République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Abou Bekr-Belkaid -Tlemcen-Faculté de Technologie Département de génie civil

Mémoire pour l'obtention du diplôme Du master en génie civil Option : structure

Thème

Etude d'un bâtiment (sous-sol, RDC+ 9) à usage multiple

Présenté en juillet 2017 par :

BELDJILALI MOURAD

MOUMEN AMINE

Devant le jury composé de :

Mr. HOUTI President
Mr. MEDJAHAD Examinateur
Mr. GHEZALI Examinateur
Mr. HASSAINE Encadreur

ANNEE UNIVERSITAIRE 2016-2017

Dédicace

ma reconnaissance et ma sympathie et dédier ce travail modeste à : Mes parents, les mots ne sauraient exprimer l'immense et profonde gratitude que je leur témoigne ici pour leur précieux soutien, pour leur patience, pour avoir crus en moi, pour leurs sourires réconfortants et

C'est avec grand respect et gratitude que je tiens à exprimer toute

vie et qu'ils m'ont jamais cessé de consentir pour moi instruction et

pour leurs sacrifices qui m'ont permis d'atteindre cette étape dans ma

mon bien être dieu me les gardes et les protège.

Mon frère et mes sœurs, pour leur patience, d'avoir tendu chaleureusement leurs bras et pour avoir évincé mes moments de toute.

- Toute ma famille surtout MOUMENE ABD EL KADER
- Tous mes amis surtout mon binôme MOURAD
- Tous mes enseignants tout au long des cycles de mes études.
- Toute la promotion 2016/2017 génie civil.
- Tous ceux qui ont participé de près ou de loin à la réalisation de ce travail.

MOUMENE Amine

Dédicace

Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en expriment la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce travail à :

- Mes chers parents qui ont sacrifiés leur vie pour notre bien.
- **M**on frère et mes sœurs.
- Toute la famille : **BELDJILALI**
- Mon ami et mon binôme MOUMENE
- **M**es amis de la promotion de génie civil

Et en dernier, un grand merci à toutes celles et tous ceux qui d'une manière ou d'une autre m'ont aidé et soutenu.

BELDJILALI Mourad

Remerciements

Notre parfaite gratitude et nos remerciements à Allah le plus puissant qui nous a donné la force, le courage et la volonté pour mener à bien ce modeste travail.

C'est avec une profonde reconnaissance et considération particulière que nous remercions nos encadreurs Messieurs **HASSAINE.N** pour leurs soutiens, leurs conseils judicieux et leurs grandes bienveillances durant l'élaboration de cet ouvrage.

Nous exprimons aussi nos reconnaissances à tous les membres du jury d'avoir accepté de lire, de présider et examiner ce modeste travail et d'apporter les critiques nécessaires à la mise en forme de ce projet.

Nos vifs remerciements pour l'ensemble des enseignants du département de génie civil qui ont contribué à notre formation d'ingénieur civil.

Enfin, à tous ceux qui nous ont aidés de près ou de loin pour la réalisation de ce projet de fin d'étude, qu'ils trouvent ici, l'expression de nos sincères remerciements.

-Résumé-

Ce projet présente une étude détaillée d'un bâtiment de forme irrégulière à usage multiple constitué de sous-sol, un rez de chaussée plus 9 étages implantés dans la wilaya de TLEMCEN. Cette région est classé en zone sismique I selon le RPA99 version 2003. Cette étude se compose de quatre partie :

La première partie entame la description générale du projet avec une présentation de l'aspect architectural des éléments du bâtiment, ensuite le prédimensionnement de la structure et enfin la descente des charges.

La deuxième partie a été consacrée aux éléments secondaires (les poutrelles, escalier, dalle pleine, l'ascenseur et l'acrotère).

L'étude dynamique de la structure a été entamée dans la troisième partie en utilisant le logiciel SAP2000 afin de déterminer les différentes sollicitations dues aux chargements (charges permanentes, d'exploitations et charge sismique).

La dernière partie comprend le ferraillage des différentes éléments résistants de la structure (fondation, poteaux, poutres, voiles).

Tous les calculs sont faits en tenant compte des règlements de calcul et vérification du béton armé (RPA99V2003, BAEL91modifié99).

Mots clé: béton, bâtiment, SAP2000, BAEL91, RPA99V2003.

- Summary-

This project presents a detailed study of an irregularly shaped building

multiuse consist of basements, a ground story +9 floor implanted in the wilaya

of TLEMCEN. This region is classified as seismic zone I according to the

RPA99V2003. This study consists of four parts:

The first part is the general description of the project with a presentation

of the architectural aspects of building elements, then the pre-sizing of the

structure and finally the descent of the load.

The second part was devoted to secondary elements (the staircase

beam, solid slabs and parapet wall).

The dynamique study of the structure was begun in third part

determined by SAP2000 to various stresses to loads (permanents loads,

operational and seismic loading)

The last part includes the renforcement of the various resistance

elements of the structure (foundation, column, beams, and walls sails).

Using the rules of calculation and verification of reinforced concrete

(RPA99V2003, BAEL91modified99).

Keywords: concrete, building, SAP2000, BAEL91, RPA99V2003.

ـ الملخص ـ

هذا المشروع هو عبارة عن دراسة مفصلة لعمارة مكونة من طابق تحت ارضي زائد طابق ارضي وتسعة طوابق علوية بولاية تلمسان المصنفة ضمن المنطقة الزلزالية لرقم 1 حسب المركز الوطني للبحث المطبق في هندسة مقاومة الزلازل.

اشتملت الدراسة على اربعة محاور:

- المحور الأول: تفصيل عام للمشروع يشتمل على تعريف المشروع والبناية مع اعطاء الابعاد الاولية للعناصر وحمولة كل عنصر مكون لها.

-المحور الثاني: دراسة الاجزاء الثانوية من البناية (المدارج والبلاطات الفرغة والمملوءة)

-المحور الثالث: الدراسة الديناميكية للبناية بواسطة برنامج الذي يزودنا بالنتائج النهائية التي تسمح بتسليح مختلف العناصر المكونة للبناية مع الاخذ بعين الاعتبار كل توصيات القوانين الجزائرية المقاومة للزلازل.

- اما المحور الاخير يشتمل على دراسة الاجزاء المقاومة للبناية (الاعمدة العارضات والاساسات). كل هذا اعتمادا على قواعد الحساب والتحقق الخرسانة المسلحة: 8AP 200, RPA 99 V2003, BAEL 91. الكلمات المفتاحية: الخرسانة, العمارة, 8AP 200, RPA 99 V2003, BAEL 91.

Notation

G	Action permanente
Q	Action d'exploitation
E	Action accidentelle
$\overline{\sigma_{bc}}$	Contrainte admissible du béton
$\overline{\sigma_{st}}$	Contrainte admissible due l'acier
$\overline{\tau_u}$	Contrainte ultime de cisaillement
$\sigma_{ m bc}$	Contrainte du béton
$\sigma_{ m st}$	Contrainte d'acier
$ au_{ m u}$	Contrainte de cisaillement
$f_{bc} \\$	Contrainte de calcul
fcj	Résistance à la compression du béton a(j) jours
f_{tj}	Résistance à la traction du béton a (j) jours
F_{c28}	Résistance caractéristique à la compression du béton a 28 jours d'âge
F_{t28}	Résistance caractéristique à la traction du béton a 28 jours d'âge
\mathbf{A}_{st}	Section d'armature
A_{r}	Armature de répartition
γ b	Coefficient de sécurité de béton
$\gamma_{\rm s}$	Coefficient de sécurité d'acier
θ	Coefficient d'application
η	Facteur de correction d'amortissement
I_x , I_Y	Moment d'inertie
i_x, i_y	Rayon de giration
$\mu_{ m u}$	Moment ultime réduit
α l	Position relative de la fibre neutre
Z	Bras de levier
d]	Distance séparant entre la fibre la plus comprimée et les armatures inferieures
ď	Distance entre les armatures et la fibre neutre

- B_r Section réduit
- M Moment fléchissant
- N Effort normal
- A Coefficient d'accélération de la zone
- D Facteur d'amplification dynamique
- R Coefficient de comportement global de la structure Facteur de qualité
- W Poids total de la structure
- v Force sismique total
- W_i Poids au niveau(i)
- C_t Coefficient de période
- β Coefficient de pondération
- S_t Espacement
- *λ* Élancement
- e Épaisseur
- f Flèche
- \bar{f} Flèche admissible
- L Longueur ou portée
- L_f Longueur de flambement
- M_t Moment en travée
- Ma Moment en appui
- K Coefficient de raideur de sol
- ε Déformation relative
- $\varepsilon_{\rm b}$ Déformation du béton en compression
- fe Limite d'élasticité de l'acier
- Eij Module d'élasticité instantané
- Evi Module d'élasticité différé
- E_S Module d'élasticité de l'acier

INTRODUCTION GENERALE

Construire a toujours été l'un des premiers soucis de l'homme et l'une de ses occupations privilégiées. À ce jour, la construction connait un grand essor dans la plus part des pays et très nombreux sont les professionnels qui se livrent à l'activité de bâtir dans le domaine du bâtiment ou des travaux publics.

Le développement économique dans les pays industrialisés privilégie la construction verticale dans un souci d'économie de l'espace. Cependant, il existe un danger représenté par ce choix à cause de dégâts qui peuvent lui occasionner par le séisme.

Puisque l'Algérie se situe dans une zone de convergence de plaque tectonique, elle est une région à fort activité sismique.

L'expérience a montré que la plupart des bâtiments endommagés au tremblement de terre de BOUMERDES du 21 mai 2003 n'étaient pas de conception parasismique. Pour cela, il y a lieu de respecter les normes et les recommandations parasismique qui rigidifient convenablement la structure.

Chaque étude de projet du bâtiment a des buts :

- La sécurité : assure la stabilité de l'ouvrage.
- Économie : sert à déterminer les couts du projet (les dépenses).
- Confort
- Esthétique.

L'utilisation du béton armé (B.A) dans la réalisation est déjà un avantage d'économie, car il est moins chère par rapport aux autre matériaux (charpente en bois ou métallique avec beaucoup d'autre avantages comme par exemple :

- Souplesse d'utilisation.
- Durabilité (durée de vie).
- Résistance au feu.

Dans le cadre de ce projet, nous avons procédés au calcul d'un bâtiment en béton armé à usage multiple, implantée dans une zone de faible sismicité, comportant sous-sol, un RDC+9 étage à Tlemcen qui n'est pas encore réalisé.

Sommaire

Introduction générale

Chanitre	1.	Présentation	de projet

I.1 Introduction :	2
I.2. Présentation de l'ouvrage	2
I.3 Caractéristiques géométriques de la structure	3
I.4 Conception de la structure.	3
I.5. Résistance mécanique de béton	5
I.6 Acier	8
I.7 Les notions de calcul	10
Chapitre II : Pré-dimensionnement des éléments structuraux	
II.1.Introduction	12
II.2 Évaluation des charges et surcharges	12
II.3 Pré-dimensionnement des éléments structuraux	15
II.3.1 Les planchers	15
II.3.2 Les poutres	15
II.3.3. Les poteaux	16
II.3.4 Les voiles	19
Chapitre III : Étude des planchers	
III.1Introduction	21
III.2 Dimensionnement de la poutrelle	21
III.3 Etude du plancher à corps creux	21
III.3.1 calcul des poutrelles	22
III.4 Etude du plancher dalle pleine	32
III.4.1.Pré-dimension de la dalle pleine	32
III.4.2. Calcul des moments	32
III.4.3 calcul des ferraillages	34
III 5 Etude de balcon	36

III.5.1 Introduction	36
III.5.2 Evaluation des charges	37
III.5.3 Calcul des moments fléchissant et des efforts tranchants	37
III.5.4 Détermination du ferraillage	38
Chapitre IV : Étude des éléments secondaires :	
IV.1 Etude d'escalier	
IV.1.1 Introduction	42
IV.1.2 Terminologie	42
IV.1.3 Dimensionnement des escaliers	42
IV.1.4 Type d'escalier.	44
IV.1.5 Descente des charges d'escalier.	44
IV.1.6 Calcul des épaisseurs	45
IV.1.7 Calcul des sollicitations	45
IV .1.8 Détermination des ferraillages.	47
IV 1.9 Étude de la poutre brisé	50
IV 1.9.1 Pré-dimensionnement.	50
IV.1.9.2 Descende des charges	50
IV.1.9.3 Calcul des efforts internes.	51
IV.1.9.4 Calcul du ferraillage	51
IV.2 Ascenseur	55
IV.2.1 Introduction	55
IV .2.2 Etude de l'ascenseur	55
IV.3 Acrotère	64
IV.3.1 Introduction	64
IV.3.2 Poids propre de l'acrotère	64
IV .3.3 Combinaison d'action	65
IV.3.4. Calcul de l'excentricité	65
IV.3.5 Détermination du ferraillage	65
Chapitre V : Etude dynamique	
V.1 Introduction	71

V.2 Objectif de l'étude dynamique	71
V.3 Modélisation de la structure	71
V.4. Méthodes des calcul	72
V.4.1 Méthode statique équivalents	72
V.4.2 Méthode d'analyse modale spectrale	72
V.5 Combinaison d'action	72
V .6 Choix de la méthode de calcul.	72
V.7 Analyse du modèle	73
V.8 Méthodes statique équivalente.	74
V.8.2 Période et participation massique.	76
V.8.3 Poids total de la structure.	76
V.8.4Détermination de l'effort tranchants.	77
V.8.5 Détermination de la force sismique de chaque niveau	77
V.8.6 Vérification du coefficient de comportement R	78
V.9 Méthode d'analyse spectrale modale	79
V.10.Résultats des forces sismique de calcul	80
Chapitre VI : Étude des éléments structuraux	
VI.1 Introduction.	82
VI.2 Les poteaux	82
VI.2.1 Les combinaisons de calcul	82
VI.2.2 Vérification spécifique sous sollicitations normales	82
VI.2.3 Vérification spécifique sous sollicitations tangentes	83
VI.2.4 Ferraillage des poteaux.	84
VI.2.4.2 Calcul des armatures transversales.	87
VI.3 Les poutres	89
VI.3.1 Ferraillage des poutres principales.	89
VI.3.1.1 Ferraillage longitudinale	89
VI.3.1.2 Ferraillage transversale	92
VI.3.2 Ferraillage des poutres secondaires	93
VI.3.2.1 Ferraillage longitudinale	94

VI.3.2.2 Ferraillage transversale	96
VI.4.Les voiles	98
VI.4.1 Introduction.	98
VI.4. 2 Vérification des contraintes de tangentielles	99
VI.4.3 Calcul des voiles.	99
VI.4.2.1 Détermination du ferraillage	99
Chapitre VII : Étude des fondations	
VII.1 Introduction	102
VII.2 Choix du type de fondation.	102
VII.3 Les surfaces nécessaire des semelles	102
VII.4 Calcul de la semelle isolée	103
VII.4.1 Pré-dimensionnement	103
VII.4.2 Vérification des conditions de stabilité	104
VII.4.3 Vérification des conditions de rigidité	104
VII.4.4 Calcul du ferraillage	104
VII.4.5 Vérification au poinçonnent	105
VII.5 Calcule de la semelle filante sous mur voile et poteau	105
VII.5.1 Pré-dimensionnement	105
VII.5.1.1 Calcul de la résultante	105
VII.5.1.2 Calcul de l'excentricité	106
VII.5.1.3 Calcul de ferraillage	106
VII.5.1.4 Calcul des armatures transversales	107
Chapitre VIII : Etude management :	
VIII.1 Introduction.	111
VIII.2 Management de projet.	111
VIII.3 Objectif à atteindre.	113
VIII.4 Ordonnancement et planification	114
VIII.5 Définition des ressources	115
VIII.6 Conclusion	116
Conclusion générale	

Listes des tableaux

Chapitre I : Présentation de projet

Tableau I.1 : variation de θ en fonction du temps	7
Tableau I.2- Valeurs de la limite d'élasticité des différents types d'aciers	8
Chapitre II : Pré-dimensionnement des éléments structuraux	
Tableau II.1 : charges à la terrasse due aux plancher à corps creux	12
Tableau II.2 : charges à étage courant due aux plancher à corps creux.	13
Tableau II.3: Charge de la dalle pleine	13
Tableau II.4: Charge du balcon	13
Tableau II.5 charge permanente du mur extérieur.	14
Tableau II.6 : Charge permanente du mur intérieur.	14
Tableau II.7: Charge du palier.	14
Tableau II.8 : Charge de la volée	15
Tableau II.9: Récapitulation du pré dimensionnement	19
Chapitre III : Étude des planchers	
Tableau .III.1 : Charges supportées par les poutrelles	22
Tableau III.2: ferraillage des poutrelles	30
Tableau III.2: ferraillage des poutrelles	32
Tableau III.4 Ferraillage de la dalle	35
Tableau III.5 Ferraillage de la dalle	35
Tableau III.6: Évaluation des charges pour le balcon	37
Tableau III.7: Ferraillage du balcon	38
Chapitre IV : Étude des éléments secondaires	
Tableau IV.1 l'inclinaison de type d'escalier	44
Tableau IV.2 Descente des charges du palier dans les déférents niveaux	44
Tableau IV.3 Descente des charges de paillasses dans les déférents niveaux	45
Tableau IV.4: les efforts adoptés	47
Tableau IV.5 récapitulatif du ferraillage d'escalier	50
Tableaux IV.6 : Récapitulatif du ferraillage de la poutre brisée	54

Tableau IV .7 : les moments dus aux charges concentrées.	58
Tableau IV.8 : moments isostatiques à ELU et ELS	58
Tableau IV.8 : ferraillage de la dalle d'ascenseur	64
Chapitre V : Etude dynamique	
Tableau V.1 Pénalité correspondante au critère	76
Tableau V.2 Périodes et pourcentage de participation massique	76
Tableau V.3 Poids des différents niveaux	77
Tableau V.4 Les forces sismiques de chaque niveau pour R= 5	78
Tableau V.5: Comparaison entre l'effort statique et dynamique	80
<u>Chapitre VI :</u> Étude des éléments structuraux	
Tableau VI .1 : La vérification des poteaux sous sollicitations normales.	83
Tableau VI.2: Vérification spécifique sous sollicitation tangentes	84
Tableaux VI.3: Les sollicitations de poteau de l'exemple	85
Tableau VI.4 : Ferraillage longitudinale des poteaux	87
Tableau VI.5 : ferraillage transversale des poteaux	88
Tableau VI .6 : Sollicitations de la poutre principale	89
Tableau VI. 6: Récapitulatif des résultats de ferraillage des poutres principales	93
Tableau VI.7 : Sollicitations de la poutre secondaire	93
Tableau VI.8: Récapitulatif des résultats de ferraillage de la poutre secondaire	97
Tableaux VI.9: Vérification de la contrainte	99
Tableau VI.10 : Sollicitation de voile plus sollicité.	100
<u>Chapitre VII:</u> Etude des fondations	
Tableau VII.1 : Les différentes surfaces des semelles sous poteaux	103
Tableau VII.2 : Récapitulatif des résultats des semelles isolées	105
Tableau VII.3 : Récapitulatif des efforts internes M et N	106
Tableau VII.4: Les sections des différentes semelles filantes	109
Tableau VII.5: Le ferraillage des différentes semelles filantes sous voile et mur	109
<u>Chapitre VIII</u> : Etude de management	
Tableau VIII.1Les ressources matériaux (Matériaux) du projet	115
Tableau VIII.1: estimation du cout de l'ouvrage.	116

Liste des figures

<u>Chapitre I :</u> Présentation de projet	
Figure I.1 : Plan de masse	2
Figure I.2 : Dimension de la structure –vue en plan	.3
Figure I.3 : Coupe de la dalle en corps creux	.4
Figure I.4 : Dalle pleine	4
Figure I.5: Brique utilisé	.5
Figure I.6 : Évolution de la résistance du béton à la traction en fonction de celle à compression	
Figure I.7 : Diagramme parabole-rectangle des contraintes-Déformation du béton	7
Figure I.8 : Diagramme contrainte déformation du de calcul à l'ELS	7
Figure I.9 : Diagramme contraintes- déformations.	. 9
<u>Chapitre II</u> : Pré-dimensionnement des éléments structuraux	
Figure II.1: plancher type terrasse	12
Figure II.2: les pré-dimensionnements des poutres	
Chapitre III : Étude des planchers	
Figure III.1 Coupe transversale du plancher	21
Figure III.2 : diagramme du moment à ELU	26
Figure III.3: diagramme du moment à ELS	26
Figure III.4 : diagramme de l'effort tranchant à ELU.	
<u>Chapitre IV :</u> Étude des éléments secondaires	
Figure IV 1 Schéma d'un escalier	12

Figure IV.2 : Schéma descriptif d'un ascenseur mécanique	55
Figure IV 3: Ferraillage des poutres principales	98
Chapitre V : Etude dynamique	
Figure V.1 : Modèle 3D de la structure	71
Figure V.2: les dispositions des voiles	73
Figure V.3: spectre de réponse pour R = 5	79
<u>Chapitre VI :</u> Étude des éléments structuraux	
Figure VI .1 : Ferraillage de poteau de sous-sol	89
Figure IV 2: Ferraillage des poutres principals	98
Figure IV 3: Ferraillage des poutres secondaire	98
Chapitre VIII : Etude management	
FigureVIII.1: Facteur principal d'un projet	12
FigureVIII.2 cycle de vie d'un projet	12

CHAPITRE I PRESENTATION DU PROJET

I-1.Introduction:

Le développement démographique a poussé l'homme de réfléchir à réaliser des bâtiments qui prennent le maximum des habitats mais dans une surfaces plus minimisée, cette idées a été cristalliser sous forme d'un bâtiment à plusieurs étages sous condition de la sécurité et la stabilisation.

Cette stabilité est en fonction de la résistance des différents éléments structuraux (poteau, voile, poutre....) aux différentes sollicitations (compression, flexion ...) dont la résistance de ces éléments est en fonction du types de matériaux utilisés et de leur dimension et caractéristiques.

Donc, pour le calcul des éléments constituants de l'ouvrage, on se base sur les règlements et des méthodes connues (B.A.E.L 91, RPA 99- version 2003) qui s'appuie sur la connaissance des matériaux (béton et acier), le dimensionnement et le ferraillage des éléments résistants de la structure.

I-2. Présentation de l'ouvrage :

Dans le cadre de notre formation de master en génie civil, nous sommes amenés à l'issue de notre cursus à réaliser un projet de fin d'études.

Nous avons choisis un bloc (B-C) qui appartient d'un projet de réalisation 160 logements promotionnels, il se compose de sous-sol parking d'une capacité de 12 voitures + rez de chaussé de 7 locaux commerciaux + les quatre premiers étages se sont occupés pour 11 bureaux pour chaque étage et les Cinque derniers étages sont pour usage d'habitation. Ce projet se situe au Boujlida, Tlemcen.

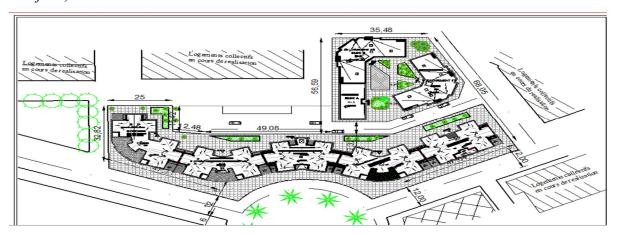


Figure I.1 : Plan de masse

I-3. Caractéristiques géométriques de la structure :

I.3.1 Dimension en élévation :

- Hauteur de sous-sol H = 3.06 m.
- Hauteur de bureau H = 3.74 m
- Hauteur totale de bâtiment H = 31.62 m.

I-3.2 Dimension en plan:

La structure présente une forme de L, les dimensions sont mentionnées sur la figure suivante :

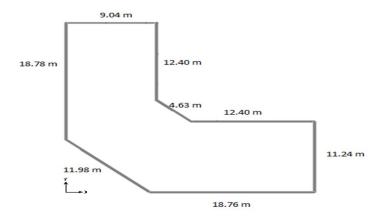


Figure I.2: Dimension de la structure –vue en plan –

I-4. Conception de la structure :

I-4.1 Plancher:

Les planchers sont des éléments plats soit horizontaux ou inclinés reprenant les charges verticales et les transmettant aux éléments porteurs verticaux (poteaux ou voiles) .le rôle de plancher c'est l'isolation thermique et phonique.

Les planchers peuvent être composé par : poutres, poutrelles, dalle de compression, tôle nervurée et corps creux.

• Plancher à corps creux :

Ce plancher est constitué de poutrelles préfabriquées en béton armé ou bétonné sur place espacées de 60-65-70 cm de corps creux et d'une table de compression en béton armé d'un épaisseur de 5 cm.

- Lorsque les portées de l'ouvrage ne sont pas importantes.
- Diminution du poids de la structure et par conséquent la force sismique.
- L'isolation acoustique et aussi l'économie du cout de coffrage corps creux (corps creux : coffrage perdu).

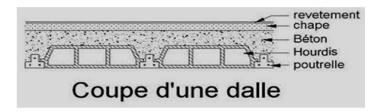


Figure I.3: Coupe de la dalle en corps creux.

• Plancher dalle pleine :

Ils sont utilisés généralement dans les cas où on a des formes irrégulières et aussi pour minimiser le cout et le temps nécessaire pour la réalisation.

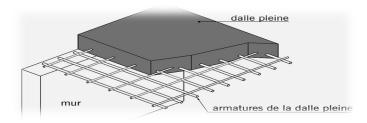


Figure I.4: Dalle pleine

I-4.2 Escalier:

Sont des éléments non structuraux qui permettent le passage d'un niveau à un autre avec deux volées et paliers inter étage.

I-4.3 Maconnerie:

La maçonnerie la plus utilisée en Algérie est en brique creuse et le parpaing. On a :

- Mur extérieur (double paroi).
- Mur intérieur (simple paroi).

• Murs extérieurs :

Les façades de la structure sont généralement composées de doubles cloisons en briques creuses à 8 trous (forme carrées) de 10 cm et 15cm d'épaisseurs avec une lame d'aire de 5 cm d'épaisseur.

• Murs intérieurs :

Cloison de séparation de 10 cm d'épaisseur.

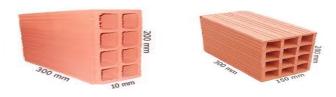


Figure I.5: Brique utilisé.

I-4.4 Revêtement:

Le revêtement du bâtiment est constitué par :

- Un carrelage de 2 cm pour les escaliers, les couloirs et des fois le dalle de sol de 1 cm pour les chambres.
- L'enduit de plâtre pour les murs intérieurs et plafonds.
- Mortier de ciment pour crépissage de façades extérieures.

