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Abstract: Job shop scheduling problem (JSP) is recognised as an attractive 
subject in production management and combinatorial optimisation. However, it 
is known as one of the most difficult scheduling problems. The present paper 
investigates the job shop scheduling problem in order to minimise the 
Makespan with a new hybrid combinatorial artificial bee colony algorithm. 
Firstly, the proposed combinatorial version integrates a position based 
crossover for the updating of solutions and the rank-based selection for 
selecting solutions to be updated in the onlooker bees phase. Another purpose 
of this study consists to highlight the impact of its sequential hybridisation with 
a new release of iterated local search method called ‘simple iterated local 
search (SILS)’. The proposed approaches are tested on many benchmark 
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problems taken from the Operations Research Library (OR-Library). The 
simulation results show that the hybrid CABC performs the best in most of the 
studied cases. 

Keywords: job shop scheduling problem; JSP; metaheuristics; artificial bee 
colony algorithm; iterated local search. 

Reference to this paper should be made as follows: Ouis Khedim, A.,  
Souier, M. and Sari, Z. (xxxx) ‘Combinatorial artificial bee colony algorithm 
hybridised with a new release of iterated local search for job shop scheduling 
problem’, Int. J. Operational Research, Vol. X, No. Y, pp.xxx–xxx. 

Biographical notes: Amaria Ouis Khedim is currently an Assistant Professor 
at Tlemcen University and member of the Manufacturing Engineering 
Laboratory of Tlemcen (MELT), Algeria. She obtained her Engineer degree in 
Automatic from University of Tlemcen, Algeria in 1998 and Magister degree in 
Signals and Systems from University of Tlemcen Algeria, in 2001. She is 
currently working towards her PhD degree at the Manufacturing Engineering 
Laboratory of Tlemcen (MELT). Her research interests include planning, 
scheduling, metaheuristics algorithms, discrete optimisation methods and 
optimisation problems in manufacturing systems. 

Mehdi Souier received his Engineering degree in 2007 in Computer Sciences 
and Master’s degree in 2009 in Manufacturing Engineering from University of 
Tlemcen, Algeria. He obtained his Doctorate degree in Manufacturing 
Engineering in 2012 and the University Habilitation in 2015 from Tlemcen 
University. He is currently an Associate Professor in Tlemcen High School of 
Management and member of the Manufacturing Engineering Laboratory of 
Tlemcen (MELT). He advised several masters and one doctorate thesis. He is a 
regular reviewer of many international journals and IPC member of many 
international conferences. His main research interest concern: planning and 
scheduling, heuristic and metaheuristic (simulated annealing, genetic algorithm, 
ant colony, …), discrete optimisation methods, optimisation problems in 
flexible manufacturing systems and maintenance of industrial systems. 

Zaki Sari is currently a Senior Consultant for Industry and a Manufacturing 
Engineering Professor at Ecole Superieure en Sciences Appliquées Tlemcen 
(ESSAT), Algeria; he is the former Director of Manufacturing Engineering 
Laboratory of Tlemcen (MELT), and the former Head of the National 
Curriculum of Manufacturing Engineering. He obtained his Engineer degree in 
Electrical Engineering from the National Institute of Electrical Engineering, 
Boumerdes, Algeria in 1987; Magister degree in Power Engineering from the 
National Polytechnic School of Algiers, Algeria in 1990; and Doctorate degree 
in Manufacturing Engineering from Tlemcen University in 2003. In 2004, he 
became an Associate Professor then a Full Professor in 2009. His teaching 
skills include project management, factory physics, CIM, AS/RS. His main 
domain of interest concerns the design, modelling, optimisation, simulation and 
control of automated storage and retrieval system. He made several 
investigations on non-conventional AS/RS systems. He advised several 
Magister and Doctorate thesis. 

 



   

 

   

   
 

   

   

 

   

    Combinatorial artificial bee colony algorithm 3  
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

To survive in a modern and competitive world, which requires lower cost products with 
shorter life cycle, companies must respond quickly and accurately to customer inquiries. 
In such situation, it is clear that an effective scheduling would have a very important role 
in achieving these objectives in various production systems of goods and services such as 
cellular manufacturing system (Dehnavi-Arani et al., 2019), flow shop (Kumar et al., 
2019; Ramezanian and Rahmani, 2017; Seidgar et al., 2017), parallel machine (Hung  
et al., 2019; Shokoufi et al., 2019), single machine (Rostami et al., 2019; Zoulfaghari and 
Nematian, 2019), project shop (Tabrizi et al., 2019), airport gate scheduling (Khatibi  
et al., 2019), scheduling of surgeries (Soudi et al., 2019). 

Furthermore, different problems arising in industry, computing, business, and even in 
the social services can be structured and modelled as a job shop scheduling problem 
(JSP) which is considered as one of the most popular scheduling problems. 

The classical job shop problem consists of a set of independent jobs to be processed 
through several machines (resources). Each job has an ordered set of operations, to be 
treated in a predefined order depending on their technological constraints. One of the 
main objectives of JSP is to minimise the makespan or completion time (Cmax) for 
improving throughputs and the system productivity. 

In terms of computational complexity, this problem is known to be NP-hard in the 
strong sense (Garey et al., 1976). Due to its wide applicability and inherent difficulty, the 
JSP has attracted the attention of many researchers, which has led to the development of 
several. 

The artificial bee colony (ABC) is a metaheuristic introduced by Karaboga (2005), it 
is inspired from the intelligent behaviour of honey bees for seeking quality food source in 
nature. The ABC algorithm is a population-based algorithm. Every artificial bee 
generates one solution. Population of artificial bees searches for the optimal solution. As 
the ABC algorithm is inspired from the foraging process in the natural bee colony, it is 
considered that each solution is called a food source, whereas the fitness of the solution 
corresponds to the amount of nectar of the associated food source. The computing agents 
of this algorithm are given by three kinds of artificial bees, namely: employed bees, 
onlooker bees and scout bees. A bee that is currently exploiting a food source (solution) 
is called an employed bee. A bee waiting in the hive for making a decision to choose a 
food source is named an onlooker. A bee carrying out a random search for new food 
source is called a scout. 

