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Abstract

The purpose of the present dissertation is to study existence of an optimal control given
by a Forward Backward Stochastic Differential Equation (FBSDE, in short), the notion of
backward stochastic differentail equations (BSDE, in short) and its applications.

In the first chapter some preliminaries, definitions, and theorems are presented.
In the next chapter the notion of existence of an optimal control for a system of fully

coupled FBSDE in the degenerate case is given. The cost functional is defined by the first
component of the solution of the controlled backward stochastic differential equation (BSDE
in short) at the initial time. We study the case of degenerate diffusion coefficient σ in the
forward equation. Our control problem is to find an optimal control holds the FBSDE and
the optimization problem. This last is to minimize the cost functional in the set of the
admissible controls. For that, we show first the existence of a relaxed control by constructing
a sequence of approximating controlled system for which we show the existence of a sequence
of feedback controls, and we prove that the approximating value function converges to the
original one, the convergence is got at least along a subsequence , we suppose in addition
some Filippov convexity conditions on the coefficients of the system to prove that the relaxed
optimal control is strict.

Chapter 3 is devoted to another results of the thesis, it present existence of an opti-
mal control whose dynamical system is driven by a coupled forward-backward stochastic
differential equation in the non-degenerate case.

In Chapter 4 the thesis present the notion of the existence of the solution of one dimen-
sional BSDEs with logarithmic growth, its present also some applications to PDEs.

In the last Chapter an application in high dimensional stochastic differential equations
is given with numerical results, a real case of the Los Angeles University hospital is studied,
a numerical analysis of fully coupled FBSDEs is also stated.

vii
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The aim of this thesis is to studies some problems of stochastic optimal control analyti-

cally and numerically.

Due to their applications in Physics, mathematical finance and Molecular Dynamics, sto-

chastic optimal control has been subject to extensive research during the last two decades.

Theory of stochastic differential equations has been developed quickly, K. Itô [85] and

[86], L. E. Bertram and P. E. Sarachik [32] R. Z. Hasminskii [81], D. D. Bainov and V. B.

Kolmanovskii [25], D. Q. Jiang and N. Z. Shi [89], D. Q. Jiang et al. [90] Y. Ouknine et al.

[30].

General nonlinear BSDEs in the framework of Brownian motion were first introduced by

Pardoux and Peng in [122], since then the theory of BSDEs develops very quickly, see El

Karoui, Peng and Quenez [64], Peng [114], [115] , Ouknine et al. [76], and relation between

stochastic optimal control and BSDEs (see for example [98] [117]).

Associated with the BSDEs theory, the field of fully coupled FBSDEs develops also very

quickly, we refer to, Cvitanic and Ma [54], Delarue [59], Hu and Peng [82], Ma, Protter, and

Yong [104] B. Mezerdi et al [106], Ma, Wu, Zhang, and Zhang [103], Ma and Yong [105],

Pardoux and Tang [124], Peng and Wu [125], Yong [139], and Zhang [141], etc. For more

details on fully coupled FBSDEs, the reader is referred to the book of Ma and Yong [105] ;

also refer to Li and Wei [102] and the references therein. it have important applications in

Mathematical fiance like in the pricing/hedging problem, in the stochastic control and game

theory, we mention some works ( [111] [45], [125], [135], [134], [137] ), Optimal control ([125]
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) and Molecular Dynamic simulations [79],[129] and [128].

The principal developments in this subject concern the existence of optimal control,

Pontryagin’s maximum principle (or necessary optimality conditions) and Bellman’s principle

(also called dynamic programming principle), etc., see e.g. [17, 40, 42, 41, 63, 72, 80, 93, 101,

102, 105, 115, 116].

Closer to our concern here, the existence of an optimal for a system driven by SDE-

BSDE was established in [17] and [41] by different methods. In [17], the approach consists

to directly show the existence of a relaxed control by using a compactness method and the

Jakubowsky S-topology. In [41] the authors work on by the HJB equation associated the

control problem. This allows them to construct a sequence of optimal feedback controls.

After that, they analyse to the limit and use the result of [63] in order to get the existence

of a relaxed optimal control. In both papers [17] and [41] the Filippov convexity condition

is used in order to get the existence of a strict optimal control. It should be noted that in

[17] and [41] the controlled system is driven by a decoupled system of SDE-BSDE.

The question of the existence of an optimal control in some appropriate sense is one of

the important fields in control theory, and has been subject of large literature. We mention

among them, Peng [116], Touzi [130] and Bahlali, Gherbal and Mezerdi, [17], application of

optimal control has been subject of a large literature we mention some of them, [129], [79],

[143], in molecular dynamics, and [36], [117], [58], in Mathematical finance.

One of the main goal of the thesis is to establish existence result on strict optimal control
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for the problem (1.1.1)–(1.1.3), for this we proceed as follows : we follow the method deve-

loped in [41], because our coefficients are not smooth enough to get strong solution of the

corresponding HJB equation of our SOC we approximate our controlled FBSDE (1.1.1) by

a sequence of FBSDEs with smooth data bδ, σδ, fδ and Φδ and consider a new value function

V δ which is associated to the FBSDE with these smooth data. This allows us to apply the

result of Krylov [94] (Theorems 6.4.3 and 6.4.4), V δ is sufficiently smooth and satisfies a

Hamilton-Jacobi-Bellman equation. Since all admissible controls take their values in a com-

pact set, we then deduce the existence of a feedback control uδ. Next, we prove that the

sequence V δ converges uniformly to a function V which is the value function of our initial

control problem. Comparing with [41], there are two main difficulties (see the next chapter

for more details). We have to note that when the control enters the diffusion coefficient σ,

we arrive to an SDE with measurable diffusion coefficient and, in this case, the uniqueness of

solution fails. It is well known that when the diffusion coefficient is merely measurable then

even the uniqueness in law fails in general for Itô’s forward SDE in dimension strictly greater

than 2, see [92] for more details. This explains why we consider the case when the control

does not enter the diffusion coefficient, the idea behind this work (generally speaking) in

the applications, is that we have the dynamics of two processes such that for the first one

(the forward) we know the initial point of depart and the second one must end in a given

position function of the end point of the first, and both are coupled along all the period of

the dynamics, it means that not only they are related in the final time but also the solution
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of the first is in the coefficients of the equation of the second and conversely, the question is

how to control the starting point of the backward dynamics.

The thesis is focused also on the existence and uniqueness of solution of one dimensional

BSDEs with logarithmic growth. The problem is presented as follows : Let f(t, ω, y, z) be a

real valued Ft–progressively measurable process defined on [0, T ]×Ω×R×Rd. Let ξ be an

FT–measurable R–valued random variable. The backward stochastic differential equations

(BSDEs) under consideration is :

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ] (0.0.1)

where the driver hold a lass regularity assumptions, which called logarithmic assumption see

(4.1.2).

The previous equation will be denoted by eq(ξ, f). The data ξ and f are respectively called

the terminal condition and the coefficient or the generator of eq(ξ, f). For N ∈ N∗, we define

ρN(f) = E
∫ T

0
sup

|y|,|z|≤N
|f(s, y, z)|ds, (0.0.2)

The applications in reduction models is subjection of the last chapter, where we present

the bridge between stochastic optimal control and FBSDEs, this end play an essential role

in the model redaction technic of a high dimensional stochastic optimal control. The idea

here is to write Hamilton-Jacobi-Bellman equation and to relate it to a FBSDE, and do

homogenization to this end, finally back to the PDE form, to display the limiting PDE
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0.1 Thesis Outline

Within the next chapter of this thesis we give some basic definitions and preliminaries,

also some theorems that we will use in the next chapters, we present also . The next chapter

is devoted to present results on the existence of an optimal control for a system of fully

coupled FBSDE in the degenerate case, chapter 3 is concerned to the non-degenerate case.

Chapter 4 is devoted on the studies of the existence and uniqueness of a one dimensional

BSDEs with logarithmic growth and applications to PDEs. The last chapter is focused on

the analysis of some real examples numerically, the new approach, was the reduction of such

type of high dimensional problems and the difference in the scaling, linear and nonlinear

quadratic optimal control was subject of this studies.

The high dimensionality came from a space desensitization of a time-space PDE or a

molecular dynamic simulation.



Chapitre 1
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This chapter introduces basic notations and recalls results that will be used throughout

this thesis.

First we present the form of the SOC subject to the first and second chapters

1.1 Controlled fully coupled FBSDE

Let T > 0 be a finite horizon and t ∈ [0, T ]. Let (Ω, F , P, (Ft)) be a filtered probability

space which satisfies the usual conditions. Let W be a d-dimensional Brownian motion with

respect to the (not necessary Brownian) filtration (Ft). Let U be a compact metric space.

We define the deterministic functions b, σ, f and Φ by

b : Rd × R× Rd × U 7−→ Rd,

σ : Rd × R 7−→ Rd×d,

f : Rd × R× Rd × U 7−→ R,

Φ : Rd 7−→ R.

We consider the following controlled system of coupled 1 FBDSE define for s ∈ [t, T ] by :



dX t,x,u
s = b(X t,x,u

s , Y t,x,u
s , Zt,x,u

s , us)ds+ σ(X t,x,u
s , Y t,x,u

s , us)dWs,

dY t,x,u
s = −f(X t,x,u

s , Y t,x,u
s , Zt,x,u

s , us)ds+ Zt,x,u
s dWs + dM t,x,u

s ,

〈M t,x,u, W 〉s = 0,
X t,x,u
t = x, Y t,x,u

T = Φ(X t,x,u
T ), M t,x,u

t = 0,

(1.1.1)

1. The FBSDE considered here in coupled but not TOTALY fully coupled, this case is a project of a
future work.
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where, X t,x,u, Y t,x,u, Zt,x,u are (Ft)-adapted square integrable processes and M t,x,u is an

(Ft)-adapted square integrable martingale which is orthogonal to W.