- <u>Le rapport géotechnique :</u>

Le terrain retenu pour recevoir 500 logements LSP Boujlida, appartient à la période géologique du Jurassique de 1 ère Mésozoïque caractérisé par un sol homogène, composé essentiellement d'un calcaire gris, conglomératique, compact, dur surmonté d'une couche centimétrique de terre végétale.

Donc:

- On passe par un système des fondations superficielles, sur semelles isolées.
- La contrainte admissible égale à 4 Kg/cm² selon le rapport géotechnique donné par le CTC.

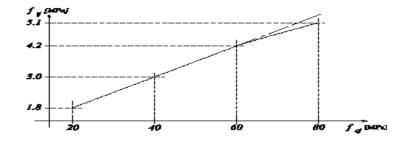
I-5. Résistances mécaniques du béton :

I-5.1Résistance à la compression :

La résistance caractéristique à la compression du béton f_{cj} à j jours d'âge est déterminée à partir d'essais sur des éprouvettes normalisées de diamètre qu'égale à 16 cm et d'une hauteur de 32 cm. Pour un dosage courant de 350 Kg/m³ de ciment CPJ425, la caractéristique en compression à 28 jours est estimé à 25 MPa (fc28= 25 MPa).

- Pour des résistances $f_{c28} \le 40 \text{MPa}$:

$$\left\{ \begin{array}{ll} f_{cj} = \frac{j}{4.76 + 0.83j} & \quad \mbox{si} \quad j < 28 \ \mbox{jours.} \\ f_{cj} = 1.1 \ f_{c28} & \quad \mbox{si} \quad j > 28 \ \mbox{jours.} \end{array} \right.$$


- Pour des résistances fc28 > 40 MPa :

$$\left\{ \begin{array}{ll} f_{cj} = 0.6 {+} 0.06 \; fcj & \quad \mbox{si} \;\; j \; {<} \, 28 \; jours. \\ \\ f_{cj} = 0.275 (f_{cj})^{2/3} & \quad \mbox{si} \;\; j \; {>} \, 28 \; jours. \end{array} \right.$$

I-5.2 Résistance à la traction :

La résistance caractéristique à la traction du béton à j jours, notée f_{tj} , est conventionnellement définie par les relations :

$$\left\{ \begin{array}{lll} f_{cj} &= 0.6 {+} 0.06 \; f_{cj} & \quad \mbox{si} \quad fc28 \; {<} \; 60 \; MPa. \\ \\ f_{cj} &= 0.275 (f_{cj})^{\; 2/3} & \quad \mbox{si} \quad fc28 \; {>} \; 60 \; MPa. \end{array} \right.$$

Figure I.6: Evolution de la résistance du béton à la traction f_{tj} en fonction de celle à la compression f_{cj} .

I.5.3 Contraintes limites:

• Contrainte du béton :

A – Etat limite ultime (ELU):

En compression, le diagramme qui peut être utilisé dans tous les cas et le diagramme de calculs dit parabole rectangle.

Les déformations du béton sont :

$$\begin{array}{lll} \text{-} \; \epsilon_{\; bc1} \; = & 2 \; \% \\ \\ \text{-} \; \epsilon_{\; bc2} \; = \; \left\{ \begin{array}{lll} 3.5 \; \% & \text{si} \; \; f_{cj} \leq 40 \; MPa \\ \\ \text{Min} \; (4.5 \; ; \; 0.025 \; f_{cj}) & \text{si} \; \; f_{cj} > 40 \; MPa. \end{array} \right. \end{array}$$

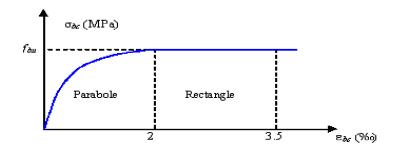


Figure I.7 : Diagramme parabole-rectangle des contraintes-Déformation du béton.

 $\mathbf{f_{bu}}$: contrainte ultime du béton en compression : $\mathbf{f_{bu}} = \frac{0.85fcj}{\gamma b\theta}$

 γ_b : coefficient de sécurité du béton tel que :

 $\gamma_b = 1.5$ pour combinaison d'actions considérée est supérieur à 24 h.

Il vaut : 1.5 Pour les combinaisons normales.

1.15 Pour les combinaisons accidentelles.

θ : coefficient qui dépend de la durée d'application du chargement

Tableau I.1 : variation de θ en fonction du temps

Θ	Durée d'application
1	> 24h
0.9	1h ≤ durée ≤ 24 h
0.85	< 1h

B- Etat limite de service(ELS):

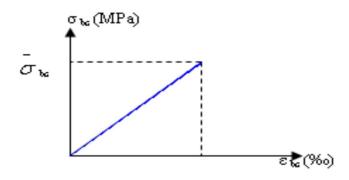


Figure I.8 : Diagramme contrainte déformation du de calcul à l'ELS.

La contrainte limite de service en compression de béton est limitée par : $\sigma_{bc} \leq \overline{\sigma}_{bc}$

Avec: $\overline{\sigma}_{bc} = 0.6 f_{t28}$ $\overline{\sigma}_{bc} = 15 M Pa$

• <u>Module de déformation longitudinale :</u>

Le module de Young différé du béton dépond de la résistance caractéristique à la compression du béton :

$$\begin{cases} E_{VJ} = 37003 E\ (f_{cj}\ ^{1/3}) & \text{si}\ f_{c28} \leq 60 Mpa. \\ \\ E_{VJ} = 4400\ (f_{cj}\ ^{1/3}) & \text{si}\ f_{c28} > 60 Mpa, sans fumée de silice.} \\ \\ E_{VJ} = 6100\ (f_{cj}) & \text{si}\ f_{c28} > 60 Mpa, avec fumée de silice.} \end{cases}$$

• <u>Coefficients de poisson</u>:

Il sera pris égale à :

V = 0 à l'état limite ultime (ELU).

V = 0.2 à l'état ultime de service (ELS).

I.6 Acier:

L'acier est un alliage de fer et de carbone, ils sont nécessaires pour reprendre les efforts de traction et pour limiter la fissuration. Les différents types d'aciers utilisés dans les ouvrages en béton armé sont :

Tableau I.2- Valeurs de la limite d'élasticité des différents types d'aciers.

Туре	Nuance	Fe (MPa)
Ronds lisses	FeE22	215
	FeE24	235
Barres HA	FeE40	400
type 1 et 2	FeE50	500
Fils tréfiles HA	FeTE40	400
Type 3	FeTE50	500
Fils tréfiles lisses	TL50 6 mm	500
Type 4	TL52 6 mm	520

I.6.1 Contrainte de calcul d'aciers :

A- Etat Limite ultime (ELU):

Les contraintes admissibles de l'acier sont :

$$\epsilon_{sl}$$
 = Fe/ $(\gamma_s$.Es) $~si$ - $\epsilon_s <$ ϵ_{sl} $~\sigma s$ = Es. ϵ_s - $\epsilon_{sl} \le \epsilon_s <$ 10 ‰ $~\sigma s$ = Fe / γ_s

Avec : Es = 200000 MPa. [Module d'élasticité]

 γ_s : coefficient de sécurité $\gamma_s = 1$ cas accidentel.

 $\gamma_s = 1.15$ cas général.

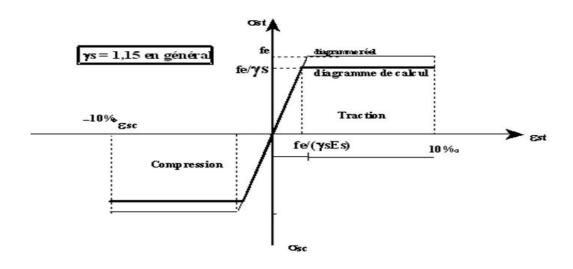


Figure I.9: Diagramme contraintes- déformations

B- Etat limite de service :

Les contraintes admissibles de l'acier sont comme suite :

On le limite pas la contrainte de l'acier sauf états limite des fissure :

- Fissuration peu nuisible : pas de limitation.
- Fissuration préjudiciable : $\sigma_{st} \leq \overline{\sigma}st = min (2/3 \text{ fe} ; 110\sqrt{\eta \text{ f}} t_{ij})$
- Fissuration très préjudiciable : $\sigma_{st} \le \overline{\sigma}_{st} = \min(\frac{1}{2} \text{ fe ,} 90\sqrt{\eta \text{ ftj}})$

η : coefficient de fissuration

 $\eta = 1$ pour les ronds lisses (RL).

 $\eta = 1.6$ pour les armatures à haute adhérence (HA).

Avec : $\sigma_{st} = fe/\gamma s$

1.7 Les notions de calcul:

Les hypothèses de calcule adoptées pour cette étude sont :

- ✓ La résistance du béton à la compression 28 jour est : $f_{c28} = 25$ MPa.
- ✓ La résistance du béton à la traction est : $f_{t28} = 2.1$ MPa.
- ✓ Le module d'élasticité différé de béton est : E_{vj} =3700 $\sqrt[3]{F_{cj}}$ = 10818.865MP
- ✓ Le module d'élasticité instantané de béton est : E_{ij} =11000 $\sqrt[3]{F_{cj}}$ =32164.195MPa
- ✓ Pour les armatures de l'acier :
 - Longitudinales : on va choisir acier de fe. E400 HA.
 - Transversales : on va prendre acier de fe. E235 RL.

CHAPITRE II LE PREDIMENSIONNEMENT DES ELEMENTS STRUCTURAUX

II.1. INTRODUCTION:

Le pré dimensionnement des éléments structuraux (poteaux, poutres) est basé sur le principe de la descente de charge qui est une point de départ de la base de la justification à la résistance, la stabilité et la durabilité de l'ouvrage aux sollicitation verticales dues aux charges permanentes et aux surcharges d'exploitation de plancher qui sont transmises au sol par les fondations et des sollicitations horizontales dues aux forces sismique, elles sont requises par les éléments de contreventement constitué par les portiques.

Le pré dimensionnement de tous les éléments structuraux est conforme aux règles B.A.E.L 91, CBA93 et RPA 99/2003.

II.2. Evaluation des charges et sur charges :

Plancher:

- Plancher terrasse inaccessible :

Tableau II.1: charges à la terrasse due aux plancher à corps creux.

Désignation	ρ (kg/m3)	e (m)	G (kg/m²)
Protection gravillon	1700	0.05	85
Étanchéité multicouche	600	0.02	12
Forme de pente	2200	0.1	220
Isolation thermique en liège	400	0.4	16
Corps creux	-	-	320
Enduit en plâtre	100	0.2	20
G kg/m²	675		
Q kg/m ²	100		

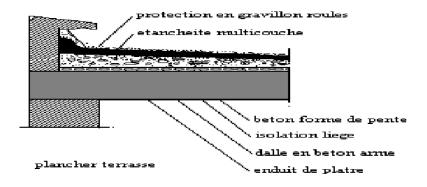


Figure II.1: plancher type terrasse

Plancher:

- Plancher étage courant :

Tableau II.2: charges à étage courant due aux plancher à corps creux.

Désignation	ρ (kg/m3)	e (m)	G (kg/m²)
Cloison intérieure	10	0.1	1
Carrelage	22	0.02	0.44
Mortier de pose	20	0.02	0.40
Lit de sable	18	0.02	0.36
Plancher en corps creux (16+5)	-	-	3.20
Enduit en plâtre	10	0.02	0.20
G kg/m²		560	
Q kg/m ²	150		

• <u>Dalle pleine</u>:

Tableau II.3 : Charge de la dalle pleine

	ρ (kg/m³)	e(m)	G (kg/m²)
Protection gravillon	1700	0.05	85
Étanchéité multicouche	600	0.02	12
Isolation thermique en liège	400	0.04	16
Dalle pleine	2500	0.18	450
Enduit en plâtre	1000	0.02	20
G Kg/m ²	728		
Q Kg/m²	150		

• Balcon:

Tableau II.4: Charge du balcon.

Désignation	ρ(kg/m3)	e (m)	G (kg/m²)
Carrelage	2200	0.02	44
Mortier	2000	0.02	40
Lit de sable	1800	0.02	36
Enduit en ciment	2000	0.02	40
Dalle pleine	2500	0.15	375
G (kg/m²)	535		
Q (kg/m²)	350		

• <u>Murs :</u>

- Murs extérieurs :

Tableau II.5 charge permanente du mur extérieur.

Désignation	ρ(kg/m3)	e (m)	G (kg/m²)
Enduit extérieur	1200	0.02	24
Brique creuse	900	0.15	135
Brique creuse	900	0.1	90
Enduit intérieur	1200	0.02	24
G (kg/m²)	273		

- Murs intérieurs :

Tableau II.6 : Charge permanente du mur intérieur.

Désignation	ρ(kg/m3)	e (m)	G (kg/m²)
Enduit extérieur	1200	0.02	24
Brique creuse	900	0.1	90
Enduit intérieur	1200	0.02	24
G (kg/m²)		138	

Remarque:

Les murs peuvent être avec ou sans ouverture donc il est nécessaire d'opter des coefficients selon le pourcentage d'ouvertures!

- Murs avec des portes (90%G)
- Murs avec fenêtres (80% G).
- Murs avec portes et fenêtres (70% G).

• Escalier:

- Palier:

Tableau II.7: Charge du palier.

Désignation	(kg/m ³)	e(m)	G(Kg/m²)
Carrelage	2200	0.02	44
Mortier de pose	2200	0.02	44
Poids propre de palier	2500	0.15	375
Enduit en plâtre	1200	0.02	24
G (Kg/m²)	487		
Q (Kg/m²)	250		

- Volée (paillasse) :

Désignation	ρ (Kg/m³)	e(m)	G(Kg/m²)
Carrelage	2200	0.02	44
Mortier horizontal	2000	0.02	40
Carrelage contre	2000*(0.17/0.3)	0.02	22.66
marche			
Mortier vertical	2000*(0.17/0.3)	0.02	22.67
Paillasse en B.A	2500	0.15	375
Enduit en plâtre	1000	0.02	20
Contre marche	2500*(0.17/2)		212.5
G (Kg/m²)	736.82		
Q (Kg/m²)		250	

Tableau II.8 : Charge de la volée.

II.3. Pré dimensionnement des éléments structuraux :

II.3.1. Les planchers:

Les planchers réalisés dans notre structure sont à corps creux qui ne prend pas en considération dans la résistance de l'ouvrage, ils sont juste pour minimiser la rigidité dans le plan de la struct

L'épaisseur des dalles ne dépond que de la plus grande portée de l'ouvrage

Tel que :
$$h \ge \frac{1}{22.5}$$
.

$$h \ge \frac{4.62}{22.5} = 0.205 \text{ m}$$
 donc: $h = 16+5 \text{ cm} = 21 \text{ cm}$

Pour les dalles pleines, on les utilise pour les balcons : $h \ge 15$ cm.

II.3.2. Les poutres :

D'une manière générale, on peut définir les poutres comme étant des éléments porteurs horizontaux. Il y a deux types des poutres :

✓ <u>Les poutres principales :</u>

Elles reçoivent les charges transmises par les solives (poutrelles) et les réparties aux poteaux sur lesquelles ces poutres reposants.

- Elles relient les poteaux.
- Elles supportent la dalle.

D'après les règles de B.A.E.L 91 on a :

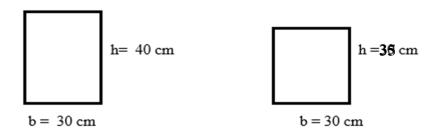
$$\frac{L}{15} \leq h \leq \frac{L}{10}$$

Tel que : L = 5.01 m

$$\longrightarrow \frac{5.01}{15} \le h \le \frac{5.01}{10} \longrightarrow 0.334 \le h \le 0.501$$

On prend: h = 40 cm. b = 30 cm.

Les poutres secondaires (chainages) :


- Elles relient les portiques entre eux pour ne pas basculer.
- L = 4.97m

Donc:
$$\frac{4.97}{15} \le h \le \frac{4.97}{10}$$
 \Longrightarrow 0.338 $\le h \le 0.497$ \Longrightarrow $\mathbf{h} = 35 \text{ cm}$ $\frac{35}{5} \le \mathbf{b} \le \frac{35}{2}$ \Longrightarrow $7 \le \mathbf{b} \le 17.5$ \Longrightarrow $\mathbf{b} = 30 \text{ cm}$

$$\frac{35}{5} \le \mathbf{b} \le \frac{35}{2}$$
 \Longrightarrow $7 \le \mathbf{b} \le 17.5$ \Longrightarrow $\mathbf{b} = 30 \text{ cm}$

D'après le R.P.A 99 v2003:

- $b \ge 20 \text{ cm}$ C.V
- $h \ge 30 \text{ cm}$ \Longrightarrow C.V
- $\frac{h}{h} \leq 4$ \Longrightarrow

- poutres principales

- les poutres secondaires

Figure II .2 : les pré-dimensionnements des poutres

II.3.3 Les poteaux :

Le poteau le plus sollicité de cet ouvrage ; c'est celui qui supporte des charges répartie sur une surface S comme le montre la figure ci – dessous.

Avec : S est la surface supporté par la poteau le plus défavorable.

On suppose une charge moyenne de $1(t/m^2)$ par étage.

Les sections transversales des poteaux doivent satisfaire aux conditions du R.P.A 99 v 2003.

min(a,b) = 25 **zone : 1** et 2

 $min(a,b) = \frac{he}{20}$ he: hauteur d'étage.

$$\frac{1}{4} \le \frac{a}{b} \le 4$$

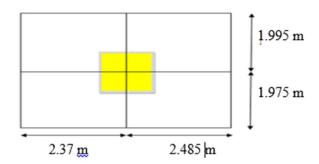


Figure II.3: section supportée par le poteau le plus sollicité.

N_u: étant la charge verticale à l'ELU.

Avec: $N_u = Pu*S*n$

Pu: charge du plancher

 $Pu = 1t/m^2$

S : surface supportée par le poteau le plus sollicité.

S = (2.37+2.485)*(1.995+1.975) = 4.855*3.97

 $S = 19.27 \text{ m}^2$

n : nombre de niveau.

 $N_u = 1*19.27*11$

 $N_u = 211.97 \text{ MN}.$

Section réduite :

$$Br = \frac{\beta * \text{Nu}}{\frac{\text{fbc}}{0.9} + 0.85 * \frac{\text{fe}}{100 * \gamma \text{s}}}$$

 β : Coefficient de correction dépendant de l'élancement mécanique λ des poteaux qui prend les valeurs :

- $\beta = 1+0.2 (\lambda/35)^2 \text{ si } \lambda < 50$
- $\beta = 0.85 \ \lambda^2 / 1500 \ \text{si} \ 50 < \lambda < 70$

On se fixe un élancement mécanique $\lambda = 35$ pour rester toujours dans le domaine de la compression centrée d'où : $\beta = 1.2$

 $f_e = 400 \text{ MPa}$

 $\gamma_s = 1.15$ (cas générale)

$$f_{bc} = \frac{0.85 f_{c28}}{2a} = 14.17 \text{ MPa}$$
 Avec : $f_{c28} = 25 \text{Mpa}$

 $\gamma_b = 1.5$ (cas générale)

$$\theta = 1$$
 (charge > 24h)

$$Br \ge \frac{1.2*2.1197}{\frac{14.17}{0.9} + \frac{400}{115}}$$
 $Br \ge 0.136$

On a:

$$Br \ge (a-0.02)^2 \qquad \qquad \implies \quad a \ge \sqrt{Br} + 0.02$$

$$\implies a \ge \sqrt{0.136} +0.02$$

$$\implies$$
 a ≥ 0.38

Donc on prend : $\mathbf{a} = \mathbf{b} = 45$ cm

Vérification des conditions de R.P.A 99 V2003 :

$$Min (a,b) \ge 25$$
 ... $a = 45 cm$ \Longrightarrow C.V

Min (a,b)
$$\geq \frac{he}{20}$$
 $a=45 \text{ cm} \geq 15.3 \text{ cm} \implies \text{C.V}$

$$\frac{1}{4} < \frac{a}{b} < 4$$
 $\frac{1}{4} < 1 < 4$ \Longrightarrow C.V

Vérification des poteaux au flambement :

- Calcule du moment d'inertie :

$$Ix = Iy = \frac{a*b^3}{12} = 3.41*10^{-3} \text{ m}^4$$

Rayon de giration ix, iy:

$$ix = iy = \sqrt{\frac{Ix}{A}}$$

Avec : A=a*b (section du poteau)

 $A = 0.2025 \text{ m}^2$

$$\implies$$
 $i_x = iy = \sqrt{\frac{0.016}{0.2025}} = 0.129$

- Calcul de l'élancement :

$$\lambda_x = \lambda_y = \frac{lf}{ix}$$

avec : $l_f=0.7* l_0$ (cas générale)

$$l_0 = 3.06 \text{ m}$$

$$l_f = 2.142m$$

$$\quad \Longrightarrow \quad \lambda_{x} \!\!=\!\! \lambda_{y} \!\!=\! \frac{2.856}{0.129}$$

$$\implies \lambda_x = \lambda_y = 16.60$$

Donc on a : $\lambda_x = \lambda_y = 16.60 < 50$Le flambement est vérifié.

Tableau II.9: Récapitulation du pré dimensionnement.

Poteaux	Numéro d'étage	S (m ²)	Nu (MN)	a=b	Lo	$\lambda_x = \lambda_y$	condition
Sous-sol	1	19,27	0,1927	0,45	3.06	16.48	CV
RDC	2	19,27	0,3854	0,45	3.23	17.40	CV
1 ^{er} étage	3	19,27	0,5781	0,45	3.74	20.15	CV
2 ^{ème} étage	4	19,27	0,7708	0,4	3.74	22.67	CV
3 ^{ème} étage	5	19,27	0,9635	0,4	3.74	22.67	CV
4 ^{ème} étage	6	19,27	1,1562	0,35	3.74	25.91	CV
5 ^{ème} étage	7	19,27	1,3489	0,35	3,06	21.20	CV
6 ^{ème} étage	8	19,27	1,5416	0,35	3,06	21.20	CV
7 ^{ème} étage	9	19,27	1,7343	0,3	3,06	24.73	CV
8 ^{ème} étage	10	19,27	1,927	0,3	3,06	24.73	CV
9 ^{ème} étage	11	19,27	2,1197	0,3	3,06	24.73	CV

II.4.4. Les voiles :

Les voiles sont des éléments qui résistent aux charges horizontales, dues au vent et au séisme.

Dans le cas contraire, ces éléments sont considérés comme des éléments linéaires. L'épaisseur minimal est de 15 cm .De plus, l'épaisseur doit être déterminé en fonction cde la hauteur d'étage h_e et des conditions de rigidité à l'extrémité comme suit :

D'après le R.P.A 99 v 2003, on a :

$$\left\{ \begin{array}{l} L \ge 4a \\ a \ge h_e/20 \end{array} \right.$$

Avec:

L : la longueur du voile.

a: l'épaisseur du voile. $\mathbf{a}_{min} = 15 \text{ cm}$

h_e: hauteur libre d'étage.

On a:

• Pour le parking:

he = 3.06 m
$$a \ge \frac{3.06}{20} = 0.153 \text{ m}$$
 $a = 20 \text{ cm}$

• Pour RDC

he =3.23m
$$a \ge \frac{3.23}{20}$$
 =0. 16 m $a = 20$ cm

• Pour Bureau

he = 3.74 m
$$a \ge \frac{3.74}{20} = 0.187 \text{ m}$$
 $a = 20 \text{ cm}$

• Pour les étages :

he = 3.06 m
$$a \ge \frac{3.06}{20} = 0.153$$
m $a = 20$ cm

CHAPITRE III ETUDE DES PLANCHERS

III.1 INTRODUCTION:

Les planchers sont des aires planes limitant les étages et supportent le revêtement du sol ; ils assurent deux fonctions principales :

- Fonction de résistance : les planchers supportant leur poids propre et surcharge.
- Fonction d'isolation : ils isolent thermique et acoustiquement les déférentes étage.

Plancher = poutrelle+ corps creux dalle de compression

Dans notre structure, les planchers sont en corps creux :

-16+5 = 21 cm

III.2. Dimensionnement de la poutrelle :

Les poutrelles sont disposés perpendiculaire au sens porteur et espacées de 65 cm et sur lesquelles vient s'appuyer l'hourdis.

- Hauteur du plancher : $h_t = 21$ cm

- Epaisseur de la nervure : $h_0 = 5$ cm.

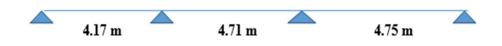
- Largeur de la nervure : $b_0 = 12$ cm.

Figure III.1 Coupe transversale du plancher.