This metaheuristic has the advantage of regulating the trade-off between exploitation 
and exploration. It has also the advantage of employing fewer control parameters in the 
continuous space. These advantages make the ABC algorithm very competitive to other 
population-based algorithms. Indeed, in the last decade, several works tried to evaluate 
the performance of ABC in comparison with others. It has been proven that this 
algorithm has better performances in several problems such as waste collection problem 
(Wei et al., 2019), numerical optimisation (Bajer and Zorić, 2019), wireless sensors 
network (Yue et al., 2019), supply chain network management (Jiang et al., 2019),  
multi-robot path planning (Faridi et al., 2018). 

Due to the ABC ability to find good solutions in different research areas and 
industries, we integrate this approach in our strategy for solving the JSP. In this work, we 
firstly adapt the continuous version of the ABC algorithm to the combinatorial problem 
of the job shop. The proposed combinatorial artificial bee colony (CABC) algorithm uses 
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a position based crossover for the updating of solutions and the Rank-Based Selection for 
selecting solutions to be updated in the onlooker bees phase. After that, this algorithm is 
improved using a sequential hybridisation with a new local search method that we called 
‘simple iterated local search (SILS)’. SILS iteratively applies local search to refine the 
current best solution found by some CABC iterations. In order to preserve the quality of 
this solution, SILS aims to exploit the current best solution only in its basin of attraction. 
Hence, the resulting solution is injected into the next local search without any prior 
modification. This made the proposed SILS a simplified release of the ILS metaheuristic 
(Lourenço et al., 2003). The new hybrid algorithm is called: ‘simple iterated local search 
combinatorial artificial bee colony (SILS_CABC)’ algorithm. 

This paper is organised as follows: Section 2 presents briefly the most relevant 
literature. Section 3 is reserved for the job shop scheduling formulation. The fundamental 
ABC algorithm is presented in Section 4. In Section 5, the proposed CABC algorithm for 
JSP is given in detail. Then, Section 6 describes the hybrid release SILS_CABC. Based 
on the benchmark problems, Section 7 presents the experimental results, where the 
performances of the proposed algorithms are analysed and compared. Finally, 
conclusions and future research directions are provided in Section 8. 

2 Literature review 

The current marketing context is characterised by various challenges related to customers 
needs with high quality, low costs, short lead times... In such conditions, manufacturing 
systems require efficient management tools able to deal with different customers’ 
requests. Among these tools, scheduling systems can play an important role for managing 
efficiently different kinds of production systems. 

Job shop scheduling is among the famous problems that are investigated by 
production managers and optimisation researchers. However, the scheduling problems in 
job shop are known as NP-Hard combinatorial optimisation problems. 

The existing literature on the job shop manufacturing systems presents many 
strategies of scheduling decisions that are classified into two groups: exact methods and 
approximate methods (heuristics and metaheuristics...). 

Among the main exact methods for solving the JSP, we can find branch and bound 
method (Benttaleb et al., 2018; Artigues and Feillet, 2008), the dynamic programming 
(Ozolins, 2018) and integer programming (Masmoudi et al., 2019; Roshanaei et al., 
2010). However, exact methods may be inefficient when the problem size grows. For this 
reason, many works are focused on approximate methods such as heuristics and 
metaheuristics. 

The approximate methods cannot guarantee the achievement of the global optimal, 
but they can find near-optimal solutions for problems of large sizes in moderate 
computing time. Recently, there are considerable researches aiming to develop 
scheduling solutions for job shop based on heuristics such as dispatching rules (Zhang 
and Roy, 2018), shifting bottleneck procedure (Tan et al., 2016). 

Unlike heuristics that are constructive methods designed and applicable to a particular 
problem, metaheuristics are stochastic algorithms often inspired by analogies with natural 
phenomena, such as: physics (simulated annealing,), biology (Tabu search, evolutionary 
algorithms, artificial immune systems,) or ethology (ant colonies, particle swarm 
optimisation, bee colony, bat algorithm). They are iterative methods, applicable to a large 
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variety of optimisation problems in science and engineering such as portfolio rebalancing 
(Zandieh and Mohaddesi, 2019), multi-dimensional knapsack problem (Abubaker et al., 
2019), graph sum colouring (Mohammadnejad and Eshghi, 2019), facility layout  
(Tayal and Singh, 2019), hydraulic analysis (Moeini, 2018), capacitated clustering 
(Khambhampati et al., 2018). 

In recent years, metaheuristics have become extremely popular as practical 
optimisation methods for solving the JSP. Among these approaches, the genetic 
algorithm (GA) and evolutionary algorithms are the most applied to solve JSP by 
different researchers such as: Tan et al. (2019), Kundakcı and Kulak (2016), Lei (2012), 
Zhang et al., (2011). Other metaheuristics are known as successful techniques in job shop 
scheduling domain such as simulated annealing (Tamssaouet et al., 2018; Suresh and 
Mohanasundaram, 2006; Aydin and Forgarty, 2004), Tabu search (Tamssaouet et al., 
2018; González et al., 2013; Zhang et al., 2007), particle swarm optimisation (Dao et al., 
2018; Singh and Mahapatra, 2016; Lin et al., 2010; Lian et al., 2006), ant colony 
optimisation (Chaouch et al., 2019; Huang and Yu, 2017; Huang et al., 2013), bee colony 
algorithm (Sundar et al., 2017; Gao et al., 2016; Zhang et al., 2013). Furthermore, many 
investigations based on other artificial intelligence techniques are proposed. Most of them 
use multi agent approaches (Nouri et al., 2016; Guizzi et al., 2018), neural network 
(Nayak et al., 2019). For more details about the different investigations on job shop 
scheduling, the reader can refer to the survey of Çaliş and Bulkan (2015) and Zhang et al. 
(2019). 

