status, and handedness
on skeletal muscles and sEMG signals. This chapter is divided into four main
sections. Here’s a quick summary of these sections:
— The hardware part describes the analog circuit and the Arduino Uno acquisi-
tion board.
—The software part includes the firmware and the Graphical user interface (GUI).
— Collection of surface Electromyographic data.
— Finally, the digital signal processing and sEMG signals analysis.

2.2 sEMG acquisition system

The sEMG measurement system consists of different blocks designed to perform
specific tasks. Starting with the sensor, the quality of raw sEMG signals depends
on the location of surface electrodes, and skin preparation (refer to Chapter 1).
These acquired sEMG signals are low in amplitude and noised, hence the signal
conditioning circuit is used. The signals are firstly amplified by instrumentation
amplifier then filtered using the analog pass-band filter. The DC offset adjustment
circuit is utilized to prepare these bipolar signals for ADC. A laptop (DELL core
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i5-2450M, 2.5 GHz, 6GB RAM, Win7, 64 bit) is used to upload the firmware in
the Arduino Uno card and digitalize the analog sEMG signal at a frequency of
2000Hz with a resolution of 10 bits. These sEMG data are transmitted via the
USB port and stored. To facilitate this task, we developed an interface (GUI) in
the Matlab environment. The overall block diagram of this sEMG-DAQ system
is shown in Figure.2.1

 

Signal Conditioning 

(Amplification, 

filtering, offset) 
Microcontroller Laptop  

Sensor 

Figure 2.1: Block diagram of EMG measurement system.

2.2.1 Hardware part

The hardware part consists of two boards. The first board developed to acquire
the analog sEMG signals including the instrumentation amplifier, analog filters,
and DC-offset adjustment circuit. and the second board i.e. the Arduino Uno
card used to digitalize the analog signals. In this section, we will describe in
detail the main parts of these boards and their functionality.

2.2.1.1 Sensor

Dry and gelled electrodes are both used for detecting sEMG. the dry electrodes
are appropriate for long term use especially for a prosthetic device meanwhile,
the gel electrodes are disposable and used for a short term, but due to adhesive
gel, they have a low electrode-skin impedance and make more stable skin contact.
The Ag/AgCl electrode patches shown in Figure.2.2 are used in this study; a pair
of these electrodes are placed in the middle of the belly of biceps brachii muscle
with an interelectrode distance of 2 cm, and the ground reference electrode is
placed on the elbow.
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Figure 2.2: Lessa electrode patches.

2.2.1.2 Analog conditioning circuit

The sEMG signals are low in amplitude (0 to 10 mV) and can be contaminated
by various noises or artifact sources that impact on their quality and lead to mis-
interpretation and erroneous diagnosis. Among these artifacts, the mechanical
artifacts causing by skin-electrode interface or cables movements during dynamic
activity; these artifacts are of a low-frequency range from 1 to 10 Hz, may occur
when one or all of the electrodes detach, when the reference electrode is not uti-
lized, when the wire is damaged, or when the electrodes change their sites. Also,
the electrodes may pick up the crosstalk produced by the activity of neighboring
muscles. As well as, the electromagnetic radiation of external devices such as the
power sources (50 or 60 Hz), light bulbs especially the fluorescent lights, phone
lines and ethernet cables . . . etc. The ECG artifact influences on sEMG signals
detected from the close muscle to the heart.
These artifacts and noises can be reduced by using a differential amplifier with
high common-mode rejector ratio, choosing the right electrode design, respecting
the inter-electrode distances, reducing the skin-electrode impedance by applying
the gel layer, fixing the electrode correctly in the skin, utilizing the reference
electrode, and also minimizing the number of devices connecting concurrently in
order to avoid the ground loops, as well as the use of the battery, is recommended
to reduce the Interfering power.

Amplification —The weak amplitude of sEMG that is acquired from the sen-
sor is amplified through an amplifier circuit that consists of the instrumentation
amplifier (AD620). This type of device has many desirable characteristics in med-
ical applications, among these characteristics, AD620 provides a high common-
mode rejection ratio (CMRR), it has a high input impedance, high gain, and
optimal bandwidth. Furthermore, the low bias currents and low current noise
coupled with the low voltage noise improve the dynamic range and achieve better
performance [38].
Table.2.1 summarizes the main characteristics of AD620.
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Table 2.1: AD620 specifications [38].

Parameter Value

Gain [0− 1000]

Bandwidth at G = 100 120 kHz

Input voltage noise 9 nV/
√

Hz,@1 kHz

CMRR at 10 gain 100dB

Max input bias current 1 nA

Power supply [±2.3−±18]

The AD620’s gain is resistor programmed by RG, or more precisely, by what-
ever impedance appearing between Pins 1 and 8. For any arbitrary gain RG can
be calculated by using the following formula [38]:

RG =
49.4kΩ

G− 1
(2.1)

Where G is the gain.
In our sEMG circuit, we use a resistor RG with a value of 56Ω, this empirical
selection has been obtained after several tests to get the gain of 883
The feedback loop circuit is used to reject the common-mode interference pro-
voked by electrodes through the reference electrode in order to prevent instability
and reduce the motion artifacts and noises.

 

AD620

RG/2

RG/2

Electrode_1

Electrode_2

TL082
TL082

10kΩ

390kΩ

390kΩ

Reference

V_out

Figure 2.3: sEMG signal amplification and feedback loop circuit (drawn in NI

Multisim).

Filtering — After the amplification stage, the EMG signal is still contaminated
by noise and to reduce this interference we used two types of filters. A passive
high pass filter and an active lowpass filter.
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− Passive high pass filter
A first-order passive high pass filter with low cut-off frequency (Fc) of 0.04
Hz is applied to attenuate baseline noise. As shown below the used passive
high pass filter with R= 1.6MΩ and C=2.2 µF.
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Figure 2.4: Circuit (a) and bode diagram (b) of the first order passive high pass

filter.

− Active low pass filter
The impedance of each RC network impacts on the next stage, so cascading
several RC networks may degrade the desired signal. The use of op-amp can
solve this problem due to its high input impedance and low out impedance.
Sallen-Key is an active filter and unitary gain voltage amplifier, it was cho-
sen because of its high-quality factor.
The sEMG bandwidth is 0-1000 Hz, however, the dominant energy is con-
centrated in the range of 20-500Hz. For that, we developed a 4th lowpass
Sallen-Key filter with a cut-off frequency of 600 Hz in order to filter the
high frequencies. The fourth-order of Sallen-Key structure is shown in Fig-
ure.2.5.

 

TL082TL082

11kΩ 33kΩ3kΩ
Vin

1kΩ

15nF

150nF
150nF

15nF

Vout

Figure 2.5: Fourth order Sallen-Key lowpass filter.

As shown in figure.2.6, the 4th order Sallen-Key LPF has a steeper roll-
off near the Fc compared to the 2nd order. This steep attenuation allows
reducing the noise without degrading our sEMG signals.
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Figure 2.6: Bode diagram of lowpass Sallen-Key filter.

DC-offset adjustment circuit — sEMG is a bipolar signal, has positive and
negative voltages. Otherwise, the analog-digital converter digitalizes only the
positive input voltages, to solve this problem we added an offset adjustment cir-
cuit. This circuit adds a bias voltage to the input signal and thus to make it swing
only positive. As shown in Figure.2.7, The output voltage can be determined by
the following equation(2.2).

Vout = Vin
Pot ∗ 20%

Pot
∗ Vcc (2.2)

 

Pot

20 %

VCC

5V

Vout

Vin

Figure 2.7: DC-offset adjustment circuit.

Power supply circuit — The use of the battery is recommended in order to
design a portable sEMG measurement system. The ICL7660 integrated circuit is
used to invert the positive input voltage, the supply circuit is shown in Figure.2.8.
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Figure 2.8: Power supply circuit.

2.2.1.3 Microcontroller

The analog sEMG signals are continuous in time and must be digitalized for fur-
ther digital processing. For this purpose, we used microcontroller Arduino Uno.
The choice of this type of card depends on our needs and also because it is an
open-source license, and it is not expensive [39]. This board based on ATmega
328 carries an 8-bit processor and running at 16 MHz. As shown in Figure.2.9,
the Arduino Uno board contains:
— 6 analog inputs named A0-A5.
— 14 digital input/output pins named (D0-D13). Six of the digital pins (D3,
D5, D6, D9, D10, and D11) can be programmed to send pulse width modulation
(PWM).
— 10-bit analog to digital converter which converts the analog data into entire
numbers between 0 to 1023 (210-1) corresponds to [0-5] V of analog input values.
— The maximum transmission speed expressed in baud is about 115,200 bps (bits
per second).
— Random Access Memory RAM of 2 kilobytes.
— Storage Random Access Memory SRAM of 32 kilobytes used for storing the
program.
— EEPROM memory of 1 kilobyte used for storing variable’s data generated
within a sketch .
— 2 ground pins (GND) to share it with the external devices.
— 2 power supply 3V3 and 5V to supply the connected external devices with
3.3V or 5V.
— The reset button for reinitializing and storing the program again.
— Power jack with an input voltage range of [7-12]V.
— USB port to connect the Arduino board with computer.
The USB port connects to the computer for various purposes:
— Upload the new program to Arduino board,
— Communicate with computer and Arduino board,
— Supply the Arduino board with 5V only but for more power supply plug AC
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adapter or battery 9V into the power jack.

 

USB Port 
Power Jack 

Reset Button 

Analog Inputs 

Digital I/O 

ATmega 328 

Figure 2.9: Arduino Uno board.

2.2.2 Software part

The software part consists of two programs. The first program developed in
Integrated Development Environment (IDE) and upload it into the Arduino Uno
board in order to convert the analog sEMG into a digital signal. The second
one developed in Graphic User Interface using Matlab programming language in
order to simplify the storage and the digital processing of sEMG data.

2.2.2.1 Arduino Uno software

The Arduino software is available on the website at www.arduino.cc, its latest
versions can be downloaded freely with General Public License (GPL), running
on Mac OS, Linux, and on all Microsoft Windows versions from Windows XP
onwards i.e. Windows Vista, Windows 7, 8 and 10. After installing the Arduino
software and its USB driver, the writing, compiling, and uploading of sketches to
the Arduino board become easier.

Arduino Uno Firmware — The Arduino IDE used for writing sketches in
C programming language, verifying and saving them before uploading into the
Arduino board. As shown in Figure.2.10, the IDE contains a bar of menus,
toolbar, text editor to write code, message area to display the actual action, and
text console to display the compilation results.
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The basic functions for writing sketches are setup() and loop(). The function
setup() used to configure the I/O pins and all the used variables, it is only run
once when the Arduino starts booting up. Conversely, the function loop() used
for the main code, it repeats the execution of code until the Arduino is powered
off.
After writing a sketch and connecting the Arduino board, the next step is to
select the type of used board and the serial port, then, press the reset button to
initialize and finally upload the program.

 

Bar of menus 
Toolbar 

Text editor 

Message area 

Text console 

Figure 2.10: Arduino IDE.

2.2.2.2 Matlab graphical user interface (GUI)

There are various environments to create a graphical interface such as C#, Mat-
lab, LabVIEW. . . . etc. We picked the Matlab environment in order to use its
available toolbox which facilitates digital signal processing. Our purpose from
creating an interface is to facilitate and simplify the storage, visualization, and
processing of sEMG data without spending a lot of time understanding the Mat-
lab programing language.
As shown in Figure.2.11, the sEMG GUI contains:
— The bar of menus: file, sEMG signal processing including digital filtering,
spectral analysis, and statistical parameters; the help menu used to explain how
to use this interface.
— Toolbar contains the essential tools such as open file, save the current results,
creating a new file, print, zoom out, zoom in, and pan.
— Patient’s info box used to insert the subject or patient information such as
name, age, weight, height, and to select the gender.
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— Diagnosis area to insert the patient health status.
— The acquisition box is assigned to insert the transmission speed, select the
USB port, start and stop the acquisition, save the sEMG data and patient infor-
mation in format .mat and .txt, respectively.
— Axes box for plotting the sEMG signal.
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Figure 2.11: EMG graphical user interface.

The final design of our sEMG measurement system is illustrated in Fig-
ure.2.12. The sEMG signal acquired from the analog circuit is connected to
analog input A0 of Arduino Uno card. This signal is sampled by DAC at a sam-
pling rate of 2000 Hz respecting the Nyquist sampling theorem [40]: fs ≥ 2 fmax
, that because the sEMG signal is strictly bandlimited [0− 1000]Hz, where the
highest frequency fmax is 1000Hz, So we used the Nyquist rate fs=2 *1000 Hz in
order to avoid the aliasing and the loss of information. The transmission speed
was set at 9600 baud.

 

Figure 2.12: sEMG measurement system design.
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During the acquisition, the Matlab GUI plots the sEMG signal in real-time
as shown in Figure.2.13. As we can use the signal processing menu for digital
filtering, spectral analysis, and extraction of statistical parameters.
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Figure 2.13: Acquired sEMG by Matlab interface.

Figure below shows an example of sEMG data file (.mat and .txt format).