III.3. Etude du plancher à corps creux :

D'après le B.A.E.L 91 pour la détermination des efforts tranchants et des moments fléchissant dans le cas des poutrelles, on utilise l'une des trois méthodes :

- Méthode forfaitaire.
- Méthode de Caquot.
- Méthode des trois moments
- ✓ On adopte pour la méthode des trois moments ainsi que logiciel SAP2000, pour évaluer les moments et les efforts tranchants


Tableau .III.1 : Charges supportées par les poutrelles

Niveau du plancher	G	Q	b(m) ELU		ELS
	(KN/m²)	(KN/m^2)		$Q_u = (1.35G+1.5Q)*b$	Qs = (G+Q)*b
Parking	5.6	2.5	0.65	7.35	5.26
RDC	5.6	4	0.65	8.81	6.24
Bureau	5.6	2.5	0.65	7.35	5.26
Étage courant	5.6	1.5	0.65	6.37	4.61
Terrasse inaccessible	6.73	1	0.65	6.88	5.03

III.3.1 Calcul des poutrelles :

3.1.1 Type des poutrelles :

Type 1:

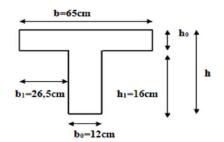
Type 2:

Type 3:

Type 4:

Détermination des efforts internes :

Un exemple de calcul:


Étage 1 à 4 (type3):

 $G = 5.6 \text{ KN/m}^2$

 $Q = 2.5 \text{ KN/m}^2$

ELU

Qu =
$$(1,35 \text{ G} + 1,5\text{Q}) \text{ b}$$

Qu= $(1,35 \times 5.6 + 1.5 \times 2,5) \text{ 0, 65}$
Qu= 7.35 KN/ml

ELS:

Méthode des trois moments :

Moment en appuis :

L'équation des trois moments s'écrit :

$$L_{i}.M_{i-1}+2 M_{i} (L_{i}+L_{i+1}) + L_{i+1}.M_{i+1} + 6A_{i} = 0$$

ELU:

$$L_1.M_0 + 2 M_1 (L_1 + L_2) + L_2.M_2 + 6.A_1 = 0$$

Avec:
$$M0 = M2 = 0 \text{ KN.m.}$$

$$2(4.32+4.35)=17,34M_1=-6A_1$$

$$A_1=A+A'=(4,32)^3+4,35^3)\times \frac{7.35}{24}$$

$$A_1 = 49.89 \text{ m}^2$$

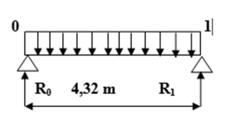
On a:
$$17,34M_1 = -6A_1$$

 $17,34M_1 = -6 \times 49.89 M_1$
 $M_1 = -17.26 \text{ KN.m}$

Calcul des moments et des efforts tranchants :

Travée 0-1:

$$\sum M/1 = 0 \qquad \longrightarrow 4,32.R_0 - 7.35 \times \frac{4.32^2}{2} - M_1 = 0$$


$$4,32 R_0 = 51.33$$

$$R_0 = 11.88KN$$

$$M(x) = R_0 x - \frac{q_u \times x^2}{2}$$

$$M(x) = 11.88x - 3.675 x^2$$

$$M(x) = \begin{cases} M(0) = 0 \text{ KN/m} \\ M(4, 32) = -17.26 \text{ KN/m} \end{cases}$$

M'(x) = 11.88-7.35.x = 0
$$\Rightarrow$$
 x = $\frac{11.88}{7.35}$ = 1, 62 m

Donc:
$$M (max = 1,62) = 9.60 \text{ KN/m}$$

$$T(x) = 11.88 - 7.35.x$$

$$T(x) = \begin{cases} T(0) = 11.88 \text{ KN} \\ T(4,32) = -19.56 \text{KN} \end{cases}$$

Travée 1-2:

$$\sum M_{/2} = 0 \implies 4.35 R_1 - 7.35 \times \frac{(4.35)^2}{2} + M_1 = 0$$

$$\implies 4.35 R_1 = 86.80$$

$$\implies R_1 = 19.95 KN$$

$$M(x) = R_1 x - \frac{q_{u \times x^2}}{2} + M_1$$

$$M(x) = \begin{cases} M(0) = -17.26 \\ M(4,35) = 0 \end{cases}$$

$$T(x) = R1 - q_u.x$$

$$T(x) = 19.95 - 7.35x$$

$$T(x) = \begin{cases} T(0) = 19,95 \text{ KN} \\ T(4,35) = -12.02 \text{ KN} \end{cases}$$

Pour que M(x) soit M_{max} :

$$M'(x) = 19.95 - 7.35x = 0 \implies x=2.72 \text{ m}$$

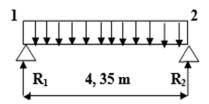
$$M_{\text{max}} = M (2.72) = 9.81 \text{KN.m.}$$

ELS:

$$L_1.M_0 + 2 M_1 (L_1 + L_2) + L_2.M_2 + 6.A_1 = 0$$

Avec:
$$M_0 = M_2 = 0$$

$$18.44 \text{ M}_1 = -6 \text{ A}_1$$


$$\mathbf{A}_1 = \ \frac{q_s(\,l1)^3}{24} + \frac{q_s(\,l2)^3}{24}$$

$$A_{1} = \frac{5.27(\ 4{,}32)^{3}}{24} + \frac{5.27(\ 4{,}35)^{3}}{24}$$

$$A_1 = 35.77 \text{ m}^2$$

$$M_1 = \frac{-6 A1}{17.34}$$

$$M_1 = 12.37 \text{ KN.m}$$

Calcul des moments et des efforts tranchants :

Travée 0-1:

$$\sum M_1 = 0 \implies 4,32 R_0 - 5.27x \frac{(4,32)^2}{2} - M_1 = 0$$

$$4,32R_0 = 36.80$$

$$R_0 = 8.52 \text{ KN}.$$

$$M(x) = R_0 x - \frac{q_s x^2}{2} = 8.52 x - \frac{5.27 x^2}{2}$$

$$M(x) = \begin{cases} M(0) = 0 \\ M(4,32) = -12.36 \text{ (KN/m)} \end{cases}$$

Pour que $M(x) = M_{max}(x)$:

$$M'(x) = 8.52-5.27x = 0$$
 \implies $x = 1,62 m$

$$M_{\text{max}} = M (1,62) = 6,88 \text{ KN.m}$$

$$T(x) = R_0 - q_s x$$

$$T(x) = 8.52-5.27x$$

$$T(x) = \begin{cases} T(0) = 8.52 \\ T(4,32) = -14.24 \end{cases}$$
 (KN)

Travée 1-2:

$$\sum M_{/2} = 0 \implies 4, 35 R_1 - 5.27 \times \frac{4,35^2}{2} + M_1 = 0$$

$$\implies 4, 35 R_1 = 62, 23 KN$$

$$\implies R_1 = 14.30 KN$$

$$M(x) = R_{1.}x - \frac{q_s x^2}{2} + M_1$$

$$M(x) = 14.30x - 2.635x^2 - 12.37$$

$$M(x) = \begin{cases} M(0) = -12.37 \\ M(4, 35) = 0 \text{ (KN.m)} \end{cases}$$

$$T(x) = R_1 - q_u. x$$

$$T(x)=14.30-5.27.x$$

$$T(x)= \begin{cases} T(0) = 14.30 \text{ KN} \\ T(4,35) = -8.63 \text{ KN} \end{cases}$$

Pour $M(x_1)=M_{max}$:

$$M'(x) = 14.30 - 5.27 x = 0 \implies x = 2,72 m.$$

$$M_{max} = M(2, 72) = 7.03 \text{ KN.m.}$$

L'utilisation du logiciel SAP 2000 :

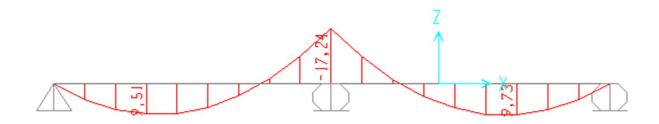


Figure III.2: diagramme du moment à ELU

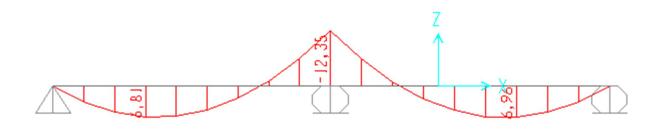


Figure III.3: diagramme du moment à ELS

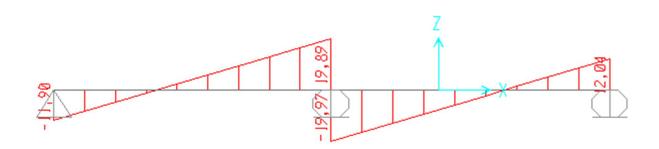


Figure III.4 : diagramme de l'effort tranchant à ELU

Ferraillage de la poutrelle :

Poutrelle type 03 (étage de 1 à 4):

a) Armature longitudinales:

ELU

En travée:

$$M_{max}$$
= 9,73KN.m = 0.00973 MN.m

$$M_t = b.h_0.f_{bc} (d - \frac{h0}{2}).$$

Avec;

$$b = 0.65 \text{ m}$$

$$b_0 = 0.12 \text{ m}$$

$$\mathbf{b_0} = 0.12 \text{ m}$$
 $\mathbf{h_0} = 0.05 \text{ m}$ $\mathbf{h} = 0.21 \text{ m}$

$$h = 0.21 \text{ m}$$

$$d = 0.9 h = 0.189 m$$

$$f_{bc} = 14.17 \text{ MPa}$$

$$M_t = 0.65 \times 0.05 \times 14.17 \times (0.189 - \frac{0.05}{2}).$$

$M_t = 0.0755$ MN.m

$$M \max < M_t \implies 0.00973 < 0.00755$$

Donc l'axe neutre se trouve dans la table, le calcul du ferraillage serait comme une section rectangulaire (b.h).

$$\mu_{\rm u} = \frac{Mmax}{b \ d^2 \ fbc} = \frac{0.00975}{0.65(0.189)^2 \ 14.17}$$

$$\mu_{\rm u} = 0.02963$$

On a:

$$\alpha_{\rm R} = 0.668$$
 et $\mu_{\rm R} = 0.392$

$$\mu_{\rm u} < \mu_{\rm R} \implies 0.02963 < 0.392$$

Donc les armatures comprimées ne sont pas nécessaire.

$$A_{st} = \frac{Mu}{z \sigma st}$$

Avec
$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu u})$$

$$\alpha = 0.0376$$

$$Z = d (1-0.4 \alpha)$$

$$Z = 0.1861 \text{ m}.$$

$$A_{st} = \frac{0.00973}{0.1861*348} = 1.50 \text{cm}^2$$
 choix 2T12 : = 2.26 cm²

Condition de non fragilité :

$$A_{st} \ge M_{max}(\frac{b.h}{1000}; \frac{0.23.b.d.ft28}{fe})$$

$$A_{st} \ge M_{max}(\frac{65 \times 21}{1000}; (0.23 \times 65 \times 18.9 \times 2.1)/fe)$$

$$A_{st} \ge M_{max} (1,365; 1,483)$$

$$A_{st} = 1,483 \text{ cm}^2$$
.

$$2.26 \ge 1.483 \text{Cm}^2$$
. (Cv)

En appui:

$$M_{max} = 17.25 \text{ KN.m}$$

$$M_{max} = 0.01725MN.m$$

$$\mu_{\rm u} = \frac{Mmax}{b0\ d^2\ fbc} = \frac{0.01725}{0.12(0.189)^2\ 14.17}$$

$$\mu_{\rm u} = 0.2839$$

Avec
$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu u})$$

Avec
$$\alpha = 0.4284$$

$$Z = d (1-0.4 \alpha)$$

$$Z = 0.1566 \text{ m}.$$

$$A_{st} = \frac{0.01765}{0.1566*348} = 3.23 \text{cm}^2 \implies \text{choix} : 2T16 = 4.02 \text{ cm}^2$$

ELS:

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc28}{100} \quad \Longrightarrow \quad \text{Avec } \gamma = \frac{Mu}{Ms}$$

En travée :

$$\mathbf{Mu} = 9.73 \text{ KN.m}$$

$$\mathbf{Ms} = 6.97 \text{ KN.m}$$

$$\gamma = \frac{9.73}{6.97} = 1.395$$

$$\alpha_{\text{Trav\'ee}} \leq \frac{1.395 - 1}{2} + \frac{25}{100}$$

$$\alpha_{\text{Trav\'ee}} = 0.0376 \le 0.4479 \dots \text{CV}$$

En appui:

Mu = 17.25 KN.m

$$\gamma = \frac{17.25}{12.36} = 1.395$$
Ms = 12.36 KN.m

$$\alpha_{\text{Trav\'ee}} \le \frac{1.395-1}{2} + \frac{25}{100}$$

Armature transversal:

• Vérification au cisaillement :

Fissuration peu nuisible

$$\tau = \frac{vu}{b0.d} \text{ avec } b_0 = 0.12m \qquad d = 0.189 \qquad Vu = 19.90 \text{ KN}$$

$$\tau = \frac{0.01990}{0.12 \times 0.189} = 0.8774 \text{ MPA}$$

$$\tau = \min\left(\frac{0.2 \times fc28}{\gamma b}, 5 \text{ MPA}\right).$$

$$\tau_u = 3.33 \text{ MPA} \qquad \dots \qquad \tau_u < \tau \qquad \text{CV}$$

Calcul des armatures transversales :

$$\emptyset_{t} \leq \min\left(\frac{h}{35}, \emptyset_{\min}, \frac{b}{10}\right) \qquad \Longrightarrow \qquad \emptyset_{t} \leq \min\left(\frac{21}{35}, 1.2, \frac{b}{10}\right)$$

$$\emptyset_{t} \leq \min\left(0.6, 1.2, 1.2\right). \qquad \Longrightarrow \qquad \emptyset_{t} \leq 0.7142 \qquad \Longrightarrow \qquad \emptyset_{t} = 6 \text{ mm}$$

Calcule d'espacement des cadres :

D'après le RPA99 V 2003 on a :

* Zone nodale:

$$\begin{split} S_t &\leq Min \, (\frac{h}{4} \,,\, 12 \times \emptyset_{min},\, 30 cm) \implies S_t \leq Min \, (\frac{21}{4} \,;\, 12 \times \,1.2 \,;\, 30 cm) \\ S_t &\leq Min \, (5.25,14.4,30) \implies S_t = 6 \ cm \\ & * \, \textbf{Zone courante:} \end{split}$$

$$S_t \le \frac{h}{2} S_t \le \frac{21}{2} S_t = 10 \text{cm}.$$
 $\Longrightarrow S_t = 10 \text{ cm}$

Vérification au glissement :

En appui:

$$\text{Vu} - \frac{M_u}{0.9d} \le \mathbf{0}$$
 \Longrightarrow $19.90 - \frac{17.25}{0.9 \times 0.189} = -81.51 < \mathbf{0}$ CV

Vérification des flèches :

$$\begin{split} &f \leq f_{adm} \\ &Avec: \quad f_{adm} = \frac{L}{500} \quad \Longrightarrow \quad L = 4.35 \text{ cm} \\ &f_{adm} = \frac{435}{500} = 0.87 \text{cm} \\ &I = \frac{b \times h^3}{12} + 15 \text{ A}_{st} \left(\frac{h}{2} - \text{d}'\right). \\ &I_a = \frac{0.65 \times 0.21^3}{12} + 15 \left(2.26 \times 10^{-4}\right) \left(\frac{0.21}{2} - 0.021\right)^2. \\ &I_a = 5.25 \times 10^{-4} m^4. \end{split}$$

$$\lambda_{i} = \frac{0.05 \times f_{t28}}{\varphi \times (2 + \frac{3 \times b_{0}}{b})} \quad \text{avec} \quad \varphi = \frac{A_{st}}{b_{0} \times d} = \frac{2.26 \times 10^{-4}}{0.12 \times 0.189} = 0.0099$$

$$\lambda_{i} = \frac{0.05 \times f_{t28}}{\varphi \times (2 + \frac{3 \times b_{0.12}}{0.65})} = \frac{0.105}{0.02528} = 4.153$$

$$\mu = 1 - \frac{1.75 \times f_{t28}}{4 \varphi \times \sigma_{st} + f_{t28}}$$

$$\mu = 1 - \frac{1.75 \times 2.1}{4 \times 0.0099 \times 348 + 2.1}$$

$$\mu = 1 - \frac{3.675}{15.88} = 0.7685$$

$$I_{fi} = \frac{1.1I_{0}}{1 + \lambda i \times \mu} = \frac{1.1 \times 5.25 \times 10^{-4}}{1 + 4.153 \times 0.6869}$$

$$I_{fi} = 0.0001498$$

$$E_{i} = 32164.195 \text{ MPA.}$$

$$\frac{1}{\gamma} = \frac{M_{s}}{\text{EixIfi}} = \frac{0.00697}{32164.195 \times 0.0001498}$$

$$\frac{1}{\gamma} = 0.001446$$

$$\text{Donc} \quad f = \frac{L^{2}}{10} \times \frac{1}{\gamma} = \frac{4.35^{2}}{10} \times 0.001446$$

$$f = 0.002736 < 0.0087 \quad (CV).$$

Tableau III.2: ferraillage des poutrelles

		type	Mmax	Ast (cm ²)	choix
	en travée	1	0,01566	2,440485	2T14
		2	0,01403	2,180658	2T12
		3	0,01165	1,803792	2T12
RDC		4	0,01798	2,812767	2T14
	en appui	1	0,02051	3,222122	2T16
		2	0,02459	3,88992	2T16
		3	0,02065	3,244879	2T16
		4	0,00899	1,386046	1T12
		1	0,01083	1,674629	1T12
	en travée	2	0,0117	1,81168	2T12
	ch travec	3	0,00973	1,5019	1T12
		4	0,02108	3,314844	2T16
étage 1 à 4		1	0,01418	2,492218	2T14
	en appui	2	0,02051	3,972946	2T16

		3	0,01725	3,165079	2T16
		4	0,01054	1,772633	2T12
	en travée	1	0,01133	1,753346	2T12
		2	0,01015	1,567778	1T12
		3	0,00843	1,298555	1T12
étage 5à 9		4	0,01829	2,862734	2T14
	en appui	1	0,01484	2,631085	2T14
		2	0,01779	3,291304	2T16
		3	0,01494	2,652381	2T14
		4	0,009145	1,514615	1T12
	en travée	1	0,01222	1,893781	2T12
		2	0,01094	1,691935	2T12
		3	0,00909	1,401685	2T12
terrasse		4	0,01973	3,095537	2T14
	en appui	1	0,01601	2,884716	2T14
		2	0,01918	3,629278	2T14
		3	0,01612	2,909085	2T14
		4	0,009865	1,64669	1T12

Ferraillage de la dalle de compression;

La dalle de compression a une épaisseur de 5 cm armée par treillis soudés de diamètre 5 mm Dont les dimensions des mailles ne doivent pas dépasser :

- 20 cm pour les armatures perpendiculaires aux nervures.
- 30 cm pour les armatures parallèles aux nervures.
- Pour les armatures perpendiculaires aux nervures.

$$f_e = 500 \text{ MPa}.$$

$$L = 65$$
 cm.

$$A_1 \ge \frac{4 \times L}{f_e} \longrightarrow A_1 \ge \frac{4 \times 65}{500} \longrightarrow A_1 \ge 0.52 \text{ cm}^2/\text{ml}$$

- Pour les armatures parallèles aux nervures :

$$A_2 = \frac{A_1}{2} = 0.26 \text{ cm}^2/\text{ml}.$$

Donc on adopte un treillis soudée de Ø3 avec un espacement (20× 20) cm².

 $L_x = 3.98$

III.4 Etude du plancher dalle pleine :

III.4.1 Pré-dimension de la dalle pleine : (plancher)

Tableau III.3 Pré dimension de la dalle pleine

Désignation	$\rho(\text{kg/}m^3)$	e(m)	$G(kg/m^2)$			
Dalle en B.A	2500	0.20	500			
Chappe en B.A	2500	0.06	125			
Enduit en ciment	1800	0.02	36			
G	611 kg/m²					
Q	400 kg/m²					

III.4.2 Calcul des moments :

On a:
$$L_x = 3.98 \text{ m} < L_y = 4.17 \text{ m}$$

Dalle portant dans 2sens :

$$0, 4 < \frac{L_x}{L_y} < 1 \longrightarrow 0, 4 < \frac{3.98}{4.17} < 1$$

$$0, 4 < 0.9544 < 1$$
 C.V

$$L_{\rm v} = 4.17 \, {\rm m}$$

$L_v = 4.17 m$

Condition de flèche :

$$h \ge \frac{L_x}{40} \longrightarrow h \ge \frac{3.98}{40} \longrightarrow h \ge 0.0995 \text{ m}$$

Avec : $h_{min} = 15 \text{ cm}$

On prend : h = 20 cm

Les moments dus aux charges réparties :

✓ E.L.U:

$$M_x = \mu_x .p.l_x^2$$
; $\mu_x = 0.0410$

$$P_{ELU} = 1.35 \times 6.11 + 1.5 \times 4$$
 \longrightarrow $P_{ELU} = 14.25 \text{ KN/m}^2$

$$M_x = 14.25 \times 0.0410 \times (3.98)^2 = 9.25 \text{ KN.m}$$

$$M_y = \mu_Y$$
. $M_{x;}$ $\mu_y = 0.8875$

$$M_v = 0.8875 \times 9.25 = 8.20$$
KN.m

✓ E.L.S:

$$M_x = \mu_x .p.l_x^2$$
 ; $\mu_x = 0.0483$

$$P_U = 6.11 + 4$$
 \longrightarrow $P_S = 10.11 \text{ KN/m}^2$

$$M_x = 10.11 \times 0.0483 \times (3.98)^2 = 7.74 \text{ KN.m}$$

$$M_y = \mu_Y$$
. M_{x} ; $\mu_y = 0.9236$

$$M_v = 0.9236 \times 7.74$$

$$M_y = 7.14 \text{ KN.m}$$

Le moment total appliqué sur la dalle :

\bullet Pour M_x :

✓ E.L.U:

$$M_t = 0.8 M_x$$
 avec $M_x = 9.25 KN.m$

$$M_t = 7.40 \text{ KN.m}$$

$$M_a = 0.3 M_x$$
 $M_a = 2.78 KN.m$

➤ Condition de B.A.E.L :

$$M_d = 0$$
, 5 $M_x = 4.63$ KN.m

$$M_G = 0$$
, 3 $M_x = 2.78$ KN.m

$$M_t = 0$$
, 85 $M_x = 7.86$ KN.m

$$M_t + \frac{M_G + M_d}{2} = 11.56 \text{ KN.m} = 1, 25. M_x = 11.56 \text{ KN.m}.....C.N.V$$

$$M_t = 0$$
, 90 $M_x = 8.32$ KN.m

$$M_t + \frac{M_G + M_d}{2} = 12.02 \text{ KN.m} > 1, 25. M_x = 11.56 \text{ KN.m......C.V}$$

\checkmark E.L.S:

$$M_t = 0.8 M_x$$
 avec $M_x = 7.74 KN.m$

$$M_t = 6.19 \text{ KN.m}$$

$$M_a = 0$$
, 3 $M_x = 2.32$ KN.m

Condition de B.A.E.L:

$$M_d = 0$$
, 5 $M_x = 3.87$ KN.m

$$M_G = 0$$
, 3 $M_x = 2.32$ KN.m

$$M_t = 0$$
, 85 $M_x = 6.58$ KN.m

$$M_t = 0$$
, 90 $M_x = 6.97$ KN.m

$$M_t + \frac{M_G + M_d}{2} = 10.06 \text{ KN.m} > 1, 25. M_x = 9.675 \text{ KN.m.}$$
 C.V

\bullet Pour M_v :

$$M_t = 0$$
, 8 M_y avec $M_y = 8.20$ KN.m

$$M_t = 6,56 \text{ KN.m}$$

$$M_a = 0$$
, 3 $M_v = 2,46$ KN.m

Condition de B.A.E.L:

$$M_d = 0$$
, 5 $M_v = 4$,1 KN.m

$$M_G = 0$$
, 3 $M_v = 2,46$ KN.m

$$M_t + \frac{M_G + M_d}{2} = 9,92 \text{ KN.m} < 1, 25 \text{ M}_y = 10,25 \text{ KN.m}.$$
 C.N.V

$$M_t = 0$$
, 85 $M_y = 6.97$ KN.m

$$M_t = 0$$
, 90 $M_y = 7.38$ KN.m

\checkmark E.L.S:

$$M_t = 0$$
, 8 M_y avec $M_y = 7.14$ KN.m

$$M_t = 5.71 \text{ KN.m}$$

$$M_a = 0, 3 M_y$$
 $M_a = 2.14 \text{ KN.m}$

Condition de B.A.E.L:

$$M_d = 0$$
, 5 $M_v = 3.57$ KN.m

$$M_G = 0$$
, 3 $M_y = 2.14$ KN.m

$$M_t = 0$$
, 85 $M_v = 6.07$ KN.m

$$M_t = 0$$
, 90 $M_v = 6.42$ KN.m

$$M_t + \frac{M_G + M_d}{2} = 9.27 \text{ KN.m} > 1, 25. M_y = 8.92 \text{ KN.m}.$$

III.4.3 Calcul des ferraillages:

✓ Suivant x:

$$M_{trav\acute{e}} = 8.32 \text{ KN.m}$$
 ; Mappui = 2.78 KN.m

$$A_S = \frac{M_U}{Z.\sigma_{st}}$$
, avec $Z = d$ (1-0.4 α), $\alpha = 1.25$ (1- $\sqrt{1 - 2\mu_u}$) et $\mu = \frac{M_U}{b.d^2.f_{bc}}$

$$A_{min} = (0.23.b.d. f_{128})/f_e = \frac{0.23 \times 100 \times 18 \times 2.1}{400}$$

$$A_{min} = 2.17 \text{ cm}^2/\text{ml}.$$

Tableau III.4 Ferraillage de la dalle

Section	$M_U(KN.m)$	μ	α	Z (cm)	A _{smin}	A _s (cm ² /ml)	A _{dopté} /ml
Travée	8.32	0.018	0.022	0.1738	2.17	1.34	4T10 = 3.14
Appui	2.78	0.0060	0.0075	0.1794	2.17	0.44	4T10= 3.14

↓ Vérification à l'E.L.S :

On doit vérifier la condition suivant :

$$\alpha \le \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$
, Avec: $\gamma = \frac{M_U}{M_S}$

• En travée

$$M_U = 8.32 \text{ KN.m}$$

$$M_S = 6.97 \text{ KN.m}$$

$$\gamma = \frac{M_U}{M_S} \longrightarrow \gamma = \frac{8.32}{6.97} = 1.19$$

• En appui

$$\alpha \le \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$
, Avec: $\gamma = \frac{M_U}{M_S}$

$$M_{IJ} = 2.78 \text{ KN.m}$$

$$M_S = 2.32 \text{ KN.m}$$

$$\gamma = \frac{M_U}{M_S} \longrightarrow \gamma = \frac{2,78}{2,32} = 1.19$$

$$\alpha_{trav\acute{e}e} \le \frac{\gamma - 1}{2} + \frac{f_{c28}}{100} = 0.345 \longrightarrow 0.0075 < 0.315............C.V$$

✓ Suivant v

$$M_{\text{trav\'ee}} = 7,38 \text{ KN.m}$$
; Mappui = 2,46 KN.m

$$A_S = \frac{M_U}{Z.\sigma_{st}}$$
, avec $Z = d$ (1-0.4 α), $\alpha = 1.25$ (1- $\sqrt{1 - 2\mu_u}$) et $\mu = \frac{M_U}{b.d^2.f_{bc}}$

$$A_{min} = (0.23.b.d. \ f_{t28)}/f_e = \frac{0.23 \times 100 \times 13.5 \times 2.1}{400} \quad \Longrightarrow \quad Amin = 1.63 \ cm^2/ml.$$

Tableau III.5 Ferraillage de la dalle

Section	$M_U(KN.m)$	μ	α	Z (cm)	A _s min	A _s (cm ² /ml)	A _{dopté} /ml
Travée	7.38	0.01607	0.020	0.1785	2.17	1.18	4T10= 3.14
Appui	2,46	0.0053	0.0067	0.1795	2.17	0.39	4T10= 3.14

♦ Vérification à l'E.L.S :

On doit vérifier la condition suivant :

$$\alpha \le \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$
, Avec: $\gamma = \frac{M_U}{M_S}$

• En travée

$$M_U = 7.38 \text{ KN.m}$$

$$M_S = 6,42 \text{ KN.m}$$

$$\gamma = \frac{M_U}{M_S} \longrightarrow \gamma = \frac{7,38}{6,42} = 1.15$$

$$\alpha_{trav\acute{e}e} \leq \frac{1.15-1}{2} + \frac{25}{100} = 0.325 \longrightarrow 0.020 < 0.325 \dots C.V$$

• En appui

$$\alpha \le \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$
, Avec: $\gamma = \frac{M_U}{M_S}$

$$M_U = 2,46 \text{ KN.m}$$

$$M_{\rm S} = 2$$
, 14 KN.m

$$\gamma = \frac{M_U}{M_S} \longrightarrow \gamma = \frac{2,46}{2,14} = 1.15$$

$$\alpha_{trav\acute{e}e} \leq \frac{\gamma - 1}{2} + \frac{f_{c28}}{100} = 0.325 \longrightarrow 0.0067 < 0.325 \dots C.V$$

Remarque:

On adoptera le même ferraillage suivant les deux directions pour les différents planchers :

- Ferraillage en Travée : 4T10
- Ferraillage en appui : 4T10

III.5 Étude des Balcons :

III.5.1 Introduction:

Les balcons sont des dalles pleines qui sont supposées être des plaques horizontales minces en béton armé, dont l'épaisseur est relativement faible par rapport aux autres dimensions. Cette plaque repose sur deux ou plusieurs appuis, comme elle peut porter dans une ou deux directions.