The literature indicates that there is a significant interest in metaheuristics 
applications to deal with JSPs. However, it is noticed that the ABC metaheuristic is 
poorly invested in solving the important problems of job shop. On the other hand, the 
ABC is recognised as among the most successful techniques to solve various optimisation 
problems. For this instance, the present paper deals with a combinatorial and a hybrid 
ABC versions for different benchmarks of JSP. 

3 Job shop scheduling problem 

3.1 Problem statement and assumptions: 

The classical job shop problem considers a set of n jobs, J = {J1,…, Jn} to be processed 
on a set of m machines, M = {M1, …, Mm} (resources). Each job Ji is composed of a set 
of mi operations denoted Oi = {Oi1, Oi2,, …, Oimi,}. Each job Ji visits machines in a 
specific order. Figure1 illustrates an example of 3-job  5-machine job shop. The jobs 
machine sequence of this example are given in Table 1. For example, the job J1 must 
follow the sequence: 

1 2 3 5 4.m m m m m     

For the case of a classical job shop, we retain some standard assumptions that can be 
presented as follows: 

 all jobs are equally important 

 each job is available to be processed at any time 
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 there are precedence relations (conjunctive constraints) between the operations of the 
same job 

 the routing (processing order) for each job is defined by its operations sequence 

 there is no due date for any job 

 each machine is continuously available without any breakdown 

 no alternative machines 

 each machine processes at most one job (one operation) at a time 

 each job is processed by only one machine at a time 

 no preemption, no recirculation and no cancellation of orders are allowed 

 all processing times are known in advance. 

Table 1 Jobs machine sequence for a 3-job  5-machine job shop 

 Operations 

Job 1 2 3 4 5 

 Machine sequence 

j1 m1 m2 m3 m5 m4 

j2 m5 m1 m2 m4 m3 

j3 m2 m3 m4 m5 m1 

Figure 1 a 3-job5-machine job shop 

 

3.2 The mathematical model 

The following notations are used for the formulation of JSP: 

Sets and indices: 

i indices for jobs, i = 1,…, n 

j indices for operations, j = 1,…, mi 

k indices for machines, k = 1,…, m 
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Oij jth operation of the job Ji 

J set of n jobs to be scheduled, J = {J1,…, Ji,…,Jn} 

M set of m machines M = {M1,…, Mk,…Mm} 

Oi ordered set of all operations of job Ji, 1{ , , , }
ii i ij imO O O O    

OMk set of all operations executed on machine Mk. 

Parameters: 

pij processing time of operation Oij 

L a large number. 

Variables: 

1 if is excuted on machine

0 otherwise

ij k
ijk

O M 


  

1 if precede ; , , and

0 otherwise

ij i j ij i j k
iji j

O O for O O OM i i j j   
 

    


  

rij release date of operation Oij 

sij starting time of operation Oij 

Cij completion time of operation Oij, (Cij = sij + pij) 

Ci completion time of job ji 

Cmax makespan, (Cmax = max {C1, C2,…, Cn}). 

Actually, the overall cost of production also depends on the time required for the 
manufacturing of various products. Hence, the main objective of the JSP is to reduce the 
overall manufacturing time, called ‘makespan’ and denoted Cmax · Cmax is the completion 
time of the last job to leave the system. 

Therefore, mathematically, the most often studied optimality criterion in the JSP is 
the minimisation of Cmax. A minimum makespan usually implies a good utilisation of 
machines; because a given number of jobs are to be completed in the shortest possible 
time. 

To solve the JSP, we have to determine the feasible schedule for the operations of all 
jobs by respecting the processing order of each job and the capacity of each machine. The 
goal is to find a particular feasible schedule that has the lowest possible Makespan. 

Based on Manne formulation (Manne, 1960), we formulate the problem of the job 
shop scheduling by the following mixed integer programming model: 

  *
max max

feasible schedules 1, ,
Min max i

i n
C C C


 


 (1) 

Equivalent to: 

   feasible starting times 1, ,
Min max ; for 1, ,ij ij i

i n
s p j m


 


  (2) 
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Subject to: 

( 1) ; for 1, , & 1, , 1i j ij ij ir s p i n j m        (3) 

1; for 1, ,
ij k

ijk
O OM

k m


    (4) 

 1 ; for 1, , & ,i j iji j ij ij ij i j ks L s p k m O O OM            (5) 

; for 1, , & ,ij iji j i j i j ij i j ks L s p k m O O OM             (6) 

1

1; for 1, , & 1, ,
m

ijk i
k

i n j m


      (7) 

1

1; for 1, , & 1, ,
im

ijk i
j

i n k m


      (8) 

1

; for 1, ,
im

ijk i
j

p C i n


    (9) 

; for 1, , & 1, ,ij ij is r i n j m     (10) 

1; for 1, , & ,iji j i j ij ij i j kk m O O OM           (11) 

0; for 1, , & 1, ,ij is i n j m     (12) 

, {0,1}; for 1, , & ,ijk iji j ij i j kk m O O OM        (13) 

The objective function is given by (1). The first set of constraints (3) ensures both 
precedence and no-preemption constraints, where the operation Oi(j+1) cannot be released 
before the end of operation Oij. The second set of constraints (4) imposes the capacity 
constraints where a machine can process only one operation at a time. It can be reinforced 
by the disjunctive constraints (5) and (6). These constraints present the relations between 
the operations of different jobs to be processed on the same machine. For a machine Mk, a 
feasible schedule must either satisfy i j ij ijs s p     or ;i j i js p     for all , .ij i j kO O OM    

Actually, if Oij precedes i jO    on machine Mk, then 1iji j    and (5) becomes 

i j ij ijs s p     while (6) becomes redundant because of a large positive value of L. On the 

other hand, if i jO    precedes Oij, then 0iji j    and (6) becomes i j ij i js s p      while (5) 

becomes redundant. The value of L must be large enough to satisfy i j i j ijL s p s       for 

all Mk  M and , .ij i j kO O M    For this requirement, 
1 1

in m

iji j
L p

 
   is sufficient. 

