Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 39, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

SINGULAR ELLIPTIC SYSTEMS INVOLVING CONCAVE TERMS AND CRITICAL CAFFARELLI-KOHN-NIRENBERG EXPONENTS

MOHAMMED E. O. EL MOKHTAR

ABSTRACT. In this article, we establish the existence of at least four solutions to a singular system with a concave term, a critical Caffarelli-Kohn-Nirenberg exponent, and sign-changing weight functions. Our main tools are the Nehari manifold and the mountain pass theorem.

1. Introduction

In this article, we consider the existence of multiple nontrivial nonnegative solutions of the

$$-L_{\mu,a}u = (\alpha+1)|x|^{-2*b}h|u|^{\alpha-1}u|v|^{\beta+1} + \lambda_1|x|^{-c}f_1|u|^{q-2}u \quad \text{in } \Omega\setminus\{0\}$$

$$-L_{\mu,a}v = (\beta+1)|x|^{-2*b}h|u|^{\alpha+1}|v|^{\beta-1}v + \lambda_2|x|^{-c}f_2|v|^{q-2}v \quad \text{in } \Omega\setminus\{0\}$$

$$u = v = 0 \quad \text{on } \partial\Omega,$$
(1.1)

where $L_{\mu,a}w:=\operatorname{div}(|x|^{-2a}\nabla w)-\mu|x|^{-2(a+1)}w,\ \Omega$ is a bounded regular domain in \mathbb{R}^N $(N\geq 3)$ containing 0 in its interior, $-\infty< a<(N-2)/2,\ a\leq b< a+1,$ $1< q<2,\ 2_*=2N/(N-2+2(b-a))$ is the critical Caffarelli-Kohn-Nirenberg exponent, $0< c=q(a+1)+N(1-q/2),\ -\infty<\mu<\bar{\mu}_a:=((N-2(a+1))/2)^2,$ α,β are positive reals such that $\alpha+\beta=2_*-2,\ \lambda_1,\ \lambda_2$ are real parameters, $f_1,\ f_2$ and h are functions defined on $\bar{\Omega}$.

Elliptic systems have been widely studied in recent years, we refer the readers to [1, 7] for regular systems which derive from potential. However, only a few results for singular systems, we can cite [3, 7]. As noticed, when $a=b=c=0,\ h\equiv 1,\ q=2$ and $f_1\equiv f_2\equiv 1$, Liu and Han [11] studied (1.1). By applying the mountain pass theorem, they proved that, if $0<\mu\le\bar\mu_0-1$ then, system (1.1) admits one positive solution for all $\lambda_1,\lambda_2\in(0,\eta_1(\mu))$. Here, $\eta_1(\mu)$ denote the first eigenvalue of the positive operator $-\Delta-\mu|x|^{-2}$ with Dirichlet boundary condition. Wu [13] proved that the system (1.1) with $\mu=0$, has at least two nontrivial nonnegative solutions when a=b=c=0, the pair of the parameters (λ_1,λ_2) belong to a certain subset of \mathbb{R}^2 and under some conditions on the weight functions $f_1,\,f_2$ and h. For $=0,\,=1$ and h 1, system (1.1) has been studied by Bouchekif and El