On adopte une épaisseur h = 15 cm

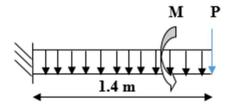


Figure III.5 Schéma statique du balcon

III.5.2 Évaluation des charges :

Tableau III.6 : Évaluation des charges pour le balcon

Désignation	e(m)	Poids volumique (KN/m ³)	Poids S (KN/m²)
Carrelage	0,02	22	0,44
Mortier de ciment	0,02	20	0,4
Lit de sable fin	0,02	19	0,38
Dalle en BA	0,15	25	3 ,75
Enduit en plâtre	0,02	10	0,20

Poids propre $G = 5,17 \times 1 \text{ m} = 5.17 \text{ KN/ml}$

Surcharge Q = $3.5 \times 1 m = 3.5 \text{ KN/ml}$

La charge des murs (force concentrée) $P = 1,38 \times 1,10 \times 1 m = 1,518 \text{ KN}$

E.L.U :
$$Qu = 1,35 G+1,5Q = 12.23 KN/ml$$

$$Pu = 1.35 P = 2.05 KN$$

E.L.S : Qser = G+Q = 8.67 KN/ml

III.5.3 Calcul des moments fléchissant et des efforts tranchants :

ELU:

Section 1-1 : $0 \le x \le 1,4 m$

$$M(x) = -P_u x - Q_u \frac{x^2}{2} = -2.05x - 12.23 x^2/2$$

$$M(0) = 0$$

$$M(1.4) = -14.86 \text{ KN.ml}$$

$$T(x) = -P_u x - Q_u x = -2.05-12.23 x$$
 $T(0) = -2.05 KN$ $T(1.4) = -19.17 KN$

> ELS

$$M(x) = -P_s x - Q_s \frac{x^2}{2} = -1.518x - 8.67 x^2/2$$

$$M(0) = 0$$

$$M(1.4) = -10.62 \text{ KN.ml}$$

$$T(x) = -P_s x - Q_s x = -1.518 - 8.67x$$

$$T(0) = -1.518 \text{KN}$$

$$T(1.4) = -13.66 \text{ KN}$$

III.5.4 Détermination du ferraillage

On considère le balcon comme une poutre en console soumise à la flexion simple et le calcul se fait par une bande de 1 ml.

> ELU

> Armature longitudinale :

$$\begin{split} A_s &= \frac{M_u}{z.\sigma_{st}} \text{, avec } z = d \text{ (1-0,4}\alpha\text{), } \alpha = 1.25 \text{ (1-}\sqrt{1-2\mu}\text{) et } \mu = M_u/b.d^2.f_{bc} \\ d &= 0.9h = 0.9 \times 15 = 13.5 \text{ cm} \\ \text{(CNF)} : A_{min} &= (0.23.b.d.f_{t28})/f_e = \frac{0.23 \times 100 \times 13.5 \times 2.1}{400} \quad \longrightarrow \quad A_{min} = 1.63 \text{ cm}^2/\text{ml} \end{split}$$

Tableau III.7: Ferraillage du balcon

M _u (K.M)	μ	A	Z(m)	A _s min	A _s (cm ² /ml)	Adopté/ml
14.86	0.057	0.073	0.131	1.63	3.26	5T10 = 3.92

Le R.P.A.99 V2003 exige que :

 $A_{min} = 0.5\%(b \times h)$ dans toute la section.

On a : $A_{min} = 0.5 \times (0.15 \times 1)/100 = 7.5 \text{ cm}^2$

D'où : $A_{choisi} = 3.92 < 7.5 \text{ cm}^2 \dots \text{CNV}$

Choix : $A_{st} = 7t12 = 7.92 \text{ cm}^2$

Armature de répartition :

A répartition = $A_{adopté} / 4 = 7.92 / 4 = 1.98 \text{ cm}^2$

Le choix : $A_{r\acute{e}partition} = 4T10 = 3.14 \text{ cm}^2$

• **ELS**:

Position de l'axe neutre :

$$A_{st} = 7.92 \text{ cm}^2, \text{ n} = 15$$

 $\frac{bx^2}{2} - \text{n} \times A_{st} \text{ (d-x)} = 0$ $50x^2 - 15 \times 7.92 \text{ (13.5-x)} = 0$
 $\sqrt{\Delta} = 578.6$ $x = 4.6 \text{ cm}$

> Moment d'inertie :

$$\mathbf{I} = \frac{bx^3}{3} + \mathbf{n} \times \mathbf{A}_{st} (d-\mathbf{x})^2$$

$$I = \frac{100(4.6)^3}{3} + 15 \times 7.92 (13.5-4.6)^2$$

$$I = 12654.68 \ cm^4 = 1.265 \times 10^{-4} m^4$$

Calcul des constraints :

$$\sigma_{\rm bc} = \frac{M_s \times x}{I}$$

$$\sigma_{bc} = \frac{10.62 \times 0.046 \times 10^{-3}}{1.265 \times 10^{-4}} = 3.86 \ Mpa$$

Acier

$$\sigma_{\rm st} = n \frac{M_s(d-x)}{I}$$

$$\sigma_{st} = 15 \frac{10.62(0.135 - 0.046).10^{-3}}{1.265 \times 10^{-4}} = 112.07 \text{ Mpa}$$

✓ Calcul des constraints admiscible :

- Béton:

$$\bar{\sigma}_{bc} = 0.6 \times 25 = 15 \text{ MPa}$$

- Acier:

$$\bar{\sigma}_{\rm st} = \min\left(\frac{2}{3} \, {\rm f}_{\rm e,\,110} \sqrt{\eta \times f_{t28}} \,\right)$$
 Fissuration préjudiciable, avec : $\eta = 1.6$

$$\bar{\sigma}_{st} = \min (266.66, 201.63)$$
 $\bar{\sigma}_{st} = 201.63 \text{ Mpa}$

Donc:

$$\sigma_{\rm st} = 112.07 \text{ Mpa} < \bar{\sigma}_{\rm st} = 201.63 \text{Mpa}...$$
 CV

✓ Verification au cisaillement:

Fissuration préjudiciable ($\gamma_b = 1.5$: cas générale)

$$T_{max} = 19.17 \text{ KN}$$

$$\tau_{\rm u} = \frac{T_{max}}{b \times d}$$

$$\tau_{\rm u} = \frac{19.17 \times 10^{-3}}{1 \times 0.135} = 0.142 \text{ Mpa}$$

$$\bar{\tau}_{u} = \min \left(\frac{0.15 \times f_{c28}}{\gamma_{h}} ; 4Mpa \right)$$

$$\bar{\tau}_u = 2.5 \text{ MPa}$$

Donc on a :
$$\tau_u = 0.142 \text{ Mpa} < \bar{\tau}_u = 2.5 \text{ Mpa} \dots \text{CV}$$

√ Vérification de la flèche

$$\frac{h}{l} > \frac{1}{16}$$
 \longrightarrow $\frac{0.15}{1.40} > \frac{1}{16}$ \longrightarrow 0.107> 0.0625CV

$$\frac{A_{st}}{b \times d} \le \frac{4,20}{f_e} \longrightarrow \frac{7,92 \times 10^{-4}}{1 \times 0.135} \le \frac{4,20}{400} \longrightarrow 0.0058 \le 0.01105 \dots CV$$

Donc le calcul des flèches n'est pas utile.

CHAPITRE IV ÉTUDE DES ÉLÉMENTS SECONDAIRES

IV.1 Etude d'escaliers :

IV.1.1 Introduction:

Les escaliers sont des éléments constitués d'une succession de gradins permettant le passage à pied entre les différents niveaux d'un immeuble comme il constitue une issue de secours importante en cas d'incendie.

IV.1.2 Terminologie:

Un escalier se compose d'un nombre de marche, on appelle emmarchement la longueur de ces marches, la largeur d'une marche « g » s'appelle le giron, et la hauteur d'une marche « h ».

La dalle qui monte sous les marches s'appelle la paillasse, la partie verticale d'une marche s'appelle contre marche, la cage est le volume ou se situe l'escalier, les marches peuvent prendre appui sur une poutre droite ou courbe qu'on appelle le limon. La projection horizontale d'un escalier laisse au milieu un espace appelé jour.

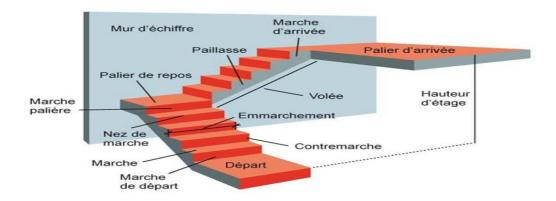


Figure IV.1 Schéma d'un escalier.

IV.1.3 Dimensionnement des escaliers :

Pour les dimensions des marches « g » et contre marche « h », on utilise généralement la formule de BLONDEL :

$$59 \le 2h + g \le 66 \text{ cm}$$

Avec:

H: hauteur de la marche (contre marche).

g : largeur de la marche.

$$H = n \times h \longrightarrow h = H/n$$
.

$$L = (n-1).g$$
 \longrightarrow $g = L/(n-1).$

H: hauteur entre les faces supérieures des deux paliers successifs d'étage.

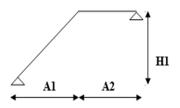
N : nombre de contre marches.

L : projection horizontale de la longueur totale de la volée.

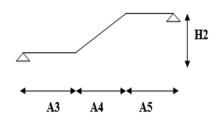
On trouve: h=17 cm g=30 cm

a- Nombre de contremarche :

$$N = \frac{Hetage}{h'}$$


N	iveau	Не	Nombre de contremarches	Répartition des contremarches
Pa	Parking		18	- 6 contremarches par volée.
RDC	ascenseur	3.23	19	8 contremarches pour les 2 volées.parallèles.3 contremarches pour volée.
	bureau			9 contremarches pour volée.10 contremarches pour volée.
1 ^{er} – 4 ^{ème} étage	ascenseur bureau	3.74	22	 8contremarches pour les 2 volées parallèles. 6 contremarches pour volée. 11contremarches pour les 2 volées
				parallèles 8 contremarches pour les 2 volées
5 ^{ème} -9	5 ^{ème} -9 ^{ème} étage		18	parallèles - 2contremarches pour volée.

b- La longueur de la ligne de foulée :


	La longueur	La ligne de foulée
Parking	L_1	$L_{1-1} = (6-1) *0.3 = 1.5$
	L_2	$L_{2-1} = (8-1) *0.3 = 2.1$
		$L_{2-2} = (3-1) *0.3 = 0.6$
RDC	L ₃	$L_{3-1} = (9-1) *0.3 = 2.4$
		L ₃₋₂ =(10-1) *0.3= 2.7
1 ^{er} – 4 ^{ème} étage	L_4	$L_{4-1} = (8-1) *0.3=2.1$
1 – 4 ctage		$L_{4-2} = (6-1) *0.3 = 1.5$
	L ₅	$L_{5-1} = (11-1) *0.3 = 3$
5 ^{ème} -9 ^{ème} étage	L ₆	$L_{6-1} = (8-1) *0.3 = 2.1$
		$L_{6-2} = (2-1) *0.3 = 0.3$

IV.1.4 Type d'escaliers :

Type 1:

Type 2:

> L'inclinaison de la paillasse :

$$\mathbf{tg} \; \boldsymbol{\alpha}_1 = \frac{H1}{A1}$$

$$tg \alpha_2 = \frac{H2}{A2}$$

Tableau IV.1 l'inclinaison de type d'escalier

Niveau		Type 1	1	Type 2		H1	H2	α1	α2	
		A1	A2	A3	A4	A5	(m)	(m)		
		(m)	(m)	(m)	(m)	(m)				
Parkin	g	1.5	1.2	1.15	1.5	1.15	1.02	1.02	34.21	34.21
RDC	bureau	2.4	1.27	2.7	1.27	-	1.53	1.7	32.51	32.19
	ascenseur	2.1	1.43	1.65	1.5	1.65	1.36	1.02	32.927	34.215
Étage	bureau	3	1.3	1.24	3	1.3	1.53	1.87	35.48	31.93
1 à 4	ascenseur	2.1	1.43	1.65	1.5	1.65	1.36	1.02	32.927	34.215
Etage 5	à 9	2.1	1.43	1.65	1.5	1.65	1.36	0.34	32.927	14.86

IV.1.5 Descente des charges d'escaliers :

Palier:

Tableau IV.2 Descente des charges de palier dans les déférents niveaux

Désignation	ep (cm)	Masse volumique (KN/m³)	Poids (KN/m ²)	
Carrelage	2	22	0.44	
Mortier de pose	2	20	0.4	
Couche de sable	2	18	0.36	
Poids propre de palier	17	25	4.25	
Enduit en plâtre	2	10	0.2	
G (KN/m²)	5.65			
Q (KN/m²)	2.5			

Paillasse:

G = 3.09 +
$$(17 \times 25 + 2 \times 10)$$
. $\frac{1}{\cos \alpha}$ = 3.09 + $\frac{4.45}{\cos \alpha}$

 $Q = 2.5KN/m^2$

Tableau IV.3 Descente des charges de paillasses dans les déférents niveaux

Niveau		G1 (KN/m ²)	G2 (KN/m ²)	G3 (KN/m ²)
Parking		8.47	8.47	8.47
RDC	ascenseur	8.39	8.93	8.39
	bureau	8.37	8	/
Étage	ascenseur	8.39	8.47	8.39
1 à 4	bureau	8.89	8.89	/
Étage 5 à 9		8.39	8.47	8.39

IV.1.6 Calcule des épaisseurs :

• Épaisseur de palier :

$$\frac{L}{20} \leq e \leq \frac{l}{15}$$

	Parking	RDC	Etage 1 à 4	Etage 5-9
Épaisseur de palier	0.17	0.17	0.17	0.17

> Paillasse:

$$L_{T1} = ?$$
 $Cos\alpha = 2.4/L_{T1}$ $\frac{285}{30} \le e_{p1} \le \frac{285}{20}$ $9.5 \le e_{p1} \le 14.25$

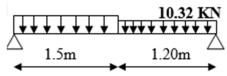
$$e_p = 17 \text{ cm}$$

$$\frac{353}{30} \le e_{pl} \le \frac{353}{20} \longrightarrow 11.76 \le e_{pl} \le 17.65$$

IV.1.7 calcul des sollicitations :

\checkmark Type 1:

ELU:


$$R_A - R_B - 10.32 \times 1.2 - 13.70 \times 1.5 = 0$$

$$R_A + R_B = 32.934 \text{ KN}$$

$$\sum M/A = 0$$

$$\rightarrow$$
 R_B. $(1.2+1.5) - 10.32 (1.2) (2.1) - 13.70 × 1.5 × 0.75 = 0$

13.70 KN

$$M(x) = R_A .x - 13.70 \times \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0 \\ M(1.5) = 17.59 \times 1.5 - 13.7 \times \frac{1.5^2}{2} = 10.977 \ KN \end{cases}$$

$$T(x) = R_A - 13.70.x$$

$$\begin{cases} T(0) = R_A = 1.759 \text{ KN} \\ T(1.5) = -2.957 \text{ KN} \end{cases}$$

On a
$$M_{max}$$
: tq : $T(x) = 0$

T(x) = R_A - 13.70x = 0
$$x = \frac{R_A}{13.7} = 1.28$$

M (1.28) = 11.296 KN.m

Section 2-2:
$$0 \le x \le 1.2 \text{ m}$$

$$M(x) = -R_B .x + 10.32 \times \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0 \\ M(1.2) = -10.977 \text{ KN} \end{cases}$$

$$T(x) = -R_B - 10.32.x$$

$$\begin{cases} T(0) = -R_B = -15.34KN \\ T(1.2) = -2.956 KN \end{cases}$$

ELS:

$$R_A + R_B - 9.8 \times 1.5 - 7.38 \times 1.2 = 0$$
 $R_A + R_B = 23.661 \text{ KN}$

$$\sum \frac{M}{A} = 0 \longrightarrow R_B (2.7) - 7.38 (1.2 + 2.1) - 9.87 \times 1.5 \times 0.75 = 0$$

$$\longrightarrow R_B = 11 \text{ KN}$$

$$\sum \frac{M}{B} = 0 \longrightarrow R_A (2.7) - 9.87 (1.5 + 1.95) - 7.38 \times 1.2 \times 0.60 = 0$$

$$R_A = 12.6605 \text{ KN}$$

Section 1-1:
$$0 \le x \le 1.5 \text{ m}$$

$$M(x) = R_A .x - 9.87 \times \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0 \\ M(1.5) = 7.886 KN \end{cases}$$

$$T(x) = R_A - 9.87.x$$

$$\begin{cases} T(0) = 12.66KN \\ T(1.5) = -2.145 KN \end{cases}$$

On a
$$M_{max}$$
: tq : $T(x) = 0$

$$T(x) = R_A - 13.70x = 0$$

$$X = \frac{R_A}{9.87} = 1.28$$

$$\longrightarrow$$
 M (1.28) = 8.119 KN.m

Section 2-2:
$$0 \le x \le 1.2 \text{ m}$$

$$M(x) = -R_B .x + 7.38 \times \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0 \\ M(1.2) = -7.8864 \text{ KN} \end{cases}$$

$$T(x) = -R_B + 7.38.x$$

$$\begin{cases} T(0) = -R_B = -11KN \\ T(1.2) = -2.144 \text{ KN} \end{cases}$$

IV.1.8 Détermination de ferraillage :

Pour type 2:

✓ Palier:
$$h = 0.18 \text{ m}$$
 $b = 1 \text{ m}$ $d = 0.9h = 0.162 \text{ m}$

✓ Paillasse:
$$h = 0.15 \text{ m}$$
 $d = 0.9h = 0.135 \text{ m}$

D'après le SAP2000:

Tableau IV.4: les efforts adoptés

	Mappui	M _{travée}	Effort tranchant
ELU	0	49.82	33.71
ELS	0	35.84	24.20

$$F_{c28} = 25 \text{ Mpa}$$

$$F_{t28} = 2.1 \text{ Mpa}$$

$$F_{bc} = \sigma_{bc} = 14.17 \text{Mpa}$$

$$\sigma_{\rm st} = 347.83 \text{ Mpa} = \frac{f_e}{\gamma_{\rm s}}$$

ELU:

✓ En travée :

$$M_{\rm ut} = 0.85 \times M_U = 0.85 \times 49.82 = 42.347 \ KN.m$$

$$\mu_{\rm u} = \frac{M_{ut}}{b.d^2.\sigma_{bc}} = \frac{0.042347}{1\times0.135^2\times14.17} \longrightarrow \mu_{\rm u} = 0.1693$$

$$\mu_{\rm R} = 0.392$$

Donc : $\mu_u \le \mu_R$ Section simple armature, les armatures de compression ne sont pas nécessaires.

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_u})$$

$$\alpha = 1.25(1 - \sqrt{1 - 2 \times 0,1639})$$

$$\alpha = 0.2252$$

$$Z = d (1-0.4 \alpha) = 0.135(1-0.4 \times 0.2252) = 0.1228 m$$

$$A_{st} = \frac{M_{UT}}{Z.\sigma_{st}} = \frac{0.042347}{0.1228 \times 347.82} = 9.90 \text{ cm}^2/\text{ml}$$

Donc : le choix : $A_{st} = 9T12 = 10.18 \text{ cm}^2$

• Condition de non fragilité :

$$A_{st} \ge 0.23. b. d. \frac{f_{ti}}{f_e} = 0.23 \times 1 \times 0.135 \times \frac{2.1}{400}$$

$$A_{st} = 1.63 \text{ cm}^2 \dots CV$$

• Armature de répartition :

$$A_r = \frac{A_{st}}{4} = \frac{10.78}{4} = 2.695 \ cm^2$$

Choix :
$$A_r = 4T10 = 3.14 \text{ cm}^2$$

✓ En appui:

$$M_{ua} = 0.5 \times M_{max} = 0.50 \times 49.82 = 24.91 \text{ KN. m}$$

$$\mu_{\rm u} = \frac{M_{ua}}{b.d^2 \cdot \sigma_{bc}} = \frac{0.02491}{1 \times 0.135^2 \times 14.17} \longrightarrow \mu_{\rm u} = 0.09645$$

$$\mu_{\rm R} = 0.392$$

Donc : $\mu_u \le \mu_R$ Section simple armature, les armatures de compression ne sont pas nécessaires.

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_u})$$

$$\alpha = 1.25(1 - \sqrt{1 - 2 \times 0.09645})$$

$$\alpha = 0.1270$$

$$Z = d (1-0.4 \alpha) = 0.135(1-0.4 \times 0.1270) = 0.1280m$$

$$A_{st} = \frac{M_{UT}}{Z.\sigma_{st}} = \frac{0.02491}{0.1280 \times 347.82} = 5.58 \text{ cm}^2/\text{ml}$$

Donc : le choix : $A_{st} = 5T12 = 5.65 \text{ cm}^2$

• Condition de non fragilité :

La section minimale:

$$A_{st} \ge 0.23. b. d. \frac{f_{ti}}{f_e} = 0.23 \times 1 \times 0.135 \times \frac{2.1}{400}$$

$$A_{st} = 1.63 \text{ cm}^2 \dots CV$$

• Armature de répartition :

$$A_r = \frac{A_{st}}{4} = \frac{5.65}{4} = 1.415 \ cm^2$$

Choix:
$$4T10 = 3.14 \text{ cm}^2$$

Fissuration peu préjudiciable.

$$\alpha \leq \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$

$$\gamma = \frac{M_U}{M_S}$$

■ En travée :

$$M_u = 42.347 \text{ KN.m}$$

$$M_s = 30.464$$
 KN.m

$$\gamma = \frac{42.347}{30.464} = 1.39$$

■ En appui:

$$M_u = 24.91 \text{ KN.m}$$

$$M_s = 17.92 \text{ KN}$$

$$\gamma = \frac{24.91}{17.91} = 1.39$$

♣ Vérification au cisaillement :

$$\overline{\tau_{u=}}min\left(\frac{0.20\times f_{c28}}{\gamma_{b}},5\text{Mpa}\right)$$

$$\begin{aligned} &V_{\rm u} = \frac{q_{1\times l_1}}{2} + \frac{q_{2\times l_2}}{2} + \frac{q_{3\times l_3}}{2} = \frac{10.32\times 1.3 + 13.70\times 3 + 10.32\times 1.24}{2} \\ &V_{\rm u} = 33.65 \text{ KN} \\ &\tau_{\it u} = \frac{v}{b.d} = \frac{33.65}{1\times 0.135} = 0.2495 \text{ Mpa} < 3.33 \text{ Mpa} \end{aligned}$$

Tableau IV.5 récapitulatif du ferraillage d'escalier

	Armature longitudinal		Armature de répartition		
	Calculée (cm²)	Choisi (cm²)	Calculée (cm²)	Choisi (cm²)	
En travée	9.90	10.78 = 9T12	2.695	3.14 = 3T12	
En appui	5.58	5.65 = 5T12	1.395	3.14 = 3T12	

IV.1.9 Etude de la poutre brisée :

IV.1.9.1 Pré-dimensionnement :

D'après le B.A.E.L 91 on a

$$\frac{L}{15} \le h \le \frac{L}{10}.$$

L : la distance entre axe de poteau (L=4, 90 m)

h: hauteur de la poutre

$$\frac{531}{15} \le h \le \frac{531}{10}$$
. $\implies 32.66 \le h \le 49.0$ \implies **h=40 cm**

$$\frac{h}{5} \le b \le \frac{h}{2}$$
. \Longrightarrow 8 \le h \le 20 \Longrightarrow **b=30 cm** (min RPA)

Vérification du RPA 99 V2003:

$$b \ge 20 \text{ cm} = > 30 \text{ cm} > 20 \text{ cm}....\text{cv}$$

$$h \ge 30 \text{ cm} = > 40 \text{ cm} > 30 \text{ cm}....\text{cv}$$

La poutre (palière/brisée) a une dimension de (30*40) cm²

IV.1.9.2 Descende des charges :

<u>Palier inferieur :</u>

$$G1 = (0.3*0.4*25) + 2.73 \times (3.74 - 1.36 - 0.4) + 5.65*1.2 = 15.18 \text{ KN/ml}$$

<u>Palier supérieure :</u>

$$G2 = (0.3*0.4*25) + 2.73 \times (3.74-1.87-0.4) + 5.65*1.2 = 13.8 \text{ KN/ml}$$

Paillasse:

G3=
$$[(0, 3*0, 4*25)/\cos(32, 93)] + 2, 73*[(3.23/2)-0, 4] +8.93*1.2= 17,6 KN/ml$$

Charge d'exploitation dans la poutre brisée est nulle Q=0

IV.1.9.3 Calcul des efforts internes :

Après avoir utilisé le SAP2000, on a trouvé les efforts internes suivants :

$$Mu_{max} = 57.25 \text{ KN.m}$$

$$Tu_{max} = 46.27 \text{ KN}$$

$$Ms_{max} = 42.41 \text{ KN.m}$$
 $Ts_{max} = 34.27 \text{ KN}$

$$T_{s max} = 34.27 KN$$

IV.1.9.4 Calcul du ferraillage:

$$h=0, 4 \text{ m}$$

$$b=0, 3 \text{ m}$$

; b=0, 3 m ; d=0, 9h=0, 36 m ;
$$f_{c28}$$
=25 MPa

$$f_{c28}=25 \text{ MPa}$$

$$f_{t28} = 2, 1 \text{ MPa}$$

$$f_{t28}$$
= 2, 1 MPa; σ_{bc} = 14, 17 MPa ; σ_{st} =348 MPa

$$\sigma_{\rm st}$$
=348 MPa

• ELU:

En travée:

$$M_{ut}$$
=0, 85 M $_{max}$ = 48.66 KN.m

$$M = \frac{M \max}{d^2 \cdot b \cdot \sigma bc} = \frac{0,004866}{0,36^2 \times 0,3 \times 14,17} = 0,088$$

$$\mu_{\text{H}} = 0.088 < 0.392 => SSA$$

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_{\rm u}}) = 0,1157$$

$$Z=d(1-0, 4\alpha) = 0, 34m$$

$$A_{st} = \frac{Mu}{Z.\sigma st} = \frac{0,004866}{0,34 \times 348} =$$

$$A_{st} = 4.11 \text{ cm}^2$$

On choisit A
$$_{st}$$
=4T12= 4,52 cm²

Condition de non fragilité :

$$A_{st} \ge 0.23 \text{ b.d.} \frac{ft28}{fe}$$

$$A_{st} \ge 0$$
, 23× 0,36 × $\frac{2,1}{400}$ =1, 3 cm² \longrightarrow A_{st} =4, 52 cm² \ge 1.3 cm²cv

En appuis:

$$M_{ut}=0, 5 M_{max}=24.33 KN.m$$

$$\mu = \frac{\text{M max}}{d^2 \cdot b \cdot \sigma \text{bc}} = \frac{0,002433}{0.36^2 \times 0.3 \times 14.17} = 0,044$$

$$\mu_u$$
= 0,044 < 0,392

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{\rm u}}) = 0.056$$

$$Z=d (1-0, 4 \alpha) = 0, 35 m$$

$$A_{st} = \frac{Mu}{Z.\sigma st}$$

$$A_{st} = \frac{0,02433}{0,35 \times 348} = 1.99 \text{ cm}^2$$
 On choisit $A_{st} = 3T12 = 3,39 \text{ cm}^2$

Condition de non fragilité :

$$A_{st} \ge 0.23 \text{ b.d.} \frac{ft28}{fe}$$

$$A_{st} \ge 0, 23 \times 0, 3 \times 0, 36 \times \frac{2,1}{400} = 1,63 \text{ cm}^2$$
 $\longrightarrow A_{st} = 3, 39 \text{ cm}^2 \ge 1.48 \text{ cm}^2$ ev

Condition du RPA99 V2003:

Car on a choisie : $4T12+3T12=7,91 \text{ cm}^2 > A_{min} = 6 \text{ cm}^2$

ELS

Vérification de la contrainte de compression du béton :

■ En travée :

$$M_u = 48.66 \text{ KN.m}$$

$$M_s = 36.048$$
 KN.m

$$\gamma = \frac{48.66}{36.048} = 1.34$$

• En appui:

$$M_u = 28.63 \text{ KN.m}$$

$$M_s = 21.20 \text{ KN}$$

$$\gamma = \frac{28.63}{21.2} = 1.35$$

Vérification au cisaillement :

$$\tau_{\rm u} = T_{\rm u}/b.d = \frac{0.04627}{0.30 \times 0.36}$$
 $\tau_{\rm u} = 0.43 \text{ MPa}$
 $\bar{\tau}_{\rm u} = \min (0.2 \frac{fc28}{\gamma b}; 5\text{MPa})$
 $\bar{\tau}_{\rm u} = 3.33 \text{ MPa}$
 $\tau u < \bar{\tau}_{\rm u} = 0.43 \text{ MPa}$

Calcul des armatures transversales :

$$\varphi t \leq (\frac{h}{35}; \varphi min; \frac{b}{10})$$
 $\varphi t \leq (1, 14; 1, 2; 3) \quad \text{On prend} \quad \varphi t = 10 \text{ mm}$

Calcul d'espacement des cadres :

D'après le RPA99V 2003, on a

• Zone nodale :

St
$$\leq \min\left(\frac{h}{4}; 12\varphi min; 30cm\right)$$

$$St \le min(10; 14,4; 30cm)$$
 on prend \longrightarrow $St = 10 cm$

• Zone courante:

$$S'_t \le h/2 => S'_t \le 40/2 \longrightarrow S'_t = 20 \text{ cm}$$

Vérification de la flèche

$$\frac{h}{L} \ge \frac{1}{18} \cdot \frac{Ms}{Mu} \cdot \dots (1)$$

$$\frac{h}{L} \ge \frac{1}{16} \cdot \dots (2)$$

$$(1) \dots \frac{0.4}{4.9} \ge \frac{1}{18} \cdot \frac{36.048}{48.66} \longrightarrow 0.081 > 0.041 \dots cv$$

$$(2) \dots \frac{0.4}{4.9} \ge \frac{1}{16} \cdot \dots cv$$

Donc la flèche est vérifiée.

Récapitulatif du ferraillage de la poutre palière-brisée :

Les résultats est résumé dans le tableau suivant :

Tableaux IV.6 : Récapitulatif du ferraillage de la poutre brisée

Ferraillage	calculée (cm²)	A st choisie	Armature transversale	Espacement (cm)
En travée	4.11	4,52 = 4T12	φt = 10 mm	Zone nodale St= 10 cm
En appuis	1.99	3,39 = 3T12		Zone courante: S' _t =20 cm

IV.2 L'ascenseur:

IV.2.1. Introduction:

Un ascenseur est un appareil élévateur destiné à transporter verticalement des personnes d'un niveau à un autre. Il est prévu pour les structures de cinq étages et plus, dans lesquelles l'utilisation des escaliers devient très fatigant.

Un ascenseur est constitué d'une cabine qui se déplace le long d'une glissière verticale dans une cage d'ascenseur, on doit bien sur lui associer les dispositifs mécaniques permettant de déplacer la cabine (le moteur électrique, le contre poids et les câbles).

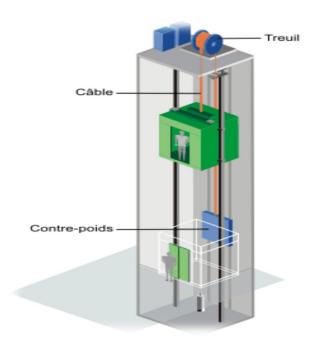


Figure IV.2 : Schéma descriptif d'un ascenseur mécanique.

IV.2.2 Etude de l'ascenseur :

L'ascenseur est compose de trois éléments essentiels :

- ✓ Le treuil de levage et sa poulie.
- ✓ La cabine ou la benne.
- ✓ Le contre poids.
- Dimension de l'ascenseur :

$$Lx = 1.80 \text{ m}$$

$$Ly = 2.00 \text{ m}$$

$$\frac{lx}{ly} = \frac{1.8}{2} = 0.9$$

$$0.4 < 0.9 < 1$$
 $h \ge \frac{lx}{40} = 45 \text{ cm}$

Avec:

$$h_{min} = 20 \text{ cm}$$

On prend: h = 20 cm

Évaluation des charges :

Le poids mort total est :

$$Pm = 2342.5 \text{ Kg}$$

$$Pp = Pm + Q/2$$

Tel que : Q= 600 Kg (pour 7 personnes)

$$Pp = 2342.5 + \frac{600}{2} = 2642.5 \text{ Kg}$$

$$Mg=m.n.L$$

Tel que:

m: la masse linéaire du câble.

n: le nombre des câbles.

L: la longueur du câble.

$$Mg = 0.512 \times 2 \times 31.62 = 32.38 \text{ Kg}$$

$$G = P_m + P_p + P_{Treuil} + M_g = 2342.5 + 2642.5 + 32.38 + 1200 = 6217.38 \text{ Kg}.$$

$$Q = 600 \text{ Kg}$$

Vérification au poinçonnement :

La dalle de l'ascenseur risque le poinçonnement sous l'effet de la force concentrée appliquée par l'un des appuis du moteur.

$$Qu = 1.35G + 1.5Q$$

$$= 1.35 \times 6217.38 + 1.5 \times 600$$

$$Q_u = 9293.46 \text{ Kg}$$

qu est la charge appliquée sur chaque appui

$$qu = \frac{Qu}{4} = 2323.37 \text{ Kg}.$$

Selon le BAEL91, la condition de non poinçonnement à vérifier est :

$$qu \le 0.045 \times \mu_u \times h_o \times \frac{fc28}{\gamma b}$$

Avec:

q_u : la charge de calcul vis-à-vis de l'état limite ultime.

h_o : l'épaisseur totale de la dalle.

μ_u: le périmètre du conteur au niveau du feuillet moyen.

La charge q_u est appliquée sur un carré de 10 × 10 cm².

$$h_0 = 20 \text{ cm}$$

$$\mu_u = 2 \times (u + v)$$
.

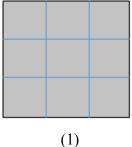
$$u = a + h_0 + 1.5h_r = 10 + 20 + 1.5 \times 5 = 37.5 \text{ cm}$$

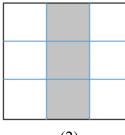
$$v = b + h_0 + 1.5h_r = 10 + 20 + 1.5 \times 5 = 37.5$$
 cm

Donc:

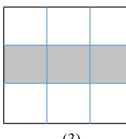
$$\mu_u = 2 \times (37.5 + 37.5) = 150$$
 cm.

$$qu \leq 0.045 \times 1.5 \times 0.20 \times \frac{25000}{1.5}$$

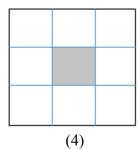

$$qu \le 22500 \text{ kg}$$


$$2323.37 \text{ Kg} \le 22500 \text{ Kg}$$

La condition est vérifiée ; donc le risque de poinçonnement n'existe pas


Évaluation des moments :

Moments due aux charges concentrées :



(2)

(3)

Rectangle 1:

$$U = 1.3 \text{ m}$$

$$V = 1.3 \text{ m}$$

$$U_0 = 130 + 20 + 5 \times 1.5 = 157.5$$

$$V_0 = 130 + 20 + 5 \times 1.5 = 157.5$$

$$\frac{\text{U0}}{lx} = \frac{157.5}{180} = 0.875$$

$$\frac{\text{vo}}{ly} = \frac{157.5}{180} = 0.875$$

On utilise l'abaque 2 :

$$M1 = 5.810^{-2}$$

$$M2 = 4.5.10^{-2}$$

V Vo rectangle Uo U_0/l_x Vo/l_v **M1 M2** 0,79 1 1,30 1,30 1,58 1,58 0,88 0,058 0,045 0,49 2 0,60 1,30 0,88 1,58 0,79 0,0845 0,0575 3 1,30 0,60 1,58 0,88 0,88 0,069 0,066 0,44 4 0,60 0,49 0,099 0,089 0,60 0,88 0,88 0,44

Tableau IV .7 : les moments dus aux charges concentrées.

Tableau IV.8: moments isostatiques à ELU et ELS

ELU			ELS				
Pu	$P=P_u*u*v$	M_{x}	My	P = (G+Q)/4	Ps	M _x	My
23,32	39,41	2,29	1,77	17,11	28,91	1,94	1,64
23,32	18,19	1,54	1,05	17,11	13,34	1,28	0,99
23,32	18,19	1,26	1,20	17,11	13,34	1,10	1,06
23,32	8,40	0,83	0,75	17,11	6,16	0,72	0,67

Les moments dus aux charges :

ELU:

$$Mx = Mx1 - Mx2 - Mx3 + Mx4 = 0.32 \text{ KN.m}$$

$$My = M_{y1}- M_{y2} - M_{y3} + M_{y4} = 0.27 \text{ KN.m}$$

Moment due à la charge répartie (poids propre) :

$$G = 25 \ 0.2 = 5 \ KN/m$$
.

$$Q = 1 \text{ KN/m}.$$

$$Qu = 1.35G + 1.5Q = 1.355 + 1.51 = 8.25 \text{ KN/m}$$

Sollicitation:

$$\alpha = \frac{lx}{ly} = \frac{1.8}{1} = 0.9 > 0.4$$

Donc la dalle travaille suivant les deux sens.

$$M_{x2} = \mu_x.q_u.l_x^2$$

$$M_{y2} = \mu_y . M_{x2}$$

$$\alpha = 0.9$$

$$\mu_x = 0.0456$$

$$\mu_{v} = 0.7834$$

$$M_{x2} = 1.218$$

$$M_{y2} = 0.9451$$

Moment appliqué à la dalle :

$$M_{y2} = M_{y2+} M_{y2} = 0.32 + 1.218 = 1.538 \text{ KN.m}$$

$$M_{y2} = M_{y2+} M_{y2} = 0.27 + 0.9541 = 1.2241 \text{ KN.m}$$

Moment retenu:

• En travée:

$$M_{tx}$$
= 0.75 M_{ox} = 0.75 1.538= 1.1535 KN.m

$$M_{ty}$$
= 0.75 M_{oy} = 0.75 1.2241= 0.9180 KN.m

• En appuis :

$$M_{ax} = M_{ay} = 0.5 M_{ox} = 0.5 1.538 = 0.769 KN.m$$

Calcul de ferraillage de la dalle :

Le ferraillage se fait sur une bande de 1 m de largeur

- b=100 cm
- h=20 cm
- d = 0.9 h = 18 cm
- fe = 400 MPa
- $\sigma_S = 348 \text{ MPa}$
- Fissuration peu préjudiciable

En travée:

• Sens x:

$$\mu_u = \frac{\text{Mtx}}{d^2.b.\sigma bc} = \frac{0.0011535}{0.18^2 \times 1 \times 14.17} = 0.0025$$

$$\mu_R = 0.392$$

$$\mu_u\!<\mu_R$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{\rm u}}) = 0.00313$$

$$Z = 1-0, 4 \alpha = 0.9987 \text{ m}$$

$$A_S = = \frac{Mtx}{Z.d.\sigma st} = = \frac{0.0011535}{0.9987 \times 0.18 \times 348} = 1.84.10^{-5} \text{ m}^2$$

$$As = 0.184 \text{ cm}^2$$

• Sens y:

$$\mu_u = \frac{Mtx}{d^2.b.\sigma bc} = \frac{0.00918}{0.9987 \times 0.18 \times 348} = 0.00199$$

$$\begin{split} &\mu_R {=}\, 0.392 \\ &\mu_u {<}\, \mu_R \\ &\alpha = 1.25 (1 - \sqrt{1 - 2\mu_u}) \, {=} 0.0025 \\ &Z {=}\, 1 {-} 0, \, 4\, \alpha \, {=} 0.9989 \; m \\ &A_{st} \, = \frac{Mtx}{Z.d.\sigma st} \, {=} \, \frac{0.00918}{0.9987 {\times} 0.18 {\times} 348} \\ &A_{st} = 0.146 cm^2 \end{split}$$

En appui:

$$\begin{split} \mu_u = & \frac{\text{Ma}}{d^2.b.\sigma bc} = \frac{0.00769}{1\times0.18^2\times14.17} = 0.00167 \\ \mu_R = 0.392 \\ \mu_u < \mu_R \\ \alpha = 1,25(1-\sqrt{1-2\mu_u}) = 0.002 \\ Z = 1-0,4 & \alpha = 0.9991 \text{ m} \\ A_{st} = & \frac{\text{Ma}}{\text{Z.d.\sigma st}} = \frac{0.00769}{0.9991\times0.18\times348} \\ A_{st} = & 0.123 \text{ cm}^2 \end{split}$$

Sections minimales des armatures :

 $h_0 = 20 \text{ cm}$

• Sens Ly:

$$A_{ymin} = 0.8 ho = 0.8 \ 20 = 1.6 \ cm^2$$

- En travée : A_{ty} = 0.146 cm² < 1.6 cm² A_{ty} = 1.6 cm².
- En appui : $A_{ay} = 0.123 \text{ cm}^2 < 1.6 \text{ cm}^2 \dots A_{ay} = 1.6 \text{ cm}^2$.
- Sens Lx:

$$A_{xmin} = A_{ymin} \frac{3-\alpha}{2} = 1.68 \text{ cm}^2$$

- En travée : $As_{tx} = 0.184 \text{ cm}^2 < 1.68 \text{ cm}^2$ $A_{stx} = 1.68 \text{ cm}^2$
- En appui : $A_{ax} = 0.146 \text{ cm}^2 < 1.68 \text{ cm}^2$ $A_{ax} = 1.68 \text{ cm}^2$

Choix d'aciers:

- Diamètre:

$$h_o = 20 \text{ cm}$$

$$\Phi \le \frac{\text{ho}}{10} = \frac{20}{10} = 2\text{cm} = 20 \text{ mm}.$$

- <u>L'espacement</u>:

$$\delta_t \leq \min (3ho, 33 \text{ cm})$$

Nécessité de disposer des armatures transversales :

La dalle est bétonnée sans reprise

$$\tau_u \ \leq \overline{\tau}_u$$

Avec:
$$\tau u = \frac{v_{utot}}{hd}$$

et
$$\bar{\tau}_{u} = \frac{10ho}{3}$$
.min (0.13 fc28; 5MPa)

$$V_{u \text{ tot}} = v_x + v_v \dots$$
 Sens x

$$V_{u \text{ tot}} = v_y + vu....$$
 Sens y

- Calcul de l'effort tranchant (V_x et V_y) dus aux charges réparties :

$$\alpha = \frac{1.8}{2} = 0.9 > 0.4$$

$$V_x = qu \frac{lx}{2} \times \frac{1}{1 + \frac{\alpha}{2}}$$

$$V_y = qu \frac{lx}{3}$$

• Calcul de qu:

C'est la charge ultime de la dalle :

Tel que:

$$qu = 1.35G + 1.5 Q = 1.35 \times 5 + 1.5 \times 1 = 8.25 N/m.$$

On calcule Vv et Vu (effort tranchants dus aux charges localisées :

$$V_v = \frac{q_0}{2u + v}$$
 avec : $q_0 = 2323.36 \text{ Kg}$

$$V_v = \frac{2323.36}{2 \times 0.375 + 0.375} = 20.65 \text{ KN}$$

$$V_v = \frac{q_0}{3u} \le V_u \longrightarrow \frac{2323.36}{3 \times 0.375} = 20.65 \text{ KN}$$

Comme (u = v = 37.5 cm)
$$\longrightarrow$$
 $V_u = V_v = 20.65 \text{KN}$

Donc l'effort total:

Sens L_x:

$$V_{tot} = V_x + V_v = 5.12 + 20.65 = 25.77 \text{ KN}$$

Sens L_v:

$$V_{tot} = V_v + V_u = 7.425 + 20.65 = 28.075 \text{ KN}$$

D'où :
$$V_{tot} = max (V_{totx}, V_{toty})$$
.

Donc:
$$\tau_{\rm u} = \frac{V_{tot}}{b.d} = \frac{28.075.10^{-3}}{b.d} = 0.156 \text{ MPa}$$

$$15 \text{ cm} < h_0 < 30 \text{ cm}$$
 (CV)

$$\tau < \overline{\tau u}_{\text{lim}} = \frac{10 h_0}{3} = \min (0.13 \text{ fc} 28, 5 \text{ MPa})$$

$$0.1563 < \overline{\tau u}_{lim} = 2.16 \text{ MPa}$$
 (CV)

Donc : les armatures transversales ne sont pas nécessaire.

Vérification à l'ELS:

Calcule des sollicitations :

Charge localisé: voir tableau

$$M_{0x} = 0.28$$

$$M0y = 0.25$$

Moment due aux charges repartie ELS:

$$G = 0.20 \times 25 = 5 \text{ KN/m}^2$$

$$Q = 1KN/m^2$$

$$Q_{ser} = 1 + 5 = 6 \text{ KN/m}^2$$

$$\alpha = \frac{L_x}{L_y} = 0.9 > 0.4$$
 la dalle travaille en deux sens :

$$\mu_{\rm x} = 0.0528$$

$$\mu_{\rm y} = 0.8502$$

$$M_{0xr} = \mu_x \cdot q_{ser} \cdot L^2_x = 0.0528 \times 6 \times (1.8)^2 = 1.026 \text{KN.m}$$

$$M_{0y} = \mu_{y.} M_{0xr} = 0.8726 \text{ KN.m}$$

Les moments appliqués au centre de rectangle seront donc :

$$M_{0x} = M_{0xc} + M_{0xr} = 0.28 + 1.026 = 1.306 \text{ KN.m}$$

$$M_{0v} = M_{0vc+} M_{0vr} = 0.25 + 0.8726 = 1.1226 \text{ KN.m}$$

Les moments en travée et en appui :

$$M_{tx} = 0.75 M_{0x} = 0.9795 KN.m$$

$$M_{ty} = 0.75 \text{ Moy} = 0.8415 \text{ KN.m}$$

$$M_{0x} = M_{0y} = 0.5 M_{0x} = 0.653 KN.m$$

Vérification des contraintes dans le béton :

Suivant L_x:

- En travée:

$$M_{tx} = 09795 \text{ KN.m}$$

$$At = 3.14 \text{ cm}^2/\text{ml}$$
 $A' = 0$

Position de l'axe neutre : (y)

$$Y = \frac{b y^2}{2} + n As (y-d) - n As (d-y) = 0$$

On a
$$n = 15$$
 et A's = 0

$$Y = \frac{b y^2}{2} - 15 A_s (d-y) = 0$$

$$Y = 0.5 y^2 - 15 \times 3.14 (0.18 - y) 10^{-4}$$

$$Y = 0.5 y^2 - 47.1 y - 8.478.$$

$$Y_1 = \frac{-b - \sqrt{\delta}}{2a} = \frac{-4.71 - 41.44}{2} = -23.075 \text{ cm}$$

$$Y_2 = \frac{-b + \sqrt{\delta}}{2a} = \frac{-4.71 + 41.44}{2} = 3.67 \text{ cm}$$

Calcule moment d'inertie :

$$I = \frac{by^3}{3} + n A_s (d-y)^2$$

$$I = \frac{100 \times 3.67^3}{3} + 15 \times 3.14 (20-3.67)^{2}$$

$$I = 11319.62 \ cm^4$$

La contrainte dans le béton : σ_{bc}

$$\sigma_{\rm bc} = \frac{M_S \times Y}{I} = \frac{0.9795 \times 3.6710^{-2}}{11319.6210^{-8}} = 3.175 \text{ MPa}$$

$$\sigma_{\rm bc} < \bar{\sigma}_{\rm bc} = 15 \text{ MPA}...$$
 CV

Donc les armatures calculées à l'ELU convient.

$$\bar{\sigma}_{bc} = 0.6 \, f_{c28} = 15 \, MPa$$

- En appui:

Suivant L_v:

- En travée :

$$M_{ty} = 0.84195 \text{ KN}.$$

Position de l'axe neutre y :

$$y = \frac{b y^2}{2} + n A's (y-d) - n As (d-y) = 0$$

$$y = \frac{b y^2}{2} - 15 A_s (d-y) = 0$$

$$y = 50 y^2 - 15 \times 3.14 (18-y) = 0$$

$$y = 3.67 \text{ m}$$

Contrainte de béton :

$$\sigma_{\rm bc} = \frac{M_S \times Y}{I} = \frac{0.84195 \times 3.67 \times 10^{-2}}{11319.62 \times 10^{-2}} = 2.73 \text{MPa}$$

$$\bar{\sigma}_{bc} = 0.6 \text{ f}_{c28} = 15 \text{ MPA}$$

$$\sigma_{\rm bc} < \bar{\sigma}_{\rm bc}$$
 (CV).

Vérification des flèches :

<u>Arrêt des barres</u>:

Fe 400,
$$f_{c28} = 25MPa$$

$$L_s = 40\emptyset = 40 \times 1 = 40 \text{ cm}$$

$$\frac{e_p}{L_X} \ge \frac{M_{tx}}{20M_{0x}} \qquad \longleftrightarrow \qquad \frac{20}{180} = 0.11 > \frac{0.9795}{20 \times 1.306}$$

$$\frac{A_s}{b \times d} \le \frac{2}{f_e} \qquad \longleftrightarrow \qquad \frac{3.14}{100 \times 18} = 0.0017 < \frac{2}{400} = 0.005$$

$$\frac{A_S}{b \times d} \le \frac{2}{f_e}$$

$$\frac{3.14}{100 \times 18} = 0.0017 < \frac{2}{400} = 0.005$$

<u>Arrêts des barres sur appuis :</u>

$$L_1 = \max (L_s; \frac{1}{4}(0.3 + ; \frac{M_a}{M_{0x}}) Lx) = \max (40; 36cm).$$

$$L_2 = \max (L_s; \frac{L_1}{2}) = \max (40; 20cm).$$

Armatures finales:

Tableau IV.9: ferraillage de la dalle d'ascenseur

	Sens	Section d'acier calculée	Le choix	Espacement
En travée	Lx	1.6 cm ²	4T10	$\delta_{tx} = 25 \text{ cm}$
Entravec	Ly	1.6 cm ²	4T10	$\delta_{\rm tx}$ = 25 cm
En appuis	Lx et Ly	1.68 cm ²	4T10	$\delta_{\rm tx}$ = 25 cm

IV.3. L'acrotère :

IV.3.1.Introduction:

L'acrotère est un élément de sécurité qui se situé au niveau de la terrasse, il forme en quelque sorte un petit garde-corps. Il est considéré comme une console encastrée au niveau du plancher terrasse inaccessible.

Le calcul de l'acrotère ferra en flexion composée car elle est soumise à son poids propre et un surcharge horizontal du au vent.

IV.3.2. Poids propre de l'acrotère :

Charge permanente:

$$S = (0.6 \times 0.1) + (0.10 \times 0.05/2) + (0.05 \times 0.1) = 0.0675 \text{ m}^2$$

$$G = 0.0675 \times 2500 = 168.75 \text{ kg/ml}$$

- <u>La charge horizontale :</u>

$$\mathbf{Fp} = 4$$
. A .Cp. $\mathbf{W_p}$

Avec:

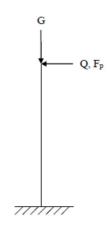
A = 0,1: coefficient d'accélération de la zone.

 $C_p = 0.8$: facteur de la force horizontale en KN.

 $W_p = 168.75 \text{ Kg/ ml.}$

 $Fp = 4 \times 0.1 \times 0.8 \times 168.75 = 54 \text{ kg/ml.}$

IV.3.3.Combinaisons d'action :


ELU:

$$Mu = 1.35 M_g + 1.5 M_q = 1.5 Mq$$

$$Mq = Q \times 1 \times h = 0.54 \times 1 \times 0.6 = 0.324 \text{ KN.m}$$

$$Mu = 1.5 \times 0.324 = 0.486 \text{ KN.m}$$

$$Nu = 1.35 G = 1.35 \times 1.6875 = 2.278 KN$$

ELS:

$$M_S = M_g + M_q = M_q = 0.324 \text{ KN.m}$$

$$Ns = G = 1.6875 \text{ KN}.$$

IV.3.4.Calcul de l'excentricité:

$$e = \frac{Mu}{Nu} = \frac{0.486}{2.278} = 0.213 \text{ m}$$

$$\frac{\text{ht}}{6} = \frac{10}{60} = 1.67 \text{ cm}$$

e $> \frac{\text{ht}}{6}$ La section est partiellement comprimée parce que le centre de pression est appliqué à l'extérieur du noyau central.