Constraint (7) ensures that an operation can be processed by only one machine. The 
assumption of the no-recirculation is ensured by constraints (8) and that of  
no-cancellation is given by constraint (9). Constraint (10) ensures that each operation can 
only be released after its acceptable release date. The last two sets of constraints define 
the domain for each variable. 
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Before trying to develop an algorithm which solves a particular problem, it is 
important to have an idea on the problem complexity. For certain restricted cases of the 
n-job, m-machine JSP, Garey and Johnson (1979) showed that there are polynomial 
algorithms that rapidly find the optimal schedules. However, Lenstra and Rinnooy Kan 
(1979) proved that the general JSP is an NP-Hard problem when the number of machines 
is greater than three. In this case, finding an optimum schedule could be time consuming 
and sometimes it can be impossible to achieve. Therefore, when the JSP problem 
becomes strongly NP-hard, it would be necessary to use heuristics or metaheuristics to 
solve it. With these methods, the guarantee of finding optimal solutions is sacrificed for 
the sake of (hopefully) getting acceptable solutions with a significantly reduced 
computational time. 

4 ABC algorithm 

ABC is one of the recent swarm intelligence optimisation techniques. It is a metaheuristic 
inspired from the intelligent behaviour of honey bees for seeking quality food source in 
nature. The idea and principle of this algorithm have been introduced for the first time by 
Karaboga (2005). However, the details of its different steps were published in Karaboga 
and Basturk (2007). 

The ABC is a population based metaheuristic. Therefore, a population of artificial 
bees searches the optimal solution and every artificial bee generates one solution. As the 
ABC algorithm is inspired from the foraging process in the natural bee colony, it is 
considered that each solution to the problem to be solved is called a food source, whereas 
the fitness of the solution corresponds to the amount of nectar of the associated food 
source. The computing agents of this algorithm are given by three kinds of artificial bees, 
namely: employed bees, onlooker bees and scout bees. 

A bee that is currently exploiting a food source (solution) is called an employed bee, 
whereas bee waiting in the hive for making decision to choose a food source is named as 
an onlooker. Finally, bee carrying out a random search for a new food source is called a 
scout (Teodorović et al., 2015). Both onlookers and scouts are also called unemployed 
bees (Karaboga et al., 2014). 

Following the foraging mechanism in the natural bee colony, in the ABC algorithm, 
scout bees can be visualised as performing exploration, whereas employed and onlooker 
bees can be visualised as performing exploitation. Hence, this metaheuristic formulated 
by the ABC algorithm has the advantage of regulating the trade-off between exploitation 
and exploration. It has also the advantage of employing fewer control parameters in 
continuous space. These advantages make the ABC algorithm very competitive to other 
population based algorithms (Karaboga and Basturk, 2007, 2008; Karaboga and Akay, 
2009). 

The main steps of the fundamental ABC algorithm are summarised in Algorithm 1. 
The fundamental ABC algorithm starts with an initialisation phase, where the 

population is randomly generated, and then, at each iteration: the employed bees phase, 
onlooker bees phase and scout bees phase are repeated until a termination condition is 
met. The details of these steps can be found in Karaboga and Akay (2009). 

The fundamental ABC algorithm, as presented above, was originally designed for 
continuous optimisation problems and cannot be used directly for combinatorial cases. 
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Therefore, for solving a combinatorial problem some modifications to the fundamental 
ABC algorithm must be done. 

Algorithm 1 Fundamental ABC algorithm 

1 Initialise 

2 REPEAT 

3 Employed bees phase: the employed bees try to update their food sources. 

4 Onlooker bees phase: the onlooker bees select the more interesting food sources 
given in Employed bees phase and furthermore try to update them. 

5 Scout bees phase: send scouts to search new food sources that will replace the 
abandoned ones. 

6 Memorise the best food source found so far. 

7 UNTIL (termination criteria is satisfied). 

5 The proposed CABC algorithm 

Mapped for the resolution of the JSP, the CABC algorithm is proposed in this section as a 
combinatorial release of the ABC algorithm. The aim is to find the job operation 
scheduling list that minimises the Makespan value. 

The pseudo-code of the CABC algorithm proposed for solving the JSP is given in 
Algorithm 2 and its general steps are detailed in the following subsections: 

5.1 Solution representation 

In the CABC algorithm, each solution corresponds to a food source ‘X’ exploited by one 
bee. The first step in problem solving is the solution representation according to the 
problem environment. Let us consider that our JSP to be solved is an instance of n jobs 
and m machines; where each job consists of m ordered operations. The solution 
representation adopted in this work is the ‘operation-based representation’ with ‘job 
repetition’. Hence, the solution of this JSP is an operation scheduling list, which is 
represented in our CABC algorithm as food source ‘X’. This food source ‘X’ is a vector 
with (n × m) dimensions where each dimension stands for one operation of a job. 
According to the solution representation considered, in the food source ‘X’, each job 
appears exactly m times. Figure 2 illustrates an example of a solution representation of 
job shop. 

Figure 2 Example of food source representation for (3-job3-machine) JSP 

 

In the solution (X) of Figure 2(a), Ji stands for the operation of job i. Since each job has 
three operations, it occurs three times in this operation scheduling list. The first J1 
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corresponds to the first operation of job J1. The first J3 corresponds to the first operation 
of job J3. The second J1 corresponds to the second operation of job J1, and so on. 

In fact, in the computing algorithm, we use for (X), the form given by Figure 2(b), 
where a repetition of jobs numbers is used. 