Remark 1. Because the weak solution do not hold necessarily on the Brownian filtration, but

on more larger filtration, then the Martingale Representation Theorem (MRT) do not hold,

and hence the appearing of the orthogonal martingale M in the equation 1.1.1 is natural by

the Kunuta-Watanabe (KW) representation, and not for other consideration like the reflected

BSDEs which will be presented late in this thesis.

The control variable u is an Ft adapted process with values in a given compact metric

space U. It should be noted that the filtered probability space and the Brownian motion may

change with the control u.

On ν := (Ω,F ,P,F,W ), we define the following spaces of processes :

for m ∈ N∗ and t ∈ [0, T ),

— S2
ν (t, T ;Rm) denote the set of Rm-valued, F-adapted, continuous processes (Xs, s ∈

[t, T ]) which satisfy E[supt≤s≤T |Xs|2] <∞.

— H2
ν(t, T ;Rm) is the set of Rm-valued, F-predictable processes (Zs, s ∈ [t, T ]) which

satisfy E[
∫ T
t |Zs|2ds] <∞.

— M2
ν(t, T ;Rm) denotes the set of all Rm-valued, square integrable cadlag martingales

M = (Ms)s∈[t,T ] with respect to F, with Mt = 0.

Now we present the meaning of a solution of a FBSDEs in a non necessary Brownian

filtration in this :

Definition 2. A solution of FBSDE (1.1.1) is a process (X t,x,u, Y t,x,u, Zt,x,u,M t,x,u) ∈
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S2
ν (t, T ;Rd)× S2

ν (t, T ;R)×H2
ν(t, T ;Rd)×M2

ν(t, T ;Rd) which satisfies equation (1.1.1).

Let’s define the following control spaces :

— Uν(t) denotes the set of admissible controls, i.e. the set of F-progressively measurable

processes (us, s ∈ [t, T ]) with values in U and such that the FBSDE (1.1.1) has a

unique solution in S2
ν (t, T ;Rd)× S2

ν (t, T ;R)×H2
ν(t, T ;Rd)×M2

ν(t, T ;Rd) .

— Rν(t) denotes the set of admissible relaxed controls.

The cost functional 2, which will be minimized, is defined for u ∈ Uν(t) by :

J(t, x, u) := Y t,x,u
t . (1.1.2)

An Ft-adapted control û is called optimal if it minimizes J , that is :

Y t,x,û
t = essinf

{
Y t,x,u
t , u ∈ Uν(t)

}
3.

If moreover, û belongs to Uν(t), we then say that û is an optimal strict control.

The value function V is defined by :

V (t, x) := Y t,x,û
t = essinf {J(t, x, u), u ∈ Uν(t)} . (1.1.3)

Next we present some definitions and theorems that we need in the our main results in the

next two chapters, afterword we focused on the notion of FBSDEs where we present defini-

tions and existence theorems of a fully coupled FBSDEs in the degenerate and non-degenerate

2. This is the non-linear case the special case is when the generator f is linear in its variables.
3. See Defintion 3 for the definition of essinf.
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cases, the last section is devoted to present stochastic optimal control and Hamilton-Jacobie-

Belman equation

1.1.1 Definitions

In this section we give some definitions that we need in the next chapters

The functional of our optimal control is defined by esssup in the following :

Definition 3. Let f : X −→ R be a real valued function define on a measure space (X,Σ, µ),

we suppose that f is measurable 4 A number a is called an essential upper bound of f if the

measurable set f−1(a,∞) is a set of measure zero, i.e., if f(x) ≤ a for almost all x ∈ X. Let

U ess
f = {a ∈ R : µ(f−1(a,∞)) = 0}

be the set of essential upper bounds. Then the essential supremum is defined similarly as

ess sup f = inf U ess
f

if U ess
f 6= ∅, and esssupf = +∞ otherwise. we can define the essinf by the same way

ess inf f = sup{b ∈ R : µ({x : f(x) < b}) = 0}

The notion of esssup and essinf are important tools in the field stochastic optimal control,

when in many cases the supremum of a functional do not hold because it goes to infinity in

a set of a measure zero in these cases the esssup play the role the following simple example

explain more :

Let f : R −→ R, R endowed with the Lebesgue measure and its corresponding borealian

4. The definition of essential spermium can be in general case where f is not necessary measurable
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s-algebra S. such that :

f(x) =


x, if x ∈ Q

arctan x, else

This function has no supremum and no infimum, However, from the point of view of

the Lebesgue measure, the set of rational numbers is of measure zero ; It follows that the

essential supremum is π
2 while the essential infimum is −π

2 .

Now we define the molllifier of a function by :

Let δ ∈ (0; 1] and φ : Rm→ R be a function which satisfies : φ is a non-negative smooth

function, supp(φ) ⊂ BRm(0, 1) (the unit ball of Rm),
∫
Rm φ (ξ) dξ = 1.

For a uniformly Lipschitz function l : Rm → R, we define the mollifier of l by

lδ (ξ) = δ−m
∫
Rm

l
(
ξ − ξ′

)
φ
(
δ−1ξ

′)
dξ
′
.

Let Kl denote the Lipschitz constant of l. Of course Kl is independent from δ.

Proposition 1.1.1. For any ξ, ξ′ ∈ Rm and δ, δ′ > 0, we have

1. |lδ (ξ)− l (ξ)| ≤ Klδ

2. |lδ (ξ)− lδ′ (ξ)| ≤ Kl|δ − δ′|,

3. |lδ (ξ)− lδ (ξ′)| ≤ Kl|ξ − ξ′|,

1.1.2 Fully coupled FBSDEs and stochastic optimal control

Fully coupled FBSDEs

The Markovian case of a BSDE is a decoupled FBSDE (the solution of the forward equa-

tion appear in the backward one as a parameter) solving a decoupled FBSDE is easily done
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by solving the forward equation and then plug the solution of the forward X in the backward.

A fully coupled FBSDE is a forward equation and a backward equation where the solution

of the forward appear in the backward equation and conversely, it studied by several authors

[21, 112, 3], finding the solution by the previous method does not work here, now let give

the formal definition of a FBSDE.

Definition, existence and uniqueness of the solution of a FBSDEs in the degene-

rate and non degenerate cases

Let T > 0 be a finite horizon and t ∈ [0, T ]. Let (Ω, F , P, (Ft)) be a filtered probability

space which satisfies the usual conditions. Let W be a m-dimensional Brownian motion with

respect to the filtration (Ft). We define the deterministic functions b, σ, f and Φ by

b : Rd × Rp × Rp×m 7−→ Rd,

σ : Rd × Rp × Rp×m 7−→ Rd×m,

f : Rd × Rp × Rp×m 7−→ Rp,

Φ : Rd 7−→ Rp.

A FBDSE is define for s ∈ [t, T ] by :



dX t,x
s = b(X t,x

s , Y t,x
s , Zt,x

s )ds+ σ(X t,x
s , Y t,x

s , Zt,x
s )dWs,

X t,x
t = x,

dY t,x
s = −f(X t,x

s , Y t,x
s , Zt,x

s )ds+ Zt,x
s dWs,

Y t,x
T = Φ(X t,x

T )

(1.1.4)
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where,X t,x, Y t,x, Zt,x are (Ft)-adapted square integrable processes, the notationX t,x, Y t,x, Zt,x

is to show that the process X starts in x at the initial time t.

we note Kd,k,p×mt = S2
ν (t, T ;Rd)× S2

ν (t, T ;Rk)×H2
ν(t, T ;Rp×m) 5

Definition 4. A solution of FBSDE (1.1.4) is a process (X t,x, Y t,x, Zt,x) ∈ Kd,p,p×mt which

satisfies equation (1.1.4).

In what follows we suppose that the diffusion σ is independent of Z.

Existence and uniqueness in the degenerate case :

For a given 1× d matrix G (with GT be the transpose of G) and λ := (x, y, z) we put

A(t, λ) :=


−GTf

Gb

Gσ

 (t, λ),

Assumption (H). In this chapter, we assume that there exists a 1× d full rank matrix G

such that the following assumptions are satisfied.

— (H1)

(i) A(t, λ) is uniformly Lipschitz in λ uniformly on t, and for any λ, A(·, λ) ∈

H2(0, T ;Rd × R× Rd).

(ii) Φ(x) is uniformly Lipschitz with respect to x ∈ Rd, and for any x ∈ Rd, Φ(x) ∈

L2(Ω,FT , P ;R).

We denote by K the Lipschitz constant of A and Φ.

— (H2)

5. For the definitions of the spaces look the introduction
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(i) 〈A(t, λ)− A(t, λ̂), λ− λ̂〉 ≤ −β1|Gx|2 − β2(|GTy|2 + |GT z|2).

(ii) 〈Φ(x)− Φ(x̂), G(x− x̂)〉 ≥ µ1|Gx|2, x = x− x̂, y = y − ŷ, z = z − ẑ,

where β1, β2, µ1 are strictly positive constants.

Now we set an existence and uniqueness result for the fully coupled FBSDE (1.1.4)

Theorem 5. [125] Let the condition (H) hold, we suppose that the diffusion σ is independent

to Z. Then there exists a unique adapted solution (X, Y, Z) of the FBSDE (1.1.4).