 

 

 

File Name 

Variable Name on 

Matlab Workspace sEMG values (Volt) 

TXT File 

MAT File 

Figure 2.14: An example of MAT and TXT sEMG files.
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2.3 The effect of fatness, age, gender, handed-

ness, and diabetes on sEMG

Skeletal muscle strength, structure and function are influenced by different fac-
tors such as gender, age, weight, and health condition status . . . etc.
Diabetes mellitus caused by insufficient secretion of the pancreatic hormone in-
sulin which controls the level of sugar in the blood, and thus causes serious
damage to small blood vessels and nerves [41]. Because of damaged small blood
vessels, an amount of glucose cannot reach skeletal muscles to fuel them and that
can lead to muscle atrophy. Also, the nerve damage causes a dysfunction in the
muscle fibers because of being uncontrolled.
Even for the healthy people, the skeletal muscles start the change from the fourth
decade of life, the muscle fibers shrink, and their tissues are replaced by connec-
tive and adipose tissues [42]. Because of these tissues, the muscles fail to contract
powerfully and generate a strong force. As well as the loss of muscle mass results
in the loss of strength which affects mainly locomotion balance and posture [43].
The female and male differ in body structure and that may reflect on the strength
of muscle [44]. besides gender, there are other characteristics that influence the
human body and muscle functions such as obesity, handedness . . . etc.
Aging and obesity are the major cause of locomotion imbalance and instability,
increasing the risk of diseases and injuries [43][45][46]. The age-related muscle
atrophy can be delayed to some extent and obesity can be reduced by physical
exercise.
In sports science and medicine, the effect of physical exercises on muscles, pos-
ture, and gait received the attention of many researchers. Where the relationship
between force and muscle activity have been studied in order to improve the con-
trol of muscle and stability of the joint. sEMG is also used to measure muscle
fatigue.
So, how can gender, aging, obesity, and diabetes influence on sEMG signals?; if
these factors affect the muscle structure and function, how can impact on sEMG
temporal and spectral parameters?
For this purpose, we used our sEMG measurement system and collected the
sEMG data from different subjects and these data were analyzed in order to ex-
tract the temporal and spectral parameters and facilitate the implementation of
the results.

2.3.1 Data collection

The sEMG data were collected from different age groups using our real-time
sEMG measurement system. The folder .mat and .txt facilitate the analysis
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of sEMG signals and study the effect of age, fatness, gender, handedness, and
diabetes on sEMG signals.

2.3.1.1 Subjects

Twenty volunteers were recruited in this study. From all those volunteers, 02
left-handers and all the rest are right-handers. These collected data include:

− Six elderly subjects (mean ± SD; age= 72.33± 11.99 years). From those
subjects, we have 02 diabetics type II ( one male and one female) and the
others are healthy (01 male and three females);

− Eight healthy adults (age= 34.75± 10.18 years; 02 males and 6 females);

− Three healthy youths (age= 19.33 ± 2.89 years; 01 male and 01 pregnant
woman);

− And three healthy children (03 male; age= 8.33 ± 4.16 years).

2.3.1.2 Protocol

After skin preparation, the electrodes were placed on the belly of Biceps Brachii,
respecting the inter-electrode distance (2cm). Six subjects were asked to load
a dumbbell curl of 1 kg to 6 kg. During isotonic contraction, the sEMG of
each dumbbell curl was acquired in order to determine the relationship between
force and sEMG. The same exercise was repeated with the other arm to compare
between left-handers and right-handers.

Figure 2.15: Protocol of the experimental setup.

Secondly, the sEMG signals were acquired from elderly subjects, children and
housewives, healthy subjects and diabetics in order to study the effect of diabetes
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mellitus on sEMG. The records were taken in two positions: relaxation and con-
traction of brachial biceps and the volunteers were asked to contract until their
maximum.

2.3.2 Digital signal processing

The digital signal processing is a very essential step and Matlab programming
language facilitate this task. In this context, the sEMG signals were filtered and
analyzed using the specific functions of the Matlab toolbox, and then the relevant
statistical parameters were extracted to evaluate the effect of subject character-
istics and healthy condition on sEMG.
This Processing was made by the following procedures i.e. digital filtering, tem-
poral and spectral analysis.

2.3.2.1 Temporal analysis

The digital sEMG signals acquired from the Arduino board contain the DC offset
component that should be removed. We applied the 3rd order Butterworth high-
pass filter with a cutoff frequency of 20 Hz for two purposes:

− Deleting the genitive DC voltage.

− Baseline wander correction.

The sEMG signal (s) is usually processed by firstly rectifying the raw signal,
this is involved by taking the absolute value of the signal point, the full-wave
rectification is all above zero can be calculated by the following formula.

rect sEMGi = abs(si) (2.3)

With i=1,2. . . ,N.
Where N is the length of sEMG signal.
After that, the envelope (e) of sEMG signal (s) is determined by calculating the
magnitude of the analytic sEMG signal. This complex signal contains two parts
i.e. real and imaginary parts; the real part represents the original sEMG signal
while the imaginary part (ŝ) is the Hilbert Transform [47]. Mathematically the
envelope detection is defined as follows.

e (i) =

√
s(i)2 + ŝ(i)2 (2.4)

Finally, the sEMG envelope is smoothed by the moving average filter with a span
of 1.5%.
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Figure.2.16 shows the application of digital signal processing mentioned above
on sEMG. the raw sEMG acquired from the healthy subject during contraction
and relaxation of biceps brachii muscle. (a) represents the raw sEMG signal with
DC offset component (black curve) and horizontal baseline (red dashed line).
(b) represents sEMG signal without DC offset component and without baseline
wander. (c) represents the sEMG envelope (blue curve) and smooth (red curve)
sEMG envelope.

 

Figure 2.16: sEMG baseline wander correction and envelope detection.

2.3.2.2 Spectral analysis

The frequency domain is widely used in the signal processing to measure the
changes in the spectral content of signal and extract the spectral parameters based
on Fourier transform. There two methods: parametric and non-parametric. In
our study, we used a non-parametric method i.e. Welch’s power spectral density
compared to the parametric method i.e. periodogram is based on windowing
technique using a window function such as hamming and thus reduce the noise
and leakage obtained by periodogram. The estimate of the modified periodogram
is calculated from each segment where the average of all these estimates results
in Welch’s PSD estimate.
Figure.2.17 shows The Welch’s PSD of sEMG signal after removing the DC offset,
using Hamming window of 1024 points and default overlap of 50%, where the
dominant energy is concentrated in the range of 0-500Hz.
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Figure 2.17: Welch’s PSD of sEMG signal.

2.3.3 Statistical parameters

After the digital signal processing in both temporal and spectral domains, the
statistical parameters were extracted in order to facilitate the interpretation of
results.

2.3.3.1 Temporal parameters

− Root Mean Square Value RMS is defined as the square root of the mean
of squared sEMG amplitudes, expressed as follows.

RMS =

√√√√ 1

N

N∑
i=1

si2 (2.5)

− Mean Absolute Value MAV is the mean of rectified value, calculated as
follows.

MAV =
1

N

N∑
i=1

|si| (2.6)

− Integrated EMG IEMG is the area under the smooth sEMG envelope. It
is calculated using the Eq.(2.7):

IEMG =
N∑
i=1

|ssmoothi | ∗
1

fs
(2.7)
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2.3.3.2 Frequency parameters

− Total Power TP: is the total amount of the power spectrum density of
sEMG signal.

TP =
F∑
i=1

PSD(i) (2.8)

− Mean Frequency MF: is the average frequency calculated over the power
spectrum as below.

MF =

∑F
i=1 iPSD(i)∑F
i=1 PSD(i)

(2.9)

− Median Frequency MedF : is the frequency that divides the total power
spectrum into two equal portions.

Medf = imed
fs
F

(2.10)

imed∑
i=1

PSD(i) =
F∑

i=imed

PSD(i) (2.11)

− Peak Frequency PF: represents the frequency of peak power.

PF = arg
fs
F

max
i=1....F

PS(i) (2.12)

Where fs is the sampling frequency.
N is the total number of time data points.
And F is the total number of frequency data points.

2.4 Results and Discussion

During muscular contraction, the muscle can be recruited more than one motor
unit simultaneously, in order to maintain the needed force. As shown in Fig-
ure.2.18, the sEMG acquired from athlete at different loading weight, we notice
that the sEMG amplitude increases when the loading weight increase, and for the
spectral density while loading 1 kg, the maximum power density is ranged from
70 to 125 Hz which is the slow-twitch units’ frequency range, and this because
1 kg does not need great muscle tension to be lifted. Meanwhile, for 5 and 6
kg the maximum power density is ranged from 300 to 500 Hz means that the
muscle recruits more motor units with both slow and fast-twitch fibers to load
these weights.
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Figure 2.18: The sEMG signals detected from healthy male athlete (20 years old)

and their PSDs.

In Table 2.19, the RMS, MAV, IEMG, and total power increase while increas-
ing of dumbbell weight, for the mean, median and peak frequencies, they are
shifted from 80-200 towards 500 Hz.

Table 2.2: sEMG statistical parameters at different dumbbell weights.

Dumbbell RMS MAV IEMG MF MedF PF TP

weight (V) (V) (Hz) (Hz) (Hz) (dB)

01kg 0.027 0.019 388.542 296.4740 288.509 80 0.001

05kg 0.094 0.069 533.597 412.327 427.289 425 0.008

06kg 0.173 0.122 568.922 433.048 437.562 437 0.033

The left-handers represent only 10% of the population [48], in this study we
have two female left-handers and in order to compare their sEMG with right-
handers, we chose two female right-handers of similar age. Figure.2.19 shows
that the left hands of left-handers are stronger than their right hands. And for
the right-handers, it can be noticed that the right hands are stronger than left
hands. So, we conclude that the use of muscle can result in increased performance
and muscle strength.
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Figure 2.19: Comparison between left-handers and right-handers( temporal sta-

tistical parameters).

In Figure.2.20, it is observed that the RMS, MAV, IEMG and total power for
diabetics are lower than healthy subjects, and also the strength of male are more
than female for both diabetic and healthy subjects. This is Due to the elevation
of sugar level in the blood that damages the vessels and nerves, which in turn
leads to muscle atrophy and dysfunction. For that, EMG testing is an essential
tool to evaluate and improve neuropathic changes.
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Figure 2.20: Statistical comparison of sEMG parameters between diabetics and

healthy subjects.
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As shown in Figure.2.21, the muscle strength increases from youth to adult-
hood and then decline at the aging phase.
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Figure 2.21: Statistical comparison of sEMG parameters between young, adults

and elderly subjects (only for healthy subjects).

In order to study the effect of obesity on sEMG signals, we select 04 healthy
subjects of similar age and different weights. The Body Mass Index BMI defined
as weight-height ratio, is measured to compare between thin and obese subjects.
As illustrated in Figure.2.22, the RMS, MAV, IEMG, and total power decrease
when the weight-height ratio increases, hence the thick subcutaneous of fatty
tissues increase the impedance even if the skin is well prepared. So, during sEMG
recording, obesity should be taken into consideration, and for very overweight
subjects, this technique may not be suitable.
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Figure 2.22: Statistical comparison of sEMG parameters between thin and obese

subjects (only for healthy subjects).
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The median and mean frequencies are more important in aging and disorders
that affect the muscle, neuromuscular junctions, nerves, or spinal cords. These
changes in muscle due to aging and disorders reduce the performance of muscle
strength and sEMG characteristics. Also, for the detection of muscle fatigue, the
mean and median frequencies shift towards the lower frequencies over time of
submaximal isometric contractions.
Whereas, the adipose tissue is an additional high impedance that reduces the
amplitude of sEMG signals but has no impact on the activity of muscle fibers or
motor unit as a whole.

2.5 Limitation and recommendations

The current study involved some limitations and recommendations, which could
be developed further. The number of volunteers in this study is limited, and
for quantitative comparison of sEMG parameters, the fatty tissues, gender, and
other physiological changes such as aging need careful consideration, because
these factors vary from subject to another subject. So, we will collect more
sEMG data.
Tingling in the hands, joint pain, and frozen shoulder syndrome are the more
common in diabetics. Besides these syndromes, the obesity in diabetics subjects
causes deformation of bone and joint instability and these problems become severe
in aging. The physical exercise is helpful to reduce the weight and delay the aging
as well as controlling diabetes, and sEMG technique can be used to evaluate and
select effective exercises.
The endurance exercise e.g. marathon and resisting training e.g. muscle building,
enhance the performance of muscle but may not be suitable for the female body.
During pregnancy and after delivery, there are many changes in the body such
as an increase in weight, difficulty in the movement that should be controlled by
physical exercise to keep the joint and limbs flexible. In future work, we will focus
on studying the effect of Pilates and some yoga asanas on sEMG for keeping the
flexibility and stability of the female body.
We will develop a wireless and more sophisticated sEMG measurement system
to facilitate the recording of signal during dynamic movement and adapt to any
bodily posture during exercise.

2.6 Conclusion

In this chapter, the real-time sEMG measurement system is developed considering
the cost and simplicity. The hardware and software of this system are described in
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detail passing from sensor, amplification filtering and offset adjustment circuit to
maintain the analog sEMG signal then digitalizing by Arduino Uno, the Matlab
GUI was developed to facilitate the acquisition, storage, and digital processing.
The sEMG data were collected for studying the effect of diabetes, age, gender,
handedness on sEMG statistical parameters in both temporal and spectral do-
mains. Sitting some limitations and recommendations at the end of this study.
Besides the temporal and spectral parameters i.e. root mean square, mean ab-
solute value, integrated EMG, mean and median frequencies and the total power
spectrum density; the muscular activation Onset and offset timing parameters
are very important in orthopedics, kinematic and kinetic. In the next chapter,
the muscular activation detection based on S-transform will be described using
sEMG signal during gait.
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Muscular activation detection

using sEMG signals during

dynamic contractions

3.1 Introduction

The muscle activation onset/offset timing is a reliable parameter used in the
diagnosis of abnormalities, measuring of nerve conduction velocity, and also in
human movement analysis.
In this chapter, an automatic onset/offset timing detection method based on S-
Transform was proposed using sEMG signals detected from lower limb muscles,
during gait.
A comparative study was made with Sample Entropy, Teager–Kaiser Energy
Operator, and integrated profile methods in order to validate the efficiency of our
proposed method.
The main goal of this study is to detect muscle activation intervals (MAIs) and
study their diversity in normal subjects and subjects with knee injuries.