IV.3.5. Détermination du ferraillage :

ELU:

- Moment de flexion fictif:

$$M_A = M_u + N_u \left(d - \frac{ht}{2}\right) = 0.486 + 2.278 \times (0.09 - 0.05) = 0.577 \cdot 10^{-3} \text{ MN.m}$$

- Moment réduit (μ_u):

$$\mu_u \!=\! \frac{\text{MA}}{\text{b.d}^2.\text{fbc}} \!=\! \frac{0.000577}{1\!\times\!0.09^2\!\times\!14.17} \!\!=\! 5.027.10^{\text{-}3}$$

$$\mu_u < \mu_R$$

Donc il n'est pas nécessaire de prévoir des armatures comprimées (A_{sc}=0).

$$Ast = \frac{\frac{MA}{Z} - Nu}{\sigma st}$$

$$Z = d (1-0.4\alpha)$$

$$\alpha = 1.25 (1-\sqrt{1-2\mu})$$

$$= 6.26 \times 10^{-3}$$

$$Z = 0.9 (1-0.4 \times 6.26 \times 10^{-3})$$

$$= 0.0898 m$$

$$\sigma_{st} = \frac{fe}{\gamma s} = \frac{400}{1.15} = 347.83 \text{ MPa}$$

$$A_{st} = \frac{\frac{0.000577}{0.0898} - 0.002278}{347.83}$$

$$= 1.1827 \times 10^{-5} \text{ m}^2$$

$$= 0.118 \text{ cm}^2$$

$$Ast_{min} \ge 0.23 \times 0.09 \times 10^4 \times \frac{2.1}{400}$$

$$Ast_{min} \ge 1.0870 \text{ cm}^2$$

Donc : $A_{st} \ge 1.087 \text{ cm}^2$

 $A_{st} = 408 = 2.01 \text{ cm}^2$

ELS:

On doit vérifier les conditions suivantes :

$$\sigma_{bc} < \overline{\sigma_{bc}}$$

$$\sigma_{st} < \overline{\sigma_{st}}$$
Tel que : $\overline{\sigma_{bc}} = 0.6 \text{ f}_{c28} = 15 \text{ MPa}$

$$\sigma_{bc} = \frac{Ns.y}{s}$$

$$\sigma_{st} = \text{n} \cdot \frac{Ns(d-y)}{s} \qquad avec \qquad n=15$$

$$\sigma_{sc} = \text{n} \cdot \frac{Ns(d-d')}{s}$$

$$e = \frac{Ms}{Ns} = \frac{0.324}{1.6875} = 0.192 \text{ m}$$

$$\frac{ht}{6} = \frac{10}{6} = 1.67$$

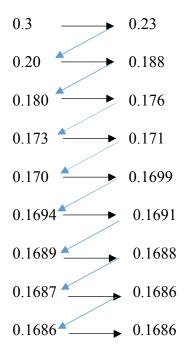
$$e > \frac{ht}{6}$$

Donc le centre de gravité ce trouve à l'extérieur de la section, et comme Nu est un effort de compression, nous pouvons déduire que la section est partiellement comprimée.

$$P = -3 \left(\frac{h}{2} - e\right)^{2} + 6 \frac{\eta \text{ Ast}}{b} \left(d - \frac{h}{2} + e\right)$$

$$= -3 \left(\frac{0.1}{2} - 0.192\right)^{2} + 6 \frac{(15 \times 2.01 \times 10^{-4})}{0.09 - 0.05 + 0.192} = -0.0563$$

$$q = -2 \left(\frac{h}{2} - e\right)^{3} - 6 \frac{\eta \text{ Ast}}{b} \left(d - \frac{h}{2} + e\right)^{2}$$


$$= -2 \left(0.05 - 0.192\right)^{3} - 6 \frac{15 \times 2.01 \times 10^{-4}}{b} \left(0.09 - 0.05 + 0.192\right) = 0.0047 \text{ m}^{2}$$

• Méthode des itérations successives :

$$e_1 = \frac{-l_1^3 - q}{p}$$
 ou $e_1 = \sqrt[3]{(-p.e_1 - q)}$

On prend une valeur :

$$e_1 = 0.3 \text{ m}$$

On prend : $e_1 = 0.1686 \text{ m}$

$$x = \frac{h}{2} + e_1 - e$$

$$x = 0.05 + 0.1685 - 0.192$$

$$x = 0.0265 m$$

$$x = 2.65 cm$$

$$S = \frac{b \cdot x^2}{2} - n \text{ Ast (d-x)}$$

$$S = \frac{1 \times 0.0265^{2}}{2} - 15 \times 2.01 \times 10^{-4} (0.09 - 0.0265)$$

$$S = 1.59.10^{-4} \text{ m}$$

Calcule des contraintes :

• Béton:

$$\sigma_{bc} = \frac{Ns.x}{S} = \frac{(1.6875 \times 10^{-3} \times 0.0268)}{1.59 \times 10^{-4}} = 0.28 \text{ MPa}$$

• Acier:

$$\sigma_{\text{st}} = \eta \quad \frac{Ns(d-x)}{S} = 15 \quad \frac{1.6875 \times 10^{-3} (0.09 - 0.0268)}{1.59 \times 10^{-4}} = 10.11 \text{MPa}$$

Contraintes admissible:

- Béton:

$$\overline{\sigma_{bc}} = 0.6 \text{ f}_{c28} = 25 \times 0.6 = 15 \text{ MPa}$$

- Acier:

Fissuration préjudiciable:

$$\overline{\sigma_{\text{st}}} = \min \left(\frac{2}{3} f_{\text{e}} ; 110 \sqrt{\eta. f_{t28}} \right)$$

$$= \min \left(\frac{2}{3} \times 400 ; 110 \sqrt{1.6 \times 2.1} \right)$$

$$= \min \left(266.67, 201.63 \right)$$

$$= 201.63 \text{ MPa}$$

- Vérification :
- Acier:

$$\sigma_{\rm st}$$
 = 10.11 MPa < $\overline{\sigma_{st}}$ = 201.63 MPa (CV)

$$\sigma_{bc} = 0.28 \text{ MPa} < \overline{\sigma_{bc}} = 15 \text{ MPa}$$
 (CV)

- Béton:

Don la section et le nombre d'armature choisie sont acceptables.

Pour les armatures de répartition :

$$A_r = \frac{Ast}{4} = \frac{2.01}{4} = 0.5025 \text{ cm}^2$$

On prend: $A_r = 406 = 1.13 cm^2$

Espacement:

$$\delta_{\text{tmax}} \leq \min (3 \text{ h}; 33 \text{cm}) = 33 \text{ cm}$$

$$\delta_{\rm t} = \frac{100}{4} = 25 {\rm cm}$$

CHAPITRE V ETUDE DYNAMIQUE

V.1. Introduction:

Un tremblement de terre est une secousse soudaine et rapide de la surface de la terre provoquée par la rupture et changement de vitesse des roches en dessous. Pendant le tremblement de terre, le mouvement de terrain se produit au hasard dans tous les sens rayement d'un point dans croute terrestre, appelée l'épicentre. Il cause des vibrations des structures et induit des forces d'inertie sur elles.

V.2 Objectif de l'étude dynamique :

L'objectif initial de l'étude dynamique d'une structure est la détermination des caractéristiques dynamiques propres de la structure lors de ses vibrations. Une telle étude pour notre structure telle qu'elle se présente, est souvent très complexe c'est pourquoi on fait souvent appel à des modélisations qui permettent de simplifier suffisamment les problèmes pour permettre l'analyse.

V.3 Modélisation de la structure :

La modélisation des éléments structuraux est effectuée comme suit :

- Les éléments en portiques (poutres –poteaux) ont été modélisés par des éléments finis de types frame à deux nœuds ayant six degrés de liberté DDL par nœud.
- Les voiles ont été modélisés par éléments coques « Shell » à quatre nœuds.
- Les planchers sont simulés par des diaphragmes rigides et le sens des poutrelles peut être automatiquement introduit.
- Les dalles sont modélisées par des éléments dalles qui négligent les efforts membranaires.

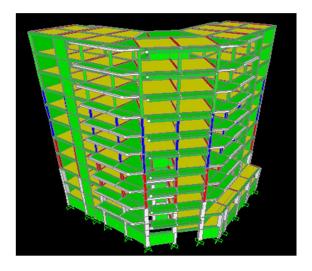


Figure V.1 : Modèle 3D de la structure.

V.4 Méthodes de calculs :

Selon le RPA 99 le calcul des forces sismiques peut être mené suivant trois méthodes :

- Méthodes statique équivalente.
- Méthode d'analyse modale spectrale.
- Méthode d'analyse dynamique par accelérogrammes

V.4.1 Méthode statique équivalente :

Dans cette méthode, le RPA propose de remplacer les forces réelles dynamiques engendrées par un séisme, par un système de forces statiques fictives dont les effets seront identiques et considérées appliquées séparément suivant les deux directions définies par les axes principaux de la structure.

V.4.2. Méthode d'analyse modale spectrale :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

V.5. Combinaison d'action :

Pour le calcul, on utilise les combinaisons d'actions aux états limites suivantes :

- ELU: 1.35 G +1.5 O
- ELS: G + Q
- ELA : $G + Q \pm 1.2 E$
- ELA : $G + Q \pm E$
- ELA : $0.8 \text{ G} \pm \text{E}$

V.6 Choix de la méthode de calcul:

Pour le choix de la méthode, on doit vérifier certaines conditions relatives aux règles parasismiques en vigueurs en Algérie (RPA 99 version 2003), et qui ont le rapport avec les régularités en plan et en élévation du bâtiment.

On va utiliser les deux méthodes ; la méthode statique équivalente et la méthode modale spectrale car toute les conditions sont vérifiées sont vérifiées, et on compare entre eux.

V.7 Analyse du modèle :

Notre structure est contreventée par une ossature portique – voile. Le choix de la position des voiles doit satisfaire un certain nombre de condition :

- Satisfaire les conditions d'architectures.
- Le nombre doit être suffisamment important pour assurer une rigidité suffisante.
- La position de ces voiles doit éviter des efforts de torsion préjudiciables pour la structure.

Plusieurs variantes ont été étudiées, parmi ces variantes on présente les quatre cas :

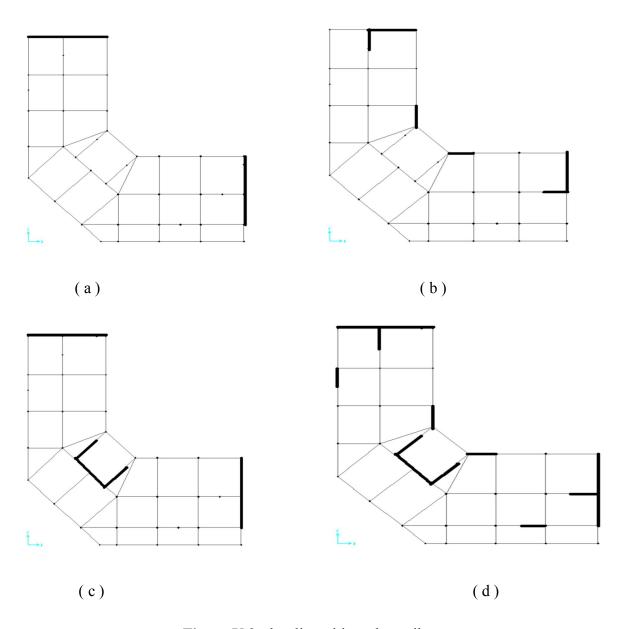


Figure V.2: les dispositions des voiles.

Le cas retenu c'est le cas (d) qui nous a donné la période la plus faible (0.93).

V.8 méthodes statique équivalente :

V.8.1 Détermination des coefficients :

La formule de la force totale à la base est donnée par le RPA 99 :

Avec:
$$V = \frac{A.D.Q.W}{R}$$

- A : coefficient d'accélération de zone.
- D: facteur d'amplification dynamique moyen.
- Q : facteur de qualité.
- R : coefficient de comportement.
- W : poids totale de la structure

$$W = G + \beta Q$$

 β : Coefficient de pondération, fonction de la nature et la durée de la charge d'exploitation, et il est donné par le tableau 4-5 du RPA 99, dans notre cas $\beta = 0.2$

- Coefficient d'accélération de zone (A) :

Groupe d'usage : Importance moyenne (2)
$$A = 0.10 \quad \text{(tableau 4-1 RPA 99)}$$
 Zone I

- Coefficient de comportement (R) :

La valeur de R est donnée par le tableau 4-1 dans le RPA 99 V 2003 en fonction du système de contreventement.

Notre structure a un système de contreventement en portique des murs voiles, ce qui implique selon le RPA 99 V 2003 que le coefficient de comportement sera égale 4.

- Facteur d'amplification dynamique moyen (D) :

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5\eta (T_2/3.0)^{\frac{2}{3}} (3.0/T)^{\frac{5}{3}} & T \ge 3.0s \end{cases}$$

 η : facteur de correction d'amortissement.

T : période fondamentale.

T₂: période caractéristique associé à la catégorie de site.

Remplissage dense donc : $\zeta = 7$

$$\eta = \sqrt{\frac{7}{2+\zeta}} = \sqrt{\frac{7}{2+7}} = 0.8819 > 0.7$$

Site 1 : rocheux : $T_2 = 0.3$ s

• Estimation empirique de la période fondamentale :

Dans notre cas, la période fondamentale correspond à la plus petite valeur obtenue par les formules 4-6 et 4-7 du RPA 99 V 2003.

T : période fondamentale de la structure donnée par la formule suivante :

 $T = C_T h_N^{3/4}$

Avec:

h_N: hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau N.

C_T : le coefficient, fonction du système de contreventement du type de remplissage est donnée par le tableau 4-6 du RPA 99/V 2003.

D : la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

On a:
$$h_N = 36.62 \text{ m}$$

$$C_T = 0.05$$

$$T_1(S_1) = 0.15 \text{ s et } T_2 = 0.3 \text{ s}$$

	sens X	sens Y
D (m)	26.66	27.4
T (s)	$\min (0.74; 0.638) = 0.638$	$\min (0.74; 0.63) = 0.63$
D (s)	1.33	1.34

- Facteur de qualité (Q) :

$$Q = 1 + \sum_{1}^{6} pq$$

p_q: valeur de pénalité.

Tableau V.1 Pénalité correspondante au critère

	Q		
	Sens X	Sens Y	
Condition minimale des files porteuses	0.05	0.05	
Redondance en plan	0.05	0.05	
Régularité en plan	0.05	0.05	
Régularité en élévation	0.05	0.05	
Contrôle de la qualité des matériaux	0	0	
Contrôle de la qualité d'exécution	0	0	

Vu que notre structure est importante, on suppose que les matériaux utilisés sont contrôlé, et il est très probable qu'il doit y avoir un contrôle de la qualité de l'exécution des travaux Qx = Qy = 1.2

V.8.2 Période et participation massique :

Tableau V.2 Périodes et pourcentage de participation massique :

Mode	Période	Ux	Uy	Type
1	0.93	0.14	0.47	Translation
2	0.89	0.46	0.11	Translation
3	0.68	0.02	0.03	Rotation
4	0.21	0.04	0.09	/
5	0.21	0.1	0.01	/
6	0.19	0	0.0	/
7	0.16	0	0	/
8	0.13	0	0	/
9	0.12	0	0	/
10	0.08	0	0	/
11	0.08	0	0	/
12	0.09	0	0	/

V.8.3 Poids total de la structure (W):

Pour le calcul de poids des différents niveaux de la structure on a le tableau suivant qui est donné par le logiciel SAP 2000 :

Tableau V.3 Poids des différents niveaux :

Niveaux	Poids (T)
Sous-sol	642.76
RDC	607.14
1	559.73
2	542.08
3	535.10
4	503.14
5	492.83
6	489.22
7	492.92
8	492.92
9	443.83

Le poids total de la structure : W = 5801.68 t

V.8.4 Détermination de l'effort tranchant :

$$V^{x} = \frac{0.3(1.33)(1.2)}{5}.5801.6 \Rightarrow V^{x} = 1851.9KN$$

$$V^{y} = \frac{0.1(1.34)(1.2)}{5}.5801.6 \Rightarrow V^{y} = 1865.82KN$$

V.8.5 Détermination de la force sismique de chaque niveau :

Les forces sismiques de chaque niveau est données par la formule (4-11 du RPA 99 V 2003) :

$$Fi = \frac{(V - Ft).W.Hi}{\sum_{1}^{n} Wj.Hj}$$

Avec : F_t est la force concentrée au sommet de la structure, F_t = 0.07×V×T

Tableau V.4 Les forces sismiques de chaque niveau pour R= 5

Niveaux	Fx (KN)	Fy (KN)
Sous-sol	26.28	26.52
RDC	61.65	62.22
1	98.84	90.66
2	119.36	120.45
3	149.78	151.15
4	169.01	170.56
5	191.07	192.82
6	213.5	215.46
7	239.21	241.41
8	263.27	265.68
9	266.13	268.57

V.8.6 Vérification du coefficient de comportement R :

D'après l'article -4.b de RPA 99 V 2003 – pour un système de contreventement de structure en portiques par des voiles en béton armé R = 5, il faut que les voiles reprennent au plus 20% des sollicitations dues aux charges verticales et la totalité des sollicitations dues aux charges horizontales. Les différentes sollicitations par logiciel SAP 2000.

• Charges verticales:

Les voile de contreventement doivent reprend au plus 20% des sollicitations dues au charge vertical.

 $P_{global} = 846251.368 \text{ KN}$

 $P_{\text{voileS}} = 186175.86 \text{ KN}$

 $\frac{P_{global}}{P_{voiles}} = 22\%$

Avec : P_{global} : l'effort normal de la structure global.

Pvoiles: l'effort normal des voiles.

• Charges horizontales:

Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant d'étage. ($V_v/V_G \le 75\%$)

	Selon X	Selon Y
$ m V_G$	1807.98	1783.07
$\mathbf{V}_{\mathbf{v}}$	1337.90	1319.48

Avec:

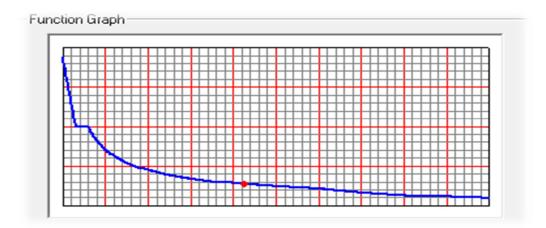
Vv : Effort tranchant reprise par le voile.

V_G: Effort tranchant par la structure global

V.9 Méthode d'analyse spectrale modale :

V.9.1 Spectre de réponse :

L'action sismique est représentée par le spectre de calcul suivant RPA 99 V2003 :


$$\frac{S_a}{g} = \begin{cases}
1,25 A \left(1 + \frac{T}{T_1} \left(2,5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2,5 \eta \left(1,25 A\right) \frac{Q}{R} & T_1 \le T \le T_2 \\
2,5 \eta \left(1,25 A\right) \frac{Q}{R} \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3,0s \\
2,5 \eta \left(1,25 A\right) \frac{Q}{R} \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 3,0s
\end{cases}$$

T : Période fondamentale de la structure.

T1, T2 : Période caractéristique associés à la catégorie de site (S1).

Sa: Accélération spectrale.

g : Accélération de la pesanteur = 9.81 m/s².

Figure V.3: spectre de réponse pour R = 5

V.10 Résultante des forces sismique de calcule :

D'après le **RPA99 V 2003** (article 4.3.6), la résultante des forces sismique à la base Vt obtenue par la combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante de la force sismique déterminée par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si Vt < 80% Vs, il faudra augmenter tous les paramètres de la réponse (forces, déplacements moments ...) dans le rapport 0,8 Vs/Vt

Après analyse, on obtient les résultats suivants :

Tableau V.5: Comparaison entre l'effort statique et dynamique

	V Dyna	mique	V statique	
	Vx(KN) Vy(KN)		Vx(KN)	Vy (KN)
L'effort tranchant à la base	1807.98	1783.07	1851.9	1865.82

L'effort tranchant à la base :

Selon X:

V dynamique = 1807.98 KN > 80% V statique = $0.8 \times 1851.9 = 1481.52 \dots \text{ CV}$

Selon Y:

V dynamique = 1783.07 KN > 80% V statique = $0.8 \times 1865.82 = 1492.66 \dots \text{ CV}$

D'après les résultats précédents on remarque que la condition :

<< V dynamique 80% V statique>> est vérifiée.

VI.1. Introduction:

Notre structure est un ensemble tridimensionnel des poteaux, poutre et voiles, liés rigidement et capables de reprendre la totalité des forces verticales et horizontales.

Pour déterminer le ferraillage de chaque élément on a utilisé le logiciel SAP2000 qui permet la détermination des différents efforts internes.

VI.2. Les poteaux :

Les poteaux sont des éléments structuraux assurant la transmission des efforts des poutres vers les fondations, et soumis à un effort normal « N » et à un moment de flexion « M ». Donc, ils sont calculés en flexion composée.

VI.2.1. Les combinaisons de calcul :

Combinaisons fondamentales selon le B.A.E.L 91

Combinaison accidentelles selon le RPA 99 v 2003

$$\begin{cases}
G+Q \pm 1,2 \text{ E}.....(ELA) \\
0,8G \pm E....(ELA)
\end{cases}$$

VI.2.2. Vérification spécifique sous sollicitations normales :

Le calcul de ferraillage doit être mené d'une vérification prescrite par le RPA 99v2003, dans le but d'éviter ou de limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme. L'effort normal de compression est limité par la condition suivante :

$$v = \frac{Nd}{Bc \times fc_{28}} \le 0.3 \dots RPA 99 \text{ v } 2003$$

Avec:

- N_d : L'effort normal de calcul s'exerçant sur une section du béton.
- B_c: L'air (la section brute) de cette dernière.
- Fc₂₈: La résistance caractéristique du béton à 28 jours.

Poteaux	N _d (KN)	b = a	Bc (cm ²)	fc28 (MPa)	ν ≤0,3	observation
P1	3,597	0,70	0,49	25	0,29	CV
P2	3,505	0,70	0,49	25	0,28	CV
Р3	3,06	0,65	0,42	25	0,28	CV
P4	2,691	0,65	0,42	25	0,25	CV
P5	2,326	0,60	0,36	25	0,25	CV
P6	1,972	0,55	0,30	25	0,26	CV
P7	1,634	0,50	0,25	25	0,26	CV
P8	1,309	0,45	0,20	25	0,25	CV
P9	0,99	0,40	0,16	25	0,24	CV
P10	0,658	0,35	0,12	25	0,21	CV
P11	0,323	0,30	0,09	25	0,14	CV

Tableau VI .1 : La vérification des poteaux sous sollicitations normales.

VI.2.3. Vérification spécifique sous sollicitations tangentes :

La contrainte de cisaillement conventionnelle de calcul dans le béton sous combinaison sismique doit être inférieure ou égale à la valeur limite suivante :

$$\tau_u \leq \tau_{bu}.$$

$$\tau_u = \frac{v}{bd}$$

- $\bullet \quad \tau_u$: La contrainte de cisaillement de calcul sous combinaison sismique.
- Vu : Effort tranchant à l'état limite ultime de la section étudiée.
- b : La largeur de la section étudiée.
- d : La hauteur utile.

$$\tau_{bu}$$
= $\rho_d \times fc_{28}$RPA 99v2003

Avec :
$$\rho_d = 0.075$$
 $\longrightarrow \lambda_g \ge 5$

$$\rho_d = 0.04 \longrightarrow \lambda_g < 5$$

$$\lambda_g = (\frac{lf}{a} ou \frac{lf}{b})......RPA 99 v2003$$

$$l_f = 0, 7 l_o$$
.

Avec a et b ; dimensions de la section droite du poteau dans la direction de déformation considérée et l_f longueur de flambement du poteau.

Tableau VI.2:	Vérification s	spécifique :	sous soll	icitation t	angentes.

Poteaux	V (KN)	$\tau_{\rm u}$	λ_g	$\rho_{ m d}$	$\tau_{ m bu}$	observation
P1	34,62	0.07	3,1	0,04	1	cv
P2	33,066	0.067	3,2	0,04	1	cv
Р3	53,03	0,1255	4,0	0,04	1	cv
P4	36,32	0.085	4,0	0,04	1	cv
P5	44,33	0.123	4,4	0,04	1	cv
P6	39,43	0,130	4,8	0,04	1	cv
P7	31,52	0,126	4,3	0,04	1	cv
P8	37,85	0.187	4,8	0,04	1	cv
P9	36,82	0,230	5,4	0,075	1,875	cv
P10	34,7	0.28	6,1	0,075	1,875	cv
P11	30,21	0,335	7,1	0,075	1,875	cv

VI.2.4. Ferraillage des poteaux :

Les poteaux sont calculés en flexion composées dans les deux plans principaux. Le calcul de la section d'armatures dépend à la fois de deux couples de moments [Mx; My] et un effort normal de compression [N].

Méthode de calcul:

Pour les combinaisons « ELU », « $0.8G \pm E$ », « $G+Q\pm E$ », on prend :

- Un effort normal de compression maximum et les couples de moment correspondant.
- Un couple de moment maximum et l'effort normal correspondant.

Les combinaisons ELU, donnent un effort normal maximum et pour « $G+Q\pm E$ » donnent les valeurs de moment maximum. On prend la plus défavorable.

Notre exemple de calcul sera un poteau qui se trouve en sous-sol (70*70), on a pris ce poteau car il est le plus sollicité.

