REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABOU-BEKR BELKAID - TLEMCEN

THÈSE

Présentée à :

FACULTE DES SCIENCES – DEPARTEMENT DE PHYSIQUE

Pour l'obtention du diplôme de :

DOCTORAT EN SCIENCES

Spécialité: Physique des Polymères

Par:

Amel AYAD

Sur le thème

Contribution à l'étude de la réduction des émissions de COV par les liquides ioniques

Soutenue publiquement le 15 Juillet 2017 à Tlemcen devant le jury composé de :

Mr Mustapha BENMOUNA M^{me} Saeda DIDAOUI-NEMOUCHI Mr Benali MOUFFOK Mr Abdelhak BOUSSAID Mr Fabrice MUTELET M^{me} Amina NEGADI

Professeur Professeur Professeur Professeur Professeur

UAB- Tlemcen Président USTHB Examinatrice UDL-Sidi Bellabes Examinateur UAB- Tlemcen Examinateur MCF-HDR ENSIC-Université de Lorraine Co-Directeur de thèse Directrice de thèse UAB- Tlemcen

Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire (LATA2M) BP 119, 13000 Tlemcen - Algérie

Remerciements

Les travaux présentés dans cette thèse ont été réalisés au sein du Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire (LATA2M) de l'Université de Tlemcen, sous la direction de professeur Amina NEGADI et au sein de l'équipe Thermodynamique et Energie (ThermE) du laboratoire Réactions et Génie des Procédés (LRGP), à Ecole Nationale Supérieure des Industries Chimiques de Nancy (France) sous la direction de monsieur Fabrice MUTELET.

Je remercie en premier lieu ma directrice de thèse, Mme. Amina NEGADI, pour la confiance qu'elle m'a témoignée et pour son encadrement scientifique. Ses conseils et son appui m'ont été d'une grande utilité pour mener ces travaux de recherche.

Je tiens à remercier Mr. Fabrice MUTELET mon co-directeur de thèse, pour m'avoir suivi, encadré et aidé sur les aspects expérimentaux et fondamentaux pendant ce travail. Sa disponibilité, son intérêt constant pour cette étude m'ont permis de mener ce travail au mieux.

Je tiens à exprimer tous mes remerciements à Monsieur Mustapha BENMOUNA, Professeur à l'Université Abou Bekr Belkaid de Tlemcen, qui a bien voulu me faire l'honneur d'être le Président du jury de ma thèse.

Mes respectueuses reconnaissances vont également à Mme. Saeda DIDAOUI-NEMOUCHI, Professeur à USTHB; Mr. Benali MOUFFOK Professeur à UDL-Sidi Bellabes et Mr. Abdelhak BOUSSAID, Professeur à l'Université de Tlemcen d'avoir accepté d'examiner mon travail de thèse.

Que mes vifs remerciements aillent au Pr. Latifa NEGADI, directrice de Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire (LATA2M), pour l'aide scientifique, sa disponibilité et ses conseils judicieux.

Je tiens également à remercier Mr. Mohammed BOUROUKBA pour son aide et sa grande disponibilité lorsque j'avais des questions sur les techniques calorimétriques du laboratoire. Je remercie également tous les membres de l'équipe ThermE du laboratoire LRGP et le responsable de l'équipe Mr. Jean-Noël JAUBERT.

Je remercie aussi mes collègues doctorants et stagiaires de l'équipe ThermE : El-Sayed R. HASSAN, Imane HADDADOU, Elina Lukoshko, El-Shaimaa ABUMANDOUR, Armel

GONDA, Laetitia CESARI, Niramol JUNTARACHAT, Silvia LASALA, pour les bons moments passés ensemble dans le laboratoire comme en dehors. Je remercie également tous les membres du laboratoire LATA2M.

Pour finir, j'exprime mon immense gratitude à ma famille, ma mère, mon père, ma sœur et mes deux frères de m'avoir toujours soutenue et encouragée. Je vous aime tous.

Table des matières

Introduction générale	1
Bibliographie	4
Chapitre I. Etat de l'art des liquides ioniques	
Introduction	7
I. Présentation des Liquides ioniques	7
I.1. Définition	7
I.2. Historique	9
I.3. Synthèse	9
I.4. Propriétés physico-chimiques	10
I.4.1. Le point de fusion	10
I.4.2. Stabilité thermique	11
I.4.3. Densité	12
I.4.4. Viscosité	12
I.4.5. Conductivité	13
I.4.6. Solubilité dans l'eau et les solvants organiques	14
I.5. Influence des impuretés	14
I.6. Toxicité	15
I.7. Applications	16
I.7.1. Electrochimie	16
I.7.2. Chimie Analytique	17
I.7.3. Synthèse et catalyse	18
I.7.4. Biotechnologie	19
I.8. Captage de dioxyde de carbone par les liquides ioniques	19
I.8.1. Différents technologies de captage du CO ₂	20
I.8.2. Absorption du CO ₂ par les liquides ioniques	22
Bibliographie	24
Chapitre II. Etude du comportement des composés organiques dans les liquides ioni- par chromatographie inverse	ques
Introduction	35
II.1. Calcul de coefficients d'activité à dilution infinie	35
II.1.1. Théorie de la chromatographie en phase gazeuse inverse (CGI)	35
II.1.1.1. Les grandeurs utilisées en CGI	35
II.2. Le modèle générale de solvatation d'Abraham	38
II.2.1. Variantes du modèle Abraham pour la représentation de systèmes contenant	des
liquides ioniques	40
II.3. Partie expérimentales	41
II.3.1. Appareillage et conditions expérimentales	41

II.3.2. Préparation des colonnes	42
II.3.3. Produits chimiques	43
II.3.3.1. Choix des molécules sondes	43
II.3.3.2. Liquides ioniques	43
II.3.4. Résultats et discussions	44
II.3.5. Détermination des coefficients d'activité à dilution infinie à différentes	
températures	45
II.3.5.1. Comportement des solutés avec les liquides ioniques étudiés	45
II.3.5.2. Effet de la température	50
II.3.5.3. Sélectivité des liquides ioniques	51
II.3.5.4. Calcul des coefficients du modèle LSER pour [EMIM][(MeO)(H)PO ₂],	
[DIMIM][(MeO)(H)PO ₂]	55
II.3.5.5. Développement des corrélations du modèle LSER LI-spécifique pour	
[Quin6][Tf2N] et [Quin8][Tf2N]	57
II.3.6. Mise en place d'un modèle prédictif des coefficients de partage gaz-liquide d	e
solutés dans divers liquides ioniques	60
II.3.6.1. Ensembles de données et méthodologie	60
II.3.6.2. Groupes fonctionnels	65
II.3.6.3. Résultats et discussion	70
II.3.6.4. Performance du modèle proposé	79
Conclusion	81
Bibliographie	82

Chapitre III. Propriétés thermophysiques des mélanges binaires contenant les liquides ioniques

Introduction	92
III.1. Etude des systèmes {Eau + LI}	92
III.1.1. Matériel	92
III.1.2. Mesures et modélisation des équilibres liquide-vapeur des mélanges	
{eau+liquide ionique}	93
III.1.2.1. Equilibres entre phases liquide – vapeur	93
III.1.2.2. Modèles thermodynamiques	94
III.1.2.3. Description du dispositif et procédure expérimentale	95
III.1.2.4. Résultats et discussion	96
III.1.3. Les grandeurs d'excès des mélanges {eau+liquide ionique}	98
III.1.3.1. Densités et Volume d'excès	98
III.1.3.2. Enthalpie molaire d'excès	108
III.1.3.3. Capacité calorifique molaire	112
III.2. Etude de la solubilité du CO ₂ dans les liquides ioniques à base de l'anion	
tricyanométhanide	119
III.2.1. Méthodes expérimentales de mesure de la solubilité	119
III.2.2. Matériels	120

III.2.3. Description du dispositif et procédure	
III.2.4. Préparation des mélanges binaires	
III.2.5. Modélisation PC-SAFT	
III.2.5.1. Présentation de l'équation PC-SAFT	
III.2.6. Résultats et discussion	
III.2.6.1. Modélisation PC-SAFT	
Conclusion	131
Bibliographie	
Conclusion générale	
Annexe A	141
Annexe B	155

Introduction Générale

Introduction générale

La présente thèse s'inscrit dans le cadre d'une collaboration entre le Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire (LATA2M) de l'université Abou Bekr Belkaid de Tlemcen et le Laboratoire Réactions et Génie des Procédés (LRGP) de l'Ecole Nationale Supérieure des Industrie Chimiques (ENSIC) de Nancy.

La plupart des solvants organiques classiques utilisés dans l'industrie chimique sont très volatils, inflammables et toxiques pour l'être humain et l'environnement. Dans les processus chimiques, des solvants alternatifs aux solvants organiques classiques, plus respectueux de l'environnement ont été proposés notamment l'eau, les fluides supercritiques, les solvants fluorés et les liquides ioniques. Ces dernières années, les liquides ioniques (LIs) sont apparus comme une nouvelle classe de solvants dits verts pour remplacer les composés organiques volatils (COV) utilisés dans l'industrie chimique.

La connaissance des propriétés physico-chimiques telles que la densité, la viscosité dynamique, la tension superficielle, les transitions de phase, la capacité calorifique des LIs purs ainsi que des équilibres entre phases de ces solvants avec l'eau et/ou les composés organiques est essentielle pour la conception et le dimensionnement de procédés industriels (Massel *et al.*, 2015 ; Paduszyński, 2016 ; Zhao *et al.*, 2014).

Récemment, les mélanges {eau + LI} ont été proposés comme nouveaux fluides de travail dans les cycles d'absorption pour remplacer les fluides de travail conventionnels {eau + bromure de lithium (LiBr)} qui sont corrosifs et présentent des problèmes de cristallisation (Merkel *et al.*, 2015).

Ces dernières années, les LIs ont été utilisés dans les procédés de séparation (Perez De Los Rios, 2014), en particulier, dans l'extraction liquide-liquide et la distillation extractive de systèmes azéotropiques (Pereiro *et al.*, 2012).

L'utilisation des LIs dans les procédés de désulfuration a déjà été reportée dans la littérature par différents auteurs (Rodríguez-Cabo *et al.*, 2013 ; Marciniak et Królikowski *et al.*, 2012 ; Królikowski *et al.*, 2013 ; Domańska *et al.*, 2013).

Mutelet et al. (Mutelet *et al.*, 2005 ; Mutelet et Jaubert, 2006 ; Mutelet *et al.*, 2006 ; Mutelet et Jaubert, 2007 ; Mutelet *et al.*, 2008) ont développé une large banque de données de propriétés thermodynamiques des LIs et tout particulièrement de coefficients d'activité à

dilution infinie de composés organiques dans les LIs à l'aide de la chromatographie en phase gazeuse inverse. Le coefficient d'activité à dilution infinie, peut être utilisé dans la présélection de solvant pour les processus de séparation

Récemment, les LIs à base tricyanométhanide [TCM] ont attiré beaucoup d'intérêt en raison de leurs caractéristiques intrinsèques particulièrement adaptées aux applications technologiques. Les LIs avec un anion [TCM] présentent une bonne stabilité thermique et électrochimique, de faibles viscosités et des températures de fusion basses ainsi leur haute sélectivité et capacité pour l'extraction (Vatašcin et Dohnal, 2015). En effet, les LIs à base [TCM] et leurs mélanges avec d'autres solvants ont montré des applications prometteuses dans la désulfuration des carburants comme le [BMPYR][TCM] (Królikowski *et al.*, 2013 ; Domańska et Lukoshko, 2013 ; Tagiuri *et al.*, 2014 ; Zubeir *et al.*, 2015).

Le but de ce travail est d'étudier le comportement des liquides ioniques en présence de composés organiques afin d'établir leur domaine d'applications dans le génie des procédés.

Après une étude bibliographique, une étude chromatographique inverse en phase gazeuse permet de caractériser les différentes interactions entre composés organiques et liquides ioniques. Les données de rétention ont été utilisées pour estimer les sélectivités à dilution infinie des LIs pour différents problèmes de séparation. La seconde partie de ce chapitre est consacrée à la mise en place d'un modèle basé sur une méthode de contribution de groupes TDGC-LSER (temperature-dependent group contribution LSER) permettant l'estimation des coefficients de partage (log K_L) des composés organiques dans divers LIs.

Le dernier chapitre est dédié à l'étude des équilibres liquide-vapeur (ELV) de trois systèmes binaires : {Eau + [BMIM][TCM]}, {Eau + [BMPY][TCM]} et {Eau + [BMPYR][TCM]} à l'aide d'un dispositif statique isotherme ainsi qu'aux mesures de propriétés thermodynamiques telles que les densités, les enthalpies molaires d'excès et les capacités calorifiques molaires d'excès de ces mêmes systèmes binaires. Le modèle NRTL a été utilisé pour la corrélation des données d'ELV alors que les données expérimentales de V^E, H^E et C^E_p sont modélisées à l'aide de l'équation Redlich-Kister. Enfin, nous avons étudié la solubilité du CO₂ dans les LIs [BMIM][TCM], [BMPY][TCM] et [BMPYR][TCM] à différentes températures à l'aide d'une cellule haute pression à volume variable. Les données expérimentales d'équilibre liquide-vapeur ont été modélisées par l'équation d'état PC-SAFT.

Bibliographie

Domańska, U. Lukoshko, E.V. Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tricyanomethanide. J. Chem. Thermodyn. **2013**, 66, 144–150.

Domańska, U.; Królikowska, M.; Walczak, K. Density, Viscosity and Surface Tension of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tricyanomethanide with Benzothiophene. **2014**, 43, 11, 1929–1946.

Domańska, U. Wlazlo, M. Effect of the cation and anion of the ionic liquid on desulfurization of model fuels. Fuel. **2014**, 134, 114–125.

Domańska, U., Lukoskho, E.V., Królikowski, M.: Separation of thiophene from heptane with ionic liquids. J. Chem. Thermodyn. **2013**, 61, 126–131.

Królikowski, M. Walczak, K. Domańska, U. Solvent extraction of aromatic sulfur compounds from *n*-heptane using the 1-ethyl-3-methylimidazolium tricyanomethanide ionic liquid. J. Chem. Thermodyn. **2013**, 65, 168–173.

Marciniak, A., Królikowski, M.: Ternary (liquid + liquid) equilibria of {trisfluorotris(perflouroethyl)phosphate} based ionic liquids + thiophene + heptane. J. Chem Thermodyn. **2012**, 49, 154–158.

Massel, M. Revelli, A.-L.Paharik, E. Rauh, M. Mark, L. O. and Brennecke, J. F. Phase Equilibrium, Excess Enthalpies, and Densities of Binary Mixtures of Trimethylbutylammonium Bis(trifluoromethylsulfonyl)imide with Ethanol, 1-Propanol, and Dimethylformamide. J. Chem. Eng. Data. **2015**, 60, 1, 65–73.

Merkel, N. Weber, C. Faust, M. Schaber, K. Influence of anion and cation on the vapor pressure of binary mixtures of water + ionic liquid and on the thermal stability of the ionic liquid. Fluid Phase Equilibria. **2015**, 394, 29–37.

Mutelet, F. Butet, V. and Jaubert, J.-N. Application of Inverse Gas Chromatography and Regular Solution Theory for Characterization of Ionic Liquids. Ind. Eng. Chem. Res. **2005**, 44, 4120-4127.

Mutelet, F. and Jaubert, J.-N. Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. Journal of Chromatography A. **2006**, 1102, 256–267.

Mutelet, F., Jaubert, J.-N., Rogalski, M., Boukherissa, M. and Dicko, A. Thermodynamic Properties of Mixtures Containing Ionic Liquids: Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Propyl Boronic Acid-3-Alkylimidazolium Bromide and 1-Propenyl-3-alkylimidazolium Bromide Using Inverse Gas Chromatography. J. Chem. Eng. Data. **2006**, 51, 1274-1279.

Mutelet, F. and Jaubert, J.-N. Measurement of activity coefficients at infinite dilution in 1-hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. J. Chem. Thermodynamics. **2007**, 39, 1144–1150.

Mutelet, F., Jaubert, J.-N., Rogalski, M., Harmand, J., Sindt, M. and Mieloszynski, J.-L. Activity Coefficients at Infinite Dilution of Organic Compounds in 1-(Meth)acryloyloxyalkyl-3-methylimidazolium Bromide Using Inverse Gas Chromatography. J. Phys. Chem. B. **2008**, 112, 3773-3785.

Paduszyński, K. In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms. J. Chem. Inf. Model. **2016**, *56*, 8, 1420–1437.

Perez De Los Rios, A., Hernandez Fernandez, F. J., Eds. Ionic Liquids in Separation Technology; Elsevier: Amsterdam, **2014**.

Pereiro, A. B.; Araújo, J. M. M.; Esperança, J. M. S. S.; Marrucho, I. M.; Rebelo, L. P. N. Ionic Liquids in Separations of Azeotropic Systems – A Review. J. Chem. Thermodyn. **2012**, 46, 2–28.

Rodríguez-Cabo, B., Arce, A., Soto, A. Desulfurization of fuels by liquid–liquid extraction with 1-ethyl-3-methylimidazolium ionic liquids. Fluid Phase Equilibria. **2013**, 356, 126–135.

5

Romanos, G. E.; Zubeir, L. F.; Likodimos, V.; Falaras, P.; Kroon, M. C.; Iliev, B.; Adamova, G and Schubert, T. J. S. Enhanced CO₂ Capture in Binary Mixtures of 1-Alkyl-3methylimidazolium Tricyanomethanide Ionic Liquids with Water. J. Phys. Chem. B. **2013**, 117, 40, 12234–12251.

Vatašcin, E. Dohnal, V. Thermophysical properties of aqueous solutions of the 1-ethyl-3methylimidazolium tricyanomethanide ionic liquid. J. Chem. Thermodynamics. **2015**, 89, 169–176.

Tagiuri, A.; Sumon, K. Z.; Henni, A. Solubility of carbon dioxide in three $[Tf_2N]$ ionic liquids. Fluid Phase Equilibria. **2014**, 380, 39–47.

Zubeir, L. F.; Romanos, G. E.; Weggemans, W. M. A.; Iliev, B.; Schubert, T. J. S.; Kroon, M. C. Solubility and Diffusivity of CO_2 in the Ionic Liquid 1-Butyl-3-methylimidazolium Tricyanomethanide within a Large Pressure Range (0.01 MPa to 10 MPa). J. Chem. Eng. Data. **2015**, 60, 6, 1544–1562.

Zhao, J., Dai, C., Fang, J., Feng, X., Yan, L., Zhao, M. Surface properties and adsorption behavior of cocami dipropyl dimethylamine oxide under high temperature and high salinity conditions. Colloids Surf. A. **2014**, 450, 93–98.

Chapitre I

Etat de l'art des liquides ioniques

Introduction

L'utilisation continue de grandes quantités de solvants organiques est une préoccupation majeure dans l'industrie chimique d'aujourd'hui. Les effets délétères remarquables de ces solvants sur la santé humaine, la sécurité et l'environnement combinés avec leur volatilité et leur inflammabilité ont mené à une pression croissante pour réduire au minimum leur utilisation. Les liquides ioniques (LIs) sont de nouvelle classe de solvants dits "verts" (non-volatils, non inflammables, recyclables) alternatifs aux solvants organiques actuellement utilisés. En effet, leurs propriétés physico-chimiques telles que leur faible pression de vapeur, leur stabilité thermique et chimique, leur bonne conductivité électriqueles rendent très attractifs en synthèse organique (Welton, 1999), en catalyse (Wasserscheid et Keim, 2000; Wilkes, 2004) en séparation (Dietz, 2006), comme lubrifiant (Minami, 2009) et comme électrolytes pour les batteries Li-ion (Caja *et al.*, 2000).

I. Présentation des Liquides ioniques

I.1. Définition

Les liquides ioniques (LIs) sont des sels organiques composés de cations organiques et d'anions organiques ou inorganiques ayant une température de fusion inférieure à 100°C. La majorité des LIs sont liquides à température ambiante (Room Temperature Ionic Liquids, RTILs) (Wasserscheid et Welton, 2002). Durant ces dernières années, le domaine d'application des LIs n'a cessé d'augmenter en raison de leurs propriétés attrayantes comme leur faible pression de vapeur, la stabilité thermique et chimique, conductivité élevée et leurs potentiels comme solvants extractifs pour de nombreux composés. Leur faible volatilité permet de travailler à la fois à haute température (phases stationnaires en chromatographie en phase gazeuse) et sous vide poussé (matrices MALDI).

Le choix du LI pour une application est très important et nécessite la connaissance de ses propriétés physico-chimiques comme par exemple: la densité, la viscosité, le point de fusion, la conductivité. Il existe une infinité de combinaisons possibles cation-anion (Meindersma *et al.*, 2005). Le nombre de différents LIs possibles a été estimé à 10^{18} (Bahadur, 2015). Les propriétés physico-chimiques des LIs (la densité, la viscosité et la miscibilité...) peuvent être ajustées à souhait par un choix judicieux du cation et de l'anion du LI (Olivier-Bourbigou, 2002; Dupont *et al.*, 2002).

Les principaux anions et cations les plus couramment étudiés dans la littérature sont présentés dans la Figure I.1. Une large gamme de liquides ioniques est basée sur les cations de type imidazolium, pyridinium, pyrrolidinium, phosphonium, ammonium et les anions tels que les halogénures (chlorure, bromure), bis(trifluorométhylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, dicyanamide.

Figure I.1. Structure des cations et des anions les plus utilisés dans les liquides ioniques. R_i représentent les chaînes alkyles.

I.2. Historique

En 1914, le premier liquide ionique à température ambiante synthétisé par Walden est le nitrate d'éthylammonium [EtNH₃]⁺[NO₃]⁻ (Walden, 1914). Les premières utilisations des liquides ioniques étaient principalement dans le domaine de l'électrochimie dans les années 1970. En 1992, une nouvelle génération de LIs plus stable à l'air et à l'eau est apparue (Wilkes et al., 1992). Depuis 1992, les LIs ont connu une évolution exponentielle en termes de publications. Une large gamme de LIs a été synthétisée incorporant différents anions tels trifluoroéthanoate. l'hexafluorophosphate, l'éthanoate, le que les alkylsulfate, l'hydrogensulfate, le nitrate, le dicyanamide, le trifluorométhanesulfonate ou encore le bis(trifluoromethylsulfonyl)amide (Natalia et al., 2007). Ses dernières années, un autre groupe de LI a été développé ; les LIs fonctionnalisés également appelés liquides ioniques à tâches spécifiques (Task Specific Ionic Liquids, TSILs) comportant un groupement fonctionnel attaché par liaison covalente au cation ou l'anion (Shahrom et al., 2016).

I.3. Synthèse

La synthèse des LIs s'effectue en deux étapes : la formation de cation par une réaction de quaternisation puis une réaction d'échange d'anion. A titre d'exemple, la Figure I.2 représente les étapes de préparation des sels d'ammonium.

* Réaction de quaternisation: le cation désiré peut être synthétisé soit par protonation d'amine en milieu acide soit par réaction de quaternisation d'amine par un halogénure d'alcane avec chauffage du mélange. * Réaction d'échange d'anion : peut se réaliser soit par un traitement direct du sel d'halogénure par un acide de Lewis, ce qui conduit à la formation d'un contre-ion métallique ou la formation d'anion par métathèse anionique.

Figure I.2. Les étapes de synthèse pour la préparation de liquides ioniques (Wasserscheid *et al.*, 2000).

I.4. Propriétés physico-chimiques

La connaissance des propriétés physico-chimiques des LIs permet de mieux comprendre le comportement de ces solvants et d'en définir les applications industrielles. Chaque combinaison cation-anion permet d'obtenir un solvant ayant ces propres propriétés. Durant ces dernières années, plusieurs groupes de recherche ont étudiés les propriétés physico-chimiques des LIs purs et de leurs mélanges avec des solvants moléculaires (Pitawala *et al.*, 2013; Constantinescu *et al.*, 2007; Ficke *et al.*, 2010; Jacquemin *et al.*, 2005).

I.4.1. Le point de fusion

En général, le point de fusion d'un LI est fonction du cation et de l'anion qui le constitue. De plus, il existe des facteurs influençant le point de fusion ; les plus importants sont la

distribution de charge sur les ions, la symétrie des ions, les interactions de Van der Waals et la liaison hydrogène. Les points de fusion de quelques LIs sont présentés dans le Tableau I.1. Des études ont montré que la présence d'une forte asymétrie du cation imidazolium cause une diminution du point de fusion des LIs (Ngo *et al.*, 2000). Ainsi l'augmentation de la chaîne alkyle substituée sur le cation diminue le point de fusion des LIs (Holbrey *et al.*, 2001 ; Visser *et al.*, 2001). Rooney *et al.* ont étudié les points de fusion pour les séries de LIs [C_nMIM][BF₄]. Ils ont remarqué que le point de fusion est initialement élevé et qu'il diminue avec la taille de la chaîne alkyle (Rooney *et al.*, 2009). Le Tableau I.1 montre également que l'anion a un impact important sur le point de fusion du LI (Pringle et *al.*, 2003).

Liquide ionique	Point de fusion (°C)	Références
	(-)	
$[\text{EMIM}]^+[\text{PF}_6]^-$	62.58	Ngo et al., 2000; Fuller et al., 1994
$[\text{EMIM}]^+[\text{BF}_4]^-$	15	Noda et al., 2000
$[\text{EMIM}]^+[(\text{CN})_2\text{N}]^-$	-21	MacFarlane et al., 2001
$[BMIM]^+[Cl]^-$	65	Carda-Broch et al., 2003
$[BMIM]^+[PF_6]^-$	-8	Carda-Broch et al., 2003
$[EMPYR]^+[(CN)_2N]^-$	-10	MacFarlane et al., 2001
$[PMIM]^+[BF_4]^-$	-17	Nishida et al., 2003

Tableau I.1. Point de fusion de quelques liquides ioniques.

I.4.2. Stabilité thermique

La plupart des LIs sont thermiquement stables (>250°C). La méthode la plus fréquemment utilisée pour la détermination de la stabilité thermique des LIs est l'analyse thermogravimétrique (ATG). Les LIs à base de l'anion bis(trifluoromethylsulfonyl)imide $[Tf_2N]^-$ sont connus pour leurs grandes stabilités thermiques (Villanueva *et al.*, 2013). Plusieurs études (Ngo *et al.*, 2000; Huddleston *et al.*, 2001; Fredlake *et al.*, 2004) ont montré que la taille de l'anion a un effet remarquable sur la stabilité thermique des LIs. La stabilité thermique des LIs dépend de l'anion et décroit selon : $[Tf_2N]^- [OTf]^->[BF_4]^->[PF_6]^->[FAP]^ >[I]^- [Cl]^- [Br]^-. La nature du cation ainsi que la longueur de la chaîne alkyle influencent$ également la stabilité thermique. En effet, plus la chaîne du cation est courte, plus la stabilitéthermique est élevée. La décomposition thermique est endothermique avec les anions inorganiques et exothermiques avec les anions organiques (Ngo *et al.*, 2000). Le Tableau I.2 présente la température de décomposition thermique de quelques LIs.

Liquides ioniques	Températures de décomposition	Références
[BMIM] ⁺ [Cl] ⁻	254	Huddleston et al., 2001
$[BMIM]^+[BF_4]^-$	403	Huddleston et al., 2001
$[BMIM]^+[PF_6]$ -	349	Huddleston et al., 2001
$[BMIM]^+[Tf_2N]^-$	439	Huddleston et al., 2001
$[\text{EMIM}]^+[\text{PF}_6]^-$	375	Ngo et al., 2000
$[\text{EMIM}]^+[\text{BF}_4]^-$	412	Ngo et al., 2000

Tableau I.2. Température de décomposition thermique pour différents liquides ioniques.

I.4.3. Densité

Les densités des LIs purs varient selon la nature du cation et de l'anion. La plupart des LIs sont plus denses que l'eau et leurs densités sont comprises entre 1.05 et 1.64 g.cm⁻³ à 293K (Rooney *et al.*, 2009). Cependant, il existe quelques LIs constitués d'un anion dicyanamide $[N(CN)_2]^-$ présentant des densités de l'ordre de 0.92 g.cm⁻³ (MacFarlane *et al.*, 2001). La densité dépend fortement de la longueur de la chaine alkyle du cation et des forces d'interactions entre le cation et l'anion. Le choix de l'anion a un impact important sur la densité des LIs. A titre d'exemple, la densité de liquides ioniques constitués d'un cation 1-butyl-3-méthylimidazolium diminue en fonction de l'anion selon l'ordre : $[Tf_2N]^-$ [PF₆]> [OTf]⁻ > [BF₄]⁻. La densité des LIs diminue également lorsque la longueur de la chaine alkyle greffée sur le cation augmente. Pour un anion $[Tf_2N]^-$, la densité évolue selon : [EMIM]⁻> [BMIM]⁻> [DMIM]⁻> [DMIM]⁻ (Jacquemin *et al.*, 2006; Rooney *et al.*, 2009). Les impuretés peuvent avoir un effet significatif sur la densité, la présence de l'eau ou des halogénures (tel que chlorure ou bromure) provoque une diminution de la densité (Huddleston *et al.*, 2006; Rooney *et al.*, 2009).

I.4.4. Viscosité

La viscosité est une propriété physique importante des LIs pour différentes applications. En général, les LIs sont plus visqueux que les solvants organiques usuels. Leurs viscosités à température ambiante varient entre 10 à 726 cP (Bonhote *et al.*, 1996) tandis que les solvants organiques présentent des viscosités entre 0.2 à 10 cP (Rooney *et al.*, 2009).

La viscosité des LIs dépend des interactions ion-ion, tels que les interactions de van der Waals et les liaisons hydrogène (Ponsado *al.*, 2006 ; Gaciño *al.*, 2011), les fortes interactions conduisant à des viscosités plus élevées (Greaves *al.*, 2008). Généralement, la structure de l'anion a un impact plus important que celle du cation sur la viscosité (Ghandi, 2014). Pour les liquides ioniques ayant un anion identique et la même longueur de chaîne alkyle sur le cation, la viscosité augmente suivant l'ordre : imidazolium < pyriolinium < pyrrolidinium (Rooney *et al.*, 2009).

D'autre part, l'augmentation de la longueur de la chaine alkyle greffée sur le cation conduit à une augmentation de la viscosité. Ceci s'explique par des interactions de Van der Waals plus fortes (Bonhôte *et al.*, 1996 ; Huddleston *et al.*, 1998 ; Marsh et al., 2004). Pour un LI donné, la viscosité diminue dans l'ordre : Cl⁻> PF₆⁻> BF₄⁻> NO₃⁻>Tf₂N⁻ (Olivier-Bourbigou et Magna, 2002). Les impuretés ont un effet remarquable sur la viscosité des LIs. Il est important de noter que les LIs sont hygroscopiques et peuvent donc facilement absorber de l'eau (Constantinescu *et al.*, 2007). Par ailleurs, la présence de chlorure dans le LI même en faible concentration augmente la viscosité.

En général, les applications industrielles préfèrent les solvants ayant une faible viscosité afin de minimiser les coûts de pompage et augmenter les taux de transfert de masse. Les LIs ayant des viscosités plus élevées trouvent des applications dans le domaine des lubrifiants ou des procédés de séparation membranaires (Rooney *et al.*, 2009).

I.4.5. Conductivité

La conductivité électrique des LIs dépend de la mobilité des ions. Elle est aussi influencée par la viscosité, la taille et l'association des ions (Cabeza *et al.*, 2014). En général, les LIs à base $[EMIM]^-$ présentent des conductivités de l'ordre ~10 mS/cm. D'autre part, les LIs avec les cations tetraalkylammonium, pyrrolidinium, pipéridinium et pyridinium sont caractérisés par des conductivités beaucoup plus basses comprises entre 0.1 et 5 mS/cm (Galiński *et al.*, 2006). Pour un anion donnée, la conductivité diminue suivant l'ordre : imidazolium > pyrrolidinium > ammonium (Liu *et al.*, 2010 ; MacFarlane *et al.*, 1999). Les paramètres qui influent sur conductivité sont la viscosité, la masse moléculaire et la taille des ions.

I.4.6. Solubilité dans l'eau et les solvants organiques

La miscibilité des LIs avec l'eau ou les solvants organiques peut être modifiée en changeant l'anion ou en modifiant la chaine alkyle du cation (Visser *et al.*, 2001; Huddleston *et al.*, 2001). Par exemple, pour un cation donné, le [BMIM]⁺[BF₄]⁻ est miscible dans l'eau alors que [BMIM]⁺[PF₆]⁻ est immiscible. Les LIs à base des anions BF_4^- , Br^- , Cl^- , $CH_3CO_2^-$, $CF_3SO_2^$ sont miscibles à l'eau (hydrophile) à 25°C. Lorsque l'anion est remplacé par PF₆⁻, NTf₂⁻, la miscibilité diminue et le LI devient hydrophobe. L'hydrophobicité augmente suivant l'ordre : $Br^- < Cl^- < [BF_4]^- < [PF_6]^- < [Tf_2N]^- < [BETI]^-$. La majorité des liquides ioniques hydrophobes sont également hygroscopiques.

La solubilité des LIs dans les solvants organiques dépend de la constante diélectrique du solvant(ε). Les solvants organiques ayant une constante diélectrique supérieure à 6 sont généralement complètement miscibles dans les LIs, comme le diméthylformamide, l'éthanol et l'acétone (Wassercheid *et al.*, 2000). La non miscibilité de LIs avec l'eau ou plusieurs solvants organiques permet la formation des systèmes biphasiques pour l'extraction liquide-liquide (Huddleston *et al.*, 1998).

I.5. Influence des impuretés

La pureté des LIs est un paramètre important pour différentes utilisations. Les impuretés et les traces d'eau, d'ions chlorure et de co-solvants présents dans les LIs peuvent avoir un impact important sur leurs propriétés physico-chimiques. A titre d'exemple, les différents points de fusion du 1-éthyl-3-méthylimidazolium tétrafluoroborate [BMIM]⁺[BF₄]⁻ rapportés dans la littérature sont 15 °C (Wilkes *et al.*, 1992), 5.8 °C (Holbrey *et al.*, 1999), 12.0 à 12.5 °C (Fuller *et al.*, 1997), 11 °C (McEwen *et al.*, 1999) et 14.6 °C (Noda *et al.*, 2000).

Seddon *et al.* (Seddon *et al.*, 2000) ont étudié l'effet des sels de chlorures présents dans le LI sur la viscosité et la densité. Ces auteurs ont observé que la présence de chlorure même en faibles concentrations dans les LIs augmente la viscosité. Pour la densité, elle diminue quand la concentration en chlorure dans le LI augmente. Les Figures I.3 (a) et (b) montrent respectivement l'influence de la présence d'ions chlorure (rajouté sous forme de 1-butyl-3-methylimidazolium chlorure, [BMIM]⁺[Cl]⁻) dans le LI 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]⁺[BF₄]⁻ sur la viscosité et sur la densité.

Figure I.3. La viscosité (a) à 20°C et la densité (b) à 30°C de $[BMIM]^+[BF_4]^-$ en fonction de la concentration de chlorure rajouté sous forme de $[BMIM]^+[C1]^-$ (Seddon *et al.*, 2000).

De nombreuses techniques avec divers niveaux de précision peuvent être utilisées pour la détermination des impuretés. Dans le cas des LIs, La teneur en eau est généralement déterminée en utilisant le titrage Karl Ficher. Les impuretés d'halogénures peuvent être évaluées à l'aide d'électrodes sélectives d'ions, la chromatographie ionique ou l'électrophorèse capillaire (Berthier et *al.*, 2004).

I.6. Toxicité

Grâce à leur faible pression de vapeur et leur grande stabilité thermique et chimique, les LIs sont considérés comme des solvants qui ne contribuent pas à la pollution de l'atmosphère. Cependant, une volatilité négligeable ne doit pas se traduire par non toxique. A ce jour, les informations concernant la toxicité des LIs et leurs impacts sur l'environnement sont limitées (Thuy Pham *et al.*, 2010). D'un point de vue toxicité et dégradation, il a été démontré que les cations pyridinium sont plus respectueux pour l'environnement que les cations imidazolium. Plus la taille du cation est grande, plus le LI sera toxique (Latala *et al.*, 2005; Ranke *et al.*, 2007). Les cations substitués par de grandes chaînes alkyles se comportent comme des molécules amphiphiles et ont par conséquent des propriétés lipophiles supposées être à l'origine de la toxicité des LIs (Bekhouche, 2011).

I.7. Applications

Les LIs sont utilisés dans de nombreux domaines (Figure I.4) comme l'électrochimie, la synthèse organique, l'extraction, la biocatalyse, la spectroscopie (Earle *et al.*, 2000; Wasserscheid *et al.*, 2000; Welton, 1999). Jusqu'à présent, leurs utilisations à l'échelle industrielle restent limitées en raison du manque de données expérimentales et du prix élevé de ces solvants (Cabeza, 2014).

Figure I.4. Les domaines d'applications des liquides ioniques

I.7.1. Electrochimie

La fenêtre électrochimique d'un solvant est un paramètre important en électrochimie. Les LIs ont un intérêt comme électrolyte dans les processus et dispositifs électrochimiques à cause de leurs larges fenêtres électrochimiques (McEwen *et al.*, 1997; McEwen *et al.*, 1999; Lewandowski *et al.*, 2004; Garcia *et al.*, 2004; Matsumoto *et al.*, 2000; Nakagawa *et al.*, 2003; Sakaebe *et al.*, 2007). Plusieurs LIs ont de larges fenêtres électrochimiques dans la gamme 5-6 V voire plus (Galinski *et al.*, 2006 ; Hapiot *et al.*, 2008). Parmi les applications importantes des LIs dans le domaine électrochimique ; on trouve :

* Les batteries Li-ion: les LIs sont utilisées comme électrolytes dans les batteries Li-ion à cause de leur nature non inflammable pour remplacer les électrolytes organiques très volatiles et inflammables.

* Piles à combustible : Certains LIs présentent une conductivité supérieure à 10^{-2} S/cm à température ambiante, valeur proche du niveau requis pour les applications de piles à combustible. La plupart des investigations sont axés sur le développement de LIs à base d'acide de Brønsted, synthétisés par un simple mélange d'amines ternaires et d'acides résultant en LIs avec proton libre (Noda et *et al.*, 2003; Nakamoto *et al.*, 2007; Yasuda *et al.*, 2013). Ces LIs nommés, LIs protiques ont été étudiés largement pour le transfert de protons dans les électrolytes des piles à combustible (Lee *et al.*, 2010).

I.7.2. Chimie Analytique

De nombreuses applications ont été proposées dans le domaine de la chimie analytique. A ce jour, les liquides ioniques sont principalement utilisés en chromatographie en phase gazeuse et en électrophorèse capillaire (EC). Il reste encore de nombreuses possibilités à explorer dans le domaine de séparations analytiques.

* Chromatographie en phase gazeuse (CPG):

Les LIs sont très étudiés en tant que phase stationnaire par chromatographie inverse en phase gazeuse. Cette technique intéressante est très utile pour étudier les propriétés physicochimiques des analytes et les interactions entre solutés et phase stationnaire.

Armstrong *et al.* (Armstrong *et al.*, 1999) ont été les premiers à étudier les comportements des LIs ($[BMIM]^+[PF_6]^-$ et $[BMIM]^+[C1]^-$) avec différents composés organiques. Les résultats ont montré que chaque LI agissait comme une phase stationnaire faiblement polaire avec les composés non polaires et comme une phase polaire avec les composés polaires. Les phases stationnaires de LI permettent d'obtenir une très bonne sélectivité et des séparations plus rapides (Poole *et al.*, 2010).

Plusieurs études ont été consacrées à l'utilisation de la CPG pour la détermination du coefficient d'activité à dilution infinie dans les LIs (Heintz *et al.*, 2001, 2002). Ce paramètre permet d'évaluer les interactions moléculaires entre le solvant et le soluté.

* Electrophorèse capillaire :

Depuis les années 2000, une vingtaine de publications est sortie dans la littérature sur des applications en électrophorèse capillaire mettant en jeu des LIs. Ces applications qui ont été réalisées en phase aqueuse et non-aqueuse ont permis d'observer de nouveaux types d'interaction. En effet, les liquides ioniques ont la faculté de solubiliser des composés organiques et inorganiques et de générer des interactions particulières en solution, ils présentent donc un intérêt certain dans la recherche de nouveaux constituants d'électrolyte pour l'électrophorèse capillaire. De nombreux travaux ont été effectués d'une part, pour mettre en place une méthode de caractérisation des liquides ioniques, et d'autre part, pour évaluer l'intérêt de ces composés comme nouveaux constituants d'électrolytes. (Holzgrabe et Wahl, 2016) (Vaher *et al.*, 2002).

I.7.3. Synthèse et catalyse

Il existe dans la littérature de nombreuses applications des LIs dans les domaines de synthèse organique et de la catalyse (Baudequin *et al.*, 2003 ; Olivier-Bourbigou *et al.*, 2010). Ces solvants peuvent avoir plusieurs fonctions dans la catalyse, comme solvant, solvant et co-solvant, solvant et support, solvant et ligands. Ainsi, il est important de mieux comprendre les propriétés physico-chimiques qui peuvent affecter les réactions catalytiques et de choisir les meilleurs LIs pour une réaction donnée.

Les LIs peuvent être utilisés comme milieux réactionnels pour les réactions organocatalysées (Toma *et al.*, 2009). Ce potentiel a été démontré dans les réactions Diels-Alder où les LIs peuvent former une liaison hydrogène importante avec les réactifs et peuvent par la suite orienter la sélectivité de la réaction. Un exemple typique qui montre l'influence du LI sur le résultat de la réaction chimique est celui donnée par l'étude de la réaction entre le toluène et l'acide nitrique (Earle *et al.*, 2004). En fonction du LI utilisé, les résultats observés montrent, la nitration du toluène dans [BMIM]⁺[OTf]⁻, l'oxydation du toluène en l'acide benzoïque dans [BMIM]⁺[OMs]⁻, ou halogénation dans [BMIM]⁺[CI]⁻.

D'autre part, les LIs ont reçu une attention particulière comme solvants alternatifs et stabilisants pour la synthèse de nanomatériaux en raison de leur synthèse facile, leur stabilité et leur faible pression de vapeur (Migowski *et al.*, 2006 ; Yanlong *et al.*, 2009). La synthèse de nanoparticule (NP) dans le LI a été décrite en utilisant différentes techniques. Les plus largement décrites sont la réduction chimique de sels métalliques et de complexes organométalliques (Krämer *et al.*, 2008).

I.7.4. Biotechnologie

En raison de leurs propriétés favorables, les LIs ont émergé avec succès le domaine de biotechnologie, comme milieu solvant pour les réactions enzymatiques (Dabirmanesh *et al.*,2012; Dang *et al.*, 2007) et les applications à base de protéines (Persson *et al.*, 2003; Buchfink *et al.*, 2010; Lozano *et al.*, 2001). Ils stabilisent les protéines sur une large gamme de température. Néanmoins, la stabilité thermique des protéines dépend du choix du LI. En effet, Candida antarctica Lipase B (CaLB) s'agrège dans $[EMIM]^+[N(CN)_2]^-$ et perd son activité fonctionnelle (Sate *et al.*, 2007). Par contre, on observe une bonne stabilité pour monelline dans $[BMPY]^+[Tf_2N]^-$ (Baker *et al.*, 2004) et pour les enzymes alphachymotrypsine dans $[EMIM]^+[Tf_2N]^-$ et $[BTMA]^+[Tf_2N]^-$ ont également été rapportés (De Diego *et al.*, 2005; Lozano *et al.*, 2005).

I.8. Captage de dioxyde de carbone par les liquides ioniques

Le dioxyde de carbone (CO₂) est le principal gaz à effet de serre (GES). Durant l'année 2015, la concentration de ce gaz a dépassé le seuil symbolique de 400 ppm, selon l'Organisation Météorologique Mondiale (OMM) et en Mai 2016, la concentration du CO₂ a augmenté jusqu'à 407.70 ppm (Altamash *et al.*, 2016).

L'objectif fixé dans le cadre du protocole de Kyoto est de réduire les émissions globales de tous GES d'environ 20 % par rapport à 1990 sur la période 2013-2020. Les principaux gaz responsables de l'effet de serre qui figurent dans le protocole de Kyoto et dans la loi sur le CO_2 sont : dioxyde de carbone (CO_2), méthane (CH_4), protoxyde d'azote (N_2O), les gaz synthétiques à effet de serre comme hydrofluorocarbures (HFC), hydrocarbures perfluorés (PFC), hexafluorure de soufre (SF_6) et le trifluorure d'azote (NF_3). La Figure I.5 montre les émissions mondiales de gaz à effet de serre dans la période 1970-2010 (source GIEC 2014, rapport de synthèse).

Total annuel des émissions anthropiques de GES par groupes de gaz entre 1970 et 2010

Figure I.5. Principaux gaz à effet de serre anthropiques dans les émissions mondiales entre 1970 et 2010.

I.8.1. Différents technologies de captage du CO₂

La recherche de sources d'énergies renouvelables ne cesse d'augmenter ces dernières années afin de réduire les émissions de CO_2 provenant des combustibles fossiles. Aujourd'hui, les combustibles fossiles et le gaz naturel restent les principales sources de carburants et de matières chimiques (MacDowell *et al.*, 2010). La recherche et le développement de nouvelles technologies pour la capture et le stockage du CO_2 sont devenus essentiels.

Les différentes méthodes pour la capture du CO₂ représentées dans la Figure I.6 sont (Molina, 2013 ; Seo *et al.*, 2014):

- Pré-combustion : l'objectif est d'éliminer le combustible du CO₂ avant que la combustion ne soit terminée.
- L'oxy-combustible : cela consiste à bruler des combustibles fossiles uniquement à l'oxygène et non pas à l'air. Les fumées produites sont constituées de CO₂ et d'eau.

Post-combustion : le CO₂ est capté directement dans les fumées issues de la combustion du combustible primaire dans l'air. Le CO₂ à récupérer est dilué. Le principal avantage de cette solution est qu'elle s'adapte aux centrales existantes. Cependant, elle est coûteuse et très consommatrice d'énergie. En effet, le CO₂ est dilué dans de grandes quantités d'effluent et il faut donc beaucoup d'énergie pour atteindre des puretés requises pour le transport et le stockage. Le procédé le plus développé actuellement pour le captage du CO₂ en post-combustion est l'absorption par des amines (Guilhamassé, 2013).

Separation Techniques

Figure I.6. Les différents modes de captage de CO₂ (Kenarsari et al., 2013).

En post-combustion, les procédés les plus importants du captage du CO_2 sont : l'absorption, l'adsorption et la séparation membranaire (Kenarsari *et al.*, 2013). Le procédé le plus utilisé est l'absorption du CO_2 par un solvant chimique. Les solvants utilisés sont :

- Les amines primaires : monoethanolamine (MEA), 2-amino-2-methyl-1-propanol (AMP) (Majchrowicz *et al.*, 2009).
- Les amines secondaires : diethanolamine (DEA).

• Les amines tertiaires : methyldiethanolamine (MDEA).

Les solutions aqueuses d'amines, plus particulièrement le monoethanolamine (MEA), ont été largement utilisées dans l'absorption chimique du CO_2 . Elles présentent l'avantage d'être solubles dans l'eau, d'avoir une bonne capacité d'absorption du CO_2 et un coût de production faible. L'inconvénient principal de ces solvants est leur forte volatilité (Kenarsari *et al.*, 2013).

On distingue d'autres solvants utilisés dans les processus de captage de CO_2 comme selexol (Kenarsari *et al.*, 2013) ou les solvants fluoré (Pennline *et al.*, 2008).

I.8.2. Absorption du CO₂ par les liquides ioniques

Les liquides ioniques présentent un potentiel intéressant pour l'absorption du CO₂ avec un impact environnemental minimal (Hasib-ur-Rahman *et al.*, 2010 ; Wappel *et al.*, 2010). Ces solvants permettent la capture des gaz à effet de serre par absorption physique (Carvalho *et al.*, 2009 ; Yokozeki *et al.*, 2008). La solubilité du CO₂ dans les LIs a été largement étudiée dans la littérature (Aki *et al.*, 2004 ; Carvalho *et al.*, 2010 ; Ramdin *et al.*, 2012 ; Kim *et al.*, 2015 ; Bahadur *et al.*, 2015). Ces solvants nécessitent peu d'énergie pour régénérer les LIs (Revelli, 2010).

Anthony et al. ont montré que la solubilité des gaz dépend fortement du choix de l'anion (Anthony *et al.*, 2007). Aki et al. (Aki *et al.*, 2004) ont étudié l'influence de l'anion sur la solubilité du CO_2 dans les LIs à base du cation [BMIM]⁺. Les solubilités les plus élevées ont été observées pour les LIs constitués d'anions fluorés comme par exemple [BF₄]⁻, [PF₆]⁻, [Tf₂N]⁻ et [methide]⁻. Les anions non-fluorés comme [DCA]⁻ et [NO₃]⁻ ont montré de faibles solubilités. En ce qui concerne l'effet du cation sur la solubilité, l'augmentation de la chaîne alkyle sur le cation permet d'avoir une légère augmentation de solubilité (Torralba-Calleja *et al.*, 2013). Carvalho et al. (Carvalho *et al.*, 2010) ont montré que la solubilité de CO_2 dans les LIs à base phosphonium est nettement élevée par rapport aux LIs à base imidazolium.

Pour mieux comprendre les mécanismes d'absorption, Kazarian et al. (Kazarian *et al.*, 2000) ont utilisé la spectroscopie ATR-FTIR pour analyser les interactions spécifiques entre CO_2 et les LIs $[BMIM]^+[BF_4]^-$ et $[BMIM]^+[PF_6]^-$. Ils ont constaté la présence d'interactions faibles acide-base de Lewis ou l'anion agit comme une base de Lewis. En effet, l'introduction des fonctions acide comme l'acide carbonique ou des fonctions basiques comme les groupements

amine et fluor, permet la création des interactions chimiques acide-base de Lewis entre CO_2 et LIs.

Dans les systèmes impliquant les LIs, la solubilité du CO_2 est limitée pour les hautes pressions (Torralba-Calleja *et al.*, 2013). Dans ce contexte, les LIs à tâche spécifique ont été proposés. Ces LIs qui contiennent des groupements fonctionnalisés sur l'anion ou le cation sont capables de fournir des liaisons chimiques avec CO_2 .

Les LIs à tâche spécifique basés sur l'amine ont été reportés pour la première fois par Bate et al. (Bate *et al.*, 2002). Ils ont synthétisé un LI avec une chaîne amine, $[pNH_2BMIM]^+[PF_6]^-$ capable d'absorber réversiblement une mole de CO₂ pour deux moles de LI ce qui est comparable aux capacités d'absorption obtenues avec la MEA (Revelli, 2010).

Bibliographie

Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F. High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. J. Phys. Chem. B. **2004**, 108, 20355-20365.

Altamash, T.; Haimour, T. S.; Tarsad, M. A.; Anaya, B.; Hussein Ali, M.; Aparicio, S and Atilhan, M. Carbon Dioxide Solubility in Phosphonium-, Ammonium-, Sulfonyl-, and Pyrrolidinium Based Ionic Liquids and their Mixtures at Moderate Pressures up to 10 bar. *J. Chem. Eng. Data*, **2017**, 62 (4), 1310–1317.

D'Alessandro, D. M.; Smit, B.; Long, J. R. Carbon Dioxide Capture: Prospects for New Materials.Angew. Chem. Int. Ed. **2010**, 49, 6058 - 6082.

Anthony, J.; Anderson, J.; Maginn, E.; Brennecke, J. Anion effects on gas solubility in ionic liquids, J. Phys. Chem. B. **2005**, 109, 6366–6374.

Anthony, J. L.; Aki, S. N. V. K.; Maginn, E. J.; Brennecke, J. F. Feasibility of using ionic liquids for carbon dioxide capture. Int. J. Environmental Technology and Management, **2004**, 4, Nos. 1/2, 105–115.

Armstrong, D.W.; He, L.; Liu, Y. Examination of ionic liquids and their interaction with molecules when used as stationary phases in gas chromatography. Anal. Chem. **1999**, 71, 3873–3876.

Bahadur, I.; Govender, B.B.; Osman, K.; Williams-Wynn, M. D. Nelson, W. M.; Naidoo, P.; Ramjugernath, D. Measurement of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate at T =(308.15, 313.15, 323.15 and 333.15) K using gas + liquid chromatography, J. Chem. Thermodynamics. **2014**, 70, 245–252.

Bahadur, I.; Osman, K. ; Coquelet, C. ; Naidoo, P. ; Ramjugernath, D. Solubilities of Carbon Dioxide and Oxygen in the Ionic Liquids Methyl Trioctyl Ammonium Bis (triuoromethylsulfonyl) imide, 1-Butyl-3-Methyl Imidazolium Bis (triuoromethylsulfonyl) imide, and 1-Butyl-3-Methyl Imidazolium Methyl Sulphate. Journal of Physical Chemistry B, American Chemical Society. **2015**, 119 (4), 1503-1514.

Baker, S. N.; McCleskey, T.M.; Pandey, S.; Baker, G. A. Chemical Communications, 2004, 137, 940-941.

Bates, E. D.; Mayton, R. D.; Ntai I. H. and Davis, J. H. Jr. CO₂ capture by a task-specific ionic liquid, Journal of the American ChemicalSociety, **2002**, 124, 6, 926–927.

Bekhouche, M. Modifications chimiques et évolution dirigée de la formiate déshydrogénase de Candida boidinii : vers une compréhension de la relation structure/fonction d'une déshydrogénase en liquide ionique, thèse de doctorat, Université Claude Bernard - Lyon 1. **2011**.

Buchfink, R. ; Tischer, A. ; Patil, G. ; Rudolph, R. ; Lange, C. Ionic liquids as refolding additives: Variation of the anion Journal of Biotechnology. **2010**, 150, 1, 64–72.

Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A-C. Ionic liquids and chirality: opportunities and challenges Tetrahedron : Asymmetry. **2003**, 14, 20, 3081-3093.

Berthier, D.; Varenne, A.; Gareil, P. ; Digne, M.; Lienemann, C.P.; Magna, L. Olivier-Bourbigou, H. Capillary electrophoresis monitoring of halide impurities in ionic liquids Analyst. **2004**, 129, 1257-1261.

Cabeza, O. Properties and Green Aspects of Ionic Liquids. Ionic Liquids in Separation Technology, **2014**.

Cabovska, B.; Kreishman, G.P.; Wassell, D.F.; Stalcup, A.M. CE and NMR studies of interactions between halophenols and ionic liquid or tetraalkylammonium cations. J. Chromatogr. A. **2003**, 1007, 179–187.

Caja, J.; Dunstan, T.D.J.; Ryan, D.M.; Katovic, V. Proc. Electrochem. Soc. 2000, 99-41, 150.

Carda-Broch, S.; Berthod, A.; Armstrong, A.W. Solvent properties of the 1-butyl-3methylimidazolium hexafluorophosphate ionic liquid. Anal. Bioanal. Chem. **2003**, 375, 191-199.

Carvalho, P.J.; Álvarez, V.H.; Schröder, B.; Gil, A.M.; Marrucho, I.M.; Aznar, M.; Santos, L.M.N.B.F.; Coutinho, J.A.P. Specific solvation interactions of CO₂ on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures, J. Phys. Chem. B. **2009**, 113, 6803–6812.

Carvalho, P.J.; Álvarez, V.H.; Machado, J.J.B.; Pauly, J.; Daridon, J.; Marrucho, I.M.; Aznar, M.; Coutinho, J.A.P. High pressure phase behavior of carbon dioxide in 1-alkyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, J. Supercritical Fluids. **2009**, 48, 99–107.

Carvalho, P. J.; Álvarez, V. H.; Marrucho, I. M.; Aznar, M.; Coutinho, J. A.P. High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. J. Supercritical Fluids. **2010**, 52, 258–265.

Constantinescu, D.; Schaber, K. Viscosities, Vapor Pressures, and Excess Enthalpies of Choline Lactate + Water, Choline Glycolate + Water, and Choline Methanesulfonate + Water Systems. J. Chem. Eng. Data. **2007**, 52, 1280-1285.

Dabirmanesh, B.; Khajeh, K.; Ranjbar, B.; Ghazi, F.; Heydari, A. Inhibition mediated stabilization effect of imidazolium based ionic liquids on alcohol dehydrogenase. Journal of Molecular Liquids. **2012**, 170, 66–71.

De Diego, T.; Lozano, P.; Gmouh, S.; Vaultier, M.; Iborra. J. L. Understanding Structure–Stability Relationships of Candida antartica Lipase B in Ionic Liquids. Biomacromolecules. **2005**, 6, 1457–1464.

Dang, D. T.; Ha, S. H.; Lee, S. M.; Chang, W. J.; Koo, Y. M. Enhanced activity and stability of ionic liquid-pretreated lipase. Journal of Molecular Catalysis B: Enzymatic. **2007**, 45, 118–121.

Dietz, M. L. Ionic liquids as extraction solvents: Where do we stand? Separation Science and Technology. **2006**, 41, 2047-2063.

Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem. **2000**, 72, 1391–1398.

Fuller, J.; Carlin, R.T.; De Long, H.C.; Haworth, D. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J. Chem. Soc. Chem. Commun. **1994**, 299-300.

Fuller, J.; Carlin, R.T.; Osteryoung, R. A. The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties. J. Electrochem. Soc. **1997**, 144, 3881–3886.

Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data. **2004**, 49, 954–964.

Gaciño, F.M.; Regueira, T.; Lugo, L.; Comuñas, M.J.P.; Fernández, J. Influence of molecular structure on densities and viscosities of several ionic liquids, J. Chem. Eng. Data. **2011**, 56, 4984-4999.

Galinski, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta. **2006**, 51, 5567–5580.

Garcia, B.; Lavall_ee, S.; Perron, G.; Michot, C.; Armand, M. Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta. **2004**, 49, 4583–4588.

Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry. **2014**, 4, 44-53.

Greaves, T.L.; Drummond, C.J. Protic ionic liquids: properties and applications. Chem. Rev. **2007**, 108, 206-237.

Guilhamassé, F. Etude du captage post-combustion du CO_2 grâce à un procédé vsa (vacuum swing adsorption) avec de nouveaux adsorbants. Thèse doctorat. Conservatoire National des Arts et Métiers. **2013**.

Hapiot, P.; Lagrost, C. Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chem. Rev. **2008**, 7, 108, 2238–2264.

Heintz, A.; Kulikov, D.V.; Verevkin, S.P. Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes and alkylbenzenes in 4-methyl-nbutylpyridinium tetrafluoroborate. J. Chem. Eng. Data. **2001**, 46, 1526–1529.

Heintz, A.; Kulikov, D.V.; Verevkin, S.P. Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients at infinite dilution of polar solutes in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas–liquid chromatography. J. Chem. Thermodynamics. **2002**, 34, 1341–1347.

Holbrey, J. D.; Seddon, K. R.; Wareing, R. A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors. Green Chemistry. **2001**, *3*, 33-36.

Holbrey, J. D. and Seddon, K. R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans. **1999**, 2133–2139.

Holzgrabe, U. and Wahl, J. Ionic Liquids in Capillary Electrophoresis. Chapter 8. Philippe Schmitt-Kopplin (ed.), Capillary Electrophoresis: Methods and Protocols, Methods in Molecular Biology, **2016**, vol. 1483.

Huddleston, J. G.; Willauer, H. D.; Swatlowski, R. P.; Visser, A. E.; Rogers, R. D. Chem. Commun. **1998**, 1765.

Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. **2001**, *3*, 156-164.

Hasib-ur-Rahman, M.; Siaj, M.; Larachi, F. Ionic liquids for CO₂ capture-Development and progress Chemical Engineering and Processing: Process Intensification. **2010**, 49, 313–322.

Jacquemin, ; Husson, P. ; Padua, A. A. H. ; Majer, V. Density and viscosity of several pure and water-saturated ionic liquids, Green Chem. **2006**, *8*, 172–180.

Kim, J. E.; Kang, J. W.; and Lim, J. S. Measurement of CO₂ solubility in cyanide anion based ionic liquids; [c₄mim][SCN], [c₄mim][N(CN)₂], [c₄mim][C(CN)₃]. Korean J. Chem. Eng. **2015**, 32, 8, 1678-1687.

Kenarsari, S. D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A. G.; Wei, Q.; Fan, M. Review of recent advances in carbon dioxide separation and capture. RSC Adv. **2013**, *3*, 22739-22773.

Kazarian, S. G.; Briscoe, B. J.; T. Welton, Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO₂ dissolved in two ionic liquids at high pressures, Chemical Communications. **2000**, 20, 2047–2048.
Koch, V. R.; Dominey, L. A.; Nanjundiah, C.; Ondrechen, J. The Intrinsic Anodic Stability of Several Anions Comprising Solvent-Free Ionic Liquids. J. Electrochem.Soc. **1996**, 143, 798-803.

Krämer, J. ; Redel, E.; Thomann, R. ; Janiak, C. Use of Ionic Liquids for the Synthesis of Iron, Ruthenium, and Osmium Nanoparticles from Their Metal Carbonyl Precursors. Organometallics. **2008**, 27, 9, 1976-1978.

Lata1a, A.; Stepnowski, P.; Nedzi, M.; Mrozik, W. Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aqua. Toxicol. **2005**, 73, 91–98.

Lee, S-Y.; Ogawa, A.; Kanno, M.; Nakamoto, H.; Yasuda, T.; Watanabe M. Nonhumidified intermediate temperature fuel cells using protic ionic iquids. J. Am. Chem. Soc., **2010**, 132, 28, 9764–9773.

Lewandowski, A.; Galinski, M. Carbon–ionic liquid double-layer capacitors. J. Phys. Chem. Solids. **2004**, 65, 281–286.

Lozano, P.; De Diego, T.; Carrie, D.; Vaultier, M.; Iborra, J. L. Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnology Letters. **2001**, 23, 1529–1533.

Lozano, P.; De Diego, T.; Gmouh, S.; Vaultier, M.; Iborra, J. L. Dynamic structure–function relationships in enzyme stabilization by ionic liquids. Biocatalysis and Biotransformation. **2005**, 23, 169–176.

Ficke, L.E.; Novak, R.R.; Brennecke, J.F. Thermodynamic and Thermophysical Properties of Ionic Liquid + Water Systems. J. Chem. Eng. Data. **2010**, 55, 4946–4950.

Liu, H.; Liu, Y.; Li, J. Ionic liquids in surface electrochemistry. Phys. Chem. Chem. Phys. **2010**, 12, 1685-1697.

MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P. An overview of CO₂ capture technologies. Energy Environ. Sci. **2010**, 3, 1645–1669.

MacFarlane, D.R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases, J. Phys. Chem. B. **1999**, 103, 4164-4170.

MacFarlane, D.R.; Golding, J.; Forsyth, S. ; Forsyth, M.; Deacon, G.B. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun. **2001**, 1430-1431.

Matsumoto, H.; Matsuda, T.; Miyazaki, Y. Room Temperature Molten Salts Based on Trialkylsulfonium Cations and Bis(trifluoromethylsulfonyl)imide. Chem. Lett. **2000**, 29, 1430 1431.

MOLINA, C. T. Comparaison du captage du CO_2 en postcombustion par des solutions d'ammoniaque et d'amines organiques : Evaluation en contacteurs direct et indirect, par des ' approches cinétiques, thermodynamiques et par modélisation. Thèse de doctorat. **2013**. l'École nationale supérieure des Mines de Paris.

Earle, M.J.; Katdare, S.P. and Seddon, K.R. Paradigm Confirmed: The First Use of Ionic Liquids to Dramatically Influence the Outcome of Chemical Reactions. Org. Lett. **2004**, *6*, *5*, 707-710.

Minami, I. Ionic liquids in tribology. Molecules. 2009, 14, 2286-2305.

Migowski, P.; Dupont, Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids. J. Chem. Eur. J. **2006**, 13, 32-39.

McEwen, A. B.; McDevitt, S. F.; Koch, V. R. Nonaqueous Electrolytes for Electrochemical Capacitors: Imidazolium Cations and Inorganic Fluorides with Organic Carbonates. J. Electrochem. Soc. **1997**, 144, 4, L84–L86.

McEwen, A. B.; Ngo, H. L.; LeCompte, K.; Goldman, J. L. Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications. J. Electrochem. Soc. **1999**, 146, 1687–1695.

McEwen, A. B. ; Ngo, H. L. ; LeCompte, K. ; Goldman, Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications. J. L. J. Electrochem. Soc. **1999**, 146, 1687–1695.

Nakagawa, H.; Izuchi, S.; Kuwana, K.; Nukuda, T.; Aihara, Y. Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt. J. Electrochem. Soc. **2003**, 150, A695–A700.

Nakamoto, H; Watanabe, M. Brønsted acid–base ionic liquids for fuel cell electrolytes. Chem Commun. **2007**, 2539–2541.

Noda, A ; Abu Bin Hasan Susan, Md.; Kudo K., Mitsushima, S. ; Hayamizu, K.; Watanabe, M. Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B. **2003**, 107, 17, 4024–4033.

Plechkova, N.V. and Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. **2008**, 37, 123-150.

Noda, A. and Watanabe, M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim. Acta. **2000**, 45, 1265–1270.

Nishida, T.; Tashiro, Y. ; Yamamoto, M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluorine Chem. **2003**, 120, 135.

Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermal properties of imidazolium ionic liquids. Thermochim. Acta. **2000**, 357–358, 97–102.

Olivier-Bourbigou, H.; Magna1, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General. **2010**, 373, 1–56.

Pensado, A.S.; Comuñas, M.J.P.; Fernández, J. The pressure and viscosity coefficient of several ionic liquids, Tribol. Lett. **2008**, 31, 107-118.

Pennline, H. W. ; Luebke, D. R. ; Jones, K. L. ; Myers, C. R. ; Morsi, B. I. ; Heintz, Y. J. ; Ilconich, J. B. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Processing Technology. Technol. **2008**, 89, 897–907.

Pringle, J.M.; Golding, J.; Baranyai, K.; Forsyth, C.M.; Deacon, G.B.; Scott, J.L.; McFarlane, D.R. The effect of anion fluorination in ionic liquids-physical properties of a range of bis(methanesulfonyl)amide salts. New J. Chem. **2003**, 27, 1504-1510.

Papageorgiou, N.; Athanassov, Y.; Armand, M.; Bonhôte, P.; Pettersson, H.; Azam, A.; Gratzel, M. The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications. J. Electrochem. Soc. 1996, 143, 3099- 3108.

Persson, M.; Bornscheuer, U. T. Increased stability of an esterase from *Bacillus stearothermophilus* in ionic liquids as compared to organic solvents. Journal of Molecular Catalysis B: Enzymatic. **2003**, 22, 21–27.

Pitawala, J.; Scheers, J.; Jacobsson, P. and Matic, A. Physical Properties, Ion–Ion Interactions, and Conformational States of Ionic Liquids with Alkyl-Phosphonate Anions. J. Phys. Chem. B. **2013**, 117, 8172–8179.

Poole, C. F.; Poole, S. K. Ionic liquid stationary phases for gas chromatography, J. Sep. Sci. **2011**, 34, 888–900.

Ramdin, M.; Vlugt, T. J. H.; de Loos, T. W. Solubility of CO₂ in the Ionic Liquids [TBMN][MeSO₄] and [TBMP][MeSO₄]. J. Chem. Eng. Data. **2012**, 57, 8, 275–2280.

Ranke, J. ; Müller, A. ; Bottin-Weber, U. ; Stock, F. ; Stolte, S. ; Arning, J. ; Störmann, R. ; Jastorff, B. Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotox. Environ. Saf. **2007**a, 67, 430–438.

Revelli, A. L, Etude Thermodynamique des Liquides Ioniques: Applications à la protection de l'Environnement. Thèse de doctorat : Génie des Procédés et des Produits. **2010**, Inst. Nat. Polytech, Lorraine.

Rooney, D.; Jacquemin, J. and Gardas, R. Thermophysical Properties of Ionic Liquids, Top Curr Chem. **2009**, 290, 185–212.

Thuy Phama, T. P.; Choa, C-W. ; Yun, Y-S. Environmental fate and toxicity of ionic liquids: A review. Water research. **2010**, 44, 352-372.

Sakaebe, H.; Matsumoto, H.; Tatsumi, K. Application of room temperature ionic liquids to Li batteries. Electrochim. Acta. **2007**, 53, 1048–1054.

Sate, D.; Janssen, M. H. A.; Stephens, G.; Sheldon, R. A.; Seddon, K. R. ; Lu, J. R. Enzyme aggregation in ionic liquids studied by dynamic light scattering and small angle neutron scattering Green Chemistry, **2007**, *9*, 859–867.

Shahrom, M. S. R.; Wilfred, C. D.; Taha. A. K. Z. CO₂ capture by task specific ionic liquids (TSILs) and polymerized ionic liquids (PILs and AAPILs). **2016**, 219, 306–312.

Toma, S.; Meciarová, M. and Sebesta, R. Are Ionic Liquids Suitable Media for Organocatalytic Reactions? Eur. J. Org. Chem. **2009**, 321–327.

Vaher, M.; Koel, M.; Kaljurand, M. Application of 1-alkyl-3-methylimidazloium-based ionic liquids in non-aqueous capillary electrophoresis. J Chromatogr A. **2002**, 979, 27–32.

Visser, A.E. ; Swatloski, R.P. ; Reichert, W.M. ; Griffin, S.T. ; Rogers, R.D. Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids Ind. Eng. Chem. Res. **2001**, 39, 4596.

Torralba-Calleja, E.; Skinner, J.; Gutiérrez-Tauste. D. CO₂ Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods. Journal of Chemistry. **2013**, 16 pages.

Villanueva, M.; Coronas, A.; García, J. and Salgado, J. Thermal Stability of Ionic Liquids for Their Application as New Absorbents, Ind. Eng. Chem. Res. **2013**, 52, 15718–15727.

Wappel, D.; Gronald, G.; Kalb, R.; Draxler, J. Ionic liquids for post-combustion CO₂ absorption. Int. J. Greenhouse Gas Control, **2010**, 4, 486–494.

Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews. **1999**, 99, 2071-2083.

Wasserscheid, P.; Keim, W. Ionic liquids-New "solutions" for transition metal catalysis. Angewandte Chemie-International Edition. **2000**, 39, 3773-3789.

Wilkes, J. S. and Zaworotko, M. J. Air and Water Stable I-Ethyl-3-methylimidazolium Based Ionic Liquids. J. Chem. Soc., Chem. Commun. **1992**, 965–967.

Wilkes, J. S. Properties of ionic liquid solvents for catalysis. Journal of molecular catalysis A : chemical. **2004**, 214, 11-17.

Walden, P. Bull. Molecular weights and electrical conductivity of several fused salts. Acad. Sci. St. Petersburg. **1914**, 405-422.

Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis. Wiley-VCH Verlag GmbH. 2002.

Yanlong, G.; Guangxing, L. Ionic liquids-based catalysis with solids. Adv. Synth. Catal. **2009**, 351, 817-847.

Yanes, E.G.; Gratz, S.R.; Stalcup, A.M. Tetraethylammonium tetrafluoroborate: a novel electrolyte with a unique role in the capillary electrophoretic separation of polyphenols found in grape seed extract. Analyst. **2000**, 125, 1919–1923.

Yasuda, T.; Watanabe, M. Protic ionic liquids: fuel cell applications. MRS Bull. 2013, 38, 560–566.

Yokozeki, A.; Shiflett, M.B.; Junk, C.P.; Grieco, L.M.; Foo, T. Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids, J. Phys. Chem. B. **2008**, 112, 16654–16663.

Chapitre II

Etude du comportement des composés organiques dans les liquides ioniques par chromatographie inverse

Introduction

Dans ce chapitre, nous présentons les mesures de coefficients d'activité à dilution infinie de composés organiques dans différents liquides ioniques. Les coefficients d'activité à dilution infinie d'un soluté i dans un solvant, γ_i^{∞} , permettent une mesure des interactions entre le soluté et le solvant en absence d'interactions soluté-soluté. Ces données sont très importantes car elles peuvent être utilisées afin de prédire les équilibres de phases d'un mélange. Cette procédure est très appréciable pour le dimensionnement de procédés chimiques où la détermination de l'équilibre complet pour un système multi-constituants peut devenir très laborieuse. La connaissance de ces équilibres de phases est indispensable afin de mettre au point des procédés industriels de séparation tels que l'extraction liquide-liquide et la distillation extractive.

II.1. Calcul de coefficients d'activité à dilution infinie

II.1.1. Théorie de la chromatographie en phase gazeuse inverse (CGI)

La chromatographie inverse en phase gazeuse est la technique la plus utilisée pour mesurer les coefficients d'activité à dilution infinie γ_i^{∞} d'un soluté 'i' dans un solvant. Cette technique est une extension de la chromatographie gazeuse classique. Le mode de fonctionnement et les constituant de cette méthode sont les mêmes : une colonne, un four, un injecteur, un détecteur.

Dans la CGI, un solvant non volatil est placé dans une colonne chromatographique (phase stationnaire) afin d'être analysé par l'injection de molécules organiques pures, appelées sondes (apolaire, polaire, linéaire, ramifiée ou cyclique) dont les propriétés physico-chimiques sont parfaitement connues. La CGI consiste à injecter un grand nombre de sondes de polarité différente afin de caractériser la phase stationnaire (ici le liquide ionique). Les propriétés thermodynamiques à dilution infinie peuvent être déterminées à partir des mesures de γ_i^{∞} (Heintz *et al.*, 2002). Les sélectivités $S_{i,j}^{\infty}$ et les capacités k_i^{∞} du solvant à séparer deux espèces 'i' et 'j' sont calculées à partir des valeurs de γ_i^{∞} .

II.1.1.1 Les grandeurs utilisées en CGI

En CGI, le temps de rétention t_r représente le temps qui sépare l'instant de l'injection et celui de l'apparition du soluté au niveau du détecteur (sommet du pic). Le temps de rétention de

chaque sonde dépend de leur interaction avec la phase stationnaire. Le temps mort d'une colonne, noté t_m , est défini comme étant le temps de rétention d'un soluté non retenu dans la colonne. Le temps net de rétention (ou réduit) t'_r de chaque sonde se calcule par soustraction du temps de rétention et du temps mort t_m :

$$t_r' = t_r - t_m \tag{II.1}$$

Le volume net de rétention se calcule à partir du débit de gaz vecteur corrigé noté U_c en sortie de colonne est donné par la relation :

$$V_N = U_c. t_r' \tag{II.2}$$

Où U_c est calculé à partir de la relation suivante :

$$U_{c} = J. U_{0} \left(\frac{T}{T_{0}}\right) \cdot \left(1 + \frac{P_{H_{2}0}}{P_{0}}\right)$$
(II.3)

 U_0 , est le débit mesuré du gaz vecteur à l'aide d'un débimètre à bulles de savon, T et T_0 sont respectivement la température de la colonne et la température ambiante, P_{H_2O} et P_0 sont respectivement la pression de vapeur saturante de l'eau à température ambiante (T_0) et la pression atmosphérique.

Le facteur correctif de James et Martin noté J (James *et al.*, 1952), tient compte de la compressibilité du gaz dans la colonne sous l'action de perte de charge dans la colonne :

$$J = \frac{3}{2} \cdot \frac{\left[\left(\frac{P_i}{P_0}\right)^2 - 1\right]}{\left[\left(\frac{P_i}{p_0}\right)^3 - 1\right]}$$
(II. 4)

Où P_i et P_0 sont respectivement la pression à l'entrée et à la sortie de la colonne. Ce facteur est toujours inférieur ou égal à 1 (Conder *et al.*, 1979).

Le coefficient d'activité à dilution infinie $\gamma_{1,2}^{\infty}$ d'un soluté 1 dans la phase stationnaire 2 peut être calculé à l'aide de l'équation suivante :

$$\ln \gamma_{1,2}^{\infty} = ln \left(\frac{n_2 \cdot R \cdot T}{V_N P_1^0} \right) - P_1^0 \cdot \frac{B_{11} - V_1^0}{RT} + \frac{2 \cdot B_{13} - V_1^{\infty}}{RT} \cdot J \cdot P_0$$
(II. 5)

Où n_2 est le nombre de moles de la phase stationnaire à l'intérieur de la colonne ; R est la constante des gaz parfaits ; T, la température du four; V_N , est le volume net de rétention du soluté ; P_1^0 , est la pression de vapeur saturante du soluté 1 à la température T; B_{11} est le second coefficient du viriel du soluté à l'état gazeux et à température T ; B_{13} est le coefficient du viriel mutuel entre le soluté 1 et le gaz vecteur 3.

Le volume molaire de soluté V_1^0 est déterminé à partir des densités expérimentales. Le volume molaire du soluté à dilution infinie V_1^∞ est considéré égal à V_1^0 . Les valeurs de B_{11} et B_{13} ont été estimées en utilisant la méthode de Tsonopoulos (Tsonopoulos, 1974 ; 1975 ; 1978). Les propriétés critiques et les facteurs acentriques des solutés utilisés pour les calculs sont issus de la littérature.

Le coefficient de partage gaz-liquide :

Le volume de rétention net (V_N) est proportionnel au volume de la phase stationnaire (V_L) selon la relation suivante :

$$V_N = K_L \cdot V_L \tag{II.6}$$

Dans l'équation II.6, le coefficient de partage gaz-liquide, K_L , est déterminé à l'aide de l'équation suivante (Revelli *et al.*, 2009):

$$K_{L} = \left(\frac{\rho_{LI}RT}{\gamma_{1,2}^{\infty}P_{1}^{0}M_{LI}}\right)$$
(II. 7)

Où M_{LI} et ρ_{LI} sont la masse molaire et la densité du LI respectivement.

Le coefficient de partage eau-phase condensée, P peut être déterminé à partir du coefficient de partage gaz-phase condensée, K_L selon :

$$\log P = \log K - \log K_w \tag{II.8}$$

Où K_w est le coefficient de partage gaz-eau.

II.2. Le modèle générale de solvatation d'Abraham

Le modèle d'Abraham décompose la solvatation en trois étapes. Dans la première étape, les interactions solvant-solvant sont rompues pour former une cavité de dimension appropriée pour faciliter l'entrée de soluté. Dans un second temps, le soluté entre dans la cavité formée de molécules de solvant. Ceci conduit à une réorganisation du solvant afin que le soluté soit en équilibre avec le solvant. Enfin, diverses interactions entre le soluté et le solvant apparaissent. Le mécanisme des trois étapes de solvatation du modèle d'Abraham est représenté dans la Figure II.1.

Figure II.1. Mécanisme des étapes de solvatation.

Le modèle original d'Abraham nommé Linear Solvation Energy Relationship (LSER) (Abraham *et al.*, 1993 ; 1998 ; 2004 ; Green *et al.*, 2000 ; Acree *et al.*, 2001 et 2002) est l'une

des approches les plus utilisées pour représenter toute grandeur liée à l'énergie libre lors du transfert d'un soluté entre deux phases condensées :

$$\log P = c + e.E + s.S + a.A + b.B + v.V$$
(II.9)

Dans le cas d'un processus impliquant le transfert du soluté d'une phase gazeuse à une phase condensée :

$$\log K_L = c + e.E + s.S + a.A + b.B + l.L$$
(II.10)

Les variables dépendantes, $\log P$ et $\log K_L$ représentent les propriétés d'une série de solutés dans une phase stationnaire. Les variables ou descripteurs sont les propriétés de soluté comme suit : *E* et *S* se réfèrent à l'excès de réfraction molaire et à la polarité/dipolarité du soluté respectivement, *A* et *B* sont les mesures de l'acidité et de la basicité par liaison hydrogène du soluté, *V* est le volume de McGowan du soluté et *L* est le logarithme du coefficient de partage du soluté dans l'hexadécane à 25°C. Les descripteurs (*E*, *S*, *A*, *B*) peuvent être considérés comme les mesures de la tendance d'un soluté donné à subir diverses interactions soluté-solvant. Les descripteurs *V* et *L* sont les mesures de la taille de soluté. Les descripteurs de soluté peuvent être déterminés expérimentalement en utilisant la chromatographie gazeuse inverse ou estimés à l'aide d'une méthode de contribution de groupe. Une banque de données de descripteurs pour environ 3000 composés peut être trouvée dans la littérature (Platts et al., 1999, Abraham & Platts 2001, Mutelet & Rogalski 2001).

Les coefficients (c, e, s, a, b, v et l) représentant la phase stationnaire sont obtenus par régression linéaire multiple des données expérimentales. Ces coefficients ne sont pas seulement des constantes d'ajustement mais reflètent les propriétés physico-chimiques de la phase stationnaire (Acree *et al.*, 2006).

Ces dernières années, le modèle d'Abraham a été développé pour prédire les coefficients de partage des solvants organiques et des liquides ioniques (Acree *et al.*, 2006; Abraham *et al.*, 2006; Sprunger *et al.*, 2009 et 2010; Abraham et al., 2008) et pour la prédiction des enthalpies de solvatation dans les solvant organiques (Wilson *et al.*, 2013) et les liquides ioniques (Stephens *et al.*, 2014).

II.2.1. Variantes du modèle Abraham pour la représentation de systèmes contenant des liquides ioniques

Plusieurs variantes du modèle LSER ont été développées pour corréler les coefficients de partage gaz-LI et eau-LI des solutés organiques dissous dans les LIs. (Acree et Abraham, 2006; Abraham et Acree, 2006) ont mis en place une méthode spécifique aux LIs pour estimer les coefficients LSER du LI, on peut utiliser la version LI-spécifique du modèle LSER:

$$\log K_L = c_{KL,li} + e_{KL,li} \cdot E + s_{KL,li} \cdot S + a_{KL,li} \cdot A + b_{KL,li} \cdot B + l_{KL,li} \cdot L$$
(II. 11)

$$\log P = c_{P,li} + e_{P,li} \cdot E + s_{P,li} \cdot S + a_{P,li} \cdot A + b_{P,li} \cdot B + v_{P,li} \cdot V$$
(II. 12)

(Sprunger *et al.*, 2007 ; Sprunger *et al.*, 2008 ; Sprunger *et al.*, 2009) ont ensuite proposé une version prédictive du modèle LSER dans laquelle les coefficients sont la somme de contributions spécifiques dues au cation et à l'anion :

$$log K_{L} = (c_{KL,cation} + c_{KL,anion}) + (e_{KL,cation} + e_{KL,anion}) \cdot \mathbf{E} + (s_{KL,cation} + s_{KL,anion}) \cdot \mathbf{S} + (a_{KL,cation} + a_{KL,anion}) \cdot \mathbf{A} + (b_{KL,cation} + b_{KL,anion}) \cdot \mathbf{B} + (l_{KL,cation} + l_{KL,anion}) \cdot \mathbf{L}$$
(II. 13)

.

$$log P = (c_{P,cation} + c_{P,anion}) + (e_{P,cation} + e_{P,anion}) \cdot \mathbf{E} + (s_{P,cation} + s_{P,anion}) \cdot \mathbf{S} + (a_{P,cation} + a_{P,anion}) \cdot \mathbf{A} + (b_{P,cation} + b_{P,anion}) \cdot \mathbf{B} + (v_{P,cation} + v_{P,anion}) \cdot \mathbf{V}$$
(II. 14)

Cette approche permet de restituer les coefficients de partage de solutés dans les LIs avec une grande précision mais elle est limitée aux LIs constitués des cations alkylimidazolium.

Dans une approche similaire, Revelli et al. (Revelli *et al.*, 2010) a proposé de découper le cation et les chaînes alkyles en différentes contributions. Le modèle GC-LSER proposé par Revelli et al. (Revelli *et al.*, 2010) est donné par les relations suivantes :

$$\log K_{L} = \sum_{i}^{21} n_{i.} c_{KL,i} + \sum_{i}^{21} n_{i.} e_{KL,i.} \mathbf{E} + \sum_{i}^{21} n_{i.} s_{KL,i.} \mathbf{S} + \sum_{i}^{21} n_{i.} a_{KL,i.} \mathbf{A} + \sum_{i}^{21} n_{i.} b_{KL,i.} \mathbf{B} + \sum_{i}^{21} n_{i.} l_{KL,i.} \mathbf{L}$$
(II. 15)

$$\log P = \sum_{i}^{21} n_{i} \cdot c_{P,i} + \sum_{i}^{21} n_{i} \cdot e_{P,i} \cdot \mathbf{E} + \sum_{i}^{21} n_{i} \cdot s_{P,i} \cdot \mathbf{S} + \sum_{i}^{21} n_{i} \cdot a_{P,i} \cdot \mathbf{A} + \sum_{i}^{21} n_{i} \cdot b_{P,i} \cdot \mathbf{B} + \sum_{i}^{21} n_{i} \cdot v_{P,i} \cdot \mathbf{V}$$
(II. 16)

Où n_i représente le nombre de groupes i présent dans le liquide ionique.

Le modèle permet de décrire les données expérimentales de log K_L et log P de solutés dans des LIs classiques et à tâche spécifique avec des écarts-types de 0.15 et 0.17, respectivement (Revelli *et al.*, 2010). Par la suite, Mutelet et al. (Mutelet *et al.*, 2011) ont développé le modèle GC-LSER pour corréler les données de log K_L mesurées pour différents solutés dans les LIs à différentes températures. La nouvelle expression du modèle dépendant de la température GC-LSER (TDGC-LSER) est donnée par la relation suivante :

 $\log K_L$

$$= -2.84418 + \sum_{i}^{21} n_i c_i + \sum_{i}^{21} n_i e_i \mathbf{E} + \sum_{i}^{21} n_i s_i \mathbf{S} + \sum_{i}^{21} n_i a_i \mathbf{A} + \sum_{i}^{21} n_i b_i \mathbf{B} + \sum_{i}^{21} n_i l_i \mathbf{L} / T$$
(II.17)

Les résultats montrent que le modèle TDGC-LSER peut être appliqué pour représenter les coefficients de partage avec précision mais de nouvelles données expérimentales sont nécessaires pour définir de nouveaux groupes pour augmenter le pouvoir prédictive du modèle.

II.3. Partie expérimentales

II.3.1. Appareillage et conditions expérimentales

Les mesures ont été réalisées sur un chromatographe Bruker 450-GC équipé d'un détecteur à conductivité thermique (TCD) et d'un échantillonneur automatique et un auto-injecteur. L'hélium à été utilisé comme gaz vecteur (phase mobile). Les températures de l'injecteur et du détecteur sont fixées à 250°C. La température du four est contrôlée à l'aide d'une sonde de platine Pt 100 avec une précision de \pm 0.1 K. L'air est utilisé pour déterminer le temps mort de la colonne. Le débit du gaz vecteur est mesuré avec un débimètre à bulle de savon relié à la sortie de la colonne. Dans cette étude, le débit choisi est compris entre 1 à 40 ml/min selon la

colonne chromatographique. Le volume du soluté injecté est inférieur à 5 μ L afin d'être à dilution infinie dans la colonne.

II.3.2. Préparation des colonnes

Les colonnes chromatographiques sont des tubes en acier inoxydable prétraité par Supelco ayant pour dimensions un diamètre interne de 1/8", un diamètre externe de 2,1mm et une longueur de 1m. Le support Chromosorb WAW-DMCS avec une granulomètrie 60-80 mesh utilisé est imprégné de liquide ionique. L'imprégnation du support avec le LI a été réalisée dans un évaporateur rotatif à 60°C. Pour ce faire, des quantités connues de LI et de chromosorb sont introduites dans un ballon de 500 mL, puis un solvant (éthanol) permettant la mise en solution du LI est ajouté. Le solvant choisi est ensuite éliminé grâce à l'évaporateur rotatif jusqu'à siccité. Enfin, le ballon est ensuite placé dans une étuve à 80°C sous pression réduite de manière à éliminer les traces éventuelles de solvant pendant deux heures. La phase stationnaire est ensuite introduite dans la colonne en inox. Chacune des extrémités de la colonne sont fermées à l'aide de deux tampons de laine de quartz. Un conditionnement de la colonne est ensuite effectué à 80°C sous un débit de gaz vecteur de 20 ml.min⁻¹. La masse exacte de support enrobé de LI introduite dans la colonne est la différence de masses entre la colonne remplie et la colonne vide. Les différents produits sont pesés à l'aide d'une balance de précision et l'incertitude est de l'ordre de \pm 0,0003 g. Le tableau II.1 présente les caractéristiques des colonnes préparées avec divers LIs et les températures d'analyse.

Tableau II.1. Caractéristiques des colonnes et températures de mesure
--

Liquide ionique	Taux de remplissage (%)	Température
1-ethyl-3-methylimidazolium		
methylphosphonate	38.35	40 - 60 - 80 - 100
1.3-dimethylimidazolium		
methylphosphonate	34.17	40 - 50 - 60 - 70
1-hexylquinuclidinium		
bis(trifluoromethylsulfonyl)imide	36.31	40 - 50 - 60 - 70 - 80
1-octylquinuclidinium		
bis(trifluoromethylsulfonyl)imide	34.07	40 - 50 - 60 - 70 - 80

II.3.3. Produits chimiques

II.3.3.1. Choix des molécules sondes

Les sondes (solutés) utilisées sont dans la majorité des cas des molécules organiques : des alcanes linéaires (hexane, heptane, octane, nonane, décane, undécane, dodécane, tridécane, tétradécane), les alcanes ramifiés (3-méthylpentane, 2,2,4-triméthylpentane), des alcanes cycliques (méthylcyclopentane, cyclohexane, méthylcyclohexane, cycloheptane), les aromatiques (benzène, toluène, éthylbènzene, m-xylène, p-xylène, o-xylène), 1 alcène (1-hexène), 2 alcynes (1-hexyne, 1-heptyne), les sondes polaires sont les alcools (méthanol, éthanol, 1-propanol, 2-propanol, 2-méthyl-1-propanol, 1-butanol), 2 éthers (diéthyl éther, diisopropyl éther), les éthers cycliques (tétrahydrofuran, 1,4-dioxane), 1 aldéhydes (formaldehyde), les cétones (acétone, 2-butanone, 2-pentanone, 3-pentanone), les esters (éthyl acetate), les chloroalcanes (chloroforme, dichlorométhane, 1-nitropropane), 1 amine (triéthylamine), et d'autres solutés comme le thiophène, la pyridine et l'eau. Toutes les sondes utilisées dans ce travail ont été fournis par la société Aldrich avec une pureté supérieure à 99.5%.

II.3.3.2. Liquides ioniques

Quatre LIs ont été utilisés comme phase stationnaire : 1-ethyl-3-methylimidazolium methylphosphonate et 1,3-dimethylimidazolium methylphosphonate d'une pureté supérieure à 98% proviennent de la société Solvionic. Les deux autres LIs, 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide, 1-octylquinuclidinium bis(trifluoromethylsulfonyl)imide, 1-octylquinuclidinium bis(trifluoromethylsulfonyl)imide, 0nt été synthétisés par le Professeur G. Baker (Ayad *et al.*, 2016). La structure chimique des LIs étudiés dans ce travail ainsi que leurs abréviations sont présentées dans le Tableau II.2. Les densités des LIs sont données dans le Tableau A1 de l'Annexe A.

Cation	Anion	Abréviation et masse molaire	Nom
	HO P∕_O H₃C–O′ `O⁻	[EMIM][(MeO)(H)PO ₂] M = 206.18 g/mol	1-ethyl-3- methylimidazolium methylphosphonate
	H, O P ⁷ H ₃ C-O ⁷ O ⁻ O O F ₃ C-S-N-S-CF ₃	$[DIMIM][(MeO)(H)PO_2]$ $M = 192.15 \text{ g/mol}$	1.3-dimethylimidazoliummethylphosphonate1-hexylquinuclidinium
	0 0 0	$[Quin6][1f_2N]$ M = 494.47 g/mol	bis(trifluoromethylsulfonyl) imide
	$\begin{smallmatrix} 0 & 0 \\ F_3C - {{_{}{_{}{}{}{$	[Quin8][Tf ₂ N] M = 522.52 g/mol	1-octylquinuclidinium bis(trifluoromethylsulfonyl) imide

Tableau II.2. Noms et structures des liquides ioniques utilisées.

II.3.4. Résultats et discussions

Dans ce paragraphe, nous présentons les coefficients d'activité à dilution infinie de composés organiques dans quatre LIs mesurés sur une large gamme de température. Ces résultats expérimentaux permettent de mieux comprendre la nature des interactions entre soluté et solvant, l'influence de la température sur les valeurs de coefficients d'activité. Les données de γ_{12}^{∞} permettent de déterminer la sélectivité des LIs pour différents problèmes de séparation liées aux industries chimiques et pétrochimiques tels que les mélanges alcanes aromatique, cyclo-alcane-aromatique.

II.3.5. Détermination des coefficients d'activité à dilution infinie à différentes températures

Dans cette partie, nous présentons les mesures des coefficients d'activité à dilution infinie de différents solutés dans quatre LIs : 1-ethyl-3-methylimidazolium methylphosphonate, 1,3dimethylimidazolium methylphosphonate, 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide, 1-octylquinuclidinium bis(trifluoromethylsulfonyl)imide.

II.3.5.1. Comportement des solutés avec les liquides ioniques étudiés

Les Tableaux II.3 à 6 présentent les valeurs expérimentales de coefficients d'activité à dilution infinie γ_{12}^{∞} ainsi que pour les coefficients de partage gaz-liquide, K_L , de différents solutés dans les quatre LIs mesurés dans une gamme de températures allant de 313.15 à 373.15K.

D'après les tableaux II.3-II.6, on observe que les LIs étudiés présentent des valeurs de γ_{12}^{∞} élevées pour les alcanes et cycloalcanes par rapport à d'autres solutés.

Les valeurs de γ_{12}^{∞} augmentent lorsque la longueur de la chaine alkyle augmente dans une série homologue. Ce comportement est observé avec tous les LIs (Mutelet *et al.*, 2013) (Domanska *et al.*, 2012). Les interactions entre le LI et le soluté diminuent avec l'augmentation de la chaîne alkyle de soluté.

Les valeurs de γ_{12}^{∞} les plus élevées à T=313.15 K sont obtenues pour le tétradécane (3493.389) dans [EMIM][(MeO)(H)PO₂] et (3560.48) dans le [DIMIM][(MeO)(H)PO₂], pour le dodécane (60.810) à T=323.15 K dans le LI [Quin6][Tf₂N] et le tridécane (18.702) à T=343.15 K dans le [quin8][Tf₂N]. Ces valeurs indiquent que les composés apolaires ont de faible interaction avec les LIs. Ce comportement est typique avec tous les LIs.

La structure cyclique des cycloalcanes cause une diminution de la valeur de γ_{12}^{∞} en comparaison avec les alcanes linaires. Par conséquent, les cycloalcanes sont plus solubles dans les LIs par rapport aux alcanes.

Pour les alcènes et les alcynes, les valeurs de γ_{12}^{∞} sont inférieures à celles des alcanes. L'addition d'une double ou triple liaison dans une molécule augmente sa solubilité dans le LI. Les aromatiques montrent de faibles valeurs de γ_{12}^{∞} en comparaison avec les alcanes et les cycloalcanes. Les électrons π délocalisés dans les aromatiques peuvent interagir avec le LI polaire. Les interactions entre la paire d'électrons libre sur l'azote du cation et les électrons π du cycle aromatique du benzène résultent en une faible valeur de γ_{12}^{∞} .

Dans les tableaux II.3-II.6, les valeurs les plus faibles de γ_{12}^{∞} sont observées pour le méthanol, le formaldéhyde, l'acétone, la pyridine, le thiophène et le THF. Ces composés interagissent fortement avec le LI polaire.

On constate aussi que l'allongement de la chaine alkyle sur l'imidazolium pour les LIs avec l'anion [(MeO)(H)PO₂] entraine une diminution des valeurs de γ_{12}^{∞} des solutés. Le même comportement est observé avec des LIs constitués d'un cation quinuclidinium et d'un anion [Tf₂N]. Ce qui indique, que les solutés interagissent fortement avec les LIs à base des cations imidazolium et quinuclidinium contenant une longue chaine alkyle.

Solutés	γ	∞ 12 expérim	entaux à T	Log K _L	Log P	
	313.15	333.15	353.15	373.15	298	8.15
Octane	461.248				1.014	3.124
Nonane	617.358	484.998			1.432	3.582
Décane	882.289	704.471	581.782		1.738	3.998
Undécane	1342.104	1078.036	887.961		2.051	4.431
Dodécane	1745.334	1542.755	1300.484	915.189	2.420	
Tridécane	2564.785	2129.039	1853.755	1295.837	2.770	
Tétradécane	3493.389	3006.976	2609.125	2267.879	3.162	
Méthylcyclopentane	76.061				0.847	2.017
Cyclohexane	88.903	43.159			0.927	1.827
Méthylcyclohexane	211.182	70.764			0.866	2.116
Cycloheptane	98.815	179.904	303.193	438.610	1.678	2.258
Benzène	3.438	3.524	3.615	3.749	2.436	1.806
Toluène	6.526	6.627	6.819	7.160	2.669	2.019
Ethylbènzene	11.390	11.575	11.662	11.907	2.881	2.301
m-xylène	18.622	18.790	20.443	24.891	2.789	2.179
p-xylène	16.890	17.995	19.338	21.888	2.812	2.222
o-xylène	14.379	14.990	16.193	18.804	2.986	2.326
1-hexyne	6.242	6.726	7.132	7.057	0.879	2.039
1-heptyne	10.210	11.127	11.822	11.972	2.057	2.267
2-butanone	3.492	2.992	2.558	2.370	2.338	2.778
2-pentanone	6.226	6.188	6.154	6.211	2.430	-0.290

Tableau II.3. Les valeurs de γ_{12}^{∞} pour différents solutés dans le 1-ethyl-3-methylimidazolium methylphosphonate à T= (313.15, 333.15, 353.15 et 373.15) K.

Chapitre II. Etude du comportement des composés organiques dans les liquides ioniques par chromatographie inverse

3-pentanone	5.875	5.875	5.996	6.268	2.609	0.029
1,4 dioxane	3.392	3.553	3.873	4.336	2.592	0.092
Méthanol		0.072	0.078	0.088	2.901	-0.809
Ethanol		0.148	0.156	0.169	4.066	0.326
1-propanol			0.207	0.214	4.045	0.375
2-propanol		0.261	0.294	0.314		
2-méthyl-1-propanol			0.292	0.309	3.934	0.454
1-butanol			0.308	0.324	4.403	1.103
Diéthyléther	1.987	2.429	3.504	4.596	4.603	1.143
Chloroforme	0.277	0.358	0.451	0.544		
Dichlorométhane	0.502	0.642	0.798		2.053	0.883
Tétrachlorométhane	4.381	4.955				
Acétonitrile	1.076	1.112	1.194	1.251	3.294	2.504
Nitrométhane	0.750	0.787	0.831	0.873	2.606	1.646
1-nitropropane	2.682	2.695	2.755	2.800	2.302	2.302
Triéthylamine	30.188	48.037			2.988	0.138
Pyridine	1.774	1.838	1.951	2.003	3.530	0.580
Thiophène	1.989	2.160	2.495	2.642	3.506	1.056
Formaldéhyde	0.059	0.084	0.115	0.151		

Tableau II.4. Les valeurs de γ_{12}^{∞} pour différents solutés dans le 1.3-dimethylimidazolium methylphosphonate à T= (313.15, 323.15, 333.15 et 343.15) K.

Solutés	γ_{12}^{∞}	γ_{12}^{∞} expérimentaux à T/K		Log K _L	Log P	
	313.15	323.15	333.15	343.15	293	8.15
Nonane	1068.11	1046.41			1.351	3.501
Décane	1220.67	1214.60			1.809	4.069
Undécane	1530.83	1467.56	1402.20	1332.83	2.196	4.576
Dodécane	2354.20	1918.16	1790.48		2.392	
Tridécane	2380.92	2223.03	2159.81	2124.05	3.005	
Tétradécane	3560.48	3215.19	2978.83	2890.67	3.290	
Cyclohexane	128.96					
Méthylcyclohexane	256.60					
Cycloheptane	249.91					
Benzène	5.69	5.58	5.52	5.43	1.364	1.944
Toluène	11.47	11.37	11.29	11.25	2.303	1.673
Ethylbènzene	22.70	22.08	21.73	21.51	2.519	1.869
m-xylène	24.51	24.45	23.59	23.06	2.673	2.093
p-xylène	23.42	23.35	22.69	22.01	2.714	2.104
o-xylène	19.21	19.12	18.65	18.51	2.713	2.123
1-hexyne	12.73	12.96	13.36	13.68	2.921	2.261
1-heptyne	21.98	23.47	23.52	24.95		
2-butanone	5.52	5.16	4.66	4.17	1.860	2.070
2-pentanone	10.64	10.58	10.30	10.10	2.119	2.559
3-pentanone	10.23	10.16	10.10	10.05	2.317	-0.403
1,4 dioxane	3.73	3.72	3.69	3.66	2.463	-0.117

Chapitre II. Etude du comportement des composés organiques dans les liquides ioniques par chromatographie inverse

Méthanol				0.07	2.445	-0.055
Ethanol				0.16	2.921	-0.789
1-propanol				0.25		
Chloroforme	0.39	0.43	0.48	0.51		
Dichlorométhane	0.57	0.65	0.72	0.77		
Tetrachlorométhane	6.57	6.83	7.03			
Acétonitrile	1.10	1.11	1.12	1.12		
Nitrométhane	0.80	0.81	0.82	0.83		
1-nitropropane	3.41	3.35	3.29	3.29		
Triéthylamine	9.04	12.67				
Pyridine	2.15	2.16	2.17	2.19	0.752	0.752
Thiophène	2.47	2.54	2.58	2.60	3.229	2.439

Tableau II.5. Les valeurs de γ_{12}^{∞} pour différents solutés dans le 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide à T= (313.15, 323.15, 333.15, 343.15 et 353.15) K.

Solutés	γ_{12}^{∞} expérimentaux à T/K							
	313.15 K	323.15 K	333.15 K	343.15K	353.15 K			
Hexane	7.410	6.714	6.324	6.104	5.838			
3-méthylpentane	6.786	6.225	5.833	5.457	5.251			
Heptane	9.611	8.908	8.608	7.977	7.581			
2,2,4 triméthylpentane	9.854	9.232	8.960	8.533	7.832			
Octane	11.594	11.376	10.877	10.224	9.841			
Nonane	16.960	15.821	15.064	14.363	13.447			
Decane	19.139	18.373	17.749	16.823	16.072			
Undécane	24.748	23.383	22.907	21.549	19.532			
Dodécane		60.810	46.086	27.213	23.830			
Tridécane				34.751	29.733			
Tétradécane					37.026			
Méthylcyclopentane	4.836	4.526	4.277	4.085	3.969			
Cyclohexane	5.064	4.731	4.420	4.208	3.915			
Méthylcyclohexane	6.014	5.717	5.500	5.274	4.962			
Cycloheptane	5.717	5.530	5.277	5.078	4.812			
Benzène	0.638	0.660	0.675	0.695	0.709			
Toluène	0.798	0.824	0.867	0.898	0.930			
Ethylbènzene	1.064	1.104	1.182	1.220	1.255			
m-xylène	1.058	1.085	1.152	1.193	1.239			
p-xylène	1.056	1.092	1.171	1.196	1.216			
o-xylène		0.994	1.062	1.100	1.149			
1-hexène	4.061	3.939	3.873	3.860	3.818			
1-hexyne	1.940	1.934	1.930	1.924	1.920			
2-butanone	0.492	0.471	0.446	0.419	0.397			
2-pentanone	0.623	0.637	0.659	0.678	0.691			
1,4-dioxane	0.687	0.689	0.691	0.693	0.694			
Méthanol	1.512	1.413	1.325	1.239	1.217			
Ethanol	1.739	1.592	1.486	1.391	1.326			
1-propanol	1.872	1.711	1.578	1.466	1.387			

Chapitre II. Etude du comportement des composés organiques dans les liquides ioniques par chromatographie inverse

2-propanol	1.809	1.661	1.533	1.436	1.382
2-méthyl-1-propanol	2.039	1.839	1.680	1.569	1.490
1-butanol	2.167	1.939	1.764	1.642	1.555
Ether	1.670	1.675	1.683	1.690	1.698
Diisopropyle éther	3.205	3.214	3.221	3.230	3.238
Chloroforme	0.591	0.622	0.659	0.688	0.729
Dichlorométhane	0.510	0.548	0.580	0.614	0.655
Acétonitrile	0.588	0.576	0.569	0.562	0.561
Nitrométhane	0.654	0.640	0.627	0.616	0.602
1-nitropropane		0.661	0.662	0.663	0.664
Triéthylamine	4.359	4.330	4.244	4.227	4.168
Pyridine	0.480	0.488	0.497	0.507	0.522
Thiophène	0.582	0.597	0.616	0.637	0.658
Formaldéhyde	0.054	0.058	0.067	0.079	0.092
Acétone	0.450	0.453	0.457	0.462	0.473
THF	0.589	0.605	0.615	0.631	0.649
Ethylacétate	0.780	0.785	0.797	0.814	0.841
Eau	4.250	3.875	3.558	3.370	3.000

Tableau II.6. Les valeurs de γ_{12}^{∞} pour différents solutés dans le 1-octylquinuclidinium bis(trifluoromethylsulfonyl)imide T= (313.15, 323.15, 333.15, 343.15 et 353.15) K.

Solutés	γ_{12}^{∞} expérimentaux à T/K							
	313.15 K	323.15 K	333.15 K	343.15K	353.15 K			
Hexane	4.315	4.185	4.091	4.027	3.922			
3-méthylpentane	3.964	3.839	3.778	3.740	3.698			
Heptane	5.476	5.287	5.178	5.075	4.911			
2,2,4 triméthylpentane	5.499	5.335	5.255	5.117	5.031			
Octane	6.904	6.654	6.497	6.314	6.184			
Nonane	9.632	9.178	8.862	8.502	8.223			
Décane	10.895	10.404	10.139	9.847	9.621			
Undécane		12.808	12.334	12.155	11.891			
Dodécane		16.345	15.639	14.963	14.317			
Tridécane				18.702	17.950			
Méthylcyclopentane	3.024	2.952	2.869	2.797	2.729			
Cyclohexane	2.976	2.876	2.796	2.729	2.659			
Méthylcyclohexane	3.633	3.522	3.434	3.338	3.286			
Cycloheptane	3.621	3.488	3.379	3.285	3.227			
Benzène	0.540	0.552	0.566	0.580	0.596			
Toluène	0.660	0.682	0.704	0.730	0.759			
Ethylbènzene	0.864	0.900	0.928	0.964	0.998			
m-xylène		0.879	0.908	0.946	0.981			
p-xylène		0.890	0.918	0.949	0.971			
o-xylène		0.797	0.831	0.875	0.924			
1-hexène	2.788	2.768	2.734	2.701	2.676			
2-butanone	0.427	0.409	0.379	0.357	0.337			
2-pentanone	0.525	0.541	0.556	0.570	0.581			
1,4 dioxane	0.606	0.611	0.614	0.617	0.621			

	1		•	1 1	1 1	• •	1 .	1 • •
Chopitro II Etudo du d	comportament da	a aomnoada	orgoniguiog	dong log	liquidad	100101000	nor opromote	arophia invarca
	липольствень це		Organnuucs.	uans ics	nuuues	TOTHQUES	Dai ChiOhhau	
								0

Méthanol	1.418	1.276	1.171	1.107	1.017
Ethanol	1.602	1.459	1.336	1.243	1.145
1-propanol	1.687	1.544	1.419	1.308	1.198
2-propanol	1.616	1.462	1.337	1.243	1.154
2-méthyl-1-propanol	1.798	1.615	1.480	1.367	1.275
1-butanol	1.922	1.717	1.567	1.444	1.348
Ether	1.270	1.289	1.312	1.330	1.355
Diisopropyle éther	2.342	2.357	2.368	2.379	2.413
Chloroforme	0.489	0.513	0.536	0.561	0.583
Dichlorométhane	0.421	0.446	0.471	0.493	0.528
Acétonitrile	0.555	0.545	0.534	0.524	0.517
Nitrométhane	0.629	0.614	0.599	0.587	0.575
1-nitropropane		0.580	0.588	0.597	0.600
Triéthylamine	2.805	2.770	2.735	2.699	2.665
Pyridine		0.432	0.440	0.448	0.458
Thiophène	0.503	0.518	0.530	0.547	0.559
Formaldéhyde	0.212	0.250	0.293	0.355	0.433
Acétone	0.399	0.400	0.400	0.401	0.404
THF	0.476	0.487	0.493	0.504	0.513
Ethylacétate	0.653	0.659	0.662	0.671	0.678
Eau	2.920	2.555	2.137	1.700	1.420

II.3.5.2. Effet de la température

Les données expérimentales de γ_{12}^{∞} réalisées à différentes températures peuvent être représentées en utilisant l'équation (II.18) :

$$\ln \gamma_{12}^{\infty} = \frac{a}{T} + b \tag{II. 18}$$

Les figures II.2 et II.3 montrent l'influence de la température sur les valeurs de γ_{12}^{∞} des alcanes, cycloalcanes et les hydrocarbures aromatiques dans le LI [Quin8][Tf₂N].

En général, pour les alcanes, cycloalcanes et l'eau, les valeurs de γ_{12}^{∞} diminuent avec l'augmentation de la température. Ceci indique que la solubilité augmente avec la température. Par contre, on observe un comportement inverse avec les solutés comme les aromatiques, alcynes, thiophène, pyridine, alcools (à l'exception des LIs à base [Tf₂N], γ_{12}^{∞} diminue la température augmente), éthers, formaldéhyde, chloroalcanes. Cette tendance de la température est observée pour les quatre LIs étudiés. On remarque aussi que les valeurs de γ_{12}^{∞} des solutés polaires sont moins sensibles à la température.

Figure II.2. Tracé de ln γ en fonction de 1/T des alcanes et cycloalcanes dans le LI [Quin8][Tf₂N] : •, cyclohexane ; +, cycloheptane ; •, heptane ; •, octane ; ×, nonane ; •, decane.

Figure II.3. Tracé de ln γ en fonction de 1/T des aromatiques dans le LI [Quin8][Tf₂N] : •, benzène ; •, toluène ; •, o-xylène.

II.3.5.3. Sélectivité des liquides ioniques

Dans les procédés de séparation, les propriétés du solvant telles que la sélectivité $S_{i,j}^{\infty}$ et la capacité k_i^{∞} donnent des informations très importantes sur son efficacité. La sélectivité à

dilution infinie du liquide ionique indique la capacité du solvant (LI) à séparer des mélanges de composants *i* et *j* par extraction. La sélectivité et la capacité k_i^{∞} du solvant sont données par les relations suivantes :

$$S_{i,j}^{\infty} = \frac{\gamma_i^{\infty}}{\gamma_j^{\infty}}$$
(II. 19)

$$k_i^{\infty} = \frac{1}{\gamma_i^{\infty}} \tag{II.20}$$

Le tableau II.7 présente les sélectivités S_{12}^{∞} et les capacités k_2^{∞} à dilution infinie obtenus de [EMIM][(MeO)(H)PO₂] et [DIMIM][(MeO)(H)PO₂] ainsi que d'autres LIs issus de la littérature et des solvants industriels couramment utilisés dans l'industrie pour trois problèmes de séparation, cyclohexane/thiophène, cyclohexane/benzène, cyclohexane/pyridine à T=313.15 K.

Pour les LIs étudiés et ceux qui sont présentés dans le tableau II.7, les sélectivités pour la séparation du mélange cyclohexane/benzène sont plus élevés par rapport aux valeurs des solvants classiques NMP (S_{12}^{∞} =7.05) (Abraham *et al.*, 2006) ou NFM (S_{12}^{∞} = 8.31) (Olivier *et al.*, 2010). Ces résultats indiquent que le [EMIM][(MeO)(H)PO₂] peut jouer un rôle important pour la séparation du mélange cyclohexane / benzène. Aussi, il est important de noter que la sélectivité diminue avec l'augmentation de la longueur de la chaine alkyle greffée sur le cation ou sur l'anion.

En ce qui concerne l'influence de l'anion, les valeurs des sélectivités des LIs constitués du cation [EMIM] pour la séparation de cyclohexane/benzène à T=313.15 K (Tableau II.7) augmentent dans le sens suivant : $[BF_4] > [(MeO)(H)PO_2] > [MDEGSO_4] > [C_2H_5OSO_3] > [CF_3SO_3] > [(CF_3SO_2)_2N]$. Les LIs avec l'anion [(MeO)(H)PO_2] montrent des sélectivités élevées en particulier le [EMIM][(MeO)(H)PO_2] (S_{12}^{∞} = 25.86). D'après le tableau II.7, la plus grande sélectivité est observée pour le LI à base de l'anion [BF₄] (S_{12}^{∞} = 28.89).

En général, les solvants avec une sélectivité élevée auront une faible capacité, c'est le cas des LIs constitués de l'anion [(MeO)(H)PO₂], qui ont des capacités en benzène inférieures à celle du NMP et NFM. La valeur de capacité la plus élevée est observée pour le NMP (k_2^{∞} = 0.95). Le LI [EMIM][Tf₂N], montre une capacité supérieure à tous les LIs à base du cation [EMIM], et présente une capacité supérieure à celle du NFM. Les LIs à base [(MeO)(H)PO₂] présentent des valeurs de capacité plus faibles mais des sélectivités pour la séparation

cyclohexane/benzène relativement importantes. Pour les LIs constitués de l'anion [(MeO)(H)PO₂], les valeurs de la sélectivité pour la séparation cyclohexane/thiophène et cyclohexane/pyridine sont élevées et augmentent avec le nombre d'atomes de carbone sur le cation imidazolium.

Tableau II.7. Sélectivités S_{12}^{∞} et capacités k_2^{∞} à dilution infinie pour différents problèmes de séparation à T = 313.15 K.

Solvant	$S_{12}^{\infty} / k_2^{\infty}$			Référence
	Cyclohexane	Cyclohexane	Cyclohexane	
	/thiophène	/benzène	/pyridine	
[EMIM][(MeO)(H)PO ₂]	44.7/0.5	25.86/0.29	50.11/0.56	Ce travail
[DIMIM][(MeO)(H)PO ₂]	52.21/0.42	22.66/0.18	59.98/0.46	Ce travail
[EMIM] [Tf ₂ N]	-	12.1/0.83	-	Krummen et al., 2002
$[EMIM] [C_2H_5OSO_3]$	-	18.4/0.36	-	Krummen et al., 2002
[EMIM] [DEPO ₄]	27.6/-	-	-	Revelli et al., 2009
[EMIM][BF ₄]	—	28.89/0.47	—	Ge et al., 2008
[EMIM] [MDEGSO ₄]	-	19.31/0.43	-	Bahadur et al., 2014
[EMIM] [CF ₃ SO ₃]	—	15.18/0.45	—	Olivier et al., 2010
NMP	-	7.05/0.95	_	Krummen et al., 2002
NFM	_	8.31/0.5	_	Krummen et al., 2004

Tableau II.8. Sélectivités S_{12}^{∞} et capacités k_2^{∞} à dilution infinie pour différents problèmes de séparation à T = 323.15 K en utilisant les liquides ioniques à base [Tf₂N].