3.2 Literature review of muscular activation de-

tection methods

The onset/offset timing is widely used in kinesiology to study the role of each
muscle in accomplishing movement, becomes insightful when deploying together
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with kinetics for studying the body motion, joint moments [18], or with kinemat-
ics e.g. joint angles [49]. It has enormous potential in medical application such as
orthopedics [50], neurology[51], gait analysis [52][53], diagnosis of cerebral palsy
[54], measurement of conductive nerve velocity [55] and others, this because in
regular conditions the muscle turns off, but if it still turns on when it is not
needed, it indicates to muscular pathology, i.e., active muscle spasm, muscular
hypertonicity, joint instability such as bad muscle coordination, and stress.
The amplitude of sEMG signal is influenced by different factors not only by mo-
tor unit action potentials which propagate the muscle fiber but also by the tissue
characteristics (refer to chapter 2). During dynamic contraction, the EMG-force
relationship is non-linear [56]means that the amplitude cannot express as an
indicator of muscle force. In this context, the approach that based on sEMG
amplitude is useless especially in dynamic conditions.
In the literature, to detect the muscle activation many methods have been pro-
posed. Vannozzi et al. [57] proposed an approach for muscle detection intervals
based on discontinuities detection in the wavelet domain
Recently, Solnik et al. [58] applied the Teager–Kaiser Energy Operator (TKEO)
using sEMG signals to improve that the accuracy of the sEMG onset timing de-
tection threshold, regardless of SNR signal-to-noise ratio.
Furthermore, Zhang et al. [59] used the Sample Entropy for onset detection us-
ing SEMG contaminated with Spurious Background Spikes. Zhou et al. [60]
proposed also the Sample Entropy for muscle onset detection using sEMG signal
keeping the ECG artifacts. Whereas, Liu et al. [61] used the integrated profile
for muscle activation using EMG signals with spurious background spikes.

3.3 S-transform-based muscular activation de-

tection method

This section describes the main steps of the S-transform-based muscle activation
detection method that is used to pinpoint precisely the onset and offset timing.
Here brief summarize of the S-Transform-based detection algorithm.

− Loading of sEMG signal;

− Calculation of TFR matrix using S-transform;

− Selection of optimal threshold;

− Converting the ST image into a binary signal;

3.3 S-transform-based muscular activation detection method 45



3. MUSCULAR ACTIVATION DETECTION USING SEMG SIGNALS DURING DYNAMIC
CONTRACTIONS

− Finally, detecting the onset/offset timing and calculating the stride dura-
tion.

3.3.1 S-transform technique

The S-transform is proposed to solve the Short-Time Fourier Transform (STFT)
and Continuous Wavelet Transform (CWT) issues. For non-stationary signals,
the STFT cannot track the signal dynamics correctly because of the constant
window width.
The S-transform combines the STFT and CWT properties by using a frequency-
dependent Gaussian time window. Moreover, it has good frequency resolution
[62].

3.3.1.1 The short-time Fourier transform (STFT)

The STFT of the signal x(t) can be expressed as [63]:

STFT (τ, f) =

∫ +∞

−∞
x (t)ω (t− τ) e−i2πftdt (3.1)

Where τ is a time of spectral localization, f is Fourier frequency, and theω (t) is
a window function.

3.3.2 The ST-STFT relationship

The S-transform is a particular case of STFT by replacing the window functionω
(t) by the Gaussian window. The Gaussian window is defined as:

ω (t) =
|f |√
2π
e

−t2f2
2 (3.2)

Substituting Eq. (3.1). (2) in Eq.(3.2), we get Eq.(3.3)

S (τ, f) =

∫ +∞

−∞
x(t)

|f |√
2π
e−

(τ−t)2f2
2 e−i2πftdt (3.3)

3.3.3 The Discrete S-Transform

The ST can be formulated as follow [64]:

S (τ, f) =

∫ +∞

−∞
X(α + f)e

−2π2α2

f2 ei2πατdα; f 6= 0. (3.4)
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Where:

X (α + f) =

∫ ∞
−∞

x(t)e−i2π(α+f)tdt (3.5)

Using the Eq.(3.4) to obtain the discrete ST (setting f → n
NT

and τ → kT):

S
(
kT,

n

NT

)
=

N−1∑
m=0

X[
m+ n

NT
]e−

2π2m2

n2 e
i2πmk
N (3.6)

Where T is the sampling time interval, and N is the total number of sampling
points. With k=0, 1 . . . N-1 denotes the discrete-time series, and n=0, 1 . . . N-1
represents the discrete frequencies.

3.3.4 S-Transform Matrix

The time-frequency representation image can be defined as a complex ST ma-
trix where its columns represent the discrete-time series and the rows are the
frequencies of the signal. As we know the dominant energy of the sEMG signals
concentrates in the range of 20-500 Hz [65]. So, we have restricted the ST matrix
rows into [21− 500]Hz.

3.3.5 The binary image of the S-transform matrix

During muscle activity, the Time-Frequency Representation becomes more inten-
sive.After the assessment of different threshols, we empirically select the optimal
threshold for separating these gray level distributions from the background and
normalizing the intensity values (0 or 1).

Imbin (m,n) =

{
1 Im (m,n) > δ
0 Im(m,n) ≤ δ

(3.7)

Where δ is given by:
δ = SD2(Im(m,n)) (3.8)

3.3.6 Binary signal

To convert the matrix Ibin (m, n) into binary vector, we calculated the sum of
cells along each row using the following formula (Eq.(3.9)).
For n=1, 2 . . . N.

s (n) =
M∑
m=1

Ibin(m,n) (3.9)
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Where m=1, 2. . . M (number of rows), and N the number of columns (length of
the signal).
In Figure.3.1, The S-Transform-based detection algorithm was implemented on
normal sEMG signal detected from Recto Femoral muscle during gait.

 

S-Transform 

Binary image 

Binary detector  

Figure 3.1: Scheme of the proposed ST image segmentation method.

3.4 Experimental setup

In order to validate the efficiency of our proposed detection method, we firstly
test it on sEMG lower limb database (for more details, refer to Chapter 4), and
then compare it to other recent methods i.e. TKEO, IP, SampEn.

3.4.1 Methods for Comparison

This section describes the muscle activation detection methods recently used in
the literature, which will be compared with the proposed method.

3.4.1.1 Teager-Kaiser Energy Operator

The Teager-Kaiser Energy Operator (TKEO) calculates the energy of signal bas-
ing on its amplitude as follows.

Ψ [s(n)] = s2 (n)− s(n+ 1)s(n− 1) (3.10)
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Where s (n) is the amplitude of signal s.
The onset/offset timing can be detected when the TKEO signals exceed the ar-
ranged threshold value defined as the standard deviation of the TKEO amplitude.

3.4.1.2 Integrated Profile

To obtain the discrete IP, a discrete integration of all rectified samples of signal
(s) was calculated as follows.

IP (t) =
t∑
i=1

|s(i)| (3.11)

With t =1, 2 . . . Length(s). The linear line L (t) is a linear function has the same
maximum value of IP (N), can be defined as:

L (t) = IP (N) ∗ t/N (3.12)

Where N: Length(x).
To determine the onset and offset, the difference between L (t) and IP (t) should
be calculated as follow:

D (t) = IP ((t)− L(t) (3.13)

The onset and offset were determined as the time points ton and toff at which
D(t) reaches its minimum and maximum values, respectively.

3.4.1.3 Sample Entropy

Sample entropy measures the predictability of dynamic systems represented by
time series. It was used in Cardiac variability time-series analysis [66], and in
muscle onset detection from EMG signals with ECG artifact[59] and in another
study with involuntary spikes [61].
The Sample entropy is the negative natural logarithm, with two essential pa-
rameters, the embedding dimension m, and tolerance r. It depends on the
probabilityBm(r) that two sequences match for m points within a margin of r
and Am(r) for m + 1 points. For finite time series x of length N. setting constant
m=2 (m should be � N) and r=0.25 *SD (standard derivation of the signal).
The Sample entropy can be calculated as below:

SampEn (m, r, N) = − log
Bm (r)

Am (r)
(3.14)

The sample entropy curve can be constructed by dividing the signal into sections
with the same length (L) of the window. The sample entropy is calculated using
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the signal sections multiplied by the overlapped sliding windows. To reduce the
noise background and maintain a high temporal resolution, the sliding window
and the window increment were empirically set at values 32 ms, 4 ms respectively.
During the activation muscle, the SampEn curve obtained the important values,
where the onset /offset can be detected when the SampEn signals exceed the
arranged threshold value. Empirically, we set the optimal threshold as half of the
standard deviation of the baseline amplitude.
The comparison between four onset/offset detection methods is shown in Fig-
ure.3.2. The real surface EMG signal from Recto Femoral muscle with the onset
and offset time obtained by visual detection (vertical dashed lines), The curve of
the proposed method. SampEn (with 32 ms sliding window and an increment
window of 4 ms), (TKEO curve, and the final curve presents the integrated profile
curve with the detected onset time (the minimum value) and detected offset time
(the maximum value) (vertical solid lines).

 

Figure 3.2: Onset and offset timing detection using ST, IP, SampEn and TKEO

methods.
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3.4.2 Performance evaluation metric

The latency is adopted to evaluate the onset/offset detection performance, can
be defined as the absolute value of the difference between automatic (tauto) and
visual (tv) detection.

τ = |tauto − tv | (3.15)

3.4.3 Muscle activation interval and onset timing-knee

flexion correlation

The muscle activation interval and linear correlation between muscle activation
and knee flexion are calculated to distinguish between normal and abnormal sub-
jects, defined as follows.

3.4.3.1 The muscle activation interval (MAI)

The muscle activation interval and onset timing are very important indicators,
especially in clinical applications. The onset time is the time of starting muscular
activation, and the activation interval is the interval between onset and offset
time. Also, it is the duration of one stride.

MAI (i) = Offset (i)−Onset (i) (3.16)

3.4.3.2 Correlation between onset timing and maximum flexion of the

knee

The linear correlation between the muscle and the maximum flexion of the knee
was calculated by using Pearson’s correlation coefficient (Eq.(3.17))

rp (X, Y ) =
Cov(X, Y )

σXσY
(3.17)

Where cov(X, Y) is the covariance.

Cov (X, Y ) =
1

N

N∑
i=1

(
X (i)− X̄

) (
Y (i)− Ȳ

)
(3.18)

And σx, σy are the standard deviation of x and y respectively.

σx =

√√√√ 1

N − 1

N∑
i=1

∣∣X (i)−X
∣∣2, σy =

√√√√ 1

N − 1

N∑
i=1

∣∣Y (i)− Y
∣∣2 (3.19)
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X, Y are the mean of X and Y respectively.
In this study, the X (i) is the onset timing vector and Y (i) is the instants
of maximum knee flexion during swing phase (refer to Chapter 4), using peak
detector algorithm with adapted threshold: th = SD (sFXK) + mean(SFXK)

3
.

Pearson’s correlation varies between 1 and -1, when rp (X, Y ) is close to 1 means
there is a strong positive linear correlation, strong negative correlation when it’s
close to -1, and negligible or zero correlation when it is close or equal to 0.

3.5 Result and discussion

As shown in Figure.3.3, an example of a muscle activation interval using the four
detection techniques i.e. ST, TKEO, SampEn, IP.

 

Figure 3.3: Comparison of MAI detection using ST, IP, SampEn and TKEO

method.

In comparison with invasive technique (detection by using the needles), the
surface EMG can be interfered with various undesirable spurious spikes due to
adjacent muscles, tenuous skin-electrode displacement during the gait, ECG ar-
tifact, ambient interference. . . .etc. These spikes’ characteristics change from low
amplitude and long duration to high amplitude and short duration, lead to erro-
neous onset/offset detection.

In this situation, not only the time component but also the frequency is nec-
essary, because during the contraction both amplitude in the time domain and
the component of frequency increase.
TKEO was proposed for automatic detection, it can be valid just for signals with
low noise and contractions of long duration. As well as SampEn was based on a
sliding window with two necessary parameters: the window length and window
increment. The choice of these parameters depends on a priori information of
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undesired signals, it’s very sensitive for ECG signal because this noise is periodic
[60], but in our case, it’s less efficient and the selection of these parameters is
difficult because, in this dataset, it can be found in one record each muscle has
different noise, some of them are low, some adversely are high. Also, the inte-
grated profile has low latency, compared with the proposed method, along with
the failed detection of the active muscle spasm, thus it can be reliable just for
gait with normal cases and useless for pathologic cases.

There is another study based on wavelet transform [57], where the detection
performance depends on the choice of mother wavelet that should be similar to
the MUAP, for the real sEMG signals, it cannot be implemented.

The S-Transform used the Gaussian window, also it is not sensitive to the
noise and has a good resolution, for this reason, the contractions in time-frequency
presentation are distinguished clearly and easily with less error of detection, as
confirmed in Figure.3.4.

 

Figure 3.4: Statistical comparison of onset offset detection performance.

For the normal cases, it can be noticed that the activation intervals are quasi-
homogeneous. As well as the number of strides is equal to the number of maxi-
mum knee flexion peaks during the swing.
However, for the abnormal cases, the activation intervals are very diverse; also,
the number of strides and maximum peaks of knee flexion during the swing are
not the same (see Figure.3.5).
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Figure 3.5: Detection of sEMG muscle activation and knee flexion peaks for

normal (a) and abnormal (b) subjects.