Tableaux VI.3: Les sollicitations de poteau de l'exemple

	ELU					
Section	N max [KN]	M max [KN.m]	T max [KN.m]			
70*70	3597	72,49	34,62			

VI.2.4.1. Calcul des armatures longitudinales :

$$b = 70 \text{ cm}$$
; $d=0.9h=0.9 \times 0.7 = 0.63 \text{m}$; $d'=0.1h=0.1 \times 0.7 = 0.07 \text{ m}$

N=3597 KN;
$$M=72,49$$
 KN.m; $\sigma_{st}=348$ MPA

$$e = \frac{M}{N} = \frac{72,49}{3597} = 0,020 \text{ m}$$

$$ea = e + \frac{h}{2} - d' = 0.308m$$

Le moment fictive Ma:

$$Ma = N \times ea = 3597 \times 10^{-3} \times 0.30 = 1.079 \text{ MN.m}$$

$$N_u \times (d-d') - Ma = 3597 \times 10^{-3} \times (0, 63 - 0, 07) - 1,079 = 0,9353$$

$$(0.337-0.81\frac{d'}{d})bd^2 \sigma_{bc} = (0.337-0.81 \times \frac{0.07}{0.63}) \times 0.7 \times 0.63^2 \times 14.17 = 0.9724$$

Donc: 0,9353 < 0,9724

Nu × (d-d') – Ma
$$\leq$$
 (0,337 - 0,81 $\frac{d'}{d}$)bd² σ_{bc}

→ Section partiellement comprimé

Moment réduits :

$$\mu = \frac{\text{Ma}}{\text{d}^2.\text{b.}\sigma\text{bc}} = \frac{\text{1,079}}{\text{0,63}^2 \times \text{07} \times \text{14,17}} = 0,2740$$

→ La section est à simple armature

Section d'armature :

$$\alpha = 1,\!25(1 - \sqrt{1 - 2\mu_u}) = \!1,\!25(1 - \sqrt{1 - 2 \times 0,\!2740}) = 0.4096$$

$$Z=d(1-0, 4\alpha) = 0, 54 \times (1-0, 4 \times 0, 4096) = 0,5267$$

$$\sigma_{\text{st}} = \frac{fe}{\gamma s} = \frac{400}{1,15} = 348 \, MPa$$

$$A_{st} = \frac{1}{\sigma_{st}} \left(\frac{M_a}{Z} - N \right) = \frac{1}{348} \left(\frac{1,079}{0,5267} - 3,597 \right) = -0,003870 < 0$$

Le ferraillage est négatif, alors on va ferrailler avec le minimum du RPA99 version2003.

Armature minimales:

$$A_{min}=0.7\%$$
 (b.h) (zone I)

$$A_{min}=0.7\% \times 70 \times 70 = 34.30 \text{ cm}^2$$

Armature maximales:

• Zone courante

$$A_{max}=4\% (b.h)$$

$$A_{\text{max}} = 0.04 \times 70 \times 70 = 196 \text{ cm}^2$$

• Zone de recouvrement:

$$A_{max}=6\% (b.h)=294cm^2$$

- ➤ Le diamètre minimum est de 12 mm
- \triangleright La longueur minimale de recouvrement est de 40φ en zone I.
- ➤ La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 25 cm en zone I.
- Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).

Niveaux	a =b	Amin	Amax (Zone	Amax (zone de	A	Ferraillage
		(cm²)	courante)	recouvrement)	calculé	longitudinale
			(cm²)	(cm²)	(cm²)	choix
Sous-sol	0.70	34,30	196	294	-44,45	12T20
RDC	0,70	34,30	196	294	-42,97	12T20
Etage 1	0,65	29,58	169	253.5	-35,67	10T20
Etage 2	0,65	29,58	169	253.5	-32,23	10T20
Etage 3	0,60	25,20	144	216	-26,81	14T16
Etage 4	0,55	21,18	121	181.5	-22,43	12T16
Etage 5	0,50	17,50	100	150	-17,14	12T14
Etage 6	0,45	14,18	81	121.5	-12,28	10T14
Etage 7	0,40	11,20	64	96	-7,38	10T12
Etage 8	0,35	8,58	49	73.5	-1,32	8T12
Etage 9	0,30	6,30	36	54	3,46	6T12

Tableau VI.4: Ferraillage longitudinale des poteaux

VI.2.4.2. Calcul des armatures transversales :

D'après le RPA99 v2003 :

$A_{t}_{\rho}\times Tmax$

- t h1×fe
 - T max: L'effort tranchant de calcul.
 - h1 : la hauteur totale de la section brute.
 - fe : La contrainte limite élastique de l'acier d'armature transversale ; fe=235 MPa.
 - ρ: Coefficient connecteur.

 ρ =2,5 si l'élancement géométrique $\lambda_g \geq 5$

 $\rho = 3,75$ si l'élancement géométrique $\lambda_g \le 5$

Les armatures transversales des poteaux sont calculées à l'aide de la formule suivante :

$$\varphi t \le \min\left(\frac{h}{35}; \frac{b}{10}; \varphi l\right)...$$
 [BAEL91]

• Φ l : Le diamètre minimal des armatures longitudinales du poteau.

 $\varphi t \le \min(2; 7; 1.2)$ on adopte $\varphi 8$

Calcul de l'espacement

Zone nodale : (zone I)

Zone courante : (zone I)

 $t' \le \min 15\varphi l$ \longrightarrow $t' \le 18 \text{ cm}$ \longrightarrow t' = 15 cm

Recouvrement:

D'après le RPA99 V2003:

La longueur minimale de recouvrement est de 40ϕ (zoneI).

$$Φ= 2 cm$$
 $Lr= 2×40= 80 cm$ $Lr= 80 cm$ $Φ=1, 6 cm$ $Lr=1, 6×40=64 cm$ $Lr=65 cm$ $Φ=1, 4 cm$ $Lr=1, 4×40=56 cm$ $Lr=60 cm$ $Lr=1, 2×40=48 cm$ $Lr=50 cm$

La longueur de la zone nodale :

 $h' = max (h_e/6; b_1; h_1; 60 cm)$ selon le RPA99v2003 $\rightarrow h' = 70 cm$.

Tableau VI.5: ferraillage transversale des poteaux

Etage	h (cm)	T _{max} (KN)	λ_g	ρ	t	ť'	A _t (cm ²)	Choix
S-sol	0.70	34.62	3.1	3.75	10	15	0.789	φ8
RDC	0,70	33,066	3,2	3,75	10	15	0,754	φ8
1	0,65	53,03	4,0	3,75	10	15	1,302	φ8
2	0,65	36,32	4,0	3,75	10	15	0,892	φ8
3	0,60	44,33	4,4	3,75	10	15	1,179	φ8
4	0,55	39,43	4,8	3,75	10	15	1,144	φ8
5	0,50	31,52	4,3	3.75	10	15	1,006	φ8
6	0,45	37,85	4,8	3.75	10	15	1,342	φ8
7	0,40	36,82	5,4	2,5	10	15	0,979	φ8
8	0,35	34,7	6,1	2,5	10	15	1,055	φ8
9	0,30	30,21	7,1	2,5	10	15	1,071	φ8

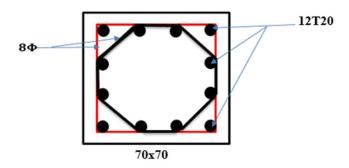


Figure VI .2 : Ferraillage de poteau de sous-sol

VI.3. Les poutres :

Les poutres sont des éléments horizontaux qui ont le rôle de transmettre les charges apportée par les dalles aux poteaux.

Le calcul des poutres se fait en flexion simple en considérant les combinaisons d'action suivantes :

Les travées et les appuis des poutres sont sollicitées défavorablement sous :

• Combinaison fondamentales : **BAEL 91** : 1,35G+1,5Q

• Combinaison accidentelles : **RPA 99v2003** : $G+Q\pm E$

 $0.8G \pm E$

VI.3.1. Ferraillage des poutres principales :

On va prendre comme un exemple de calcul « poutre principale au niveau de parking »

Tableau VI .6 : Sollicitations de la poutre principale

	E	LU	ELS		
	Mt (MN)	Ma (MN)	Mt (MN)	Ma (MN)	
30*40 cm ²	0.0857	0.174	0.0612	0.113	
V(MN)	0.2067		0.1247		

V.3.1.1. Ferraillage longitudinale:

En travée :

• ELU

 $M_u = 85.7 \times 10^{-3} \text{ MN.m}$

$$\mu_u = \frac{M u}{b.d^2.\sigma bc}$$

$$\mu_u = \frac{0.0857}{0.3 \times (0.9 \times 0.4)^2 \times 14.17} = 0.16 \le 0.392$$

La section est à simple armature.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_u})$$
 $\alpha = 1,25(1 - \sqrt{1 - 2 \times 0,145}) = 0,21$

Z=d (1-0,
$$4\alpha$$
) \longrightarrow Z=d (1-0, $4\times 0,197$) =0,33 m

$$A_{st} = \frac{Mu}{Z \cdot \sigma st}$$
 \longrightarrow $A_{st} = \frac{0.0857}{0.33 \times 348}$ $A_{st} = 7.48 \text{ cm}^2$

Ferraillage choisi est de 3T20 de section 9.42 cm²

Condition de non fragilité :

$$A_{st} \ge max \left(\frac{b \times h}{1000} ; 0,23 \times b \times d \times \frac{ft_{28}}{400} \right) cm^2$$

$$A_{st} \ge max \left(\frac{30 \times 40}{1000}; 0,23 \times 30 \times 36 \times \frac{2,1}{400}\right) cm^2$$

$$A_{st} \ge max (1,2;1,45) cm^2$$

 $A_{st} \ge 1,45 \text{cm}^2$ la section est vérifiée.

• ELS

$$\alpha \le \frac{\gamma - 1}{2} + \frac{\text{fc28}}{100}$$

$$\gamma = \frac{Mu}{Ms} = \frac{85.7}{61.21} = 1.4$$
 ; $\alpha_{\text{trav\'e}} = 0.21$

$$\alpha \le \frac{1,415-1}{2} + \frac{25}{100} \longrightarrow \alpha \le 0,45$$

 α Travée $< \alpha$ donc la condition est vérifiées.

Alors les contraintes de béton σ_{bc} et σ_{st} sont vérifiées :

$$\sigma_{bc} < \overline{\sigma}_{bc}$$
 $\overline{\sigma}_{bc} = 0$, 6 fc28= 15 MPa

$$\sigma_{\rm st} \le (\frac{2}{3}fe; 110\sqrt{nft28}) = 201,63 \text{ MPa}$$

Donc le ferraillage calculé à l'ELU convient à l'ELS.

Armature maximales:

Selon le RPA99V2003:

A
$$_{max}=4\%$$
 (b*h) = $48cm^2$zone courante

A $_{max}=6\%$ (b*h) =72cm²....zone de recouvrement

Armature minimales:

Selon le RPA v2003 :
$$A_{min}$$
=0,5% (b×h) \longrightarrow A_{min} =6 cm²

$$A_{\text{st trav\'ee}} = 9.42 \text{cm}^2 > 6 \text{cm}^2 \dots \text{cv}$$

En appuis:

$$\mu_u = \frac{ELU}{b.d^2.\sigma bc} \longrightarrow \mu_u = \frac{0.174}{0.3 \times (0.9 \times 0.4)^2 \times 14.17} = 0.32 \le 0.392$$

La section est à simple armature.

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{\rm u}}) = 0.49$$

$$Z=d(1-0, 4\alpha) = 0.29m$$

$$A_{st} = \frac{Mu}{Z \cdot \sigma st}$$
 \longrightarrow $A_{st} = \frac{0.174}{0.29 \times 348}$ \longrightarrow $A_{st} = 17.29$ cm²

Donc A_{st} choisie = 6 T20 de section 18.84 cm²

Condition de non fragilité :

$$A_{st} \ge max \left(\frac{b \times h}{1000}; 0.23 \times b \times d \times \frac{ft_{28}}{400}\right) cm^2$$

 $A_{st} \ge max (1,2;1,45) cm^2$

 $A_{st} \ge 1,45 \text{cm}^2 \text{la section est vérifiée.}$

• ELS

$$\alpha \le \frac{\gamma - 1}{2} + \frac{\text{fc28}}{100}$$

$$\gamma = \frac{Mu}{Ms} = \frac{0.174}{0.113} = 1,53$$
 ; $\alpha_{\text{appui}} = 0,49$

$$\alpha \leq \frac{\gamma - 1}{2} + \frac{25}{100} \longrightarrow \alpha \leq 0.51$$

 $\alpha_{\text{appui}} < \alpha$ donc la condition est vérifiées.

Alors les contraintes de béton σ_{bc} et σ_{st} sont vérifiées :

$$\sigma_{bc} < \overline{\sigma}_{bc}$$
 $\overline{\sigma}_{bc} = 0.6$ fc28= 15 MPa

$$\sigma_{\rm st} \le (\frac{2}{3}fe; 110\sqrt{nft28}) = 201,63 \text{ MPa}$$

Donc le ferraillage calculé à l'ELU convient à l'ELS.

Armature minimales:

Selon le RPA v2003 :
$$A_{min}=0.5\%$$
 (b×h) \longrightarrow $A_{min}=6$ cm²

$$A_{\text{st appuis}} = 18.84 \text{ cm}^2 > 6\text{cm}^2....\text{cv}$$

Armature maximales:

Selon le RPA99V2003:

A
$$_{max}=4\%$$
 (b*h) = $48cm^2$zone courante

A
$$_{max}$$
=6% (b*h) =72cm².....zone de recouvrement

V.3.1.2. Ferraillage transversale:

Espacement entre les armatures : (Selon le RPA)

Zone nodale:

$$\operatorname{St} \leq \left(\frac{h}{4}; 12\varphi l; 30 \ cm\right)$$

$$St \le \left(\frac{40}{4}; 12 \times 1, 2; 30 \ cm\right)$$

$$St \le (10; 14,4; 30 cm)$$
 On choisit $St=10 cm$

Zone courant:

$$S't \le \frac{h}{2} = \frac{40}{2} = >S'_t \le 20 \text{ cm} = > \text{On choisit S't=15cm}$$

Diamètre des armatures transversales :

$$\phi t \le \min(\frac{h}{35}; \phi \min, \frac{b}{10}). => \phi t \le \min(\frac{40}{35}; 1, 2, \frac{30}{10}).$$

On prend $\varphi t = \varphi 8$ la longueur minimale de recouvrement est de 40φ (aone I).... RPA99

$$\varphi$$
= 2 cm L_f = 2×40=80 cm, alors on adopte L_r = 80 cm

$$\varphi$$
=1,6 cm \rightarrow L_f=1,6×40=64 cm, alors on adopte L_r=65 cm

$$\varphi$$
=1,4 cm \longrightarrow L_f=1,4×40= 56 cm, alors on adopte L_r= 60 cm

$$\varphi$$
=1,2 cm \bot L_f=1,2×40= 48 cm, alors on adopte L_r= 50 cm

La jonction par recouvrement doit être faite si possible à l'extérieur des zones nodales (zone critique).

Les longueurs à prendre en considération pour chaque barre sont :

l'=2*h=80 cm.... RPA99

Tableau VI. 6: Récapitulatif des résultats de ferraillage des poutres principales

		Ferraillage longitudinal				Ferraillage transvers		
			Ast (cm ²)	As .		Ф(т	S _t (cm)	S' _t (cm)
		Mmax	Ast (cm)	As min	choix	m)		
parking	en travée	85.73	7,48	6,00	3T20			
parking	en appui	174.51	17,29	6,00	6T20	φ8	10	15
RDC	en travée	61.91	5,25	6,00	3T16			
RDC	en appui	127.98	11,69	6,00	6T16	φ8	10	15
De 1 à 3	en travée	61.72	5,24	6,00	3T16			
	en appui	119.24	10,83	6,00	6T16	φ8	10	15
De 4 à 8	en travée	83.71	7,28	6,00	3T20			
	en appui	166.74	16,25	6,00	6T20	φ8	10	15
9	en travée	108	9,69	6,00	5T16			
	en appui	163.02	15,88	6,00	8T16	φ8	10	15

VI.3.2. Ferraillage des poutres secondaires :

On va prendre comme un exemple de calcul « poutre secondaire au niveau de Parking

Tableau VI.7 : Sollicitations de la poutre secondaire

	ELU				
	Mt (KN)	Ma (KN)			
30*35 cm ²	16.36	33.23			
V (KN)	39.66				

VI.3.2.1. Ferraillage longitudinale:

En travée:

$$\mu_{u} \!\!=\!\! \frac{\underline{ELU}}{\underline{h.d^{2}.\sigma bc}} \quad \longrightarrow \quad \mu_{u} \!\!=\!\! \frac{0.01636}{0.3\times(0.9\times0.35)^{2}\!\times\!14.17} =\! 0.038 \leq 0.392$$

La section est à simple armature.

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_u})$$
 $\alpha = 1,25(1 - \sqrt{1 - 2 \times 0.04}) = 0,048$

Z=d (1-0, 4
$$\alpha$$
) Z=d (1-0, 4 \times 0,05) =0,31m
 $A_{st} = \frac{Mu}{z \cdot \sigma st}$ $A_{st} = \frac{0,01636}{0,31\times348} = 1,51 \text{ cm}^2$

Ferraillage choisi est de 3T12 de section 4,59 cm²

Condition de non fragilité :

$$A_{st} \ge max \left(\frac{b \times h}{1000} \text{ ; 0,23} \times b \times d \times \frac{ft_{28}}{400}\right) cm^2$$

$$A_{st} \ge max \left(\frac{30 \times 35}{1000}; 0,23 \times 30 \times 31,5 \times \frac{2,1}{400}\right) cm^2$$

A_{st}≥max (1,05; 1,14) cm²

 $A_{st} \ge 1,14$ cm² \longrightarrow la section est vérifiée.

• <u>ELS</u>

$$\alpha \le \frac{\gamma - 1}{2} + \frac{\text{fc28}}{100}$$

$$\gamma = \frac{Mu}{Ms} = \frac{16,36}{12,11} = 1,351$$
 ; $\alpha_{\text{trav\'ee}} = 0,048$

$$\alpha \le \frac{1,351-1}{2} + \frac{25}{100} \longrightarrow \alpha \le 0,425$$

 $\alpha_{\text{Trav\'ee}} < \alpha$ donc la condition est vérifiées.

Alors les contraintes de béton σ_{bc} et σ_{st} sont vérifiées :

$$\sigma_{\rm bc} < \bar{\sigma}_{\rm bc} \bar{\sigma}_{\rm bc} = 0$$
, 6 fc28= 15 MPa

$$\sigma_{\rm st} \le (\frac{2}{3}fe; 110\sqrt{nft28}) = 201,63 \text{ MPa}$$

Donc le ferraillage calculé à l'ELU convient à l'ELS.

Armature maximales:

Selon le RPA99V2003:

A
$$_{max}=4\%$$
 (b*h) = 42cm²....zone courante

A
$$_{max}=6\%$$
 (b*h) =63cm²....zone de recouvrement

Armature minimales:

Selon le RPA v2003 :
$$A_{min}=0.5\%$$
 (b×h) \longrightarrow $A_{min}=5.25$ cm²

A st travée =
$$3T16 (6,03 \text{ cm}^2) > 5,25\text{cm}^2...\text{cv}$$

En appuis:

• <u>ELU</u>

La section est à simple armature.

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{\rm u}}) = 0.10$$

Z=d (1-0, 4
$$\alpha$$
) = 0,31m
 $A_{st} = \frac{Mu}{Z \cdot \sigma st} \longrightarrow A_{st} = \frac{0,01627}{0,31 \times 348} = 2,75 \text{ cm}^2$

Donc A_{st} choisie 3T12 de section 4,59cm²

Condition de non fragilité :

$$A_{st}{\ge}max\,(\frac{b{\times}h}{1000}$$
 ; 0,23b. d. $\frac{ft_{28}}{400})~cm^2$

$$A_{st} \ge max (1,05;1,14) cm^2$$

A_{st}≥ 1,14cm²la section est vérifiée.

• <u>ELS</u>

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc28}{100}$$

$$\gamma = \frac{Mu}{Ms} = \frac{33,23}{24,60} = 1,35$$
 ; $\alpha_{\text{trav\'ee}} = 0,10$

 $\alpha_{\text{Trav\'ee}} < \alpha = 0.10 < 0.42$ donc la condition est vérifiées.

Alors les contraintes de béton σ_{bc} et σ_{st} sont vérifiées :

$$\sigma_{bc} < \overline{\sigma}_{bc}$$
 $\overline{\sigma}_{bc} = 0$, 6 fc28= 15 MPa

$$\sigma_{\rm st} \le (\frac{2}{3} fe; 110 \sqrt{nft28}) = 201,63 \text{ MPa}$$

Donc le ferraillage calculé à l'ELU convient à l'ELS.

Armature minimales:

Selon le RPA v2003 : A_{min} =0,5% (b×h) \longrightarrow A_{min} =5,25 cm²

A st appuis =
$$6.03 \text{ cm}^2 > 5.25 \text{ cm}^2 \dots \text{cv}$$

Armature maximales:

Selon le RPA99V2003:

A
$$_{max}$$
=4% (b*h) = 42cm²....zone courante

A
$$_{max}$$
=6% (b*h) =63cm².....zone de recouvrement

V.3.2.2. Ferraillage transversale:

Espacement entre les armatures : (Selon le RPA)

Zone nodale:

$$St \le min\left(\frac{h}{4}; 12\phi l; 30 \text{ cm}\right)$$

St
$$\leq \min\left(\frac{35}{4}; 12 \times 1,2; 30 \text{ cm}\right)$$

 $St \le min(8,75; 14,4; 30 cm)$

On choisit St = 7 cm

Zone courant:

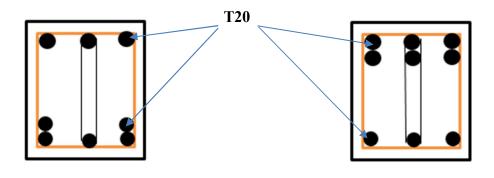
$$S't \le \frac{h}{2} = \frac{35}{2}$$

S't \leq 17,5 cm

On choisit s't=15cm

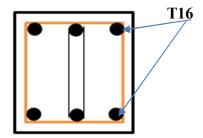
Diamètre des armatures transversales :

$$\phi t \leq min(\frac{h}{35};\phi min,\frac{b}{10}).$$


$$\phi t \le \min(\frac{35}{35}; 1, 2, \frac{30}{10}).$$

On prend $\varphi t = \varphi 8$

Récapitulatif


Tableau VI.8: Récapitulatif des résultats de ferraillage de la poutre secondaire

		Ferraillage longitudinal				Ferraillage transversal		
		M _{max}	A _{st} (cm ²)	As min	choix	Ф(mm)	S _t (cm)	S' _t (cm)
parking	en travée	0,0160	1,30	5,25	3T16			
	en appui	0,0330	2,75	5,25	3T16	φ8	7	15
RDC	en travée	0,0158	1,29	5,25	3T16			
	en appui	0,0290	2,40	5,25	3T16	φ8	7	15
B 13.0	en travée	0,0077	0,62	5,25	3T16			
De 1 à 3	en appui	0,0780	6,94	5,25	4T16	φ8	7	15
D 43.0	en travée	0,0014	0,11	5,25	3T16			
De 4 à 8	en appui	0,0710	6,25	5,25	4T16	φ8	7	15
	en travée	0.0071	0.57	5.25	3T16			
9	en appui	0,0740	6,54	5,25	4T16	φ8	7	15

En travée En appuis

Figure VI.2: Ferraillage des poutres principales

En travée et en appuis

Figure VI.3: Ferraillage des poutres secondaire

VI.4. Les voiles :

VI.4.1. Introduction:

Le voile est un élément important de la structure, destiné spécialement pour le contreventement des bâtiments comme il peut jouer le rôle de mur de soutènement. Il se calcul comme un poteau (élément vertical) en flexion composée. Leur ferraillages sont composés d'armature verticales et d'armatures horizontales.

Selon le RPA99V2003 les combinaisons à considérer sont les suivants :

- 1.35G+1.5Q (ELU)
- G+Q (ELS)
- G+Q <u>+</u>E

VI.4.2. Vérification des contraintes de tangentielles :

Il faut vérifier les conditions suivantes :

$$\tau_b = T/b.d \le \bar{\tau}_b = 0.2 f_{c28}$$

$$\tau_b = T/b.d \le 0.06 f_{c28}$$

Tableaux VI.9: Vérification de la contrainte

voile	V _{max} (KN)	τ _b (MPa)	$\overline{\tau}_{\rm b}=0,2f_{\rm c28}$	0,06 f _{c28}	observation
1	11.87	0.022	5	1.5	CV
2	0.39	0	5	1.5	CV
3	6.07	0.011	5	1.5	CV
4	27.4	0.05	5	1.5	CV
5	0.38	0	5	1.5	CV
6	35.52	0.064	5	1.5	CV
7	7.87	0.014	5	1.5	CV

VI.4.3. Calcul des voiles :

Pour le ferraillage des voiles, il faut satisfaire certaines conditions imposées par le RPA99.

- Pourcentage minimum d'armatures verticales et horizontales :
 - ➤ Globalement dans la section des voiles 0,15%
 - ➤ En zone courante 0,10%
- L'espacement des barres horizontale et verticales : S < min (15a;30)

VI.4.2.1. Détermination du ferraillage : (méthode des contraintes)

Le calcul se fait à la flexion composée d'une bande de section (0,2m*1ml) de la même manière que les poteaux. Et on prend comme un exemple de calcul le voile le plus sollicité.

$$\begin{split} &\sigma_{12} = \frac{N}{A} \pm \frac{M.V}{I} \\ &A = 1.352 \text{ m}^2 \\ &y_G = 0.2 \text{ m} \\ &I = 0.041 \text{ m}^4 \\ &\sigma_1 = \frac{-1402.96}{1.352} + \frac{13.02*0.2}{0.041} &\sigma_1 = -1101.2 \text{ MPa} < 0 \\ &\sigma_2 = \frac{-1402.96}{1.352} + \frac{13.02*0.2}{0.041} &\sigma_2 = -974.18 \text{ MPa} < 0 \end{split}$$

Tableau VI.10 : Sollicitation de voile plus sollicité.

voiles	N [KN]	M1 (KN.m)	T(KN)
1	1402.46	13.09	11.83

La section est entièrement comprimée donc on ferraille par la section minimale.

Ferraillage verticale:

Amin= 0,20% (h*b) (Article 7.7.4.3 du RPA)

Amin=0.002*(20*100)=4 cm².

Ferraillage horizontale:

 $A_{\text{st horizontale}} = A_{\text{st verticale}} / 4$

Amin= 0,20% (h*b) (Article 7.7.4.3 du RPA)

Amin= 0,0020*(20*100)=4 cm²

Espacement:

D'après le RPA99V2003, on a :

Espacement vertical : $S \le min (1,5e; 30cm; 15 cm) S=15 cm$

Espacement horizontal : $S \le min (1.5e; 30cm) S=20 cm$

VII.1. Introduction:

Les fondations sont des ouvrages qui servent de transmettre au sol support les charges qui proviennent de la superstructure à savoir : le poids propre ou charge permanent ; les surcharges d'exploitation ; les charges climatiques et sismiques.