Solvant	S_{12}^{∞} / k_2^{∞}			Référence	
	Hexane	Hexane	Hexane	Heptane	
	/benzene	/pyridine	/thiophene	/thiophene	
[Quin6][Tf ₂ N]	10.17/1.51	13.76/2.05	11.25/1.67	14.92/1.67	Ce travail
[Quin8][Tf ₂ N]	7.58/1.81	9.69/2.31	8.08/1.93	10.21/1.93	Ce travail
[PrMPyrr][Tf ₂ N]	16.69/1.01	26.2/1.59	19.23/1.16	27.95/1.16	Mutelet et al., 2013
[BMPyrr][Tf ₂ N]	15.2/1.10	23.64/1.69	17/1.22	24.01/1.22	Mutelet et al., 2013
[PeMPyrr][Tf ₂ N]	14.3/1.22	22.13/1.89	15.8/1.35	20.39/1.35	Mutelet et al., 2013
[HMPyrr][Tf ₂ N]	10.2/1.32	14.88/1.92	11.1/1.43	—	Acree et al., 2012
[OMPyrr][Tf ₂ N]	8.4/1.67	11.92/2.38	8.8/1.75	—	Acree et al., 2012
[DMPyrr][Tf ₂ N]	6.4/1.61	8.44/2.20	6.6/1.67	—	Acree et al., 2012
[PrMPIP][Tf ₂ N]	20.5/1.06	—	23.14/1.19	30.19/1.19	Domanska et al., 2012
[MMIM][Tf ₂ N]	24.85/0.73	—	-	—	Krummen et al., 2002
[EMIM][Tf ₂ N]	20/0.83	—	-	—	Krummen et al., 2002
[BMIM][Tf ₂ N]	14.06/1.11	—	-	—	Krummen et al., 2002
	16/1.25	-	18.29/1.43	22.14/1.43	Zhang et al., 2007
[BMPY][Tf ₂ N]	18.2/1.37	_	20.70/1.56	27.01/1.56	Domanska et al., 2009

[OiQuin][Tf ₂ N]	6.89/1.67	_	7.48/1.81	8.91/1.81	Domanska et al., 2011
NMP	10.38/0.95	_	_	_	Krummen et al., 2000
sulfolane	16.91/0.43	34.86/0.88	—	—	Mollmann et al., 1997

Pour les LIs à base de l'anion [Tf₂N] (tableau II.8), l'augmentation de la longueur de la chaine alkyle greffée sur le cation quinuclidinium entraine une diminution de la sélectivité et une augmentation de la capacité. La plupart des LIs à base [Tf₂N] ont des capacités supérieure à celle du NMP et sulfolane à l'exception de [MMIM][Tf₂N] (k_2^{∞} = 0.73) et [EMIM][Tf₂N] (k_2^{∞} = 0.83) qui ont des capacités inférieures à celle du NMP (k_2^{∞} = 0.95).

Pour la séparation du mélange hexane/benzène, les LIs constitués du cation [Quin6] et [Quin8] présentent des sélectivités inférieures à celle du sulfolane, NMP et aux LIs à base de piperidinium, imidazolium, pyridinium et pyrrolidinium ayant une longueur de chaîne alkyle jusqu'à 8 atomes de carbones. Néanmoins, ces LIs ont des capacités supérieures à celle du sulfolane. Le [Quin6][Tf₂N] présente une sélectivité proche à celle du NMP pour la séparation hexane/benzène. Le cation [BMPY] présente à la fois une sélectivité et une capacité élevées. Ceci est dû à la structure similaire des molécules de pyridine et du benzène. La figure II.4 montre les cinq LIs qui ont des sélectivités supérieures à celle du sulfolane : [EMIM][Tf₂N], [MMIM][Tf₂N], [PrMPIP][Tf₂N], [BMPY][Tf₂N] et [PrMPyrr][Tf₂N].

Figure II.4. Sélectivités et capacités à dilution infinie pour les LIs constitués de l'anion $[Tf_2N]$ et différents cations pour la séparation hexane/benzène.

La figure II.5 (a) et (b) montrent qu'il y a une relation linéaire entre la sélectivité ou la capacité avec la longueur de la chaine alkyle. La sélectivité et la capacité des LIs à base $[Tf_2N]$ sont donc principalement influencées par la longueur de la chaine.

Figure II.5. Sélectivité (S_{12}^{∞}) (a) et capacité k_2^{∞} (b) à dilution infinie pour différents LIs à base [Tf₂N] en fonction du nombre de carbones (n_c) de la chaine alkyle greffée sur le cation pour la séparation de mélange hexane/benzène.

Les valeurs de sélectivité S_{12}^{∞} , des LIs constitués de [Tf₂N] pour la séparation d'un mélange hexane/pyridine à T=323.15K évoluent selon : [PrMPyrr] > [BMPyrr] > [PeMPyrr]> [HMPyrr] > [Quin6] > [OMPyrr] > [Quin8] >[DMPyrr]. Le sulfolane présente la sélectivité la plus importante pour la séparation du mélange hexane/pyridine. Pour les problèmes de séparation des systèmes hexane/thiophène et heptane/thiophène, les LIs avec le cation quinuclidinium [quin6] et [quin8] présentent des capacités importantes. Néanmoins, leurs sélectivités restent inférieures à celles des cations piperidinium, imidazolium, pyridinium et pyrrolidinium.

II.3.5.4. Calcul des coefficients du modèle LSER pour [EMIM][(MeO)(H)PO₂], [DIMIM][(MeO)(H)PO₂]

Le modèle LSER a été utilisé pour caractériser les interactions entre les solutés et les LIs [EMIM][(MeO)(H)PO₂] et [DIMIM][(MeO)(H)PO₂]. Les coefficients du modèle LSER (c, e, s, a, b et l) ont été obtenus par régression linéaire multiple des valeurs expérimentales de log

 K_L . Les données expérimentales de log K_L sont calculées à l'aide de l'équation (II.21 et II.23). Les descripteurs des solutés utilisés pour la détermination des coefficients du modèle sont donnés dans le Tableau A.2 de l'Annexe A.

Les valeurs de log K_L et log P à T=298.15 K des LIs [EMIM][(MeO)(H)PO₂] et [DIMIM][(MeO)(H)PO₂] sont données dans les tableaux II.3 et II.4.

L'analyse des données expérimentales de log K_L et log P pour chaque LI est donnée comme suit :

• Pour [DIMIM][(MeO)(H)PO₂]

$$\log K_L = -1.64(0.15) + 3.22(0.10)\mathbf{S} + 9.64(0.60)\mathbf{A} + 0.73(0.03)\mathbf{L}$$
(II.21)

 $(N=21, SD=0.11, R^2=0.980, F=337)$

$$\log P = 0.35(0.16)\mathbf{E} + 4.15(0.10)\mathbf{A} - 3.88(0.60)\mathbf{B} + 2.64(0.03)\mathbf{V}$$
(II.22)

- $(N=18, SD=0.24, R^2=0.980, F=450)$
 - Pour [EMIM][(MeO)(H)PO₂]

$$\log K_L = -1.12(0.13) + 0.34(0.14)\mathbf{E} + 2.92(0.12)\mathbf{S} + 7.85(0.25)\mathbf{A} + 0.62(0.03)\mathbf{L}$$
(II. 23)
(N=36, SD=0.16, R²=0.980, F=396)

$$log P = -0.53(0.16) + 0.32(0.18)\mathbf{E} + 1.05(0.24)\mathbf{S} + 4.09(0.39)\mathbf{A} - 4.92(0.26)\mathbf{B} + 2.88(0.22)\mathbf{V}$$
(II. 24)

 $(N=33, SD=0.17, R^2=0.980, F=260)$

Où N est le nombre de solutés ; SD est l'écart-type ; R^2 représente le coefficient de détermination et F est le paramètre de la loi de Fisher.

Les valeurs entre parenthèses dans les relations II.21-II.24 représentent l'incertitude sur les paramètres.

Le tracé des valeurs calculées de log K_L en fonction des valeurs expérimentales pour les deux LIs [EMIM][(MeO)(H)PO₂] et [DIMIM][(MeO)(H)PO₂], est représenté dans la Figure II.6.

Figure II.6. Tracé des valeurs de log K_L expérimentales en fonction de log K_L calculées à T=298.15 K. •, [EMIM][(MeO)(H)PO₂]; •, [DIMIM][(MeO)(H)PO₂].

Le traitement LSER des deux LIs à base methylphosphonate indique qu'ils sont fortement polaires et polarisables (*s* varie entre 1.05 et 3.22). Les deux LIs à base methylphosphonate sont très basiques puisque le paramètre *a* varie entre 4.09 et 9.64. Les propriétés acides des LIs sont caractérisées par le terme *b* et sont faibles par rapport aux valeurs de *a*. Les forces de dispersion (paramètre 1) sont presque constantes pour la majorité des LIs constitués d'un cation imidazolium. Les interactions entre les paires d'électrons libres ou les liaisons π représentées par le terme e sont faibles ou nulles pour cette famille de LIs.

II.3.5.5. Développement des corrélations du modèle LSER LI-spécifique pour [Quin6][Tf2N] et [Quin8][Tf2N]

Les Tableaux A.3 et A.4 dans l'annexe A listent les valeurs expérimentales de log K_L . Les valeurs de log K_L et log P à T=298 K obtenues par extrapolation des données expérimentales de log K_L des LIs [Quin6][Tf₂N] et [Quin8][Tf₂N] sont listées dans les Tableaux A.5 et A.6 de l'annexe A.

Notre étude expérimentale permet d'obtenir un nombre suffisant de données pour permettre de mettre en place des corrélations mathématiques décrivant le transfert de solutés dans $[Quin6][Tf_2N]$ et $[Quin8][Tf_2N]$.

La détermination des corrélations du modèle d'Abraham LI-spécifique nécessite l'ajustement des données expérimentales de log P et log K_L pour une série de solutés dans un LI donné, en accord avec les équations II.11 et II.12.

L'analyse de régression des données expérimentales de coefficient de partage permet d'obtenir les corrélations LSER LI-spécifique suivantes :

• pour [Quin6][Tf₂N] :

$$\log P (298 K) = -0.360(0.154) + 0.138(0.130)\mathbf{E} + 0.594(0.140)\mathbf{S} - 0.936(0.199)\mathbf{A} - 4.776(0.128)\mathbf{B} + 3.864(0.130)\mathbf{V}$$
(II. 25)

 $(N=43, SD=0.134, R^2=0.995, F=1591)$

 $\log K_L(298 K) = -0.562(0.100) - 0.071(0.107)\mathbf{E} + 2.201(0.097)\mathbf{S} + 2.569(0.151)\mathbf{A} + 0.238(0.099)\mathbf{B} + 0.815(0.028)\mathbf{L}$ (II. 26)

 $(N=43, SD=0.103, R^2=0.977, F=312)$

• pour [Quin8][Tf₂N] :

 $\log P (298 K) = -0.149(0.137) + 0.451(0.114)\mathbf{S} - 1.080(0.186)\mathbf{A} - 4.886(0.116)\mathbf{B} + 3.861(0.110)\mathbf{V}$ (II.27)

$$(N=43, SD=0.133, R^2=0.996, F=2510)$$

 $\log K_L(298 K) = -0.363(0.090) - 0.186(0.099)\mathbf{E} + 2.048(0.092)\mathbf{S} + 2.430(0.140)\mathbf{A} + 0.142(0.096)\mathbf{B} + 0.816(0.024)\mathbf{L}$ (II.28)

$$(N=43, SD=0.100, R^2=0.977, F=318.6)$$

Où les écarts-types correspondants aux coefficients des équations calculées sont donnés entre parenthèses immédiatement après le coefficient. Les informations statistiques associées aux équations II.25-II.28 sont le nombre de solutés (N), l'écart-type (SD), coefficient de détermination (\mathbb{R}^2) et le paramètre de la loi de Fisher (F).

Nous avons constaté que la suppression du terme $e_{P,li}$. *E* (équation II.27) n'influe pas sur l'écart-type. L'analyse statistique montre que les quatre corrélations dérivées fournissent une bonne description mathématique des données expérimentales du coefficient de partage, comme le montre l'écart-type qui varie entre SD=0.100 et SD=0.134 unité logarithmique.

Figure II.7. Tracé des valeurs de log *P* expérimentales en fonction de log *P* calculées. (a) pour les solutés dissous dans [Quin6][Tf₂N] et (b) pour les solutés dissous dans [Quin8][Tf₂N].

Figure II.8. Tracé des valeurs de log K_L expérimentales en fonction de log K_L calculées. (a) pour les solutés dissous dans [Quin6][Tf₂N] et (b) pour les solutés dissous dans [Quin8][Tf₂N].

Les figures II.7 et II.8 représentent les tracés des valeurs expérimentales de log P et log K_L à 298K en fonction des valeurs calculées basées sur les expressions dérivées du modèle d'Abraham (équations II.25-II.28).

L'écart-type pour la corrélation de log P est légèrement supérieure à celui de log K_L pour les deux LIs. En effet, les valeurs de log P contiennent des incertitudes supplémentaires dans les coefficients de partage gaz-eau pour la conversion de log K_L en log P.

II.3.6. Mise en place d'un modèle prédictif des coefficients de partage gaz-liquide de solutés dans divers liquides ioniques

Les modèles prédictifs basés sur le modèle LSER utilisent deux approches :

La première consiste à estimer les paramètres du modèle LSER pour un LI donné à l'aide d'une série de mesures expérimentales. Néanmoins, les corrélations publiées dans la littérature ne dépendent pas de la température et sont donc limitées à la température à laquelle les mesures ont été effectuées.

Une nouvelle approche développée par Mutelet et al. (Mutelet *et al.*, 2011) consiste à appliquer le modèle LSER en le couplant à une méthode de contribution de groupes qui dépend de la température (TDGC-LSER).

Dans ce travail, nous avons repris le modèle TDGC-LSER développé par Mutelet et al. (Mutelet *et al.*, 2011) pour corréler et analyser les valeurs expérimentales de log K_L pour différents solutés dans différents LIs pour des températures entre 293.15 et 396.35 K. La méthode de découpage en groupes des liquides ioniques a été revue pour améliorer le pouvoir prédictif du modèle.

II.3.6.1. Ensembles de données et méthodologie

Le modèle TDGC-LSER a été développé afin d'étendre son application pour la prédiction de log K_L à divers LIs et d'augmenter leur pouvoir prédictif sur une large gamme de température. Pour ce faire, les données expérimentales de 112 LIs ont été utilisées. La banque de données est constituée de 14762 points de données de log K_L mesurés pour des solutés organiques dans divers LIs sur une large gamme de température de T = (293.15 à 396.35) K. Ces données proviennent de la collection de Mutelet et al. (Mutelet *et al.*, 2011) et de la littérature (Feng *et*

al., 2011; Duan et al., 2012; Królikowski et Królikowska, 2014; Domanska et Lukoshko,
2013; Marciniak et Wlazło, 2013; Paduszyński et Domańska, 2013; Królikowskia et al.,
2013; Marciniak et Wlazło, 2013; Domanska et al., 2014; Xiong et Li, 2014; Kloskowski et al., 2014; Mutelet et al., 2013; Bahadur et al., 2014; Jiang et al., 2014; Domanska et Lukoshko, 2014; Bensaid et al., 2014; Mutelet et al., 2014; Zawadzki et al., 2013; Fernandes et al., 2013; Tumba et al., 2013; Marciniak, et Wlazło, 2013; Królikowska et al., 2013; Lukoshko et al., 2015; Wlazło et al., 2015; Wlazło et al., 2015; Ayad et al., 2015).

Les valeurs expérimentales de log K_L sont calculées à partir des valeurs expérimentales des coefficients d'activité à dilution infinie γ_{12}^{∞} en utilisant la relation II.7 pour différents solutés dissous dans les LIs à différentes températures. La figure II.9 montre le pourcentage des LIs utilisés dans la prédiction de log K_L par rapport au type du cation.

No.	Abréviation	Nom			
	Imidazolium				
1	$[MMIM]^+[MeSO_4]^-$	1-metyl-3-methylimidazolium methylsulfate			
2	$[BMIM]^+[MeSO_4]^-$	1-butyl-3-methylimidazolium methylsulfate			
3	$[EMIM]^+[F_3AC]^-$	1-ethyl-3-methylimidazolium trifluoroacetate			
4	$[HMIM]^+[F_3AC]^-$	1-hexyl-3-methylimidazolium trifluoroacetate			
5	$[EMIM]^+[Tf_2N]^-$	1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide			
6	[MNAIM] ⁺ [Tf N] ⁻	1-methyl-3-methylimidazolium			
0 [10		bis(trifluoromethylsulfonyl)imide			
7	$[BMIM]^+[Tf_2N]^-$	1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide			
0		1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)			
0		amide			
0		1,2-dimethyl-3-ethylimidazolium			
9		bis(trifluoromethylsulfonyl)imide			
10	$[HMIM]^+[Tf_2N]^-$	1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide			
11	$[OMIM]^+[Tf_2N]^-$	1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide			
12 $[(CH_2)_4SO_3HMIM]^+[Tf_2N]^-$	$[(CH) SO HMIM]^+[Tf N]^-$	1-(4-sulfobutyl)-3-methylimidazolium			
	bis(trifluoromethanesulfonyl)imide				
12 $[E+OHMIM]^+[Tf N]^-$	EFORMINI ⁺ [Tf NI ⁻	1-ethanol-3-methylimidazolium			
15		bis(trifluoromethylsulfonyl)imide			
14	14 $[MeoeMIM]^+[Tf_2N]^-$	1-(methylethylether)-3-methylimidazolium			
14		bis(trifluoromethylsulfonyl)imide			
15	$[(MeO)_2IM]^+[Tf_2N]^-$	1,3-dimethoxyimidazolium bis(trifluoromethylsulfonyl)imide			

Tableau II.9. Liste des liquides ioniques étudiés : noms et abréviations.

	$[(CH_2)_4SO_3HMIm]^+$	1-(4-sulfobutyl)-3-methylimidazolium			
16	CF_3SO_3]	trifluoromethanesulfonate			
17	$[(CH_2)_4SO_3HMIm]^+[HSO_4]^-$	1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate			
10		1-butyl-3-methylimidazolium 4,5-dicyano-2			
18 [BMIM] [TDI]	(trifluoromethyl)imidazolide				
10	19 $[C_2OHMIM]^+[FAP]^-$	1-(2-hydroxyethyl)-3-methylimidazolium			
19		tris(pentafluoroethyl)trifluorophosphate			
20		1-ethyl-3-methylimidazolium			
20	[EMIM] [FAP]	tris(pentafluoroethyl)trifluorophosphate			
21	[BMIM] ⁺ [TCM] ⁻	1-butyl-3-methylimidazolium tricyanomethanide			
22	$[EMIM]^+[BF_4]^-$	1-ethyl-3-methylimidazolium tetrafluoroborate			
23	$[BMIM]^+[BF_4]^-$	1-butyl-3-methylimidazolium tetrafluoroborate			
24	$[\text{HMIM}]^+[\text{BF}_4]^-$	1-hexyl-3-methylimidazolium tetrafluoroborate			
25	$[OMIM][BF_4]^-$	1-octyl-3-methylimidazolium tetrafluoroborate			
26	$[C_2OHMIM]^+[BF_4]^-$	1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate			
27	$[PM_2IM]^+[BF_4]^-$	1-propyl-2,3-dimethylimidazolium tetrafluoroborate			
28	$[EMIM]^+[(MeO)(H)PO_2]^-$	1-ethyl-3-methylimidazolium methylphosphonate			
29	$[M_2MIM]^+[(MeO)(H)PO_2]^-$	1.3-dimethylimidazolium methylphosphonate			
30	$[EMIM]^+[EtSO_4]^-$	1-ethyl-3-methylimidazolium ethylsulfate			
31	$[MBIM]^+[OcSO_4]^-$	1-methyl-3-butylimidazolium octylsulfate			
32	[BMIM] [OcSO ₄]	1-butyl-3-methylimidazolium octylsulfate			
33	[EMIM] ⁺ [SCN] ⁻	1-ethyl-3-methyl-imidazolium thiocyanate			
34	[BMIM] ⁺ [SCN] ⁻	1-butyl-3-methylimidazolium thiocyanate			
35	[HMIM] ⁺ [SCN] ⁻	1-hexyl-3-methylimidazolium thiocyanate			
36	$[MMIM]^+[CH_3OC_2H_4SO_4]^-$	1-methyl-3-methylimidazolium methoxyethylsulfate			
37	$[MMIM]^{+}[(CH_{3})_{2}PO_{4}]^{-}$	1-methyl-3-methylimidazolium dimethylphosphate			
38	$[BMIM]^+[PF_6]^-$	1-butyl-3-methylimidazolium hexafluorophosphate			
39	$[\text{HMIM}]^+[\text{PF}_6]^-$	1-hexyl-3-methylimidazolium hexafluorophosphate			
40	$[MOIM]^+[PF_6]^-$	1-methyl-3-octylimidazolium hexafluorophosphate			
41	$[EMIM]^+[CF_3SO_3]^-$	1-ethyl-3-methylimidazolium trifluoromethanesulfonate			
42	$[BMIM]^+[CF_3SO_3]^-$	1-butyl-3-methylimidazolium trifluoromethanesulfonate			
43	$[\text{HMIM}]^+[\text{CF}_3\text{SO}_3]^-$	1-hexyl-3-methylimidazolium trifluoromethanesulfonate			
44	$[BMIM]^+[NO_3]^-$	1-Butyl-3-methylimidazolium nitrate			
45	$[OMIM]^+[NO_3]^-$	1-octyl-3-methylimidazolium nitrate			
Pyridinium					
46	$[B4MPY]^{+}[DCA]^{-}$	1-butyl-4-methylpyridinium dicyanamide			
47	[BMPY] ⁺ [TDI] ⁻	1-Butyl-3-methylpyridinium 4,5-dicyano-2-			
.,		(trifluoromethyl)imidazolide			
48	[BMPY] ⁺ [TCM] ⁻	1-butyl-4-methylpyridinium tricyanomethanide			
49	$[4MBPY]^+[Tf_2N]^-$	4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)imide			
50	$[NEPY]^{+}[Tf_2N]^{-}$	N-ethylpyridinium bis(trifluoromethylsulfonyl)imide			
51	$[BMPY]^+[BF_4]^-$	4-methyl-N-butylpyridinium tetrafluoroborate			
52	$[BMPY]^+[Tf_2N]^-$	1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide			
53	$[1,3BMPY]^+[CF_3SO_3]^-$	1-butyl-3-methylpyridinium trifluoromethanesulfonate			
54	$[C_2PY]^+[Tf_2N]^-$	2-alkylpyridinium bis(trifluoromethylsulfonyl)imide			

55	$[C_4PY]^+[Tf_2N]^-$ 4-alkylpyridinium bis(trifluoromethylsulfonyl)imide					
56	$[C_5PY]^+[Tf_2N]^-$	5-alkylpyridinium bis(trifluoromethylsulfonyl)imide				
	Pyrrolidinium					
57	[BMPYR] ⁺ [TCM] ⁻	1-butyl-1-methylpyrrolidinium tricyanomethanide				
58 $[MeoeMPYR]^+[FAP]^-$	1-(2-methoxyethyl)-1-methylpyrrolidinium					
	tris(pentafluoroethyl)trifluorophosphate					
50	50 $[\mathbf{D}_{r}\mathbf{M}\mathbf{D}\mathbf{V}\mathbf{D}]^{+}[\mathbf{T}\mathbf{f}\mathbf{N}]^{-}$	1-propyl-1-methylpyrrolidinium				
39		bis(trifluoromethylsulfonyl)imide				
60	[BMDVD] ⁺ [Tf N] ⁻	1-butyl-1-methylpyrrolidinium				
00	$60 [BMPYR] [II_2N]$	bis(trifluoromethylsulfonyl)imide				
61	[PeMPVR] ⁺ [Tf ₂ N] ⁻	1-pentyl-1-methylpyrrolidinium				
01	$01 [\mathbf{PemPTK}] [11_2\mathbf{N}]$	bis(trifluoromethylsulfonyl)imide				
62	62 $[HMPYR]^+[Tf_2N]^-$	1-hexyl-1-methylpyrrolidinium				
02		bis(trifluoromethylsulfonyl)imide				
63	[OMPYR] ⁺ [Tf ₂ N] ⁻	1-octyl-1-methylpyrrolidinium				
05		bis(trifluoromethylsulfonyl)imide				
64	$[BMPYR]^+[CF_3SO_3]^-$	1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate				
65	[BMPYR1 ⁺ [Tf ₂ N1 ⁻	1-butyl-1-methylpyrrolidinium				
05		bis(trifluoromethylsulfonyl)imide				
		Piperidinium				
66	$[C_5C_1PIP]^+[Tf_2N]^-$	1-5-alkyl-1-methylpiperidinium				
00		bis(trifluoromethylsulfonyl)imide				
67	$[C_{\epsilon}C_{1}PIP]^{+}[Tf_{2}N]^{-}$	1-6-alkyl-1-methylpiperidinium				
		bis(trifluoromethylsulfonyl)imide				
68	[MeoeMPIP] ⁺ [FAP] ⁻	1-(2-methoxyethyl)-1-methylpiperidinium				
		trifluorotris(perfluoroethyl)phosphate				
69	$[PMPIP]^+[Tf_2N]^-$	1-propyl-1-methylpiperidinium				
	bis(trifluoromethylsulfonyl)imide					
70		Phosphonium				
/0	$[H_3 I dP]$ [L-Lact]	trihexyl(tetradecyl)phosphonium L-lactate				
71	$[H_3][dP][+CS]$	trihexyl(tetradecyl)phosphonium (1S)-(+)-10-camphorsulfonate				
72	$[H_3TdP]^+[Tf_2N]^-$	trihexyl(tetradecyl)phosphonium				
		bis(trifluoromethylsulfonyl)imide				
Morpholinium						
/3	[BMMOR] ⁺ [TCM] ⁺	1-buty1-1-methylmorpholinium tricyanomethanide				
74	$[N-C_3OHMMOR]^+[Tf_2N]^-$	4-(3-hydroxypropyi)-4-methylmorpholinium				
		Such anium				
/5	$[Et_3S]$ $[II_2N]$					
Ammonium						
/0	$\begin{bmatrix} O_3 MAM \end{bmatrix} \begin{bmatrix} \Pi_2 N \end{bmatrix}$	trioctymethylammonium bis(trifluoromethylsulfonyl)imide				
//						
70						
/8						
70		Quinoinium				
/9	[HIQUIN] [SCN]	N-nexylisoquinolinium thiocyanate				

Figure II.9. Constitution dans la banque de données de LIs en fonction du cation.

De nouveaux LIs à base des cations (piperidinium, choline, quinolinium, et l'octanium) ont été introduits dans la banque de données. Les familles des LIs représentent 11 types de cation qui sont : imidazolium, pyridinium, pyrrolidinium, piperidinium, phosphonium, morpholium, sulfonium, ammonium, choline, quinolinium et l'octanium. Les LIs constitués d'un cation imidazolium sont les plus représentés dans la banque de données (45 LIs). On trouve 20 anions dans la banque de données tels que : nitrate, bis(trifluorométhylsulfonyl)imide, tétrafluoroborate et thiocyanate. L'anion le plus présent dans la base de données est le bis (trifluorométhylsulfonyl) imide (43 LIs à base de l'anion [Tf₂N]⁻). La figure II.10 présente le nombre des LIs utilisés dans la banque de données par rapport au type d'anion.

Figure II.10. Nombre des LIs utilisés dans la prédiction de $\log K_L$ par rapport au type de l'anion.

Les solutés organiques sont principalement des alcanes, cycloalcanes, alcènes, alcynes, aromatiques, alcools, éthers, aldéhydes, cétones, chloroalcanes, cyanoalkanes, thiophène, pyridine et l'eau. Les descripteurs de différents solutés utilisés pour la mise en place du modèle sont issus des travaux d'Abraham et leurs valeurs numériques sont données dans le Tableau A.2 de l'Annexe A.

Pour la détermination des valeurs de $\log K_L$ à différentes températures, toutes les données ont été ajustées simultanément en utilisant le modèle TDGC-LSER pour obtenir l'équation suivante:

$$\log K_{L} = -3.17295 + \sum_{i}^{36} n_{i}c_{i} + \sum_{i}^{36} n_{i}e_{i}\mathbf{E} + \sum_{i}^{36} n_{i}s_{i}\mathbf{S} + \sum_{i}^{36} n_{i}a_{i}\mathbf{A} + \sum_{i}^{36} n_{i}b_{i}\mathbf{B} + \sum_{i}^{36} n_{i}l_{i}\mathbf{L}/T \quad (\text{II. 29})$$

II.3.6.2. Groupes fonctionnels

Une méthode de contribution de groupes a été utilisée pour la décomposition des LIs en différents groupes. Le nombre de groupes fonctionnels considérés dans cette étude dépend du

nombre de LIs étudiés et de la diversité de leurs structures. 36 groupes sont définis dans ce travail. 5 groupes sont définis pour représenter les chaines greffées sur le cation ou l'anion comme CH₃, CH₂ et les chaines polaires comme - O -, - OH, SO₃H, 11 groupes fonctionnels pour le cation et 20 groupes fonctionnels utilisés pour l'anion. Les groupes définis sont donnés dans le Tableau II.10.

La Figure II.11, montre un exemple de la décomposition en groupes fonctionnels du LI 1butyl-3-methylimidazolium tricyanomethanide [BMIM]⁺[TCM]⁻.

Figure II.11. Décomposition en groupes fonctionnels de [BMIM]⁺[TCM]⁻.

Le LI [BMIM]⁺[TCM]⁻ est composé de :

- 1 groupe imidazolium
- 2 groupes CH₃
- 3 groupes CH₂
- 1 groupe [TCM]⁻

Tableau II.10. Description des groupes fonctionnels utilisés pour l'estimation de log K_L .

NO.	Structure	Définition	Groupe
1	— CH ₃	CH₃ de la chaîne alkyle	Ch ₃
2	- CH ₂ -	CH ₂ de la chaîne alkyle	Ch_2
3	-0-	O de la chaîne alkyle	Ο
4	— OH	Hydroxyl de la chaîne alkyle	ОН
5	SO ₃ H	sulfonyl hydroxide	SO ₃ H

6	H H — N ⁺ — H H	N ammonium	$[N]^+$
7	$R \xrightarrow{R} R$	S sulfonium	$[\mathbf{S}]^{+}$
8	N ⁺	1,4-diaza[2.2.2]-bicyclooctanium	$[DABCO]^+$
9	R'⊕ N R R	Imidazolium	$[IM]^+$
10	N+ H	Pyridinium	$[PY]^+$
11	+ R N R'	Pyrrolidinium	$[PYR]^+$
12	N [*] ₂	Piperidinium	$[\operatorname{PIP}]^+$
13	$ \begin{array}{c} R_1 \\ \\ R_4 \longrightarrow P^+ \longrightarrow R_2 \\ \\ R_3 \end{array} $	Phosphonium	$[P]^+$
14	N ⁺ _{H2}	Morpholium	$[MOR]^+$
15		Quinolinium	[Quin] ⁺

16	H ₃ C CH ₃ N ⁺ H ₃ C OH	Choline	$[Cho]^+$
17	N N N	Dicyanamide	[DCA] ⁻
18		Tricyanomethanide	[TCM] ⁻
19		Trifluorotris(perfluoroethyl)phosphate	[FAP] ⁻
20		Bis(trifluoromethylsulfonyl)imide	$[Tf_2N]^-$
21		Hexafluorophosphate	[PF ₆] ⁻
22	F F F	Tetrafluoroborate	[BF ₄] ⁻
23	0 1 0 − S 0 − CH ₃	Methylsulfate	[MeSO ₄] ⁻
24	0 0=\$`_OCH₃ 0 ⁻	Ethylsulfate	[EtSO ₄] ⁻
25	0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Octylsulfate	[OcSO ₄] ⁻
26	⁻S−C≡N	Thiocyanate	[SCN] ⁻

27	$F \xrightarrow{F} O = S = O = F O = O = O = O = O = O = O = O =$	Trifluoromethylsulfonate	[CF ₃ SO ₃] ⁻
28	F ₃ C O ⁻	Trifluoroacetate	[F ₃ AC] ⁻
29		Methoxyethylsulfate	[CH ₃ OC ₂ H ₄ SO ₄] ⁻
30		4,5-dicyano-2- (trifluoromethyl)imidazolium	[TDI] ⁻
31	н, ,0 н ₃ со ^{г с} о-	Methylphosphonate	[(MeO)(H)PO ₂] ⁻
32	О, О НО ^{- S (} О- ^{СН} 3	Hydrogen sulfate	$[HSO_4]^-$
33	OH O−P−O H₃Ć Ö CH₃	Dimethylphosphate	[(CH ₃) ₂ PO ₄] ⁻
34	О HO CH ₃	_L -lactate	$[_L$ -Lact] ⁻
35	H ₃ C H ₃ C CH ₃	(1S)-(+)-10-Camphorsulfonate	[+CS]
36		Nitrate	[NO ₃] ⁻

II.3.6.3. Résultats et discussion

Les données expérimentales de log K_L ont été analysées par régression linéaire multiple pour obtenir les coefficients du modèle TDGC-LSER avec l'équation II.29. Les coefficients de l'équation II.29 sont listés dans le Tableau II.11. L'incertitude sur chaque coefficient est donnée entre parenthèse.

~					-	-
Groupe	c_i	e_i	S_i	a_i	b_i	l_i
CH	-82.195	67.71	1.38	133.26	5.69	4.18
C113	(8.697)	(13.14)	(15.33)	(16.50)	(14.63)	(2.594)
CH	11.093	-25.428	-15.933	-14.017	-3.663	8.57
	(1.523)	(2.319)	(2.836)	(2.827)	(3.065)	(0.4577)
0	-18.818	-9.581	21.984	-30.93	21.494	-13.017
>	(6.703)	(8.681)	(8.577)	(11.21)	(9.081)	(1.732)
ОН	-193	98.11	39.42	168.51	293.86	-17.394
	(12.76)	(17.90)	(20.01)	(22.02)	(19.65)	(3.687)
$[N]^+$	2316.75	353.55	-297.80	-387.6	98.1	-263.57
	(64.96)	(90.42)	(112.6)	(120.5)	(123.9)	(17.99)
[8]+	1892.89	-69.03	71.74	-358.17	190.98	-59.51
[5]	(47.02)	(61.36)	(73.65)	(80.73)	(67.59)	(11.93)
SO ₂ H	-401.01	211.14	29.56	963.61	646.47	-0.109
50311	(27.18)	(25.90)	(29.25)	(46.37)	(35.68)	(5.620)
DABCO	1804.97	116.87	-89.01	-141.72	232.09	-60.643
	(41.71)	(41.93)	(46.46)	(70.03)	(53.11)	(9.825)
$[\mathbf{IM}]^+$	1929.34	-29.8	-8.73	-267.56	180.46	-63.12
[]	(39.51)	(39.59)	(44.00)	(65.70)	(47.66)	(9.213)
	1899.81	8.09	-20.39	-254.68	189.68	-59.425
[1 1]	(39.00)	(39.56)	(44.43)	(65.27)	(47.58)	(9.001)
	1891.63	-5.33	16.51	-222.69	117.9	-50.992
	(40.38)	(40.98)	(45.52)	(67.02)	(49.23)	(9.509)
[PIP] ⁺	1896.55	6.56	30.75	-231.35	65.98	-46.801
[[[]]	(40.90)	(42.01)	(46.89)	(67.60)	(50.61)	(9.668)
[P] ⁺	1942.67	410.56	48.1	-402.1	191.7	-243.72
[1]	(72.12)	(98.99)	(116.4)	(128.0)	(122.5)	(20.34)
	1834.41	44.92	107.86	-119.24	88.14	-72.741
	(41.57)	(42.28)	(46.83)	(68.33)	(50.55)	(9.943)
$[Ouin]^+$	1849.71	25.7	33.16	-145.85	33.22	-46.729
[Quiii]	(40.76)	(42.69)	(48.08)	(66.40)	(49.85)	(9.584)
$[Cho]^+$	-183.29	-522.76	333.14	-30.32	-49.82	185.55
[eno]	(35.99)	(58.38)	(78.77)	(75.04)	(93.81)	(10.51)
	-970.82	150.74	810.89	1249.76	-81.18	197.042
	(36.63)	(33.05)	(35.05)	(61.39)	(40.34)	(8.294)
[TCM] [–]	-896.18	82.95	725.96	894.88	13.96	199.506
	(34.95)	(28.43)	(29.59)	(56.33)	(36.19)	(7.598)
[FAP] ⁻	-830.7	-74.84	736.99	372.32	52.4	214.343
[[1 1 1]	(34.70)	(29.00)	(30.24)	(56.58)	(36.71)	(7.509)
$[Tf_N]^-$	-899.66	-29.2	734.55	640.99	-10.5	207.618
	(33.67)	(27.04)	(28.17)	(55.10)	(34.81)	(7.095)
	-977.77	85.23	758.26	528.15	125.04	208.42
[1 1 6]	(36.33)	(38.82)	(47.71)	(64.97)	(49.75)	(8.180)

Tableau II.11. Coefficients du modèle TDGC-LSER pour la corrélation de log K_L .

C1 '. II D. 1	1	1 /	•	1 1 1 11 11	• •	
Chanifre II Htude	du comportement	dec composes	organiques (dang leg hannde	e ioniquee na	r chromatographie inverse
Chapter II. Luuc	uu componement	ues composes	organiques	uans its inquiut	s iomques pa	i cinomatographic mycrse
1	1	1	0 1		1 1	

	-958.9	144.71	733.41	979.13	-40.58	187.379
[B14]	(34.01)	(27.81)	(29.17)	(56.03)	(35.85)	(7.214)
	-912.02	179.36	439.56	1866.13	112.7	147.143
	(38.32)	(34.98)	(38.88)	(72.09)	(49.26)	(9.112)
	-959.72	-12.58	792.73	1467.31	-194.98	198.684
[Et304]	(36.50)	(35.09)	(39.00)	(65.24)	(48.93)	(7.880)
$[\Omega_{2}S\Omega_{1}]^{-}$	-883.39	-65.96	575.78	1395.39	-231.21	249.11
[06304]	(45.40)	(41.05)	(42.09)	(73.88)	(50.54)	(11.64)
	-1120.06	239.28	720.87	1388.16	64.13	210.298
[SCN]	(34.61)	(32.03)	(36.59)	(56.41)	(38.49)	(7.459)
	-971.54	84.5	708.98	1048.13	35.85	205.302
	(34.72)	(30.51)	(34.13)	(57.45)	(39.56)	(7.504)
	-948.31	192.18	516.67	1654.6	-41.21	201.913
[F ₃ AC]	(36.54)	(32.62)	(34.42)	(60.42)	(40.15)	(8.340)
	-864.62	-117.89	1150.9	-190.7	-563.9	128.97
$[CH_{3}OC_{2}H_{4}SO_{4}]$	(60.40)	(90.33)	(142.0)	(776.4)	(186.0)	(19.99)
	-900.02	8.82	719.91	868.4	-50.29	228.757
	(34.69)	(28.82)	(29.78)	(56.35)	(36.22)	(7.537)
	-837.19	-110.29	772.28	1843.42	-103.52	175.47
[(MeO)(H)PO ₂]	(39.44)	(34.18)	(36.82)	(68.33)	(42.76)	(8.406)
	-718.34	-438.37	991.64	-457.3	-1113.4	171.09
[HSO4]	(91.93)	(52.51)	(66.58)	(283.4)	(101.0)	(16.10)
	-1189.85	327.11	379.11	1887.4	445.78	242.14
$\left[\left(C\Pi_{3}\right)_{2}\Gamma O_{4}\right]$	(64.54)	(52.20)	(68.71)	(79.33)	(81.67)	(17.61)
[Leat]	-935.34	-35.01	869.85	2176.62	-254.38	227.99
[L-Lact]	(46.66)	(45.39)	(46.65)	(89.53)	(59.97)	(11.50)
	-1008.33	-29.46	822.58	1674.07	-160.92	228.68
[+03]	(44.06)	(43.56)	(43.45)	(74.84)	(51.68)	(10.48)
	-937.17	215.29	565.62	1483.74	125.91	188.276
	(33.75)	(26.72)	(29.28)	(45.69)	(29.89)	(7.003)

Les résultats de l'analyse montrent que le modèle TDGC-LSER (Equation II.29) permet de décrire les valeurs de log K_L avec un écart-type de 0.134, un coefficient de détermination $R^2 =$ 96.9 %, et un coefficient de Fisher F = 2106.87. La Figure II.12 représente le tracé des valeurs calculées de log K_L à l'aide de l'équation II.29 en fonction des valeurs expérimentales pour tous les liquides ioniques.

Figure II.12. Comparaison des valeurs de log K_L calculées en utilisant l'équation (II.29) par rapport aux données expérimentales.

Les paramètres du modèle TDGC-LSER (Equation II.29) ont été déterminés en minimisant la fonction objectif (FO) suivante:

$$FO(logK_L) = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{logK_L^{cal} - logK_L^{exp}}{logK_L^{exp}} \right| \times 100\%$$
(II. 30)

Où $\log K_L^{cal}$ correspond aux valeurs de coefficient de partage calculées en utilisant l'équation II.29, $\log K_L^{exp}$ correspond aux données expérimentales et N est le nombre de données expérimentales.

Au final, le modèle proposé permet de représenter log K_L de l'ensemble des LIs avec un écart de 7.03%. Les écarts obtenus sur la prédiction de log K_L et γ^{∞} pour chaque LI sont rapportées dans le Tableau II.12. Plus précisément, les écarts obtenus entre les log K_L calculés et expérimentaux varient entre 0.87 % et 37.81 %. Pour le LI [HMIM]⁺[Tf₂N]⁻, nous avons obtenu un écart inférieur à 1 %. Les écarts les plus importants sont obtenus avec les LIs [MMIM]⁺[MeSO₄]⁻, [PM₂IM]⁺[BF₄]⁻. Ces valeurs élevées peuvent être attribuées aux données expérimentales limitées pour ces LIs.

Néanmoins, l'équation dérivée (II.29) fournit une bonne description des $\log K_L$ de solutés dans les LIs constitués de groupements cyano tel que $[BMIM]^+[TCM]^-$, $[BMPY]^+[TCM]^-$ et $[BMPYR]^+[TCM]^-$ pour lesquels les écarts sont de l'ordre de 3 à 5 %. On observe des déviations un peu plus importantes avec les LIs à base $[SCN]^-$ (par exemple, $[BMIM]^+[SCN]^-AARD = 10.20 \%$).

Le modèle TDGC-LSER est très satisfaisant et permet de représenter correctement $\log K_L$ des LIs contenant l'anion $[Tf_2N]^-$ puisque l'écart le plus important a été observé pour $[(CH_2)_{4}SO_{3}HMIM]^{+}[Tf_2N]^{-}$ (7.4%), $[EtOHMIM]^{+}[Tf_2N]^{-}$ (7.12%), $[(MeO)_2IM]^{+}[Tf_2N]^{-}$ (8.05%). Cependant, le modèle est moins prédictif pour les LIs dont le nombre de données utilisées dans la régression est limité.

En général, les log K_L pour les LIs à base de pyrrolidinium, pipéridinium, phosphonium, sulfonium, choline et l'octanium sont bien représentées par le modèle.

Les prédictions des coefficients de partage des LIs à base morpholium montrent que le [N-C₃OHMMOR]⁺[Tf₂N]⁻ présente un écart d'environ 12.42%. Pour ce liquide ionique, les écarts les plus importants ont été observés avec les sondes apolaires telles que l'hexane, le 3-méthylpentane ou le 1-pentène. Les coefficients de partage log K_L estimés à l'aide du modèle ont permis d'estimer les coefficients d'activité à dilution infinie γ^{∞} des solutés dans les LIs. Les écarts entre les valeurs calculées et l'expérimental sont répertoriés dans le Tableau II.12. Dans la plupart des cas, les valeurs γ^{∞} pour les LIs constitués d'un cation pyrrolidinium, piperidinium et phosphonium sont estimées avec une précision comprise entre 7 et 34%. La Figure II.13 montre que le modèle est capable de représenter les données expérimentales γ^{∞} pour les LIs à base du cation [BMIM] avec les anions [BF₄]⁻, [CF₃SO₃]⁻, [TCM]⁻ et [TDI]⁻. Nous notons que les prévisions du modèle sont faibles pour [BMIM]⁺[MeSO₄]⁻ (AARD = 27,03), [BMIM]⁺[NO₃]⁻ (AARD = 29,82) et [BMIM]⁺ [OcSO₄]⁻ (AARD = 33,6).

Figure II.13. Comparaison de l'AARD entre les valeurs calculées et expérimentales de γ^{∞} pour les LIs basées sur le cation [BMIM].

Liquide ionique	AARD % (log K_L)	AARD % (γ^{∞})
LIs à base imidazolium	-	•
$[MMIM]^+[MeSO_4]^-$	22.82	56.93
$[BMIM]^+[MeSO_4]^-$	13.17	27.03
$[\text{EMIM}]^+[\text{F}_3\text{AC}]^-$	5.91	15.16
$[\text{HMIM}]^+[\text{F}_3\text{AC}]^-$	4.54	32.12
$[MMIM]^+[Tf_2N]^-$	6.56	26.59
$[\text{EMIM}]^+[\text{Tf}_2\text{N}]^-$	13.55	98.45
	9.36	54.05
	5.38	29.87
	13.69	101.29
	10.64	64.23
$[\text{MEIM}]^+[\text{Tf}_2\text{N}]^-$	6.10	17.00
$[\mathbf{M}_2 \mathbf{EIM}]^+ [\mathbf{Tf}_2 \mathbf{N}]^-$	6.73	24.15
$[BMIM]^+[Tf_2N]^-$	3.90	22.78
	5.11	24.57
	6.99	39.58
	3.54	27.55
$[\text{HMIM}]^+[\text{Tf}_2\text{N}]^-$	3.15	21.65
	3.17	16.04
	2.90	15.23
	2.86	20.70
	0.87	5.15
$[OMIM]^+[Tf_2N]^-$	3.12	11.35

Tableau II.12. AARD pour les liquides ioniques étudiés

Chapitra II	Etudo du comportament	das composós	organiquas da	as los liquidos	ioniquas nor	chromotographia invarga
Chapture II.	Etude du componement	ues composes	organiques uai	is les ilquides	10111ques pai	
L L	L	1	0 1	1	1 1	

	2.62	11.09
$[(CH_2)_4SO_3HMIm]^+[Tf_2N]^-$	7.40	34.57
$[EtOHmim]^+[Tf_2N]^-$	7.12	26.81
$[(MeO)_2IM]^+[Tf_2N]^-$	8.05	21.27
$[MeoeMIM]^+[Tf_2N]^-$	4.70	20.21
$[\text{EMIM}]^+[\text{BF}_4]^-$	9.64	60.61
	12.21	39.47
$[\mathbf{PM}_{2}\mathbf{IM}]^{+}[\mathbf{BF}_{4}]^{-}$	6.18	23.63
	35.41	35.51
$[BMIM]^+[BF_4]^-$	5.15	11.76
	12.10	22.42
	4.25	21.49
	5.32	29.16
	5.55	28.39
$[\text{HMIM}]^+[\text{BF}_4]^-$	6.02	19.93
	9.63	51.73
$[OMIM]^+[BF_4]^-$	3.57	14.14
	3.71	22.32
	5.69	29.40
	11.37	90.97
$[C_2OHMIM]^+[BF_4]^-$	10.65	38.39
$[BMIM]^+[PF_6]^-$	2.70	18.20
$[\text{HMIM}]^+[\text{PF}_6]^-$	3.36	14.79
	3.32	14.51
$[MOIM]^+[PF_6]^-$	2.91	12.12
$[(CH_2)_4SO_3HMIm]^+[CF_3SO_3]^-$	12.52	31.50
$[(CH_2)_4SO_3HMIm]^+[HSO_4]^-$	8.56	36.71
[BMIM] ⁺ [TDI] ⁻	3.42	13.01
$[EMIM]^+ [FAP]^-$	8.41	23.43
$[C_2OHMIM]^+[FAP]^-$	8.25	54.98
	4.71	21.68
[EMIM] ⁺ [SCN] ⁻	14.50	14.31
	9.17	19.02
[BMIM] ⁺ [SCN] ⁻	10.20	18.10
	14.21	29.36
[HMIM] ⁺ [SCN] ⁻	5.44	18.68
[BMIM] ⁺ [TCM] ⁻	3.14	10.86
$[EMIM]^{+}[(MeO)(H)PO_{2}]^{-}$	15.89	50.54
$[DIMIM]^+[(MeO)(H)PO_2]^-$	9.70	47.47
$[EMIM]^+[EtSO_4]^-$	6.71	21.63
	10.20	19.59
$[BMIM]^+[OcSO_4]^-$	6.70	33.60
	2.78	14.49
$[MMIM]^{+}[CH_{3}OC_{2}H_{4}SO_{4}]^{-}$	13.82	11.28
$[MMIM]^{+}[(CH_{3})_{2}PO_{4}]^{-}$	10.73	29.15

Chapitre II. Etude du comportement des composés organiques dans les liquides ioniques par chromatographie inverse

$[EMIM]^+[CF_3SO_3]^-$	3.24	11.55
$[BMIM]^+[CF_3SO_3]^-$	3.38	11.03
$[\text{HMIM}]^+[\text{CF}_3\text{SO}_3]^-$	10.11	23.18
	6.93	21.79
$[BMIM]^+[NO_3]^-$	6.31	29.82
$[OMIM]^+[NO_3]^-$	6.12	32.88
LIs à base pyridinium		
$[B4MPY]^+[DCA]^-$	4.54	12.64
[BMPY] ⁺ [TDI] ⁻	3.35	14.75
[BMPY] ⁺ [TCM] ⁻	3.77	19.51
$[BMPY]^+[Tf_2N]^-$	5.18	16.77
$[4MBPY]^+[BF_4]^-$	3.88	21.36
	4.82	15.22
	2.67	16.47
$[1,3BMPY]^{+}[CF_{3}SO_{3}]^{-}$	9.98	42.38
$[NEPY]^+[Tf_2N]^-$	9.54	29.23
$[C_2PY]^+[Tf_2N]^-$	7.39	37.19
$[C_4PY]^+[Tf_2N]^-$	5.37	21.46
$[C_5PY]^+[Tf_2N]^-$	9.63	32.88
LIs à base pyrrolidinium	2.00	11.07
	3.09	11.06
[MeoeMPyrr] ⁺ [FAP]	4.70	18.65
	5.61	29.68
$[PrMPYR]^{T}[1t_2N]$	4.23	16.02
	4.10	15.54
$[PeMPYR]^{T}[Tt_2N]$	3.79	14.22
$[HMPYR]^{+}[Tf_2N]$	1.95	7.89
[OMPYR] ⁺ [Tf ₂ N]	3.27	12.20
[BMPYR] ⁺ [CF ₃ SO ₃]	7.97	14.51
$[BMPYR]^+[Tf_2N]^-$	4.60	22.93
LIs à base piperidinium		
$[PMPIP]^+[Tf_2N]^-$	3.19	13.44
$[C_5C_1PiP]^+[Tf_2N]^-$	2.42	10.89
$[C_6C_1PIP]^+[Tf_2N]^-$	2.47	10.12
[MeoeMPIP] ⁺ [FAP] ⁻	3.74	15.66
LIs à base Phosphonium		
$[H_3TdP]^+[L-Lact]^-$	3.06	16.80
$[H_{3}TdP]^{+}[+CS]^{-}$	5.90	33.28
$[H_3TdP]^+[Tf_2N]^-$	3.58	16.19
	4.55	23.55

Chapitre II. Etude du comportement des composés organiques dans les liquides ioniques par chromatographie inverse

LIs à base morpholinium		
[BMMOR] ⁺ [TCM] ⁻	5.94	13.17
$[N-C_3OHMMOR]^+[Tf_2N]^-$	12.42	15.87
LIs à base sulphonium		
$[Et3S]^{+}[Tf_2N]^{-}$	3.63	8.95
LIs à base ammonium		
$[M3BA]^{+}[Tf_2N]^{-}$	11.08	91.05
$[O3MA]^{+}[Tf_2N]^{-}$	8.61	52.55
$[O3MA]^+[Tf_2N]^-$	8.72	50.13
LIs à base choline		
$[Cho]^+[Tf_2N]^-$	4.82	13.95
LIs à base quinolinium		
[HiQuin] ⁺ [SCN] ⁻	7.93	16.65
LIs à base octanium		
$[HDABCO]^+[Tf_2N]^-$	4.28	18.48

Afin de tester la capacité prédictive du modèle, nous avons divisé les données expérimentales de log K_L en deux banques de données : une pour l'ajustement et une pour évaluer le pouvoir prédictif du modèle. Dans un premier temps, la première banque de données constituée de 7193 points de données (listés dans le Tableau A.7 de l'Annexe A) a permis d'ajuster les paramètres du modèle TDGC-LSER. La corrélation obtenue est donnée par l'équation II.31 :

 $\log K_L$

$$= -3.26892 + \sum_{i}^{25} n_i c_i + \sum_{i}^{25} n_i e_i \mathbf{E} + \sum_{i}^{25} n_i s_i \mathbf{S} + \sum_{i}^{25} n_i a_i \mathbf{A} + \sum_{i}^{25} n_i b_i \mathbf{B} + \sum_{i}^{25} n_i l_i \mathbf{L} / T \qquad (\text{II.31})$$
$$(\text{SD} = 0.104, \text{R}^2 = 98.1 \%, \text{F} = 2538.94)$$

La seconde banque de données (7569 points de données) a été ensuite utilisée pour évaluer le pouvoir prédictif du modèle. L'écart obtenu entre les valeurs prédites et les valeurs expérimentales est de l'ordre de 22.62%. Les valeurs calculées de log K_L en utilisant les coefficients indiqués dans le Tableau A.7 de l'Annexe A en fonction des valeurs expérimentales sont présentées sur la Figure II.14.

Figure II.14. log K_L calculées en utilisant l'équation (II.31) en fonction des valeurs expérimentales.

Nous avons reproduit le travail en inversant les banques de données. L'ajustement du modèle effectué à partir de la seconde banque de données (7569 points de données) a conduit à l'équation (II.32) :

 $\log K_L$

$$= -3.07210 + \sum_{i}^{25} n_i c_i + \sum_{i}^{25} n_i e_i \mathbf{E} + \sum_{i}^{25} n_i s_i \mathbf{S} + \sum_{i}^{25} n_i a_i \mathbf{A} + \sum_{i}^{25} n_i b_i \mathbf{B} + \sum_{i}^{25} n_i l_i \mathbf{L} / T$$
(II.32)

 $(SD = 0.142, R^2 = 96.5\%, F = 1492.86)$

Les données expérimentales dans cette banque de données ainsi que les coefficients de l'équation (II.32) sont donnés dans le Tableau A.8 de l'Annexe A.

L'équation (II.32) a été ensuite utilisée pour prédire les log K_L de la seconde banque de données. Les résultats obtenus sont tout à fait satisfaisant puisqu'on observe un écart de l'ordre de 11.09% avec les données de la littérature. La figure II.15 présente le tracé des valeurs de log K_L calculées en fonction des valeurs expérimentales. La déviation absolue moyenne de log K_L sur cette banque de données est égale à 0,17. Cette valeur plus faible que celle trouvée en utilisant l'équation II.31 est liée a une meilleure répartition et représentation des 25 groupes dans les 2 banques.

Figure II.15. log K_L calculées en utilisant l'équation (II.32) en fonction des valeurs expérimentales.

II.3.6.4. Performance du modèle proposé

Le pouvoir prédictif du modèle TDGC-LSER a été évalué en calculant les coefficients de partage gaz-liquide de divers solutés dans quatre LIs : 1-butyl-3-methylimidazolium chloride $[BMIM]^+[Cl]^-$ (Martins *et al.*, 2015), 1-butyl-3-methylimidazolium dimethyl phosphate $[BMIM]^+[(CH_3)_2PO_4]^-$ (Martins *et al.*, 2015), 1-butyl-3-methylimidazolium dicyanamide $[BMIM]^+[DCA]^-$ (Domańska *et al.*, 2016), 1-Dodecyl-3-methylimidzolium Bis(trifluoromethylsulfonyl)-imide [DoMIM]^+[Tf_2N]^- (Domańska et Wlazło *et al.*, 2016).

Les données expérimentales et les résultats des calculs de Log K_L pour chaque LI sont donnés dans le tableau A.9 de l'Annexe A.

[BMIM]⁺[Cl]⁻: 224 valeurs expérimentales de log K_L ont été prédites en utilisant le modèle TDGC-LSER. L'écart entre les valeurs calculées et les valeurs mesurées expérimentalement est important puisqu'il atteint 44.8%. Dans le cas des alcanes, cet écart est supérieurs à 100% (pour le cyclopentane (173.24) et ethyl tert-butyl ether (120.38) à T = 358.15 K). Les faibles performances du modèle peuvent être expliquées par le nombre limité de données expérimentales contenant le groupe [Cl]⁻. De plus, ce liquide ionique est particulièrement hydrophile et peut donc contenir des quantités non

négligeables d'eau. Cette présence d'eau peut avoir un impact non négligeable sur les propriétés physico-chimiques de ce liquide ionique.

- [BMIM]⁺[(CH₃)₂PO₄]⁻: Pour ce LI, l'AARD de log K_L est de 17.84%. Les résultats indiquent que le modèle prédit correctement les coefficients de partage des composés aromatiques, le méthanol, et l'éthanol. Les valeurs de log K_L des alcanes et des éthers sont sous-estimées. Cela peut être expliqué par la faible solubilité des alcanes dans les LIs et aussi le nombre limité d'éthers dans la base de données.
- [BMIM]⁺[DCA]⁻: l'AARD pour la prédiction de log K_L de 378 solutés est de 19.78%. Le modèle TDGC-LSER fournit une bonne description pour les alcènes, les alcynes, les hydrocarbures aromatiques (o-xylène environ 4.72% à T = 318.15), les alcools et les cétones (acétone environ 5.13% à 348.15 K). Pour la plupart des alcanes les valeurs de log K_L sont sous-estimées, en particulier pour le pentane (109.32% à 338.15 K), le 2.2-diméthylbutane, le 2.2.4-triéthylpentane et le cyclopentane.
- [DoMIM]⁺[Tf₂N]⁻: Ce LI contient une longue chaîne alkyle greffée sur le cation imidazolium. 284 valeurs expérimentales de log K_L ont été estimées à l'aide du modèle TDGC-LSER. La corrélation fournit une bonne description des données expérimentales de log K_L (AARD=15.77%). Ce résultat est important qu'il montre que le modèle peut être utilisé pour prédire des coefficients de partage de soluté dans des liquides ioniques à façon non pris en compte dans la banque de données. Le modèle fournit une bonne description pour les solutés polaires tels que les aromatiques (benzène 4.46% à T = 318.15 K) et les alcools. Les écarts les plus importants sont observés pour les éthers (tert-butyl méthyl éther, Diéthyl éther, Di-n-propyl éther, Di-iso-propyl éther).