Table 3.1 summarizes the statistical analysis results of MAI diversity and
sEMG-knee relationship using Pearson’s correlation coefficient (rp). For the nor-
mal cases, the correlation between sEMG and knee flexion appears a very strong
positive relationship with values of rp ≥ 0.999, meanwhile, it seems weak (less
than 0.40) for the abnormalities, and This is due to the perturbation in the gait
cycle where the contraction of the hamstrings and quadriceps muscles are incon-
sistent with the flexion and extension of the knee.
The MAIs are less diverse (lower than 60 ms) for normal than abnormal cases
where diversity is more than 100 ms.
The MAI diversity is expressed by the standard deviation of strides for each
muscle. In the same Table 3.1, the stride intervals during normal gait are quasi-
homogeneous, their MAI diversity is less than 60 ms compared to abnormal gait,
where the diversity is more than 100 ms.

Table 3.1: Statistical results of the sEMG-knee relationship and MAI diversity.

Pearson’s correlation coefficient (rp) MAI Diversity

Muscles Normal cases Abnormal cases Normal cases Abnormal cases

mean± SD mean± SD mean(SD) mean(SD)

Recto Femoral 1.0000± 5.0000e-05 0.2120±0.1632 39.1848 159.7638

Femoral Biceps 0.9999±1.5000e-04 -0.1037±0.3829 36.6940 225.1532

Vastus Medialis 0.9999 ±8.1650e-05 0.2601±0.1873 50.8442 313.1644

Semitendinosus 0.9999 ±1.5000e-04 -0.2458±0.3543 35.1162 196.7390
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3.6 Conclusion and future scope

Muscle activation detection is widely used in the diagnosis of neuromuscular dis-
eases and kinesiology domain. Several methods have been applied and developed
to facilitate automatic detection and reduce the error of detection.
In this chapter, the S-transform method has been proposed and compared with
three recent methods: TKEO, SampEn, and integrated profile.
The results show that the S-transform method yielded better performance with
the shortest average latency of τonset = 0.015 s, τoffset= 0.014 s because it is
less sensitive to noise and has good resolution. While TKEO method is valid for
signals with low noise and long duration, and SampEn depends on a priori infor-
mation of undesired signals such as ECG artifacts. Also, the integrated profile
has low latency but failed to detect the short active intervals. Two statistical
parameters were extracted for knee pathology diagnosis during gait:

− The standard deviation of strides duration in order to measure the diver-
sity of activation intervals duration. During normal gait, the sEMG is
quasi-periodic with quasi-homogeneous strides; when the strides duration
becomes more diverse, it can be a sign of neuromuscular disorders, knee
injuries, etc.

− The linear relationship between knee flexion and sEMG signals using Pear-
son’s correlation coefficients. It is very strong for normal subjects and weak
or negligible for the abnormalities.

In the future, these statistical parameters will be added to features extraction for
classification.
In the next chapter, an automatic knee diagnosis method will be developed using
sEMG signals together with the knee angle.
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An automatic diagnosis of knee

injuries using sEMG and

goniometric signals

4.1 Introduction

Anterior Cruciate Ligament (ACL) and Meniscus (MN) injuries are common knee
injuries that affect both active male and female athletes. These injuries are known
to cause early joint knee arthritis and hence early diagnosis and treatments are
critical to their clinical outcomes. In this chapter, we propose a diagnosis method
for soft tissue-knee injuries using surface electromyographic (sEMG) and gonio-
metric signals.
The signals associated with each pathology are collected and treated identifying
the parameters indicative of joint anterior-posterior instability, loading bearing,
impingement, and flexion-extension articular motion. Special features are ex-
tracted in time and frequency domain for responses associated with knee irregu-
larities (knee injuries) and the relevant effects and their corresponding patterns
are selected by feature selection methods. To validate such an approach and clas-
sification of different types of knee soft tissues injuries, cross-validation technique
and supervised classifiers were used.

4.2 Knee Joint

Fluent and stable walking, running, and sitting, these daily activities could not
be possible without a healthy knee joint; even simple yoga asanas such as tree
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pose (Vriksasana) or chair pose (Utkatasana), playing football or other kinds of
sports need bending and extending of this hinge joint.

4.2.1 Knee Joint Anatomy

The knee is the largest, complex, and bearing-weight joint in the human body;
consists of bones, cartilages, meniscus, ligaments, tendons, and muscles (see Fig-
ure.4.1). They work all together to stabilize the movements.

Figure 4.1: The knee joint anatomy [11].

4.2.1.1 Bones

Three major bones join together to form the knee joint; the thigh bone is also
known as the femur is the strongest and longest bone in the human body, shin
bone also called tibia is the second longest bone after femur and the kneecap
a.k.a. patella.
Besides these three bones, the fibula is the calf bone located on the lateral side of
the tibia, has the same length but thinner. Fibula itself plays a secondary role in
supporting the knee joint stability, serving to attach ligaments and muscles, also
to bear a little weight [67].

4.2.1.2 Articular Cartilages

The two convex condyles at the end of the femur with two asymmetrical concave
condyles at the end of the tibia bone form together with the tibiofemoral artic-
ulation, whereas, the undersurface of the patella glides along the intercondylar
groove of the femur, forming together the patellofemoral articulation.
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Both articulations surfaces are covered by hyaline cartilage which is smooth, slip-
pery, and flexibly designed to reduce the friction forces, which in turn protect the
bones from rubbing on each other.
These articular cartilages become more slippery by synovial fluid. This viscous
fluid is secreted by the synovial membrane located in the interior of the capsule
to lubricate the knee joint [67].

4.2.1.3 Meniscus

On the tibial plateau, there are two crescent-shaped lamellae known as medial and
lateral menisci. These fibrocartilaginous structures designed to adds stability to
the joint, disperse the weight, and act as shock-absorbers to prevent the collision
of the bones [67].

4.2.1.4 Ligaments

The ligaments are flexible, tough, fibrous connective tissue bans that join the
knee bones in order to stabilize the joint and limit the movements [67]. There
are four ligaments, each one provides a specific function described below.

1. The medial collateral ligament (MCL) is on the medial side of the knee,
which connects the femur to the tibia and protects the joint from sliding
sideways, resists the valgus stress, the lateral rotation and the anterior
translation of the tibia relative to the femur.

2. The lateral collateral ligament (LCL) is located on the lateral side of the
knee, connects the Femur to the fibula and resists the varus stress and the
lateral rotation of the tibia relative to the femur.

3. Anterior and posterior cruciate ligaments (ACL & PCL) are cross-shaped
located on the inside of the knee. The ACL role is to prevent the hyperex-
tension and protect the tibia from sliding forward on the femur.

4. Whereas the PCL role is to prevent the posterior movement of the tibia
relative to the femur.

4.2.1.5 Tendons and Muscles

The ligaments join the knee joint bone whereas the tendons join the muscles
to the knee bones; there are two major muscle groups surround the knee and
allow the movement of the knee [67]. The quadriceps and hamstrings muscles are
responsible for the extension and flexion of the knee, respectively.
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4.2.2 Knee Joint Biomechanics

In the knee motion, there six degrees of freedom as shown in Figure.4.2, three
rotations, and three translations [68][69].

− Rotation

1. Abduction/adduction: from 6◦ to 8◦ in extension.

2. Flexion/extension from 3◦ to 135◦ of flexion.

3. Medial/lateral rotation from 25◦ to 35◦ of flexion.

− Translation

1. Anterior/posterior translation from 5 to 10 mm.

2. Medial/lateral shift: 2-5 mm.

3. Compression/distraction: 1-2 mm.

 

 

 

Abduction/adduction Flexion/extension Medial/lateral Anterior/posterior 

translation 

Medial/lateral 

shift 

Compression 

/distraction 

Figure 4.2: Six degrees of freedom of the knee [12].

4.2.3 Knee joint biomechanics and muscle activation dur-

ing gait

The most habitual movements of the knee occur and repeated quasi-periodically,
during the gait cycle. The single gait cycle a.k.a. stride consists of two phases:
swing phase (40%) and stance phase (60%), which in turn subdivided into differ-
ent subphases.

− Stance phase
The stance phase represents the entire time that the foot is in contact with
the floor, consists of three subphases: initial bipedal support represents
10%, single support from foot flat to heel off represents 40%, and terminal
bipedal support (10%) [70].
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1. Heel Strike (HS) is the initial contact of the heel with the refer-
ence floor due to dorsiflexors contraction, the knee extends because
of quadriceps contraction.

2. Foot Flat (FF) is the loading response phase where the weight-bearing
transfer to the reference leg, the quadriceps muscles is less active and
the knee flexes to 15-20◦.

3. Midstance phase, where the knee yields the maximum flexion then
begins to extend, and the weight-bearing is aligned with the reference
leg and the abductors fire for lateral support.

4. Heel Off (HO) is the terminal stance phase when the heel leaves the
ground; the knee flexes to 0-5◦.

5. Toe Off (TO) and pre-swing phase starts when the toe leaves the
ground and the knee flexion increase to 35-40◦.

− Swing phase
The swing phase is the period of time that the reference leg is off the floor
consist of initial swing, mid-swing, and terminal swing.The swing phase is
the period of time that the reference leg is off the floor consist of initial
swing, mid-swing, and terminal swing.

1. Initial & mid-swing phase starts when the reference leg completely
leaves the floor and swing in the air, the knee flexes up to 60-65◦

because of hamstrings muscles contraction but then extends to 30◦

due to quadriceps muscles contraction.

2. Terminal swing phase is the final phase, where the tibia is vertical to
the floor. Simultaneously, the quadriceps contract to extend the knee,
and the hamstrings provide the needed flexor force to protect the knee
from hypertension.
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Figure 4.3: The phases and the knee angle of normal gait.

Table 4.1 shows muscle activity during the gait cycle.

Table 4.1: Muscle activation during Gait cycle.

Gait Cycle Muscle activity

Heel Strike 0% Quadriceps femoris, Tibialis Anterior, Gluteus Medius,

Gluteus Maximus.

Foot Flat 0%-12% Quadriceps femoris, Tibialis Anterior, Gluteus Medius,

Gluteus Maximus Adductor Magnus, Tensor Fascia

latae, Tibialis Posterior, Peroneus Longus.

Mid-stance 12-31% Gastrocnemius, Soleus.

Heel Off 31-50% Soleus, Gastrocnemius, Flexor digitorum longus , Flexor

hallucis longus, Tibialis posterior, Peroneus longus, Per-

oneus brevis.

Toe Off 50-62% Soleus, Gastrocnemius, Biceps Femoris, Adductor

Longus.

Initial swing 62-75% Extensor Hallucis Longus, Flexor Hallucis Longus, Sar-

torius, Iliacus, Tibialis Anterior, Tibialis Anterior, Ex-

tensor Hallucis Longus, Flexor Hallucis Longus, Sarto-

rius, Iliacus, Tibialis Anterior, Tibialis Anterior.

Mid-swing 75-87% Semimembranosus, Semitendinosus, Biceps Femoris,

Tibialis anterior.

Terminal swing 87-100% Quadriceps femoris, Semitendinosus, Semimembra-

nosus, Biceps Femoris., Tibialis anterior.
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4.2.4 Knee injuries and diagnosis techniques

Millions of people worldwide suffer from knee injuries e.g. cruciate and collateral
ligaments injuries [71], meniscus tears [72][73], muscle strains, tendon ruptures,
and osteoarthritis [74]. The PCL is more resilient to injury comparing to ACL,
MCL, and LCL injuries. The LCL and MCL are vulnerable to lateral stresses.
The anterior cruciate ligament (ACL) injury (see Figure.4.4) is the most com-
monly injured ligament for the athletes like footballers and skiers, typically occurs
when the force directed anteriorly to the semi-flexed knee.

Figure 4.4: ACL injury [13].

Meniscus tear is among the most common knee injuries, especially for athletes,
can be acute or chronic tears ( see Figure.4.5), the chronic tear occur usually in
the elderly patients could be treated by anti-inflammatory medications or by
physical therapy, while the acute tear could be fixed by surgical treatment.

Figure 4.5: Meniscus tear.

These injuries cause significant pain, inflammatory conditions associated with
the knee, and potential disability that become real if these injuries are not treated.
The knee is a bony and soft tissue complex structure that requires an orthopedic
surgeon equipped with X-rays [75], CT scans [76], and MRIs [77] to diagnose the
problem properly. In addition to the aforementioned symptoms, an orthopedic
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examination tests such as anterior Drawer, Lachman, vulgus and versus stress
tests for ligamentous stability, McMurray’s test and Thessaly tests [78][79] for
meniscal tears or lesion are performed.
Early detection of knee injuries and pathologies prevents the pain and the damage
of the knee structures. Besides the orthopedic tests, the diagnosis techniques are
necessary to identify the pathologies and determine the injured structures. It’s
mostly based on diagnostic imaging techniques like radiography (X-ray), com-
puted tomography (CT), and magnetic resonance imaging (MRI)] that we can
pinpoint the source of the knee problem before a surgical treatment i.e. arthro-
scopic surgery [80][81], and rehabilitation plan are put in place.

4.3 Problem statement and motivation

The lack of imaging techniques in the diagnosis of knee pathologies such as MRI
used for soft tissue exams and CT is simply a cost issue as most of the initial
exams rely on X-rays. If the first exam is not decisive additional imaging will
be ordered as is the case of osteochondral defects sizes, tumors, or some abnor-
malities that are not clearly diagnosed and identified by X-rays. This situation
can be critically important in hospitals of developed countries where the CTs and
MRI machines are not available or are heavily used and scheduling can delay the
diagnosis.