Existence and uniqueness of the solution of a FBSDE in a non-degenerate case :

Let the following hypothesis : There exists two constants K and λ > 0, such that the

functions b, σ, f and Φ satisfy the following assumptions (B) :

— (B1)

1) For any (x, y, z) and (x′, y′, z′) ∈ Rd × R× Rd

|σ(x, y)− σ(x′, y′)|2 ≤ K2(|x− x′|2 + |y − y′|2),

|Φ(x)− Φ(x′)| ≤ K|x− x′|,

|b(x, y, z)− b(x′, y′, z′)| ≤ K(|x− x′|+ |y − y′|+ |z − z′|),

|f(x, y, z)− f(x′, y′, z′)| ≤ K(|x− x′|+ |y − y′|+ |z − z′|).

2) The functions b, σ, f and Φ are bounded.
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— (B2) For every (t, x, y) ∈ [0, T ]× Rd × R,

∀ζ ∈ Rd 〈ζ, σ(t, x, y)ζ〉 ≥ λ|ζ|2,

our conditions (B1) and (B2) are a special case of the result of [59], then the equation (1.1.4)

has a unique solution (X t,x, Y t,x, Zt,x) in the space S2
ν (t, T ;Rd)× S2

ν (t, T ;R)×H2
ν(t, T ;Rd)

Now let present some results on FBSDEs

1.1.3 Stochastic optimal control driven by a FBSDEs

We present here stochastic optimal control driven by a FBSDE and some results on it, in

the next chapter we present an existence result of an optimal control of such type of SOC :

For some notation, let T > 0 be a finite horizon and t ∈ [0, T ]. Let (Ω, F , P, (Ft)) be

a filtered probability space which satisfies the usual conditions. Let W be a d-dimensional

Brownian motion with respect to the (not necessary Brownian) filtration (Ft). Let U be a

compact metric space. We define the deterministic functions b, σ, f and Φ by

b : Rd × R× Rd × U 7−→ Rd,

σ : Rd × R× Rd × U 7−→ Rd×d,

f : Rd × R× Rd × U 7−→ R,

Φ : Rd 7−→ R.

We consider the following controlled system of coupled FBDSE define for s ∈ [t, T ] by :
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

dX t,x,u
s = b(X t,x,u

s , Y t,x,u
s , Zt,x,u

s , us)ds+ σ(X t,x,u
s , Y t,x,u

s , Zt,x,u
s , us)dWs,

X t,x,u
t = x,

dY t,x,u
s = −f(X t,x,u

s , Y t,x,u
s , Zt,x,u

s , us)ds+ Zt,x,u
s dWs,

Y t,x,u
T = Φ(X t,x,u

T )

(1.1.5)

where, X t,x,u, Y t,x,u, Zt,x,u are (Ft)-adapted square integrable processes The control variable

u is an Ft adapted process with values in a given compact metric space U

The cost functional, which will be minimized, is defined for all admissible control u ∈ Uν(t)

as the first component of the solution of the BSDE :

J(t, x, u) := Y t,x,u
t . (1.1.6)

The objective is to optimize the cost functional (1.1.6) by an infrumum, supremum, essential

inf or essential sup 6

when 1.1.5 is decoupled i.e. when b and σ are independent of the solution of the BSDE (Y, Z)

the existence of an optimal control is studied by [41], in their case the BSDE is add to an

orthogonal Martingale to the Brownian mention because the filtration may change with the

control u, for more details see the next chapter.

1.1.4 Hamilton Jacobi Bellman equation

The value function of a stochastic optimal control define in the last section should satisfy

a certain partial differential equation called the Hamilton-Jacobi-Bellman equation (HJB in

short), given in this

6. See Definition3 for the definition of essential sup and if and why is useful in the case of optimal control.
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Definition

The HJB equations are second-order, possibly degenerate elliptic, fully nonlinear equa-

tions of the following form :

H(x, u,Du,D2u) = 0, x ∈ Rn.

The solution of the HJB equation is (under some conditions) the value function of an optimal

control which gives the minimum cost for a given dynamical system with an associated cost

function. H called the hamiltonian which supposed that is convex.

The HJB equation corresponding to the deterministic case is a first-order PDE. existence of

solution of HJB equation are well studied by [48, 49, 47, 50, 51, 52, 53, 83, 84].

Viscosity solutions

Here we present an important type of weak solution of the HJB-equation.

Let where Ω an open subset of Rn, consider nonlinear parabolic second-order partial diffe-

rential equations :

F (t, x, w, ∂w
∂t
,Dxw,D

2
xxw) = 0, (t, x) ∈ [0, T )× Ω (1.1.7)

Definition 6. Let the PDE (1.1.7)
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1. F is elliptic if ∀(t, x, r, p, q) ∈ [0, T ) × R × R × Rnand,M1,M2 ∈ Sn 7 we have :

M1 ≤M2 ⇒ F (t, x, r, p, q,M1) ≥ F (t, x, r, p, q,M2)

2. F is parabolic if ∀(t, x, r, q,M) ∈ [0, T ) × R × Sn × Rnand, p1, p2 ∈ R we have : p1 ≤

p2 ⇒ F (t, x, r, p1, q,M1) ≥ F (t, x, r, p2, q,M2)

suppose F is a continuous function of its arguments,elliptic and parabolic, Let a locally

bounded function w ∈ [0, T ]× Ω, we set the definition of an upper-semi continuous (USC),

(resp. lower-semi continuous (LSC)) envelope w∗, (w∗) by :

w∗(t, x) = lim
t1≤T→t

sup
x1→x

w(t1, x1)w∗(t, x) = lim
t1≤T→t

inf
x1→x

w(t1, x1) (1.1.8)

its clear that

w∗(t, x) ≤ w(t, x) ≤ w∗(t, x)

we have three cases :

— w is USC if w = w∗

— w is LSC if w = w∗

— w is continuous if w = w∗ = w∗

Now let give the definition of a viscosity solution

Definition 7. Let w : [0, T ] × ω be locally bounded and let Π be a smooth function on

[0, T )× Ω. we have the following definitions

1. (viscosity supersolution) w is a viscosity supersolution of (1.1.7) on [0, T ]× Ω iif :

7. The set of symmetric square n matrices
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∀(t1, x1) ∈ [0, T )×Ω,∀π ∈ C1,2 : π(t1, x1) = w(t1, x1) : F (t1, x1, π,
∂π

∂t1
, Dx1π,D

2
x1x1π) ≥ 0

(1.1.9)

2. (viscosity subsolution) w is a viscosity subsolution of (1.1.7) on [0, T ]× Ω iif :

∀(t1, x1) ∈ [0, T )×Ω,∀π ∈ C1,2 : π(t1, x1) = w(t1, x1) : F (t1, x1, π,
∂π

∂t1
, Dx1π,D

2
x1x1π) ≤ 0.

(1.1.10)

w is viscosity solution if it is supersolution and subsolution.

1.2 Notations and definitions for the third chapter

Here we present some notations that we will use for the chapter on existence and uni-

queness of solution of one dimensional BSDEs with logarithmic growth.

Let (Ω,F , (Ft)0≤t≤T , P ) be a probability space on which is defined a standard d-dimensional

Brownian motion W = (Wt)0≤t≤T whose natural filtration is (F0
t := σ{Bs, s ≤ t})0≤t≤T . Let

(Ft)0≤t≤T be the completed filtration of (F0
t )0≤t≤T with the P -null sets of F . Let f(t, ω, y, z)

be a real valued Ft–progressively measurable process defined on [0, T ]×Ω×R×Rd. Let ξ be

an FT–measurable R–valued random variable. The backward stochastic differential equations

(BSDEs) under consideration is :

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ] (1.2.1)
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The previous equation will be denoted by eq(ξ, f). The data ξ and f are respectively called

the terminal condition and the coefficient or the generator of eq(ξ, f). For N ∈ N∗, we define

ρN(f) = E
∫ T

0
sup

|y|,|z|≤N
|f(s, y, z)|ds. (1.2.2)

For p ≥ 1, we denote by Łploc(R) the space of (classes) of functions u defined on R which are

p-integrable on bounded set of R. We also define,

C := the space of continuous and Ft –adapted processes.

Sp := the space of continuous, Ft –adapted processes ϕ such that E
(

sup0≤t≤T |ϕt|p
)
<∞.

Mp := the space of Ft–adapted processes ϕ satisfying E
[(∫ T

0 |ϕs|2ds
) p

2
]
< +∞.

L2 := the space of Ft –adapted processes ϕ satisfying
∫ T

0 |ϕs|2ds < +∞ P–a.s.

For given real numbers a and b, we set a ∧ b := min(a, b), a ∨ b := max(a, b), a− :=

max(0,−a) and a+ := max(0, a).

Definition 8. A solution to eq(ξ, f) is a process (Y, Z) which belongs to C × L2 such that

(Y, Z) satisfies equation eq(ξ, f) for each t ∈ [0, T ] and
∫ T

0 |f(s, Ys, Zs)|ds <∞ a.s.

1.3 Notion of stopping time and ergodicity

In the last chapter we study some SOC problems where the FSDE is bilinear, then the

coefficients are not bounded in the entire space, therefor we suppose that the our dynamic

lives in a bounded domain, which is the case in the most applications.

For this let give the notion of stopping time :
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Definition 9. A real value random variable τ : Ω −→ R+ is called an Ft-stopping time if :

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for all t in R+

Examples

1. Playing until the player either runs out of money or has played 100 games is a stopping

rule.