5.2 Initialisation phase 

In this phase, we start by setting the initial parameters of the algorithm, such as: the 
colony size (CS), the number of employed bees, onlooker bees (number of food sources 
SN=CS/2), the parameter Limit and the maximum number of iterations (NI_Max). 
Furthermore, the job shop parameters such as the number of jobs, number of machines, 
the job processing time on each machine and the job machine sequence will be given. 

Next, the initial solutions are randomly generated. Although the solutions are 
constructed by generating a random suite of jobs numbers (according to the size of the 
JSP), they will be feasible solutions (feasible schedules). Indeed, when the ‘operation-
based representation’ with ‘job repetition’ is used for solution representation, the 
precedence constraints in jobs processing are always respected. 

The ABC algorithm seeks to find the solution that maximises the fitness. However, 
our objective is to solve the JSP with minimisation of the Makespan (Cmax: maximum 
completion time). Therefore, the fitness in the CABC will be calculated as follow: 

 max

1 1

i

i
i

fit
C F X

   (14) 

where fiti is the fitness value of the food source Xi and F(Xi) is the objective function 
value of the food source Xi; (noted Cmax(Xi) or Cmaxi). 

Algorithm 2 Combinatorial artificial bee colony algorithm 

Input: CS, , Limit, NI_Max, JSP parameters. 

Output: Global best solution XGbest, C*max 

1 SN = CS/2 

2 For i =1 to SN 

3 Generate randomly the food source Xi 

4 Initialise the invalid trials counter triali = 0 

5 End For 

6 it = 1 

7 repeat 

8 Employed bees phase 

9 Onlooker bees phase 

10 Scout bees phase 

11 Memorise the best solution found so far. 

12 it = it + 1 

13 Until it = NI_Max + 1 

14 Return XGbest 
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In CABC algorithm, another variable triali is assigned to each food source (Xi). triali is a 
counter of unsuccessful trials where the food source (Xi) is not improved. It is an 
indicator to find food sources (solutions) to be abandoned in the next iterations after Limit 
fruitless trials. First, as initial value, each triali is set to 0, where, i = 1,2,…,SN. 

5.3 Employed bees phase 

In this phase, the employed bee generates a new food source (Vi), by updating the old 
food source already exploited (Xi), with a neighbouring food source (Xk) randomly taken 
from other food sources in the population of solutions. The pseudo code of this phase is 
given by Algorithm 3. 

Vi is the result of a crossover between (Xi) and (Xk). In order to obtain a new valid 
solution (Vi), the position base crossover (PBX) mechanism is used (Syswerda, 1991). 
The PBX procedure is described in the following steps with an example illustrated in 
Figure 3. 

Step A Initially the new food source is created by copying in a new vector (solution) 
(Vi) all the job operations of the old food source (Xi) except those that will be 
randomly selected to be changed. The number of selected operations to be 
changed is noted N_ch. For our JSP with n jobs and m machines, the solution is 
given by the ‘operation-based representation’ with ‘job repetition’. So, in the 
solution (X) each job appears exactly m times. Hence, to avoid redundant 
changes, the number of changes N_ch is limited to the number of operations 
required for each job. Which means that: N_ch = m (the number of machines). 
The N_ch empty positions in (Vi) will be filled from (Xk) as given in the next 
step. 

Step B The job operations on the neighbouring food source (Xk) will be taken from the 
left to the right and placed into empty positions of the operation scheduling list 
in the new food source (Vi), from the left to the right also. To ensure that each 
job will be included exactly m times in the new food source (Vi), if any job has 
already been selected for m times [from either (Xi) or (Xk)], it will be skipped 
and the next job will be considered. 

Figure 3 Updating solution by PBX crossover 
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Once the new food source (Vi) is obtained by updating the old food source by the PBX 
method, a greedy selection is applied. The old food source (Xi) in the employed bees 
memory will be replaced by the new candidate food source (Vi) if this latter has a better 
fitness value. In such enhancing update, triali is set to ‘0’. Otherwise, if the employed bee 
does not change its food source (Xi), the trial counter triali is increased by 1. 

If after several trials, triali exceeds the value defined by ‘Limit’, its related employed 
bee will turn into a scout bee and after doing a random search, it will turn back to be an 
employed bee again. 

Algorithm 3 Employed bees phase procedure 

1 For all Employed Bees Xi ; i = 1 to SN 

2 Select randomly a neighbour Xk from the colony 

3 Produce new solution Vi by updating Xi with Xk using a PBX crossover 

4 If Cmax(Vi) < Cmax(Xi) then 

5 Xi ← Vi 

6 triali = 0 

7 XGbest = update (XGbest, Vi) 

8 Else 

9 triali = triali + 1 

10 End if 

11 End For 

5.4 Onlooker bees phase 

This phase starts by evaluating the quality of all employed bees food sources. After that, 
SN onlooker bees will be recruited, (SN = number of employed bees). Indeed, SN 
onlooker bees will exploit new food sources by selecting and updating the more 
interesting employed bees food sources. The pseudo code of this phase is given by 
Algorithm 4 where the details are as follows: 

5.4.1 Selection 

The selection principle used in the CABC is different from that of the ABC. In the 
fundamental ABC algorithm, the selection is given by using a ‘roulette wheel selection’ 
method (Goldberg, 1989). For this method, the food source is selected depending on its 
probability value pi calculated by expression (15). 

1

i
i SN

kk

fit
p

fit





 (15) 

pi is compared with the value of  randomly generated between [0,1]. If pi > , the 
corresponding (Xi) is selected. However, for the JSP, the fitness fiti expressed as the 
reverse of Cmax(Xi), takes relatively very small values. Then, the probability pi will be 
small as well. pi could be 1,000 times smaller than . Therefore, in the case of the JSP, 
the ‘roulette wheel selection’ may not be a suitable method of selection for the onlooker 
bees. 
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In the CABC, we keep the fact that, for better exploitation, the onlooker bees should 
select only the more interesting food sources among those proposed by the employed 
bees. However, the selection will not be based on the probability but on the Cmax value. 
Since our purpose is to minimise Cmax, it is considered that the solution is better when the 
corresponding Cmax value is lower. Based on the fact that the possibility of finding better 
solutions are high in the neighbourhood of a good solution, most of onlooker bees will 
select to move to good solutions with the lowest Cmax. 