The knee is a complex joint with a supporting structure composed of mus-
cles/tendons and ligaments working together to maintain knee stability and per-
formance. The femoral tibial articular surfaces move along medial and lateral
conforming condyles. Any damage to the knee structures disrupts the functional-
ity of the knee. The patella rides along a femoral groove to maintain the quadri-
ceps forces and tibia tendon forces in such a way to increases the leverage that the
quadriceps tendon can exert on the femur by increasing the angle at which it acts.
The collateral ligaments are usually used to balance the knee and maintain side
to side support to the knee joint. With such complexity, the knee becomes a real
challenge to diagnose structural changes associated with pain, early degeneration
(osteoarthritis), ACL tear, and any other unforeseen pathology that render the
knee function abnormal.

Additional diagnostic tools could benefit the clinician if they are cost-effective
and proven reliable. Surface Electromyogram can become a versatile tool for the
diagnosis of certain knee pathologies.
In this study, we propose an automatic method to diagnose knee injuries by us-
ing surface electromyographic signals detected from four muscles (Rectus Femoris
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RF, Vastus Medialis VM, Biceps Femoris BF, and Semitendinosus ST) and gonio-
metric signal during dynamic movement i.e. Gait. The sEMG and Goniometric
signals were preprocessed for feature extraction, the feature selection method was
used, in order to reduce the database dimensionality and select the relevant sig-
nal parameters. Finally, the random forest classifier was applied to evaluate the
performance.

4.4 Literature review

The human gait has been used for various applications: in medical diagnosis [82],
rehabilitation [83], recognition and control of movements [84][85]. The gait pa-
rameters have been extracted by using the different sensors as accelerometer[86],
goniometer[87] EMG [88][89] to facilitate the analysis of gait and aid in diagnosis.

Recently, Hurd et al. used the EMG, goniometer and plat force sensors for
studying the effect of knee instability after ACL rupture on movement patterns
during the midstance phase [90]. In another study, Wei applied the support vector
machine (SVM) classifier to recognize the sub-phases of gait using eight leg mus-
cles (6 muscles of right leg: Medial Gastrocnemius (MG), Soleus (SO), Tibialis
Anterior (TA), Rectus Femoris (RF), Vastus Medialis (VM), Medial Hamstrings
(MH) and 2 muscles of left leg: MG and TA), the sEMG signals of these muscles
were processed for feature extraction in time and frequency domain; The results
obtained showed that the performance recognition with Mean Absolute Value and
Zero-Crossing features was better than other features with an average accuracy
of 89,40% [91].

Janidarmian et al, using the time-domain features i.e. Mean, Minimum, Maxi-
mum, Median, Standard Deviation, Coefficients of variation, Peak-to-peak ampli-
tude, Percentiles, Interquartile range, Zero crossings, Skewness, Kurtosis, Signal
power, Peak intensity, Lag-one autocorrelation, Inter-axis Correlation Coefficient,
RMS, Trapezoidal numerical integration; The best performance achieved by the
Bagged Decision Trees classifier with an accuracy of 97.17% [92].
Interestingly, Herrera-Gonzalez et al. proposed an automatic diagnosis of knee in-
juries by using the sEMG and goniometric signals during gait, sitting and stand-
ing. The wavelet transform and spectrogram techniques were used for feature
extraction and artificial neural network (ANN) for classification. The results ob-
tained showed that the crossed internal and external muscles of the lower limb
in combination with goniometry features achieved a higher performance with an
accuracy of 95%, 95% and 100% for gait, standing, and sitting, respectively [93].
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4.5 Methodology

The block diagram of the proposed methodology is shown in Figure.5.2. The
sEMG signals were detected from four lower limb muscles simultaneously with the
goniometric signal that measures the flexion-extension of the knee. These signals
are pre-processed. Then the temporal and spectral features were extracted. The
feature selection is applied in order to select the relevant features. Finally, the
random forest classifier is used to classify the knee injuries, i.e. anterior cruciate
ligament (ACL) injury, meniscus injury.

sEMG

signals

Band-pass filter

[20-500]Hz
Fast-ICA

Feature

Extraction

Feature

Selection
Classification

Goniometric

signal

Low-pass filter

(fc=30Hz)

Figure 4.6: Block diagram of the knee injuries classification method.

4.5.1 Lower Limb sEMG Dataset description

The sEMG database is available at UCI. It consists of 21 male volunteers older
than 18 years, with 11normal subjects and 11 with knee Abnormalities: 06 sub-
jects with anterior cruciate ligament (ACL) injury, and 04 with meniscus injury;
each subject underwent three different movements: gait, leg extension from a sit-
ting position, and flexion of the leg up. These data were acquired from four lower
limb muscles: Rectus Femoris RF, Vastus Medialis VM, Biceps Femoris BF, and
Semitendinosus ST). Simultaneously, the flexion-extension angle was measured
by placing the goniometer on the external side of the knee joint. All records were
transmitted in real-time Datalog software through Bluetooth adapter, 14-bit res-
olution and sampling frequency of 1000Hz [94].

4.5.2 Data pre-processing

In order to reduce the influence of undesirable noises, a 3rd order Butterworth low
pass filter was applied on the goniometric signal with cut-off frequency of 30Hz;
and a 2nd order Butterworth bandpass filter with cut-off frequencies of [20- 460]
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Hz (refer to Chapter 2) used for sEMG signals.
The filtered sEMG signals were supplied to FastICA [95] (Independent Compo-
nent Analysis) algorithm for source estimation and removing the electrical cross-
talk (refer to Chapter 2). All the data were segmented into data segments of the
same length using a fixed window length of 5000 samples and an overlap of 90%.

4.5.2.1 Independent Component Analysis (ICA)

ICA is a statistical technique used for the separation of independent sources. In
principle, the independent components (IC) can be obtained by maximizing the
non-Gaussianity using the contrast functions i.e. Kurtosis and negentropy, or by
minimizing the Mutual Information (MI) [128]. In a noise-free, the ICA model
can be expressed as follows:

x(t) = As(t) (4.1)

The latent sources s(t) = [s1(t), . . . ., sp(t)]
T are mutually independent and have

non-gaussian distributions; the linear mixing of these sources produce the obser-
vations x(t) = [x1(t), . . . ., xp(t)]

T , where A ∈ R(n∗p) is the mixing matrix.
ICA aims to estimate the unmixing matrix W = A−1, thereby recovering the
sources s∗(t) = [s∗1(t), . . . ., s

∗
p(t)]

T .
In this study, the FastICA approach that is based on negentropy function was
preferred to separate the EMG signals and reduce the cross-talk, due to its robust
performance and fast convergence[128].

4.5.3 Feature extraction

In this study, several techniques have been used in order to extract the temporal
and spectral features from goniometric and sEMG signals as described below.

4.5.3.1 Time Domain features

Goniometric signal — The single gait cycle consists of swing (40%) and
stance (60%) phases, which in turn divided in knee swing/stance flexion and
knee swing/stance extension intervals. The four extrema are the zero-crossing
points of the knee angular velocity calculated by the first derivative of the knee
angle (goniometric signal) as shown in Figure.4.7. These maxima and minima
facilitate the calculation of different parameters.
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Figure 4.7: Knee angle and angular velocity signals.

− Maximum knee flexion during swing (Psw).

− Maximum knee flexion during stance (Pst).

− Psw
Pst

ratio.

− Duration between Psw and Pst.

− Angles between maximum knee extension and maximum knee flexion during
swing (α1, α2).

− Angles between maximum knee extension and maximum knee flexion during
stance (β1, β2).

− Stance duration: from Heel Strike to begin of Toe Off (Pre-swing).

− Pre-swing + swing duration: From TO to HS.

− Stride length [96].
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sEMG signal —From the four sEMG signals, we have extracted the following
time-domain features.

− Absolute Mean Value

AMV =
1

N

N∑
i=1

|si| (4.2)

− Difference Absolute Mean Value

DAMV =
1

N

N−1∑
i=1

|si+1 − si| (4.3)

− Root Mean Square

RMS =

√√√√ 1

N

N∑
i=1

s2i (4.4)

− Shannon Energy

ESh =
−1

N

N∑
i=1

s2i log s2i (4.5)

− Sample Entropy[97]

Samp− En(m, r,N) =

{
− log C(r)m

C(r)m−1 Cm 6= 0 ∧ Cm−1 6= 0

− log N−m
N−m−1 Cm = 0 ∨ Cm−1 = 0

(4.6)

Where N is the total number of sampling points. setting constant m=2 (m should
be � N) and r=0.25∗SD (standard derivation of signal).

4.5.3.2 Autocorrelation and linear correlation

During gait, sEMG and goniometric signals are quasi-periodic, this is because
the contractions of extensor and flexor muscles and the knee extension/flexion
are regularly repeated. Hence, the autocorrelation is a convenient technique to
extract the cyclic patterns. Besides quasi-periodicity, the sEMG signals are quasi-
random in nature and the use of smoothing technique is appropriate to closely
reflect the goniometric signals. In this study, we have applied the integrated
profile method (refer to chapter 3) on both sEMG and goniometric signals to
obtain approximately similar shape (see Figure.4.8) and then calculated their
autocorrelation using the following formula.

rp(τ) =
cov(si, si+τ )

σs2
(4.7)
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Figure 4.8: Integrated profile and autocorrelation of sEMG (from RF) and go-

niometric signal (healthy subject)

From the autocorrelation curves, we have extracted the following features.

− Zero-crossings of autocorrelation.

− Slope of maximum autocorrelation peaks.

− θi
θi+1

ratio.

As shown in Figure.4.9, the autocorrelation-based features extracted from the
goniometric signal (healthy subjects), the same features are extracted from the
four sEMG signal and then studying their linear relationship.
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Figure 4.9: Autocorrelation-based goniometric features.

The relationship between signals is very important, for that reason the linear
correlation has been used to determine the correlation between goniometric sig-
nal and sEMG signal of each muscle, the correlation between sEMG signals of
quadriceps muscles, the correlation between sEMG signals of Hamstring muscles
and correlation between sEMG signals of quadriceps muscles using the following
equation (for further details, refer to Section 4.8 of Chapter 3).

Cp(s1, s2) =
cov(s1, s2)

σs1σs2
(4.8)

4.5.3.3 Frequency Domain features

In the frequency domain, the PSD has been calculated using Welch’s method in
order to extract the following spectral features (for more details, refer back to
Chapter 2).

− Mean frequency

− Median frequency

− Peak frequency.

4.5.4 Feature Vector

After segmentation and feature extraction the total matrix size is 271x 82 with
21 for normal case, 191 for ACL injuries, 59 for meniscus injuries. 82 represents
the length of class with features vector which can be represented as follows.
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Table 4.2: Feature vector description

Feature Vector

No Feature No Feature

1-4 RMS of RF, VM, BF, and ST 51-52 Pst (mean, SD)

5-8 AMV of RF, VM, BF, and ST 53-54 Pst (mean, SD)

9-12 DAMV of RF, VM, BF, and ST 55-56 Psw Pst ratio (mean, SD)

13-16 ESh of RF, VM, BF, and ST 57-58 DurationPsw−Pst (mean, SD)

17-20 Samp-En of RF, VM, BF, and ST 59-60 α1 (mean, SD)

21-24 fmed of RF, VM, BF, and ST 61-62 α2 (mean, SD)

25-28 fmean of RF, VM, BF, and ST 63-64 β1 (mean, SD)

29-32 fmax of RF, VM, BF, and ST 65-66 β2 (mean, SD)

33-36 Cp(θG, θsEMG) of RF, VM, BF, and ST 67-68 Stance duration (mean, SD)

37-40 Cp (θG ratio, θsEMG ratio) of RF, VM, BF, and ST 69-70 Swing duration (mean, SD)

41-44 ZCratio (G, sEMG) of RF, VM, BF, and ST 71-72 Stridest−st (mean, SD)

45 Corr (RF,VM) 73-74 Stridesw−sw (mean, SD)

46 Corr (RF,BF) 75-76 θG(mean, SD)

47 Corr (RF,ST), 77-78 θG ratio (mean, SD)

48 Corr (ST, VM) 79 fmedG

49 Corr (BF,ST) 80 fmeanG

50 Corr (BF,VM) 81 fmaxG

4.5.5 Feature Selection

Feature selection FS can be used for feature evaluation and optimal features selec-
tion by taking the irrelevant and redundant features out and keeping the relevant
ones. This process can reduce the database dimensionality and the computational
complexity, which in turn can improve the performance of classification and speed
up the learning process in terms of computation time. Although several research
works have been proposed to evaluate the relevant features for classification of
EMG signals [98][99][100][101][102][103][104]. In this study, the ReliefF was used
to select the effective features that influence on knee injury classification.

4.5.5.1 ReliefF

ReliefF is an extension of relief algorithm, was proposed by Kononenko [105] in
order to deal with the multiclass problems. It randomly selects the instance Ri
from training data and seeking to find the k nearest neighbor instances from the
same class (nearest hits Hj ), also the k nearest neighbors of each other classes
( Near Misses Mj) [105]. The weight estimation function (W) is calculated as
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follows.

W [f ] =W [f ]−
k∑
j=1

diff(f,Ri, Hj)

m ∗ k
+

T∑
u = 1

c 6= c(Ri)

P (cu)

1− P (c(Ri))
∗

k∑
j=1

diff(f,Ri,Mj)

m ∗ k
(4.9)

Where,
m is the number of instances (1 ≤ i ≤ m );
f is the number of features with f=1 . . . F (the length of features);
P(cu): the probability of class;
T is the total number of classes;
P(c(Ri) ): the probability of Ri class;
k: the number of the nearest neighbors;
diff() is the function that calculates the distance between the values of the feature
f for two instances Ri and Hj or Mj;
The weight vector range between [-1 1], the important features accomplish the
large positive weight.

4.5.6 Classification

Random Forest: is a combination of decision tree classifiers with similar quality.
The subsets of features are randomly selected to split each tree node. The final
decision is obtained by the majority vote of trees [106]. In this work, the optimal
number of trees is 80.