2. If the filtration is complete, then a random time that is almost certainly a constant is

also a stopping time.

3. One of the important examples of stopping time is the first time that the process hits

a set of states define by :

τD = inf{s ≥ 0 : Xs /∈ D} ,

where X is a stochastic process in Rn, and D is a subset of Rn.

The notion of ergodicity is a very important tool in the homogenization technic, a dyna-

mical system is said to be ergodic, if has the same behavior averaged over time as averaged

over the space of all the system’s states in its phase space, the formal definition is

Definition 10. Let (X, Σ, P ) be a probability space, and T : X → X be a measure-

preserving transformation. We say that T is ergodic with respect to P if :

for every E ∈ Σ with T−1(E) = E either P(E) = 0 or P(E) = 1 .

Now we give the notion of invariant measure

Definition 11. Let (X,F) be a measurable space and let f be a measurable function from

X to itself. A measure µ on (X,F) is said to be invariant under f if, for every measurable

set B in F, µ (f−1(B)) = µ(B).
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A reasons for some studies to work with an ergodic system is that the collection of ergodic

measures, is a subset of the collection of invariant measures. In the most cases the periodicity

is one hypothesis used for ensure the ergodicity and therefor the existence of an invariant

measure, but in our case, and because the bilinear system that we study in the last chapter

is no periodic, we use the Kalman condition to ensure the ergodicity.
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The aim of the present chapter is to extend the results of [17, 41], to a coupled FBSDE.

Comparing with [17, 41], the first difficulty is related to the fact that the uniform Lipschitz

condition on the coefficients is not sufficient to ensure the existence of a unique solution to

equation (2.0.1) for an arbitrary duration. This fact is well explained in [2] where two illus-

trating examples are given. In order to ensure the existence and uniqueness of solutions for

equation (2.0.1), we moreover assume the so-called G-monotony condition on the coefficients

given in [125]. The second difficulty concerns the gradient estimate of the approximating

value function. It turns out that the G-monotony condition combined with the comparison

theorem of BSDEs play an important role to overcome this second difficulty. To begin, let

us give a precise formulation of our problem.

In the second section, we give the assumptions and the main result. Section 3 is devoted

to the proof. The later consists to construct an approximating sequence of controlled systems

for which we prove the existence of a sequence of feedback controls uδ. By passing to the

limit, we show the existence of a feedback control to our initial system.

Consider the following SOC :

the dynamical system is defined for s ∈ [t, T ] by :



dX t,x,u
s = b(X t,x,u

s , Y t,x,u
s , Zt,x,u

s , us)ds+ σ(X t,x,u
s , Y t,x,u

s , us)dWs,

dY t,x,u
s = −f(X t,x,u

s , Y t,x,u
s , Zt,x,u

s , us)ds+ Zt,x,u
s dWs + dM t,x,u

s ,

〈M t,x,u, W 〉s = 0,
X t,x,u
t = x, Y t,x,u

T = Φ(X t,x,u
T ), M t,x,u

t = 0,

(2.0.1)

according to Theorem 5 there exist unique solution to the equation (2.0.1), we define the
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value function by :

J(t, x, u) := Y t,x,u
t . (2.0.2)

We say that û is called a strict optimal control, if it belongs to Uν(t) and satisfies

J(t, x, û) = essinf { J(t, x, u), u ∈ Uν(t) } (2.0.3)

The value function of the control problem is given, for each t ∈ [0, T ] and x ∈ Rd, by

V (t, x) := essinf { J(t, x, u), u ∈ Uν(t). } (2.0.4)

2.1 Assumptions and the main result

For a given 1× d matrix G (with GT be the transpose of G) and λ := (x, y, z) we put

A(t, λ, u) :=


−GTf

Gb

Gσ

 (t, λ, u),

Assumption (B). Throughout this chapter, we assume that there exists a 1× d full rank

matrix G such that the following assumptions are satisfied.

— (B1)

(i) A(t, λ, u) is uniformly Lipschitz in λ uniformly on (t, u), and for any λ, A(·, λ, ·) ∈

H2(0, T ;Rd × R× Rd);

(ii) Φ(x) is uniformly Lipschitz with respect to x ∈ Rd, and for any x ∈ Rd, Φ(x) ∈

L2(Ω,FT , P ;R).
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We denote by K the Lipschitz constant of A and Φ.

— (B2)

(i) 〈A(t, λ, ·)− A(t, λ̂, ·), λ− λ̂〉 ≤ −β1|Gx|2 − β2(|GTy|2 + |GT z|2),

(ii) 〈Φ(x)− Φ(x̂), G(x− x̂)〉 ≥ µ1|Gx|2, x = x− x̂, y = y − ŷ, z = z − ẑ,

where β1, β2, µ1 are strictly positive constants.

— (B3) the functions b, σ, f and Φ are bounded.

— (B4) for all (x, y, z) ∈ Rd×R×Rd the functions b(x, y, z, .), σ(x, y, .) and f(x, y, z, .)

are continuous in u ∈ U .

Under assumptions (B1)–(B4), our controlled FBSDE has a unique solution. The proof

can be performed as that of [125].

Let Sd denotes the space of symmetric matrices in Rd×d. Let H be the hamiltonian define

on [0, T ]× Rd × R× Rd × Sd × U by

H(t, x, y, p, A, v) = 1
2tr ((σσ∗)(t, x, y, v)A) + b(t, x, y, p σ(t, x, y, v), v)p (2.1.1)

+ f(t, x, y, p σ(t, x, y, v), v),

Let ∇xV and ∇xxV respectively denotes gradient and the Hessian matrix of V .

According to Li and Wei [102] the value function V (t, x) define by (2.0.4) is at most of

linear growth and it is a viscosity solution of the following Hamilton-Jacobi-Bellman equation
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and it is deterministic


∂

∂t
V (t, x) + inf

v∈U
H(t, x, V (t, x),∇xV (t, x),∇xxV (t, x), v) = 0, (t, x) ∈ [0, T ]× Rd,

V (T, x) = Φ(x), x ∈ Rd,

(2.1.2)

We suppose also the following

2.1.1 Filippov’s convexity condition

(H)


For all (x, y) ∈ Rd × R the following set is convex :
{((σσ∗)(x, y, u), w(σσ∗)(x, y, u), b(x, y, wσ(x, y, u), u), f(x, y, wσ(x, y, u), u))
|(u,w) ∈ U× B̄C(0)} ,

where B̄C(0) ⊂ Rd is the closed ball around 0 with radius C.

The following lemma can be proved as Lemma 4 of [41]. For the completeness, we give

its proof.

Lemma 12. For (x, y, w, θ, u) ∈ Rd × R× Rd × R× U, we put

Σ(x, y, w, θ) =

 σ(x, y, u) 0

wσ(x, y, u) θ

 and β(x, y, w, u) =

 b(x, y, wσ(x, y, u), u)

−f(x, y, wσ(x, y, u), u)

 .

Under assumption (H) we have

co{((ΣΣ∗)(x, y, w, 0), β(x, y, w, u))|(u,w) ∈ U × B̄C(0)}

⊂ {((ΣΣ∗)(x, y, w, θ), β(x, y, w, u)|(u,w, θ) ∈ U× B̄C(0)× [0, K]}

where, for any set E, co(E) denotes the convex hull of E.
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Proof. Let µ be a probability measure on the set U × B̄C(0). Our goal is to find a triplet

(w̄, θ̄, ū) ∈ Rd × [0, K]× U which satisfies :

∫
U×B̄C(0)((ΣΣ∗)(x, y, w, 0), β(x, y, w)µ(du, dw)

=
(
(ΣΣ∗)(x, y, w̄, θ̄), β(x, y, w̄, θ̄, ū)

)
.

(2.1.3)

Let Φ(u,w) = ((σσ∗)(x, y, u), wσσ∗(x, y, u), b(x, y, u), f(x, y, wσ(x, y, u), u)). According to

assumption (H) and the continuity of Φ, there exists (ū, w̄) in U× B̄C(0) such that

∫
U×B̄C(0)

Φ(u,w)µ(du, dw) = Φ(ū, w̄). (2.1.4)

A simple computation gives,

ΣΣ∗(x, y, w, θ) =
 σσ∗(x, y, u) σσ∗(x, y, u)w∗

wσσ∗(x, y, u) wσσ∗(x, y, u)w∗ + θ2


The expression of (ΣΣ∗)(x, y, w, 0) shows that, to obtain (2.1.3), it suffices to find θ̄ ∈ [0, K]

such that

θ̄2 =
∫
U×B̄C(0)

wσσ∗(x, y, u)w∗µ(du, dw)− w̄σσ∗(x, y, u)w̄∗ := α. (2.1.5)

Since σσ∗(x, y, ū) =
∫
U×B̄C(0) σσ

∗(x, y, u)µ(du, dw), then we can write α as follows

α =
∫
U×B̄C(0)

wσσ∗(x, y, u)w∗µ(du, dw)−
∫
U×B̄C(0)

w̄σσ∗(x, y, u)µ(du, dw)w̄∗ (2.1.6)

=
∫
U×B̄C(0)

((w − w̄)σ(x, y, u))((w − w̄)σ(x, y, u))∗µ(du, dw) (2.1.7)

It follows that α ≥ 0. Hence, it suffices now to choose θ̄ =
√
α.