Our rank-based selection procedure can be described as follows: 

 Step 1: As shown in Figure 4, the food sources of the employed bees are ranked in 
ascending order of Cmax values. 

 Step 2: Only a quota of the first good ranked food sources could eventually be 
selected. The estimation of this quota is given by a percentage . For example, for  
 = 25%, the higher Cmax of the 25% of good ranked food sources is noted Cmax_. 

 Step 3: The onlooker bees can select only the food sources (Xi) having a Cmax(Xi) ≤ 
Cmax_. 

5.4.2 Updating 

The updating of the selected food source (Xi) will be done in the same manner as in the 
employed bee phase. A greedy selection is also applied between the selected food source 
(Xi) and the new generated food source (Vi) in order to keep the best solution. The triali 
counters are also updated. 

Figure 4 Food sources candidates for selection 

 

In the CABC, the onlooker bees phase provides the intensification of local search on the 
relatively promising chosen solutions. This means that only the best food sources 
proposed by the employed bees will be candidates for an updating in the onlooker bee 
phase. The aim is to further improve the quality of the solution found by the employed 
bees. 
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Algorithm 4 Onlooker bees phase procedure 

1 For all Employed Bees Xi; i = 1 to SN 

2 Evaluate Cmax (Xi) 

3 End For 

4 Rank all Cmax(Xi); i = 1 to SN, in ascending order 

5 Calculate Cmax_ corresponding to quota  of relatively good solutions. 

6 t = 0, i = 1 

7 While t < SN 

8 If Cmax(Xi) < Cmax_ then 

9 t = 1 + 1 

10 Select randomly a neighbour Xk from the colony 

11 Produce new solution Vi by updating Xi with Xk using a PBX crossover 

12 If Cmax(Vi) < Cmax(Xi) then 

13 Xi ← Vi 

14 triali = 0 

15 XGbest = update (XGbest, Vi) 

16 Else 

17 triali = triali + 1 

18 End if 

19 End if 

20 i = i + 1 

21 If i = = SN then 

22 i = 1 

23 End if 

24 End while 

5.5 Scout bees phase 

After carrying out the employed bees and onlooker bees phases, the solutions that have 
not been improved after many trials may be trapped in local optima. The scout bees phase 
aims to deal with this situation. Indeed, if a food source (solution) cannot be improved for 
a predetermined number of trials, denoted Limit, then the employed bee associated with 
this food source becomes a scout bee. This scout bee finds randomly a new food source 
and becomes an employed bee again. 

The parameter Limit plays an important role in CABC by providing a balance 
between exploration and exploitation. A small value of Limit parameter favours 
exploration over exploitation, whereas the reverse is true for its large value. 

In the fundamental ABC, only one scout is used. Whereas in CABC algorithm, the 
number of scout bees is not a fixed number. At each iteration, all the employed bees for 
which the corresponding food source has not been improved after Limit trials will 
become scout bees and their counters of trials are reset to zero. This step is detailed by 
Algorithm 5. 
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Algorithm 5 Scout bees phase procedure 

1 For all Bees Xi ; i = 1 to SN 

2 If triali ≥ Limit then 

3 Generate randomly new Xi 

4 Evaluate the new solution Xi 

5 triali = 0 

6 End if 

7 End For 

6 Hybrid combinatorial artificial bee colony (SILS_CABC) algorithm 

The effectiveness of a search process in all population-based nature-inspired algorithms 
depends on two components: exploration and exploitation (Črepinšek et al., 2013). For 
the CABC algorithm, the exploration is well ensured by the scout bees phase. However, it 
is still poor at exploitation which is done by the employed and onlooker bees phases. In 
fact, at each iteration, each solution is updated one time at the employed bees phase and if 
this solution is good enough it could be selected for another update at the onlooker bees 
phase. Nevertheless, this is not enough for a good exploitation. 

In order to enhance the exploitation of the CABC algorithm, a sequential 
hybridisation with a new procedure of local search is done. We called this proposed 
procedure: ‘SILS’. SILS is applied to update the best solution of each iteration after the 
employed and onlooker bees phases. If at the iteration ‘t’ the best solution X(t)best was 
already found and exploited by SILS in one of the precedent iterations (< t), the 
procedure SILS is skipped in this case. This will avoid redundant local searches. The 
hybrid release is noted SILS_CABC, and its flowchart is given in Figure 6. 

Figure 5 Insert process for Local Search procedure of SILS algorithm 

 

SILS is a simple metaheuristic that iteratively applies local search to refine the current 
best solution X(t)best to its local optima X′(t)best. The SILS procedure is given by 
Algorithm 6 and it operates as follows. Let consider that X(t)best, the best solution done at 
the iteration ‘t’, is the input solution for the SILS procedure. After some iterated 
improvement, given by some local search cycles, the output solution will be X′(t)best. So, 
X′(t)best = SILS_procedure (X(t)best). Each local search cycle starts with the input (seed) 
solution, noted sin . s* notes the output solution, s* = local search(sin). It is the best 
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solution found by a local search in the neighbourhood of sin. The first cycle starts by  
sin = X(t)best. The first solution found s* will be the input solution in the second local 
search cycle, and so one for the next cycles, where the sin will be the solution found in the 
precedent cycle. These cycles are stopped when the local search cannot improve the 
solution sin. Indeed, when in the same cycle s* = sin, we consider that the local minimum 
is reached. Therefore, s* is the final solution of SILS procedure, X′(t)best = s*. 