4.5.7 Performance evaluation

In order to evaluate the performance of classification, there are different statis-
tical metrics that can be used such as the overall classification accuracy (OCA),
sensitivity, specificity, and the confusion matrix. The aforementioned metrics are
described below.

− Confusion matrix: is also called the error matrix that represents the perfor-
mance of classification in form of matrix CM, all the correct predictions are
represented in the diagonal of the matrix, whereas the off-diagonal cells are
for the incorrect predictions. In this study,we have three classes i.e. Healthy
H, ACL injury A, and Meniscus injury M subjects, so the confusion matrix
CM can be presented as follows.

CM=

CHH CHA CHM
CAH CAA CAM
CMH CMA CMM
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Where CHH , CAA, CMM are the correct predictions (true positive TP) that
are classified as healthy cases, ACL injury and meniscus injury, respectively.
CHA and CHM are the numbers of healthy cases that are misclassified as
ACL injury or meniscus injury, respectively
CAH and CAM are the numbers of cases with ACL injury that are misclas-
sified as healthy cases or meniscus injury, respectively.
CMH and CMA are the numbers of cases with meniscus injury that are mis-
classified as healthy cases or ACL injury, respectively.

− The Overall Classification Accuracy OCA is the proportion of the num-
ber of correct predictions to the total number of predictions, expressed as
follows.

OCA =
Number of correct predictions

total number of predictions
∗ 100% (4.10)

− Sensitivity is known as recall or true positive rate can be expressed as:

Se =
TP

TP + FN
(4.11)

Where TP and FN are the true positive and false negative of considered
class. For healthy class CH, SeH is calculated as follows.

SeH =
CHH

(CHH + CHA + CHM
) (4.12)

− Specificity or the true negative rate calculated as:

Sp =
TN

TN + FP
(4.13)

Where TN and FP are the true negative and false negative of considered
class, respectively. For a healthy class,SeH determined as follows.

SeH =
TNH

(TNH + CNH + CMH)
(4.14)

With TNN = CAA + CNM + CMA + CMM .

4.6 Results and discussion

The knee injuries database was divided into 02 databases of 2 classes: ACL
injuries database consists of 191 ACL injuries and 21 normal (N) records, and

4.6 Results and discussion 73



4. AN AUTOMATIC DIAGNOSIS OF KNEE INJURIES USING SEMG AND GONIOMETRIC SIGNALS

Meniscus injuries MN with 59 (MN).
The selection of relevant features is assessed by using reliefF algorithm. As shown
in Figure.4.10 and Figure.4.11 the common relevant features in two databases
are: in the frequency domain, the mean and median frequencies for sEMG and
goniometric signals, and RMS, DAMV, Shannon entropy, AMV for sEMG and
stance peak, stance-swing peaks ratio, α2, β2, and stance duration in the time
domain. Whereas The internal-external muscles of hamstring and quadriceps,
also the goniometric and sEMG signals relationships are very important but it
depends on injury type. For meniscus injury, BF-ST, VM-ST, G -RF, and G-BF
correlation. Whereas, for ACL injuries only the goniometric and sEMG signals
relationships that were selected.
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Figure 4.10: Ranking features of ACL injuries database.
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Figure 4.11: Ranking features selection of MN injuries database.
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The comparison of five classifiers (i.e., Random Forest, Decision Tree (n-
Trees=80), Diagonal-Linear Discriminant Analysis (DLDA), SVM with polyno-
mial kernel function, and k-NN with k= 5) was realized using Matlab R2017a and
performed on 1.99 GHz Intel Core i7-8550U based PC using a 64-bit Windows
10 operating system with 8 GB RAM. As shown in Table 4.3, The random forest
with ReliefF achieved higher performance compared to other classifiers whereas
the Decision Tree classifier has the lowest computation time. Adding the feature
selection technique leads to remove the noised and irrelevant features which in
turn reduce the computation time as shown in Tables 4.3 and 4.4.

Table 4.3: Classification performance of ACLI, and MNI databases with and

without feature selection.

Before FS After FS

Classifier Database Acc(%) Se(%) Sp(%) Computation Acc(%) Se(%) Sp(%) Computation

time(s) time(s)

Random ACLI 97,16 76,19 97,38 1,95 97,16 76,19 100 1,88

Forest MNI 96,25 85,71 100 1,80 98,75 95,23 100 1,75

Decision ACLI 95,28 76,19 97,38 0,35 95,75 76,19 97,19 0,32

Tree MNI 95,00 85,71 98,30 0,29 95,00 85,71 98,30 0,29

DLDA ACLI 93,86 76,19 95,81 0,57 93,39 76,19 95,28 0,46

MNI 83,75 85,71 83,05 0,46 91,25 85,71 93,22 0,45

ACLI 93,86 76,19 95,81 1,10 92,92 61,90 96,33 0,94

SVM MNI 90,00 85,71 91,52 0,93 95,00 85,71 98,30 0,92

ACLI 93,44 38,09 99,47 1,58 92,96 28,57 100 1,14

k-NN MNI 83,75 52,38 94,91 1,29 83,75 47,62 96,61 1,11

Figure.4.12 shows the relevant features of knee injuries database with 3 classes
(Normal, ACL injuries, and MN injuries). Swing peak, stride, and β1 are also
selected as relevant features. The performance classification is shown in Table
4.4 and the prediction results are presented in the confusion matrix (see Table
4.5 ). It shows that 05 normal cases were misclassified as ACL injuries.

4.6 Results and discussion 75
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Figure 4.12: Ranking features selection of Knee injuries database.

Table 4.4: Classification performance of knee injuries database with and without

feature selection.

Before FS After FS

Classifier Acc(%) Se(%) Sp(%) Computation Acc(%) Se(%) Sp(%) Computation

time(s) time(s)

Random Forest 97,27 61,90 100 2,06 98,29 76,42 100 2,02

Decision Tree 92,52 52,38 96,70 0,36 95,57 52,38 100 0,33

DLDA 84,99 61,90 94,13 0,55 86,05 57,14 96,33 0,50

SVM 85,37 71,42 98,53 1,37 94,21 61,90 99,26 1,35

k-NN 78,23 23,80 99,63 1,28 88,77 33,33 99,26 1,20

Table 4.5: Confusion matrix of classification results for random forest classifier

and reliefF

Classified as

Actual class Normal ACL injury MN injury

Normal 16 5 0

ACL injury 0 191 0

MN injury 0 0 59

4.6 Results and discussion 76
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4.7 Conclusion

In this chapter, we have developed an automatic knee injury diagnosis method
using sEMG and goniometric signals. These signals were detected from four cat-
egories i.e. normal, ACL injuries, meniscus injuries subjects, the features were
extracted from time and frequency domain and selected by ReliefF algorithm.
The selection of relevant features improved the classification of knee injuries and
performance, where the accuracy with random forest reached 98,29%, a slight
increase from 97,27% before selection.
In the future study, we seek to enhance and improve the performance of the clas-
sification of different knee pathologies by extracting more parameters that are
critical to the knee physical exam of the patient. There is more data testing
needed and further validation for the proposed method to reach its full potential
and becomes a tool readily available in clinics.
In the next chapter, we will develop an automatic diagnosis method for neuro-
muscular disorders i.e. neuropathy and myopathy by means of concentric needle.

4.7 Conclusion 77



5

An automatic diagnosis of

neuromuscular disorders using

iEMG

5.1 Introduction

Neuropathy and myopathy are the majority of neuromuscular disorders that in-
flict damage on nerves and muscles, which can be detected and evaluated by
EMG. The purpose of this chapter is to develop an automatic diagnosis approach
of neuropathy and myopathy disorders based on intramuscular electromyographic
signals, using two sorts of iEMG database, the simulated iEMG signals that are
used for evaluating and the clinical iEMG signals for validating our approach.
These signals were decomposed by wavelet transform i.e. discrete wavelet trans-
form DWT and wavelet packet transform WPT in order to decompose the signals
and extract the statistical features. Then the feature selection methods such as
ReliefF and fast correlation-based filter FCBF were employed for selecting the
relevant features and classified by the linear discriminant analysis LDA.

5.2 Neuropathy and myopathy

Electromyography is a technique for measuring the electrical activities generated
by skeletal muscle. The detection of electromyographic signals is acquired either
by concentric needles or surface electrodes and can be recorded at a different
percentage of maximal voluntary muscle contraction ( MVC)[107]. The increase
in voluntary force results in the additional firing of motor units (MUs) which in

78



5. AN AUTOMATIC DIAGNOSIS OF NEUROMUSCULAR DISORDERS USING IEMG

turn complicate the separation of discrete waveforms i.e. motor unit action po-
tentials (MUAPs), and the extraction of EMG characteristic metrics for diagnosis
of neuromuscular disorders.
Any damage in structure or in the functionality of nerves, neuromuscular junc-
tions, or muscles leads to neuromuscular disorders such as neuropathies and my-
opathies, which influence on the characteristic of MUAPs [108]. In neuropathy,
due to peripheral nerves damage, the MUAPs having a longer duration and a
higher amplitude compared to healthy cases. While in myopathy, because of the
malfunction of muscle fibers, the MUAPs decrease in amplitude and duration
[108](see Figure.5.1). However, the diagnosis in the early stage of neuromuscu-
lar disorders cannot be feasible, hence different quantitative methods and clas-
sification techniques have been developed in order to detect and minimize the
progression of pathologies.

Figure 5.1: Neuropathic and myopathic disorders.

5.3 Literature review

In the literature, several feature extraction methods were proposed for neuromus-
cular disorders classification. Some of these methods based on the characteristic of
MUAP using the morphological features i.e. amplitude, duration, area, numbers
of turns, and numbers of phases [109][110], while others based on decomposition
of EMG signals and extracting the statistical features [111][112].
Recently, Dostal et al.[113]extracted the number of turns, the amplitude of turns,
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signal energy, and the permutation entropy to classify the neuropathic and nor-
mal individuals using support vector machine SVM. Koçer and Tümer [114]
used the autoregressive (AR) and cepstral analysis for feature extraction and
principal component analysis (PCA) for dimensional reduction, using Multilayer
perceptron- (MLP) and radial basis function-based networks for classification,
where the optimum performance was observed with the use of AR-PCA-MLP
combination.
The wavelet transform is a very efficient tool for non-stationary signals anal-
ysis, has been adopted by many researchers in order to decompose the EMG
signals and extract the time-frequency features. Barmpakos et al.[115] extracted
the wavelet energies using discrete wavelet transform (DWT) along with Hud-
gins’ set features[116]i.e. waveform length (WL), zero crossing (ZC), slope sign
changes (SSC), Wilson amplitude (WA) and root mean square (RMS), with the
purpose of increasing the classification performance. Also, Krishna and Thomas
[117] extracted the DWT spectral features: total power, peak, median, and mean
frequencies from the approximate coefficient to classify the normal, myopathic
and neuropathic subjects of EMGLAB database using k-nearest neighbor classi-
fier (k-NN), the obtained results showed that the DWT spectral features achieved
a better performance compared to temporal and direct spectral features. As well
as, Bhattacharya et al. [118] extracted the time features: mean amplitude value
(MAV), RMS, ZC, WL, and the time-frequency features: average of absolute
value, standard deviation, average power, and ratio of mean from each DWT
sub-bands, and classified the signals of simulated EMG database using discrimi-
nator dependent decision rule-based classifier (D3R).
As well, Subasi [119] combined the swarm optimization (PSO) with SVM clas-
sifier using the statistical DWT features i.e. mean, standard deviation, average
power, and the ratio of mean. While, Gakgoz et al., [120] employed the multiscale
principal component analysis (MSPCA) method for EMG signals de-noising, and
random forest for classification using the same statistical DWT features that were
proposed in [119].
In this study, we have proposed a methodology for neuromuscular disorders clas-
sification using simulated EMG database for evaluation and clinical database for
validation, the wavelet transform techniques i.e. discrete wavelet transform and
wavelet packet transform have been employed in order to decompose the EMG
signals and extracting the features. The feature selection methods: ReliefF and
FCBF used for selecting the optimum features and linear discriminant analysis
(LDA) classifier for classification.
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5.4 Methodology

The block diagram in Figure.5.2 outlines our proposed method destined for the
classification of neuromuscular disorders: neuropathy and myopathy using EMG
signals. The EMG signals are firstly decomposed using wavelet transform, then
the time-frequency features are extracted from each level which in turn are se-
lected by the feature selection techniques, finally, the EMG signals with selected
features are classified by linear discriminant analysis (LDA).

 

EMG 

signals 

Wavelet 

Transform 
Feature Extraction 

Feature Selection     Classification  

(LDA ) 

Healthy 
Neuropathy 
   Myopathy 

Figure 5.2: Block diagram of neuromuscular diseases classification.