Now, from (2.1.5) we have

∫
U×B̄C(0)

|wσ(x, y, u)|2µ(du, dw) = |w̄σ(x, y, u)|2 + θ̄2.
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Since |σ(x, y, u)| is bounded and the support of µ is included in U× B̄C(0), it follows that θ̄

is bounded, that is : there exists K > 0 such that θ̄ belongs to [0, K].

2.2 The Hamilton-Jacobi-Bellman equation

Let Sd denote the space of the symmetric matrices in Rd2 . For a function V , we denote

by ∇xV the gradient and ∇xxV the Hessian matrix of V . Let H be the real function define

on Rd × R× Rd × Sd × U by :

H(x, y, p, A, u) := 1
2tr ((σσ∗)(x, y)A) + b(x, y, u)p+ f(x, y, p σ(x, y), u) (2.2.1)

According to Li and Wei [102], the value function V (t, x), define by (2.1.2), solves the follo-

wing Hamilton-Jacobi-Bellman equation in viscosity sense.


∂

∂t
V (t, x) + inf

u∈U
H(x, V (t, x),∇xV (t, x),∇xxV (t, x), u) = 0, (t, x) ∈ [0, T ]× Rd,

V (T, x) = Φ(x), x ∈ Rd,

(2.2.2)

2.3 The main results

Definition 13. (Relaxed control) : Let Q(U) be the space of probability measures on U

equipped with the topology of stable convergence. We denote M(Ω) the space of all Ft-adapted

processes νt(du) taking values in Q(U). A relaxed control is an M(Ω)−valued process (νt),

Theorem 14. Assume that (B) and (H) are satisfied and the uniqueness holds for boun-

ded viscosity solution of equation (2.1.2). Then, there exist a strict optimal control to the

stochastic optimal control problem (2.0.1)–(2.0.3) in some reference stochastic system ν̄ =

(Ω̄, F̄ , P̄ , ¯(Ft), W̄ )
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2.4 Proof of the main results

The proof consists to construct an approximating sequence of controlled systems for

which we prove the existence of a sequence of feedback controls. To this end, we have to

approximate the coefficients of our original control problem by smooth ones. The existence

of an optimal control is then obtained by passing to the limit. More precisely, we approximate

the controlled FBSDE (2.0.1) by a sequence of FBSDEs, with smooth data bδ, σδ, fδ and Φδ

and consider a sequence of value functions V δ, which is associated to the FBSDE with these

regularized coefficients. According to Krylov [94] (Theorems 6.4.3 and 6.4.4), V δ is sufficiently

smooth and satisfies an HJB equation. Since all admissible controls take their values in a

compact set, we then deduce the existence of a feedback control uδ. Next, we prove that the

sequence V δ converges uniformly to a function V which is the value function of our initial

control problem.

2.4.1 Construction of an approximating control problem

The functions bδ, σδ, fδ and Φδ respectively denotes the mollifier of the functions b, σ, f

and Φ 1.

Let δ ∈ (0, 1]. Let Hδ be the approximating Hamiltonian define on Rd×R×Rd×Sd×U

1. See Preliminaries for the definition of the mollifier
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by :

Hδ (x, y, p, A, v) = 1
2
(
tr
(
(σδσ∗δ ) (x, y, v) + δ2IRd

)
A
)

+ bδ (x, y, pσδ (x, y, v) , v) p (2.4.1)

+ fδ (x, y, pσδ (x, y, v) , v) ,

and consider the approximating HJB equation


∂

∂t
V δ (t, x) + inf

v∈U
Hδ

(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), v

)
= 0, (t, x) ∈ [0, T ]× Rd,

V δ (T, x) = Φδ(x), x ∈ Rd,
(2.4.2)

since Hδ is smooth and ( (σδσ∗δ ) (x, y, v) + δ2IRd) is strictly elliptic, then according to [94]

(Theorems 6.4.3 and 6.4.4) the PDE (2.4.2) admits a unique solution which belongs to

C1,2
b ([0, T ]× Rd).

The compactness of the control set U and the regularity of the solution allow us to prove the

existence of a measurable function vδ : [0, T ] × Rd → U which minimizes the Hamiltonian

Hδ for each (t, x) ∈ [0, T ]× Rd, that is :

Hδ
(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), vδ(t, x)

)
:= inf

v∈U
Hδ

(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), v

)
.

Let B be an Rd–valued Brownian motion which is independent from W . For (t, x) ∈ [0, T ]×

Rd, let Xδ be a solution of the following SDE :
dXδ

s = bδ(Xδ
s , V

δ(s,Xδ
s ),∇xV

δ(s,Xδ
s )σδ(Xδ

s , V
δ(s,Xδ

s ), vδ(s,Xδ
s )), vδ(s,Xδ

s ))ds
+σδ(Xδ

s , V
δ(s,Xδ

s ), vδ(s,Xδ
s ))dWs + δdBs, s ∈ [t, T ],

Xδ
t = x.

(2.4.3)

Since the matrix (σδσ∗δ )
(
x, vδ(s, x)

)
+ δ2IRd is uniformly elliptic and the coefficients

bδ(x, V δ(s, x),∇xV
δ(s, x)σδ(x, V δ(s, x), vδ(s, x)) and σδ(x, V δ(s,Xδ

s ), vδ(s, x)) are measurable
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and bounded in (s, x), then according to Theorem 1 of Section 2.6 in [93] we get the

existence of a weak solution. That is, there exists some reference stochastic system νδ =

(Ωδ,F δ, P δ,F δt ,W δ, Bδ) and an F δt -adapted continuous process Xδ which is a solution of

(2.4.3).

For s ∈ [t, T ], we put :

Y δ
s := V δ(s,Xδ

s ), Zδ
s := ∇xV

δ(s,Xδ
s )σδ(Xδ

s , V
δ(s,Xδ

s ), uδs), U δ
s := δ∇xV

δ(s,Xδ
s ).

For an arbitrarily given admissible control u ∈ Uνδ(t), we consider the following coupled

FBSDE equation, for s ∈ [t, T ],

dXδ,x,u
s = bδ

(
Xδ,x,u
s , Y δ,x,u, Zδ,x,u, us

)
dt+ σδ

(
Xδ,x,u
s , Y δ,x,u, us

)
dW δ

s + δdBδ
s

dY δ,x,u
s = −fδ(Xδ,x,u

s , Y δ,x,u
s , Zδ,x,u

s , us)ds+ Zδ,x,u
s dW δ

s + U δ,x,u
s dBδ

s + dM δ,x,u
s

Y δ,x,u
T = Φδ(Xδ,x,u

T ), Xδ,x,u
t = x,

(Y δ,x,u, Zδ,x,u, U δ,x,u) ∈ S2
νδ(t, T ;R)×H2

νδ(t, T ;Rd)×H2
νδ(t, T ;Rd),

M δ,x,u ∈M2
νδ(t, T ;Rd) is orthogonal to W δ and to Bδ.

(2.4.4)

According to [125], the previous FBSDE has a unique F δt -adapted solution

(Xδ,x,u, Y δ,x,u, Zδ,x,u, U δ,x,u,M δ,x,u). The cost functional associated to the controlled system

(2.4.4) is then defined by :

Jδ(u) := Y δ,x,u
t , u ∈ Uνδ(t).

Proposition 2.4.1. Let assumptions (B) be satisfied. Then,

1. for every δ ∈ (0, 1], there exists an admissible control uδs := vδ(s,Xδ
s ), s ∈ [0, T ], such

that :

Jδ(uδ) = V δ(t, x) = essinfu∈U
νδ

(t)J
δ(u),

2. (i) for all t ∈ [0, T ] ; x, x′ ∈ Rd and δ, δ′ ∈ (0, 1], there exits a constant C which
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depends from K, T and the bounds of the coefficients such that,

|V δ′(t, x′)− V δ(t, x)| ≤ C (|δ − δ′| 12 + |x− x′|), (2.4.5)

(ii) for all (t, x) ∈ [0, T ]× Rd and δ ∈ (0, 1].

|V δ(t, x)− V (t, x)| ≤ C
√
δ.

i.e V δ converges uniformly to the unique viscosity solution of the HJB equation (2.1.2).

Proof. 1) We observe that from the uniqueness of the solution of (2.4.4) with the control

process uδ, it follows that Xδ,x,uδ = Xδ. Let,

Y δ
s = V δ(s,Xδ

s ), Zδ
s = ∇xV

δ(s,Xδ
s )σδ(Xδ

s , V
δ(s,Xδ

s ), uδs), U δ
s = δ∇xV

δ(s,Xδ
s ), s ∈ [t, T ].

Since V δ ∈ C1,2
b ([0, T ] × Rd), Itô’s formula applied to V δ(s,Xδ

s ) shows that (Y δ, Zδ, U δ)

satisfies the backward component of (2.4.4) for u = uδ. Hence, from the uniqueness of the

solution of (2.4.4), we get (Y δ,x,uδ , Zδ,x,uδ , U δ,x,uδ) = (Y δ, Zδ, U δ) andM δ,x,uδ = 0, in particular

Y δ,x,uδ

t = Y δ
t = V δ(t, x).