Conclusion

La chromatographie en phase gazeuse inverse est une méthode de choix qui permet de caractériser la nature des différents LIs en termes d'interactions moléculaires entre les composés organiques et le LI.

Dans ce travail, nous avons examiné les interactions des LIs choisis avec différents types de solutés organiques. De fortes interactions ont été observées entre les hydrocarbures aromatiques, les alcools, la pyridine et le thiophène d'une part et les LIs polaires d'autre part. Les LIs à base [(MeO)(H)PO₂] peuvent être utiles pour la separation du mélange cyclohexane/benzène et ceci grâce à leurs sélectivités élevées.

Le modèle TDGC-LSER a été utilisé pour corréler les valeurs expérimentales de log K_L des solutés dans les LIs sur une large gamme de températures allant de 293.15 à 396.35 K. Le modèle TDGC-LSER est satisfaisant et permet de représenter correctement log K_L pour l'ensemble des LIs notamment le transfert de solutés dans les LIs constitués de groupements cyano. Cependant, le modèle est moins prédictif pour les LIs lorsque le nombre de données utilisées dans la regression est limité. La capacité prédictive du modèle a été évaluée en divisant la base de données en deux banques : une pour l'ajustement et une pour évaluer le pouvoir prédictif du modèle. Il reste necessaire d'introduire d'autres données expérimentales afin d'augmenter la puissance prédictive du modèle.

Bibliographie

Abraham, M. H. Scales of Solute Hydrogen-bonding: Their Construction and Application to Physicochemical and Biochemical Processes. Chem. Soc. Rev. **1993**, 22, 73–83.

Abraham, M. H.; Green, C.E.; Acree, W.E., Jr., Hernandez, C.E.; Roy, L.E. Descriptors for solutes from the solubility of solids: trans-stilbene as an example. J. Chem.Soc., Perkin Trans. **1998**, 2, 2677–2682.

Abraham, M. H.; Platts, J. A. Hydrogen bond structural group constants. J. Org. Chem. **2001**, 66, 3484–3491.

Abraham, M. H.; Ibrahim, A.; Zissimos, A. M. Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr., A. **2004**, 1037, 29–47.

Abraham, M. H.; Ibrahim, A.; Acree, W. E., Jr. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: Linear free energy analyses. Chem Res Toxicol. **2006**, 19, 801–808.

Abraham, M. H.; W. E. Acree, W. W., Jr. Comparative analysis of solvation and selectivity in room temperature ionic liquids (RTILs) using the Abraham linear free energy relationship. Green Chem. **2006**, *8*, 906–915.

Abraham, M. H.; Acree, W. E. Comparison of solubility of gases and vapours in wet and dry alcohols, especially octan-1-ol. J. Phys. Org. Chem. **2008**, 21, 823–832.

Abraham, M. H.; Ibrahim, A.; Acree, W. E., Jr. Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: linear free energy analyses. Eur J Med Chem. **2008**, 41, 494–502.

Acree, W. E.; Jr.; Abraham, M. H. The analysis of solvation in ionic liquids and organic solvents using the Abraham model linear free energy relationship. J. Chem. Technol. Biotechnol. **2006**, 81, 1441–1446.

Bahadur, I.; Govender, B. B.; Osman, K.; Williams-Wynn, M. D.; Nelson, W. M. ; Naidoo, P.; Ramjugernath, D. Measurement of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate at T

= (308.15, 313.15, 323.15 and 333.15)K using gas + liquid chromatography. J. Chem. Thermodynamics. **2014**, 70, 245–252.

Acree W.E., Jr., Abraham M.H. Solubility predictions for crystalline polycyclic aromatic hydrocarbons (PAHs) dissolved in organic solvents based upon the Abraham general solvation model. Fluid Phase Equilibria. **2002**, 201, 245–258.

Acree W.E., Jr., Abraham M.H. Solubility predictions for crystalline nonelectrolyte solutes dissolved in organic solvents based upon the Abraham general solvation model. Can. J. Chem. **2001**, 79, 1466–1476.

Acree, W. E.; Jr.; Baker,G. A.; Revelli, A.-L.; Moise, J.-C.; Mutelet, F. Activity coefficients at infinite dilution for organic compounds dissolved in 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids having six-, eight-, and ten-carbon alkyl chains. J. Chem. Eng. Data. **2012**, 57, 3510-3518.

Ayad, A.; Mutelet, F.; Abumandour, E.; Negadi, A. Activity coefficients at infinite dilution of organic solutes in methylphosphonate based ionic liquids using gas-liquid chromatography. J. Chem. Thermodynamics. **2015**, 86, 116–122.

Bensaid, Z.; Mutelet, F.; Bouroukba, M.; Negadi, A. Experimental and theoretical study of interaction between organic compounds and 1-(4-sulfobutyl)-3-methylimidazolium based ionic liquids. Fluid Phase Equilibria. **2014**, 378, 34–43.

Conder, J.R. and Young, C.L. Physicochemical measurement by gas chromatography. Whiley-interscience, **1979**.

Domanska, U.; Marciniak, A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)-imide. J. Chem. Thermodyn. **2009**, 41, 1350–1355.

Domanska, U.; Zawadzki, M.; Królikowska, M.; Tshibangu, M.-M.; Ramjugernath, D.; Letcher, T.- M. Measurements of activity coefficients at infinite dilution of organic compounds and water in isoquinolinium-based ionic liquid [C8iQuin][NTf2] using GLC. J. Chem. Thermodynamics. **2011**, 43, 499–504.

Duan, J.-D.; Wang, L.-S.; Jiang, K.; Wang, X.-X. Activity coefficients at infinite dilution of organic solutes in 1-octyl-3-methylimidazolium nitrate using gas–liquid chromatography. Fluid Phase Equilibria. **2012**, 328, 1–8.

Domanska, U.; Krolikowski, M. Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate. J. Chem. Thermodynamics, **2012**, 54, 20–27.

Domanska, U.; Marciniak, A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid triethylsulphonium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. **2009**, 41, 754–758.

Domanska, U.; Laskowska, M. Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC. J. Chem. Thermodyn. **2009**, 41, 645–650.

Domanska, U.; Redhi, G. G.; Marciniak, A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate using GLC. Fluid Phase Equilibria. **2009**, 278, 97–102.

Domanska, U.; Lukoshko, E. V. Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tricyanomethanide. J. Chem. Thermodynamics. **2013**, 66, 144–150.

Domańskaa, U.; Papis, P.; Szydłowski, J. Thermodynamics and activity coefficients at infinite dilution for organic solutes, water and diols in the ionic liquid choline bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodynamics. **2014**, 77, 63–70.

Domanska, U.; Lukoshko, E. V. Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide. J. Chem. Thermodynamics. **2014**, 68, 53–59.

Domańska, U.; Wlazło, M. Thermodynamics and limiting activity coefficients measurements for organic solutes and water in the ionic liquid 1-dodecyl-3-methylimidzolium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodynamics. **2016**, 103, 76–85.

Domańska, U.; Wlazło, M.; Karpinska, M. Activity coefficients at infinite dilution of organic solvents and waterin 1-butyl-3-methylimidazolium dicyanamide. A literature review ofhexane/hex-1-ene separation. Fluid Phase Equilibria. **2016**, 417, 50-61.

Deenadayalu, N.; Ngcongo, K.C.; Letcher, T. M.; Ramjugernath, D. Liquid-liquid equilibria for ternary mixtures (an ionic liquid + benzene + heptane or hexadecane) at T = 298.2 K and atmospheric. J. Chem. Eng. Data. **2006**, 51, 988–991.

Feng, Y.-X.; Wang, L.-S. and Li, Y. Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Butyl-3 methylimidazolium Nitrate Using Gas-Liquid Chromatography. J. Chem. Eng. Data. **2011**, 56, 2730–2736

Órfão, E. F.; Dohnal, V.; Blahut, A. Infinite dilution activity coefficients of volatile organic compounds in two ionic liquids composed of the tris(pentafluoroethyl) trifluorophosphate ([FAP]) anion and a functionalized cation. J. Chem. Thermodynamics. **2013**, 65, 53–64.

Green, C.E.; Abraham, M.H.; Acree, W.E. Jr., K.M. De Fina, T.L. Sharp, Pest Manage. Sci. **2000**, 56, 1043–1053.

Gwala, N. V.; Deenadayalu, N.; Tumba, K.; Ramjugernath, D. Activity coefficients at infinite dilution for solutes in the trioctylmethylammonium bis(trifluoromethylsulfonyl)imide ionic liquid using gas liquid chromatography. J. Chem. Thermodyn. **2009**, 42, 256–261.

Laura Michelle Sprunger Grubbs, Characterization of Novel Solvent and Absorbents for Chemical Separations, Dissertation, University of North of Texas, May **2011**.

Grubbs, L.M.; Saifullah, M.; De La Rosa, N.E.; Acree, W.E., Jr.; Abraham, M.H.; Zhao, Q.; Anderson, J.L. Cation-specific and anion-specific Abraham model correlations for solute transfer into ionic liquid solvents. Glob. J. Phys. Chem. **2010**, 1, 1-19.

Grubbs, L.M.; Ye, S.; Saifullah, M.; McMillan-Wiggins, M.C.; Acree, W.E., Jr.; Abraham, M.H.; Twu, P.; Anderson, J.L. Correlations for describing gas-to-ionic liquid partitioning at 323 K based on ion-specific equation coefficient and group contribution versions of the Abraham model. Fluid Phase Equilibria. **2011**, 301, 257-266.

Grubbs, L.M.; Acree, W.E., Jr.; Abraham, M.H. Mathematical correlations for describing enthalpies of solvation of organic vapors and gaseous solutes into ionic liquid solvents. Thermochim. Acta. **2010**, 509, 87-92.

Heintz, A.; Kulikov, D. V. and Verevkin, S. P. Thermodynamic Properties of Mixtures Containing Ionic Liquids. 2. Activity Coefficients at Infinite Dilution of Hydrocarbons and Polar Solutes in 1-Methyl-3-ethyl-imidazolium Bis(trifluoromethyl-sulfonyl) Amide and in 1,2-Dimethyl-3-ethyl-imidazolium Bis(trifluoromethyl-sulfonyl)Amide Using Gas-Liquid Chromatography. J. Chem. Eng. Data. **2002**, 47, 894-899.

Ge, M.-L.; Wang, L.-S.; Wu, J.-S.; Zhou, Q. Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Using Gas–Liquid Chromatography. J. Chem. Eng. Data. **2008**, 53, 1970-1974.

James, A.T. and Martin, J.P. Gas-liquid partition chromatography: the separation and microestimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J. **1952**, 50, 679-690.

Jiang, L.-K.; Wanga, L.-S.; Du, C.-J.; Wang, X.-Y. Activity coefficients at infinite dilution of organic solutes in 1-hexyl-3- methylimidazolium trifluoroacetate and influence of interfacial adsorption using gas–liquid chromatography. J. Chem. Thermodynamics. **2014**, 70, 138–146.

Kato, R.; Gmehling, J. Systems with ionic liquids: Measurement of VLE and $\gamma \infty$ data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol). J. Chem. Thermodyn. **2005**, 37, 603–619.

Krummen, M.; Gruber, D.; Gmehling, J. Measurement of activity coefficients at infinite dilution in solvent mixtures using the dilutor technique. Ind. Eng. Chem. Res. **2000**, 39, 2114–2123.

Krummen, M.; Wasserscheid, P.; Gmehling, J. Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J. Chem. Eng. Data. **2002**, 47, 1411–1417.

Krummen, M.; Gmehling, J. Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique. Fluid Phase Equilibria. **2004**, 215, 283–294.

Królikowski, M.; Królikowska, M. The study of activity coefficients at infinite dilution for organic solutes and water in 1-butyl-4-methylpyridinium dicyanamide, [B4MPy][DCA] using GLC. J. Chem. Thermodynamics. **2014**, 68, 138–144.

Domanska, U.; Królikowskia, M.; Acree, W.E., Jr.; Baker, G. A. Physicochemical properties and activity coefficients at infinite dilution for organic solutes and water in a novel bicyclic guanidinium superbase-derived protic ionic liquid. The Journal of Chemical Thermodynamics. **2013**, 58, 62–69.

Kloskowski, A.; Namiesnik, J.; Marcinkowski, Ł. Measurement of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-hexyl-1,4-diaza[2.2.2]bicyclooctanium bis(trifluoromethylsulfonyl)imide using gas–liquid chromatography. J. Chem. Thermodynamics. **2014**, 71, 84–90.

Królikowska, M.; Karpinska, M.; Królikowski, M. Measurements of activity coefficients at infinite dilution for organic solutes and water in N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] using GLC. J. Chem.Thermodynamics. **2013**, 62, 1–7.

Paduszyński, K. and Domanska, U. Limiting Activity Coefficients and Gas-Liquid Partition Coefficients of Various Solutes in Piperidinium Ionic Liquids: Measurements and LSER Calculations. J. Phys. Chem. B. **2011**, 115, 8207–8215.

Lukoshko, E.; Mutelet, F.; Domanska, U. Experimental and theoretically study of interaction between organic compounds and tricyanomethanide based ionic liquids. J. Chem. Thermodynamics. **2015**, 85, 49–56.

Martins, M. A.R.; Coutinho, J. A.P.;Pinho, S. P.; Domanska, U. Measurements of activity coefficients at infinite dilution of organic solutes and water on polar imidazolium-based ionic liquids. J. Chem. Thermodynamics. **2015**, 91, 194–203.

Mollmann, C.; Gmehling, J. Measurement of activity coefficients at infinite dilution using gas–liquid chromatography. 5. Results for N-methylacetamide, N,Ndimethylacetamide,N,N-dibutylformamide, and sulfolane as stationary phases. J. Chem. Eng. Data. **1997**, 42, 35–40.

Mutelet, F. and Rogalski, M. Experimental determination and prediction of the gas liquid n-hexadecane partition coefficients J. Chromatogr. A. **2001**, 923, 153-163.

Mutelet, F; Ortega-Villa, V; Moise J-C, Jaubert, J-N; Acree, WE Jr. Prediction of partition coefficients of organic compounds in ionic liquids using temperature-dependent linear salvation energy relationship with parameters calculated through group contribution method. J Chem Eng Data. **2011**, 56, 3598–3606.

Mutelet, F; El-Sayed R. E. Hassan; Timothy W. Stephens; William E. Acree, Jr., and G. A. Baker, Activity Coefficients at Infinite Dilution for Organic Solutes Dissolved in Three 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Bearing Short Linear Alkyl Side Chains of Three to Five Carbons, J. Chem. Eng. Data **2013**, 58, 2210–2218

Mutelet, F.; Alonso, D.; Stephens, T. W.; Acree, W. E. Jr.; Baker, G.A. Infinite Dilution Activity Coefficients of Solutes Dissolved in Two Trihexyl(tetradecyl)phosphonium Ionic Liquids. J. Chem. Eng. Data, **2014**, 59, 1877–1885.

Marciniak, A.; Wlazło, M. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate. J. Chem. Thermodynamics. **2013**, 60, 57–62.

Marciniak, A.; Wlazło, M. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate. J. Chem. Thermodynamics. **2013**, 57, 197–202.

Marciniak, A.; Wlazło, M. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate. J. Chem. Thermodynamics. **2013**, 64, 114–119.

Nebig, S.; Liebert, V.; Gmehling, J. Measurement and prediction of activity coefficients at infinite dilution (γ^{∞}), vapor-liquid equilibria (VLE) and excess enthalpies (H^E) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund). Fluid Phase Equilibria. **2009**, 277, 61–67.

Olivier, E.; Letcher, T. M.; Naidoo, P.; Ramjugernath, D. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate using gas–liquid chromatography at T = (313.15, 323.15, and 333.15) K. J. Chem. Thermodynamics. **2010**, 42, 78–83.

Platts, J.A.; Butina, D.; Abraham, M.H. & Hersey, A. Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf.Comp. Sci. **1999**, 39, 835-845.

Poole, C. F. The Essence of Chromatography. Elsevier: Amsterdam, 2003.

Paduszyński, K.; Domańska, U. Experimental and theoretical study on infinite dilution activity coefficients of various solutes in piperidinium ionic liquids, J. Chem. Thermodynamics. **2013**, 60, 169–178.

Revelli, A.-L.; Mutelet, F.; Jaubert, J.-N. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography. Journal of chromatography A. **2009**, 1216, 4775–4786.

Revelli, A.-L.; Mutelet, F.; Jaubert, J.-N. Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids: Use of a Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method. Ind. Eng. Chem. Res. **2010**, 49, 3883–3892.

Revelli, A.-L.; Sprunger, L. M.; Gibbs, J.; Acree, W. E., Jr.; Baker, G. A.; Mutelet, F. Activity coefficients at infinite dilution of organic compounds in trihexyl(tetradeeyl)phosphonium bis- (trifluoromethylsulfonyl)imide using inverse gas chromatography. J. Chem. Eng. Data. **2009**, 54, 977–985.

Revelli, A. L, Etude Thermodynamique des Liquides Ioniques: Applications à la protection de l'Environnement. Thèse de doctorat : Génie des Procédés et des Produits. Inst. Nat. Polytech, Lorraine. **2010**.

Tumba, K.; Letcher, T. M.; Naidoo, P.; Ramjugernath, D. Activity coefficients at infinite dilution of organic solutes in the ionic liquid trihexyltetradecylphosphonium bis

(trifluoromethylsulfonyl)imide using gas–liquid chromatography at T = (313.15, 333.15, 353.15 and 373.15) K. J. Chem. Thermodynamics. **2013**, 65, 159–167.

Sprunger, L. M.; Clark, M.; Acree, W. E., Jr.; Abraham, M. H. Characterization of Room Temperature Ionic Liquids by the Abraham Model with Cation-Specific and Anion-Specific Equation Coefficients. J. Chem. Inf. Model. **2007**, 47, 1123–1129.

Sprunger, L. M.; Proctor, A.; Acree, W. E., Jr.; Abraham, M. H. LFER correlations for room temperature ionic liquids: Separation of equation coefficients into individual cation-specific and anion-specific contributions. Fluid Phase Equilibria. **2008**, 265, 104–111.

Sprunger, L. M.; Gibbs, J.; Proctor, A.; Acree, W. E., Jr.; Abraham, M. H.; Meng, Y.; Yano, C.; Anderson, J. L. LFER correlations for room temperature ionic liquids: revised cation-specific and anion-specific equation ceofficients for predictive applications covering a much larger area of chemical space. Ind. Eng. Chem. Res. **2009**, 48, 4145–4154.

Sprunger LM, Achi SS, Pointer R, Acree Jr WE, Abraham MH. Development of Abraham model correlations for solvation characteristics of secondary and branched alcohols. Fluid Phase Equilibria. **2010**, 288, 121–127.

Sprunger LM, Achi SS, Pointer R, Blake-Taylor BH, Acree Jr WE, Abraham MH. Development of Abraham model correlations for solvation characteristics of linear alcohols. Fluid Phase Equilibr. **2009**, 286, 170–174.

Sprunger, L. M.; Achi, S. S.; Acree, W. E., Jr., Abraham, M. H. Linear Free Energy Relationship Correlations for Enthalpies of Solvation of Organic Solutes into Room-Temperature Ionic Liquids Based on the Abraham Model with Ion-Specific Equation Coefficients. Ind. Eng. Chem. Res. **2009**, 48, 8704-8709.

Sprunger LM, Gibbs J, Acree Jr WE, Abraham MH. Linear free energy relationship correlation of the distribution of solutes between water and cetyltrimethylammonium bromide (CTAB) micelles. QSAR Comb Sci. **2009**, 28, 72–88.

Stephens TW, Chou V, Quay AN, Shen C, Dabadge N, Tian A, et al. Thermochemical investigations of solute transfer into ionic liquid solvents: Updated Abraham model equation coefficients for solute activity coefficient and partition coefficient predictions. Phys Chem Liquids. **2014**, 52, 488–518.

Tsonopoulos, C. An empirical correlation of second virial coefficients. AIChE J. 1974, 20, 263–272.

Tsonopoulos, C. Second virial coefficients of polar haloalkanes. AIChE J. 1975, 21, 827-829.

Tsonopoulos, C. Second virial coefficients of water pollutants. AIChE J. **1978**, 24, 1112–1115.

Wilson A, Tian A, Dabadge N, Acree Jr WE, Varfolomeev MA, Rakipov IT, et al. Enthalpy of solvation correlations for organic solutes and gases in dichloromethane and 1,4-dioxane. Struct Chem. **2013**, 24, 1841–53.

Wlazło, M.; Marciniak, A. Trevor M. Letcher, Activity Coefficients at Infinite Dilution and Physicochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-Ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate. J Solution Chem. **2015**, 44, 413–430.

Wlazło, M.; Marciniak, A.; Zawadzki, M.; Dudkiewicz, B. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(3-hydroxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide. J. Chem. Thermodynamics. **2015**, 86, 154–161.

Xiong , J.-M.; Li, W.-H.; Ge , M.-L.; Deng , X.-M.; Zhang, L.-H.; Chen , J.-Y. J. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-butyl-3-methylimidazolium methyl sulfate. J. Chem. Thermodynamics, **2014**, 77, 7–13.

Zhang, J.; Zhang, Q.; Qiao, B.; Deng, Y. Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography. J. Chem. Eng. Data. **2007**, 52, 2277–2283.

Zawadzki, M.; Niedzicki, L.; Wieczorek, W.; Domanska, U. Estimation of extraction properties of new imidazolide anion based ionic liquids on the basis of activity coefficient at infinite dilution measurements. Separation and Purification Technology. **2013**, 118, 242–254.

Chapitre III

Propriétés thermophysiques des mélanges

binaires contenant les liquides ioniques

Introduction

Ce chapitre est consacré à l'étude des propriétés thermodynamiques de trois liquides ioniques constitués d'un anion tricyanométhanide en présence d'eau ou de dioxyde de carbone. Un des objectifs est tout d'abord de mesurer les équilibres liquide-vapeur de trois systèmes binaires $\{Eau + [BMIM][TCM]\}$, $\{Eau + [BMPY][TCM]\}$ et $\{Eau + [BMPYR][TCM]\}$ ainsi que les grandeurs d'excès (V^E , H^E , C_p^E). L'influence de la température, de la composition du mélange et de la structure du cation des liquides ioniques étudiés sur les propriétés mesurées a été évaluée. Le modèle thermodynamique Non Random Two Liquids (NRTL) et l'équation de Redlich-Kister ont été utilisés pour corréler les résultats expérimentaux mesurés dans ce travail. La seconde partie de ce chapitre propose d'évaluer les performances de ces trois liquides ioniques pour la capture du CO₂. La solubilité du dioxyde de carbone dans les LIs est représentée à l'aide de l'équation d'état PC-SAFT.

III.1. Etude des systèmes {Eau + LI}

III.1.1. Matériel

Les liquides ioniques utilisés dans cette étude avec leurs puretés et leurs provenances sont reportés dans le Tableau III.1. L'eau ultra pure fournie par pure lab Ultra system avec une résistivité de 18,2 M Ω .cm (ELGA eau Lab) a été utilisée dans la préparation des mélanges. Les LIs utilisés sont complètement miscibles avec l'eau pour des fractions molaires en eau inférieur à 0.95.

Tableau III.1. Abréviation, masse molaire, pureté et provenance des liquides ioniques étudiés.

Liquide ionique	Abréviation	Masse molaire/ g⋅mol ⁻¹	Pureté / %	Provenance
1-butyl-3-méthylimidazolium tricyanométhanide	[BMIM][TCM]	229.281	> 98	IoLiTec, Allemagne
1-butyl-4-méthylpyridinium tricyanométhanide	[BMPY][TCM]	240.31	> 98	IoLiTec, Allemagne
1-butyl-1-méthylpyrrolidinium tricyanométhanide	[BMPYR][TCM]	232.325	> 98	IoLiTec, Allemagne

Avant chaque mesure, les liquides ioniques sont séchés sous vide à température 323.15 K pendant au moins 24 heures afin d'éliminer toutes traces d'impuretés volatiles présentes dans les liquides ioniques.

III.1.2. Mesures et modélisation des équilibres liquide-vapeur des mélanges {eau+liquide ionique}

III.1.2.1. Equilibres entre phases liquide – vapeur

La condition d'équilibre liquide-vapeur à température T et pression P est donnée par l'égalité du potentiel chimique μ_i ou de la fugacité f_i du constituant i dans la phase gazeuse avec celui de la phase liquide (Vidal, 1997):

$$\mu_i^v = \mu_i^l \tag{III.1}$$

$$f_i^{\nu} = f_i^l \tag{III.2}$$

On distingue deux approches pour le calcul des équilibres liquide-vapeur :

L'approche φ – φ ou l'approche homogène; les deux phases liquide et vapeur sont décrites par une équation d'état.

$$Py_i\varphi_i^v = Px_i\varphi_i^l \tag{III.3}$$

L'approche γ – φ ou l'approche hétérogène. Dans cette approche, la non-idéalité de la phase liquide est décrite par le coefficient d'activité et la phase vapeur par le coefficient de fugacité.

$$Py_i\varphi_i^{\nu} = \gamma_i x_i f_i^l \tag{III.4}$$

P est la pression, x_i la fraction molaire de la phase liquide, y_i la fraction molaire de la phase vapeur, φ_i^{ν} et φ_i^{l} sont les coefficients de fugacité en phase vapeur et liquide respectivement. La fugacité de la phase liquide s'exprime par :

$$f_i^l = P_i^0 \,\varphi_i^0 \delta_i x_i \,\gamma_i^{\rm L} \tag{III.5}$$

Où P_i^0 est la pression de vapeur, φ_i^0 le coefficient de fugacité du corps à la saturation, δ_i le facteur de correction de Poynting, x_i la fraction molaire et γ_i^L le coefficient d'activité en phase liquide.

Cette approche est mieux adaptée aux basses pressions pour les systèmes polaires qui présentent de fortes interactions.

III.1.2.2. Modèles thermodynamiques

III.1.2.2.1. Modélisation des systèmes {eau+liquide ionique}

Dans cette étude, nous avons choisi d'utiliser le modèle NRTL pour représenter les systèmes {eau+liquide ionique}. Ce modèle est capable de représenter les données expérimentales d'équilibre entre phases sous basse pression.

Modèle NRTL

Le modèle NRTL (Non Random Two Liquids) proposé par Renon et Prausnitz (Renon et Prausnitz, 1968) permet de représenter l'énergie libre de Gibbs d'excès en fonction de la composition locale. Il est applicable aux systèmes partiellement ou totalement miscibles (Prausnitz *et al.*, 1999). Dans le modèle NRTL, l'énergie molaire de Gibbs d'excès s'écrit selon :

$$\frac{g^E}{RT} = x_1 x_2 \left(\frac{\tau_{21} G_{21}}{x_1 + x_2 G_{21}} + \frac{\tau_{12} G_{12}}{x_2 + x_1 G_{12}} \right)$$
(III. 6)

avec

$$\tau_{12} = \frac{g_{12} - g_{22}}{RT} = \frac{\Delta g_{12}}{RT} \qquad \text{et} \qquad \tau_{21} = \frac{g_{21} - g_{11}}{RT} = \frac{\Delta g_{21}}{RT} \qquad (\text{III. 7})$$

$$G_{12} = exp(-\alpha_{12}\tau_{12})$$
 et $G_{21} = exp(-\alpha_{21}\tau_{21})$ (III.8)

Les paramètres ajustables du modèle NRTL sur les données expérimentales sont :

 $\Delta g_{12} = g_{12} - g_{22}$, $\Delta g_{21} = g_{21} - g_{11}$, qui représentent l'énergie d'interaction entre les espèces 1 et 2, et le paramètre empirique $\alpha_{12} = \alpha_{21} = \alpha$ qui caractérise la tendance des espèces 1 et 2 à ne pas s'assembler aléatoirement. Il est recommandé de fixer le paramètre à $\alpha = 0.2$, pour les systèmes peu polaires et à $\alpha = 0.3$, pour les systèmes polaires (Vidal, 1997).

Les valeurs du paramètre α peuvent augmenter selon la complexité des systèmes étudiés. Les paramètres Δg_{12} et Δg_{21} représentent la dépendance du modèle NRTL avec la température

$$\Delta g_{12} = a_{12} + b_{12}T \qquad \text{et} \qquad \Delta g_{21} = a_{21} + b_{21}T \qquad (\text{III. 9})$$

Les coefficients d'activité sont donnés par :

$$ln\gamma_1 = x_2^2 \left[\tau_{21} \left(\frac{G_{21}}{x_1 + x_2 G_{21}} \right)^2 + \frac{\tau_{12} G_{12}}{(x_2 + x_1 G_{12})^2} \right]$$
(III. 10)

$$ln\gamma_2 = x_1^2 \left[\tau_{12} \left(\frac{G_{12}}{x_2 + x_1 G_{12}} \right)^2 + \frac{\tau_{21} G_{21}}{(x_1 + x_2 G_{21})^2} \right]$$
(III. 11)

III.1.2.3. Description du dispositif et procédure expérimentale

Les mesures d'équilibres liquide-vapeur de mélanges {eau + liquide ionique} ont été effectuées à l'aide d'une méthode statique. Le schéma général du dispositif est présenté sur la Figure III.1. L'appareil est constitué d'une cellule d'équilibre dont le volume intérieur est de 15 cm^3 immergée dans un bain thermostaté. La température de la cellule est contrôlée à l'aide d'une sonde température Pt-100 avec une précision de ± 0.1 K. Avant de commencer toute mesure, l'appareil statique est maintenu sous vide poussé. Des masses précises de LI et d'eau pesées à l'aide d'une balance analytique (Mettler) dont la précision est de ± 0.0001 g sont placés dans la cellule. L'homogénéité du mélange binaire est assurée par un agitateur magnétique au moyen d'un barreau magnétique placé à l'intérieur de la cellule. La mesure de la pression est contrôlée à l'aide d'une capteur de pression calibré.

Figure III.1. Schéma général du dispositif expérimental de mesure d'équilibre liquidevapeur. **VP**, pompe à vide;**VT**, piège à vide; **A**, agitateur magnétique; **C**, cellule de mesure; Pt 100, un thermomètre à résistance de platine; **T**, indicateur de température; **M**, Capteur de pression calibré; **P**, indicateur numérique de pression; **TB**, bain thermostaté.

III.1.2.4. Résultats et discussion

Les systèmes binaires {Eau + [BMIM][TCM]}, {Eau + [BMPY][TCM]} et {Eau + [BMPYR][TCM]} ont été étudiés pour des fractions molaires en eau allant de 0.1 à 0.9 et dans une gamme de température comprise entre 283.15 K et 313.15 K.

Les données expérimentales d'équilibres liquide-vapeur des systèmes binaires et les résultats obtenus à l'aide du modèle NRTL sont reportés dans les Annexe B.1-B.3. La Figure III.2 représente les isothermes obtenues pour chaque système étudié.

Les paramètres NRTL obtenus pour chaque système en utilisant l'ensemble des données expérimentales sont regroupés dans le Tableau III.2. Dans cette étude, le paramètre α est fixé à 0.3.

L'écart relatif moyen (ARD) entre les pressions de vapeur expérimentales et calculées est définie par :

$$ARD = \frac{1}{n} \sum_{i=1}^{n} \frac{|P^{exp} - P^{cal}|}{P^{exp}} \ 100$$
(III. 12)

Système binaire	$a_{12}/J.mol^{-1}$	$a_{21}/J.mol^{-1}$	$b_{12}/J.mol^{-1}$	$b_{21}/J.mol^{-1}$	α	ARD
Eau + [BMIM][TCM]	-16457.6885	185.9368	52.9029	-0.6614	0.3	4.93
Eau + [BMPY][TCM]	14.3904	56.9832	-2.0686	-0.1844	0.3	6.95
Eau + [BMPYR][TCM]	4463.2813	-31.7085	-17.6763	0.1153	0.3	7.34

Tableau III.2. Paramètres NRTL de l'ajustement des données expérimentales d'équilibres liquide-vapeur.

Les paramètres d'interaction des systèmes binaires $(a_{12}, a_{21}, b_{12}, b_{21})$ sont déterminés en minimisant la fonction objective (F_{obj}) suivante :

$$F_{obj} = \sum_{i=1}^{n} \left(\gamma_i^{cal} - \gamma_i^{exp}\right)^2 \tag{III. 13}$$

Où n représente le nombre d'équilibres liquide-vapeur, γ_i^{cal} et γ_i^{exp} sont les coefficients d'activité du constituant i dans le mélange calculés et expérimentaux, respectivement. L'écart relatif moyen entre les pressions calculées avec le modèle NRTL et les valeurs expérimentales varie entre 4.93 % et 7.34%. A partir de la Figure III.2, il en ressort que l'écart par rapport à la loi de Raoult est important pour des compositions élevées en LI. La pression de vapeur augmente lorsque la température et la fraction molaire en eau augmentent.

Les isothermes corrélées avec le modèle NRTL présentent une déviation par rapport aux données expérimentales notamment pour le système eau + [BMPY][TCM] pour les compositions riches en eau.

Notons que les coefficients d'activités expérimentaux des systèmes binaires présentent des valeurs supérieures à l'unité dans le domaine riche en eau (Annexe B.1-B.3) et présentent donc un écart positif par rapport au comportement de la solution idéale.

Figure III.2. Pression de vapeur (P) en fonction de la fraction molaire en eau (x_1) des systèmes (a) Eau + [BMIM][TCM], (b) Eau + [BMPY][TCM], (c) Eau + [BMPYR][TCM] à différentes températures: \blacklozenge , 283.15 K ; \blacktriangle , 288.15 K ; \circlearrowright , 293.15 K ; +, 298.15 K ; *, 303.15 K ; \circlearrowright , 308.15 K ; \checkmark , 313.15 K ;, modèle NRTL.

III.1.3. Les grandeurs d'excès des mélanges {eau+liquide ionique}

III.1.3.1. Densités et Volume d'excès

III.1.3.1.1. Introduction

Dans cette partie, nous nous intéressons à la mesure de densités des LIs purs et de leurs mélanges avec de l'eau dans une gamme de température comprise entre 293.15 et 323.15 K à
pression atmosphérique et de la variation du volume molaire d'excès d'un mélange {eau + liquide ionique} découlant de la mesure des densités des corps purs et des mélanges binaires. La connaissance de la densité des LIs purs et de leurs mélanges avec l'eau est importante pour la compréhension des diverses interactions intermoléculaires.

III.1.3.1.2. Densimètre à tube vibrant Anton Paar DMA 512P

L'appareil utilisé est un densimètre à tube vibrant de haute précision Anton Paar avec unité de contrôle comportant une cellule de mesure DMA512P. L'élément principal de ce type de densimètre est un tube en U dont les deux extrémités (Entrée/Sortie du fluide) sont fixées dans une masse immobile. Le principe de mesure est basé sur la détermination de la période d'oscillation de la partie en U du tube, soumise à une excitation électromagnétique (Figure III.3).

Figure III.3. Schéma de fonctionnement d'un densimètre à tube vibrant.

III.1.3.1.2.1. Principe du densimètre

La période d'un corps vibrant est fonction de sa masse. Si une cavité de ce corps de volume connu recèle un fluide déterminé, gaz ou liquide, la période mesurée permettra de déterminer la masse volumique de ce fluide. C'est le principe du densimètre à cellule vibrante qui a définitivement remplacé les pycnomètres.

Si on considère donc un corps creux de masse propre M_0 et de volume V_0 rempli d'un fluide de masse volumique ρ suspendu à un ressort dont le coefficient d'élasticité est C. Si ce système oscille de façon non amortie, sa période sera:

$$T = 2\pi \sqrt{\frac{M_0 + \rho V_0}{C}} \tag{III. 14}$$

Dans le cas présent, cette cellule est un tube en U en verre borosilicaté qui vibre sur sa base. On pourra lui appliquer cette relation même si la masse M_0 n'est pas vraiment « définie », du moment qu'elle reste constante. On aura alors une relation du type :

$$T^2 = A\rho + B \tag{III. 15}$$

Où les constantes A et B seront déterminées par étalonnage.

On remarquera que, dans le traitement schématique précédent :

$$A = \frac{4\pi^2 V_0}{C}; \ B = \frac{4\pi^2 M_0}{C}$$
(III. 16)

 V_0 varie avec la température comme le coefficient cubique de dilatation du verre. Il sera donc nécessaire de réétalonner l'appareil si l'on modifie la température d'emploi. Bien entendu, la masse volumique du fluide varie encore bien plus vite avec la température (et éventuellement la pression).

En toute rigueur, les paramètres sont définis à partir d'un couple étalon. Compte tenu du haut degré de précision exigé et sachant que le coefficient d'élasticité 'C' n'est véritablement constant (et donc la relation III.15 valable à la précision souhaitée) que dans un domaine restreint de masse volumique, il s'avère donc nécessaire d'utiliser des étalons de masses volumiques aussi proches que possible de celles des produits utilisés. Dans cette étude, le densimètre a été étalonné à l'aide du n-undécane (pureté > 99%, Sigma-Aldrich) et du tétrachloroéthylène (pureté > 99%, Acros Organics). Ces fluides ont été choisis comme référence car les densités des liquides ioniques purs et de leurs mélanges avec l'eau sont comprises entre les densités de ces deux fluides.

III.1.3.1.2.2. Description de l'appareillage et préparation des échantillons

La cellule de mesure est constituée d'un tube en verre borosilicaté. Le tube vibrant possède une double paroi dans laquelle circule un fluide thermostaté qui permet une mise en équilibre thermique en quelques minutes, contrôlable par une sonde de résistance placée dans un puits thermométrique. Un dispositif en téflon est raccordé à la cellule pour permettre les injections de produits. Un éclairage de la cellule permet de contrôler visuellement l'introduction du liquide. La précision théorique est de 10^{-6} g.cm⁻³. Dans la pratique, pour une stabilité thermique de 0,01 K, la précision obtenue est de l'ordre de 10^{-5} g.cm⁻³.

Les mélanges binaires {eau+liquide ionique} ont été préparés par pesée en utilisant une balance de précision Mettler avec une incertitude de $\pm 1 \times 10^{-4}$ g. L'homogénéité de chaque mélange préparé est assurée par un barreau pendant 15 min sur l'agitateur magnétique. Le fluide étudié (corps pur ou mélange) est introduit dans la cellule par aspiration à l'aide d'une seringue soigneusement branchée sur le tube.

III.1.3.1.3. Calcul des volumes molaires d'excès de systèmes binaires

Le volume molaire d'un corps purs, V_m, peut être calculé à partir de la relation suivante :

$$V_m = \frac{M}{\rho} \tag{III.17}$$

Où M est la masse molaire de corps pur et ρ sa masse volumique.

Les volumes molaires d'un mélange binaire, V_m^{mix} , sont calculés selon :

$$V_m^{mix} = \frac{1}{\rho_m} \sum_i x_i M_i \tag{III.18}$$

Où ρ_m représente la densité du mélange et x_i , M_i désignent respectivement, la fraction molaire et la masse molaire du constituant i.

On définit aussi le volume d'excès, V_m^E , comme paramètre pour étudier la déviation du comportement idéal pour un mélange donné :

$$V_m^E = V_m^{mix} - \sum_i x_i V_{m,i} \tag{III.19}$$

Dans la relation (III.19), les volumes d'excès des mélanges sont définis par l'écart entre le volume molaire du mélange et le volume du mélange idéal.

III.1.3.1.4. Résultats et discussions

Les densités des LIs purs et des mélanges {eau+liquide ionique} ont été mesurées sur un domaine de température allant de 293.15 K à 323.15 K à pression atmosphérique.

Densités des LIs purs. Les densités des LIs purs [BMIM][TCM], [BMPY][TCM] et [BMPYR][TCM] en fonction de la température sont reportées dans le Tableau (III.3). Nous constatons que la densité des trois LIs diminue lorsque la température augmente.

$\rho / (\text{g.cm}^{-3})$								
T / K	[BMIM][TCM]	[BMPY][TCM]	[BMPYR][TCM]					
293.15	1.0504	1.0383	1.0089					
303.15	1.0437	1.0321	1.0030					
313.15	1.0400	1.0257	0.9973					
323.15	1.0301	1.0197	0.9914					

Tableau III.3. Densités des liquides ioniques purs en fonction de la température.

Les données expérimentales peuvent être corrélées en fonction de la température en utilisant l'équation suivante :

$$\rho^{cal} = a + b(T) \tag{III.20}$$

Où ρ^{cal} représente la densité calculée, *a* et *b* sont les paramètres ajustés.

Tableau III.4. Paramètres *a*, *b* de équations linéaires (III.20) obtenus pour les mesures de la densité des LIs en fonction de la température ainsi que l'écart type AAD %.

Liquide ionique	$a/g.cm^{-3}$	$b/ \text{ g.cm}^{-3}\text{K}^{-1}$	AAD %
[BMIM][TCM]	1.239530	-0.000644	0.106
[BMPY][TCM]	1.220864	-0.000623	0.009
[BMPYR][TCM]	1.179510	-0.000582	0.004

Les résultats des corrélations sont donnés dans le Tableau III.4. L'écart le plus important est observé avec [BMIM][TCM]. Les densités les plus importantes sont observées pour [BMIM][TCM]. Les valeurs des densités diminuent selon l'ordre suivant : [BMIM][TCM] > BMPY][TCM] > [BMPYR][TCM]. Les densités des trois LIs ont été publiées récemment dans la littérature (Lukoshko *et al.*, 2015 ; Romanos *et al.*, 2013 ; Lukoshko et Domanska, 2013 ; Domanska *et al.*, 2014 ; Carvalho *et al.*, 2010). Les résultats obtenus sont en accord

avec ceux de la littérature (Tableau III.5) puisqu'on observe un écart allant de 0,02 % à 0,34 %.

T / K	ρ / (g	Erreur (%)	
	Expérimentale	Littérature	
	[BMIM][TCM]	
293.15	1.0504	1.0498^{a}	0.06
		1.0507 ^b	0.03
		1.0506 ^e	0.02
303.15	1.0437	1.0432 ^a	0.05
		1.0440 ^e	0.03
		1.0439 ^b	0.02
313.15	1.0400	1.0365^{a}	0.34
		1.0372 ^b	0.27
		1.0373 ^e	0.26
323.15	1.0301	1.0299 ^a	0.02
		1.0306 ^b	0.05
		1.0307 ^e	0.06
	[BMPY][TCM]	
293.15	1.0383	1.0373 ^a	0.10
303.15	1.0321	1.0317 ^a	0.04
313.15	1.0257	1.0262 ^a	0.05
323.15	1.0197	1.0207 ^a	0.10
	[BMPYF	R][TCM]	
293.15	1.0089	1.0078°	0.11
		1,0096 ^d	0.07
303.15	1.0030	1.0018 ^c	0.12
		1,0037 ^d	0.07
313.15	0.9973	0.9958 ^c	0.15
		0,9977 ^d	0.04
323.15	0.9914	0.9898 ^c	0.16
		0,9918 ^d	0.04

Tableau III.5. Comparaison entre les valeurs de la littérature et les données expérimentales obtenues dans ce travail.

^aLukoshko *et al.*, 2015

^bRomanos et al., 2013

^cValeur extrapolée, Lukoshko et Domanska, 2013

^dValeur extrapolée, Domanska et al., 2014

^eCarvalho et al., 2010

Densités des systèmes {eau+liquide ionique}. Les résultats des mesures de la densité en fonction de la fraction molaire en eau à différentes températures des systèmes binaires sont présentés dans les Tableaux III.6 à III.8.

Tableau	III.6.	Valeurs	expérimentales	de	la	densité	du	système	binaire	Eau	(1)	+
[BMIM][TCM] ((2) en fon	ction de la tempé	ératu	re e	et la comp	posit	tion en eau	1.			

T = 2	93.15 K	T = 3	803.15 K	T = 313.15 K		T = 323.15 K	
<i>x</i> ₁	$\rho/(\text{g.cm}^{-3})$						
0	1.0504	0	1.0437	0	1.0400	0	1.0301
0.1412	1.0486	0.1497	1.0415	0.1412	1.0380	0.1412	1.0283
0.2063	1.0477	0.1986	1.0407	0.2063	1.0370	0.2063	1.0272
0.3051	1.0462	0.3091	1.0392	0.3051	1.0355	0.3051	1.0256
0.3932	1.0446	0.3989	1.0377	0.3932	1.0339	0.3932	1.0236
0.5025	1.0423	0.4955	1.0361	0.5025	1.0320	0.5014	1.0215
0.5971	1.0402	0.5999	1.0339	0.5971	1.0298	0.5944	1.0196
0.7035	1.0372	0.6982	1.0311	0.7035	1.0267	0.6977	1.0164
0.8016	1.0336	0.8004	1.0273	0.8016	1.0230	0.8000	1.0124
1	0.9845	1	0.9956	1	0.9922	1	0.9880

Tableau III.7. Valeurs expérimentales de la densité du système binaire Eau (1) +[BMPY][TCM] (2) en fonction de la température et la composition en eau.

T =	293.15 K	T =	303.15 K	T =	313.15 K	T = 323.15 K	
<i>x</i> ₁	$\rho/(\text{g.cm}^{-3})$						
0	1.0383	0	1.0321	0	1.0257	0	1.0197
0.1362	1.0373	0.1362	1.0309	0.1362	1.0246	0.1362	1.0185
0.2200	1.0365	0.2200	1.0300	0.2200	1.0237	0.2200	1.0175
0.3297	1.0353	0.3297	1.0288	0.3297	1.0223	0.3297	1.0161
0.4198	1.0342	0.4198	1.0276	0.4198	1.0211	0.4198	1.0147
0.5254	1.0327	0.5254	1.0260	0.5254	1.0194	0.5254	1.0129
0.6313	1.0309	0.6313	1.0240	0.6313	1.0172	0.6313	1.0107
0.7156	1.0290	0.7156	1.0220	0.7156	1.0152	0.7156	1.0083
0.8096	1.0260	0.8096	1.0191	0.8096	1.0120	0.8096	1.0051
1	0.9976	1	0.9951	1	0.9913	1	0.9812

Tableau III.8. Valeurs expérimentales de la densité du système binaire Eau (1) +[BMPYR][TCM] (2) en fonction de la température et la composition en eau.

T = 2	293.15 K	T =	303.15 K	T = 3	13.15 K	T = 323.15 K	
<i>x</i> ₁	$\rho/(\text{g.cm}^{-3})$						
0	1.0089	0	1.0030	0	0.9973	0	0.9914
0.0734	1.0084	0.0734	1.0027	0.0821	0.9967	0.0821	0.9907
0.2046	1.0077	0.2046	1.0019	0.2139	0.9958	0.2139	0.9898

0.3056	1.0072	0.3056	1.0013	0.3130	0.9951	0.3130	0.9891
0.3806	1.0069	0.3806	1.0008	0.3970	0.9945	0.3970	0.9884
0.5091	1.0063	0.5091	1.0000	0.5171	0.9936	0.5171	0.9873
0.6071	1.0059	0.6071	0.9995	0.6069	0.9931	0.6069	0.9867
0.6987	1.0057	0.6987	0.9991	0.6976	0.9925	0.6976	0.9860
0.8009	1.0056	0.8009	0.9989	0.8005	0.9923	0.8005	0.9853
1	0.9975	1	0.9954	1	0.9918	1	0.9808

Les volumes molaires d'excès (V^E) des systèmes binaires {Eau + [BMIM][TCM]}, {Eau + [BMPY][TCM]} et {Eau + [BMPYR][TCM]} sont calculés à partir des densités expérimentales à l'aide de l'équation (III.19) en fonction de la composition en eau sur un domaine de température allant de 293.15 à 323.15 K. Les résultats sont donnés dans les Tableaux B.4 à B.6 de l'Annexe B.

Les volumes molaires d'excès ont été représentés à l'aide de l'équation de Redlich-Kister :

$$V^{E} = x_{1}x_{2}\sum_{i=1}^{i=4} A_{i} (2x_{1} - 1)^{i-1}$$
(III.21)

Les paramètres A_i de l'équation (III.21) sont déterminés en minimisant la fonction objective suivante :

$$F_{obj} = \sum \left(V_{exp}^E - V_{cal}^E \right)^2 \tag{III.22}$$

Pour les trois systèmes binaires, des polynômes de degrés 4 se sont révélés suffisants. Les paramètres A_i et la déviation standard de chaque isotherme sont reportés dans le Tableau III.9.

La déviation standard σ est exprimée comme suit :

$$\sigma = \left[\frac{\sum_{i=1}^{N} \left(V_{exp}^{E} - V_{cal}^{E}\right)^{2}}{(N-k)}\right]^{1/2}$$
(III. 23)

Où N est le nombre de points expérimentaux et k est le nombre de coefficients A_i .

T/K	A ₁	A ₂	A ₃	A_4	$\sigma/\text{cm}^3.\text{mol}^{-1}$					
	Eau $(1) + [BMIM][TCM] (2)$									
293.15	1.318	-0.305	-1.792	-2.004	0.006					
303.15	1.835	-0.195	0.163	-0.553	0.006					
313.15	2.029	-0.048	-0.265	-0.383	0.004					
323.15	2.511	0.076	-0.386	0.945	0.012					
	Eau(1) + [BMPY][TCM](2)									
293.15	1.121	-0.016	-0.544	-0.266	0.003					
303.15	1.494	0.243	-0.219	-0.412	0.004					
313.15	1.711	0.503	-0.122	-0.034	0.004					
323.15	1.776	0.453	-0.229	-0.024	0.006					
		Eau (1) + [BMI	PYR][TCM] (2)							
293.15	0.869	-0.406	-0.637	-0.771	0.001					
303.15	1.198	-0.076	-0.557	-0.279	0.003					
313.15	1.581	0.111	-0.223	-0.664	0.002					
323.15	1.576	0.151	-0.269	-0.988	0.006					

Tableau III.9. Paramètres A_i de l'équation de Redlich-Kister et les déviations standards.

L'évolution des volumes molaires d'excès pour les trois systèmes binaires en fonction de la fraction molaire en eau à différentes températures est représentée sur les Figures III.4 à III.6. Les résultats indiquent que les volumes molaires d'excès des systèmes constitués d'eau et de LI à base de TCM sont tous positifs et augmentent avec l'augmentation de la température sur toute la gamme de composition. On observe un maximum de 0.4578 cm³.mol⁻¹ pour une fraction molaire de x_1 =0.3989 à T=303.15 K pour le système binaire {Eau + [BMIM][TCM]}. Pour le système {Eau + [BMPY][TCM]}, un maximum de 0.3728 cm³mol⁻¹ est observé à x_1 =0.5254 à la température de 303.15 K. Dans le cas du système {Eau + [BMPYR][TCM]}, un maximum de V^E égal à 0.2973 est observé à x_1 =0.5091 à la température de 303.15 K.

Les valeurs positives des volumes d'excès sont liées aux interactions répulsives entre l'eau et les LIs, à la rupture des liaisons hydrogène dans les molécules auto-associées et aux faibles interactions dipôle-dipôle entre la molécule d'eau et le LI.

Figure III.4. Volumes molaires d'excès du système {Eau (1) + [BMIM][TCM] (2)} en fonction de la fraction molaire en eau et à différentes températures. •, 293.15 K ; •, 303.15 K ; •, 313.15 K et •, 323.15K. Les lignes représentent la corrélation des données par l'équation de Redlich-Kister.

Figure III.5. Volumes molaires d'excès du système {Eau (1) + [BMPY][TCM] (2)} en fonction de la fraction molaire en eau et à différentes températures. •, 293.15 K ; •, 303.15 K ; •, 313.15 K et •, 323.15K. Les lignes représentent la corrélation des données par l'équation de Redlich-Kister.

Figure III.6. Volumes molaires d'excès du système {Eau (1) + [BMPYR][TCM] (2)} en fonction de la fraction molaire en eau et à différentes températures. •, 293.15 K ; •, 303.15 K ; •, 313.15 K et •, 323.15K. Les lignes représentent la corrélation des données par l'équation de Redlich-Kister.

III.1.3.2. Enthalpie molaire d'excès

III.1.3.2.1. Introduction

L'enthalpie molaire d'excès, H^E, est une propriété thermodynamique importante car elle donne une information sur le comportement macroscopique du mélange et les interactions moléculaires rencontrées dans le mélange. L'enthalpie d'excès est généralement déterminée par calorimétrie (Fickel, 2010). Ce paragraphe présente les mesures d'enthalpies molaires d'excès de solutions aqueuses contenant des LIs à base de l'anion tricyanométhanide.

III.1.3.2.2. Dispositif expérimental

Les mesures de l'enthalpie d'excès (H^E) ont été effectuées en utilisant un calorimètre de type Calvet modèle C80 Setaram présenté sur la Figure III.7. Le calorimètre fonctionne entre la température ambiante et 300°C. Cet appareil est très sensible, il est capable de détecter les phénomènes thermiques de faible puissance. Le bloc calorimétrique est constitué de deux puits identiques qui peut recevoir deux cellules identiques de forme cylindrique, une cellule de mesure contenant l'échantillon placée à l'avant du calorimètre et une cellule de référence placée à l'arrière.

Figure III.7. Calorimètre C80 Setaram.

Deux fluxmètres constitués de thermocouples connectés en série entourent les cellules expérimentales et les relient thermiquement au bloc calorimétrique. Une sonde en platine est placée entre les deux puits calorimétriques pour mesurer la température. Le logiciel Setsoft version 2000 est utilisé pour la collecte, le traitement et l'intégration des données.

Il existe différents types de cellules selon leur utilisation. Dans cette étude, nous avons utilisé une cellule de mélange par retournement pour étudier les échanges de chaleur lors du mélange d'un LI avec l'eau (Figure III.8).

Figure III.8. Cellule de mélange par retournement du C 80. Ficke, 2010.

Le flux de chaleur vers et depuis la cellule de mesure (échantillon) par rapport à une cellule de référence identique et remplie d'eau seulement est enregistré. Pour obtenir la valeur de l'enthalpie d'excès, le flux de chaleur résultant doit être intégré dans le temps.

Les échantillons sont préparés par pesée en utilisant une balance analytique Mettler (précision ± 0.0001 g). Le LI est placé dans le compartiment inférieur de la cellule de mesure. Le mercure a été utilisé pour séparer complètement les deux liquides. Ensuite, on ajoute l'eau dans le compartiment supérieur. Cette cellule est introduite dans le premier puits alors que la cellule référence remplie d'eau pure est placée dans le second puits du calorimètre. Le calorimètre est maintenu à la température désirée (T=312.92 K) durant 1 heure pour obtenir la stabilité thermique (ligne de base linéaire). Une fois la stabilité thermique atteinte, le mélange est effectué par la rotation répétée du calorimètre à 180° jusqu'à ce que la valeur maximale absolue du flux de chaleur soit atteinte.

Nous avons vérifié la précision de l'appareil et la méthode utilisée pour le système binaire {méthanol + eau}. Les résultats ont été comparés avec les données de la littérature (Gmehling, 1993). L'incertitude sur l'enthalpie molaire d'excès mesurée est évaluée à 2 %.

III.1.3.2.3. Résultats et discussion

Les enthalpies molaires d'excès des systèmes binaires {Eau + LI} ont été mesurées à T=312.92 K sous pression atmosphérique. Les valeurs obtenues sont rapportées dans le Tableau III.10. Les valeurs expérimentales de H^E pour chaque système étudié ont été corrélées à l'aide de l'équation polynomiale de Redlich-Kister :

$$H^{E} = x_{1}x_{2}\sum_{i=1}^{n} A_{i}(2x_{1}-1)^{i-1}$$
(III. 24)

La fonction objectif à minimiser pour déterminer les paramètres A_i est donnée par:

$$F_{obj} = \sum \left(H_{exp}^E - H_{cal}^E\right)^2 \tag{III.25}$$

Les paramètres A_i de l'équation (III.24) correspondant à chaque système binaire étudié sont donnés dans le Tableau III.11.

Tableau III.10. Enthalpies molaires d'excès H^E pour les systèmes (Eau + [BMIM][TCM]), (Eau + [BMPY][TCM]) et (Eau + [BMPYR][TCM]) à T=312.92 K.

Т=312.92 К									
x ₁	x_1 $H^E/J.mol^{-1}$ x_1 $H^E/J.mol^{-1}$ x_1 $H^E/J.mol^{-1}$								
Eau $(1) + [BMIM][TCM](2)$		Eau(1) + [BM	PY][TCM](2)	Eau(1) + [BM]	PYR][TCM](2)				
0.1821 694.7 0.0853 370.2 0.1031 425.8									

Chapitre II	I. Propriétés	thermophysiques	des mélanges b	binaires contenant	les liquides	ioniques
· · · · ·	· · · · · · · · · · · · · · · · · · ·				1	1

0.2496	947.4	0.1986	755.9	0.1827	697.2
0.3687	1311.9	0.2836	1001.8	0.2932	1032.6
0.4566	1474.2	0.3588	1084.1	0.4606	1376.4
0.5197	1596.4	0.4608	1299.3	0.5151	1421.1
0.6734	1575.8	0.5634	1351.3	0.6349	1349.4
0.7589	1461.9	0.6883	1379.3	0.7614	1172.2
0.7857	1407.7	0.7467	1275.3	0.8029	1077.9
		0.7969	1149.6	0.8219	1014.6
		0.8108	1119.8	0.8593	882.8
		0.8139	1101.3		
		0.8445	984.5		
		0.8479	953.0		
		0.8538	912.6		
		0.8676	836.1		
		0.8869	723.1		

La Figure III.9 représente les enthalpies molaires d'excès des systèmes binaires {Eau + [BMIM][TCM]}, {Eau + [BMPY][TCM]} et {Eau + [BMPYR][TCM]} ainsi que leur représentation avec l'équation de Redlich-Kister en fonction de la fraction molaire en eau x_1 . Les enthalpies molaires d'excès de systèmes binaires sont positives sur toute la gamme de composition indiquant qu'il y a une réaction endothermique lors du mélange d'un LI à base tricyanomethanide avec de l'eau. Ce résultat suggère que pour ces LIs, les interactions entre LI-eau sont plus faibles que les interactions LI-LI ou eau-eau (García-Miaja *et al.*, 2009).