Cette transmission peut être directement (cas des semelles reposant sur le sol comme le cas des radiers) ou être assuré par l'intermédiaire d'autre organes (cas des semelles sur pieux), c'est la raison pour laquelle il faudra que l'infrastructure doit constituer reste stable.

VII.2. Choix du type de fondation :

Le choix du type de fondation dépend du :

- Type d'ouvrage construire.
- La nature et l'homogénéité du bon sol.
- La capacité portance de terrain de fondation.
- La charge totale transmise au sol.
- La raison économique.
- La facilité de réalisation.

Avec un taux de travail admissible du sol d'assise qui est égale à 4 bars mais un important effort normal, il y a lieu de projeter à priori, des fondations superficielles de type :

- Semelles isolés sous poteau.
- Semelles filantes.
- Radier évidé ou général.

Tout d'abord on propose des semelles isolées sous poteaux et des semelles filantes sous voiles,

VII.3. Les surfaces nécessaires des semelles :

La surface de la semelle est donnée par :

S semelle
$$\geq \frac{Ns}{\overline{\sigma}sol}$$

Avec $N_s: N_G+N_O$

$$\bar{\sigma}_{sol} = 0.4 \text{ MPa}$$

Les surfaces des semelles isolées revenant à chaque poteau sont données par le tableau suivant :

semelle	P(MN)	M(MN.m)	a(m)	a choix	S (m ²)
1	2,4	0,0	2,4	2,5	6,3
2	2,6	0,0	2,5	2,6	6,8
5	2,4	0,0	2,4	2,5	6,3
6	2,1	0,0	2,3	2,5	6.3
7	2,6	0,1	2,6	2,6	6,8
8	2,4	0,0	2,4	2,5	6,3

Tableau VII.1 : Les différentes surfaces des semelles sous poteaux

Alors, on voit bien que les dimensions des semelles ne provoquent pas un chevauchement, ceci nous amène à proposer :

- Des semelles isolées sous poteaux.
- Des semelles filantes sous voiles.

VII.4. Calcule de la semelle isolée :

On va prendre comme exemple de calcul une semelle isolée sous poteaux qui est la plus sollicitée :

ELS: $N_S = 2614, 66 \text{ KN}$; $M_S = 50, 54 \text{ KN.m}$

ELU: Nu = 3597, 25 KN; Mu = 72,49 KN.m

VII.4.1. Pré-dimensionnement :


$$e = \frac{Ms}{Ns} = \frac{50,54}{2614,66} = 1,93 \text{ cm}.$$

On considère une semelle rectangulaire [A*B] située sous un Poteau carré :

$$\frac{A}{B} = \frac{a}{b}$$
 $\frac{A}{B} = 1$ A=B

$$\sigma = (1 + \frac{3e0}{B}) \frac{Ns}{A.B} \le \bar{\sigma}_{\text{SOL}}$$

$$\sigma = (1 + \frac{3 \times 0.0193}{B}) \frac{2614,66}{A.B} \le 400 \text{MPa}$$

On prend A=B= 2.60m

VII.4.2. Vérification des conditions de stabilité :

D'prés le B.A.E.L 91, on a :

$$e = 0.0193 \le \frac{A}{6} = \frac{2.6}{6} = 0.43...$$
cv

D'prés le R.P.A99V2003, on a :

$$e = 0.0079 \le \frac{A}{6} = \frac{2.6}{4} = 0.65...$$
cv

VII.4.3. Vérification des conditions de rigidité :

$$d \ge \max\left(\frac{A-a}{4}; \frac{B-b}{4}\right) = 60 \text{ cm}$$

On prend; d = 50 cm $\rightarrow h = d + 5 = 65 \text{cm}$

$$\sigma_{\rm M} = (1 + \frac{6e}{B}) \frac{Ns}{A.B} = 386,78 \text{ KN/m}^2$$

$$\sigma_{\rm m} = (1 - \frac{6e}{B}) \frac{Ns}{A.B} = 369,54 \text{ KN/m}^2$$

$$\sigma_{\text{moy}} = \frac{3\sigma M + \sigma m}{4} = 382,47 \text{ KN/m}^2 \rightarrow \sigma_{\text{moy}} = 382,40 \le 400 \text{ KN/m}^2$$

VII.4.4. calcul du ferraillage:

$$e = 0.0193 \le \frac{B}{6} = \frac{2.6}{6} = 0.43$$

$$e = 0.0193 \le \frac{B}{18} = \frac{2.6}{18} = 0.14$$

Le ferraillage se calcul avec la méthode de bielles, car on va prendre comme étant la contrainte uniforme tous au long de la semelle, on utilise :

$$N'_u = (1 + \frac{3e}{B}) N_u = 3677,39 \text{ KN}$$

Ast=
$$\frac{\text{N'u (A-a)}}{8.d.\sigma\text{st}}$$
 = 34.52 cm²

On choisit: 14T20 de section 41,82 cm²

$$N's = (1+3e/B) Ns = 2672,91 KN$$

Ast =
$$(N's (A-a))/(8.d.\sigma st) = 52,44 \text{ cm}^2$$

On choisit: 17T20 de section 52,44 cm²

Espacement:

$$e \ge max (6\varphi + 6cm ; 15cm) = 15cm \rightarrow e = 15 cm$$

Tableau : Récapitulatif des résultats des semelles isolées

semelle	a choix	N _s	Nu	A _{st} elu	A _{st} els	Ast choisie
1	2,5	2,5	3,45	37,66	44,75	14 T20
2	2,6	2,7	3,67	40,18245	51,24	16T20

VI.4.5. Vérification au poinçonnement :

D'après le B.A.E.L 91, la condition de non poinçonnement est vérifier si :

$$Nu \le \overline{Nu} = 0.045.P_{c.}h.f_{c28}/\gamma_{b}$$

Avec : h=0.65m; P_c: le périmètre utile.

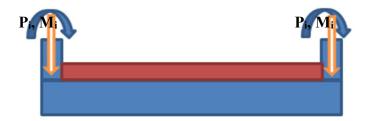
$$P_c = [(a + h + b + h) * 2] = [(a + h)*4] = 5,4m$$

 $N_u = N_{u0}$. (1- $\frac{s_0}{s_f}$) et N_{u0} : Effort maximal tire à partir du fichier SAP2000.

$$N_{u0}=3597,25 \text{ KN}$$

$$S_0 = (a+h) (b+h) = 1.8225 \text{ m}^2$$

$$St=A*B=5.82 \text{ m}^2$$


$$Nu = 2,47 \text{ MN} \le 2.63 \text{ MN}....\text{cv}$$

VI.5. Calcul de la semelle filante sous mur voile et poteaux :

VI.5.1. Pré-dimensionnement :

VI.5.1.1. calcul de la résultante :

On va prendre comme exemple de calcul une semelle filante centrale sous mur voile et poteau

		Ns [KN]	Ms KN
Poteaux	1	150.19	0.43
	2	150.19	0.43
voile	1	353.77	0.34

Tableau VII.3: Récapitulatif des efforts internes M et N

$$R = \sum Ni = 150,19 + 150,19 + 353,77*4,79 + 0,43 + 0,43 + 0,34 = 1977 \text{ KN}$$

VI.5.1.2. calcul de l'excentricité :

$$\sum M_0 = 0 = X = \frac{\sum Ni}{R} *xi$$

$$X = \frac{4734}{1977} = 2,394$$
m

$$e = \frac{L}{2} - x = \frac{4,80}{2} - 2,394$$

e= 0.006 m $< \frac{L}{6}$ = 0,8m => Alors la réparation est linéaire.

$$\mathrm{B} \geq (1 + \frac{3e}{L})^* \frac{R}{L*\overline{\sigma}sol} = (1 + \frac{3*0.006}{4,80})^* \frac{4,73}{4,80*0.4}$$

 $B \ge 1.029 = > on prend B=1.1m$

$$d \ge \frac{B-b}{4} = 0.1 =$$
 on prend d=0.3m

$$ht = \frac{L}{9} = 0.6$$

VI.5.1.4. Calcul du ferraillage:

$$\sigma_{\rm M} = \frac{R}{BL} \left(1 + \frac{6e}{L} \right) = 374,22 \text{KN/m}^3$$

$$\sigma_{\rm m} = \frac{R}{BL} \left(1 - \frac{6e}{L} \right) = 347,44 \text{KN/m}^3$$

$$\sigma_{\text{moy}} = \frac{3\sigma M + \sigma m}{4} = KN/m^3$$
 $\sigma_{\text{moy}} = 347 \text{ KN/m}^3 \le \sigma_{\text{sol}} = 400 \text{ KN/m}^3$

Le calcul du ferraillage se calcule comme étant une poutre en T renversé :

B=1.1m; b=0.7m; h₀=0.50m; h=0.6m; d=0,9.h=0.54m;
$$\sigma_{st}$$
=348 MPa; σ_{bc} =14.17MPa

ELU

En travée:

$$M_{\text{ut max}} = 0.42 \text{ MN.m}$$

Moment qui équilibre la table :

$$M_t = b.h_0. \ \sigma_{bc} \ (d-h_0/2)$$

$$M_t=1$$
, 1×0, 5×14, 17 ×(0,54- $\frac{0.5}{2}$) = 2,26 KN.m

Mut > Mt Le calcul du ferraillage se fait comme une section en T renversée

$$\mu = \frac{\text{M max}}{d^2.b_0.\sigma bc} = \frac{0.42}{0.54^2 \times 0.7 \times 14.17} = 0.14 \text{ MN.m}$$

 μ < 0,392 \longrightarrow les armatures comprimés ne sont pas nécessaire

$$A_{st} = \frac{Mu}{z \cdot \sigma bc} \qquad \text{avec}$$

$$A_{st} = \frac{Mu}{Z \cdot \sigma bc} \qquad \text{avec} \qquad \begin{cases} \alpha = 1,25(1 - \sqrt{1 - 2\mu_u}) = 0,19 \\ Z = d(1-0, 4\alpha) = 0,49 \end{cases}$$

$$A_{st} = \frac{0.42}{0.606 \times 348} = 24,45 \text{ cm}^2$$

Choix :
$$A_{st}$$
= 8T20 = 25,12 cm²

VI.5.1.5. Calcul des armatures transversales :

On prend un diamètre des armatures transversales : $\varphi t = \varphi 10 \text{ mm}$

Le choix de la section d'un seul corps transversal sera : At= 6T12= 6,78cm²

Condition de non fragilité : [B.A.E.L91]

$$\mathrm{A_{st}} \geq 0.23 \; \mathrm{b.d.} f_{t28}/fe$$

En appuis:

$$M_{uap} = 0,2115 \text{ MN.m}$$

$$M_t = 2,26 \text{ MN.m}$$

M_u>M_t Le calcul du ferraillage se fait comme une section en T renversée

$$\mu = \frac{\text{M max}}{d^2.b.\sigma bc} = \frac{0.2115}{0.54^2 \times 1.1 \times 14.17} = 0.046$$

u<0,392 → les armatures comprimés ne sont pas nécessaire

$$A_{st} = \frac{Mu}{z \cdot \sigma bc} \qquad \text{avec} \qquad \begin{cases} \alpha = 1,25(1 - \sqrt{1 - 2\mu_u}) = 0.059 \\ Z = d(1 - 0, 4\alpha) = 0,527 \end{cases}$$

$$A_{st} = \frac{0.2115}{0.527 \times 348} = 11,53 \text{ cm}^2$$

Choix : A_{st} = 8T14 = 12,24 cm²

Condition de non fragilité : [B.A.E.L91]

$$A_{st} \ge 0.23 \text{ b.d.} \frac{ft28}{fe}$$

$$A_{st} \ge 0, 23 \times 1.1 \times 0.54 \frac{2.1}{400} = 7.17 \text{ cm}^2......\text{cv}$$

VI.5.1.6. Armature de répartition :

$$Ar=A_{st}/4 = 11,53/4 = 2,88 \text{ cm}^2$$

On choisit: 4T12= 4, 52 cm²

Espacement e = 10 cm

ELS:

Puisque la fissuration est peut nuisible et l'acier utiliser est le FeE400, alors la vérification des contraintes à l'ELS sera simplifiée comme suit :

En travée:

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc28}{100}$$
 Avec $\gamma = \frac{Mu}{Ms} = \frac{0.42}{0.3111} = 1,35$

$$\frac{1,35-1}{2} + \frac{28}{100} = 0,46 \rightarrow \alpha = 0,19 < 0,46....cv$$

En appuis:

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc28}{100}$$
 Avec $\rightarrow \gamma = \frac{Mu}{Ms} = \frac{0,2115}{0,1566} = 1,35$

Donc, il n'est pas nécessaire de vérifier la contrainte du béton => $\sigma_{bc} < \bar{\sigma}_{bc}$

Vérification au cisaillement :

D'après BAEL91, on a :

$$\tau_{u} = T_{u}/b_{0}.d = \frac{1,18}{0,7 \times 0,54} \longrightarrow \tau_{u} = 3,12 \text{ MPa}$$

$$\bar{\tau}_{\rm u} = \min \left(0.2 \frac{fc28}{\gamma h}; 5 \text{MPa}\right) \rightarrow \bar{\tau}_{\rm u} = 3,33 \text{ MPa} \qquad \tau u < \bar{\tau}_{\rm u} \dots \text{CV}$$

Récapitulatif des différentes semelles filantes :

Tableau VII.4: Les sections des différentes semelles filantes.

semelle	R	X	e	H_0	L	В	$\sigma_{ m moy}$	$\sigma_{ m moy} \leq \sigma_{ m sol}$
1	4,707	4,338	0,172	0,4	9,020	1,400	0.394	CV
2	9,280	7,509	1,781	0,6	18,580	1,650	0.39	CV
3	7,677	5,892	0,008	0,4	11,800	1,650	0.395	CV
4	1,901	5,386	2,804	0,3	16,380	0,600	0.293	CV
5	5,599	5,662	1,987	0,4	11,250	2,000	0.381	CV
6	6,340	4,556	1,579	0,4	12,270	1,800	0,398	CV
7	1,977	2,395	0,000	0,3	4,800	1,100	0.374	CV
8	1,482	1,371	-0,171	0,3	2,400	1,300	0.374	CV
9	2,219	1,345	-0,185	0,3	2,300	2,000	0.366	CV
10	2,568	1,892	-0,192	0,3	3,400	1,600	0.392	CV
11	3,552	2,466	-0,006	0,4	4,920	1,800	0.4	CV

Tableau VII.5: Le ferraillage des différentes semelles filantes sous voile et mur

11	En Travée]	En Appui			
semelle	Mt	Ast	choix	Map	Ast	choix	
1	0,60	19,92	14T14	0,86	28,29	15T16	
2	1,16	23,87	12 T16	1,20	24,36	13T16	
3	1,65	43,21	14T20	0,95	23,68	12T16	
4	0,15	6,31	4T14	0,20	8,23	6T14	
5	0,54	14,74	10T14	1,00	27,15	14T16	
6	1,05	24,72	13T16	1,25	28,85	15T16	
7	0,42	24,45	13T16	0,21	11,53	8T14	
8	0,53	31,65	16T16	0,27	14,57	10T14	
9	0,75	46,76	15T20	0,37	20,30	10T16	
10	1,29	103,23	33T20	0,64	36,17	18T16	
11	0,31	12,91	9T14	0,56	22,87	12T16	

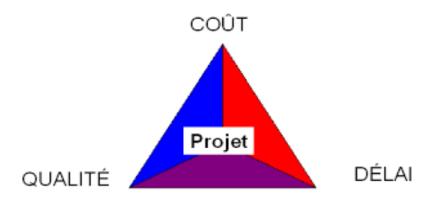
Chapitre VIII ETUDE MANAGEMENT

VIII.1 Introduction:

La conception et la réalisation d'un projet de construction exigent une masse énorme de travaux de natures diverses et compliquées, faisant intervenir un grand nombre de participants, donc il est nécessaire de mettre en place des plannings qui assurent le succès du projet. Les avantages sont les suivants :

- Le planning par ces prévisions sérieuses, reste un excellent instrument de navigation qui permet d'éviter les conflits.
- Il définit la meilleure façon d'atteindre les objectifs ainsi le but final du projet.
- La planification est un outil de prise de décision et un pont de communication entre les différents acteurs du projet.
- Il permet de bien gérer les délais d'exécution et de mettre en cohérence les besoins en matériels, matériaux et la main d'ouvre nécessaire pour l'exécution du projet.
- Il permet au maitre d'ouvrage d'assurer le suivi financier au fur et mesure de l'avancement des travaux.

VIII.2 Management de projet :

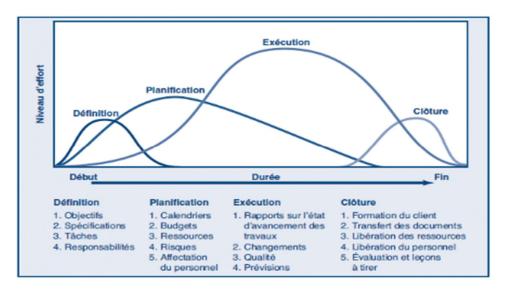

Le management de projet est l'application de connaissances, de compétences, d'outils et de techniques aux activités du projet, il permet l'intégration des processus groupés en : démarrage, planification, exécution, surveillance et maitrise, et clôture.

Un manager de projet doit déterminer les exigences, tout en définissant des objectifs clairs et réalisables, en équilibrant les exigences concurrentes de qualités ,de contenu, de délai et de cout, et en s'adaptant sur les spécification, les plans et l'approche aux différentes préoccupations pour des attentes des diverses parties permanentes.

VIII.2.1 Projet:

Un projet est défini comme une action unique non récurrente et spécifique. Il est aussi défini par la complexité de ses taches qui demande et exige des connaissances particulières et nécessite comme ressources certain nombre de groupe ou d'équipe, avec une organisation appropriée.

Un projet a des facteurs principaux qui sont : la performance, le cout et le temps, le respect de ces facteurs permet d'assurer une bonne qualité du produit réalisé.


FigureVIII.1: Facteur principal d'un projet

Ainsi la bonne compréhension des besoins du client permet de nous donner une perspective générale sur la jonction des facteurs principaux d'un projet.

L'ensemble des caractéristiques de notre projet est établi dans le chapitre (I.2) présentation de l'ouvrage.

VIII.2.1.2 Cycle de vie d'un projet :

Le cycle de vie d'un projet commence par une idée ensuite la conception et le planning suivi par la phase d'exécution du projet et la fin la clôture et l'occupation (exploitation) du projet comme indiqué sur la figure :

FigureVIII.2 cycle de vie d'un projet

Dans notre présente étude, nous nous sommes positionnés dans la phase intermédiaire de définition et planification, ensuite nous avons entamés une étude de management et d'économie.

VIII.3 Objectifs à atteindre :

Pour les besoin inhérents au présent PFE (Projet de fin d'étude), nous nous sommes fixés uniquement comme objectifs, de définir le délai et le cout. Afin d'atteindre ces objectifs, nous avons plusieurs outils a utilisés :

- Préparation du WBS (Works Breakdown Structures)
- Identification de nos ressources.
- Identifier les taches.

Pour les besoins de notre étude nous avons choisi le MS Project 2010 comme outil de travail.

VIII.3.1 MS Project :

MS Project est un outil informatique qui permet de planifier et suivre un projet.

Il permet de gérer les taches, les ressources, les charges de travail, les couts, et les calendriers...

VIII.3.2 Création d'un projet sur MS Project :

Les étapes de création et la gestion d'un projet sont :

- 1. Définir le calendrier global.
- 2. Définir les ressources.
- 3. Définir les taches.
- 4. Organiser l'enchainement des taches.
- 5. Attribuer les ressources aux taches.
- 6. Démarrer le projet (Outils- Suivi- Mettre à jour le projet).
- 7. Informer les acteurs.
- 8. Introduire les étapes d'avancement.
- 9. Corriger les dérives éventuelles et mettre à jour le projet.
- 10. Clouter le projet.

VIII.3.3 Taches et livrables :

• Une tache

Une tache est une action à mener pour aboutir à un résultat. À chaque taches définit, il faut associer :

- Un objectif précis et mesurable.
- Des ressources humaines, matérielles et financières adaptées.
- ➤ Une charge de travail exprimée en nombre de journée, et des travailleurs.
- > Une durée ainsi qu'une date de début et une date de fin.

Les taches sont reliées par des relations d'antériorité, pour montrer dans quel ordre elles doivent être exécutées à savoir :

- ➤ Liaison Fin Début : L'activité amont doit s'achever avant que l'activité avale ne commence.
- Liaison Fin- Fin : L'activité amont doit s'achever avant que l'activité avale ne finisse.
- ➤ Liaison Début- Début : L'activité amont doit commencer avant que l'activité avale ne commence.
- ➤ Liaison Début- Fin : L'activité amont doit commencer avant que l'activité avale ne finisse.

• Un livrable

Un livrable est tout résultat, document, mesurable, tangible ou vérifiable, qui résulte de l'achèvement d'une partie de projet ou du projet.

VIII.4 Ordonnancement et planification :

C'est l'activité qui consiste à déterminer et à ordonnancer les taches du projet, à estimer leurs charges et à déterminer les profils nécessaire à leur réalisation. Les objectifs du planning sont les suivants :

- Déterminer si les objectifs sont réalisés ou dépassés.
- Suivre et communiquer l'avancement du projet.

VIII.4.1 Le WBS (work breakdown structure):

WBS est un mode de découpage qui organise et définit la totalité du contenu d'un projet. Elle se présente sous forme d'organigramme dont le premier niveau est le projet entier, dans les niveaux suivants le projet est découpé de façon hiérarchique.

Les éléments du deuxième niveau sont souvent les livrables. Les éléments qui se trouvent au niveau inférieur de la WBS sont appelés lors de travaux et correspondent à des résultats livrables du projet Ce découpage simplifier le projet, mais aussi affecte à chaque lot de travaux un responsable, un code unique.

Cela permet d'améliorer la précision des estimations de cout de délais et de ressources. Bien qu'il existe de nombreuses façons d'organiser le plan de travail, une pratique courante est le WBS.

<u>Chapitre VIII</u> <u>étude management</u>

VIII.5 Définition des ressources :

VIII.5.1 Les ressources humaines :

Dans notre projet on huit groupes:

- Groupe ingénieur : qui s'occupe de tout ce qui est suivi et contrôle.
- Groupe coffreur : qui s'occupe de tout ce qui est tache coffrage dans le projet.
- Groupe ferrailleur : qui s'occupe de tout ce qui est tache ferraillage dans le projet.
- Groupe maçons : qui s'occupe de tout ce qui est tache maçonnerie.
- Groupe électriciens : qui s'occupe tout ce qui est tache d'électricité dans le projet.
- Groupe de plomberie : qui s'occupe tout ce qui est tache plomberie dans le projet.
- Groupe de menuiserie : qui s'occupe tout ce qui est tache menuiserie dans le projet.
- Groupe de peinture : qui s'occupe tout ce qui est tache peinture dans le projet.

VIII.5.2 Les ressources matérielles :

On distingue deux types de ressources matérielles :

Engins:

Les ressources matérielles type engins affecté à notre projet sont :

- Tracteur pour eau
- Pelle hydraulique
- Camion 10 tonnes
- Grue
- Pompe à injection du béton
- Chargeur

> Matériaux :

Quelques ressources matérielles type produit affecté à notre projet sont représentées dans le tableau suivant :

Tableau VIII.1 Les ressources matériaux (Matériaux) du projet

Fer pour ferraillage	Faïence
Béton	Gains d'électricité
Bois pour coffrage	Carrelage granito
Remblai	Plinthe en terre cuite
Brique	Cadre portes et fenêtres
Enduit	Projecteurs électriques
Zingue	Dalle de sol

Hourdis	Panneau d'affichage
Treillis soudés	Lampe et douille
Tuile	Fils d'électricité
Tube en béton pour l'eau usée	Feuille de polystyrène
Boites d'interrupteurs	Gravillon roulé

L'estimation du cout des taches se fait en introduisant deux paramètres, la durée et le cout de la tache aux ressources utilisées pour réaliser cette tâche.

Après l'introduction de toutes les informations (les taches avec leur durée et cout estimé avec les ressources) sur logiciel MS Project on obtient le résultat suivant :

• La durée du projet est de 668 jours de travail.

• Le début du projet est prévu le : 2/07/2017

• La fin du projet est prévu le : 06/02/2020

• Le cout brut du projet est de : 131227196 DA environ 13.2 milliard algérien.

Tableau VIII.2: estimation du cout de l'ouvrage.

Désignation des ouvrages	U	La quantité	Prix unit	Montant
Le béton	m^3	2368.11	32000	75779520
Mortier en ciment	m ³	19920.56	900	17928504
Peinture	m ²	19920.56	200	1984112
Mur extérieur	m ³	3417.1	1200	3417100
Mur intérieur	m ³	6856	900	6170400
Faïence	m ²	1323.42	1500	198513.05
Carrelage	m ²	3595.1	1500	5392650
sanitaires	-	110	6000	59594
Le béton de propreté	m^3	39	900	35100
Fouille filante +isolée	m ³	196.52	6000	1179120
Remblai	m^3	220	400	88000
Terrassement	m ²	1366.78	2000	2733560
Menuiserie	m ³	290000		2900000
Plomberie	m	100000		11000000
Nettoyage	m ²	150000		150000
Électricité	m	500000		5500000
Installation du chantier	m²	2000000		2000000

.

VIII.6 Conclusion:

Aujourd'hui, la notion d'économie et de gestion en matière de construction a bien évolué. Ils existent plusieurs recherches et travaux qui reposent sur la gestion et la planification d'un projet de construction sur l'aspect économique. Car il existe des dizaines, voire des certaines ou des milliers de projet de construction dans le monde qui ont des dépassements non seulement sur le cout mais aussi sur la durée.

Grace à la phase de planification et au logiciel de projet (MS Project 2010), le chef du projet sera en mesure de gérer son projet de façon proactive, en appliquant les règles de l'art en gestion de projet.

CONCLUSION GENERALE

Les conclusions auxquelles a abouti après ce modeste travail, sont résumées dans ce qui

suit:

- Le séisme en tant que chargement dynamique reste l'une des plus importantes et dangereuses actions à considérer dans la conception et du calcul des structures.
- La nécessité des voiles dans le nouveau code parasismique rend le système de contreventement mixte plus adéquat pour les bâtiments de hauteur moyenne, vérifiant les deux aspects (sécurité et économique).
- la gestion de projets via des méthodes et des techniques nous donne les clés pour pouvoir juger, agir, analyser, planifier et contrôler notre projet.
- L'étude économique et managériale de ce projet nous a permis de faire une planification
 - qui nous conduira à atteinte des objectifs dans les délais et les coûts préétablis.