5.4.1 Databases Description

5.4.1.1 Simulated EMG Database Description

The simulated EMG Data were generated using a physiologically based model
that constructed to study the interrelationship between the structure and ac-
tivation of muscle [121]. This EMG database contains three groups: Normal,
Myopathy and Neuropathy, with 5 patients for each group. EMG signals were
detected by the needle electrode from Biceps Brachii at five contraction levels
of 5.0, 7.5, 10.0, 12.5, and 15.0 %MVC. Myopathic/ Neuropathic signals were
simulated for 25, 50 and 75% muscle fiber/ motor-unit loss.
These signals were high-pass filtered by a 2nd order Butterworth filter with cut-off
frequency of 20 Hz and divided into 48457 samples using a fixed window without
overlapping. This database contains 300 EMG signals with 100 recorders for each
group

5.4.1.2 Clinical EMG Database

The simulated EMG signals are generated to evaluate and verify our methods
whereas the clinical EMG signals are used for validation. In this study, to classify
the neuromuscular disorders we used the accessible clinical EMG database that
consists of 10 healthy subjects with 6 males and 4 females (age, mean ± SD:
27.2000 ± 4.5412 years ), 07 myopathic patients with 5 males and 2 females (age,
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mean±SD: 37.6667 ± 15.4876 years), and 08 neuropathic patients with 4 males
and 4 females (age, mean± SD: 58.6667 ±5.2026 years).
These EMG signals were detected by inserting a concentric needle electrode into
the long head of the biceps brachii muscle during a low isometric contraction,
then amplified with a gain of 500 using an instrumentation amplifier DISA15C01
and filtered by a bandpass filter with cut-off frequencies of 2 Hz–10 kHz. The
filtered signals were digitalized with 16-bit resolution and sampled at a sampling
rate of 23438 Hz using Motorola DSP56ADC16 [122].
Figure.5.3 illustrates an example of EMG signals for normal (a), neuropathic (b)
and myopathic(c) patients.
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Figure 5.3: Example of iEMG signals for normal, neuropathic and myopathic

subjects.

5.4.2 Feature extraction based on Wavelet Transform meth-

ods

Wavelet transform is a powerful tool for digital signal analysis, which decomposes
the signal into a set of wavelets consisting of scaling (a) and shifting (b) of mother
wavelet Ψ(t) that is well localized in frequency and time domain. The scaling
process is stretching or shrinking of the signal in time, while the shifting means the
translation of wavelet along the length of the signal. There are many different
wavelets that can be selected as a mother wavelet: Daubechies, Haar, Meyer,
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Coiflet, Mexican hat, Symlet, and Biorthogonal wavelets [123]. The choice of
the right wavelet depends on the proprieties of the signal. In our case, we select
Daubechies 4 (db4) wavelet that shaped similar to the MUAP form [120]. The
wavelet transform of signal s(t) can be defined as follows.

ws =

∫ +∞

−∞
s (t) Ψa,b (t) dt (5.1)

Where:

Ψ a,b (t) =
1√
|a|

Ψ(
t− b
a

) (5.2)

5.4.2.1 Discret Wavelet Transform

Discrete wavelet transform is discrete in scale and time which decomposes the
signal into a set of orthogonal wavelets. The detail and approximation coefficients
are obtained by passing the signal (s) through the high pass (HPF) and low pass
(LPF) digital filters and down-sampled by 2 factors as shown in Figure.5.4
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Figure 5.4: Discrete wavelet decomposition at 2nd level.

The DWT can be expressed as follows.

Dwt (j, k) =
1

a

i=N−1∑
i=0

s(i)Ψ(
k − b
a

) (5.3)

Where N is the length of the signal. And a=2j, b= 2j k, j=0,1, 2,. . . , J-1, and
k=0,1,2,. . . ,2j-1, (J is the level of decomposition N = 2J).
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5.4.2.2 Wavelet Packet Transform

Wavelet packet transform is an expansion of discrete wavelet transform which
utilizes the quadrature mirror filters (QMFs). Where DWT decomposes only the
approximation after the first level, the WPT decomposes both approximations
and details at each level as shown in Figure.5.5, thus, it has a better resolution
for a signal that contains important information in the high frequencies. As well
as, WPT results in better filtering of the unwanted frequency components.

 

S 

HPF LPF 

    2↓ 2↓ 

cA
1
 

 

cD
1
 

 

HPF LPF 

    2↓ 2↓ 

cAA
2
 

 

cAD
2
 

 

HPF LPF 

    2↓ 2↓ 

cDA
2
 

 

cDD
2
 

 

Figure 5.5: Wavelet packet decomposition at 2nd level.

5.4.3 Feature Extraction

The discrete wavelet transform and the wavelet packet transform decompose the
signal into sub-signals i.e. approximations and details. To represent the time
and the frequency distribution, we extract the following statistical features that
calculated from the reconstructed sub-signals in each level j.

1. Root Mean Square

2. Mean Absolute Value

3. Waveform Length WL: the sum of the absolute difference between consec-
utive values, given by Eq.(5.4)

WL =
1

N

N∑
i=1

|sj i+1 − sj i| (5.4)
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4. Standard deviation

5. Shannon Wavelet Entropy SWE and Shannon Wavelet Packet Entropy
SWPE: the Shannon wavelet Entropy SWE was introduced firstly by Quian
Quiroga et al. [124] in order to measure the disorder in EEG signal. Here,
the Shannon Wavelet Entropy SWE and Shannon Wavelet Packet Entropy
SWPE are calculated as follows.

SWE = −
N∑
i=1

pj(i) ∗ ln pj(i) (5.5)

Where pj is the ratio between the energy of the total signal (s) and the
sub-signal (sj) of each level J.

pj =
Esj
Es

(5.6)

With Es =
∑N

i=1 si
2 =

∑J
j=1

∑N
i=1 sij

2, Esj =
∑N

i=1 sji
2, and N is the total

number of samples.

6. Total Power, Mean Frequency, Median Frequency, Peak Frequency

5.4.4 Feature Selection

In case of dataset with a large number of features, the feature selection techniques
are appropriate in order to avoid the overfitting problem, and dimensionality
curse, as well as, reducing the computational complexity, speed up the training
times and enhance the performance by selecting the important features and re-
moving the irrelevant ones without loss of information. There are three various
methodologies of FS i.e. filter, wrapper, and embedded methods. In this study,
we used two methods of filter methodology: ReliefF and Fast Correlation-Based
Filter FCBF described as below.

5.4.4.1 ReliefF

The ReliefF is a classical supervised filter approach that ranks the important
features by computing their weights . The weight range varies between [-1 1],
where the important features achieve the large positive weight.(for more details,
refer back to Chapter 4 )
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5.4.4.2 Fast Correlation-Based Filter method ( FCBF)

FCBF algorithm has been developed by Yu and Liu[125] in order to determine
the class relevance and the dependencies of features using the Symmetrical Un-
certainty (SU) correlation. The SU calculates the correlation between features
and classes, and also the correlation between two features. It is computed by the
entropy and conditional entropy, as expressed in Eq.5.7.

SU(X, Y ) = 2

[
H(X)−H(X|Y )

H(X) +H(Y )

]
(5.7)

Where,
H(X), and H(Y): are the entropy of random variables X and Y, with xi and yi
values calculated as:
H(X) = −

∑
i P (xi) logP (xi) ; H(Y ) = −

∑
i P (yi) logP (yi)

H(X—Y): conditional entropy :H(X|Y ) = −
∑

j P (yj)
∑

i P (xi|yj) logP (xi|yi)
With P (xi) andP (yi) are the prior probability of all x and all y, respectively.
And P (xi|yj)is the conditional probabilities of X given the values of Y.
The SU is normalized between 0 and 1, where the zero value for negligible or no
correlation and one for strong correlation.

5.4.5 Classification

For the classification process, the choice of a classifier is very essential, depends
on several factors such as the accuracy of prediction, and the computational time.
Therefore, the chosen classifier should be an accurate and optimized tool in pre-
dicting novel patterns. For neuromuscular disorder diagnosis, We rely on linear
discriminant analysis (LDA) classifier, which based on Mahalanobis distance cal-
culates the between-class variance Sb and the within-class variance Sw in order to
construct the lower-dimensional space by maximizing the between-class variance
and minimizing the within-class variance [126]. The Sb and Sw can be express as
follows.

Sb =
C∑
i=1

(µi − µ)(µi − µ)T (5.8)

Sw =
C∑
i=1

Ni∑
j=1

(fi,j − µi)(fi,j − µi)T (5.9)

Where µ and µi are the overall mean and the mean of feature vectors of each
class C,fi,j is the jth feature of class i. Apropos of performance validation, we
use the k-fold cross-validation technique, with being k= 10. this technique allows
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us to ensure that all features were used for training and testing by resampling
the data into k subsets. One subset is randomly chosen for test and others are
kept for training, this step is repeated k times. In the sequel, the performance of
classification is the mean of all the k trials.

5.4.6 Performance evaluation

To evaluate the performance of classification, the number of true positives (TP),
true negative (TN), false positive (FP), and false-negative (FN) are used to cal-
culate the Accuracy (Acc), Sensitivity (Se) and Specificity (Sp) which can be
express as follows.

Acc =
TP + TN

TP + TN + FP + FN
(5.10)

Se =
TP

TP + FN
(5.11)

Sp =
TN

TN + FP
(5.12)

5.5 Results and Discussion

The decomposition of EMG signals is a very important step to facilitate feature
extraction and improve classification performance. In this study, Wavelet trans-
form methods i.e. DWT and WPT have been applied for EMG decomposition
and extracting the features, also ReliefF and FCBF used for selecting the relevant
features, using the simulated EMG database.
The prediction of neuromuscular disorders is very higher at the advance stage
compared to the early stage. In order to improve the classification performance
at all stages, we search to find common and efficient techniques and procedures to
get a better prediction percentage. As shown in Table 5.1, At level 5% MVC, the
classification performance yielded a high overall classification accuracy of 87.7%,
91.7%, 97.3% for 25,50, and 75 fiber/motor-unit loss respectively, when using
DWT with ReliefF and LDA classifier.
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Table 5.1: The LDA overall classification accuracy (in %) of DWT and WPT

methods for simulated EMG signals.

Before FS After FS

Methods ReliefF FCBF

MVC(%) DWT WPT DWT WPT DWT WPT

25
fi
b

er
/

M
ot

or

u
n
it

lo
ss

05.0 85.0 81.7 87.7 83.3 79.3 79.0

07.5 75.7 73.0 77.0 74.0 52.3 74.3

10.0 78.9 79.6 80.0 79.3 69.6 77.9

12.5 83.3 76.3 86.7 78.7 66.3 61.7

15.0 74.0 70.0 77.3 76.3 49.7 62.0

50
fi
b

er
/M

ot
or

u
n
it

lo
ss

05.0 89.3 82.0 91.7 82.7 68.7 75.0

07.5 79.7 80.3 81.7 80.7 69.0 68.0

10.0 89.3 83.9 90.0 87.5 76.4 77.1

12.5 84.3 77.7 84.0 79.3 73.7 65.3

15.0 92.7 83.3 84.3 83.3 57.3 65.3

75
fi
b

er
/

M
ot

or

u
n
it

lo
ss

05.0 96.3 91.7 97.3 93.7 97.3 -

07.5 95.3 88.0 95.3 87.7 87.6 -

10.0 83.6 79.6 82.5 82.5 75.0 76.0

12.5 93.0 83.7 90.3 85.7 73.0 76.4

15.0 89.7 85.3 89.7 86.0 83.3 78.7

(-): No features selected.
To validate our method, we applied it to the clinical EMG database, Table 5.2
showed that the DWT with reliefF achieved a higher classification performance,
the FCBF is a very efficient feature selection method but here, it failed in the
selection and some important features were lost.

Table 5.2: The LDA overall classification accuracy (in %) of DWT and WPT

methods for simulated EMG signals.

Before FS After FS

Performance ReliefF FCBF

metrics DWT WPT DWT WPT DWT WPT

Overall accuracy 93 .0 84.0 97.5 94.5 75.0 86.0

Average sensitivity 96.0 76.0 98.0 94.0 87.0 88.0

Average specificity 92.0 93.0 98.0 96.0 70.0 89.0

Number of features 78 397 52 50 13 47

Computation time (s) 5.5 6.1 4.5 4.5 4.6 4.7

The classification performance of the DWT method with and without feature
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selection methods: ReliefF and FCBF have been presented in form of a matrix
(see Tables 5.3), DWT with ReliefF has less prediction error compared to FCBF
methods.

Table 5.3: The confusion matrix for LDA classifier

DWT

Class Normal Neuropathy Myopathy

Normal 96 3 1

Neuropathy 5 43 2

Myopathy 3 0 47

Classified as

DWT+ReliefF

Normal Neuropathy Myopathy

98 1 1

1 48 1

1 0 49

DWT+FCBF

Normal Neuropathy Myopathy

87 7 6

21 22 7

9 0 41

Figure.5.6 represents the most common features that have been selected by
ReliefF and FCBF, the Discrete wavelet frequency features: peak, mean, and
median for details and the total power and also the Shannon wavelet entropy for
approximation.
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Figure 5.6: Ranking of relevant features using ReliefF and FCBF algorithms.

The five supervised classifiers i.e. LDA, random forest with 30 trees, decision
tree with 30 trees, SVM, and k-NN (k=3) were compared using Matlab R2017a
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and performed on 1.99 GHz Intel Core i7-8550U based PC with 8 GB RAM, 64-
bit Windows 10. Table 5.4 shows that the LDA classifier with ReliefF achieved
higher performance compared to other classifiers. As well as, the feature selection
method improves the classification performance and also reduces the computation
time.

Table 5.4: The classification performance for five supervised classifiers using clin-

ical EMG signals

Performance LDA Random Decision SVM k-NN

metrics Forest Tree

Overall accuracy 93.0 90.5 80.5 84.0 79.0

Before Average sensitivity 96.0 92.0 83.0 92.0 85.0

selection Average specificity 92.0 90.0 80.0 79.0 78.0

Computation time (s) 5.5 15.1 3.6 5.3 1.5

After Overall accuracy 97.5 91.5 81.5 82.5 79.5

selection Average sensitivity 98.0 95.0 86.0 90.0 83.0

(ReliefF) Average specificity 98.0 89.0 79.0 76.0 81.0

Computation time (s) 4.3 12.3 2.9 4.5 1.3

The overall classification accuracy of our proposed method was compared to
other studies applying the same clinical EMG database. The relevant features
with the right choice of classifier improve the classification performance, as shown
in table 5.5, our proposed method achieved a higher overall classification accuracy
of 97.5%.