2) Let δ′ > 0 and x′ ∈ Rd. Let Xδ′,x′,uδ ∈ S2
νδ(t, T ;Rd) denote the unique solution of the

following forward equation :

dXδ′,x′,uδ
s = bδ′(Xδ′,x′,uδ

s , V δ′(s,Xδ′,x′,uδ
s ),∇xV

δ′(s,Xδ′,x′,uδ
s )

σδ′(Xδ′,x′,uδ
s , V δ′(s,Xδ′,x′,uδ

s ), uδs), uδs)ds+ σδ′
(
Xδ′,x′,uδ
s , V δ′(s,Xδ′,x′,uδ

s ), uδs
)
dW δ

s

+δ′dBδ
s , s ∈ [t, T ],

Xδ′,x′,uδ

t = x′.
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We extend this solution to the whole interval [0, T ] by putting Xδ′,x′,uδ

s = x′, for s < t. We

set,

f̃ δ
′,x′,uδ

s := − ∂

∂s
V δ′(s,Xδ′,x′,uδ

s ) (2.4.6)

− 1
2tr

(
(σδ′σ∗δ′) (Xδ′,x′,uδ

s , V δ′(s,Xδ′,x′,uδ

s ), uδs) + δ′
2
IRd

)
×∇xxV

δ(s,Xδ′,x′,uδ

s )

− bδ′(Xδ′,x′,uδ

s , V δ′(s,Xδ′,x′,uδ

s ),∇xV
δ′(s,Xδ′,x′,uδ

s )σδ′(Xδ′,x′,uδ

s , V δ′(s,Xδ′,x′,uδ

s ), uδs), uδs)

Itô’s formula applied to V δ′(s,Xδ,x′,uδ
s ) shows that

Y δ′,x′

s := V δ′(s,Xδ′,x′,uδ

s ),

Zδ′,x′

s := ∇xV
δ′(s,Xδ′,x′,uδ

s )σδ′(Xδ′,x′,uδ

s , V δ′(s,Xδ′,x′,uδ

s ), uδs),

U δ′,x′

s := δ′∇xV
δ′(s,Xδ′,x′,uδ

s ), M δ′,x′

s := 0, s ∈ [t, T ],

is the unique solution of the BSDE :

dY δ′,x′
s = −f̃ δ′,x′,uδs ds+ Zδ′,x′

s dW δ
s + U δ′,x′

s dBδ
s , s ∈ [t, T ],

Y δ′,x′

T = Φδ′(Xδ′,x′,uδ
′

T ),
(Y δ′,x′ , Zδ′,x′ , U δ′,x′) ∈ S2

νδ(t′, T ;R)×H2
νδ(t, T ;Rd)×H2

νδ(t, T ;Rd),
M δ′,x′ ∈M2

νδ(t, T ;Rd) is orthogonal to both W δ and to Bδ.

(2.4.7)

We consider the BSDE :



dY δ′,x′,uδ
s = −fδ′

(
Xδ′,x′,uδ
s , Y δ′,x′,uδ

s , Zδ′,x′,uδ
s , uδs

)
ds

+Zδ′,x′,uδ
s dW δ

s + U δ′,x′,uδ
s dBδ

s + dM δ′,x′,uδ
s , s ∈ [t′, T ],

Y δ′,x′,uδ

T = Φδ′(Xδ′,x′,uδ

T ),
(Y δ′,x′,uδ , Zδ′,x′,uδ , U δ,x′,uδ , uδ) ∈ S2

νδ(t, T ;R)×H2
νδ(t, T ;Rd)×H2

νδ(t, T ;Rd),
M δ′,x′,uδ ∈M2

νδ(t, T ;Rd) is orthogonal to W δ and to Bδ.
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From the HJB equation (2.4.2) with the classical solution V δ′ we observe that

0 = ∂

∂t
V δ′

(
s,Xδ′,x′,uδ

s

)
+ inf

v∈U
Hδ′

(
Xδ′,x′,uδ

s , (V δ,∇xV
δ′ ,∇xxV

δ′)(s,Xδ′,x′,uδ

s ), v
)

≤ ∂

∂t
V δ′

(
s,Xδ′,x′,uδ

s

)
+Hδ′

(
Xδ′,x′,uδ

s , (V δ,∇xV
δ′ ,∇xxV

δ′)(s,Xδ′,x′,uδ

s ), uδs
)

≤ fδ′
(
Xδ′,x′,uδ

s , Y δ′,x′

s , Zδ′,x′

s , uδs
)
− f̃ δ′,x′,uδs , s ∈ [t, T ].

Therefore, the comparison theorem shows that

∀s ∈ [t, T ], Y δ′,x′

s ≤ Y δ′,x′,uδ

s P δ.a.s.

A symmetric argument allows us deduce that :

|V δ′(t, x′)− V δ(t, x)| = |Y δ′,x′

t − Y δ,x,uδ

t | ≤ |Y δ′,x′,uδ

t − Y δ,x,uδ

t |, P δ-a.s.

Since V δ and V δ′ are deterministic, we have

|V δ′(t, x′)− V δ(t, x)| ≤ E(|Y δ′,x′,uδ

t − Y δ,x,uδ

t | |Fδt ).

Hence, it suffices to estimate E(|Y δ′,x′,uδ

t −Y δ,x,uδ

t | |Fδt ). We assume that for s < t, Y δ′,x′,uδ
s =

Y δ′,x′,uδ

t , Zδ′,x′,uδ
s = 0 and M δ′,x′,uδ

s = 0. Using Lemmas 16 and 17 (in Appendix), it follows

that there exists a constant C which depends upon K,T and the bounds of the coefficients

such that :

E[|Y δ′,x′,uδ

t − Y δ,x,uδ

t |2|Fδt ] ≤ 2E[|Y δ′,x′,uδ

t − Y δ,x′,uδ

t |2 + |Y δ,x′,uδ

t − Y δ,x,uδ

t |2|Fδt ]

≤ C(|x− x′|2 + |δ − δ′|).

In particular,

|V δ(t, x′)− V δ(t, x)| ≤ C|x− x′|, (2.4.8)
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and

|V δ′(t, x)− V δ(t, x)| ≤ C|δ − δ′|1/2. (2.4.9)

We prove assertion (ii).

According to assertion (i), (V δ) is a Cauchy sequence with respect to the uniform convergence

norm, in (t, x) ∈ [0, T ]×Rd. It then converges uniformly to a function V̄ as δ → 0. Since V δ

is uniformly bounded in (t, x, δ), then V̄ ∈ Cb([0, T ]× Rd).

Since Hδ converges uniformly on compact sets to H, then using the stability of viscosity

solutions, it follows that V̄ is a bounded viscosity solution to equation (2.1.2). the uniqueness

of the viscosity solution, within the class of bounded continuous function, we get that V̄ ≡ V .

This shows that the sequence (V δ′) converges to V , as δ′ → 0. Using inequality (2.4.9), it

follows that for each δ ∈ (0, 1] and (t, x) ∈ [0, T ]× Rd, |V δ(t, x)− V (t, x)| ≤ C
√
δ.

2.4.2 Auxiliary sequence and the passing to the limits

We will establish the convergence of the approximating control problem to the origi-

nal one. To this end, let (δn)n∈N be a sequence of positive real numbers which are decrea-

sing to 0. We put wns := ∇xV
δn(t,Xδn

s ), Zδn
s := wns σ(Xδn

s , Y
δn
s , uδns ) and U δn

s := δnw
n
s . Let

(Xδn , Y δn , Zδn , U δn , uδn) be a sequence of an approximating controlled systems. Since wn is

uniformly bounded (see Proposition 2.4.1), the idea consists to consider the couple (uδn , wn)

as a relaxed control. This allows to overcome the difficulties related to the convergence of
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the component Zδn . We then show that the system (Xδn , Y δn , Zδn , U δn

s , u
δn) has a subse-

quence which converges in law to some controlled system which solves our initial problem.

Assumption (H) and the result of [63] allow us to prove the existence of a strict optimal

control.

For n ∈ N, (Xδn
s , Y

δn
s )t≤s≤T is a solution to the following controlled system :

dXδn
s = bδn(Xδn

s , Y
δn
s , wns σδn(Xδn

s , Y
δn
s , uδns )ds+ σδn(Xδn

s , Y
δn
s , uδns )dW δn

s + δndB
δn ,

dY δn
s = −fδn(Xδn

s , Y
δn
s , wns σδn(Xδn

s , Y
δn
s , uδns ), uδns )ds

+wns σδn(Xδn
s , Y

δn
s , uδns )dW δn

s + U δn
s dBδn

s .

Xδn
t = x, Y δn

t = V δn(t, x).
(2.4.10)

where wns := ∇xV
δn(s,Xδn

s ).

To show that (Xδn
s , Y

δn
s )t≤s≤T has a subsequence denoted also by (Xδn

s , Y
δn
s )t≤s≤T which

converges in law to a process (X̄s, Ȳs)t≤s≤T which solves our initial problem, we will construct

a sequence of an auxiliary processes (Xn
s , Y

n
s )t≤s≤T which converges to (X̄s, Ȳs)t≤s≤T and

such that the difference between (Xn
s , Y

n
s )t≤s≤T and (Xδn

s , Y
δn
s )t≤s≤T goes to zero as n goes

to infinity.

Let (Xn
s , Y

n
s )t≤s≤T be the unique solution of the following controlled forward system :

dXn
s = b(Xn

s , Y
n
s , w

n
s σ(Xn

s , Y
n
s , u

δn
s )ds+ σ(Xn

s , Y
n
s , u

δn
s )dW δn

s ,

dY n
s = −f(Xn

s , Y
n
s , w

n
s σ(Xn

s , Y
n
s , u

δn
s ), uδns )ds+ wns σ(Xn

s , Y
n
s , u

δn
s )dW δn

s .