Pour [BMIM][TCM], l'enthalpie molaire d'excès augmente jusqu'à atteindre une valeur maximale de 1596.4 J.mol⁻¹ pour une fraction molaire en eau de x_1 = 0.5197. Pour [BMPY][TCM], un extremum est obtenu pour une fraction molaire en eau de 0,6883 correspondant à une enthalpie molaire d'excès de 1379.3 J.mol⁻¹. Pour [BMPYR][TCM] l'extremum est observé vers x_1 = 0.5151 avec une enthalpie molaire d'excès H^E de 1421.1 J.mol⁻¹.

Tableau III.11. Paramètres A_i de l'équation de Redlich-Kister pour les trois systèmes binaires étudiés à T=312.92 K.

Système binaire	\mathbf{A}_1	A ₂	A ₃	A_4	ARD
Eau + [BMIM][TCM]	6200.2	2290.7	1172.2	2225.7	0.65
Eau + [BMPY][TCM]	5339.0	2281.5	1564.9	-938.0	2.22
Eau + [BMPYR][TCM]	5558.1	1133.0	622.4	1386.4	1.70

Figure III.9. Enthalpies molaire d'excès H^E en fonction de la fraction molaire en eau du système binaire Eau + LI à T=312.92 K :▲, [BMPY][TCM] ;●, [BMPYR][TCM] ;■, [BMIM][TCM]; __, les valeurs calculées avec l'équation de Redlich-Kister.

III.1.3.3. Capacité calorifique molaire

III.1.3.3.1. Introduction

La capacité calorifique est une quantité importante et fondamentale pour la détermination des autres grandeurs thermodynamiques telles que l'entropie (S), l'enthalpie (H) et l'énergie libre de Gibbs (G). Elle correspond à la quantité de chaleur nécessaire pour augmenter la température d'une substance d'un degré. Dans cette partie du travail, nous présentons les résultats expérimentaux de la capacité calorifique molaires (C_p) des systèmes binaires {Eau + LI} de 303.15 à 338.15 K à pression atmosphérique. La capacité calorifique molaire d'excès (C_p^E) est ensuite calculée à partir de la capacité calorifique molaire et corrélée en fonction de la fraction molaire avec l'équation de Redlich-Kister.

III.1.3.3.2. Dispositif expérimental et procédure

Les mesures de capacité calorifique molaire (C_p) ont été effectuées par calorimétrie différentielle à balayage en utilisant un appareil micro DSC III, Setaram, France. L'appareil est piloté par un ordinateur muni du logiciel Setsoft 2000 pour la collecte des données expérimentales. Les cellules utilisées sont de type batch fermées (Figure III.10). Les

échantillons (corps purs ou mélange) d'environ 200 à 400 mg sont placés dans des cellules fermés. Les mélanges ont été préparés juste avant la mesure afin d'éviter les variations de compositions dues à l'évaporation ou la sorption de l'eau. Les deux cellules ; de référence et de l'échantillon ont été placées dans deux compartiments identiques du four DSC. Le signal DSC de chaque échantillon doit être corrigé du « blanc », signal obtenu avec des cellules vides. L'analyse thermique utilisée pour le blanc et l'échantillon comprend trois segments. Une isotherme à 294.15 K pendant 20 minutes, suivi par une rampe de température de 303.15 à 338.15 K à une vitesse de 0.3 K.m⁻¹ et une autre isotherme à 338.15 K pendant 20 minutes. Le thermogramme obtenu représente le flux de chaleur en fonction de la température.

Figure III.10. Cellule de type batch.

Pour vérifier la fiabilité des mesures, la méthode a été testée pour l'eau. La comparaison des résultats expérimentaux de Cp molaire avec les valeurs de la littérature de Garcia-Miaja et al. (Garcia-Miaja *et al.*, 2009) est présentée sur le Tableau III.12. L'écart entre les mesures expérimentales de Cp et celles de la littérature varie entre 0 et 0.40%.

Tableau III.12. Comparaison des valeurs de capacité calorifique de l'eau.

T/K	C_p^{exp} /J.mol ⁻¹ .K ⁻¹	C ^{lit} _p /J.mol ⁻¹ .K ⁻¹	$\Delta C_p / \%$
303.15	75.0	75.3 ^a	0.40
308.15	75.2	75.2 ^a	0
313.15	75.4	75.2 ^a	0.27
318.15	75.3	75.3 ^a	0

 $\Delta C_p = 100 \left| C_p^{exp} - C_p^{lit} \right| / C_p^{exp}$

^a Garcia-Miaja et al., 2009

III.1.3.3.3. Résultats et discussion

Les capacités calorifiques molaires des systèmes binaires {Eau + LI} ont été effectuées dans une gamme de température comprise entre 303.15 et 338.15 K à pression atmosphérique et pour des fractions molaires en LI allant de 0.2157 à 0.9167. Les mesures expérimentales de capacité calorifique molaire Cp sont listées dans les Tableaux B.7 à B.9 de l'Annexe B. Les capacités calorifiques molaires peuvent être corrélées en fonction de la température et de la composition en utilisant l'équation polynomiale suivante :

$$C_P = \sum_{i=0}^{3} (A_i + B_i T) x_1^i$$
(III. 26)

Où C_P est la capacité calorifique molaire en J.mol⁻¹.K⁻¹, A_i et B_i sont des constantes caractéristiques à chaque système binaire, T la température et x_I la fraction molaire de l'eau. Les paramètres ajustés sont déterminés par la méthode des moindres carrés et regroupés dans le Tableau III.13.

Les capacités calorifiques molaires des trois systèmes binaires étudiés en fonction de la température sont données sur les Figures III.11-13. Pour chaque système, les capacités calorifiques molaires augmentent en fonction de la température et de la fraction molaire du LI. La capacité calorifique molaire des LIs purs est plus grande que celle de l'eau. (Ficke *et al.*, 2008 ; Crosthwaite *et al.*, 2005).

Système binaire	A_0	A_1	A_2	A ₃	B_0	B ₁	B_2	B ₃
Eau + [BMIM][TCM]	114.65	119.29	186.72	-37.02	-0.02	0.43	-0.17	-0.09
Eau + [BMPY][TCM]	134.27	-134.16	791.92	-445.01	-0.10	1.21	-1.95	1.10
Eau+ [BMPYR][TCM]	92.56	224.35	85.26	-56.90	0.07	-0.04	0.37	-0.17

Tableau III.13. Paramètres de corrélation de l'équation (III.26).

Figure III.11. Capacités calorifiques molaires en fonction de la fraction molaire en LI du système binaire Eau (1) + [BMIM][TCM] (2) à différentes températures : $, x_2=0.2157$; $, x_2=0.3030$; $, x_2=0.4015$; $, x_2=0.5191$; $, x_2=0.6137$; $, x_2=0.7128$; $, x_2=0.7914$; $, x_2=1$;,calculée par l'équation polynomiale III.26.

Figure III.12. Capacités calorifiques molaires en fonction de la fraction molaire en LI du système binaire Eau (1) + [BMPY][TCM] (2) à différentes températures : $, x_2=0.2890$; $, x_2=0.3083$; $, x_2=0.4032$; $, x_2=0.5102$; $, x_2=0.6065$; $, x_2=0.7035$; $, x_2=0.8785$; $, x_2=0.9040$; $, x_2=1$;, calculée par l'équation polynomiale III.26.

Figure III.13. Capacités calorifiques molaires en fonction de la fraction molaire en LI du système binaire Eau (1) + [BMPYR][TCM] (2) à différentes températures : $, x_2=0.2165$; $, x_2=0.3018;$, $x_2=0.4090$; $, x_2=0.5052$; $, x_2=0.6000$; $, x_2=0.7681$; $, x_2=0.8109$; $, x_2=0.9167$; $, x_2=1$;....., calculée par l'équation polynomiale III.26.

Capacité calorifique molaire d'excès

Les capacités calorifiques molaires d'excès (C_P^E) ont été calculées à différentes températures à partir des données expérimentales en utilisant l'équation suivante :

$$C_P^E = C_P - \{x_1 C_{P,1} + x_2 C_{P,2}\}$$
(III.27)

Où $C_P, C_{P,1}, C_{P,2}$ sont respectivement la capacité calorifique molaire du mélange, de l'eau pure et du LI pur, x_1 et x_2 sont les fractions molaires de l'eau et du LI respectivement.

Les données expérimentales de C_P^E sont représentées dans les Tableaux B.10 à B.12 de l'Annexe B.

Les capacités calorifiques molaires d'excès ont été corrélées avec l'équation de Redlich-Kister:

$$C_{p}^{E} = x_{1}x_{2}\sum_{i=1}^{n} A_{i}(1 - 2x_{2})^{i-1}$$
(III. 28)

Où x_1 et x_2 sont les fractions molaires de l'eau et du LI, respectivement et A_i sont des constantes caractéristiques à chaque système binaire. Les coefficients A_i du polynôme de Redlich-Kister sont rassemblés dans le Tableau III.14. Les Figures III.14-III.16 représentent

l'évolution des capacités calorifiques molaires d'excès en fonction de la fraction molaire en LI des systèmes étudiés.

Tableau III.14. Coefficients A_i du polynôme de Redlich-Kister et la déviation standard pourles systèmes {Eau + LI}.

T(K)	A1	A2	A3	A4	A5	σ		
Eau (1) + [BMIM][TCM] (2)								
303.15	17.0	22.5	159.3	97.7	-196.9	1.169		
308.15	17.6	17.3	215.3	123.9	-353.5	0.542		
313.15	18.4	18.3	181.2	112.8	-268.0	0.777		
318.15	18.3	21.2	213.9	107.1	-360.5	0.784		
323.15	20.5	21.7	193.3	107.4	-316.8	0.742		
328.15	23.1	20.1	180.8	100.7	-276.7	0.769		
333.15	24.7	21.2	163.6	103.2	-247.5	0.753		
338.15	27.0	19.4	142.7	97.2	-184.6	0.749		
		Eau (1)	+ [BMPY][T	CM] (2)				
303.15	26.0	-53.0	-110.9	499.3	739.5	2.569		
308.15	31.5	-56.9	-136.3	514.4	818.0	2.251		
313.15	27.5	-41.6	-92.2	429.1	650.8	2.055		
318.15	30.7	-43.5	-120.4	451.4	747.8	2.130		
323.15	29.8	-30.0	-99.7	380.5	624.8	2.101		
328.15	31.2	-25.7	-101.9	358.2	615.1	2.313		
333.15	31.3	-13.2	-94.6	296.4	545.6	2.217		
338.15	31.6	-10.7	-94.9	285.1	522.0	2.299		
		Eau (1) -	+ [BMPYR][7	[CM] (2)				
303.15	32.5	65.0	261.6	-70.2	-371.0	1.271		
308.15	35.3	54.2	249.7	-46.9	-345.9	1.686		
313.15	33.9	61.9	236.7	-63.7	-332.0	1.394		
318.15	34.8	67.3	238.9	-76.6	-324.0	1.454		
323.15	35.3	70.5	234.7	-86.8	-320.4	1.366		
328.15	36.3	72.9	235.4	-93.9	-309.2	1.325		
333.15	36.4	77.3	229.1	-108.3	-293.2	1.297		
338.15	36.9	80.8	225.9	-122.6	-275.3	1.298		

Figure III.14. Capacités calorifiques molaires d'excès du système {Eau (1) + [BMIM][TCM] (2)} en fonction de la fraction molaire en liquide ionique et à différentes températures. , 303.15 K ; , 308.15 K ; , 313.15 K ; , 318.15 K ; , 323.15 K ; , 328.15 K ; , 333.15 ; , 338.15K ;..... calculées avec l'équation de Redlich-Kister.

Figure III.15. Capacités calorifiques molaires d'excès du système {Eau (1) + [BMPY][TCM] (2)} en fonction de la fraction molaire en liquide ionique et à différentes températures. , 303.15 K ; , 308.15 K ; , 313.15 K ; , 318.15 K ; , 323.15 K ; , 328.15 K ; , 333.15 ; , 338.15K ;..... calculées avec l'équation de Redlich-Kister.

Figure III.16. Capacités calorifiques molaires d'excès du système {Eau (1) + [BMPYR][TCM] (2)} en fonction de la fraction molaire en liquide ionique et à différentes températures. 4, 303.15 K; 4, 308.15 K; 4, 313.15 K; 4, 318.15 K; 4, 323.15 K; 4, 328.15 K; 4, 333.15; 4, 338.15 K; 4

Les deux systèmes étudiés {[BMIM][TCM] + eau} et {[BMPYR][TCM] + eau} ont un comportement similaire. Les capacités calorifiques molaires d'excès du système {Eau + [BMPY][TCM]} présentent un comportement complexe. La valeur du maximum varie considérablement d'un système à l'autre, la plus élevée est trouvée pour le système {Eau + [BMPYR][TCM]}.

III.2. Etude de la solubilité du CO₂ dans les liquides ioniques à base de l'anion tricyanométhanide

Dans cette étude, nous avons étudié la solubilité du CO_2 dans les LIs à base de l'anion tricyanométhanide dans un domaine de température de 292.13 à 367.85 K. La solubilité du CO_2 dans les LIs a été mesurée expérimentalement en utilisant une cellule haute pression à volume variable.

III.2.1. Méthodes expérimentales de mesure de la solubilité

On distingue deux classes de méthodes expérimentales pour la mesure des équilibres à haute pression : les méthodes analytiques et les méthodes synthétiques.

Les méthodes analytiques impliquent la détermination des compositions des phases en équilibres, soit par l'analyse des échantillons de chaque phase à l'extérieur de la cellule d'équilibre ou par l'utilisation des méthodes d'analyses physico-chimiques à l'intérieur de la cellule d'équilibre sous pression par exemple les méthodes spectroscopiques (Dohrn et Brunner, 1995).

Les méthodes synthétiques consistent à préparer un mélange de composition connue et d'observer le comportement de phase dans une cellule d'équilibre. Dans cette méthode, des masses connues de composés sont introduites dans la cellule d'équilibre, puis les valeurs de température et de pression sont ajustées de sorte que le mélange soit homogène. Par la suite, la température ou la pression sont variés jusqu'à l'apparition ou la disparition d'une nouvelle phase (Suppes et Mchugh, 1989).

III.2.2. Matériels

Les propriétés des LIs utilisés ainsi que leurs provenances sont donnés dans le Tableau III.1. Le CO_2 utilisé a été fourni par Messer France avec une pureté de 0,9999999 en fraction massique.

III.2.3. Description du dispositif et procédure

Les mesures de solubilité du CO_2 dans les LIs à différentes températures ont été réalisées à l'aide d'une cellule haute pression à volume variable. La partie principale de cet équipement est une cellule haute pression à volume variable en acier inoxydable fabriquée par la société Top Industrie. Le dispositif expérimental utilisé dans ce travail est basé sur la méthode synthétique. Un schéma descriptif est présenté sur la Figure III.17.

Figure III.17. Schéma de la cellule haute pression utilisée. (1) bain thermostaté; (2) balance analytique; (3) pompe à vide; (4) piston; (5) sonde température Pt-100; (6) barreau aimanté; (7) source de lumière; (8) capteur de pression étalonné KULITE (0 < P < 340 bar); (9) fenêtre en saphir; (10) caméra; (11) moniteur.

A l'une des extrémités de la cellule se trouve un piston, à l'autre une fenêtre en saphir permettant une observation visuelle de l'intérieur de la cellule. Une seconde fenêtre est placée perpendiculairement de manière à illuminer le fluide à l'aide d'une fibre optique. Ce mode d'éclairage perpendiculaire permet de minimiser les réflexions parasites et offre une meilleure qualité d'observation qu'un éclairage axial. Le système d'acquisition d'image est constitué d'un endoscope, d'une caméra et d'un écran. Un agitateur magnétique externe permet grâce au barreau aimanté l'homogénéisation du mélange. Le volume minimum de la cellule est de 3 mL tandis que le volume maximum ne dépasse pas 12 mL de manière à limiter la taille de la cellule et donc l'inertie thermique ainsi que la consommation de solvants.

La température de la cellule est maintenue constante par un fluide caloporteur qui circule dans le corps métallique de la cellule. La température est mesurée par une sonde de température Pt-100 dont la précision est de \pm 0,1 K. La pression est mesurée par un capteur piézoresistif de marque Kulite (modèle HEM 375) dont la gamme de fonctionnement est comprise entre 1 et 340 bars. Ce capteur est placé à l'intérieur de la cellule de manière à minimiser les volumes morts.

III.2.4. Préparation des mélanges binaires

Le mélange binaire {CO₂+LI} est préparé directement dans la cellule de mesure. La cellule est d'abord placée sous vide à l'aide d'une pompe à vide. On introduit une masse connue de LI grâce au vide régnant dans la cellule. Une balance de précision Sartorius est utilisée dont l'incertitude est de \pm 0.001g. Après l'introduction du LI, le CO₂ stocké dans un réservoir en aluminium est injecté sous pression dans la cellule. La masse de CO₂ chargée dans la cellule est déterminée par pesée du réservoir avant et après le remplissage de la cellule. On connait la masse de chaque constituant, et par conséquent la composition du mélange binaire {CO₂+LI} peut être facilement calculée. Durant toutes les mesures l'agitation magnétique est maintenue en fonctionnement permanent.

Avant de commencer les mesures, il faut attendre que la cellule atteigne la température désirée. Ensuite, on augmente la pression à l'aide du piston jusqu'à ce que le mélange devienne monophasique. A ce moment, la pression est variée lentement jusqu'à apparition de la seconde phase. La pression à laquelle disparait l'une des deux phases, représente la mesure exacte de la pression de bulle à composition et température fixes. Chaque observation de la disparition d'une phase a été répétée au moins deux fois. La reproductibilité de mesure de la pression de bulle ne dépasse pas 0.2 bar.

III.2.5. Modélisation PC-SAFT

Durant ces dernières années, plusieurs équations d'état ont été appliquées pour décrire la solubilité des gaz dans les LIs (Vega *et al.*, 2010). On distingue l'équation d'état de Peng-Robinson (PR) (Revelli *et al.*, 2010), l'équation d'état cubique de Redlich-Kwong (RK) (Shiflett *al.*, 2007 ; Shiflett *et al.*, 2008), l'équation de SRK couplée à une méthode de contribution de groupes (Bahadur *et al.*, 2015) et les équations de type SAFT (Statistical Associating Fluid Theory) comme par exemple PC-SAFT (Chen *et al.*, 2012 ; Chen *et al.*, 2013), soft-SAFT (Andreu et Vega, 2008 ; Llovell *et al.*, 2012) et ePC-SAFT (Ji *et al.*, 2012).

Dans cette étude, notre choix s'est porté sur l'équation d'état PC-SAFT pour décrire les données expérimentales mesurées.

III.2.5.1. Présentation de l'équation PC-SAFT

Chapman et al. (1989, 1990) ont proposé l'équation d'état SAFT pour représenter les fluides associatifs. Huang et Radosz (1990, 1991) ont développé cette l'équation pour les fluides réels et leurs mélanges. En 2001, Gross et Sadowski (2001) ont modifié l'équation SAFT en proposant une nouvelle équation d'état nommée Perturbed Chain-Statistical Associating Fluid Theory (PC-SAFT) qui utilise un fluide de référence de chaines de sphères dures au lieu d'un fluide de sphères dures comme dans l'équation SAFT.

En termes de l'énergie de Helmholtz résiduelle, l'équation PC-SAFT est généralement présentée comme :

$$\tilde{a}^{res} = \tilde{a}^{hc} + \tilde{a}^{disp} + \tilde{a}^{assoc} \tag{III.29}$$

 \tilde{a}^{res} représente l'énergie de Helmholtz résiduelle et les exposants hc, disp, assoc désignent respectivement la contribution des chaînes dures, le terme de dispersion et la contribution d'association respectivement.

Le terme de chaîne dure vient de la théorie de Wertheim (Wertheim 1984 et 1986). Dans ce travail, l'expression de la chaîne dure fournie par Gross et Sadowski est donnée par:

$$\tilde{a}^{hc} = \bar{m}\tilde{a}^{hs} - \sum_{i=1}^{n_c} x_i (m_i - 1) ln \, g_{ij}^{hs}$$
(III. 30)

Où g_{ij}^{hs} est la fonction de distribution radiale de sphères dures, \overline{m} est le nombre de segments moyen et \tilde{a}^{hs} est l'énergie de Helmholtz pour les segments de sphères dures et x_i représente la fraction molaire de la chaine du composé *i*.

Le terme de dispersion de l'énergie de Helmholtz du système a été défini par Gross et Sadowski (2001) :

$$\tilde{a}^{disp} = -2\pi\tilde{\rho}I_1\overline{m^2\varepsilon\sigma^3} - \pi\tilde{\rho}\overline{m}C_1I_2\overline{m^2\varepsilon^2\sigma^3}$$
(III.31)

où le coefficient C_1 dépend du nombre de segments moyen (\overline{m}) et de la densité réduite (η). Les séries I_1 et I_2 dépendent uniquement de η et m. σ et ε sont les paramètres de composés purs de l'équation PC-SAFT. La contribution des interactions dûes à l'association a été proposée par Chapman (Chapman, 1990). Dans ce cas, la contribution d'association (\tilde{a}^{assoc}) pour l'énergie libre de Helmholtz est nécessaire pour modéliser des mélanges contenant des molécules associées. Elle est définie par Huang (Huang, 1990 et 1991) :

$$\tilde{a}^{assoc} = \sum_{i=1}^{n_c} x_i \left[\sum_{A_i} \left(ln X^{A_i} - \frac{X^{A_i}}{2} \right) + \frac{1}{2} M_i \right]$$
(III. 32)

Où X^{A_i} est la fraction molaire des molécules i qui ne sont pas liées au site d'association A, M_i le nombre de sites d'association sur chaque molécule. Le paramètre X^{A_i} est défini par :

$$X^{A_i} = \left[1 + N_{AV} \sum_j \sum_{B_j} \rho_j X^{B_j} \Delta^{A_i B_j}\right]^{-1}$$
(III. 33)

 ρ_j est la densité molaire du composant j, $\Delta^{A_i B_j}$ est la force d'association qui dépend de l'énergie d'association $\varepsilon^{A_i B_j}$ et du volume d'association $k^{A_i B_j}$. La force d'association est donnée par :

$$\Delta^{A_i B_j} = g_{ij}^{hs} \left[exp\left(\frac{\varepsilon^{A_i B_j}}{k_B T}\right) - 1 \right] \left(\sigma_{ij}^3 k^{A_i B_j}\right)$$
(III. 34)

Les règles de combinaison suggérées par Wolbach et Sandler (Wolbach et Sandler, 1998) sont utilisées :

$$\varepsilon^{A_i B_j} = \frac{1}{2} (\varepsilon^{A_i B_i} + \varepsilon^{A_j B_j}) \tag{III.35}$$

$$k^{A_i B_j} = \sqrt{k^{A_i B_i} k^{A_j B_j}} \left(\frac{\sqrt{\sigma_{ii} \sigma_{jj}}}{1/2 (\sigma_{ii} + \sigma_{jj})} \right)^3$$
(III. 36)

Si l'une des substances d'un mélange est non associée, $k^{A_iB_j}$ et $\Delta^{A_iB_j}$ disparaitront.

L'application de l'équation PC-SAFT aux mélanges nécessite l'utilisation de règles de mélanges et donc la connaissance du paramètre d'interaction binaire. Les règles de combinaison conventionnelles de Berthelot-Lorentz sont employées pour déterminer les paramètres pour une paire de segments:

$$\sigma_{ij} = \frac{1}{2} \left(\sigma_i + \sigma_j \right) \tag{III.37}$$

$$\varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j} (1 - k_{ij}) \tag{III.38}$$

III.2.6. Résultats et discussion

Les trois systèmes binaires, CO_2 + [BMIM][TCM], CO_2 + [BMPY][TCM] et CO_2 + [BMPYR][TCM] ont été étudiés entre 292.13 et 367.85 K pour des fractions molaires en CO_2 comprise entre 0.108 et 0.652 et des pressions allant de 4 bar à 121.6 bar. Les résultats expérimentaux des équilibres liquide-vapeur des systèmes étudiés sont présentés dans les Tableaux B.13-B.15 en Annexe B.

Afin de présenter les isothermes (P, x_{CO2}), les données expérimentales reportées dans les Tableaux B.13-B.15 sont lissés aux isothermes en utilisant une équation polynomiale du second ordre. Les diagrammes (P, x_{CO2}) des trois systèmes binaires à cinq températures : 293.15, 308.15, 323.15, 338.15 et 353.15 K ainsi que les courbes isothermes calculées par l'équation d'état PC-SAFT sont présentées dans la Figures III.18.

Figure III.18. Solubilité du CO₂ dans (a) [BMIM][TCM], (b) [BMPY][TCM], (c) [BMPYR][TCM] à différentes températures. Le symboles représentent les températures : •, 293.15 K; •, 308.15 K; •, 323.15 K; •, 338.15 K; ×, 353.15 K; ____, calculées par PC-SAFT.

Les résultats présentés indiquent que la pression du point de bulle augmente avec la température pour les trois systèmes binaires. Nous pouvons constater aussi que la solubilité du CO_2 augmente avec la pression et diminue quand la température augmente. Cette tendance a été observée pour la solubilité du CO_2 dans la plupart des liquides ioniques à cause de l'absorption physique (Nam et Lee, 2013).

La comparaison de nos données pour le système binaire CO_2 + [BMIM] [TCM] à T = 323,15 K avec celles fournies par Zubeir et al. (Zubeir *et al.*, 2015) et Kim et al. (Kim *et al.*, 2015) est présentée sur la Figure III.19. Les valeurs de solubilité du CO_2 mesurées dans ce travail sont proches de celles de Zubeir et al. et Kim et al. Les écarts de nos résultats par rapport à la littérature, peuvent être liés aux techniques expérimentales utilisées et à la pureté des LIs.

Figure III.19. Comparaison du diagramme (P, x) du système $CO_2 + [BMIM]$ [TCM] à 323,15 K. Les symboles représentent : \blacklozenge , ce travail; \blacklozenge , Zubeir et al.(Zubeir *et al.*, 2015); \blacklozenge , Kim et al. (Kim *et al.*, 2015).

• Influence de type de l'anion et du cation sur la solubilité du CO₂

Il est bien connu que l'influence de l'anion est plus importante que celui du cation sur la solubilité du CO_2 . A titre d'exemple, Revelli et al (Revelli *et al.*, 2010) ont constaté que le remplacement de l'anion [SCN] par [BF₄] augmente la solubilité du CO_2 . De même, Ramdin et al. (Ramdin *et al.*, 2012) ont trouvé des solubilités plus élevées dans [BMIM][Tf₂N] que dans [BMIM][MeSO₄].

A faible pression, les solubilités du CO_2 dans les trois liquides ioniques [BMIM][TCM], [BMPY][TCM] et [BMPYR][TCM] sont proches. L'influence du cation sur la solubilité du CO_2 dans les LIs à 323.15 K est présentée dans la Figure III.20. La solubilité du CO_2 dans ces LIs diminue selon l'ordre suivant : [BMPY][TCM] > [BMPYR][TCM] > [BMIM][TCM].

Figure III.20. Influence de la nature du cation sur la solubilité du CO_2 à T=323.15 K. Les symboles représentent les systèmes binaires :•, CO_2 + [BMIM][TCM];•, CO_2 + [BMPY][TCM];•, CO_2 + [BMPYR][TCM].

III.2.6.1. Modélisation PC-SAFT

Corps purs. Les paramètres des LIs purs de l'équation PC-SAFT ont été déterminés à l'aide des mesures expérimentales de densité présentées dans le paragraphe III.1.3.1.4 en minimisant la fonction objective suivante :

$$F_{obj} = \sum_{i=1}^{npts} \left(\frac{\rho_i^{sat,exp} - \rho_i^{sat,cal}}{\rho_i^{sat,exp}} \right)^2$$
(III. 39)

La molécule de CO₂ a été modélisée comme une substance non-associée et représentée par trois paramètres moléculaires : m, le nombre de segment, σ , le diamètre de segment et ε/k_B , le paramètre de l'énergie de segment.

Les paramètres PC-SAFT pour le CO_2 issus de la littérature (Gross et Sadowski, 2001) sont présentés dans le Tableau III.15.

Dans le cas de LIs purs, les paramètres moléculaires PC-SAFT ont été déterminés en considérant les LIs comme des composés auto-associés. Afin de réduire le nombre de paramètres moléculaires à ajuster, les paramètres d'auto-association ($\varepsilon^{A_iB_j}$ et $k^{A_iB_j}$) ont été supposés constants et pris à partir des valeurs de 1-alcanol (Pamies, 2003), avec $\varepsilon^{A_iB_j} = 3450$ K et $k^{A_iB_j} = 0.00225$. Ces valeurs d'association ont été choisies et maintenues constantes du

fait que la longueur de la chaine alkyle du cation possède un effet négligeable sur la force des liaisons associées. Les paramètres non-associés m, σ , ε/k_B peuvent être déterminés par la procédure d'ajustement sur les données du composant pur. Les paramètres moléculaires du CO₂ et des LIs purs calculés dans cette étude ainsi que l'écart moyen absolu (AAD%) sur la densité obtenue après les procédures d'ajustement sont donnés sur le Tableau III.15.

liquide ionique	M (g.mol ⁻¹)	σ (Å)	$\varepsilon/k_B(K)$	М	$k^{A_i B_j}$	$arepsilon^{A_i B_j}/k_B(K)$	AAD% sur la densité
[BMIM][TCM]	229.281	4.4900	447.00	3.8500	0.002250	3450	0.26
[BMPY][TCM]	240.31	4.5400	398.00	3.6300	0.002250	3450	0.43
[BMPYR][TCM]	232.325	4.5800	447.00	3.7600	0.002250	3450	0.09
CO_2	44.01	2.7852	169.21	2.0729	0	0	—

Tableau III.15. Paramètres PC-SAFT optimisés pour les LIs et le CO₂ purs étudiés.

*Systèmes binaires CO*₂+*LI*. Les paramètres k_{ij} des systèmes binaires {CO₂ + LI} ont été obtenus en minimisant les écarts sur la fraction molaire entre les données expérimentales ELV et les valeurs calculées. L'écart moyen absolu (AAD%) pour les ELV est définie par :

$$AAD \% = \frac{1}{NP} \sum_{i=1}^{NP} \left| \frac{x_{exp,i} - x_{cal,i}}{x_{exp,i}} \right| \times 100$$
(III. 40)

Les valeurs de k_{ij} pour chaque système binaire avec les écarts moyens absolus (AAD%) sur la fraction molaire sont présentés dans le Tableau III.16. Les comportements des systèmes binaires {CO₂+LI} sont relativement bien représentés par l'équation PC-SAFT. Par contre, l'équation PC-SAFT sous-estime les pressions de bulle lorsque la fraction molaire en CO₂ est élevée. Pour les données expérimentales des ELV des systèmes binaires, l'écart obtenu entre les données expérimentales et celles obtenues avec l'équation d'état PC-SAFT varient entre 2.72 et 16.61.

Tableau III.16. Paramètres d'interactions k_{ij} des mélanges binaires {CO₂ + liquide ionique}.

Système binaire	k _{ij}	AAD%
$[BMIM][TCM] + CO_2$	0.304	16.61
$[BMPY][TCM] + CO_2$	0.253	2.72
$[BMPYR][TCM] + CO_2$	0.275	10.90

• Efficacité des liquides ioniques à base de [TCM] pour la capture de CO₂

L'efficacité des LIs pour la capture du CO_2 est très variable et elle dépend principalement à la structure des LIs (Revelli *et al.*, 2010). Nous avons exprimé les solubilités en termes de molalités (moles de CO_2 absorbées par kilogramme de liquide ionique) au lieu de l'exprimer en fraction molaire.

Le Tableau III.17 présente la solubilité du CO_2 dans de nombreux LIs ainsi que poly(éthylene glycol) diméthyl éther. A partir de ces résultats, nous pouvons remarquer l'influence de l'anion sur la solubilité de CO_2 .

Les liquides ioniques qui contiennent les ions cyanure, [BMIM][TCM], [BMPY][TCM] et [BMPY][TCM] sont particulièrement efficaces pour la capture de CO₂. Le [BMPY][TCM] est le LI le plus performant pour la capture de CO₂, qui est capable de solubiliser 5.15 moles de CO₂ par kilogramme de.

Liquide ionique	x_{CO_2}	Molalité ($mol_{CO_2}.kg_{LI}^{-1}$)	Références
[BMPY][TCM]	0.56	5.15	Ce travail
[BMPYR][TCM]	0.48	3.91	Ce travail
[BMIM][TCM]	0.41	3.85	Ce travail
poly(ethylene glycol) dimethyl ether	0.53	4.51	Revelli et al., 2010
[BMIM][BF ₄]	0.37	2.60	Revelli et al., 2010
[BMIM][SCN]	0.25	1.69	Revelli et al., 2010
[DMIM][MP]	0.25	1.53	Revelli et al., 2010
[BMIM][Tf ₂ N]	0.50	2.39	Shin et al., 2008
	0.40	2 27	Blanchard et al.,
	0.40	2.27	2001
$[(ETO)_2IM][Tf_2N]$	0.55	2.79	Revelli et al., 2010

Tableau III.17. Comparaison des valeurs de solubilités du CO_2 exprimées en fraction molaire de CO_2 ou en termes de molalité.

Conclusion

Dans ce chapitre, les propriétés thermophysiques telles que les équilibres liquide-vapeur, la densité, l'enthalpie d'excès et la capacité calorifique de trois systèmes binaires composés d'eau et de LIs à base d'anion tricyanométhanide ont été déterminés. Les données expérimentales obtenues dans ce travail sont utiles pour comprendre le comportement et les interactions entre LI et l'eau dans les solutions aqueuses. Les équilibres liquide-vapeur ont été représentés avec le modèle NRTL et les propriétés d'excès ont été modélisées à l'aide de l'équation de Redlich-Kister. Les corrélations et le modèle thermodynamique permettront par la suite d'évaluer les performances de ces fluides dans des pompes à chaleur.

Enfin, nous avons réalisé des mesures expérimentales d'équilibres liquide-vapeur pour les systèmes contenant du CO_2 et les LIs à base d'anion tricyanométhanide dans une large gamme de températures et de pressions. Les résultats obtenus montrent que les liquides ioniques à base de tricyanométhanide sont particulièrement efficaces. Enfin, l'équation PC-SAFT permet de représenter avec une bonne précision ces systèmes binaires complexes.

Bibliographie

Andreu, J.S.; Vega, L.F. Modeling the Solubility Behavior of CO₂, H₂, and Xe in $[C_n-mim][Tf_2N]$ Ionic Liquids. J. Phys. Chem. B. **2008**, 112, 15398–15406.

Bahadur, I.; Osman, K.; Coquelet, C.; Naidoo, P.; Ramjugernath, D. Solubilities of Carbon Dioxide and Oxygen in the Ionic Liquids Methyl Trioctyl Ammonium Bis (trifluoromethylsulfonyl) imide, 1-Butyl-3-Methyl Imidazolium Bis (trifluoromethylsulfonyl) imide, and 1-Butyl-3-Methyl Imidazolium Methyl Sulphate. Journal of Physical Chemistry B, American Chemical Society. **2015**, 119 (4), 1503-1514.

Blanchard, L.A.; Hancu, D.; Beckman, E.J.; Brennecke, J.F. Green processing using ionic liquids and CO₂. Nature. **1999**, 399, 28-29.

Blanchard, L.A.; Gu, Z.; Brennecke, J.F. High-Pressure Phase Behavior of Ionic Liquid/CO₂ Systems. J. Phys. Chem. B. **2001**, 105, 2437–2444.

Carvalho, P.J.; Regueira, T.; Santos, L. M. N. B. F.; Fernandez, J.; Coutinho, J. A. P. Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure, J. Chem. Eng. Data **2010**, 55, 645–652.

Chapman W. G., Gubbins K. E., Jackson G., Radosz M., SAFT-equation-of-state solution model for associating fluids, Fluid Phase Equilibria. **1989**, 52, 31-38.

Chapman W. G.; Gubbins K. E.; Jackson G.; Radosz, M. New Reference Equation of State for Associating Liquids, Ind. Eng. Chem. Res. **1990**, 29, 1709-1721.

Chen, Y.S.; Mutelet, F.; Jaubert, J.N. Modeling the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids with the PC-SAFT Equation of State. J. Phys. Chem. B. **2012**, 116, 14375–14388.

Chen, Y.S.; Mutelet, F.; Jaubert, J.N. Solubility of CO_2 in 1-butyl-3-methylimidazolium diethylene-glycolmonomethylethersulfate andtrihexyl(tetradecyl) phosphonium dodecyl-benzenesulfonate. Fluid Phase Equilibria. **2013**, 354, 191–198.

Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids, J. Chem. Thermodynamics. **2005**, 37, 559–568.

Domanska, U.; Krolikowska, M.; Walczak, K. Density, Viscosity and Surface Tension of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tricyanomethanide with Benzothiophene. J Solution Chem. **2014**, 43, 1929–1946.

Ficke, L.E. Thermodynamic Properties of Imidazolium and Phosphonium Based Ionic Liquids Mixtures with Water or Carbon Dioxide. Dissertation. University of Notre Dame. **2010**.

Ficke, L. E.; Rodríguez, H.; Brennecke, J. F. Heat Capacities and Excess Enthalpies of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids and Water. J. Chem. Eng. Data, **2008**, 53 (9), 2112–2119.

García-Miaja, G.; Troncoso, J.; Romaní, L. Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water. J. Chem. Thermodynamics. **2009**, 41. 161–166.

Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodynamics, **2005**, 37, 559–568.

Ficke, L. E.; Rodriguez, H.; Brennecke, J. F. Heat Capacities and Excess Enthalpies of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids and Water. J. Chem. Eng. Data. **2008**, 53, 2112–2119.

Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. **2001**, 40, 1244–1260.

Huang, S.H.; Radosz, M. Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. **1990**, 29, 2284-2294.

Huang, S. H.; Radosz, M. Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. Ind. Eng. Chem. Res. **1991**, 30, 1994-2005.

Ji, X.; Held, C.; Sadowski, G. Modeling imidazolium-based ionic liquids with ePC-SAFT. Fluid Phase Equilibria. **2012**, 335, 64–73.

Kim, J. E.; Kang, J. W.; and Lim, J. S. Measurement of CO_2 solubility in cyanide anion based ionic liquids; $[c_4mim][SCN]$, $[c_4mim][N(CN)_2]$, $[c_4mim][C(CN)_3]$. Korean J. Chem. Eng. **2015**, 32(8), 1678-1687.

Llovell, F.; Marcos, R.M.; MacDowell, N.; Vega, L.F. Modeling the Absorption of Weak Electrolytes and Acid Gases with Ionic Liquids Using the Soft-SAFT Approach. J. Phys. Chem. B. **2012**, 116, 7709–7718.

Pamies, J. Bulk and Interfacial Properties of Chain Fluids. a molecular modelling approach. Ph. D. thesis, University Rovira *i* Virgili, Tarragona, Spain, **2003**.

Vidal, J. Thermodynamique, Application Au Génie Chimique et à L'industrie Pétrolière, Edition Technip. **1997**.

Dohrn, R.; Brunner, G. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (1988–1993). Fluid Phase Equilibria. **1995**, 106, 213-282.

Lukoshko, E.; Mutelet, F.; Domanska, U. Experimental and theoretically study of interaction between organic compounds and tricyanomethanide based ionic liquids, J. Chem. Thermodynamics. **2015**, 85, 49–56.

Lukoshko, E.; Domanska, U. Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tricyanomethanide, J. Chem. Thermodynamics. **2013**, 66, 144–150.

Prausnitz, J.M.; Lichtenthaler, R.N.; Azavedo, E.G.d. Molecular Thermodynamics of Fluid-Phase Equibria, Prentice-Hall ed., **1999**.

Gmehling, J. Excess Enthalpies for 1,1,1-trichloroethane with Alkanes, Ketones, and Esters. J. Chem. Eng. Data. **1993**, 38, 143-146.

Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules Ind. Eng. Chem. Res. **2001**, 40, 1244–1260.
Nam, S. G. and Lee, B.-C. Solubility of carbon dioxide in ammonium-based ionic liquids: Butyltrimethylammonium bis(trifluoromethylsulfonyl)imide and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. Korean J. Chem. Eng. **2013**, 30 (2), 474-481.

Ramdin, M.; Vlugt, T. J. H.; de Loos, T. W. Solubility of CO₂ in the Ionic Liquids [TBMN][MeSO4] and [TBMP][MeSO4]. J. Chem. Eng. Data. **2012**, 57, 2275–2280.

Renon, H.; Prausnitz, J., Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. **1968**, 14, 135–144.

Revelli, A. L.; Mutelet, F.; Jaubert, J. N. J. High Carbon Dioxide Solubilities in Imidazolium-Based Ionic Liquids and in Poly(ethylene glycol) Dimethyl Ether. J. Phys. Chem.B. 2010, 114 (40), 12908–12913.

Romanos, G. E.; Zubeir, L. F.; Likodimos, V.; Falaras, P.; Kroon, M. C.; Iliev, B.; Adamova, G and Schubert, T. J. S. Enhanced CO₂ Capture in Binary Mixtures of 1-Alkyl-3-methylimidazolium Tricyanomethanide Ionic Liquids with Water. J. Phys. Chem. B. **2013**, 117 (40), 12234–12251.

Shiflett, M.B. and Yokozeki, A., Solubility of CO₂ in room temperature ionic liquid [hmim][Tf₂N]. Journal of Physical Chemistry B. **2007**. 11 (8) 2070-2074.

Shiflett, M.B., Kasprzak, D.J., Junk, C.P., and Yokozeki, A., Phase behavior of {carbon dioxide plus [bmim][Ac]} mixtures. Journal of Chemical Thermodynamics. **2008**, 40 (1) 25-31.

Suppes, G.J. and McHugh, MA. Phase Behavior of the Carbon Dioxide-Styrene System. J. Chem. Eng. Data. **1989**, 34, 310 – 312.

Shin, E.-K.; Lee, B.-C.; Lim, J.S. J. High-pressure solubilities of carbon dioxide in ionic liquids: 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The Journal of Supercritical Fluids. **2008**, 45, 282–292.

Tagiuri, A.; Sumon, K. Z.; Henni, A. Solubility of carbon dioxide in three $[Tf_2N]$ ionic liquids. Fluid Phase Equilibria. **2014**, 380, 39–47.

Wertheim, M. S. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. **1984**, 35, 19.

Wertheim, M. S. Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J. Stat. Phys. **1986**, 42, 477.

Wolbach, J. P.; Sandler, S. I. Using Molecular Orbital Calculations To Describe the Phase Behavior of Cross-associating Mixtures. Ind. Eng. Chem. Res. **1998**, 37, 2917–2928.

Zubeir, L. F.; Romanos, G. E.; Weggemans, W. M. A.; Iliev, B.; Schubert, T. J. S.; Kroon, M.
C. Solubility and Diffusivity of CO₂ in the Ionic Liquid 1-Butyl-3methylimidazoliumTricyanomethanide within a Large Pressure Range (0.01 MPa to 10 MPa).
J. Chem. Eng. Data. 2015, 60 (6), 1544–1562.

Conclusion générale

Conclusion générale

Dans le cadre de cette thèse, nous avons déterminé les propriétés thermophysiques des LIs purs et leurs mélanges avec l'eau ou le CO₂. L'intérêt est de déterminer l'impact de la structure des LIs ainsi que la polarité des solvants étudiés sur les propriétés mesurées et de fournir des informations sur l'affinité entre les LIs à base tricyanométhanide et l'eau dans les solutions aqueuses.

Dans un premier temps, nous avons mesuré les coefficients d'activité à dilution infinie γ_{12}^{∞} et les coefficients de partage gaz-liquide K_L de différents composés organiques tels que les alcanes, 1-alcènes, 1-alcynes, les cycloalcanes, les hydrocarbures aromatiques, les alcools, les éthers, les cétones, l'acétonitrile, 1-nitropropane et l'eau et les COVs contenant de l'azote ou du soufre dans le 1-ethyl-3-methylimidazolium methylphosphonate, 1,3 dimethylimidazolium methylphosphonate, 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide, 1octylquinuclidinium bis(trifluoromethylsulfonyl)imide. Ces mesures nous ont permis de mieux comprendre les interactions intermoléculaires entre les solutés et les LIs, et de voir l'affinité entre les LIs et les différents composés organiques, mais aussi de déterminer la sélectivité des LIs étudiés pour quelques problèmes de séparation, comme la séparation des aromatiques, du thiophene ou de la pyridine à partir des hydrocarbures aliphatiques.

Le modèle TDGC-LSER a été mis en place pour représenter les coefficients de partage de différents solutés dans différentes familles de LIs. Un nombre important de données expérimentales a été utilisé incluant de nouveaux groupements fonctionnels et ceci dans le but de développer et tester les capacités prédictives du modèle.

Nous avons étudié les propriétés thermophysiques telles que la densité, la capacité calorifique et les équilibres de phases de systèmes contenant les liquides ioniques [BMIM][TCM], [BMPY][TCM], [BMPYR][TCM] et de l'eau en fonction de la température et de la composition.

Les résultats obtenus ont permis d'évaluer l'influence du cation dans les LIs à base tricyanométhanide sur les différentes propriétés mesurées. Pour les LIs étudiés, l'influence du cation n'est pas significative. Cette étude montre que les systèmes bianires {eau + LI} sont bien représentés avec le modèle du coefficient d'activité Non Random Two Liquids (NRTL).

138

L'étude volumétrique des LIs purs et leurs mélanges avec l'eau entre 293.15 et 323.15 K a montré que la densité diminue lorsque la température et la concentration en eau dans les systèmes augmentent. A partir des données expérimentales de densité, les volumes molaires d'excès ont été calculés et corrélés en utilisant l'équation de Redlich-Kister. Les trois systèmes binaires ont montré un comportement endothermique. Les valeurs positives des volumes d'excès peuvent être liées aux interactions répulsives entre l'eau et les LIs, à la rupture des liaisons hydrogène dans les molécules auto-associées et aux faibles interactions dipôle-dipôle entre la molécule d'eau et le LI.

Les enthalpies molaires d'excès H^E des systèmes binaires {eau + LI} ont été déterminées en utilisant un calorimètre C80 à T=312.92 K sous la pression atmosphérique. Les valeurs positives de l'enthalpie d'excès suggèrent que les interactions entre eau- LI sont faibles par rapport aux espèces de même type (LI-LI et eau-eau). Contrairement aux systèmes qui présentent des H^E négatives (exothermiques) où les interactions entre les espèces différentes sont plus fortes que celles entre espèce de même type.

Les capacités calorifiques molaires d'excès (C_P^E) des systèmes {[BMIM][TCM] + eau} et {[BMPYR][TCM] + eau} ont un comportement similaire. Les capacités calorifiques molaires d'excès du système {Eau + [BMPY][TCM]} présente un comportement complexe. La valeur du maximum varie considérablement d'un système à l'autre.

Les résultats obtenus ont permis d'évaluer l'influence du changement du cation dans les LIs à base tricyanométhanide sur les différentes propriétés mesurées. Pour ces LIs, l'influence du cation n'est pas significative.

D'autre part, La solubilité du CO_2 a été mesurée dans les trois LIs à base tricyanométhanide à l'aide d'une cellule haute pression à volume variable entre 292.13 et 367.85 K. La solubilité du CO_2 dans les liquides ioniques diminue avec l'augmentation de la température et augmente avec la pression pour tous les liquides ioniques étudiés. La solubilité du CO_2 diminue selon l'ordre suivant: [BMPY][TCM] > [BMPYR][TCM] > [BMIM][TCM]. L'équation d'état PC-SAFT fournit de bonnes prédictions des données expérimentales d'équilibre liquide-vapeur des systèmes binaires. L'écart moyen absolu (AAD %) du modèle pour les ELV des systèmes étudiés dans ces travaux varient de 2.72 à 16.61.

Comme perspectives, il serait intéressant d'évaluer les performances des fluides de travail {eau+LI} dans les cycles d'absorption en utilisant les propriétés thermodynamiques obtenues dans le cadre de cette thèse pour les trois systèmes binaires {Eau + [BMIM][TCM]}, {Eau + [BMPY][TCM]} et {Eau + [BMPYR][TCM]}. Nous nous proposons aussi d'élargir notre travail à d'autre LIs à tache spécifiques.

Annexes

Annexe A

Tableau A.1. Densités ρ , des liquides ioniques en fonction de la température à pression atmosphérique.

	$ ho_{LI}^{exp}$ / g.cm ⁻³									
T / K	[EMIM][(MeO)(H)PO ₂]	[DIMIM][(MeO)(H)PO ₂]	[Quin6][Tf ₂ N]	[Quin8][Tf ₂ N]						
293.15	1.1906	1.2525	1.3619	1.2988						
303.15	1.1841	1.2464	1.3538	1.2908						
313.15	1.1801	1.2417	1.3456	1.2827						
323.15	1.1740	1.2334	1.3370	1.2740						
333.15	1.1687	1.2272	1.3290	1.2660						
343.15	1.1632	1.2208	1.3205	1.2577						

Tableau A.2. Les valeurs numériques des descripteurs de solutés.

Soluté	E	S	А	В	L
Pentane	0	0	0	0	2.162
Hexane	0.000	0.000	0.000	0.000	2.668
3-méthylpentane	0.000	0.000	0.000	0.000	2.581
2,2-diméthylbutane	0.000	0.000	0.000	0.000	2.352
Heptane	0	0	0	0	3.173
Octane	0	0	0	0	3.677
isooctane	0	0	0	0	3.325
2,2,4-triméthylpentane	0	0	0	0	3.325
Nonane	0	0	0	0	4.182
Décane	0	0	0	0	4.686
Undécane	0	0	0	0	5.191
Dodécane	0	0	0	0	5.696
Tridécane	0	0	0	0	6.2
Tetradécane	0	0	0	0	6.705
Cyclopentane	0.263	0.1	0	0	2.477
Cyclohèxane	0.305	0.1	0	0	2.964
Méthylcyclohèxane	0.244	0.06	0	0	3.319
Cyclohèptane	0.35	0.1	0	0	3.704
Cyclooctane	0.413	0.1	0	0	4.329
1-pentène	0.093	0.08	0	0.07	2.047
1-hexène	0.078	0.08	0	0.07	2.572
Cyclohèxene	0.395	0.2	0	0.1	3.021
1-heptène	0.092	0.08	0	0.07	3.063
1-octène	0.094	0.08	0	0.07	3.568
1-decène	0.093	0.08	0	0.07	4.533
1-pentyne	0.172	0.23	0.12	0.12	2.01
1-hexyne	0.166	0.23	0.12	0.1	2.51
1-heptyne	0.16	0.23	0.12	0.1	3
1-octyne	0.155	0.23	0.12	0.1	3.521
Benzène	0.61	0.52	0	0.14	2.786

	0.001	0.50	0	0.1.1	
	0.601	0.52	0	0.14	3.325
Ethylbenzene	0.613	0.51	0	0.15	3.778
o-xylene	0.663	0.56	0	0.16	3.939
m-xylène	0.623	0.52	0	0.16	3.839
p-xylène	0.613	0.52	0	0.16	3.839
Propylbenzène	0,604	0,5	0	0,15	4,23
Butylbenzène	0,6	0,51	0	0,15	4,73
Pentylbenzène	0,594	0,51	0	0,15	5,23
Isopropylbenzène	0,602	0,49	0	0,16	4,084
Tert-butylbenzène	0,619	0,49	0	0,18	4,413
Styrène	0.849	0.65	0	0.16	3.856
α-methylstyrène	0.851	0.64	0	0.19	4.292
Méthanol	0.278	0.44	0.43	0.47	0.97
Ethanol	0.246	0.42	0.37	0.48	1.485
1-propanol	0.236	0.42	0.37	0.48	2.031
2-propanol	0.212	0.36	0.33	0.56	1.764
1-butanol	0.224	0.42	0.37	0.48	2.601
2-butanol	0.217	0.36	0.33	0.56	2.338
2-méthyl-1-propanol	0.217	0.39	0.37	0.48	2.413
2-méthyl-2-pentanol	0.169	0.3	0.31	0.64	3.24
3-méthylbutanol	0,192	0,39	0,37	0,48	3,011
tert-Butanol	0.18	0.3	0.31	0.6	1.963
1-pentanol	0,219	0,42	0,37	0,48	3,106
isopropyl alcohol	0,212	0,36	0,33	0,56	1,764
tert-butyl alcohol	0,18	0,3	0,31	0,6	1,963
sec-butanol	0,217	0,36	0,33	0,56	2,338
tert-pentanol	0,194	0,3	0,31	0,6	2,63
butyraldehyde	0.187	0.65	0	0.45	2.27
Propionaldehyde	0.196	0.65	0	0.45	1.815
Valeryaldehyde	0.163	0.65	0	0.45	2.851
Capronaldehyde	0.146	0.65	0	0.45	3.357
Eau	0	0.45	0.82	0.35	0.26
Thiophène	0.687	0.57	0	0.15	2.819
Tétrahydrofuran	0.289	0.52	0	0.48	2.636
1.4-dioxane	0.329	0.75	0	0.64	2.892
tert-Butyl méthyl éther	0.024	0.19	0	0.45	2.378
Méthyl tert-pentyl éther	0.050	0.210	0.000	0.600	2.916
Ethyl tert-butyl éther	-0.020	0.160	0.000	0.600	2.720
Diéthyl éther	0.041	0.25	0	0.45	2.015
Di-n-propyl ether	0.008	0.25	0	0.45	2.954
Di-iso-propyl ether	-0.063	0.170	0.000	0.570	2.501
Di-n-butyl éther	0	0.25	0	0.45	3 924
Acétone	0 179	0.23	0.04	0.49	1 696
2-butanone	0.179	0.7	0.04	0.51	2 287
2-pentanone	0.100	0.7	0	0.51	2.207
3-pentanone	0.143	0.00	0	0.51	2.755
beyon 2 one	0.134	0.00	0	0.51	2.011
nexan-2-one	0.136	0.68	0	0.51	5.286

hexan-3-one	0.136	0.66	0	0.51	3.271
Méthyl acétate	0.142	0.64	0	0.45	1.911
Ethyl acétate	0.106	0.62	0	0.45	2.314
vinyl acétate	0.223	0.64	0	0.43	2.152
propionaldéhyde	0.196	0.65	0	0.45	1.815
butyraldéhyde	0.187	0.65	0	0.45	2.27
Dichlorométhane	0.387	0.57	0.1	0.05	2.019
Trichlorométhane	0.425	0.49	0.15	0.02	2.48
Tetrachlorométhane	0.458	0.38	0	0	2.823
Méthyl propanoate	0.128	0.6	0	0.45	2.431
Méthyl butanoate	0.106	0.6	0	0.45	2.893
Butanal	0.187	0.65	0	0.45	2.27
Chlorobenzène	0.718	0.65	0	0.07	3.657
Chloroform	0.425	0.49	0.15	0.02	2.48
Acétonitrile	0.237	0.9	0.07	0.32	1.739
Nitrométhane	0.313	0.95	0.06	0.31	1.892
1-Nitropropane	0.242	0.95	0	0.31	2.894
Pyridine	0.631	0.84	0	0.52	3.022
Carbon	0.458	0.38	0	0	2.823
Carbontetrachloride	0.458	0.38	0	0	2.823
1,2-dichloroéthane	0.416	0.64	0.1	0.11	2.573

Tableau A.3. Logarithme de coefficients de partage log K_L pour différents solutés dans le 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide de 313.15 à 353.15 K.

Soluté			Log K _L à T/K		
	313.15 K	323.15 K	333.15 K	343.15K	353.15 K
Hexane	1.425	1.318	1.204	1.090	0.989
3-méthylpentane	1.375	1.268	1.162	1.066	0.966
Heptane	1.793	1.652	1.505	1.389	1.272
2,2,4 trimethylpentane	1.760	1.621	1.479	1.356	1.260
Octane	2.185	1.995	1.832	1.689	1.549
Nonane	2.529	2.335	2.149	1.976	1.824
Décane	2.901	2.672	2.459	2.271	2.095
Undécane	3.256	3.007	2.763	2.556	2.382
Dodécane		3.012	2.861	2.839	2.663
Tridécane				3.125	2.938
Tetradécane					3.204
Méthylcyclopentane	1.652	1.531	1.416	1.305	1.197
Cyclohexane	1.770	1.643	1.527	1.414	1.320
Méthylcyclohexane	2.001	1.854	1.715	1.589	1.480
Cycloheptane	2.325	2.155	2.005	1.864	1.740
Benzène	2.675	2.500	2.341	2.190	2.053
Toluène	3.061	2.866	2.678	2.508	2.351
Ethylbenzène	3.365	3.153	2.941	2.756	2.584
m-xylène	3.439	3.223	3.007	2.817	2.641
p-xylène	3.419	3.203	2.983	2.796	2.621

o-xylène		3.348	3.129	2.937	2.756
1-hexène	1.604	1.471	1.343	1.218	1.106
1-hexyne	2.068	1.912	1.765	1.626	1.496
2-butanone	2.776	2.603	2.432	2.272	2.125
2-pentanone	3.088	2.898	2.714	2.543	2.386
1,4 dioxane	3.029	2.842	2.667	2.504	2.353
Méthanol	2.137	1.982	1.838	1.707	1.566
Ethanol	2.373	2.206	2.044	1.895	1.751
1-propanol	2.745	2.558	2.382	2.214	2.051
2-propanol	2.466	2.284	2.116	1.958	1.801
2-méthyl-1-propanol	2.948	2.745	2.558	2.380	2.211
1-butanol	3.141	2.931	2.735	2.549	2.373
Ether	1.556	1.422	1.298	1.181	1.073
Diisopropyle éther	1.791	1.637	1.495	1.363	1.239
Chloroforme	2.414	2.243	2.081	1.934	1.790
Dichlorométhane	2.030	1.885	1.753	1.624	1.499
Acétonitrile	2.739	2.586	2.442	2.306	2.175
Nitrométhane	3.050	2.876	2.715	2.564	2.426
1-nitropropane		3.349	3.157	2.979	2.814
Triéthylamine	1.986	1.824	1.677	1.532	1.399
Pyridine	3.405	3.206	3.022	2.848	2.682
Thiophène	2.783	2.608	2.442	2.286	2.139
Formaldehyde	2.226	2.088	1.922	1.755	1.602
Acétone	2.460	2.307	2.165	2.031	1.900
THF	2.492	2.328	2.179	2.037	1.901
Ethylacétate	2.574	2.402	2.239	2.085	1.936
Eau	2.369	2.197	2.037	1.877	1.756

Tableau A.4. Logarithme de coefficients de partage log K_L pour différents solutés dans le 1-
octylquinuclidinium bis(trifluoromethylsulfonyl)imide de 313.15 à 353.15 K.