Figure 6 Flow chart of the hybrid algorithm SILS_CABC for JSP 
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SILS seams similar to iterated local search (ILS) metaheuristic but it differs from the 
latter in some details. In fact, for the ILS four components have to be specified: generate 
initial solution, modification, local search, and acceptance criterion (Lourenço et al., 
2003). Whereas, SILS is based only on the Local Search component. For SILS the initial 
solution is already done by the solution of CABC algorithm (s0 = X(t)best). In order to 
preserve the quality of the solution given by CABC, SILS aims to exploit the current best 
solution only in its basin of attraction. Hence, the resulting solution is injected into the 
next local search without any prior modification. 

Furthermore, as there is no modification for the solution to exploit (sin = s*), the 
acceptance criterion test is not needed; because the solution s* obtained by Local Search, 
will be surely better than sin or at worst the same. SILS differs also from ILS in the 
number of runs. ILS runs for a fixed number of iterations but SILS continues to generate 
a chain of candidate solutions until reaching the local minimum (s* = sin). 

The SILS algorithm, as presented by Algorithm 6 seems very simplistic; however, in 
the case of our study, it proved that it can be very effective and even more efficient than 
ILS approach. 

Algorithm 6 SILS procedure 

1 Input : s0 = X(t)best 

2 s* = s0 

3 Repeat 

4 sin = s* 

5 s* = Local Search (sin) 

6 Until s* = sin 

7 Output : X′(t)best = s* 

Algorithm 7 Local Search procedure 

1 Input: s = sin 

2 s* = s 

3 For p1 = 1 to D – 1 

4 For p2 = p1 + 1 to D 

5 s′ = Insert_process(p2, p1, s) 

6 If Cmax(s′) < Cmax(s*) then 

7 s* = s′ 

8 End if 

9 End For 

10 End For 

11 Return s* 

Regarding the local search component given by the Algorithm 7 of local search 
procedure, we consider the insertion neighbourhood structure. The Insert_process(p2, p1, 
s) means removing the job operation in solution s from the position p2 and inserting it in 
the position p1. All the job operations from the position p1 to p2 – 1 will undergo a 
forward shift to fill the lack at the position p2, as shown in Figure 5. All the neighbours 
will be considered. So, each job operation removed from its original position p2, is 
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inserted into all possible positions p1 from 1 to D – 1, where D denotes the dimension of 
the solutions and is expressed by D = n × m (the number of all operations to be executed 
in the (n × m) job shop). 

For selecting the best neighbour, the best-improvement strategy is considered. Hence, 
all the possible neighbours (s′) are exhaustively explored, but only the best solution (s*) 
with the lowest Cmax is returned. 

7 Experiment results 

In order to investigate the efficiency of CABC and SILS_CABC algorithms, numerical 
simulations are performed on many instances of JSP benchmarks taken from the 
Operations Research Library (OR-Library) (Beasley, 1990). All these considered 
benchmarks are strongly NP-hard problems because the size of their Instances ranges 
from 6 to 50 jobs and 5 to 20 machines. (The machines number m ≥ 3). 

In this section, we have focused only on the instances for which we achieved the best 
known solution. The instances under consideration are those of Fisher and Thompson 
(1963), referred as Ft06, and a part of those introduced by Lawrence (1984), referred as 
La01–La15. In order to have a comparison basis for these benchmarks, the survey of Jain 
and Meeran (1999) presents their structures and how the best solutions known previously 
were found. It even provides a classification of hard and easy problems. 

Based on a sensitivity analysis on several combinations of parameters values, the 
algorithm parameters are set as follows: 

 Colony Size (CS) = 1000, then the size of the population of solutions is given by  
SN = CS/2 = 500 food sources 

 25% of ranked solutions are able to be selected for updating, then  = 0.25 

 for abandonment criteria, Limit = 20 trials 

 for termination criteria, NI_Max = 1,000 iterations. 

Table 2 reports the experimental results of the combinatorial artificial bee colony 
algorithm CABC and its hybrid release SILS_CABC. Both algorithms are run 10 times 
on each problem instance. This table shows the problem name (Instance), the problem 
size (n × m) with n jobs and m machines (Size), the best known solution (BKS) for the 
instance, the best solution found by each algorithm (Best_Cmax), the average calculated on 
all Cmax obtained by the 10 runs (Avrg_Cmax), the relative percent deviation of best 
solution with respect to the BKS (RPDBest) calculated by equation (16), the relative 
percent deviation of average solution with respect to the BKS (RPDAvrg) calculated by 
equation (17) and finally the minimal number of iteration to reach optimal solution 
(NIROSmin). 

 max_
100Best

Best C BKS
RPD

BKS


   (16) 

 max_
100Avrg

Avrg C BKS
RPD

BKS


   (17) 
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When RPDBest = 0 for an instance this means that its optimal solution is obtained and 
furthermore, if RPDAvrg = 0, then this optimal solution is obtained with 10 replications of 
simulation. The dash ‘-’ in the NIROSmin column means that the optimal solution is not 
reached for this algorithm. 

It can be observed from Table 2, that the SILS_CABC algorithm leads to the BKS for 
all instances from La01 to La15. Furthermore, it performs better in all the replications for 
the instances Ft06 and La01 as well as La05-La15. We can also conclude that even the 
CABC can deal with the NP-hard problem of JSP, because it solves optimally almost all 
the considered instances, except La03. Comparing both algorithms, it is clear that the 
hybrid release SILS_CABC brings interesting improvements in terms of solution quality 
and convergence speed. Indeed, we can notice a significant reduction in the parameter 
NIROSmin of SILS_CABC compared with CABC. 

In this paper we fixed the population size SN= 500 food sources and the maximum 
number of iteration NI_Max = 1,000 iterations. However, in our simulation tests it is 
possible to get the BKSs for some instances with parameters values less than those fixed 
here. For example for the small instance La05 the SILS_CABC algorithm leads the BKS 
at the first iteration, with only SN = 5 and a simulation duration less than 1 second. 