Xn
t = x, Y n

t = V δn(t, x).
(2.4.11)

We define the processes χn, rn and the Brownian motion Wn as follows

χns =
 Xn

s

Y n
s

 , rns = (wns , 0, uδns ) and Wn =
 W δn

Bδn

 .
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We rewrite the system (2.4.11) as follows :

dχns = β(χns , rns )ds+ Σ(χns , rns )dWn
s , s ∈ [t, T ],

χnt =
 x

V δn(t, x)

 , (2.4.12)

where β and Σ are the functions defined in lemma 12.

According to Proposition 2.4.1, wns = ∇xV
δn(s,Xδn

s ) is uniformly bounded by C. Hence,

we can interpret (rns , s ∈ [t, T ]) as a control with values in the compact set A := B(0Rd , C)×

[0, K] × U . Now, as usual, we embed the controls rn in the set of relaxed controls, i.e.

we consider rn as random variable with values in the space ϑ of all Borel measures q on

[0, T ] × A, whose projection q(· × A) coincides with the Lebesgue measure. For this, we

identify the control process rn with the random measure

qn(ω, ds, da) = δrns (ω)(da)ds, (s, a) ∈ [0, T ]× A, ω ∈ Ω.

From the boundedness of {(Σ(x, y, z, θ, v), β(x, y, z, θ, v)) , (x, y, z, θ, v) ∈ Rd × R × A}

and the compactness of ϑ with respect to the topology induced by the weak convergence of

measures, we get the tightness of the laws of (χn, qn), n ≥ 1, on C([0, T ];Rd × R)× ϑ.

Therefore, we can find a probability measure Q on C([0, T ];Rd × R) × ϑ and extract a

subsequence -still denoted by (χn, qn)- that converges in law to the canonical process (χ, q) on

the space C([0, T ];Rd×R)×ϑ endowed with the measure Q. Thanks to assumption (H) and

the result of [63], it follows that there exists a stochastic reference system ν̄ = (Ω̄, F̄ , P̄ , F̄, W̄)

enlarging (C([0, T ];Rd ×R)× ϑ;Q) and an F̄-adapted process r̄ with values in A, such that
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the process χ is a solution of

dχs = β(χs, r̄s)ds+ Σ(χs, r̄s)dW̄s, s ∈ [t, T ],

χt =
 x

V (t, x)

 ,
and has the same law under P̄ as under Q. Replacing Σ and β by their definition and setting

χ =
 X̄

Ȳ

, W̄ =
 W̄

B̄

 and r̄ = (w̄, θ̄, ū), this system is equivalent to


dX̄s = b(X̄s, Ȳs, Z̄s, ūs)ds+ σ(X̄s, Ȳs, ūs)dW̄s,

dYs = −f(X̄s, Ȳs, Z̄s, ūs)ds+ Z̄sdW̄s + θ̄sdB̄s, s ∈ [t, T ]
X̄t = x, Ȳt = V (t, x).

To continue our proof, we need the following :

Lemma 15. Let (Xδn , Y δn , wnσδn(Xδn , Y δn , uδn)) (resp. Xn, Y n) be the solution of the ap-

proximating FBSDE (2.4.4) for δn and uδn (resp. the FBSDE (2.4.11)). Then there are two

positive constants K1 and K2 such that for every n ∈ N,

E[sups∈[t,T ] |Xδn
s −Xn

s |2] ≤ K1 δ
2
n,

E[sups∈[t,T ] |Y δn
s − Y n

s |2] ≤ K2 δ
2
n.

(2.4.13)

Before to give proof of this lemma, we first use it to finish the proof of the main theorem.

Since (Xn, Y n)n∈N converges in law to (X̄, Ȳ )n∈N, then Lemma 15 implies that the same holds

true for (Xδn , Y δn)n∈N and the limits of these two sequences have the same law. Further, we

deduce from (2.4.13) and Proposition 2.4.1, that Ȳs = V (s, X̄s) for each s ∈ [t, T ], P̄ -

a.s. In particular YT = Φ(XT ) P̄ -a.s. Thus, if we set M̄s =
∫ s
t θ̄rdB̄r, then 〈M̄, W̄ 〉s =

∫ s
t θ̄rd〈B̄, W̄ 〉r = 0 and (X̄, Ȳ , Z̄, M̄) satisfies (2.0.1) in the stochastic reference system ν̄ =

(Ω̄, F̄ , P̄ , F̄, W̄). According to Li and Wei [102] the unique bounded viscosity solution V of

the HJB equation (2.1.2) satisfies V (t, x) = essinfu∈Uν̄(t)J(t, x, u), P̄ -a.s.
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Proof. of Lemma 15 We put

X
n

s := Xδn
s −Xn

s , and Y
n

s := Y δn
s − Y n

s .

For l = b, σ, f, A, and lδn = bδn , σδn , fδn , Aδn Let :

∆ln(s) := lδn(s,Xδn
s , Y

δn
s , wns σδn

(
Xδn
s , Y

δn
s , uδns

)
, uδns )− l(s,Xn

s , Y
n
s , w

n
s σ
(
Xn
s , Y

n
s , u

δn
s

)
, uδns ),

Since wn is uniformly bounded 2, it follows that there exists a constant K̄ independent

from δn such that :

|∆ln(r)| ≤ |lδn(r,Xδn
r , Y

δn
r , wnr σδn(Xδn

r , Y
δn
r , uδnr ), uδnr )− l(s,Xδn

r , Y
δn
r , wnr σδn(Xδn

r , Y
δn
r , uδnr ), uδnr )|

+ |l(s,Xδn
r , Y

δn
r , wnr σ

δn(Xδn
r , Y

δn
r , uδnr ), uδnr )− l(r,Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r , u

δn
r ), uδnr )|

≤ K̄ (δn + |Xn
r |+ |Y

n
r |).

Using Itô’s formula and Young’s inequality we can find a constant C1 which depends only

from K,T such that :

E[|Xn

s |2|Fδt ] = E[
∫ s

t
(2Xn

r∆b(r) + |∆σ(r)|2)dr|Fδt ]

≤ C1δ
2
n + C1E[

∫ s

t
(|Xn

r |2 + |Y n
r |2)dr|Fδt ]

≤ C1δ
2
n + C1E[

∫ T

t
(|Xn

r |2 + |Y n
r |2)dr|Fδt ]. (2.4.14)

Using again Itô’s formula and Young’s inequality, it yields that there exists a constant C2

2. See Proposition 2.4.1), then using proposition 1.1.1.
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which does not depends from δn such that for any t ≤ s ≤ T ,

E[|Y n
s |2|Fδt ] + E[

∫ T

s
|wnr |∆σ(r)|2dr|Fδt ] + E[

∫ T

s
|U δn,t,x,uδn

r |2dr|Fδt ] + E[〈M δ′,t,x′,uδ〉T |Fδt ]

≤ C2(δ2
n + E[|Xn

T |2|Fδt ] + E[
∫ T

s
|Xn

r |2 + |Y n

r |2dr|Fδt ]).

Putting s = T in (2.4.14) and modifying C2 if necessary it follows that

E[|Y n

s |2|Fδt ] ≤ C2 (δ2
n + E[

∫ T

t
(|Xn

r |2 + |Y n

r |2)dr|Fδt ]). (2.4.15)

In the other hand, Itô’s formula applied to 〈GXn

s , Y
n

s 〉 combined with assumption (B2)

shows that :

E[〈GXn

s , Y
n

s 〉|Fδt ] = E[〈GXn

T , Y
n

T 〉|Fδt ]− E[
∫ T

s
〈∆A(r), (Xn

r , Y
n

r , w
n
r∆σn(r))〉dr|Fδt ]

− E[δn
∫ T

s
GU δn,x,uδn

r dr|Fδt ]

≥ E[〈GXn

T , Y
n

T 〉|Fδt ] + E[β1

∫ T

s
|GXn

r |2dr|Fδt ] + E[
∫ T

s
β2(|GTY

n

r |2

+ |GT wnr∆σn(r)|2dr|Fδt ]− K̄2 δ2
n − δn E[

∫ T

s
GU δn,x,uδn

r dr|Fδt ]. (2.4.16)

We shall estimate E[〈GXn
T , Y

n
T 〉|Fδt ]. We use Young’s inequality to get for any ε > 0,

E[〈GXn

T , Y
n

T 〉|Fδt ] = E[〈G (Xδn
T −Xn

T ),Φδn(Xδn
T )− Φδn(Xn

T )〉|Fδt ]

− E[〈G (Xδn
T −Xn

T ),Φ(Xn
T )− Φδn(Xn

T )〉|Fδt ]

≥ E[µ1|G(Xδn
T −Xn

T )|2|Fδt ]− |G| K E[ |Xδn
T −Xn

T | δn |Fδt ]

≥ (µ1|G|2 − |G| K ε)E[ |Xδn
T −Xn

T |2 δn |Fδt ]−
|G| K
ε

δ2
n.

We choose ε = µ1 |G|
K

in the previous inequality to obtain

E[〈GXn

T , Y
n

T 〉|Fδt ] ≥ −
K2

µ1
δ2
n. (2.4.17)
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Since ∇xV

δn(t, x) is uniformly bounded in n, t, x (see Proposition 2.4.1) and

U δn,t,x,uδn
r = δn∇xV

δn(r,Xδn,t,x,uδn
r ), we deduce that there exists a constant C̄(K,T ) such

that,

δn E[
∫ T

s
|GU δn,t,x,uδn

r |dr|Fδt ] ≤ C̄(K,T )δ2
n. (2.4.18)

Putting C̃ = (C̄(K,T ) + K2 + C) and combining (2.4.16), (2.4.17) and (2.4.18), we get for

t ≤ s ≤ T ,

E[〈GXn
s , Y

n
s 〉|Fδt ] + C̃δ2

n ≥ E[β1

∫ T

s
|GXn

r |2dr|Fδt ]

+ E[
∫ T

s
β2(|GTY

n
r |2|Fδt ] + E[

∫ T

s
β2|GTwnr ∆σn(r)|2dr|Fδt ]︸ ︷︷ ︸

≥0

≥ C3 E[
∫ T

s
(|Xn

r |2 + |Y n
r |2)dr|Fδt ].