Soluté	Log K _L à T/K									
	313.15 K	323.15 K	333.15 K	343.15K	353.15 K					
Hexane	1.615	1.477	1.348	1.225	1.116					
3-méthylpentane	1.563	1.432	1.304	1.184	1.072					
Heptane	1.991	1.832	1.680	1.539	1.414					
2,2,4 triméthylpentane	1.968	1.814	1.665	1.533	1.406					
Octane	2.365	2.182	2.010	1.853	1.705					
Nonane	2.729	2.526	2.333	2.158	1.991					
Décane	3.100	2.873	2.656	2.458	2.272					
Undécane		3.222	2.986	2.759	2.552					
Dodécane		3.537	3.285	3.053	2.838					
Tridécane				3.349	3.111					
Méthylcyclopentane	1.811	1.670	1.543	1.424	1.313					
Cyclohexane	1.956	1.813	1.680	1.556	1.442					
Méthylcyclohexane	2.174	2.019	1.874	1.741	1.613					
Cycloheptane	2.478	2.309	2.153	2.007	1.867					

Benzène	2.702	2.531	2.371	2.223	2.082
Toluène	3.098	2.903	2.722	2.553	2.393
Ethylbenzène	3.410	3.196	3.000	2.813	2.638
m-xylène		3.269	3.065	2.872	2.696
p-xylène		3.246	3.043	2.851	2.673
o-xylène		3.398	3.189	2.990	2.805
1-hexène	1.722	1.578	1.448	1.327	1.214
2-butanone	2.792	2.619	2.457	2.296	2.150
2-pentanone	3.116	2.923	2.742	2.573	2.414
1,4 dioxane	3.038	2.849	2.673	2.508	2.355
Méthanol	2.119	1.981	1.846	1.710	1.597
Ethanol	2.363	2.198	2.045	1.898	1.768
1-propanol	2.744	2.557	2.382	2.218	2.068
2-propanol	2.469	2.293	2.130	1.974	1.833
2-méthyl-1-propanol	2.957	2.756	2.567	2.394	2.233
1-butanol	3.148	2.938	2.741	2.559	2.389
Ether	1.629	1.490	1.360	1.239	1.125
Diisopropyle éther	1.882	1.726	1.583	1.450	1.321
Chloroforme	2.450	2.281	2.124	1.977	1.841
Dichlorométhane	2.069	1.929	1.797	1.674	1.546
Acétonitrile	2.719	2.565	2.423	2.290	2.164
Nitrométhane	3.021	2.848	2.689	2.539	2.399
1-nitropropane		3.360	3.162	2.978	2.812
Triéthylamine	2.131	1.972	1.822	1.681	1.547
Pyridine		3.213	3.029	2.856	2.692
Thiophène	2.801	2.624	2.461	2.306	2.164
Formaldéhyde	1.587	1.407	1.236	1.057	0.881
Acétone	2.467	2.316	2.177	2.046	1.922
THF	2.539	2.376	2.230	2.088	1.958
Ethylacétate	2.606	2.432	2.274	2.122	1.983
Eau	2.486	2.332	2.212	2.128	2.034

[Quin6][Tf ₂ N] à 298 K, avec les valeurs numériques des descripteurs de solutés.								
Soluté	Е	S	А	В	L	V	$log K_L^{exp}$	$log P^{exp}$
Hexane	0.000	0.000	0.000	0.000	2.668	0.9540	1.601	3.421
3-méthylpentane	0.000	0.000	0.000	0.000	2.581	0.9540	1.549	3.389
Heptane	0.000	0.000	0.000	0.000	3.173	1.0949	2.022	3.982
2,2,4- triméthylpentane	0.000	0.000	0.000	0.000	3.106	1.2358	1.987	4.107

0.000

0.000

0.000

0.000

0.000 0.000 3.677 1.2358

4.182

4.686

5.191

2.907

1.3767

1.5176

1.6590

0.8454

0.000

0.000

0.000

0.000

2.494

2.843

3.272

3.660

1.850

4.674

4.993

5.592

6.040

3.020

0.000

0.000

0.000

0.000

0.100

0.000

0.000

0.000

0.000

0.225

Octane

Nonane

Décane

Undécane

Méthylcyclopentane

Tableau A.5. Les valeurs expérimentales de log K_L et log P pour différents solutés dans [Quin6][Tf₂N] à 298 K, avec les valeurs numériques des descripteurs de solutés.

Cyclohexane	0.310	0.100	0.000	0.000	2.964	0.8454	1.978	2.878
Méthylcyclohexane	0.244	0.060	0.000	0.000	3.319	0.9863	2.238	3.488
Cycloheptane	0.350	0.100	0.000	0.000	3.704	0.9863	2.601	3.191
Benzène	0.610	0.520	0.000	0.140	2.786	0.7164	2.960	2.330
Toluène	0.601	0.520	0.000	0.140	3.325	0.8573	3.378	2.728
Ethylbenzène	0.613	0.510	0.000	0.150	3.778	0.9982	3.710	3.130
<i>m</i> -xylène	0.623	0.520	0.000	0.160	3.839	0.9982	3.791	3.181
<i>p</i> -xylène	0.613	0.520	0.000	0.160	3.839	0.9982	3.771	3.181
o-xylène	0.663	0.560	0.000	0.160	3.939	0.9982	3.962	3.302
1-hexène	0.080	0.080	0.000	0.070	2.572	0.9110	1.821	2.981
1-hexyne	0.166	0.220	0.100	0.120	2.510	0.8680	2.323	2.533
Acétone	0.179	0.700	0.040	0.490	1.696	0.5470	2.709	-0.121
2-butanone	0.166	0.700	0.000	0.510	2.287	0.6879	3.057	0.337
2-pentanone	0.143	0.680	0.000	0.510	2.755	0.8288	3.396	0.816
Tétrahydrofuran	0.289	0.520	0.000	0.480	2.636	0.6220	2.759	0.209
1,4-dioxane	0.329	0.750	0.000	0.640	2.892	0.6810	3.333	-0.377
Méthanol	0.278	0.440	0.430	0.470	0.970	0.3082	2.389	-1.351
Ethanol	0.246	0.420	0.370	0.480	1.485	0.4491	2.646	-1.024
1-propanol	0.236	0.420	0.370	0.480	2.031	0.5900	3.048	-0.512
2-propanol	0.212	0.360	0.330	0.560	1.764	0.5900	2.762	-0.718
2-méthyl-1-propanol	0.217	0.390	0.370	0.480	2.413	0.7309	3.277	-0.023
1-butanol	0.224	0.420	0.370	0.480	2.601	0.7309	3.483	0.023
Diéthyl éther	0.041	0.250	0.000	0.450	2.015	0.7309	1.773	0.483
Diisopropyl éther	-0.063	0.170	0.000	0.570	2.501	1.0127	2.042	0.952
Chloroform	0.425	0.490	0.150	0.020	2.480	0.6167	2.692	1.902
Dichlorométhane	0.390	0.570	0.100	0.050	2.019	0.4943	2.266	1.306
Acétonitrile	0.237	0.900	0.070	0.320	1.739	0.4042	2.988	0.138
Nitrométhane	0.313	0.950	0.060	0.310	1.892	0.4237	3.333	0.383
1-nitropropane	0.242	0.950	0.000	0.310	2.894	0.7055	3.888	1.438
Triéthylamine	0.101	0.150	0.000	0.790	3.040	1.0538	2.249	-0.111
Pyridine	0.631	0.840	0.000	0.520	3.022	0.6753	3.729	0.289
Thiophène	0.687	0.570	0.000	0.150	2.819	0.6411	3.069	2.031
Ethyl acétate	0.106	0.620	0.000	0.450	2.314	0.7470	2.854	0.694
Eau	0.000	0.600	0.590	0.460	0.245	0.1673	2.648	-1.992

Soluté	Е	S	А	В	L	V	$log K_L^{exp}$	log P ^{exp}
Hexane	0.000	0.000	0.000	0.000	2.668	0.9540	1.838	3.658
3-méthylpentane	0.000	0.000	0.000	0.000	2.581	0.9540	1.776	3.616
Heptane	0.000	0.000	0.000	0.000	3.173	1.0949	2.250	4.210
2,2,4- triméthylpentane	0.000	0.000	0.000	0.000	3.106	1.2358	2.219	4.339
Octane	0.000	0.000	0.000	0.000	3.677	1.2358	2.661	4.841
Nonane	0.000	0.000	0.000	0.000	4.182	1.3767	3.058	5.208
Décane	0.000	0.000	0.000	0.000	4.686	1.5176	3.468	5.788
Undécane	0.000	0.000	0.000	0.000	5.191	1.6590	3.882	6.262
Dodécane	0.000	0.000	0.000	0.000	5.696	1.7994	4.241	6.768
Méthylcyclopentane	0.225	0.100	0.000	0.000	2.907	0.8454	2.039	3.209
Cyclohexane	0.310	0.100	0.000	0.000	2.964	0.8454	2.187	3.087
Méthylcyclohexane	0.244	0.060	0.000	0.000	3.319	0.9863	2.426	3.676
Cycloheptane	0.350	0.100	0.000	0.000	3.704	0.9863	2.751	3.341
Benzène	0.610	0.520	0.000	0.140	2.786	0.7164	2.979	2.349
Toluène	0.601	0.520	0.000	0.140	3.325	0.8573	3.416	2.766
Ethylbenzène	0.613	0.510	0.000	0.150	3.778	0.9982	3.758	3.178
<i>m</i> -xylène	0.623	0.520	0.000	0.160	3.839	0.9982	3.839	3.229
<i>p</i> -xylène	0.613	0.520	0.000	0.160	3.839	0.9982	3.811	3.221
o-xylène	0.663	0.560	0.000	0.160	3.939	0.9982	3.983	3.323
1-hexène	0.080	0.080	0.000	0.00	2.572	0.9110	1.955	3.115
Acétone	0.179	0.700	0.040	0.90	1.696	0.5470	2.712	-0.118
2-butanone	0.166	0.700	0.000	0.510	2.287	0.6879	3.073	0.353
2-pentanone	0.143	0.680	0.000	0.510	2.755	0.8288	3.430	0.850
Tétrahydrofuran	0.289	0.520	0.000	0.480	2.636	0.6220	2.802	0.252
1,4-dioxane	0.329	0.750	0.000	0.640	2.892	0.6810	3.346	-0.364
Méthanol	0.278	0.440	0.430	0.470	0.970	0.3082	2.345	-1.395
Ethanol	0.246	0.420	0.370	0.480	1.485	0.4491	2.633	-1.037
1-propanol	0.236	0.420	0.370	0.480	2.031	0.590	3.049	-0.511
2-propanol	0.212	0.360	0.330	0.560	1.764	0.5900	2.756	-0.724
2-méthyl-1-propanol	0.217	0.390	0.370	0.480	2.413	0.7309	3.284	-0.016
1-butanol	0.224	0.420	0.370	0.480	2.601	0.7309	3.489	0.029
Diéthyl éther	0.041	0.250	0.000	0.450	2.015	0.7309	1.855	0.565
Diisopropyl éther	-0.063	0.170	0.000	0.570	2.501	1.0127	2.135	1.045
Chloroform	0.425	0.490	0.150	0.020	2.480	0.6167	2.725	1.935
Dichlorométhane	0.390	0.570	0.100	0.050	2.019	0.4943	2.295	1.335
Acétonitrile	0.237	0.900	0.070	0.320	1.739	0.4042	2.969	0.119

Tableau A.6. Les valeurs expérimentales de log K_L et log P pour différents solutés dans [Quin8][Tf₂N] à 298 K, avec les valeurs numériques des descripteurs de solutés.

Nitrométhane	0.313	0.950	0.060	0.310	1.892	0.4237	3.301	0.351
1-nitropropane	0.242	0.950	0.000	0.310	2.894	0.7055	3.914	1.464
Triéthylamine	0.101	0.150	0.000	0.790	3.040	1.0538	2.391	0.031
Pyridine	0.631	0.840	0.000	0.520	3.022	0.6753	3.730	0.290
Thiophène	0.687	0.570	0.000	0.150	2.819	0.6411	3.089	2.059
Ethyl acétate	0.106	0.620	0.000	0.450	2.314	0.7470	2.888	0.728
Eau	0.000	0.600	0.590	0.460	0.245	0.1673	2.737	-1.903

Tableau A.7. Coefficients de l'équation de contribution de groupe calculés pour l'estimationde log K_L de l'ensemble de formation en utilisant l'équation II.31.

Groupe	C _i	e_i	Si	a_i	b_i	l_i
CIL	199.98	58.08	-303.22	1327.8	621.20	-65.36
CH ₃	(54.29)	(47.71)	(47.91)	(153.6)	(70.73)	(11.32)
CU	47.996	-22.637	-21.837	-97.89	35.557	-3.747
CH ₂	(6.630)	(8.221)	(8.588)	(10.63)	(8.562)	(1.861)
	-32.58	25.00	-3.14	28.94	-50.75	0.632
0	(19.43)	(21.08)	(22.59)	(26.73)	(24.38)	(5.694)
OIL	99.75	96.77	-270.98	1456.9	960.71	-81.64
OH	(55.58)	(49.98)	(50.21)	(154.5)	72.26	(11.93)
D11 ⁺	-25.6	-256.0	2287.6	-4726.5	-3087.1	428.76
	(262.4)	(227.6)	(226.9)	(759.2)	(343.9)	(53.62)
	28.89	200.69	-451.77	1947.4	1434.81	-84.35
SO ₃ H	(78.97)	(67.40)	(71.23)	(173.4)	(97.27)	(16.66)
DADGO	391.6	0.9	1261.7	-521.1	-1123.2	279.83
DABCO	(109.1)	(100.2)	(100.7)	(307.3)	(144.1)	(23.12)
m a+	249.7	-110.1	1684.7	-1949.3	-1789.0	328.85
	(161.3)	(142.3)	(142.6)	(457.7)	(211.1)	(33.82)
	243.9	-73.4	1670.1	-1945.1	-1819.4	337.55
	(160.4)	(141.0)	(141.1)	(457.1)	(209.9)	(33.46)
	247.6	-106.1	1683.3	-1919.3	-1811.9	337.46
	(157.8)	(138.4)	(137.7)	(455.7)	(206.8)	(32.37)
	228.1	-97.9	1693.7	-1864.5	-1874.7	350.81
	(159.4)	(141.1)	(140.4)	(457.0)	(208.9)	(33.03)
[D] ⁺	-1188.0	371.6	2297.9	-2609.0	-3645.1	593.67
[r]	(354.2)	(375.2)	(387.9)	(849.5)	(468.5)	(85.78)
	194.8	-56.3	1766.2	-1899.3	-1858.7	311.51
	(157.4)	(137.8)	(137.1)	(455.1)	(206.5)	(32.31)
$[\mathbf{O}_{uin}]^+$	294.83	261.08	1089.72	468.1	-714.30	294.75
[Quili]	(72.87)	(76.54)	(78.46)	(171.3)	(93.96)	(17.60)
	41.70	242.97	-250.58	804.5	578.94	-23.78
	(50.99)	(43.59)	(43.61)	(150.3)	(67.76)	(10.46)
[C(CN), 1]	108.02	187.46	-314.98	483.3	615.88	-12.688
	(47.98)	(39.17)	(38.05)	(147.9)	(63.76)	(9.185)
(FAD) -	238.70	3.11	-302.48	-248.6	725.54	-23.59
	(51.55)	(44.09)	(43.93)	(150.3)	(67.94)	(10.63)
[Tf.N]	78.98	82.29	-281.69	245.3	533.19	-1.645
	(46.61)	(36.77)	(35.50)	(146.9)	(62.22)	(8.539)
[MeSO.]	100.02	208.62	-449.33	672.2	543.38	-65.19
	(54.07)	(47.91)	(54.77)	(195.7)	(79.82)	(11.61)
[FtSO,]	128.9	1694				
	(299.4)	(1120)				
[F ₃ AC] ⁻	170.46	199.25	-632.66	1380.7	379.41	-2.13

(58.08)	(55.65)	(52.81)	(155.2)	(72.04)	(13.64)
125.25	101.26	-345.40	417.1	590.61	10.36
(50.01)	(41.63)	(41.18)	(149.1)	(66.26)	(10.03)
133.57	-349.16	107.81	-618.5	-704.62	-16.83
(73.18)	(42.47)	(50.02)	$\begin{array}{c} -018.3 \\ 02) \\ (255.6) \end{array}$	(87.24)	(12.53)
66.65	-35.67	3.75	1953.8	22.2	13.65
(54.67)	(56.99)	(75.59)	-618.5 (255.6) 1953.8 (163.3)	(109.1)	(11.85)
-7.74	-30.12	-43.51	1451.2	115.6	14.33
(53.35)	(56.13)	(74.43)	(158.7)	(106.5)	(11.26)

Tableau A.8. Coefficients de l'équation de contribution de groupe calculés pour l'estimation
de log K_L de l'ensemble de formation en utilisant l'équation II.32.

Groupe	Ci	e_i	Si	a_i	b_i	l_i
CH ₃	-79.529	63.55	10.02	123.56	-16.94	2.491
	(9.460)	(14.16)	(16.53)	(17.92)	(15.85)	(2.819)
CH ₂	8.735 (1.776)	-23.029 (2.763)	-14.853 (3.381)	-7.943 (3.389)	-15.728 (3.717)	8.8696 (0.5369)
0	-58.936	-19.71	65.93	25.47	23.87	-9.714
	(8.561)	(11.37)	(11.30)	(15.04)	(12.19)	(2.134)
ОН	-229.07	67.37	89.92	189.45	115.28	-14.301
	(18.23)	(25.13)	(26.11)	(30.40)	(26.31)	(4.796)
$[\mathbf{N}]^+$	2323.13	309.7	-324.0	-499.0	437.2	-265.43
	(72.70)	(101.7)	(126.3)	(134.9)	(140.0)	(20.23)
$[S]^+$	1857.38	-63.65	52.87	-356.36	316.47	-57.78
	(51.21)	(66.22)	(79.44)	(87.22)	(73.54)	(12.92)
$[IM]^+$	1912.06	-25.95	-42.82	-303.23	303.95	-63.03
	(43.12)	(43.19)	(48.18)	(71.21)	(52.53)	(10.03)
$[PY]^+$	1868.85	26.25	-52.28	-257.73	274.76	-61.610
	(42.39)	(43.10)	(48.69)	(70.13)	(51.75)	(9.674)
[PYR] ⁺	1848.65	-5.08	-11.73	-269.83	290.62	-49.39
	(45.50)	(51.38)	(62.39)	(76.82)	(65.08)	(10.90)
$[PIP]^+$	1844.73	-19.79	79.27	-237.58	154.87	-42.47
	(47.20)	(50.04)	(57.88)	(75.13)	(61.36)	(11.24)
[P] ⁺	1967.91	324.5	13.0	-501.3	606.8	-247.88
	(82.97)	(114.5)	(134.4)	(147.9)	(143.9)	(23.51)
[Tf ₂ N] ⁻	-897.98	-29.26	723.83	649.29	-31.87	209.955
	(35.92)	(29.12)	(30.54)	(58.98)	(37.74)	(7.585)
[PF ₆] ⁻	-981.10	78.15	773.92	569.44	73.15	209.158
	(38.69)	(41.35)	(50.83)	(69.30)	(53.10)	(8.712)
[BF ₄] ⁻	-969.19	137.84	740.53	1024.58	-37.00	190.681
	(36.25)	(29.77)	(31.35)	(59.91)	(38.54)	(7.698)
[MeSO ₄] ⁻	-862.93	-388.96	1260.7	2233.5	-742.2	148.49
	(57.06)	(96.53)	(142.2)	(205.7)	(219.8)	(18.23)
[EtSO ₄] ⁻	-974.59	-11.78	806.36	1518.22	264.67	200.901
	(39.08)	(37.76)	(42.15)	(70.96)	(53.19)	(8.474)
[OcSO ₄] ⁻	-897.33	-68.02	589.02	1432.13	-273.17	251.29
	(48.38)	(43.78)	(44.93)	(78.82)	(54.00)	(12.41)
[SCN] ⁻	-1130.92 (36.90)	226.86 (34.20)	741.10 (39.06)	1405.42 (60.20)	32.74 (41.12)	212.033 (7.961)
[CF ₃ SO ₃] ⁻	-966.66	50.12	747.86	1034.39	21.52	206.423
	(37.44)	(35.75)	(42.81)	(63.45)	(47.33)	(8.193)
[F ₃ AC] ⁻	-1016.32	111.54	576.76	1388.34	221.76	219.180
	(40.27)	(53.32)	(67.10)	(79.97)	(75.88)	(9.367)
$[CH_3OC_2H_4SO_4]^-$	-885.74	-113.84	1170.0	-137.8	-644.9	132.29
	(64.44)	(96.38)	(151.3)	(826.7)	(198.3)	(21.32)
$[(CH_3)_2PO_4]^-$	-1208.70	329.60	398.87	1933.87	363.43	245.13

(68.84)	(55.94)	(73.57)	(84.99)	(87.52)	(18.79)
-934.68	215.45	558.13	1469.06	136.92	186.815
(35.94)	(28.46)	(31.18)	(48.71)	(31.89)	(7.459)

Tableau A.9. Prédiction du log K_L de solutés organiques dans quatre liquides ioniques en utilisant le modèle TDGC-LSER.

Soluté	$\log K_{L \text{pred}}$	$\log K_{L \exp}$	γ_{pred}^{∞}	γ_{exp}^{∞}
	[BMIM] ⁺ [Cl] ⁻ (T=358.15 K)		
Octane	0.268	0.290	347.15	330.66
Nonane	0.301	0.530	805.97	475.82
Décane	0.334	0.702	1641.16	704.04
Cyclopentane	0.572	0.209	16.78	38.69
Cyclohexane	0.633	0.456	36.37	54.69
Méthylcyclohexane	0.535	0.527	82.79	84.25
Cycloheptane	0.714	0.896	95.49	62.67
Cyclooctane	0.799	1.240	219.59	79.55
Hex-1-ène	0.343	0.183	42.64	61.71
Hept-1-ène	0.385	0.413	94.75	88.9
Oct-1-ène	0.420	0.588	209.26	141.84
Dec-1-ène	0.482	0.972	996.83	322.82
Cyclohexène	0.804	0.862	26.08	22.84
Pent-1-yne	1.257	0.978	2.58	4.89
Hex-1-yne	1.304	1.202	5.80	7.33
Hept-1-yne	1.332	1.383	13.08	11.63
Oct-1-yne	1.362	1.560	28.87	18.32
Acétone	1.398	1.374	2.89	3.05
Pentan-2-one	1.172	1.604	20.52	7.59
Pentan-3-one	1.144	1.600	21.71	7.6
MTBE	0.118	0.470	55.30	24.61
TAME	0.105	0.734	144.27	33.96
ETBE	-0.055	0.271	137.25	64.78
Diéthyl éther	0.260	0.308	21.55	19.27
Di-n-propyl éther	0.298	0.555	103.81	57.4
Di-iso-propyl éther	0.181	0.133	70.34	78.53
Di-n-butyl éther	0.356	0.935	493.24	130.04
THF	0.979	1.243	10.40	5.66
1.4-dioxane	1.328	1.922	13.65	3.47
Benzène	1.533	1.529	4.47	4.51
Toluène	1.562	1.703	10.75	7.78
Ethylbenzène	1.571	1.829	23.82	13.15
o-xylène	1.706	2.019	23.75	11.55
<i>m</i> -xylène	1.593	1.844	25.54	14.31
<i>p</i> -xylène	1.586	1.833	24.08	13.63
Styrène	2.009	2.386	11.82	4.96
α-Methylstyrène	1.991	2.429	24.69	9.01
Méthyl acétate	1.093	1.180	5.89	4.82
Ethyl acétate	1.055	1.184	12.14	9.02
Méthyl propanoate	1.038	1.268	13.56	8
Méthyl butanoate	1.053	1.406	27.74	12.3

Vinyl acétate	1.185	1.324	7.79	5.66
Butyraldéhyde	1.168	1.392	8.77	5.24
Acétonitrile	2.154	2.152	1.12	1.12
Pyridine	1.839	2.501	6.75	1.47
1-nitropropane	1.971	2.503	8.55	2.51
Thiophène	1.679	1.926	3.60	2.04
	[BMIM] ⁺ [Cl] ⁻ (T=398.15 K)		
Méthanol	2.371	2.236	0.11	0.16
Ethanol	2.051	2.119	0.35	0.30
Propan-1-ol	2.077	2.198	0.54	0.41
Propan-2-ol	1.682	1.903	0.90	0.54
2-méthyl-propan-1-ol	2.034	2.292	0.98	0.54
Butan-1-ol	2.103	2.426	1.17	0.56
Butan-2-ol	1.719	2.036	1.56	0.75
tert-Butanol	1.438	1.669	1.68	0.99
Eau	4.129	3.080	0.01	0.07
	[BMIM] ⁺ [(CH	$_{3}_{2}PO_{4}^{-}(T=358.15 H)$	K)	I
Octane	0.713	0.978	87.99	47.9
Nonane	1.014	1.225	110.36	67.86
Décane	1.314	1.428	121.54	93.39
Cyclopentane	0.352	0.703	19.67	8.76
Cyclohexane	0.684	0.954	22.89	12.29
Méthylcyclohexane	0.798	1.062	31.92	17.38
Cycloheptane	1.169	1.362	23.65	15.14
Cyclooctane	1.603	1.716	24.32	18.77
Hex-1-ène	0.329	0.679	31.13	13.89
Hept-1-ène	0.635	0.918	37.65	19.61
Oct-1-ène	0.937	1.150	44.86	27.49
Dec-1-ène	1.510	1.601	65.93	53.5
Cyclohexène	1.073	1.215	9.92	7.15
Pent-1-yne	0.930	1.178	3.86	2.18
Hex-1-yne	1.186	1.438	5.37	3.01
Hept-1-yne	1.472	1.673	6.69	4.21
Oct-1-vne	1.777	1.891	7.85	6.04
Acétone	1.412	1.424	1.97	1.92
Pentan-2-one	1.817	1.773	3.28	3.63
Pentan-3-one	1.843	1.758	3.06	3.73
MTBE	1.123	0.854	3.86	7.17
ТАМЕ	1.551	1.136	3.65	9.5
ETBE	1.319	0.826	4.09	12.75
Diéthyl éther	0.780	0.649	4.59	6.21
Di- <i>n</i> -propyl éther	1.306	1.019	7.20	13.95
Di- <i>iso</i> -propyl éther	0.892	0.719	9.65	14.39
Di- <i>n</i> -butyl éther	1.875	1.470	10.54	26.78
THF	1.694	1.400	1.42	2.79
1.4-dioxane	2.375	1.983	0.86	2.13
Benzène	1.508	1.665	3.35	2.33
Toluène	1 819	1.856	4 20	3.86
Ethylbenzène	2.109	2.039	4 87	5 73
o-xylène	2.109	2.037	4 10	5.75
o Ayrene	2.310	2.107	7.10	5.54

<i>m</i> -xylène	2.182	2.037	4.64	6.49
<i>p</i> -xylène	2.172	2.016	4.41	6.31
Styrène	2.535	2.485	2.49	2.79
α-méthylstyrène	2.840	2.573	2.47	4.57
Méthyl acetate	1.173	1.300	3.46	2.58
Ethyl acétate	1.359	1.407	4.26	3.81
Méthyl propanoate	1.432	1.468	3.87	3.56
Méthyl butanoate	1.685	1.652	4.58	4.93
Vinyl acétate	1.362	1.480	3.66	2.79
Butyraldéhyde	1.440	1.535	3.31	2.66
Acétonitrile	1.534	2.106	3.28	0.88
Pyridine	2.625	2.445	0.78	1.18
1-nitropropane	1.894	2.575	7.21	1.5
Thiophène	1.667	1.991	2.62	1.24
	[BMIM] ⁺ [D	CA] [–] (T=318.15 K)		
Pentane	0.569	0.371	26.38	41.7
Hexane	0.837	0.682	43.13	61.6
3-méthylpentane	0.791	0.655	39.31	53.7
2.2-diméthylbutane	0.670	0.456	32.74	53.6
Heptane	1.103	0.980	68.59	91
Octane	1.369	1.264	107.58	137
2.2.4-triméthylpentane	1.068	0.875	71.29	111
Nonane	1.636	1.581	182.39	207
Decane	1.902	1.813	255.55	314
Cyclopentane	1.122	0.940	11.43	17.4
Cyclohexane	1.403	1.236	17.54	25.8
Methylcyclohexane	1.461	1.343	30.59	40.2
Cycloheptane	1.820	1.727	26.33	32.6
Cyclooctane	2.185	2.147	38.82	42.4
Pent-1-ène	0.774	0.666	13.52	17.3
Hex-1-ène	1.042	0.969	22.31	26.4
Cyclohexène	1.754	1.624	8.46	11.4
Hept-1-ène	1.309	1.267	35.40	39
Oct-1-ene	1.577	1.538	54.93	60.1
Dec-1-ene	2.086	2.081	132.32	134
Pent-1-yne	1.626	1.479	2.63	3.7
Hex-1-yne	1.881	1.783	4.33	5.43
Hept-1-yne	2.136	2.055	6.84	8.24
Oct-1-yne	2.408	2.329	10.41	12.5
Benzène	2.525	2.379	1.33	1.87
Toluène	2.805	2.663	2.08	2.89
Ethylbenzène	3.030	2.866	3.27	4.78
<i>o</i> -xylène	3.266	3.119	2.72	3.82
<i>m</i> -xylène	3.095	2.944	3.29	4.65
<i>p</i> -xylène	3.089	2.945	3.19	4.44
Propylbenzène	3.240	3.090	5.21	7.36
Styrène	3.541	3.395	1.53	2.15
α-methylstyrène	3.758	3.552	2.05	3.3
Thiophène	2.709	2.661	1.02	1.14
Pyridine	3.542	3.315	0.50	0.845

Methanol	2.923	2.874	0.36	0.399
Ethanol	2.904	2.948	0.72	0.65
Propan-1-ol	3.187	3.238	0.93	0.826
Propan-2-ol	2.763	2.900	1.26	0.921
Butan-1-ol	3.481	3.556	1.31	1.1
Butan-2-ol	3.069	3.146	1.35	1.13
2-méthyl-1-propanol	3.306	3.350	1.19	1.08
tert-Butanol	2.644	2.818	1.66	1.11
Eau	3.856	3.651	0.19	0.31
Méthyl acétate	2.181	2.103	1.35	1.61
Méthyl propanoate	2.353	2.301	2.09	2.36
Méthyl butanoate	2.584	2.520	2.99	3.46
Ethyl acétate	2.326	2.228	2.05	2.57
Tétrahydrofuran	2.371	2.247	1.17	1.55
1.4-dioxane	3.126	2.999	0.79	1.06
tert-Butylméthyl éther	1.390	1.415	7.56	7.13
tert-Butyl ethyl éther	1.421	1.278	13.00	18.1
tert-Amylméthyl éther	1.683	1 714	11.49	10.7
Diéthyl ether	1.003	1.126	5.16	6.88
$Di_{n-propyl}$ éther	1.231	1.120	12.19	20.4
Di- <i>iso</i> -propyl ether	1 319	1.504	14.32	20.4
Di <i>n</i> butyl áthar	2 236	2.046	30.60	47.4
	2.230	2.040	0.79	47.4
Ponton 2 ono	2.390	2.231	1.04	2
Pentan 2 one	2.741	2.728	1.94	2 04
Putonal	2.730	2.709	1.93	2.04
	2.420	2.370	1.45	1.01
	2.988	2.181	0.49	0.781
1-nitropropane	3.431	3.427	1.19	1.20
		I_2N (I=318.15 K)	1 10	2.55
Pentane	1.610	1.245	1.10	2.55
Hexane	2.003	1.661	1.35	2.96
3-méthylpentane	1.935	1.603	1.29	2.77
2.2-diméthylbutane	1.757	1.394	1.23	2.83
Heptane	2.395	2.050	1.60	3.55
Octane	2.787	2.442	1.88	4.17
2.2.4-triméthylpentane	2.343	2.026	1.73	3.59
Nonane	3.179	2.866	2.39	4.92
Decane	3.570	3.205	2.51	5.82
Cyclopentane	1.860	1.598	0.96	1.75
Cyclohexane	2.212	1.978	1.25	2.14
Méthylcyclohexane	2.457	2.224	1.41	2.42
Cycloheptane	2.758	2.515	1.39	2.43
Cyclooctane	3.203	2.988	1.71	2.80
Pent-1-ène	1.631	1.305	0.86	1.82
Hex-1-ène	2.049	1.719	1.01	2.15
Cyclohexène	2.417	2.149	0.84	1.56
Hept-1-ène	2.421	2.111	1.25	2.56
Oct-1-ène	2.812	2.496	1.47	3.03
Dec-1-ène	3.562	3.247	2.03	4.18
Pent-1-yne	2.018	1.678	0.49	1.07

Hex-1-yne	2.402	2.081	0.60	1.25
Hept-1-yne	2.786	2.465	0.70	1.47
Oct-1-yne	3.194	2.846	0.78	1.74
Benzène	2.671	2.557	0.44	0.57
Toluène	3.096	2.940	0.49	0.70
Ethylbenzène	3.427	3.246	0.60	0.91
o-xylène	3.611	3.452	0.56	0.81
m-xylène	3.490	3.331	0.61	0.87
p-xylène	3.496	3.315	0.57	0.87
n-Propylbenzène	3.766	3.577	0.71	1.10
Styrène	3.584	3.587	0.64	0.63
a-methylstyrène	3.918	3.833	0.65	0.79
Thiophène	2.739	2.631	0.44	0.56
Pyridine	3.566	3.315	0.22	0.39
Méthanol	2.136	2.026	1.00	1.29
Ethanol	2.435	2.282	0.97	1.38
Propan-1-ol	2.865	2.655	0.89	1.45
Propan-2-ol	2.543	2.398	0.96	1.34
Butan-1-ol	3.316	3.068	0.88	1.55
Butan-2-ol	2.986	2.749	0.75	1.29
2-méthyl-1-propanol	3.122	2.863	0.84	1.52
tert-Butanol	2.601	2.475	0.84	1.12
Pentan-1-ol	3.711	3.470	0.87	1.52
Eau	2.322	2.151	3.03	4.49
Méthyl acétate	2.637	2.269	0.22	0.50
Méthyl propanoate	2.980	2.610	0.23	0.53
Méthyl butanoate	3.353	2.933	0.23	0.61
Ethyl acétate	2.938	2.566	0.23	0.54
Tetrahydrofuran	2.910	2.503	0.15	0.39
1.4-dioxane	3.555	3.009	0.14	0.47
tert-Butyl méthyl éther	2.384	1.961	0.35	0.93
tert-Butyl éthyl éther	2.600	2.006	0.39	1.55
tert-Amylméthyl éther	2.795	2.359	0.41	1.11
Diéthyl éther	2.104	1.632	0.33	0.98
Di-n-propyl éther	2.854	2.252	0.42	1.67
Di-iso-propyl éther	2.370	1.918	0.58	1.65
Di-n-butyl éther	3.613	2.991	0.59	2.46
Acétone	2.629	2.404	0.21	0.35
Pentan-2-one	3.388	3.066	0.20	0.42
Pentan-3-one	3.389	3.059	0.20	0.42
Butanal	2.904	2.571	0.22	0.46
Acétonitrile	2.944	2.634	0.25	0.51
1-nitropropane	3.813	3.435	0.24	0.57

Annexe B

Dans cette annexe, nous reportons les mesures expérimentales de quelques propriétés thermophysiques des mélanges {Eau+LI}. Les tableaux B.1-B.3 présentent les données d'équilibre liquide-valeur des systèmes étudiés. Les volumes molaires d'excès sont donnés dans les Tableaux B.4-B.6. Les capacités calorifiques molaires ainsi que les données de capacité calorifique molaire d'excès des systèmes {Eau + [BMIM][TCM]}, {Eau + [BMPY][TCM]} et {Eau + [BMPYR][TCM]} à différentes températures sont reportés dans les Tableaux B7-B.12). L'ensemble des points expérimentaux des équilibres liquide-vapeur du CO₂ dans les trois LIs sont donnés dans les Tableaux B.13-B.15.

B.1. Equilibre liquide-vapeur des systèmes binaires {Eau + Liquide Ionique}

Tableau	B.1 .	Données	d'équilibre	liquide-vapeur	pour	le	système	binaire	Eau	(1)	+
[BMIM][TCM]	(2) en for	nction de la te	empérature et la	compo	osit	ion en eau	1.			

<i>x</i> ₁	P ^{exp} /kPa	P ^{cal} /kPa	γ^{exp}	γ^{cal}
		T=283.15 K		
0.1418	0.12	0.10	0.69	0.58
0.2494	0.22	0.21	0.72	0.67
0.3705	0.36	0.35	0.80	0.77
0.4627	0.46	0.47	0.81	0.83
0.602	0.64	0.67	0.87	0.91
0.7539	0.85	0.89	0.92	0.97
0.8529	0.98	1.03	0.94	0.99
		T=288.15 K		
0.1418	0.14	0.15	0.58	0.60
0.2494	0.31	0.30	0.73	0.72
0.3705	0.51	0.51	0.81	0.81
0.4627	0.67	0.68	0.85	0.86
0.602	0.92	0.94	0.90	0.92
0.7539	1.25	1.24	0.98	0.97
0.8529	1.49	1.43	1.03	0.99
		T=293.15 K		
0.1418	0.19	0.21	0.58	0.63
0.2494	0.39	0.44	0.67	0.76
0.3705	0.71	0.73	0.82	0.84
0.4627	0.98	0.96	0.91	0.89
0.602	1.38	1.32	0.98	0.94
0.7539	1.81	1.72	1.03	0.98
0.8529	2.18	1.97	1.10	0.99

Т=298.15 К									
0.1418	0.26	0.29	0.58	0.65					
0.2494	0.53	0.63	0.67	0.80					
0.3705	1.01	1.03	0.86	0.88					
0.4627	1.39	1.34	0.95	0.91					
0.602	1.93	1.82	1.02	0.96					
0.7539	2.51	2.34	1.05	0.98					
0.8529	2.84	2.68	1.05	0.99					
Т=303.15 К									
0.1418	0.44	0.40	0.73	0.67					
0.2494	0.82	0.89	0.78	0.84					
0.3705	1.45	1.43	0.92	0.91					
0.4627	1.86	1.84	0.95	0.94					
0.602	2.61	2.47	1.02	0.97					
0.7539	3.44	3.16	1.08	0.99					
0.8529	3.87	3.60	1.07	1.00					
		T=308.15 K	•						
0.1418	0.5	0.55	0.63	0.69					
0.2494	1.21	1.24	0.86	0.88					
0.3705	1.99	1.97	0.96	0.95					
0.4627	2.6	2.51	1.00	0.97					
0.602	3.58	3.33	1.06	0.99					
0.7539	4.56	4.21	1.08	1.00					
0.8529	5.01	4.78	1.05	1.00					
		T=313.15 K							
0.1418	0.85	0.74	0.81	0.71					
0.2494	1.7	1.69	0.93	0.92					
0.3705	2.75	2.67	1.01	0.98					
0.4627	3.36	3.39	0.99	0.99					
0.602	4.35	4.43	0.98	1.00					
0.7539	5.56	5.55	1.00	1.00					
0.8529	6.52	6.28	1.04	1.00					

Tableau B.2. Données d'équilibre liquide-vapeur pour le système binaire Eau (1) + [BMPY][TCM] (2) en fonction de la température et la composition en eau.

<i>x</i> ₁	P ^{exp} /kPa	P ^{cal} /kPa	γ^{exp}	γ^{cal}						
	Т=283.15 К									
0.1044	0.12	0.12	0.94	0.97						
0.2972	0.31	0.33	0.85	0.90						
0.4268	0.41	0.48	0.79	0.93						
0.5291	0.64	0.61	0.99	0.95						
0.6452	0.81	0.77	1.03	0.97						
0.7061	0.88	0.85	1.02	0.98						
0.8011	0.95	0.97	0.97	0.99						
		T=288.15 K								

0.1592	0.22	0.24	0.81	0.88						
0.2972	0.41	0.45	0.81	0.90						
0.3923	0.57	0.61	0.86	0.92						
0.5316	0.87	0.86	0.96	0.95						
0.6452	1.19	1.06	1.09	0.97						
0.7061	1.3	1.18	1.08	0.98						
0.8011	1.36	1.35	1.00	0.99						
Т=293.15 К										
0.1044	0.24	0.22	0.99	0.90						
0.2971	0.71	0.62	1.03	0.89						
0.3923	0.91	0.84	1.00	0.92						
0.4942	1.21	1.08	1.05	0.94						
0.5291	1.31	1.17	1.06	0.95						
0.6452	1.72	1.46	1.14	0.97						
0.7061	1.85	1.61	1.12	0.98						
0.8327	2.03	1.93	1.05	0.99						
		T=298.15 K								
0.1044	0.3	0.29	0.91	0.87						
0.2971	0.91	0.83	0.97	0.89						
0.4268	1.28	1.25	0.95	0.92						
0.5291	1.52	1.59	0.91	0.95						
0.6467	2.09	1.98	1.02	0.97						
0.7061	2.31	2.19	1.04	0.98						
0.8011	2.48	2.51	0.98	0.99						
0.8327	2.48	2.61	0.94	0.99						
		T=303.15 K								
0.1044	0.37	0.37	0.84	0.85						
0.2971	1.13	1.12	0.90	0.89						
0.4268	1.75	1.67	0.97	0.92						
0.5291	2	2.12	0.89	0.95						
0.6452	2.72	2.65	1.00	0.97						
0.7061	2.95	2.93	0.99	0.98						
0.8011	3.21	3.36	0.95	0.99						
0.8327	3.29	3.50	0.93	0.99						
	1	T=308.15 K	1							
0.1044	0.43	0.48	0.73	0.82						
0.2972	1.34	1.47	0.80	0.88						
0.4942	2.36	2.61	0.85	0.94						
0.6467	3.36	3.52	0.93	0.97						
0.7061	3.76	3.88	0.95	0.98						
0.8327	4.01	4.64	0.86	0.99						
	I	T=313.15 K	Γ							
0.1044	0.64	0.61	0.83	0.79						
0.2972	1.62	1.93	0.74	0.88						
0.4942	3.56	3.42	0.98	0.94						
0.5291	3.83	3.69	0.98	0.95						

0.7061	4.9	5.09	0.94	0.98
0.8327	5.12	6.09	0.84	0.99

Tableau B.3. Données d'équilibre liquide-vapeur pour le système binaire Eau (1) +[BMPYR][TCM] (2) en fonction de la température et la composition en eau.

<i>x</i> ₁	P ^{exp} /kPa	P ^{cal} /kPa	γ^{exp}	γ^{cal}						
		T=283.15 K	1	1						
0.1829	0.21	0.19	0.94	0.86						
0.295	0.28	0.32	0.78	0.89						
0.3921	0.41	0.44	0.86	0.92						
0.5095	0.61	0.59	0.98	0.95						
0.5883	0.72	0.69	1.00	0.96						
0.658	0.8	0.78	1.00	0.97						
0.7902	0.92	0.96	0.95	0.99						
	Т=288.15 К									
0.1829	0.24	0.26	0.77	0.85						
0.295	0.38	0.44	0.76	0.88						
0.3921	0.58	0.60	0.87	0.91						
0.5095	0.88	0.81	1.02	0.94						
0.5883	1.07	0.96	1.07	0.96						
0.658	1.22	1.08	1.09	0.97						
0.7902	1.47	1.33	1.10	0.99						
Т=293.15 К										
0.1829	0.39	0.35	0.92	0.83						
0.295	0.58	0.59	0.84	0.87						
0.3921	0.79	0.82	0.86	0.90						
0.5095	1.2	1.11	1.01	0.93						
0.5883	1.47	1.31	1.07	0.95						
0.658	1.63	1.48	1.06	0.97						
0.7902	1.84	1.82	1.00	0.99						
		T=298.15 K								
0.1829	0.5	0.47	0.87	0.82						
0.295	0.81	0.79	0.87	0.85						
0.3921	1.14	1.10	0.92	0.89						
0.5095	1.66	1.49	1.03	0.93						
0.5883	2.03	1.76	1.09	0.95						
0.658	2.25	2.00	1.08	0.96						
0.7902	2.62	2.46	1.05	0.99						
		T=303.15 K	1	1						
0.1829	0.56	0.62	0.72	0.80						
0.295	0.91	1.05	0.73	0.84						
0.3921	1.29	1.46	0.78	0.88						
0.5095	2.05	1.98	0.95	0.92						
0.5883	2.32	2.35	0.93	0.94						
0.658	2.82	2.68	1.01	0.96						

0.7902	3.5	3.30	1.05	0.99
		T=308.15 K		
0.1829	0.85	0.81	0.83	0.79
0.295	1.26	1.37	0.76	0.83
0.3921	2.1	1.91	0.95	0.87
0.5095	2.42	2.61	0.85	0.91
0.5883	2.82	3.10	0.85	0.94
0.658	3.16	3.54	0.86	0.96
0.7902	3.7	4.36	0.83	0.98
		T=313.15 K		
0.1829	1.06	1.05	0.79	0.78
0.295	1.82	1.78	0.84	0.82
0.3921	2.62	2.48	0.91	0.86
0.5095	3.52	3.41	0.94	0.91
0.5883	3.89	4.05	0.90	0.94
0.658	4.52	4.63	0.93	0.96
0.8457	5.73	6.17	0.92	0.99

B.2. Volume molaire d'excès des systèmes binaires {Eau + Liquide Ionique}

Tableau B.4. Valeurs expérimentales de volume molaire d'excès pour le système binaire Eau (1) + [BMIM][TCM] (2) en fonction de la température et la composition en eau.

T =	293.15 K	T =	= 303.15 K	T =	= 313.15 K	T =	323.15 K
<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)
0	0	0	0	0	0	0	0
0.1412	0.1644	0.1497	0.2833	0.1412	0.2523	0.1412	0.2360
0.2063	0.2087	0.1986	0.3419	0.2063	0.3308	0.2063	0.3499
0.3051	0.2780	0.3091	0.4169	0.3051	0.4326	0.3051	0.4868
0.3932	0.3069	0.3989	0.4578	0.3932	0.4882	0.3932	0.6056
0.5025	0.3354	0.4955	0.4563	0.5025	0.5000	0.5014	0.6293
0.5971	0.2806	0.5999	0.4254	0.5971	0.4857	0.5944	0.5945
0.7035	0.1589	0.6982	0.3779	0.7035	0.4064	0.6977	0.5433
0.8016	0.0070	0.8004	0.2607	0.8016	0.2879	0.8000	0.4179
1	0	1	0	1	0	1	0

T =	293.15 K	T =	= 303.15 K	T =	= 313.15 K	T =	323.15 K
<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$\frac{V^E}{(\text{cm}^3 \text{mol}^{-1})}$
0	0	0	0	0	0	0	0
0.1362	0.1105	0.1362	0.1560	0.1362	0.1500	0.1362	0.1533
0.2200	0.1723	0.2200	0.2388	0.2200	0.2406	0.2200	0.2520
0.3297	0.2410	0.3297	0.3094	0.3297	0.3420	0.3297	0.3574
0.4198	0.2686	0.4198	0.3533	0.4198	0.3931	0.4198	0.4105
0.5254	0.2766	0.5254	0.3728	0.5254	0.4291	0.5254	0.4437
0.6313	0.2511	0.6313	0.3573	0.6313	0.4311	0.6313	0.4370
0.7156	0.2047	0.7156	0.3155	0.7156	0.3883	0.7156	0.4003
0.8096	0.1274	0.8096	0.2224	0.8096	0.3015	0.8096	0.2973
1	0	1	0	1	0	1	0

Tableau B.5. Valeurs expérimentales de volume molaire d'excès pour le système binaire Eau (1) + [BMPY][TCM] (2) en fonction de la température et la composition en eau.

Tableau B.6. Valeurs expérimentales de volume molaire d'excès pour le système binaire Eau (1) + [BMPYR][TCM] (2) en fonction de la température et la composition en eau.

T =	293.15 K	T =	= 303.15 K	T =	= 313.15 K	T =	323.15 K
<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)	<i>x</i> ₁	$V^E/$ (cm ³ mol ⁻¹)
0	0	0	0	0	0	0	0
0.0734	0.0840	0.0734	0.0667	0.0821	0.1303	0.0821	0.1414
0.2046	0.1693	0.2046	0.1835	0.2139	0.2622	0.2139	0.2656
0.3056	0.2075	0.3056	0.2458	0.3130	0.3335	0.3130	0.3260
0.3806	0.2222	0.3806	0.2792	0.3970	0.3720	0.3970	0.3698
0.5091	0.2147	0.5091	0.2973	0.5171	0.3959	0.5171	0.4043
0.6071	0.1764	0.6071	0.2749	0.6069	0.3763	0.6069	0.3707
0.6987	0.1195	0.6987	0.2272	0.6976	0.3296	0.6976	0.3219
0.8009	0.0352	0.8009	0.1396	0.8005	0.2262	0.8005	0.2190
1	0	1	0	1	0	1	0

B.3. Capacité calorifique molaire des systèmes binaires {Eau + Liquide Ionique}

Tableau B.7. Capacité calorifique molaire (Cp) pour le système {Eau (1) + [BMIM][TCM] (2)} à différentes températures allant de 303.15 à 338.15 K.

	$Cp/J.mol^{-1}.K^{-1}$										
	<i>x</i> ₂										
T/K	0	0.2157	0.3030	0.4015	0.5191	0.6137	0.7128	0.7914	1		
303.15	75.0	165.9	193.4	225.2	260.8	297.4	329.8	356.3	426.1		
308.15	75.2	166.9	194.7	225.5	262.2	297.1	332.1	356	426.3		
313.15	75.4	167	194.8	226.6	263.1	298.9	332.7	357.9	428.2		

318.15	75.3	167.4	195.5	227.3	263.4	299.6	333.8	358.2	428.8
323.15	75.2	167.5	196	227.8	264.4	300.2	334.2	359.1	429.9
328.15	75.2	167.6	195.9	228.4	265.1	300.5	335	359.8	429.8
333.15	75.2	167.9	196.3	229.1	266	301.3	335.4	360.3	430.8
338.15	75.3	168	196.3	229.5	266.8	301.9	336	361.2	430.9

Tableau B.8. Capacité calorifique molaire (Cp) pour le système {Eau (1) + [BMPY][TCM] (2)} à différentes températures allant de 303.15 à 338.15 K.

	Cp/J.mol ⁻¹ .K ⁻¹										
	<i>x</i> ₂										
T/K	0	0.2890	0.3038	0.4032	0.5102	0.6065	0.7035	0.8785	0.9040	1	
303.15	75.0	187.3	188.9	220.0	263.1	293.9	325.4	390.4	393.9	426.7	
308.15	75.2	188.6	188.7	222.1	263.1	296.3	326.0	391.1	396.0	426.6	
313.15	75.4	188.9	190.2	223.0	263.9	296.5	327.8	392.5	397.4	429.3	
318.15	75.3	189.6	190.5	223.9	264.6	297.8	328.1	394.3	399.3	430.0	
323.15	75.2	189.8	191.2	225.0	265.2	298.4	329.0	395.0	399.8	431.9	
328.15	75.2	190.3	191.6	225.8	265.8	299.1	329.5	396.4	400.5	432.6	
333.15	75.2	190.5	192.3	226.7	266.3	299.3	329.9	397.1	401.3	433.6	
338.15	75.3	190.9	192.8	227.6	267.1	300.2	330.7	397.9	402.0	435.0	

Tableau B.9. Capacité calorifique molaire (Cp) pour le système {Eau (1) + [BMPYR][TCM] (2)} à différentes températures allant de 303.15 à 338.15 K.

				C	p/J.mol ⁻¹ .l	K ⁻¹				
					<i>x</i> ₂					
T/K	0	0.2165	0.3018	0.4090	0.5021	0.6000	0.7681	0.8109	0.9167	1
303.15	75.0	166.4	195.1	226.3	255.6	284.4	346.3	359.1	387.9	415.0
308.15	75.2	166.8	195.1	226.9	257.3	285.4	348.3	359.8	388.9	415.8
313.15	75.4	167.1	195.5	228.4	257.9	286.7	348.9	361.7	391.2	418.5
318.15	75.3	167.7	196.2	229.0	258.4	286.8	349.6	362.4	392.3	418.9
323.15	75.2	167.8	196.3	230.0	258.8	287.6	350.2	363.7	393.6	420.2
328.15	75.2	168.3	196.8	230.5	259.0	288.0	350.8	364.3	394.6	420.5
333.15	75.2	168.5	197.0	231.4	259.2	288.5	351.5	365.1	396.1	421.4
338.15	75.3	168.9	197.4	232.0	259.5	288.8	351.9	366.2	397.4	421.8

Tableau B.10. Capacité calorifique molaire d'excès (C_P^E) pour le système {Eau (1) + [BMIM][TCM] (2)} à différentes températures allant de 303.15 à 338.15 K.

	$C_P^E/J.mol^{-1}.K^{-1}$										
	<i>x</i> ₂										
T/K	0.2157	0.3030	0.4015	0.5191	0.6137	0.7128	0.7914				
303.15	15.2	12.0	9.2	3.6	6.9	4.5	3.4				
308.15	16.0	13.1	9.4	4.8	6.5	6.7	3.0				
313.15	15.5	12.5	9.5	4.5	6.9	5.8	3.3				

318.15	15.8	13.1	10.0	4.5	6.8	6.5	3.1
323.15	15.8	13.3	10.2	5.1	7.3	6.2	3.2
328.15	16.0	13.3	10.8	5.8	7.7	7.0	4.0
333.15	16.0	13.4	11.1	6.2	7.9	6.7	3.7
338.15	16.0	13.2	11.4	6.9	8.3	7.2	4.5

Tableau B.11. Capacité calorifique molaire d'excès (C_P^E) pour le système {Eau (1) +[BMPY][TCM] (2)} à différentes températures allant de 303.15 à 338.15 K.

	$C_P^E/J.mol^{-1}.K^{-1}$											
	<i>x</i> ₂											
T/K	0.2890	0.3038	0.4032	0.5102	0.6065	0.7035	0.8785	0.9040				
303.15	10.7	5.6	3.2	8.7	5.6	3.0	6.5	1.0				
308.15	11.8	5.2	5.2	8.7	7.9	3.6	7.2	3.1				
313.15	11.3	5.7	4.9	7.9	6.5	3.4	6.2	2.1				
318.15	11.8	5.8	5.6	8.4	7.4	3.3	7.4	3.4				
323.15	11.6	6.1	6.0	8.1	6.8	2.9	6.5	2.2				
328.15	11.8	6.2	6.5	8.3	7.2	2.9	7.2	2.3				
333.15	11.7	6.6	7.0	8.3	6.7	2.6	7.0	2.1				
338.15	11.6	6.5	7.2	8.3	6.8	2.4	6.6	1.5				

Tableau B.12. Capacité calorifique molaire d'excès (C_P^E) pour le système {Eau (1) + [BMPYR][TCM] (2)} à différentes températures allant de 303.15 à 338.15 K.

	$C_P^E/J.mol^{-1}.K^{-1}$											
	<i>x</i> ₂											
T/K	0.2165	0.3018	0.4090	0.5021	0.6000	0.7681	0.8109	0.9167				
303.15	17.7	17.6	12.2	10.0	5.4	10.2	8.4	1.3				
308.15	17.7	17.1	12.4	11.1	5.9	11.5	8.4	1.5				
313.15	17.3	16.6	12.7	10.2	5.4	10.0	8.1	1.3				
318.15	17.9	17.2	13.1	10.5	5.3	10.4	8.5	2.0				
323.15	17.8	17.0	13.7	10.3	5.4	10.0	8.7	2.1				
328.15	18.2	17.4	14.1	10.5	5.7	10.4	9.1	2.9				
333.15	18.2	17.3	14.6	10.2	5.6	10.3	9.2	3.5				
338.15	18.4	17.5	14.9	10.2	5.6	10.4	9.9	4.4				

B.4. Points expérimentaux de bulle des systèmes binaires {CO₂ + Liquide Ionique}

Tableau B.13. Points expérimentaux de bulle pour différentes compositions du système binaire $CO_2 + [BMIM][TCM]$.