Furthermore, following the size criteria, the simulation tests showed that the instances 
could be classified into hard and harder problems. Indeed, comparing the sizes of 
instance La03 (10x5) and the instance La14 (20x5), La14 is considered larger than La03. 
However the simulation shows that it is easier to solve La14 than La03. Solving La14 is 
less time consuming and can be done with only a small population size (SN). The same 
observations can be done for some instances having the same size. Example: comparing 
La05 with La03, or La14 with La15. 

In Table 2, the parameter NIROSmin highlights the possibility to classify the test 
benchmarks into hard or harder problems. With SILS_CABC algorithm: for La03, 
NIROSmin = 780; for La04, NIROSmin = 94 and for La05, NIROSmin = 1. This means that 
the BKS could be obtained for La03 after 780 iterations, it can also be found for La04 
after 94 iterations. However, it is reached for La05 at the first iteration. Hence, it is 
relatively easier to solve La05 than La03. Consequently, La05 can be classified as hard 
JSP benchmark and La03 can be viewed as harder one. 

Further, to illustrate the convergence characteristics of proposed SILS_CABC, the 
Figure 7 shows the Gap of the 5 instances La1-La5 given by equation (18). In the present 
study, it is expressed by the relative percent deviation between the solutions obtained at 
all iterations generated by the algorithm and the Best Known optimal Solution. 

 max
100; 1 _iter

c BKS
GAP iter to NI Max

BKS


    (18) 

The Gap depicted in Figure 7 confirms that there are some hard and harder instances to 
solve. Indeed, the Gap of La01 and La05 is given by only one point because it happens 
that the algorithm converges very rapidly to the optimal solution with only one iteration 
and even with population size SN = 5. 

Furthermore, concerning the other instances of JSP benchmarks in OR-library that are 
not presented in Table 2, simulations are also done, and we found that the RPDBest range 
is from [0–5%], hence the proposed algorithms are quite efficient even for large 
instances. 
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Table 2 Comparison between results of CABC and SILS_CABC 
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Figure 7 Convergence characteristics for instances: La01-La05 (see online version for colours) 

 

Moreover, in order to analyse the impact of the improvement obtained by SILS_CABC 
compared with CABC in term of Makespan, both algorithms averages values are 
subjected to statistical analysis using t.test at a level of significance of 5%. Therefore, 
there are two hypothesis: the null hypothesis (H0) which means that the algorithms results 
means are equals and the alternative hypothesis (H1) representing the case where 

max max_ __ .Avrg C Acvrg CCABC SILS CABC . After running the test, the obtained p-value is 

about 0,023. Since it is less than 5% (the significance level), the null hypothesis should 
be rejected. Therefore, there are significant differences between the two algorithms 
performances. As a result, SILS_CABC improves the Makespan compared with CABC. 

8 Conclusions and future works 

In this study, we address the JSP with the objective of minimising the Makespan to 
further improve throughputs and the system productivity. JSP is known to be NP-hard in 
the strong sense. Hence, due to its wide applicability and inherent difficulty, it is 
considered as one of the most popular scheduling problems. 

To solve JSP, we opted for the Artificial Bee Colony metaheuristic (ABC). The ABC 
algorithm has been recently introduced and tested on various optimisation problems. 
However, most of them are of a continuous nature. Therefore, our first contribution 
consists to adapt the continuous version of the ABC algorithm to the combinatorial 
problem of the job shop. The proposed metaheuristic formulated by the Combinatorial 
Artificial Bee Colony (CABC) algorithm, is based on the intelligent behaviour of honey 
bees for seeking a quality food source in nature. It is articulated in three phases: the 
employed bees phase and onlooker bees phases that ensure the exploitation and the scout 
bees phase for a good exploration. 
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At the employed and onlooker bees phases, we update the current solution by 
performing a Position Based Crossover with another solution chosen randomly. 
Regarding the selecting of solutions to be updated in the onlooker bees phase, we use the 
Rank-Based Selection. 

At each iteration of CABC algorithm, each solution is firstly updated at the employed 
bees phase. In addition, it could be selected for a second update at the onlooker bees 
phase if this solution is good enough. Hence, we noticed that the proposed concept with 
only two updating processes is poor in exploitation. 

Furthermore, in order to enhance the exploitation side of the CABC algorithm, a 
sequential hybridisation with a new procedure of local search has been introduced. The 
proposed procedure, called: ‘SILS’ is a simple metaheuristic that iteratively applies local 
search to refine the current iteration best solution of CABC algorithm, but only in the 
case where this solution has not been subjected to the SILS procedure in the previous 
iterations. 

The numerical simulations confirmed the numerical correctness and the efficiency of 
both algorithms CABC and SILS_CABC. Indeed, with these algorithms, the optimal 
solution was obtained for many job shop benchmarks problems drawn from the literature. 

The experimental results subjected to statistical analysis t.test demonstrated also that 
the hybrid release SILS_CABC effectively improved the exploitation of the 
combinatorial proposed algorithm. Hence, it performs the best in terms of solution quality 
evaluated by the Makespan and in terms of convergence speed. 

For a better adaptation of the used bee colony metaheuristic, the proposed algorithms 
require further research and improvements to propose other practical solutions. 
Therefore, our work can be enriched following several research directions: 

1 It could be interesting to propose an optimal parameter setting by a well-known 
tuning approach based on other artificial intelligence techniques such as Artificial 
neural network. 

2 An enhancement can be done in the updating and the selecting steps of the 
algorithms in order to solve rapidly the JSP with other complex instances. 

3 It would be useful to extend the ideas proposed to different objective functions or 
multi-objective JSPs. 

4 It is also worthwhile to apply the proposed algorithms to other kind of combinatorial 
optimisation problems. 
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