Table 5.5: Comparison of feature extraction methods of other studies

Methods Classifiers OCA(%)

MSPCA + statistical DWT features[120] Random Forest 88.0

DWT spectral features [117] k-NN 80.5

wavelet energy and Hudgins’ set features [115] k-NN 79.0

Time-frequency and direct spectral features + ReliefF [127] Random Forest 88.5

Our proposed method LDA 97.5
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5.6 Conclusion

In this chapter, we presented an approach for neuromuscular disorders classifica-
tion based on decomposition methods i.e. wavelet transform. A set of features
were extracted from decomposed signals then filtered by using reliefF and FCBF
selection methods and classified by LDA classifier. This approach was first tested
and evaluated on the simulated iEMG database then validated by iEMG clinical
database,Where the DWT-ReliefF-LDA combination achieved a higher perfor-
mance with an accuracy of 97.5%.
In future work, we will improve the classification performance by using more de-
composition methods for feature extraction and selecting the optimum features
by testing more feature selection methods. Finally, we will finish this dissertation
by conclusion and putting forward some recommendations and research lines for
our future studies.
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In this Ph.D. Dissertation, we develop a real-time sEMG measurement system
for recording and collecting the data. These collected data have been processed
to study statistically the effect of age, gender, diabetes, handedness, and obesity
on sEMG characteristics.
In medical applications, the onset and offset timing of muscle activation are very
important parameters for detecting the functionality and dysfunctionality of mus-
cle. For this purpose, we used The S-transform based detection method, The per-
formance of this method has been compared with the recent methods: Teager-
Kaiser Energy Operator, Integrated Profile, Sample Entropy, which reports a
lower average latency of τonset = 0.015 s, τoffset= 0.014 s.
During dynamic contraction especially for the gait, the muscle activation inter-
val and the linear relationship between extensor/flexor muscles and the knee are
reliable parameters used for knee pathology detection.
Moreover, we develop an automatic classification method for knee injury diagno-
sis i.e. ACL and meniscus injuries using sEMG and knee goniometry. Specific
features are extracted from sEMG and goniometric signals in the temporal and
spectral domains, also we have used the autocorrelation for extracting the cyclic
features and linear correlation to determine the relationship between the knee.
The feature selection method is used to filter the irrelevant feature, enhance the
prediction performance, and reduce the computation time. After selecting the
relevant features by reliefF, we have employed five supervised classifiers i.e. Ran-
dom Forest, Decision Tree, Diagonal-Linear Discriminant Analysis (DLDA), SVM
with polynomial kernel function, and k-NN for classification and validating our
results by cross-validation.
The higher classification performance (Acc= 98,29%) was obtained by the com-
bination of random forest and the reliefF algorithm.
For neuromuscular disorders classification i.e. neuropathy and myopathy, we have
developed an automatic diagnosis technique based on wavelet transform using
iEMG signals. The wavelet transform techniques i.e. Discrete wavelet trans-
form and Wavelet packet transform have been used for signal decomposition and
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extracting the statistical features from each sub-band, then selecting the rele-
vant ones using the filter methods i.e. ReliefF and Fast CorrelationBased feature
FCBF. This approach was first tested and evaluated on the simulated iEMG
database then validated by the iEMG clinical database, where the combination
of DWT, ReliefF, and LDA classifier yieled a higher classification accuracy of
97.5%.

Future Directions

In the current studies, there are some limitations will be developed in the future.

− Development of wireless sophisticated sEMG measurement system and col-
lect more data during dynamic movement.

− Enhance the prediction performance by exploiting more advanced signal
processing techniques for feature extraction and testing other feature selec-
tion methods.

− Develop an automatic system for knee injuries diagnosis using deep learning.
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Publications

During my Ph.D. study, some parts of my research have resulted in 1 peer-
reviewed journal paper, 7 peer-reviewed international conference papers, and in
4 national conference papers listed as follows.

International Journal Papers

Benazzouz, A and Hadj Slimane, Z. E. (In press) “Knee pathology diagnosis
based on muscle activation intervals detection and the relationship between knee
flexion and surface emg”, International Journal of Medical Engineering and In-
formatics, In press.

International Conference Papers

Benazzouz, A., Amirouche, F., Rieta, J.J., Guilal, R. (2019) “Knee injuries clas-
sification using sEMG and goniometric features during gait”, 4th International
Conference on Embedded Systems in Telecommunications and Instrumentation
(ICESTI’19). October 28th-30th, 2019. Annaba. Algeria. (Oral presentation).
Benazzouz, A., Guilal, R., Amirouche, F., and Hadj Slimane, Z. E. (2019) ‘Emg
feature selection for diagnosis of neuromuscular disorders’, In 2019 International
Conference on Networking and Advanced Systems (ICNAS), IEEE, pp.1–5. (Oral
presentation).
Benazzouz, A and Hadj Slimane, Z. E. (2018) “An automatic muscle activation
detection using discrete wavelet and integrated profile: A comparative study”, in
International Conference on Computer Science and its Applications. Springer,
2018, pp. 169–178. (Poster presentation).
Benazzouz, A and Hadj Slimane, Z. E. (2018) “SEMG denoising and muscle
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activation detection using wavelet transform”,The 1st International Workshop on
Innovation in Biomechanics and Biomaterials (IWIBAB2018). April 4th -5th,
2018.Oran, Algeria. (Poster presentation).
Benazzouz, A and Hadj Slimane, Z. E. (2017) “The SEMG-force relationship
and the muscle weakness”. The 3rd International Conference on Electrical En-
gineering and Control Applications (ICEECA2017). November 21st -23rd, 2017.
Constantine, Algeria.(Oral presentation).
Benazzouz, A and Hadj Slimane, Z. E. (2017) “Study of the effects of the
muscle weakness on surface EMG”. IEEE international conference on WIreless
Technologies, embedded and intelligent Systems - WITS-2017. April 19th -20th,
2017. Fez, Morocco. (Oral presentation).
Benazzouz, A and Hadj Slimane, Z. E. (2016) “Real-time acquisition of sur-
face EMG signal system”, 3rd International Conference on Embedded Systems
in Telecommunications and Instrumentation (ICESTI’16). October 24th -26th,
2016. Annaba. Algeria. (Oral presentation).

National Conference Papers

Benazzouz, A., Guilal, R., and Hadj Slimane, Z. E. (2019) “Detection of onset
and offset of muscle contraction using sEMG signal”. 9ème journée doctorale de
Génie Biomédical (JD-GBM’19), Tlemcen. Algeria. (Poster presentation).
Benazzouz, A. and Hadj Slimane, Z. E. (2018) “sEMG signals classification for
knee pathologies diagnosis using K-nn”, 7eme Journée de maintenance biomédicale
(JMB2018), Hopital central de l’armée, Dr Mohamed Sghir Nekkache, October
4th , 2018, Algiers, Algeria. (Poster presentation).
Benazzouz, A. and Hadj Slimane, Z. E. (2018) “Denoising the real SEMG sig-
nal using wavelet transform”.8ème journée doctorale de Génie Biomédical (JD-
GBM’18). Tlemcen. Algeria. (Poster presentation).
Benazzouz, A. and Hadj Slimane, Z. E. (2016) “Design and realization of a sur-
face EMG signal detection circuit”.6ème journée doctorale de Génie Biomédical
(JD-GBM’16). Tlemcen. Algeria. (Poster presentation).
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Abstract: Electromyography is a technique for recording the electrical activity of skeletal muscles by means of either surface 

electrodes or concentric needles. The non-invasive technique surface electromyography (sEMG) has received significant 

attention in the past decade: in biomechanics, rehabilitation, control of prosthetic devices, for the development of emotion 

recognition systems, sports activities, and the science of exercise. On the other hand, the invasive technique in electromyography 

is employed for diagnosing neuromuscular disorders such as neuropathy and myopathy. The stochastic nature of these EMG 

signals complicates the interpretation, so it needs advanced methods for detection, processing, feature extraction, and 

classification. 

This dissertation aims to extract the pertinent characteristics which are essential in the diagnosis and lead to correct prediction. 

During gait, the muscular activation interval, onset and offset timings are very important parameters used for studying the 

function of the muscle in healthy patients and detecting the abnormalities when the gait data is abnormal. These parameters have 

been precisely extracted by S-Transform. 

We have also developed two automatic diagnosis approaches, one for soft tissue-knee injuries i.e. Anterior Cruciate Ligament 

ACL and Meniscus MN injuries using surface electromyographic sEMG and goniometric signals, and the other one for 

neuromuscular disorders i.e. neuropathy and myopathy using intramuscular electromyogram iEMG. These signals (sEMG/EMG) 

were collected and preprocessed for extracting the newly developed parameters associated with the different pathologies. The 

relevant features were selected using different criteria and methods classified by supervised classifiers. The newly developed 

algorithms are provided and shown through different applications and case studies. 

 

Index Terms _ Anterior ligament injury, classification, Electromyogram, feature extraction, feature selection, iEMG, knee 

injuries, meniscus injury, myopathy, neuromuscular disorders, neuropathy, sEMG, S-Transform. 
 

 

Résumé: L’électromyographie est une technique qui permet d’enregistrer l’activité électrique des muscles soit par des électrodes 

de surface ou par des aiguilles concentriques. La technique non invasive sEMG reçoit une attention considérable dans différents 

domaines d’application tels que: biomécanique, réadaptation, contrôle des prothèses, développement d’un système de 

reconnaissance des gestes, sciences du sport… etc. Tandis que la technique invasive est utilisée pour diagnostiquer les maladies 

neuromusculaires comme la neuropathie et la myopathie. La nature aléatoire de ces signaux EMG complique l’interprétation. 

Alors dans ce cas, nous avons besoin  des techniques avancées pour les détecter, les traiter, extraire les paramètres et les classifier. 
L’objectif de cette thèse de doctorat est d’extraire les caractéristiques les plus pertinentes du signal électromyogramme pour 

faciliter le diagnostic. Pendant la marche, l’intervalle d’activation musculaire, début et la fin et même l’intervalle d’activation 

musculaire sont des paramètres les plus utilisés pour étudier la fonction musculaire dans des cas sains et détecter les anomalies 

dans la démarche anormale, afin de détecter ces paramètres, en utilisant la transformée de Stockwell.  
Nous avons également développé deux approches de diagnostic automatique, l’une pour les lésions des tissus mous du genou i.e. 

ruptures du ligament croisé antérieur LCA et les déchirures du ménisque, en utilisant les signaux EMG de surface et 

goniométriques, et l’autre pour les maladies neuromusculaires i.e. la neuropathie et la myopathie, en utilisant électromyogramme 

intramusculaire. Ces signaux (sEMG/iEMG) ont été collectés et prétraités pour extraire les paramètres pertinents. Les paramètres 

pertinents ont été sélectionnés selon différentes méthodes de sélection, enfin la classification a été effectuée par un apprentissage 

supervisé. 

 

Mots clés_ Ruptures du ligament croisé antérieur, classification, électromyographie, extraction des paramètres pertinents, la 

sélection, iEMG, lésion du genou, les déchirures du ménisque, myopathie, troubles neuromusculaires, neuropathie, sEMG, 

transformée de Stockwell. 
 

 

ة )التخطيط عالتخطيط الكهرو عضلي هو تقنية لتسجيل نشاط الكهربائي للعضلة إما بواسطة الأقطاب السطحية أو الإبر متحدة المركز. التقنية الغير باض ملخص:

مختلفة في عدة المجالات مثل: الميكانيكا الحيوية، إعادة التأهيل، التحكم بالأطراف الاصطناعية، تطوير الكهرو عضلي السطحي( عرفت اهتماما كبيرا وتطبيقات 

لعصبي والاعتلال الاعتلال اأنظمة التعرف الإماءات، الرياضة وعلم التمرين ... الخ. بينما التقنية الباضعة تستعمل غالبا في تشخيص الأمراض العصبية العضلية مثل 

    يف.والتصن البيانات، خراجاست المعالجة، للكشف،متقدمة  تقنياتإلى  اجلذا فهي تحت والتفسير،التحليل ب علينا عملية ارات تصعشالعشوائية لهذه الإ الطبيعةلكن  العضلي.

لي، اط العضالهف من هذه الأطروحة هو استخراج الخصائص المناسبة من الإشارة الكهرو عضلية لغرض تيسير وتسهيل عملية التشخيص. خلال المشي، فترة نش

أجل  ق التحويل ستوكوال منوزمن البداية والنهاية من المعايير المهمة والمستعملة في دراسة عمل العضلة واكتشاف الخلل خلال المشي غير الطبيعي. قمنا بتطبي

 استخراج هذه المعايير بدقة. 

لة المفصلية، لهلاكذلك قمنا بتطوير طرق التشخيص التلقائي، الأولي من أجل تشخيص جروح في الأنسجة الرخوة للركبة خصوصا تمزق الرباط الصليبي الامامي وا

الزوايا الركبة. الطريقة الثانية من أجل تشخيص الأمراض العصبية العضلية )الاعتلال  من أجل هذا الغرض استعملنا إشارات الكهرو عضلية السطحية وإشارات

ات ئص والميزالعصبي والاعتلال العضلي( باستعمال الإشارات الكهرو عضلية داخلية. هذه الإشارات جمعت وعولجت من اجل استخراج الخصائص. وأخيرا الخصا

 مصنفات تحت الاشراف.الأكثر تأثير وأهمية انتقت وصنفت بواسطة 

لال تالتخطيط الكهرو عضلي، التحويل ستوكوال، جروح في الأنسجة الرخوة للركبة، تمزق الرباط الصليبي الامامي، تمزق الهلالة المفصلية، الاع كلمات مفتاحية:

 العصبي، الاعتلال العضلي، الأمراض العصبية العضلية، استخراج الخصائص، التصنيف. 
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