X _(CO2)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
0.108	297.11	4.9	322.32	7.2		
	302.19	5.2	327.40	7.6		
	307.17	5.7	332.38	7.9		
	312.25	6.2	337.36	8.3		
	317.24	6.7				

0.149	292.13	6.3	317.24	8.7	342.44	10.9
	297.11	6.8	322.32	9.2	347.52	11.4
	302.19	6.9	327.40	9.7	352.50	11.8
	307.17	7.5	332.38	10	357.59	12.2
	312.25	8.1	337.46	10.4		
0.243	297.11	12.1	322.32	18.2		
	302.19	13.2	327.40	19.5		
	307.17	14.4	332.38	20.9		
	312.25	15.7				
	317.24	16.9				
0.286	298.21	14	323.01	24.4	347.92	34.5
	303.09	15.7	327.90	26.8		
	308.07	18.5	333.08	27.9		
	312.95	20.7	337.96	29.8		
	317.93	22.6	342.94	32.3		
0.36	297.11	24.3	322.32	36.7	347.52	52.4
	302.19	26.4	327.40	39.7	352.50	55.8
	307.17	28.9	332.38	42.6	357.59	59.3
	312.25	31.2	337.46	45.7	362.57	62.9
	317.24	33.9	342.44	48.9		
0.395	298.21	29.9	323.11	45.8	348.02	65.4
	303.19	33.3	328.10	49.5	353.10	70.1
	308.17	35.1	333.08	53.1	358.08	74
	313.15	38.1	338.06	57.3	363.07	78.5
	318.13	42.1	343.14	61.4	367.85	81.6
0.422	297.11	38.6	322.32	57.3	347.52	79.9
	302.19	42.2	327.40	61.5	352.50	84.4
	307.17	46	332.38	65.8	357.59	89
	312.25	50.2	337.46	70.4	362.57	93.6
	317.24	53.01	342.44	75.2	367.65	98.1
0.502	298.21	41.2	323.01	67.1	343.04	97
	303.29	45.5	328.10	74	348.02	104.7
	308.17	50.6	332.98	80.5	352.90	112.8
	313.15	55.8	333.08	81.9	357.59	121.6
	318.13	61.5	337.96	89		

Tableau B.14. Points expérimentaux de bulle pour différentes compositions du systèmebinaire $CO_2 + [BMPY][TCM]$.

X _(CO2)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
0.169	293.22	5.4	318.03	7.9	343.04	10.1
	298.10	5.8	323.11	8.3	348.02	10.6
	302.99	6.3	328.10	8.7	353.01	11.2
	308.17	6.9	333.08	9.2		
	313.05	7.4	338.06	9.7		
0.2	293.32	6.6	318.03	9.7	342.94	12.4

	298.00	7.1	323.11	10.1	347.72	12.9
	303.09	7.7	328.00	10.8	352.91	13.1
	308.07	8.2	332.98	11.4		
	313.05	9.1	338.06	11.8		
0.269	293.12	8.8	318.23	12.9	343.14	17.7
	298.10	9.7	323.11	14.2	348.12	18.4
	303.09	10.5	328.20	15.4	350.12	19.7
	308.17	11.3	333.08	16.2		
	313.25	12.1	338.16	16.9		
0.29	293.12	9.3	318.13	14.1	343.04	19.2
	298.00	10.2	323.21	15.1	348.02	20.2
	303.09	11.1	328.10	16.1	353.01	21.2
	308.07	12.1	333.18	17.2		
	313.05	13.1	338.16	18.3		
0.353	293.15	11.6	318.14	18.2	343.14	25.2
	298.15	12.9	323.14	19.5	348.14	26.6
	303.15	14.2	328.12	21	353.13	28.1
	308.15	15.5	333.15	22.5	358.13	29.1
	313.13	16.9	338.13	23.7		
0.427	293.15	16.3	318.14	24.5	343.15	33.7
	298.15	17.6	323.14	26.3	348.14	35.5
	303.15	19.3	328.14	28.2	353.14	37.4
	308.15	21	333.15	30.2		
	313.13	22.8	338.15	31.7		
0.652	293.22	44.2	318.13	63.8	343.14	83.6
	298.10	48.1	323.21	67.9	347.92	87.3
	303.19	52.2	328.10	71.8	353.11	89.9
	307.77	56	333.08	75.8		
	313.15	59.8	338.06	79.7		

Tableau B.15. Points expérimentaux de bulle pour différentes compositions du systèmebinaire $CO_2 + [BMPYR][TCM].$

X (CO2)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
0.144	293.15	4	318.14	6.1	343.14	8.4
	298.14	4.5	323.15	6.6	348.14	9
	303.15	4.8	328.15	7	353.13	9.5
	308.14	5.2	333.14	7.5		
	313.12	5.7	338.15	8		
0.197	299.00	6.7	323.21	9.7	348.12	12.9
	303.19	7.1	328.20	10.4	353.01	13.6
	308.27	7.8	333.08	11		
	313.05	8.4	338.16	11.6		
	318.13	9	343.04	12.3		
0.265	293.16	9.8	318.16	14.8	343.13	20.1
	298.15	10.7	323.15	15.8	348.13	21.2

	303.13	11.7	328.14	16.9	353.14	22.2
	308.14	12.7	333.15	17.9		
	313.16	13.7	338.14	19.1		
0.323	293.12	14.1	318.13	21.3	343.04	28.9
	298.10	15.3	323.21	22.9	348.02	30.2
	303.09	16.8	327.20	24.5	353.11	31.6
	308.17	18.3	333.08	26.1		
	313.15	19.8	338.16	27.5		
0.412	303.19	22.7	328.10	32.2	353.01	41.5
	308.27	24.6	333.08	34.1		
	313.15	26.4	338.06	35.8		
	318.13	28.4	343.04	37.7		
	323.21	30.3	348.02	39.6		
0.435	293.15	20.5	318.14	31	343.15	42.4
	298.13	22.5	323.14	33.3	348.13	44.8
	303.16	24.4	328.14	35.6	353.13	47.2
	308.15	26.5	333.14	37.8		
	313.14	28.8	338.15	40.1		

Publications

J. Chem. Thermodynamics 86 (2015) 116-122

Contents lists available at ScienceDirect

J. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

Activity coefficients at infinite dilution of organic solutes in methylphosphonate based ionic liquids using gas-liquid chromatography

CrossMark

Amel Ayad^a, Fabrice Mutelet^{b,*}, El-Shaimaa Abumandour^a, Amina Negadi^a

^a LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, Tlemcen University, Post Office Box 119, Tlemcen 13000, Algeria ^b Universite de Lorraine, Ecole Nationale Superieure des Industries Chimiques, Laboratoire Reactions et Genie des Procedes (UMR CNRS 7274), 1 rue Grandville, 54000 Nancy, France

ARTICLE INFO

Article history: Received 26 November 2014 Received in revised form 13 February 2015 Accepted 21 February 2015 Available online 28 February 2015

Keywords: Activity coefficient at infinite dilution

Methylphosphonate based ionic liquids Selectivities Capacities

ABSTRACT

Activity coefficients at infinite dilution γ_{12}^{∞} were determined for organic solutes in two ionic liquids 1-ethyl-3-methylimidazolium methylphosphonate [EMIM][(MeO)(H)PO₂] and 1.3-dimethylimidazolium methylphosphonate [DMIM][(MeO)(H)PO₂] by gas-liquid chromatography at temperatures within the range (313.15 to 373.15) K. The values of the selectivity and capacity for few separation problems cyclohexane/benzene, cyclohexane/thiophene and cyclohexane/pyridine were calculated from activity coefficients at infinite dilution data and compared to literature values for other ionic liquids and some industrial solvents such as sulfolane, N-methyl-2-pyrrolidone (NMP) and N-formylmorpholine (NFM). The selectivity values of both ILs investigated in this study are greater than that for NMP, NFM, and sulfolane. These results indicate the potential use of the two ILs in extractive separation processes.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, research on ionic liquids (ILs) is one of the most rapidly growing fields as novel prospective materials for a variety of innovative applications [1–7]. Due to their unique properties, such as negligible vapor pressure at room temperature, stable liquid phase over a wide temperature range and thermal stability at high temperatures, ionic liquids are creating an continuously growing interest to use them in synthesis and catalysis as well as extraction processes for the reduction of the amount of volatile organic solvents used in industry. Ionic liquid are alternative green solvents to common organic solvents in diverse applications such as organic synthesis, separation processes, catalysis and electrochemistry [8–11].

It is now well established that ILs may be used in various a large number of applications such as liquid-liquid extraction, catalysis, synthesis and gas separations [12-14]. Among others, extractive desulfurization using ionic liquids (ILs) is regarded as a promising process: it has a high sulfur removal ratio and a great selectivity under mild operating conditions, moreover, it is safe, simple but also reproducible. The use of such solvents in the field of extractive desulfurization presents a great potential due to their thermodynamic properties: negligible vapor pressure, great

thermal chemical stabilities [15,16]. In recent work, Hassan et al. [17,18] have shown that alkylphosphonate based ILs could be used for the extraction of carbohydrates and cellulose. Recent studies on the dissolution of cellulose in 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and dimethylimidazolium methylphosphonate [DMIM][MPh] indicate that the anion of the IL acts as a hydrogen bond acceptor which interacts with the hydroxyl groups of the cellulose [19]. The Kamlet–Taft parameters α : hydrogen bond acidity, β : hydrogen bond basicity and π^* : polarity show that [DMIM][MPh] and [BMIM][Cl] ILs displayed high basicity and polarity values compared to classical solvents. Methylphosphonate based ILs could be a good candidate for different problems of separation but there is still a lack of information concerning the behavior of this family of ILs with organic compounds.

Gas chromatography is a good tool to understand the behavior of the solutes and the stationary phase through the measurements of partition coefficients or activity coefficients at infinite dilution. [1,20-24]. Similar approaches based on gas chromatography technique were proposed to quantify various intermolecular solute-IL interactions. Among others, Abraham et al. have developed the Linear Solvation Energy Relationship model (LSER) allowing to correlate thermodynamic properties of phase transfer processes [25–28]. Abraham solvation parameter model for both the gas-tosolvent partition coefficient, K_L, and the water-to-solvent partition coefficient, *P* have the following expression:

^{*} Corresponding author. Tel.: +33 3 83 17 51 31; fax: +33 3 83 17 53 95. E-mail address: fabrice.mutelet@univ-lorraine.fr (F. Mutelet).

$$LogK_{L} = c + e\mathbf{E} + s\mathbf{S} + a\mathbf{A} + b\mathbf{B} + l\mathbf{L},$$
(1)

$$Log P = c + e\mathbf{E} + s\mathbf{S} + a\mathbf{A} + b\mathbf{B} + v\mathbf{V}.$$
 (2)

The dependent variables in equations (1) and (2) are solute descriptors as follows: **E** and **S** refer to the excess molar refraction in units of $(\text{cm}^3 \cdot \text{mol}^{-1})/10$ and a dipolarity/polarizability description of the solute, respectively, **A** and **B** are measures of the solute hydrogenbond acidity and basicity, **V** is the McGowan volume in units of $(\text{cm}^3 \cdot \text{mol}^{-1})/100$, and **L** is the logarithm of the gas-to-hexadecane partition coefficient at *T* = 298 K. The coefficients *c*, *e*, *s*, *a*, *b* and *l* (or v) are not simply fitting coefficients, but they reflect complementary properties of the solvent phase.

The system constants are identified as the opposing contributions of cavity formation and dispersion interactions, l, the contribution from interactions with lone pair electrons, e, the contribution from dipole-type interactions, s, the contribution from the hydrogen-bond basicity of the stationary phase (because a basic phase will interact with an acid solute), a, and b the contribution from the hydrogen-bond acidity of the stationary phase. The system constants are determined by multiple linear regression analysis of experimental logSP(log K_L in this work) values for a group of solutes of sufficient number and variety to establish the statistical and chemical validity of the model.

In this work, we present experimental measurements of γ_{12}^{∞} for selected organic solutes (alkanes, alkynes, cycloalkanes, alcohols, aromatics and ketones) in 1-ethyl-3-methylimidazolium methylphosphonate [EMIM][(MeO)(H)PO₂] and 1.3-dimethylimidazolium methylphosphonate [DMIM][(MeO)(H)PO₂] from *T* = (313.15 to 373.15) K using gas-liquid chromatography.

2. Experimental

2.1. Materials and reagents

The ionic liquids 1-ethyl-3-methylimidazolium methylphosphonate [EMIM][(MeO)(H)PO₂] and 1.3-dimethylimidazolium methylphosphonate [DMIM][(MeO)(H)PO₂] were purchased from Solvionic with a purity of 98% by mass. The structures of investigated ionic liquids are presented in figure 1. The ionic liquids were dried for more than 24 h at T = 323.15 K under reduced pressure to remove volatile impurities and trace water. Most of the solutes were purchased from Sigma Aldrich and Fluka and the purities were more than 99.5%, and were used without further purification because the GLC technique separated any impurities on the column. Water content was determined with a TIM550 Karl Fischer volumetric titration (Titralab) using the HYDRANAL-Solvent E as analyte (from Sigma–Aldrich). The results obtained have shown the water content to be less than $725 \cdot 10^{-6}$ for [DMIM] [(MeO)(H)PO₂] and $1580 \cdot 10^{-6}$ for [EMIM][(MeO)(H)PO₂]. The error on the water content was ±2%. Chemical sources and purity of all solvent and test solutes are given in supporting information table 1S.

2.2. Apparatus and experimental procedure

Inverse chromatography experiments were carried out using a Bruker 450-GC gas chromatograph equipped with a heated on-column injector and a thermal conductivity detector (TCD). The injector and detector temperatures were kept at 523 K during all experiments. The helium flow rate was adjusted to obtain adequate retention times. Air was used to determine the column hold-up time. Exit gas flow rates were measured with a soap bubble flow meter. The temperature of the oven was determined with a Pt100 probe and controlled to within $T = \pm 0.1$ K. A computer directly recorded the detector signals and the corresponding chromatograms were generated using the Galaxie Chromatography Software. Using a rotary evaporation preparatory technique, 1.0 m length columns were packed with a stationary phase, consisting of 0.35 mass fraction of IL on in Chromosorb WAW-DMCS (60-80 mesh) sorbent media. After the solvent (ethanol) evaporation, under vacuum, the support was let to equilibrate, at T = 333 K during 6 h. Prior to the measurements, each packed column was conditioned for 12 h at T = 363 K with a flow rate of 20 cm³ · min⁻¹. The packing level was calculated from the masses of the packed and empty columns and was checked throughout experiments. The masses of the stationary phase were determined to a precision of ±0.0003 g. A headspace sample volume of (1 to 5) µL was injected to satisfy infinite dilution conditions and each experiment was repeated at least twice to confirm reproducibility. Retention times were generally rigorously reproducible to within (0.01 to 0.03) min. To verify stability under these experimental conditions, ruling out elution of the stationary phase by the helium stream, measurements of retention time were repeated systematically each day for three selected typical solutes. No changes in the retention times were observed during this study.

2.3. Density measurements

Experimental densities of ILs were measured using an Anton Paar DMA 60 digital vibrating-tube densimeter, with a DMA 512P measuring cell in the temperature range (298.15 to 343.15) K at

1-Ethyl-3-methylimidazolium methylphosphonate [EMIM][(MeO)(H)PO₂]

1.3-dimethylimidazolium methylphosphonate [DIMIM][(MeO)(H)PO₂]

atmospheric pressure. The temperature in the vibrating-tube cell was measured by a platinum resistance thermometer Pt-100 with an accuracy of $T = \pm 0.1$ K. A thermostatic bath with oil as circulating fluid was used in the thermostat circuit of the measuring cell, which was held constant to $T = \pm 0.1$ K. *n*-Dodecane and tetra-chloroethylene were used as reference fluids for the calibration of the vibrating-tube densimeter in order to guarantee an extrapolation of the IL densities.

2.4. Theoretical basis

The retention data can be used to calculate the activity coefficients at infinite dilution of the solute in the ionic liquid. The standardized retention volume, V_N , was calculated with the following usual relationship [29]:

$$V_{\rm N} = \frac{3}{2} \cdot \frac{\left[\left(\frac{P_{\rm i}}{P_{\rm 0}}\right)^2 - 1\right]}{\left[\left(\frac{P_{\rm i}}{P_{\rm 0}}\right)^3 - 1\right]} U_{\rm 0} \cdot T_{\rm R}' \frac{T_{col}}{T_{\rm r}} \cdot \left(1 - \frac{P_{\rm 0w}}{P_{\rm 0}}\right). \tag{3}$$

The adjusted retention time $T'_{\rm R}$ was taken as a difference between the retention time of a solute and that of the air. $T_{\rm col}$ is the column temperature, U_0 is the flow rate of the carrier gas measured at room temperature, T_r , P_{0w} is the vapor pressure of water at T_r . P_i and P_0 are, respectively, the inlet and outlet pressures.

The activity coefficient at infinite dilution γ_{12}^{∞} of a solute 1 in the stationary phase (ionic liquid) 2 was calculated with the following equation:

$$\ln \gamma_{1,2}^{\infty} = \ln \left(\frac{n_2 \cdot R \cdot T}{V_N \cdot P_1^0} \right) - P_1^0 \cdot \frac{B_{11} - V_1^0}{RT} + \frac{2 \cdot B_{13} - V_1^{\infty}}{RT} \cdot J \cdot P_0, \tag{4}$$

where n_2 is the mole number of the stationary phase component inside the column, R is the ideal gas constant, T is the temperature of the oven, V_N denotes the net retention volume of the solute, B_{11} is the second virial coefficient of the solute in the gaseous state at temperature T, B_{13} is the mutual virial coefficient between the solute 1 and the carrier gas helium (denoted 3), and P_1^0 is the probe vapor pressure at temperature T. The values of P_1^0 and B_{11} have been taken from the literature [30,31]. The molar volume of the solute V_1^0 was determined from experimental densities, and the partial molar volumes of the solutes at infinite dilution V_1^∞ were assumed to be equal to V_1^0 . Values of B_{13} have been estimated using Tsonopolous's method [32–34]. Critical parameters and acentric factors used for the calculations were taken from the literature [30,35].

TABLE 1

Experimental activity coefficients at infinite dilution γ_{12}^{∞} for various solutes in 1-ethyl-3-methylimidazolium methylphosphonate from *T* = (313.15 to 373.15) K at *p* = 101.33 kPa.^{*a*}

Solute	T/K				Log K _L	Log P	Standard state
	313.15	333.15	353.15	373.15		298.15	
Octane	461				1.014	3.124	Liquid
Nonane	617	485			1.432	3.582	Liquid
Decane	882	704	582		1.738	3.998	Liquid
Undecane	1342	1078	888		2.051	4.431	Liquid
Dodecane	1745	1542	1300	915	2.420		Liquid
Tridecane	2564	2129	1853	1296	2.770		Liquid
Tetradecane	3493	3007	2609	2268	3.162		Liquid
Methylcyclopentane	76				0.847	2.017	Liquid <i>T</i> < 353.89 K
Cyclohexane	89	43.1			0.927	1.827	Liquid $T < 344.15$ K
Methylcyclohexane	211	70.8			0.866	2.116	Liquid
Cycloheptane	98.8	180	303	438	1.678	2.258	Liquid
Benzene	3.44	3.52	3.61	3.75	2.436	1.806	Liquid <i>T</i> < 353.25 K
Toluene	6.53	6.63	6.82	7.16	2.669	2.019	Liquid
Ethylbenzene	11.4	11.6	11.7	11.9	2.881	2.301	Liquid
<i>m</i> -Xylene	18.6	18.8	20.4	24.9	2.789	2.179	Liquid
p-Xylene	16.9	18.0	19.3	21.9	2.812	2.222	Liquid
o-Xylene	14.4	15.0	16.2	18.8	2.986	2.326	Liquid
1-Hexyne	6.24	6.73	7.14	7.56	0.879	2.039	Liquid <i>T</i> < 344.25 K
1-Heptyne	10.2	11.1	11.8	12.0	2.057	2.267	Liquid
2-Butanone	3.49	3.00	2.56	2.37	2.338	2.778	Liquid <i>T</i> < 352.79 K
2-Pentanone	6.12	6.13	6.15	6.18	2.430	-0.290	Liquid
3-Pentanone	5.77	5.88	6.00	6.17	2.609	0.029	Liquid
1.4 Dioxane	3.40	3.55	3.87	4.33	2.592	0.092	Liquid
Methanol		0.072	0.078	0.088	2.901	-0.809	Liquid <i>T</i> < 337.85 K
Ethanol		0.148	0.156	0.169	4.066	0.326	Liquid <i>T</i> < 351.52 K
1-Propanol			0.207	0.214	4.045	0.375	Liquid <i>T</i> < 370.15 K
2-Propanol		0.261	0.294	0.314			Liquid <i>T</i> < 355.75 K
2-Methyl-1-propanol			0.292	0.309	3.934	0.454	Liquid
1-Butanol			0.308	0.324	4.403	1.103	Liquid
Diethylether	1.987	2.429	3.504	4.596	4.603	1.143	Liquid <i>T</i> < 307.75 K
Chloroforme	0.277	0.358	0.451	0.544			Liquid <i>T</i> < 334.35 K
Dichloromethane	0.502	0.642	0.798		2.053	0.883	Gas
Tetrachloromethane	4.38	4.96					Liquid <i>T</i> < 349.87 K
Acetonitrile	1.08	1.11	1.19	1.25	3.294	2.504	Liquid <i>T</i> < 355.15 K
Nitromethane	0.750	0.787	0.831	0.873	2.606	1.646	Liquid
1-Nitropropane	2.68	2.69	2.75	2.800	2.302	2.302	Liquid
Triethylamine	30.2	48.0			2.988	0.138	Liquid <i>T</i> < 362.65 K
Pyridine	1.77	1.84	1.95	2.00	3.530	0.580	Liquid
Thiophene	1.99	2.16	2.50	2.64	3.506	1.056	Liquid <i>T</i> < 357.15 K
Formaldehyde	0.059	0.084	0.115	0.151			Gas

 $^a\,$ Standard uncertainties are $u(\gamma^\infty)<3\%,\,u(K_{\rm L})<3\%,\,u(P)<3\%,\,u(T)=0.05$ K, $u(p)=\pm0.1$ kPa.
The gas-to-IL partition coefficients, K_{L} , used in the LSER approach were calculated using the following expression:

$$K_{\rm L} = \frac{RT}{\gamma_{1,2}^{\infty} P_1^0 V_{solvent}}.$$
(5)

The log P values for partition from water to the IL are calculated through equation (6):

$$Log P = log K_{L} - log K_{W}.$$
 (6)

These calculations require knowledge of the solute's gas phase partition coefficient into water (K_W), which is readily available for most of the solutes studied [36]. Water-to-IL partition coefficients calculated through equation (6)pertain to a hypothetical partitioning process involving solute transfer from water to the anhydrous IL.

3. Results and discussion

3.1. Activity coefficients and selectivity at infinite dilution

The values of γ_{12}^{∞} of different organic solutes (alkanes, cycloalkanes, 1-alkynes, benzene, thiophene, alcohols, ether, acetonitrile, pyridine and 1-nitropropane) in 1-ethyl-3 methylimidazolium methylphosphonate [EMIM][(MeO)(H)PO₂] and 1.3-dimethylimidazolium methylphosphonate [DMIM][(MeO)(H)PO₂] obtained at different temperatures are listed in tables 1 and 2. Each experiment was repeated twice or more for some solute to check the reproducibility. Retention times were generally reproducible within (0.01 to 0.02) min. The γ_{12}^{∞} for methanol, ethanol, 2-propanol were not measured at the temperature 313.15 K, and 1-propanol, 2-methy-1-propanol, 1-butanol at T = (313.15 and

333.15) K for 1-ethyl-3-methylimidazolium methylphosphonate, and for methanol, ethanol, 1-propanol at the temperature (313.15, 323.15, 333.15) K with the ionic liquid 1.3-dimethylimidazolium methylphosphonate because the retention times were far beyond the scope allowed by GC. This indicates that alcohols have an important solubility values in methylphosphonate based ILs. Values of activity coefficient at infinite dilution of pyridine, thiophene and toluene obtained from VLE measurement of Chen *et al.* at *T* = 303.15 K are 2.5, 2.7 and 9.2, respectively. Our measured activity coefficients at *T* = 313 K are in good agreement with literature values of Chen *et al.* at *T* = 303.15 K except for toluene. In the case of toluene, an average absolute deviation on activity coefficient of about 20% is observed.

From tables 1 and 2, it can be seen that alkanes and cycloalkanes have higher γ_{12}^{∞} values as compared to other solutes. High values of γ_{12}^{∞} indicate very small interactions between solute and ionic liquid. The alkynes have lower γ_{12}^{∞} values than alkanes, alkenes and cycloalkanes due to the interactions of the triple bond in alkynes which increase the solubility in the ionic liquid. The values of γ_{12}^{∞} for most organic compounds decrease with increasing of temperature, this indicates that the solubility increases with temperature. The values of γ_{12}^{∞} for [EMIM][(MeO)(H)PO₂] and [DMIM][(MeO)(H)PO₂] increase with an increase of the alkyl chain length for alkanes, cycloalkanes, alkynes, aromatic hydrocarbons (increasing radicals), alcohols, due to the lower interaction. This behavior is typical for other measured with ionic liquids based on methylimidazolium cation. For benzene, toluene and ethylbenzene, the values of γ_{12}^{∞} are quite temperature independent. From tables 1 and 2, we can see that lengthening of the alkane chain on the imidazolium for the ionic liquids with the methylphosphonate anion causes a decrease in γ_{12}^{∞} of the same solute (*e.g.*

TABLE 2

Experimental activity coefficients at infinite dilution γ_{12}^{∞} for various solutes in 1.3-dimethylimidazolium methylphosphonate from *T* = (313.15 to 343.15) K at *p* = 101.33 kPa.^{*a*}

Solute	T/K				Log K _L	Log P	Standard state
	313.15	323.15	333.15	343.15		298.15	
Nonane	1068	1046			1.351	3.501	Liquid
Decane	1220	1214			1.809	4.069	Liquid
Undecane	1530	1467	1402	1332	2.196	4.576	Liquid
Dodecane	2354	1918	1790		2.392		Liquid
Tridecane	2380	2223	2159	2124	3.005		Liquid
Tetradecane	3560	3215	2978	2890	3.290		Liquid
Cyclohexane	129						Liquid <i>T</i> < 344.15 K
Methylcyclohexane	257						Liquid
Cycloheptane	250						Liquid
Benzene	5.69	5.58	5.52	5.43	1.364	1.944	Liquid <i>T</i> < 353.25 K
Toluene	11.47	11.37	11.29	11.25	2.303	1.673	Liquid
Ethylbenzene	22.70	22.08	21.73	21.51	2.519	1.869	Liquid
<i>m</i> -Xylene	24.51	24.45	23.59	23.06	2.673	2.093	Liquid
p-Xylene	23.42	23.35	22.69	22.01	2.714	2.104	Liquid
o-Xylene	19.21	19.12	18.65	18.51	2.713	2.123	Liquid
1-Hexyne	12.73	12.96	13.36	13.68	2.921	2.261	Liquid <i>T</i> < 344.25 K
1-Heptyne	21.98	23.47	23.52	24.95			Liquid
2-Butanone	5.52	5.16	4.66	4.17	1.860	2.070	Liquid <i>T</i> < 352.79 K
2-Pentanone	10.6	10.5	10.3	10.1	2.119	2.559	Liquid
3-Pentanone	10.2	10.1	10.1	10.0	2.317	-0.403	Liquid
1.4 Dioxane	3.73	3.72	3.69	3.66	2.463	-0.117	Liquid
Methanol				0.07	2.445	-0.055	Liquid <i>T</i> < 337.85 K
Ethanol				0.16	2.921	-0.789	Liquid <i>T</i> < 351.52 K
1-Propanol				0.25			Liquid <i>T</i> < 370.15 K
Chloroforme	0.39	0.43	0.48	0.51			Liquid <i>T</i> < 334.35 K
Dichloromethane	0.57	0.65	0.72	0.77			Gas
Tetrachloromethane	6.57	6.83	7.03				Liquid <i>T</i> < 349.87 K
Acetonitrile	1.10	1.11	1.12	1.12			Liquid <i>T</i> < 355.15 K
Nitromethane	0.80	0.81	0.82	0.83			Liquid
1-Nitropropane	3.41	3.35	3.29	3.29			Liquid
Triethylamine	9.04	12.7					Liquid <i>T</i> < 362.65 K
Pyridine	2.15	2.16	2.17	2.19	0.752	0.752	Liquid
Thiophene	2.47	2.54	2.58	2.60	3.229	2.439	Liquid <i>T</i> < 357.15 K

^{*a*} Standard uncertainties are $u(\gamma^{\infty}) < 3\%$, $u(K_L) < 3\%$, u(P) < 3%, u(T) = 0.05 K, $u(p) = \pm 0.1$ kPa.

TABLE 3

Selectivity values S_{12}^{∞} and capacity k_{12}^{∞} at infinite dilution for different separation problems at *T* = 313.15 K.

Solvent	$S^\infty_{12}/k^\infty_{12}$		Ref.	
	Cyclohexane/thiophene	Cyclohexane/benzene	Cyclohexane/pyridine	This work
[EMIM][(MeO)(H)PO ₂]	44.7/0.5	25.86/0.29	50.11/0.56	This work
[DIMIM][(MeO)(H)PO ₂]	52.21/0.42	22.66/0.18	59.98/0.46	[36]
$[EMIM] [(CF_3SO_2)_2N]$		12.1/0.83		[36]
[EMIM] $[C_2H_5OSO_3]$		18.4/0.36		[37]
[EMIM] [DEPO ₄]	27.6/-			[14] ^a
[EMIM] [BF ₄]		28.89/0.47		
[EMIM] [MDEGSO4]		19.31/0.43		[38] ^a
[EMIM] [CF ₃ SO ₃]		15.43/0.45		[39] ^a
NMP		7.05/0.95		[36], [40] ^a
NFM		8.31/0.5		[41] ^a

^a Interpolated values.

undecane, benzene, pyridine, thiophene) in the IL at the same temperature. This indicates that solutes interacts strongly with imidazolium based ILs containing long alkyl chain.

The selectivity at infinite dilution for solutes in the ionic liquid can indicate suitability of the solvent for separating binary mixture liquid or gas. The selectivity S_{12}^{∞} and the capacity k_2^{∞} of the separation process are defined as follow:

$$S_{12}^{\infty} = \frac{\gamma_1^{\text{infty}}/\text{RTIL}}{\gamma_2^{\text{infty}}/\text{RTIL}},\tag{7}$$

$$K_{12}^{infty} = \frac{1}{\gamma_2^{\infty}}.$$
(8)

Table 3 presents selectivity S_{12}^{∞} and the capacity k_2^{∞} at infinite dilution for three separation problems, cyclohexane/thiophene, cyclohexane/benzene and cyclohexane/pyridine at temperature T = 313.15 K obtained with ionic liquids studied in this work or taken from literature but also with industrial solvents such as N-methyl-2-pyrrolidone (NMP) and N-formylmorpholine (NFM). For the separation of cyclohexane/thiophene, [DMIM][(MeO)(H)PO₂] and [EMIM] [(MeO)(H)PO₂] have large value ($S_{12}^{\infty} = 52.21$ for [DMIM]][(MeO)(H)PO₂] and $S_{12}^{\infty} = 44.7$ for [EMIM] [(MeO)(H)PO₂]). Table 3 shows that an increase of the alkyl chain length of the cation of [(MeO)(H)PO₂] based ILs lead to an increase their capacity but a decrease of their selectivity.

For the separation problem of cyclohexane/benzene, the selectivity values of [EMIM] based ILs increased as follows: $[(CF_3SO_2)_2N] < [CF_3SO_3] < [C_2H_5OSO_3] < [MDEGSO_4] < [(MeO)(H) PO_2] < [BF4].$ Moreover, the selectivity values of the ionic liquids investigated in this study are greater than that for NMP [37,41],

TABLE 4

Densities (ρ) for the ionic	liquids as a function o	of temperature at $p = 101.33$ kPa. ^a
----------------------------------	-------------------------	--

T/K		$ ho/(\mathrm{kg}\cdot\mathrm{m}^{-3})$
	[EMIM][(MeO)(H)PO ₂]	
293.15		1190.6
303.15		1184.1
313.15		1180.1
323.15		1174.0
333.15		1168.7
343.15		1163.2
	[DIMIM][(MeO)(H)PO ₂]	
293.15		1252.5
303.15		1246.4
313.15		1241.7
323.15		1233.4
333.15		1227.2
343.15		1220.8

^{*a*} Standard uncertainties are $u(\rho) = 0.0001 \text{ g} \cdot \text{cm}^{-3}$, u(T) = 0.1 K, $u(p) = \pm 0.1 \text{ kPa}$.

and for NFM [42]. The selectivity values for the separation cyclohexane/pyridine at *T* = 313.15 K obtained with both ILs are quite large $(S_{12}^{\infty} = 50.11 \text{ for [EMIM] [(MeO)(H)PO_2]} \text{ and } S_{12}^{\infty} = 59.98 \text{ for [DMIM][(MeO)(H)PO_2]}$. Nevertheless, the capacity values for thiophene and benzene for the ILs studied in this work are small compared to others ILs.

3.2. Density measurements

The densities measured at temperatures from (293.15 to 343.15) K are listed in table 4. The experimental data can be accurately described by using the following equations:

IADLE 5					
Solute descriptors of the	43 organio	compounds	included i	n this	study

Solute	Е	S	А	В	L	V
Octane	0.000	0.000	0.000	0.000	3.677	1.2358
Nonane	0.000	0.000	0.000	0.000	4.182	1.3767
Decane	0.000	0.000	0.000	0.000	4.686	1.5176
Undecane	0.000	0.000	0.000	0.000	5.191	1.6590
Decane	0.000	0.000	0.000	0.000	5.696	1.7990
Methylcyclopentane	0.225	0.100	0.000	0.000	2.907	0.8454
Cyclohexane	0.310	0.100	0.000	0.000	2.964	0.8454
Methylcyclohexane	0.244	0.060	0.000	0.000	3.319	0.9863
Cycloheptane	0.350	0.100	0.000	0.000	3.704	0.9863
Benzene	0.610	0.520	0.000	0.140	2.786	0.7164
Toluene	0.601	0.520	0.000	0.140	3.325	0.8573
Ethylbenzene	0.613	0.510	0.000	0.150	3.778	0.9982
m-Xylene	0.623	0.520	0.000	0.160	3.839	0.9982
p-Xylene	0.613	0.520	0.000	0.160	3.839	0.9982
o-Xylene	0.663	0.560	0.000	0.160	3.939	0.9982
1-Hexene	0.080	0.080	0.000	0.070	2.572	0.9110
1-Hexyne	0.166	0.220	0.100	0.120	2.510	0.8680
1-Heptyne	0.160	0.230	0.090	0.100	3.000	1.0089
2-Butanone	0.166	0.700	0.000	0.510	2.287	0.6879
2-Pentanone	0.143	0.680	0.000	0.510	2.755	0.8288
3-Pentanone	0.154	0.660	0.000	0.510	2.811	0.8288
1.4 Dioxane	0.329	0.750	0.000	0.640	2.892	0.6810
Methanol	0.278	0.440	0.430	0.470	0.970	0.3082
Ethanol	0.246	0.420	0.370	0.480	1.485	0.4491
1-Propanol	0.236	0.420	0.370	0.480	2.031	0.5900
2-Propanol	0.212	0.360	0.330	0.560	1.764	0.5900
2-Methyl-1-propanol	0.217	0.390	0.370	0.480	2.413	0.7309
1-Butanol	0.224	0.420	0.370	0.480	2.601	0.7309
Diethyl ether	0.041	0.250	0.000	0.450	2.015	0.7309
Chloroform	0.425	0.490	0.150	0.020	2.480	0.6167
Dichloromethane	0.390	0.570	0.100	0.050	2.019	0.4943
Tetrachloromethane	0.460	0.380	0.000	0.000	2.823	0.7391
Acetonitrile	0.237	0.900	0.070	0.320	1.739	0.4042
Nitromethane	0.313	0.950	0.060	0.310	1.892	0.4237
1-Nitropropane	0.242	0.950	0.000	0.310	2.894	0.7055
Pyridine	0.631	0.840	0.000	0.520	3.022	0.6753
Thiophene	0.687	0.570	0.000	0.150	2.819	0.6411
Triethylamine	0.101	0.150	0.000	0.790	3.040	1.0538

FIGURE 2. Plot of the logarithm of the experimental gas-to-ionic liquid partition coefficients 1-ethyl-3-methylimidazolium methylphosphonate (\bullet) and 1.3-dimethylimidazolium methylphosphonate (\bullet) versus calculated values based on equations (9) and (11). o; experimental log K_L at T = 298.15 K.

$$\rho/\mathrm{kg}\cdot\mathrm{m}^{-3} = 1352.0 - 0.5501T/\mathrm{K},\tag{9}$$

for [EMIM][(MeO)(H)PO₂] and

$$\rho/\mathrm{kg} \cdot \mathrm{m}^{-3} = 1389.9 - 0.5640 \mathrm{T/K}, \tag{10}$$

for [DIMIM][(MeO)(H)PO₂].

Density data for both ionic liquids were already published in the literature [43,44]. The relative deviation on density values range between 1.58% for [EMIM][(MeO)(H)PO₂] and 1.43% for [DIMIM][(MeO)(H)PO₂]. The difference could be attributed to the purity of the ionic liquid, its water content, and the experimental technique used, among other factors.

3.3. Linear solvation energy relationship (LSER) characterization

The LSER model has been used to characterize interactions between solute molecules and the ILs investigated in this work. Coefficients *c*, *e*, *s*, *a*, *b* and *l* of the ILs were obtained by multiple linear regression of the logarithm of the (gas-liquid) partition coefficients log K_L of organic compounds. LSER parameters of organic compounds used to the determination of LSER coefficients of ILs are taken from the literature and given in table 5 [25–28]. The Abraham solvation parameter model provides a convenient method to mathematically describe the solubilizing properties of IL solvents. For convenience, we have captured in tables 1 and 2 the log K_L values at T = 298.15 K for the two ionic liquids studied in this work.

Analysis of experimental log K_L and log P data for [DIMIM][(MeO)(H)PO₂] gives

$$\begin{aligned} \text{Log} K_{\text{L}} &= -1.64(0.15) + 3.22(0.10) \textbf{S} + 9.64(0.60) \textbf{A} + 0.73(0.03) \textbf{L} \\ (N &= 21, \text{SD} = 0.11, R^2 = 0.980, F = 337), \end{aligned} \tag{11}$$

$$LogP = 0.35(0.16)\mathbf{E} + 4.15(0.10)\mathbf{A} - 3.88(0.60)\mathbf{B} + 2.64(0.03)\mathbf{V}$$
$$(N = 18, SD = 0.24, R^2 = 0.980, F = 450),$$

and for [EMIM] [(MeO)(H)PO₂]: $LogK_L = -1.12(0.13) + 0.34(0.14)\mathbf{E} + 2.92(0.12)\mathbf{S}$ $+7.85(0.25)\mathbf{A} + 0.62(0.03)\mathbf{L}$ (13) $(N = 36, \text{SD} = 0.16, R^2 = 0.980, F = 396),$

$$Log P = -0.53(0.26) + 0.32(0.18)\mathbf{E} + 1.05(0.24)\mathbf{S} +4.09(0.39)\mathbf{A} - 4.92(0.26)\mathbf{B} + 2.88(0.22)\mathbf{V} , \qquad (14) (N = 33, SD = 0.17, R2 = 0.980, F = 260)$$

where *N* denotes the number of experimental values used in the regression analysis; SD refers to the standard deviation; R^2 is the squared correlation coefficient; and *F* corresponds to the Fisher F-statistic. The standard errors in the calculated coefficients are given in parentheses immediately following the respective values. Plots of calculated values of Log K_L based on equations (11) and (13) against the experimental values are presented in figure 2.

The LSER treatment indicates that the most dominant interaction constants for this family of ILs are strong dipolarity (s), hydrogen bond basicity (a). The dispersion forces (l) are nearly constant for most imidazolium based ILs. The hydrogen bond acidity (b), the hydrogen bond basicity (a) and dipolarity (s) terms seemed to vary for each ionic liquid.

In general, the ionic liquids interact weakly via nonbonding and π -electrons (*e* system constant is zero for Otf). The hydrogen-bond basicity of alkylphosphonate based ILs (*a* system constant) is considerably larger than values obtained for other ILs.

4. Conclusions

(12)

Activity coefficients at infinite dilution of selected organic solutes in two ionic liquids 1-ethyl-3-methylimidazolium methylphosphonate [EMIM][(MeO)(H)PO₂] and 1.3-dimethylimidazolium methylphosphonate [DIMIM][(MeO)(H)PO₂] were measured by (gas-liquid) chromatography at the temperatures range (313.15 to 373.15) K. The selectivities for a few separation problems as cyclohexane/thiophene and cyclohexane/benzene and cyclohexane/pyridine were calculated from γ_{12}^{∞} obtained in this study and compared to the literature values for N-methyl-2-pyrrolidone (NMP) and sulfolane. The results of selectivities shows potential of ILs for application to separation processes. The LSER correlations that were derived in the present study for [EMIM][(MeO)(H)PO₂] and [DIMIM][(MeO)(H)PO₂] would be expected to provide very reasonable predictions for the gas-to-anhydrous IL and water-to-anhydrous IL partition coefficients for additional solutes.

Acknowledgment

The present work has been done in the framework of the international project CMEP/Tassili (CMEP 12MDU875 – Egide 26311TA).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jct.2015.02.023.

References

- P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39 (2000) 3772–3789.
 R.D. Rogers, K.R. Seddon, Ionic liquids: industrial applications to green
- [2] R.D. Rogers, K.R. Seddon, Ionic liquids: industrial applications to green chemistry, ACS Symposium Series, vol. 818, American Chemical Society, Washington, DC, 2002.
- [3] R.D. Rogers, K.R. Seddon, Ionic liquids as green solvents: progress and prospects, ACS Symposium Series, vol. 856, American Chemical Society, Washington, DC, 2003.
- [4] R.D. Rogers, K.R. Seddon, Ionic liquids IIIA: properties and structure, ACS Symposium Series, vol. 901, American Chemical Society, Washington, DC, 2005.
- [5] R.D. Rogers, K.R. Seddon, Ionic liquids IIIB. Fundamentals, progress, challenges, and opportunities. Transformations and processes, ACS Symposium Series, vol. 915, American Chemical Society, Washington, DC, 2005.
 [6] J.F. Brennecke, R.D. Rogers, K.R. Seddon, Ionic liquids IV. Not just solvents
- [6] J.F. Brennecke, R.D. Rogers, K.R. Seddon, Ionic liquids IV. Not just solvents anymore, ACS Symposium Series, vol. 975, American Chemical Society, Washington, DC, 2007.
- [7] A. Blahut, M. Sobota, V. Dohnal, P. Vrbka, Fluid Phase Equilib. 299 (2010) 198– 206.
- [8] F. Mutelet, J.-N. Jaubert, J. Chem. Thermodyn. 39 (2007) 1144–1150.
- [9] P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH, 2003.
- [10] T. Welton, Chem. Rev. 99 (1999) 2071–2083.
- [11] K.R. Seddon, J. Chem. Technol. Biotechnol. 68 (1997) 351-356.
- [12] A.L. Revelli, F. Mutelet, M. Turmine, R. Solimando, J.N. Jaubert, J. Chem. Eng. Data 54 (2009) 90–101.
- [13] A.L. Revelli, F. Mutelet, J.N. Jaubert, Ind. Eng. Chem. Res. 49 (2010) 3883–3892.
- [14] A.L. Revelli, F. Mutelet, J.N. Jaubert, J. Chromatogr. A 1216 (2009) 4775-4786.
- [15] K. Kedra-Krolik, M. Fabrice, J.N. Jaubert, Ind. Eng. Chem. Res. 50 (2011) 2296– 2306.
- [16] K. Kedra-Krolik, F. Mutelet, J.C. Moise, J.N. Jaubert, Energy Fuels 25 (2011) 1559–1565.
- [17] E.R.E. Hassan, F. Mutelet, S. Pontvianne, J.C. Moise, Environ. Sci. Technol. 47 (6) (2013) 2809–2816.

- [18] E.R.E. Hassan, F. Mutelet, J.C. Moise, RSC Adv. 3 (2013) 20219–20226.
- [19] R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, J. Am. Chem. Soc. 124 (2002) 4974–4975.
- [20] F. Mutelet, J.-C. Moise, A. Skrzypczak, J. Chem. Eng. Data 57 (2012) 918-927.
- [21] F. Mutelet, J.N. Jaubert, J. Chromatogr. A 1102 (2006) 256–267.
- [22] F. Mutelet, J.N. Jaubert, M. Rogalski, M. Boukherissa, A. Dicko, J. Chem. Eng. Data 51 (2006) 1274–1279.
- [23] U. Domanska, E.V. Lukoshko, M. Krolikowski, J. Chem. Thermodyn. 61 (2013) 126–131.
- [24] A. Marciniak, Fluid Phase Equilib. 294 (2010) 213-233.
- [25] M.H. Abraham, P.L. Grellier, R.A. Mc Gill, J. Chem. Soc. Perkin Trans II (1987) 797–803.
- [26] M.H. Abraham, Chem. Soc. Rev. 22 (1993) 73-83.
- [27] M.H. Abraham, G.S. Whiting, R.M. Doherty, J. Chem. Soc. Perkin Trans II (1990) 1451–1460.
- [28] M.H. Abraham, G.S. Whiting, R.M. Doherty, W.J. Shuely, J. Chromatogr. 587 (1991) 229–236.
- [29] A.J.B. Cruickshank, M.L. Windsor, C.L. Young, Proc. R. Soc. London A295 (1966) 259–270.
- [30] Thermodynamics Research Center, Texas Engineering Experiment Station, The Texas A. and M. University System, College Station, 1987.
- [31] F. Mutelet, J.-N. Jaubert, J. Chem. Thermodyn. 39 (2007) 1144-1150.
- [32] C. Tsonopoulos, AIChE J. 20 (2) (1974) 263–272.
- [33] C. Tsonopoulos, AIChE J. 21 (1975) 827-829.
- [34] C. Tsonopoulos, AIChE J. 24 (1978) 1112-1115.
- [35] R.C. Reid, J.M. Prausnitz, T.K. Sherwood, Chemical Engineering Series, third ed., McGraw-Hill, New York, 1977.
- [36] M.H. Abraham, W.E. Acree Jr., Green Chem. 8 (2006) 906-915.
- [37] M. Krummen, P. Wasserscheid, J. Gmehling, J. Chem. Eng. Data 47 (2002) 1411-1417.
- [38] M.-L. Ge, L.-S. Wang, J.-S. Wu, Q. Zhou, J. Chem. Eng. Data 53 (2008) 1970– 1974.
- [39] I. Bahadur, B. Bradley Govender, K. Osman, M.D. Williams-Wynn, W.M. Nelson, P. Naidoo, D. Ramjugernath, J. Chem. Thermodyn. 70 (2014) 245–252.
- [40] E. Olivier, T.M. Letcher, P. Naidoo, D. Ramjugernath, J. Chem. Thermodyn. 42 (2010) 78-83.
- [41] D. Gruber, M. Krummen, J. Gmehling, Chem. Eng. Technol. 22 (1999) 827–831.
- [42] M. Krummen, J. Gmehling, Fluid Phase Equilib. 215 (2004) 283–294.
- [43] Y. Chen, F. Mutelet, J.-N. Jaubert, J. Chem. Eng. Data 59 (2014) 603-612.
- [44] M.G. Freire, A.R.R. Teles, M.A.A. Rocha, B. Schroder, C.M.S.S. Neves, P.J. Carvalho, D.V. Evtuguin, L.M.N.B.F. Santos, J.A.P. Coutinho, J. Chem. Eng. Data 56 (2011) 4813–4822.

JCT 14-656

ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Liquids

journal homepage: www.elsevier.com/locate/molliq

Activity coefficients at infinite dilution for organic solutes dissolved in two 1-alkylquinuclidinium bis(trifluoromethylsulfonyl)imides bearing alkyl side chains of six and eight carbons

Amel Ayad ^a, Fabrice Mutelet ^b, Amina Negadi ^a, William E. Acree Jr ^{c,*}, Bihan Jiang ^c, Amber Lu ^c, Durgesh V. Wagle ^d, Gary A. Baker ^d

^a LATA2M, Laboratoire de Thermodynamique Appliquee et Modelisation Moleculaire, Tlemcen University, Post Office Box 119, Tlemcen 13000, Algeria

^b Université de Lorraine, Laboratoire de Réactions et Génie des Procédés (UPR CNRS 3349), 1 rue Grandville, BP 20451, 54001 Nancy, France

^c Department of Chemistry, 1155 Union Circle #305070, University of North Texas, Denton, TX 76203-5017, United States

^d Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, United States

ARTICLE INFO

Article history: Received 30 September 2015 Accepted 8 December 2015 Available online xxxx

Keywords: Ionic liquid solvents Activity coefficients at infinite dilution Gas-to-ionic liquid partition coefficients Water-to-ionic liquid partition coefficients

ABSTRACT

Infinite dilution activity coefficients and gas-to-liquid partition coefficients are reported for 47 and 45 organic probe molecules dissolved in 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide ($[Quin6]^+[Tf_2N]^-$) and 1-octylquinuclidinium bis(trifluoromethylsulfonyl)imide ($[Quin8]^+[Tf_2N]^-$), respectively, as determined by inverse gas chromatography in the temperature range of 313 K to 353 K. The measured partition coefficient data were converted to water-to-liquid partition coefficients using standard thermodynamic relationships and published gas-to-water partition coefficient data. Both sets of calculated partition coefficient data for each ionic liquid solvent were analyzed in terms of the Abraham general solvation model. Mathematical correlations derived from the Abraham model described the measured partition coefficient data to within 0.14 or fewer log units.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Increased utilization of organic solvents in chemical separations and synthetic processes, coupled with the more stringent governmental regulations regarding chemical wastes, has prompted the manufacturing sector to seek chemical replacements for the more toxic and harmful solvents. Of the replacements studied to date, ionic liquids (ILs) have shown considerable promise as media for preparing many different classes of organic compounds, as dissolving media for lignocellulosic biomass, as an entrainer in extractive distillations, as an extractant for single-drop micro-extractions, as a sorbent for gas capture and sequestration, and as a stationary phase for gas-liquid chromatographic separations. Key features such as low melting temperatures, negligible vapor pressures, high thermal and chemical stabilities, wide liquid temperature ranges, and immiscibility with many organic solvents facilitate the use of ILs in many industrial applications. These properties can be fine-tuned through the judicious combination of cation-anion pairs and by installation of functional groups onto the cation or anion. For example, the miscibility of ILs with organic solvents or water can be modified by modifying the alkyl chain length on the cation and by changing the nature of the counter anion. Considerable attention has

* Correspondence author. *E-mail address:* acree@unt.edu (W.E. Acree). been given in recent years towards developing mathematical expressions for estimating the physical properties and solubilizing characteristics of IL solvents based on both group contribution methods and quantitative structure–property relationships.

Our contributions in the area of IL research have been to publish experimental physical property measurements and thermodynamic data for both neat ILs [1–3] and for solutes dissolved in IL solvents [4–21]. The latter measurements have led to the development of IL-specific Abraham model correlations [4–12,22–24]:

$$\log P = \mathbf{c}_{p,il} + \mathbf{e}_{p,il} \cdot \mathbf{E} + \mathbf{s}_{p,il} \cdot \mathbf{S} + \mathbf{a}_{p,il} \cdot \mathbf{A} + \mathbf{b}_{p,il} \cdot \mathbf{B} + \mathbf{v}_{p,il} \cdot \mathbf{V}$$
(1)

$$\log K = c_{k,il} + e_{k,il} \cdot \mathbf{E} + s_{k,il} \cdot \mathbf{S} + a_{k,il} \cdot \mathbf{A} + b_{k,il} \cdot \mathbf{B} + l_{k,il} \cdot \mathbf{L}.$$
 (2)

Abraham model correlations containing ion-specific equation coefficients [24–28]:

$$\log P = c_{p,cation} + c_{p,anion} + (e_{p,cation} + e_{p,anion})\mathbf{E} + (s_{p,cation} + s_{p,anion})\mathbf{S} + (a_{p,cation} + a_{p,anion})\mathbf{A} + (b_{p,cation} + b_{p,anion})\mathbf{B} + (\mathbf{v}_{p,cation} + \mathbf{v}_{p,anion})\mathbf{V}$$
(3)

$$\begin{split} \log K &= c_{k,\text{cation}} + c_{k,\text{anion}} + \left(e_{k,\text{cation}} + e_{k,\text{anion}} \right) \mathbf{E} + \left(s_{k,\text{cation}} + s_{k,\text{anion}} \right) \mathbf{S} \\ &+ \left(a_{k,\text{cation}} + a_{k,\text{anion}} \right) \mathbf{A} + \left(b_{k,\text{cation}} + b_{k,\text{anion}} \right) \mathbf{B} + \left(l_{k,\text{cation}} + l_{k,\text{anion}} \right) \mathbf{L} \end{split}$$

and Abraham model correlations containing fragment-group values [29]

$$\begin{split} & \log \textit{P} = \sum_{group} \textit{n}_i \textit{c}_{p,i} + \sum_{group} e_{p,i} \textit{n}_i \textit{E} + \sum_{group} \textit{s}_{p,i} \textit{n}_i \textit{S} + \sum_{group} a_{p,i} \textit{n}_i \textit{A} + \sum_{group} \textit{b}_{p,i} \textit{n}_i \textit{B} \\ & + \sum_{group} \textit{v}_{p,i} \textit{n}_i \textit{V} + (\textit{c}_{p,anion} + e_{p,anion} \textit{E} + \textit{s}_{p,anion} \textit{S} + a_{p,anion} \textit{A} + \textit{b}_{p,anion} \textit{B} + \textit{v}_{p,anion} \textit{V}) \end{split}$$

$$(5)$$

$$\begin{split} \log K &= \sum_{\text{group}} n_i c_{k,i} + \sum_{\text{group}} e_{k,i} n_i E + \sum_{\text{group}} s_{k,i} n_i S + \sum_{\text{group}} a_{k,i} n_i A + \sum_{\text{group}} b_{k,i} n_i B \\ &+ \sum_{\text{group}} l_{k,i} n_i L + \left(c_{k,\text{anion}} + e_{k,\text{anion}} E + s_{k,\text{anion}} S + a_{k,\text{anion}} A + b_{k,\text{anion}} B + l_{k,\text{anion}} L \right) \end{split}$$
(6)

for predicting the logarithms of solute partition coefficients into anhydrous IL solvents from both water (log *P*) and from the gas phase (log *K*). In Eqs. (5) and (6), n_i denotes the number of times that the given fragment group appears in the cation and the summations extend over all fragment groups.

Predictions based on Eqs. (1)–(6) require knowledge of the solute descriptors (upper case letters) and equation coefficients/fragment group values (lower case letters) for the solutes and ILs of interest. Solute descriptors are available for more than 5000 different organic and inorganic compounds, and are defined as follows: the solute excess molar refractivity in units of $(\text{cm}^3 \text{ mol}^{-1})/10$ (**E**), the solute dipolarity/ polarizability (S), the overall or summation hydrogen-bond acidity and basicity (A and B, respectively), the McGowan volume in units of $(cm^3 mol^{-1})/100$ (**V**), and the logarithm of the gas-to-hexadecane partition coefficient at 298 K (L). To date, we have reported IL-specific equation coefficients for more than 35 different ILs (Eqs. (1) and (2)), ion-specific equation coefficients for 41 different cations and 16 different anions (Eqs. (3) and (4)), and numerical group values for 12 cation fragments (CH₃-, -CH₂-, -O-, -O-N_{cyclic}, -OH, CH_{2cyclic}, CH_{cyclic}, N_{cyclic}, N<⁺, >P<⁺, and >S-⁺) and 9 individual anions $(Tf_2N^-, PF_6^-, BF_4^-, EtSO_4^-, OcSO_4^-, SCN^-, CF_3SO_3^-, AcF_3^-, and (CN)_2N^-)$ (Eqs. (5) and (6)). The 41 different cation-specific and 16 different anion-specific equation coefficients can be combined to permit the estimation of log P and log K values for solutes in a total of 656 different ILs (i.e., 41×16). The number of ion-specific equation coefficients and fragment group values is expected to increase as additional experimental data become available for functionalized IL solvents.

In the present investigation, we report the infinite dilution activity coefficients and gas-to-IL partition coefficients for 47 and 45 organic probe molecules dissolved in 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide ([Quin6]⁺[Tf₂N]⁻) and 1-octylquinuclidinium bis(trifluoromethylsulfonyl)imide ([Quin8]⁺[Tf₂N]⁻), respectively. See Fig. 1 for the molecular structures of the [Quin6]⁺ and [Quin8]⁺ cations. The experimental partition coefficient data obtained from these measurements are used to derived IL-specific Abraham model correlations, and to calculate ion-specific Abraham model equation coefficients for the [Quin6]⁺ and [Quin8]⁺ cations. The derived Abraham model correlations should enable the prediction of gas-to-liquid partition coefficients and infinite dilution activity coefficients for additional solute molecules not directly studied herein.

2. Experimental methods

2.1. Preparation of 1-alkylquinuclidinium ionic liquids

2.1.1. ([Quin6]⁺[Br]⁻)

Freshly-sublimed quinuclidine (9.01 g, 81.0 mmol) and 1bromohexane (14.08 g, 85.3 mmol, 1.0_5 eq) were combined in 80 mL of ethyl acetate and stirred at room temperature for 4 days. The resulting off-white precipitate was filtered, washed with ethyl acetate on a ceramic frit (5×25 mL), and dried under vacuum to yield the corresponding bromide salt in 87% yield. To initiate ion exchange, the bromide salt ([Quin6]⁺[Br]⁻) was dissolved in 100 mL of deionized water

Fig. 1. Molecular structures of the 1-hexylquinuclidinium [Quin6]⁺ and 1-octylquinuclidinium [Quin8]⁺ cations.

followed by the addition of lithium bis(trifluoromethylsulfonyl)imide (1.02 equivalents, pre-dissolved in a minimal amount of water). The dense lower phase that resulted was extracted with deionized water several times (5 × 100 mL) to exhaustively remove LiBr residues. The resulting fluid was dried under vacuum at 70 °C for 12 h to yield ([Quin6][Tf₂N]⁻) as a colorless free-flowing fluid: ¹H NMR (CDCl₃, 300 MHz): δ 0.88 (t, 3H), 1.34 (m, 6H), 1.66 (m, 2H), 2.02 (m, 6H), 2.21 (m, 1H), 3.09 (m, 2H), 3.39 (m, 6H).

2.1.2. ([Quin8]⁺[Br]⁻)

Freshly-sublimed quinuclidine (5.16 g, 46.4 mmol) and 1bromooctane (8.96 g, 46.4 mmol, 1.0 Eq) were combined in 80 mL of ethyl acetate and stirred at room temperature for 4 days. The resulting precipitate was filtered, washed with ethyl acetate on a ceramic frit (5×20 mL), and dried under vacuum to yield the bromide salt in 93% yield. Metathesis was performed in the same manner as for the [Quin6]⁺ salt described above to yield ([Quin8]⁺[Tf₂N]⁻): ¹H NMR (CDCl₃, 300 MHz): δ 0.87 (t, 3H), 1.26–1.31 (m, 10H), 1.66 (m, 2H), 2.02 (m, 6H), 2.21 (m, 1H), 3.08 (m, 2H), 3.39 (m, 6H).

The 47 organic solutes used in the present study were purchased from commercial sources and their chemical purities are tabulated in several earlier publications [5,6,13,14]. The presence of trace impurities in the chemical samples will not affect the measured activity coefficients and gas-to-IL partition coefficient data. The retention times of

Table 1 Densities (ρ) for the 1-alkylquinuclidinium ILs as a function of temperature at P = 101.33 kPa.

T/K	$\rho/(kgm^{-3})$
$([Quin6]^+[Tf_2N]^-)$	
293.15	1361.9
303.15	1353.8
313.15	1345.6
323.15	1337.0
333.15	1329.0
343.15	1320.5
$([Quin8]^+[Tf_2N]^-)$	
293.15	1298.8
303.15	1290.8
313.15	1282.7
323.15	1274.0
333.15	1266.0
343.15	1257.7

Standard uncertainties are $u(\rho) = 0.0001 \text{ g} \cdot \text{cm}^{-3}$, u(T) = 0.1 K, and $u(P) = \pm 0.1 \text{ kPa}$.

the organic solutes are easily discernible from the retention times of minor impurity peaks by its much larger chromatographic peak area and intensity.

2.2. Chromatographic instrumentation and experimental procedures

The experimental procedures used for the determination of activity coefficients were described in previous works [4–8]. A Bruker 450 gas chromatograph equipped with a heated on-column injector and a thermal conductivity detector (TCD) detector was used for the measurements. The injector and detector temperatures were fixed at 523 K during all experimental measurements. The dead time of the packed column corresponding to the retention of a non-retainable solute was determined using air. Helium carrier gas flow rate was measured using an Alltech Digital Flow Check Mass Flowmeter. The temperature of the oven was measured with a Pt 100 probe and controlled to within 0.1 K. A personal computer directly recorded detector signals and the corresponding chromatograms were constructed using Galaxie software.

Table 2							
Activity	coefficients at infinite	dilution	(γ_1^{∞}) for	organic s	olutes in [Ouin61+[Tf ₂ N1 ⁻ .

	T/K				
Solutes	313.15 K	323.15 K	333.15 K	343.15 K	353.15 K
Hexane	7.410	6.714	6.324	6.104	5.838
3-Methylpentane	6.786	6.225	5.833	5.457	5.251
Heptane	9.611	8.908	8.608	7.977	7.581
2,2,4-Trimethylpentane	9.854	9.232	8.960	8.533	7.832
Octane	11.594	11.376	10.877	10.224	9.841
Nonane	16.960	15.821	15.064	14.363	13.447
Decane	19.139	18.373	17.749	16.823	16.072
Undecane	24.748	23.383	22.907	21.549	19.532
Dodecane		60.810	46.086	27.213	23.830
Tridecane				34.751	29.733
Tetradecane					37.026
Methylcyclopentane	4.836	4.526	4.277	4.085	3.969
Cyclohexane	5.064	4.731	4.420	4.208	3.915
Methylcyclohexane	6.014	5.717	5.500	5.274	4.962
Cycloheptane	5.717	5.530	5.277	5.078	4.812
Benzene	0.638	0.660	0.675	0.695	0.709
Toluene	0.798	0.824	0.867	0.898	0.930
Ethylbenzene	1.064	1.104	1.182	1.220	1.255
m-Xylene	1.058	1.085	1.152	1.193	1.239
p-Xylene	1.056	1.092	1.171	1.196	1.216
o-Xylene		0.994	1.062	1.100	1.149
1-Hexene	4.061	3.939	3.873	3.860	3.818
1-Hexyne	1.940	1.934	1.930	1.924	1.920
2-Butanone	0.492	0.471	0.446	0.419	0.397
2-Pentanone	0.623	0.637	0.659	0.678	0.691
1,4-Dioxane	0.687	0.689	0.691	0.693	0.694
Methanol	1.512	1.413	1.325	1.239	1.217
Ethanol	1.739	1.592	1.486	1.391	1.326
1-Propanol	1.872	1.711	1.578	1.466	1.387
2-Propanol	1.809	1.661	1.533	1.436	1.382
2-Methyl-1-propanol	2.039	1.839	1.680	1.569	1.490
1-Butanol	2.167	1.939	1.764	1.642	1.555
Diethyl ether	1.670	1.675	1.683	1.690	1.698
Diisopropyl ether	3.205	3.214	3.221	3.230	3.238
Chloroform	0.591	0.622	0.659	0.688	0.729
Dichloromethane	0.510	0.548	0.580	0.614	0.655
Acetonitrile	0.588	0.576	0.569	0.562	0.561
Nitromethane	0.654	0.640	0.627	0.616	0.602
1-Nitropropane		0.661	0.662	0.663	0.664
Triethylamine	4.359	4.330	4.244	4.227	4.168
Pyridine	0.480	0.488	0.497	0.507	0.522
Thiophene	0.582	0.597	0.616	0.637	0.658
Formaldehyde	0.054	0.058	0.067	0.079	0.092
Acetone	0.450	0.453	0.457	0.462	0.473
Tetrahydrofuran	0.589	0.605	0.615	0.631	0.649
Ethyl acetate	0.780	0.785	0.797	0.814	0.841
Water	4.250	3.875	3.558	3.370	3.000

The preparation of the column was described in our previous works [4–8]. Packed columns of 1-m length containing between 34 and 38% IL stationary phase coated onto a 60–80 mesh Chromosorb WHP support material were prepared by a rotary evaporation method. Briefly, $[Quin6]^+[Tf_2N]^-$ (or $[Quin8]^+[Tf_2N]^-$) was dissolved in ethanol in the presence of a precise mass of Chromosorb WHP. Ethanol was then extracted from the mixture using a rotary evaporator. The support was equilibrated at 343 K under vacuum during 6 h. The conditioning of the packed columns was performed at 373 K over 12 h using a gas flow rate of 20 cm³ min⁻¹.

2.3. Density measurements

Densities of both ILs were measured using an Anton Paar DMA 60 digital vibrating-tube densimeter, with a DMA 512P measuring cell in the temperature range from 293.15 to 343.15 K at atmospheric pressure. The detailed procedure was given in our previous work [5].

Table 3	
ogarithm of the partition coefficient (log K) for organic solutes in $[Quin 6]^+[Tf_2N]$	-

	T/K				
Solutes	313.15 K	323.15 K	333.15 K	343.15 K	353.15 K
Hexane	1.425	1.318	1.204	1.090	0.989
3-Methylpentane	1.375	1.268	1.162	1.066	0.966
Heptane	1.793	1.652	1.505	1.389	1.272
2,2,4-Trimethylpentane	1.760	1.621	1.479	1.356	1.260
Octane	2.185	1.995	1.832	1.689	1.549
Nonane	2.529	2.335	2.149	1.976	1.824
Decane	2.901	2.672	2.459	2.271	2.095
Undecane	3.256	3.007	2.763	2.556	2.382
Dodecane		3.012	2.861	2.839	2.663
Tridecane				3.125	2.938
Tetradecane					3.204
Methylcyclopentane	1.652	1.531	1.416	1.305	1.197
Cyclohexane	1.770	1.643	1.527	1.414	1.320
Methylcyclohexane	2.001	1.854	1.715	1.589	1.480
Cycloheptane	2.325	2.155	2.005	1.864	1.740
Benzene	2.675	2.500	2.341	2.190	2.053
Toluene	3.061	2.866	2.678	2.508	2.351
Ethylbenzene	3.365	3.153	2.941	2.756	2.584
m-Xylene	3.439	3.223	3.007	2.817	2.641
p-Xylene	3.419	3.203	2.983	2.796	2.621
o-Xylene		3.348	3.129	2.937	2.756
1-Hexene	1.604	1.471	1.343	1.218	1.106
1-Hexyne	2.068	1.912	1.765	1.626	1.496
2-Butanone	2.776	2.603	2.432	2.272	2.125
2-Pentanone	3.088	2.898	2.714	2.543	2.386
1,4-Dioxane	3.029	2.842	2.667	2.504	2.353
Methanol	2.137	1.982	1.838	1.707	1.566
Ethanol	2.373	2.206	2.044	1.895	1.751
1-Propanol	2.745	2.558	2.382	2.214	2.051
2-Propanol	2.466	2.284	2.116	1.958	1.801
2-Methyl-1-propanol	2.948	2.745	2.558	2.380	2.211
1-Butanol	3.141	2.931	2.735	2.549	2.373
Diethyl ether	1.556	1.422	1.298	1.181	1.073
Diisopropyl ether	1.791	1.637	1.495	1.363	1.239
Chloroform	2.414	2.243	2.081	1.934	1.790
Dichloromethane	2.030	1.885	1.753	1.624	1.499
Acetonitrile	2.739	2.586	2.442	2.306	2.175
Nitromethane	3.050	2.876	2.715	2.564	2.426
1-Nitropropane		3.349	3.157	2.979	2.814
Triethylamine	1.986	1.824	1.677	1.532	1.399
Pyridine	3.405	3.206	3.022	2.848	2.682
Thiophene	2.783	2.608	2.442	2.286	2.139
Formaldehyde	2.226	2.088	1.922	1.755	1.602
Acetone	2.460	2.307	2.165	2.031	1.900
Tetrahydrofuran	2.492	2.328	2.179	2.037	1.901
Ethyl acetate	2.574	2.402	2.239	2.085	1.936
Water	2.369	2.197	2.037	1.877	1.756

3. Results and discussion

3.1. Activity coefficients and selectivity at infinite dilution

Activity coefficients at infinite dilution for 47 model solutes in $[Quin6]^+[Tf_2N]^-$ and 45 solutes in $[Quin8]^+[Tf_2N]^-$ were calculated using the theoretical basis described in our previous works [4–8]. The uncertainties in activity coefficients at infinite dilution ($\gamma_{1,2}^{\infty}$) and gasto-IL partition coefficients (*K*) were less than 3% [4]. Densities of both ILs required for the calculation of partition coefficients are given in Table 1. All experimental data measured in this work are presented in Tables 2–5.

Activity coefficients obtained at 313.15 K for both ILs show that the solubility for all solutes tested is higher in $[Quin8]^+[Tf_2N]^-$ than in $[Quin6]^+[Tf_2N]^-$. Generally speaking, the solubility of solutes in ILs mainly depends on their polarity [5–8]. Weak alkane–IL interactions lead to low solubility. The addition of a double (or triple) bond within a molecule increases its solubility in ILs.

 $[Tf_2N]^-$ based ILs are well known to be hydrophobic. Therefore, it is reasonable that large activity coefficients at infinite dilution $(\gamma_{1,2}^{\circ})$ are obtained for water dissolved in $[Tf_2N]^-$ based ILs. Ketones, aldehydes, and dichloromethane are the most soluble solutes within these ILs.

Table 4

Activity coefficients at infinite dilution $(\gamma_{1,2}^{\infty})$ for organic solutes in $[Quin8]^+[Tf_2N]^-$.

	T/K				
Solutes	313.15 K	323.15 K	333.15 K	343.15 K	353.15 K
Hexane	4.315	4.185	4.091	4.027	3.922
3-Methylpentane	3.964	3.839	3.778	3.740	3.698
Heptane	5.476	5.287	5.178	5.075	4.911
2,2,4-Trimethylpentane	5.499	5.335	5.255	5.117	5.031
Octane	6.904	6.654	6.497	6.314	6.184
Nonane	9.632	9.178	8.862	8.502	8.223
Decane	10.895	10.404	10.139	9.847	9.621
Undecane		12.808	12.334	12.155	11.891
Dodecane		16.345	15.639	14.963	14.317
Tridecane				18.702	17.950
Methylcyclopentane	3.024	2.952	2.869	2.797	2.729
Cyclohexane	2.976	2.876	2.796	2.729	2.659
Methylcyclohexane	3.633	3.522	3.434	3.338	3.286
Cycloheptane	3.621	3.488	3.379	3.285	3.227
Benzene	0.540	0.552	0.566	0.580	0.596
Toluene	0.660	0.682	0.704	0.730	0.759
Ethylbenzene	0.864	0.900	0.928	0.964	0.998
<i>m</i> -Xylene		0.879	0.908	0.946	0.981
<i>p</i> -Xylene		0.890	0.918	0.949	0.971
o-Xylene		0.797	0.831	0.875	0.924
1-Hexene	2.788	2.768	2.734	2.701	2.676
2-Butanone	0.427	0.409	0.379	0.357	0.337
2-Pentanone	0.525	0.541	0.556	0.570	0.581
1,4-Dioxane	0.606	0.611	0.614	0.617	0.621
Methanol	1.418	1.276	1.171	1.107	1.017
Ethanol	1.602	1.459	1.336	1.243	1.145
1-Propanol	1.687	1.544	1.419	1.308	1.198
2-Propanol	1.616	1.462	1.337	1.243	1.154
2-Methyl-1-propanol	1.798	1.615	1.480	1.367	1.275
1-Butanol	1.922	1.717	1.567	1.444	1.348
Diethyl ether	1.270	1.289	1.312	1.330	1.355
Diisopropyl ether	2.342	2.357	2.368	2.379	2.413
Chloroform	0.489	0.513	0.536	0.561	0.583
Dichloromethane	0.421	0.446	0.471	0.493	0.528
Acetonitrile	0.555	0.545	0.534	0.524	0.517
Nitromethane	0.629	0.614	0.599	0.587	0.575
1-Nitropropane		0.580	0.588	0.597	0.600
Triethylamine	2.805	2.770	2.735	2.699	2.665
Pyridine		0.432	0.440	0.448	0.458
Thiophene	0.503	0.518	0.530	0.547	0.559
Formaldehyde	0.212	0.250	0.293	0.355	0.433
Acetone	0.399	0.400	0.400	0.401	0.404
Tetrahydrofuran	0.476	0.48/	0.493	0.504	0.513
Etnyi acetate	0.653	0.659	0.662	0.6/1	0.678
Water	2.920	2.555	2.137	1.700	1.420

Logarithm of partition coefficients (log K) of organic solutes in [Quin8]⁺[Tf₂N]⁻.

	T/K						
Solutes	313.15 K	323.15 K	333.15 K	343.15 K	353.15 K		
Hexane	1.615	1.477	1.348	1.225	1.116		
3-Methylpentane	1.563	1.432	1.304	1.184	1.072		
Heptane	1.991	1.832	1.680	1.539	1.414		
2,2,4-Trimethylpentane	1.968	1.814	1.665	1.533	1.406		
Octane	2.365	2.182	2.010	1.853	1.705		
Nonane	2.729	2.526	2.333	2.158	1.991		
Decane	3.100	2.873	2.656	2.458	2.272		
Undecane		3.222	2.986	2.759	2.552		
Dodecane		3.537	3.285	3.053	2.838		
Tridecane				3.349	3.111		
Methylcyclopentane	1.811	1.670	1.543	1.424	1.313		
Cyclohexane	1.956	1.813	1.680	1.556	1.442		
Methylcyclohexane	2.174	2.019	1.874	1.741	1.613		
Cycloheptane	2.478	2.309	2.153	2.007	1.867		
Benzene	2.702	2.531	2.371	2.223	2.082		
Toluene	3.098	2.903	2.722	2.553	2.393		
Ethylbenzene	3.410	3.196	3.000	2.813	2.638		
<i>m</i> -Xylene		3.269	3.065	2.872	2.696		
p-Xylene		3.246	3.043	2.851	2.673		
o-Xylene		3.398	3.189	2.990	2.805		
1-Hexene	1.722	1.578	1.448	1.327	1.214		
2-Butanone	2.792	2.619	2.457	2.296	2.150		
2-Pentanone	3.116	2.923	2.742	2.573	2.414		
1,4-Dioxane	3.038	2.849	2.673	2.508	2.355		
Methanol	2.119	1.981	1.846	1.710	1.597		
Ethanol	2.363	2.198	2.045	1.898	1.768		
1-Propanol	2.744	2.557	2.382	2.218	2.068		
2-Propanol	2.469	2.293	2.130	1.974	1.833		
2-Methyl-1-propanol	2.957	2.756	2.567	2.394	2.233		
1-Butanol	3.148	2.938	2.741	2.559	2.389		
Diethyl ether	1.629	1.490	1.360	1.239	1.125		
Diisopropyl ether	1.882	1.726	1.583	1.450	1.321		
Chloroform	2.450	2.281	2.124	1.977	1.841		
Dichloromethane	2.069	1.929	1.797	1.674	1.546		
Acetonitrile	2.719	2.565	2.423	2.290	2.164		
Nitromethane	3.021	2.848	2.689	2.539	2.399		
1-Nitropropane		3.360	3.162	2.978	2.812		
Triethylamine	2.131	1.972	1.822	1.681	1.547		
Pyridine		3.213	3.029	2.856	2.692		
Thiophene	2.801	2.624	2.461	2.306	2.164		
Formaldehyde	1.587	1.407	1.236	1.057	0.881		
Acetone	2.467	2.316	2.177	2.046	1.922		
Tetrahydrofuran	2.539	2.376	2.230	2.088	1.958		
Ethyl acetate	2.606	2.432	2.274	2.122	1.983		
Water	2.486	2.332	2.212	2.128	2.034		

Very similar solubilities are observed with pyridine, thiophene, and tetrahydrofuran. Compared with 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [6], the 1-alkylquinuclidinium bis(trifluoromethylsulfonyl)imide ILs interact more strongly with organic compounds.

The GC measurements may be used to select an appropriate solvent for separation problems. Indeed, intimate knowledge of activity coefficient makes it possible to straightforwardly calculate selectivity (S_{12}^{∞}) and capacity (k_1^{∞}) values at infinite dilution using these expressions:

$$S_{1,2}^{\infty} = \frac{\gamma_{1/lL}^{\infty}}{\gamma_{2/lL}^{\infty}}$$
(7)

$$k_{1,2}^{\infty} = \frac{1}{\gamma_{1/lL}^{\infty}} \tag{8}$$

where $\gamma_{1/IL}^{\infty}$ and $\gamma_{2/IL}^{\infty}$ correspond to the infinite dilution activity coefficients of solutes 1 and 2, respectively, in the IL of interest. The performance of various $[Tf_2N]^-$ based ILs were evaluated for hexane/benzene, hexane/pyridine, hexane/thiophene, and heptane/thiophene separations at 323.15 K. Experimental infinite dilution activity coefficient data for solutes dissolved in 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([PrMPyrr]⁺[Tf_2N]⁻), 1-butyl-1-

Table 6

Selectivity values S_{12}^{∞} and capacity K_{12}^{∞} at infinite dilution for different separation problems at T = 323.15 K using $[Tf_2N]^-$ based ILs.

ILs		$S_{12}^{\infty}/K_{12}^{\infty}$					
Anion	Cation	Hexane/benzene	Hexane/pyridine	Hexane/thiophene	Heptane/thiophene	Reference	
[Tf ₂ N]-	1-Hexylquinuclidinium	10.17/1.51	13.76/2.05	11.25/1.67	14.92/1.67	This work	
	1-Octylquinuclidinium	7.58/1.81	9.69/2.31	8.08/1.93	10.21/1.93	This work	
	1-Propyl-1-methylpyrrolidinium	16.69/1.01	26.2/1.59	19.23/1.16	27.95/1.16	[5]	
	1-Butyl-1-methylpyrrolidinium	15.2/1.10	23.64/1.69	17/1.22	24.01/1.22	[5]	
	1-Pentyl-1-methylpyrrolidinium	14.3/1.22	22.13/1.89	15.8/1.35	20.39/1.35	[5]	
	1-Hexyl-1-methylpyrrolidinium	10.2/1.32	14.88/1.92	11.1/1.43		[6]	
	1-Octyl-1-methylpyrrolidinium	8.4/1.67	11.92/2.38	8.8/1.75		[6]	
	1-Decyl-1-methylpyrrolidinium	6.4/1.61	8.44/2.20	6.6/1.67		[6]	
	1-Propyl-1-methylpiperidinium	20.5/1.06		23.14/1.19	30.19/1.19	[30]	
	1-Methyl-3-methylimidazolium	24.85/0.73				[31]	
	1-Ethyl-3-methylimidazolium	20/0.83				[31]	
	1-Butyl-3-methylimidazolium	14.06/1.11		18.29/1.43	22.14/1.43	[31,36]	
	4-Methyl-N-butylpyridinium	18.2/1.37		20.70/1.56	27.01/1.56	[32]	
	N-octylisoquinolinium	6.71/1.62		7.48/1.81	8.91/1.81	[33]	
	N-methyl-2-pyrrolidone	10.38/0.95				[34]	
	Sulfolane	16.86/0.43	34.61/0.88			[35]	

methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyrr]⁺[- Tf_2N]⁻), 1-pentyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)- $([PeMPyrr]^+[Tf_2N]^-),$ 1-hexyl-1-methylpyrrolidinium imide bis(trifluoromethylsulfonyl)imide ([HMPyrr]⁺[Tf₂N]⁻), 1-octyl-1methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([OMPyrr]⁺[-1-decyl-1-methylpyrrolidinium $Tf_2N]^-$), bis(trifluoromethylsulfonyl)imide ([DMPyrr]⁺[Tf₂N]⁻), 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide ([PrMPIP]⁺[Tf₂N]⁻), 1-methyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide ([MMIM]⁺[- Tf_2Nl^-). 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ($[EMIM]^+[Tf_2N]^-$), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM]⁺[Tf₂N]⁻), 4-methyl-Nbutylpyridinium bis(trifluoromethylsulfonyl)imide ($[BMPY]^+[Tf_2N]^-$), *N*-octylisoquinolinium bis(trifluoromethylsulfonyl)imide ([OiQuin]⁺[- $Tf_2N]^{-}$), *N*-methyl-2-pyrrolidone (NMP) and sulfolane were taken from the literature [5,6,30–35]. In Table 6, the selectivity and capacity at infinite dilution are given for these different families of cations (i.e., quinuclidinium, quinolidinium, imidazolium, pyrrolidinium, piperidinium and pyridinium). Concerning the hexane/benzene separation problem, [Tf₂N]⁻ based ILs present a larger capacity than classical organic solvents. Fig. 2 allows researchers to identify five ILs with better performance than sulfolane: ([EMIM]⁺[Tf₂N]⁻), ([MMIM]⁺[Tf₂N]⁻),

Fig. 2. Selectivity and capacity at infinite dilution for representative $[Tf_2N]^-$ based ILs applied to the hexane/benzene separation problem.

 $([PrMPIP]^+[Tf_2N]^-)$, $([BMPY]^+[Tf_2N]^-)$ and $([PrMPyrr]^+[Tf_2N]^-)$. Even though the quinuclidinium-based ILs show a large capacity, their selectivities are lower than that for sulfolane. In fact, it becomes clear from Fig. 3 that a larger selectivity may be obtained with this family of ILs simply by reducing the chain length attached to the cation. Indeed, Figs. 3 and 4 show that there is a linear relationship between the selectivity (as well as the capacity) and the alkyl chain length. Thus, the selectivity and the capacity of $[Tf_2N]^-$ based ILs do not appear to be strongly affected by the nature of the cation but primarily by the chain length.

3.2. Development of Abraham model partition coefficient correlations

Infinite dilution activity coefficients can be used to facilitate solvent selection needed to achieve a given chemical separation. It is not feasible, however, to measure γ_i^{∞} values for every possible solute–solvent combination that may be needed in designing an efficient separation process. Abraham model correlations (Eqs. (1)–(6)), enable one to estimate γ_i^{∞} values in the absence of experimental activity coefficient data. Predicted log *K* and log *P* values calculated from Abraham model correlations can be converted to γ_i^{∞} values by standard thermodynamic relationships:

$$\log K = \log \left(\frac{RT}{\gamma_{\text{solute}} {}^{\circ} P_{\text{solute}} {}^{\circ} V_{\text{solvent}}} \right)$$
(9)

$$\log P = \log K - \log K_{\rm w}. \tag{10}$$

Fig. 3. Plot of the selectivity at infinite dilution (S_{12}^{∞}) using various $[Tf_2N]^-$ based ILs as function of the carbon number (n_c) of the alkyl chain length grafted onto the cation for the hexane/benzene separation problem.

Fig. 4. Plot of the capacity at infinite dilution (k_1^{∞}) of $[Tf_2N]^-$ based ILs as function of the carbon number (n_c) of the alkyl chain length grafted onto the cation for the hexane/benzene separation problem.

In Eqs. (9) and (10), R is the universal gas constant, T is the system temperature, $P_{\text{solute}}^{\text{o}}$ is the vapor pressure of the solute at T, and V_{solvent} is the molar volume of the IL solvent at temperature T. The calculation of log P requires knowledge of the solute's gas phase partition

coefficient into water, K_w , which is available for all of the solutes being studied. Log *K* and log *P* values used in deriving the Abraham model correlations are compiled within Tables 7 and 8. The calculated values pertain to 298 K and were obtained by extrapolating the measured log *K* data in Tables 3 and 5 to 298 K, assuming a linear log *K* versus 1/T relationship.

The organic solutes considered in the present study should be sufficient in number and in chemical diversity to permit development of meaningful mathematical correlations to describe solute transfer into anhydrous [Quin6]⁺[Tf₂N]⁻ and [Quin8]⁺[Tf₂N]⁻, both from water and from the gas phase. Preliminary regression analysis of the experimental partition coefficient data in Tables 7 and 8 showed that the $e_{p,il} \cdot \mathbf{E}$ term in the log *P* correlation for [Quin8]⁺[Tf₂N]⁻ made a negligible contribution, and the error in the calculated coefficient was larger than the coefficient itself. This term was removed from the log *P* correlation for [Quin8]⁺[Tf₂N]⁻ and reanalysis of the experimental partition coefficient yielded the following two Abraham model correlations for [Quin6]⁺[Tf₂N]⁻:

 $\begin{array}{l} log \ \textit{P}(298 \ \textit{K}) = -0.360(0.154) + 0.138(0.130)\textbf{E} + 0.594(0.140)\textbf{S} \\ -0.936(0.199)\textbf{A} - 4.776(0.128)\textbf{B} + 3.864(0.130)\textbf{V} \end{array} (11)$

Table 7

Experimental logarithm of the gas-to-liquid partition coefficient (log *K*) and logarithm of the water-to-liquid partition coefficient (log *P*) for solutes dissolved in anhydrous [Quin6]⁺[- Tf_2N]⁻ at 298 K, along with the numerical values of the solute descriptors of the organic compounds.

Solute	Е	S	А	В	L	V	Log K ^{exp}	Log P ^{exp}
Hexane	0.000	0.000	0.000	0.000	2.668	0.9540	1.601	3.421
3-Methylpentane	0.000	0.000	0.000	0.000	2.581	0.9540	1.549	3.389
Heptane	0.000	0.000	0.000	0.000	3.173	1.0949	2.022	3.982
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	3.106	1.2358	1.987	4.107
Octane	0.000	0.000	0.000	0.000	3.677	1.2358	2.494	4.674
Nonane	0.000	0.000	0.000	0.000	4.182	1.3767	2.843	4.993
Decane	0.000	0.000	0.000	0.000	4.686	1.5176	3.272	5.592
Undecane	0.000	0.000	0.000	0.000	5.191	1.6590	3.660	6.040
Methylcyclopentane	0.225	0.100	0.000	0.000	2.907	0.8454	1.850	3.020
Cyclohexane	0.310	0.100	0.000	0.000	2.964	0.8454	1.978	2.878
Methylcyclohexane	0.244	0.060	0.000	0.000	3.319	0.9863	2.238	3.488
Cycloheptane	0.350	0.100	0.000	0.000	3.704	0.9863	2.601	3.191
Benzene	0.610	0.520	0.000	0.140	2.786	0.7164	2.960	2.330
Toluene	0.601	0.520	0.000	0.140	3.325	0.8573	3.378	2.728
Ethylbenzene	0.613	0.510	0.000	0.150	3.778	0.9982	3.710	3.130
<i>m</i> -Xylene	0.623	0.520	0.000	0.160	3.839	0.9982	3.791	3.181
p-Xylene	0.613	0.520	0.000	0.160	3.839	0.9982	3.771	3.181
o-Xylene	0.663	0.560	0.000	0.160	3.939	0.9982	3.962	3.302
1-Hexene	0.080	0.080	0.000	0.070	2.572	0.9110	1.821	2.981
1-Hexyne	0.166	0.220	0.100	0.120	2.510	0.8680	2.323	2.533
Acetone	0.179	0.700	0.040	0.490	1.696	0.5470	2.709	-0.121
2-Butanone	0.166	0.700	0.000	0.510	2.287	0.6879	3.057	0.337
2-Pentanone	0.143	0.680	0.000	0.510	2.755	0.8288	3.396	0.816
Tetrahydrofuran	0.289	0.520	0.000	0.480	2.636	0.6220	2.759	0.209
1,4-Dioxane	0.329	0.750	0.000	0.640	2.892	0.6810	3.333	-0.377
Methanol	0.278	0.440	0.430	0.470	0.970	0.3082	2.389	- 1.351
Ethanol	0.246	0.420	0.370	0.480	1.485	0.4491	2.646	-1.024
1-Propanol	0.236	0.420	0.370	0.480	2.031	0.5900	3.048	-0.512
2-Propanol	0.212	0.360	0.330	0.560	1.764	0.5900	2.762	-0.718
2-Methyl-1-propanol	0.217	0.390	0.370	0.480	2.413	0.7309	3.277	-0.023
1-Butanol	0.224	0.420	0.370	0.480	2.601	0.7309	3.483	0.023
Diethyl ether	0.041	0.250	0.000	0.450	2.015	0.7309	1.773	0.483
Diisopropyl ether	-0.063	0.170	0.000	0.570	2.501	1.0127	2.042	0.952
Chloroform	0.425	0.490	0.150	0.020	2.480	0.6167	2.692	1.902
Dichloromethane	0.390	0.570	0.100	0.050	2.019	0.4943	2.266	1.306
Acetonitrile	0.237	0.900	0.070	0.320	1.739	0.4042	2.988	0.138
Nitromethane	0.313	0.950	0.060	0.310	1.892	0.4237	3.333	0.383
1-Nitropropane	0.242	0.950	0.000	0.310	2.894	0.7055	3.888	1.438
Triethylamine	0.101	0.150	0.000	0.790	3.040	1.0538	2.249	-0.111
Pyridine	0.631	0.840	0.000	0.520	3.022	0.6753	3.729	0.289
Thiophene	0.687	0.570	0.000	0.150	2.819	0.6411	3.069	2.031
Ethyl acetate	0.106	0.620	0.000	0.450	2.314	0.7470	2.854	0.694
Water	0.000	0.600	0.590	0.460	0.245	0.1673	2.648	- 1.992

Table 8

Experimental logarithm of the gas-to-liquid partition coefficient (log K) and logarithm of the water-to-liquid partition coefficient (log P) for solutes dissolved in anhydrous [Quin8]⁺[-Tf₂N]⁻ at 298 K, along with the numerical values of the solute descriptors of the organic compounds.

Solute	E	S	А	В	L	V	log K ^{exp}	Log P ^{exp}
Hexane	0.000	0.000	0.000	0.000	2.668	0.9540	1.838	3.658
3-Methylpentane	0.000	0.000	0.000	0.000	2.581	0.9540	1.776	3.616
Heptane	0.000	0.000	0.000	0.000	3.173	1.0949	2.250	4.210
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	3.106	1.2358	2.219	4.339
Octane	0.000	0.000	0.000	0.000	3.677	1.2358	2.661	4.841
Nonane	0.000	0.000	0.000	0.000	4.182	1.3767	3.058	5.208
Decane	0.000	0.000	0.000	0.000	4.686	1.5176	3.468	5.788
Undecane	0.000	0.000	0.000	0.000	5.191	1.6590	3.882	6.262
Dodecane	0.000	0.000	0.000	0.000	5.696	1.7994	4.241	6.768
Methylcyclopentane	0.225	0.100	0.000	0.000	2.907	0.8454	2.039	3.209
Cyclohexane	0.310	0.100	0.000	0.000	2.964	0.8454	2.187	3.087
Methylcyclohexane	0.244	0.060	0.000	0.000	3.319	0.9863	2.426	3.676
Cycloheptane	0.350	0.100	0.000	0.000	3.704	0.9863	2.751	3.341
Benzene	0.610	0.520	0.000	0.140	2.786	0.7164	2.979	2.349
Toluene	0.601	0.520	0.000	0.140	3.325	0.8573	3.416	2.766
Ethylbenzene	0.613	0.510	0.000	0.150	3.778	0.9982	3.758	3.178
<i>m</i> -Xylene	0.623	0.520	0.000	0.160	3.839	0.9982	3.839	3.229
<i>p</i> -Xylene	0.613	0.520	0.000	0.160	3.839	0.9982	3.811	3.221
o-Xylene	0.663	0.560	0.000	0.160	3.939	0.9982	3.983	3.323
1-Hexene	0.080	0.080	0.000	0.070	2.572	0.9110	1.955	3.115
Acetone	0.179	0.700	0.040	0.490	1.696	0.5470	2.712	-0.118
2-Butanone	0.166	0.700	0.000	0.510	2.287	0.6879	3.073	0.353
2-Pentanone	0.143	0.680	0.000	0.510	2.755	0.8288	3.430	0.850
Tetrahydrofuran	0.289	0.520	0.000	0.480	2.636	0.6220	2.802	0.252
1,4-Dioxane	0.329	0.750	0.000	0.640	2.892	0.6810	3.346	-0.364
Methanol	0.278	0.440	0.430	0.470	0.970	0.3082	2.345	- 1.395
Ethanol	0.246	0.420	0.370	0.480	1.485	0.4491	2.633	-1.037
1-Propanol	0.236	0.420	0.370	0.480	2.031	0.5900	3.049	-0.511
2-Propanol	0.212	0.360	0.330	0.560	1.764	0.5900	2.756	-0.724
2-Methyl-1-propanol	0.217	0.390	0.370	0.480	2.413	0.7309	3.284	-0.016
1-Butanol	0.224	0.420	0.370	0.480	2.601	0.7309	3.489	0.029
Diethyl ether	0.041	0.250	0.000	0.450	2.015	0.7309	1.855	0.565
Diisopropyl ether	-0.063	0.170	0.000	0.570	2.501	1.0127	2.135	1.045
Chloroform	0.425	0.490	0.150	0.020	2.480	0.6167	2.725	1.935
Dichloromethane	0.390	0.570	0.100	0.050	2.019	0.4943	2.295	1.335
Acetonitrile	0.237	0.900	0.070	0.320	1.739	0.4042	2.969	0.119
Nitromethane	0.313	0.950	0.060	0.310	1.892	0.4237	3.301	0.351
1-Nitropropane	0.242	0.950	0.000	0.310	2.894	0.7055	3.914	1.464
Triethylamine	0.101	0.150	0.000	0.790	3.040	1.0538	2.391	0.031
Pyridine	0.631	0.840	0.000	0.520	3.022	0.6753	3.730	0.290
Thiophene	0.687	0.570	0.000	0.150	2.819	0.6411	3.089	2.059
Ethyl acetate	0.106	0.620	0.000	0.450	2.314	0.7470	2.888	0.728
Water	0.000	0.600	0.590	0.460	0.245	0.1673	2.737	-1.903

(with N = 43, SD = 0.134, $R^2 = 0.995$, F = 1591)

$$log K(298 K) = -0.562(0.100) - 0.071(0.107)E + 2.201(0.097)S + 2.569(0.151)A + 0.238(0.099)B + 0.815(0.028)L$$
(12)

(with N = 43, SD = 0.103, $R^2 = 0.977$, F = 312.0).

and the following two correlations for $[Quin8]^+[Tf_2N]^-$:

$$\log P(298 \text{ K}) = -0.149(0.137) + 0.451(0.114)\text{S} - 1.080(0.186)\text{A} -4.886(0.116)\text{B} + 3.861(0.110)\text{V}$$
(13)

(with N = 43, SD = 0.133, $R^2 = 0.996$, F = 2510)

log $K(298 \text{ K}) = -0.363(0.090) - 0.186(0.099)\mathbf{E} + 2.048(0.092)\mathbf{S}$ + 2.430(0.140) \mathbf{A} + 0.142(0.096) \mathbf{B} + 0.816(0.024) \mathbf{L} (14)

(with N = 43, SD = 0.100,
$$R^2 = 0.977$$
, F = 318.6).

where the standard errors in the calculated equation coefficients are given parenthetically immediately following the respective

coefficient. The statistical information associated with Eqs. (11)–(14) include the number of experimental log *P* (or log *K*) values used in the regression analyses, the standard deviation (SD), the squared correlation coefficient (R^2) , and the Fisher F statistic (F). Removal of the $e_{p,il} \cdot \mathbf{E}$ term from the log *P* equation for [Quin8]⁺[Tf₂N]⁻ had no effect on the standard deviation. In particular, the standard deviation was $SD = 0.133 \log$ units irrespective of whether or not the $e_{p,il} \cdot \mathbf{E}$ term was included in the log *P* equation for [Quin8]⁺[Tf₂N]⁻. Both sets of log *P* and log *K* correlations provide very accurate mathematical descriptions of solute transfer into anhydrous $[Quin6]^+[Tf_2N]^-$ and $[Quin8]^+[Tf_2N]^-$, as documented by the low standard deviations and near-unity squared correlation coefficients. Figs. 5 through 8 depict plots of the experimental log P and log K data at 298 K versus back-calculated values based on our four derived Abraham model expressions (i.e., Eqs. (11)-(14)). There are insufficient experimental data to perform training set and test set analyses on the derived correlations. Based on our extensive past experience, having performed numerous training set and test set analyses on Abraham model expressions for other IL solvents, we expect that Eqs. (11)-(14) will be able to estimate log K and log P values for additional solutes dissolved in anhydrous $[Quin6]^+[Tf_2N]^-$ and $[Quin8]^+[Tf_2N]^-$ to within $\pm 0.15 \log units$ (or less), provided that the solutes fall within the chemical space of the solute descriptors used in deriving Eqs. (11)-(14). The four

Fig. 5. Plot of experimental log P data versus calculated values based on Eq. (11) for solutes dissolved in $[Quin6]^+[Tf_2N]^-$.

correlations pertain to 298 K and are referred to as Abraham Model IL-specific equations in that they apply only to the given IL solvent.

As noted above, it is possible to increase the predictive capability of the Abraham model by determining equation coefficients for the individual cations and anions. Once calculated, the ion-specific equation coefficients can then be combined as a cation-anion pair through Eqs. (3) and (4) to permit estimation of log *P* and log *K* values for any arbitrary IL solvent, even those that have not yet been synthesized. Each calculated ion-specific equation coefficient corresponds to the sum of the respective cation-specific and anion-specific contributions. In establishing the computational methodology for calculating ionspecific equation coefficients, Sprunger et al. [25,26] set all five of the equation coefficients for the [Tf₂N]⁻ anion equal to zero in order to provide a reference point from which all other ion-specific equation coefficients would be calculated. A common reference point is required because the cation-specific and anion-specific equation coefficients are generated as a paired set. Equation coefficients of one of the constituent ions are needed in order to calculate values for the other ion. In the present study, $[Tf_2N]^-$ is the anion for both ILs. The equation coefficients in

Fig. 6. Plot of experimental log K data versus calculated values based on Eq. (12) for solutes dissolved in [Quin6]⁺[Tf₂N]⁻.

Fig. 7. Plot of experimental log *P* data versus calculated values based on Eq. (13) for solutes dissolved in $[Quin8]^+[Tf_2N]^-$.

Eqs. (11) and (12) thus correspond to the ion-specific coefficients for the [Quin6]⁺ cation. Similarly, the equation coefficients in Eqs. (13) and (14) pertain to the [Quin8]⁺ cation. The cation-specific equation coefficients that have just been calculated for the [Quin6]⁺ and [Quin8]⁺ cations can now be combined with our previously published ionspecific equation coefficients for 16 different anions to permit the estimation of log *P* and log *K* values for solutes dissolved in an additional 32 anhydrous IL solvents. For example, we can now predict log *P* and log *K* values for solutes dissolved in 1-hexylquinuclidinium tetrafluoroborate, 1-hexylquinuclidinium hexafluorophosphate, 1-hexylquinuclidinium octylsulfate, 1-octylquinuclidinium triflate, 1-octylquinuclidinium tetracyanoborate, and 1-octylquinuclidinium tris(pentafluoroethyl)trifluoro phosphate.

4. Conclusion

Infinite dilution activity coefficients (γ_i^{∞}) and gas-to-liquid partition coefficients (log *K*) are reported for 47 and 45 organic probe molecules dissolved in 1-hexylquinuclidinium bis(trifluoromethylsulfonyl)imide

Fig. 8. Plot of experimental log K data versus calculated values based on Eq. (14) for solutes dissolved in [Quin8]⁺[Tf₂N]⁻.

([Quin6]⁺[Tf₂N]⁻) and 1-octylquinuclidinium bis(trifluoromethylsulfonyl)imide ($[Quin8]^+[Tf_2N]^-$), respectively, as determined by inverse gas chromatography in the temperature range of 313 K to 353 K. The measured gas-to-liquid partition coefficient data were converted to water-to-liquid partition coefficients (log P) using standard thermodynamic relationships and published gas-to-water partition coefficient data. Both sets of calculated partition coefficient data for each IL were analyzed in terms of both the Abraham general solvation model and a modified version of the Abraham model containing cation-specific and anion-specific equation coefficients. The IL-specific mathematical correlations summarized by Eqs. (11)-(14)derived from the Abraham model described the measured log P and log K values to within 0.14 log units (or less). The cation-specific equation coefficients that were calculated for [Quin6]⁺ and [Quin8]⁺ can be combined with our previously reported ion-specific equation coefficients for 16 different anions to permit the estimation of log P and log K values for solutes dissolved in an additional 32 ILs.

References

- H. Luo, G.A. Baker, D. Dai, Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids, J. Phys. Chem. B 112 (2008) 10077–10081.
- [2] H. Jin, B. O'Hare, J. Dong, S. Arzhantsev, G.A. Baker, J.F. Wishart, A.J. Benesi, M. Maroncelli, Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethyl-sulfonyl)imide anion with various cations, J. Phys. Chem. B 112 (2008) 81–92.
- [3] K. Kilaru, G.A. Baker, P. Scovazzo, Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based roomtemperature ionic liquids: data and correlations, J. Chem. Eng. Data 52 (2007) 2306–2314 [Erratum: J. Chem. Eng. Data 53 (2008) 613].
- [4] F. Mutelet, D. Alonso, T.W. Stephens, W.E. Acree Jr., G.A. Baker, Infinite dilution activity coefficients of solutes dissolved in two trihexyl(tetradecyl)phosphonium ionic liquids, J. Chem. Eng. Data 59 (2014) 1877–1885.
- [5] F. Mutelet, E.-S.R.E. Hassan, T.W. Stephens, W.E. Acree Jr., G.A. Baker, Activity coefficients at infinite dilution for organic solutes dissolved in three 1-alkyl-1methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids bearing short linear alkyl side chains of three to five carbons, J. Chem. Eng. Data 58 (2013) 2210–2218.
- [6] W.E. Acree Jr., G.A. Baker, A.-L. Revelli, J.-C. Moise, F. Mutelet, Activity coefficients at infinite dilution for organic compounds dissolved in 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids having six-, eight-, and ten-carbon alkyl chains, J. Chem. Eng. Data 57 (2012) 3510–3518.
- [7] W.E. Acree Jr., G.A. Baker, F. Mutelet, J.-C. Moise, Partition coefficients of organic compounds in four new tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids using inverse gas chromatography, J. Chem. Eng. Data 56 (2011) 3688–3697.
- [8] J.-C. Moise, F. Mutelet, J.-N. Jaubert, L.M. Grubbs, W.E. Acree Jr., G.A. Baker, Activity coefficients at infinite dilution of organic compounds in four new imidazoliumbased ionic liquids, J. Chem. Eng. Data 56 (2011) 3106–3114.
- [9] U. Domanska, M. Krolikowska, W.E. Acree Jr., G.A. Baker, Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, J. Chem. Thermodyn. 43 (2011) 1050–1057.
- [10] A.-L. Revelli, F. Mutelet, J.-N. Jaubert, M. Garcia-Martinez, L.M. Sprunger, W.E. Acree Jr., G.A. Baker, Study of ether-, alcohol-, or cyano-functionalized ionic liquids using inverse gas chromatography, J. Chem. Eng. Data 55 (2010) 2434–2443.
- [11] F. Mutelet, A.-L. Revelli, J.-N. Jaubert, L.M. Sprunger, W.E. Acree Jr., G.A. Baker, Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography, J. Chem. Eng. Data 55 (2010) 234–242.
- [12] A.-L. Revelli, L.M. Sprunger, J. Gibbs, W.E. Acree Jr., G.A. Baker, F. Mutelet, Activity coefficients at infinite dilution of organic compounds in trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide using inverse gas chromatography, J. Chem. Eng. Data 54 (2009) 977–985.
- [13] A. Ayad, F. Mutelet, E.-S. Abumandour, A. Negadi, Activity coefficients at infinite dilution of organic solutes in methylphosphonate based ionic liquids using gas–liquid chromatography, J. Chem. Thermodyn. 86 (2015) 116–122.
- [14] E. Lukoshko, F. Mutelet, U. Domanska, Experimental and theoretically study of interaction between organic compounds and tricyanomethanide based ionic liquids, J. Chem. Thermodyn. 85 (2015) 49–56.
- [15] A.-L. Revelli, F. Mutelet, J.-N. Jaubert, Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography, J. Chromatogr. A 1216 (2009) 4775–4786.

- [16] A.-L. Revelli, F. Mutelet, M. Turmine, R. Solimando, J.-N. Jaubert, Activity coefficients at infinite dilution of organic compounds in 1-butyl-3-methylimidazolium tetrafluoroborate using inverse gas chromatography, J. Chem. Eng. Data 54 (2009) 90–101.
- [17] F. Mutelet, J.-N. Jaubert, M. Rogalski, J. Harmand, M. Sindt, J.-L. Mieloszynski, Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography, J. Phys. Chem. B 112 (2008) 3773–3785.
- [18] F. Mutelet, J.-N. Jaubert, Measurement of activity coefficients at infinite dilution in 1hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid, J. Chem. Thermodyn. 39 (2007) 1144–1150.
- [19] F. Mutelet, J.-N. Jaubert, M. Rogalski, M. Boukherissa, A. Dicko, Thermodynamic properties of mixtures containing ionic liquids: activity coefficients at infinite dilution of organic compounds in 1-propyl boronic acid-3-alkylimidazolium bromide and 1-propenyl-3-alkylimidazolium bromide using inverse gas chromatography, J. Chem. Eng. Data 51 (2006) 1274–1279.
- [20] F. Mutelet, J.-N. Jaubert, Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography, J. Chromatogr. A 1102 (2006) 256–267.
- [21] F. Mutelet, V. Butet, J.-N. Jaubert, Application of inverse gas chromatography and Regular Solution Theory for characterization of ionic liquids, Ind. Eng. Chem. Res. 44 (2005) 4120–4127.
- [22] W.E. Acree Jr., M.H. Abraham, The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship, J. Chem. Technol. Biotechnol. 81 (2006) 1441–1446 [Erratum: J. Chem. Technol. Biotechnol. 81 (2006) 1722.].
- [23] M.H. Abraham, W.E. Acree Jr., Comparative analysis of solvation and selectivity in room temperature ionic liquids using the Abraham linear free energy relationship, Green Chem. 8 (2006) 906–915.
- [24] L.M. Grubbs, M. Saifullah, N.E. De La Rosa, W.E. Acree Jr., M.H. Abraham, Q. Zhao, J.L. Anderson, Cation-specific and anion-specific Abraham model correlations for solute transfer into ionic liquid solvents, Glob. J. Phys. Chem. 1 (2010) 1–19.
- [25] L.M. Sprunger, M. Clark, W.E. Acree Jr., M.H. Abraham, Characterization of roomtemperature ionic liquids by the Abraham model with cation-specific and anionspecific equation coefficients, J. Chem. Inf. Model. 47 (2007) 1123–1129.
- [26] L.M. Sprunger, A. Proctor, W.E. Acree Jr., M.H. Abraham, LFER correlations for room temperature ionic liquids: separation of equation coefficients into individual cation-specific and anion-specific contributions, Fluid Phase Equilib. 265 (2008) 104–111.
- [27] L.M. Sprunger, J. Gibbs, A. Proctor, W.E. Acree Jr., M.H. Abraham, Y. Meng, C. Yao, J.L. Anderson, Linear free energy relationship correlations for room temperature ionic liquids: revised cation-specific and anion-specific equation coefficients for predictive applications covering a much larger area of chemical space, Ind. Eng. Chem. Res. 48 (2009) 4145–4154.
- [28] T.W. Stephens, V. Chou, A.N. Quay, C. Shen, N. Dabadge, A. Tian, M. Loera, B. Willis, A. Wilson, W.E. Acree Jr., P. Twu, J.L. Anderson, M.H. Abraham, Thermochemical investigations of solute transfer into ionic liquid solvents: updated Abraham model equation coefficients for solute activity coefficient and partition coefficient predictions, Phys. Chem. Liq. 52 (2014) 488–518.
- [29] A.-L. Revelli, F. Mutelet, J.-N. Jaubert, Prediction of partition coefficients of organic compounds in ionic liquids: use of a linear solvation energy relationship with parameters calculated through a group contribution method, Ind. Eng. Chem. Res. 49 (2010) 3883–3892.
- [30] U. Domanska, K. Paduszynski, Measurements of activity coefficients at infinite dilution of organic solutes and water in 1-propyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide ionic liquid using G.LC, J. Chem. Thermodyn. 42 (2010) 1361–1366.
- [31] M. Krummen, P. Wasserscheid, J. Gmehling, Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique, J. Chem. Eng. Data 47 (2002) 1411–1417.
- [32] U. Domanska, A. Marciniak, Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-*N*-butyl-pyridinium bis(trifluoromethylsulfonyl)imide, J. Chem. Thermodyn. 41 (2009) 1350–1355.
- [33] U. Domanska, M. Zawadzki, M. Królikowska, M.-M. Tshibangu, D. Ramjugernath, T.-M. Letcher, Measurements of activity coefficients at infinite dilution of organic compounds and water in isoquinolinium-based ionic liquid [C8iQuin][NTf₂] using GLC, Chem. Thermodynamics 43 (2011) 499–504.
- [34] M. Krummen, D. Gruber, J. Gmehling, Measurement of activity coefficients at infinite dilution in solvent mixtures using the dilutor technique, Ind. Eng. Chem. Res. 39 (2000) 2114–2123.
- [35] C. Mollmann, J. Gmehling, Measurement of activity coefficients at infinite dilution using gas-liquid chromatography. 5. Results for N-methylacetamide, N,Ndimethylacetamide, N,N-dibutylformamide, and sulfolane as stationary phases, J. Chem. Eng. Data 42 (1997) 35–40.
- [36] J. Zhang, Q. Zhang, B. Qiao, Y. Deng, Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography, J. Chem. Eng. Data 52 (2007) 2277–2283.

Résumé

Au cours de ces dernières décennies, les liquides ioniques se sont avérés comme d'excellents solvants avec un intérêt croissant comme solvants verts alternatifs dans les procédés chimiques et ceci afin de réduire les émissions polluantes et toxiques de composés organiques volatils (COV). Les propriétés favorables des liquides ioniques, telles que leur faible pression de vapeur, une large gamme liquide, la stabilité thermique et chimique, leur bonne conductivité électrique, rendent ces derniers attractifs pour divers applications.

L'objectif de ce travail est d'étudier le comportement des liquides ioniques en présence de composés organiques et le dioxyde de carbone (CO_2) .

Dans un premier temps, la chromatographie en phase gazeuse inverse est utilisée pour mesurer les coefficients d'activité à dilution infinie de composés organiques dans différents liquides ioniques, pour comprendre la nature des interactions intermoléculaires entre les solutés organiques et les liquides ioniques et pour déterminer la sélectivité des liquides ioniques pour différents problèmes de séparation. Le modèle TDGC-LSER a été mis en place pour représenter les coefficients de partage de différents solutés dans différentes familles de liquides ioniques. Dans un second temps, nous avons étudié les propriétés thermophysiques des mélanges contenant les liquides ioniques à base de l'anion tricyanométhanide en présence d'eau ou de dioxyde de carbone pour différentes compositions et en fonction de la température. Les données expérimentales d'équilibres liquidevapeur des systèmes {eau+liquide ionique} ont été corrélées en utilisant le modèle NRTL.

La solubilité du dioxyde de carbone dans les liquides ioniques a été mesurée entre 292.13 et 367.85 K et des pressions allant de 4 à 121.6 bar à l'aide d'une cellule haute pression à volume variable. L'équation d'état PC-SAFT a été utilisée pour modéliser les systèmes {CO₂+liquide ionique}.

Mots clés : liquides ioniques, composés organiques, dioxyde de carbone, coefficients d'activité à dilution infinie, propriétés thermophysiques, NRTL, équation d'état PC-SAFT.

Abstract

Over the last decades, ionic liquids have attracted increasing interest as green alternative solvents in chemical processes to reduce pollutant and toxic emissions of volatile organic compounds. The favorable properties of ionic liquids, such as their low vapor pressure, a wide liquid range, thermal and chemical stability and their good electrical conductivity, make them attractive for various applications. The aim of this work is to study the behavior of ionic liquids in the presence of organic compounds and carbon dioxide (CO₂).

First, inverse gas chromatography is used to measure the activity coefficients at infinite dilution of organic compounds in various ionic liquids in order to understand the nature of molecular interactions between organic solutes and ionic liquids and to determine the selectivity of ionic liquids for different separation problems. The TDGC-LSER model was set up to represent the partition coefficients of different solutes in different families of ionic liquids. Secondly, we studied the thermophysical properties of mixtures containing tricyanomethanidebased ionic liquids in the presence of water or carbon dioxide for different compositions as a function of temperature. The experimental liquid-vapor equilibrium data of the systems (water + ionic liquid) were correlated using the NRTL model.

The solubility of carbon dioxide in ionic liquids was measured between 292.13 and 367.85 K and pressures ranging from 4 to 121.6 bar using high pressure variable volume cell. The PC-SAFT equation of state was used to model the systems $\{CO_2 + ionic liquid\}$.

Keywords: ionic liquids, organic compounds, carbon dioxide, activity coefficients at infinite dilution, salvation model, thermophysical properties, NRTL, PC-SAFT equation of state.

على مدى العقود الماضية، جذبت السوائل الأيونية اهتماما متزايدا كمذيبات بديلة خضراء في العمليات الكيميائية للحد من الملوثات والانبعاثات السامة للمركبات العضوية المتطايرة. الخصائص المفضلة للسوائل الأيونية، مثل ضغط البخّار المنخفض، نطاق واسع من السائل، والاستقرار الحراري والكيميائي وموصلية كهربائية جيدة، جعَّلها لافتة لمختلف التطبيقات.

الهدف من هذا العمل هو دراسة سلوك السوائل الأيونية في وجود المركبات العضوية وثاني أكسيد الكربون (CO₂). في البداية تم استخدام كروماتو غرافيا الغاز المعكوسة لقياس معاملات النشاط في التخفيف اللانهائي للمركبات العضوية في مختلف السوائل الأيونية، لفهم طبيعة التفاعلات الجزيئية بين المواد المذابة العضوية و السوائل الأيونية ولتحديد انتقائية السوائل الأيونية لمشاكل فصل مختلفة. وقد تم إعداد النموذج TDGC-LSER لتمثيل معاملات تقسيم المواد المذابة في عائلات مختلفة من السوائل الأيونية.

ثم قمناً بدراسة الخصائص الفزيائية و الحرارية للخلائط التي تحتوي على السوائل الأيونية ذات أساس tricyanomethanide مع الماء أو ثاني أكسيد الكربون لمختلف التركيبات بدلالة درجة الحرارة

لقد درسنا النتائج التجريبية للتوازنات سائل- بخار نضم { ماء+ سائل ايوني } باستخدام نموذج NRTL.

تم قياس ذوبان ثاني أكسيد الكربون في السوائل الأيونية بُين 292.1 و 292.6 كلفن و ضغوط تتراوح بين 4 و 121.6 بار باستخدام خلية ضغط عالى بحجم متغير . تم استخدام المعادلة PC-SAFT لدراسة النظم {CO_+ سائل ايوني} .

كلمات مفتاحية : سوائل أيونية ، مركبات العضوية، ثانى أكسيد الكربون، معاملات النشاط في التخفيف اللانهائي، نموذج إذابة، خصائص الفزيائية و الحرارية ، NRTL ، معادلة NRTL