Putting s = t, it follows that

E[
∫ T

t
(|Xn

r |2 + |Y n

r |2)dr|Fδt ] ≤ C4 (E[〈GXn

t , Y
n

t 〉|Fδt ] + δ2
n).

where C4 is some constant which depends only from K,T, |G|, β1 and β2.

Since X t = 0 (the two processes start from the same point x), we deduce that

E[
∫ T

t
(|Xn

r |2 + |Y n
r |2)dr|Fδt ] ≤ C4δ

2
n. (2.4.19)

Using (2.4.14) and (2.4.19), one can show that there exists a constant K1 which depends

only upon K,T, |G|, β1 and β2 such that for any t ≤ s ≤ T , E[|Xn
s |2|Fδt ] ≤ K1δ

2
n. Finally,

using (2.4.15) and (2.4.19), it follows that there exists a constant K2 which depends only

from K,T, |G|, β1 and β2 such that E[|Y n

s |2|Fδt ] ≤ K2δ
2
n.
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Lemma 16. (Gradient estimate) Let assumption (B) be satisfied. Then, for any t ∈ [0, T ],

δ ∈ (0, 1] and x, x′ ∈ Rd, there exits a constant C which depends from K, T and the bounds

of the coefficients, such that

E[|Y δ,x,uδ

t − Y δ,x′,uδ

t |2|Fδt ] ≤ C|x− x′|2. (2.4.20)

Proof. Let (Xδ,x,uδ , Y δ,x,uδ , Zδ,x,uδ) (resp. (Xδ,x′,uδ , Y δ,x′,uδ , Zδ,x′,uδ)) be the solution of the

FBSDE (2.4.4) with the initial value x (resp. x′). We put

Xs := Xδ,x,uδ

s −Xδ,x′,uδ

s , Y s := Y δ,x,uδ

s − Y δ,x′,uδ

s , Zs := Zδ,x,uδ

s − Zδ,x′,uδ

s ,

U s := U δ,x,uδ

s − U δ,x′,uδ

s .

For l = b, σ, f, A, we put

∆lδ(s) := lδ(s,Xδ,x,uδ

s , Y δ,x,uδ

s , Zδ,t,x,uδ

s )− lδ(s,Xδ,x′,uδ

s , Y δ,x′,uδ

s , Zδ,x′,uδ

s ).

Using to Itô’s formula, Young’s inequality and Proposition 1.1.1, we get for any s ∈ [t, T ],

E[|Xs|2|Fδt ] ≤ E[
∫ s

t
|Xr|2 + |Y r|2 + |Zr|2dr|Fδt ] (2.4.21)

Again by using Itô’s formula, Young’s inequality, Proposition 1.1.1 and the Lipschitz as-

sumption on Φ, we can find a constant C2 which depends only upon K such that :

E[|Y s|2|Fδt ] + E[
∫ T

s
|Zr|2dr|Fδt ] + E[

∫ T

s
|U r|2dr|Fδt ] + E[〈M δ′,t,x′,uδ〉T |Fδt ]

≤ C2

(
E[|XT |2|Fδt ] + E[

∫ T

s

(
|Xr|2 + |Y r|2 + |Zr|2

)
dr|Fδt ]

)
.
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Putting s = T in (2.4.21) then plugging it in the previous inequality, it follows (by modifying

C2 if necessary) that :

E[|Y s|2|Fδt ] + E[
∫ T

s
|Zr|2dr|Fδt ] + E[

∫ T

s
|U r|2dr|Fδt ] + E[〈M δ′,x′,uδ〉T |Fδt ]

≤ K2|x− x′|2 + C2( E[
∫ T

t
|Y r|+ |Xr|2 + |Zr|2dr|Fδt ]) (2.4.22)

In the other hand, Itô’s formula combined with assumption (B2), allows us to find a positive

constant C3 depending upon K, β1 and β2 such that :

E[〈GXs, Y s〉|Fδt ] = E[〈GXT , Y T 〉|Fδt ]− E[
∫ T

s
〈∆A(r), (Xr, Y r, Zr)dr|Fδt ]

≥ E[µ1|GXT |2|Fδt ] + E[β1

∫ T

s
|GXr|2dr|Fδt ]

+ E[
∫ T

s
β2(|GTY r|2 + |GTZr|2dr|Fδt ]

≥ C3 E[
∫ T

s
|Xr|2 + |Y r|2 + |Zr|2dr|Fδt ],

Therefore, for s = t we have

E[
∫ T

t
|Xr|2 + |Y r|2 + |Zr|2dr|Fδt ] ≤

1
C3

E[〈GX t, Y t〉|Fδt ]. (2.4.23)

Using (2.4.22) and (2.4.23) we obtain, by putting s = t, that :

E[|Y t|2|Fδt ] ≤ K2|x− x′|2 + C4 E[〈GX t, Y t〉|Fδt ]

By Young’s inequality, we can find a constant C5(K, |G|, β1, β2) such that :

E[|Y t|2 |Fδt ] ≤ K2|x− x′|2 + C5 E[|X t|2|Fδt ] + 1
2 E[|Y t|2|Fδt ]

Since X t = x− x′, it follows that : that E[|Y t|2 |Fδt ] ≤ 2(K2 + C5)|x− x′|2.
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Lemma 17. (Stability). Let assumptions (B) be satisfied. Then for any t ∈ [0, T ], δ, δ′ ∈

(0, 1] and x ∈ Rd, there exits a constant C which depends from K, T and the bounds of the

coefficients, such that

E[|Y δ′,x′,uδ

t − Y δ,x′,uδ

t |2|Fδt ] ≤ C|δ − δ′|. (2.4.24)

Proof. Let (Xδ,x′,uδ , Y δ,x′,uδ , Zδ,x′,uδ) (resp. (Xδ′,x′,uδ , Y δ′,x′,uδ , Zδ′,x′,uδ)) be the solution of the

FBSDE (2.4.4)–(2.4.4) associated to δ (resp. δ′). We put,

Xs := Xδ′,x′,uδ

s −Xδ,x′,uδ

s , Y s := Y δ′,x′,uδ

s − Y δ,x′,uδ

s , Zs := Zδ′,x′,uδ

s − Zδ,x′,uδ

s

Let l = b, σ, f, A,

∆l(s) := lδ′(s,Xδ′,x′,uδ

s , Y δ′,x′,uδ

s , Zδ′,x′,uδ

s , uδs)− lδ(s,Xδ,x′,uδ

s , Y δ,x′,uδ

s , Zδ,x′,uδ

s , uδs),

U s := U δ′,x′,uδ

s − U δ,x,uδ

s ,

from Proposition 1.1.1 we have

|∆l(s)|2 ≤ 2K2 (|δ − δ′|2 + |Xs|2 + |Y s|2 + |Zs|2).

Arguing as in the proof of Lemma 16, one can show that there exists two constants C1 and

C2 which depend upon K,T but not from δ, δ′ such that for any t ≤ s ≤ T ,

E[|Xs|2|Fδt ] ≤ C1|δ − δ′|2 + C1E[
∫ s
t (|Xr|2 + |Y r|2 + |Zr|2)dr|Fδt ]. (2.4.25)

and

E[|Y s|2|Fδt ] + E[
∫ T
s |Zr|2dr|Fδt ] + E[

∫ T
s |U r|2dr|Fδt ] + E[〈M δ′,x′,uδ〉T |Fδt ]

≤ C2|δ − δ′|2 + C2 E[
∫ T

t
(|Xr|2 + |Y r|2 + |Zr|2)dr|Fδt ].

(2.4.26)
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In the other hand, we successively use Itô’s formula and assumption (B2) to get

E[〈GXs, Y s〉|Fδt ] = E[〈GXT , Y T 〉|Fδt ]− E[
∫ T

s
〈∆A(r), (Xr, Y r, Zr)〉dr|Fδt ]

− E[(δ − δ′)
∫ T

s
GU rdr|Fδt ]

≥ E[〈GXT , Y T 〉|Fδt ] + E[β1

∫ T

s
|GXr|2dr|Fδt ] + E[

∫ T

s
β2(|GTY r|2

+ |GTZr|2dr|Fδt ]−K2|δ − δ′|2 − (δ − δ′)E[
∫ T

s
GU rdr|Fδt ]. (2.4.27)

Since |Φδ(x)− Φδ′(x)| ≤ |δ − δ′|, we use Young’s inequality to obtain

E[〈GXT , Y T 〉|Fδt ] = E[〈G (Xδ,x,uδ

T −Xδ′,x,uδ

T ),Φδ(Xδ,x,uδ

T )− Φδ(Xδ′,x,uδ

T )〉|Fδt ]

− E[〈G (Xδ,x,uδ

T −Xδ′,x,uδ

T ),Φδ′(Xδ′,x,uδ

T )− Φδ(Xδ′,x,uδ

T )〉|Fδt ]

≥ − E[|〈G (Xδ,x,uδ

T −Xδ′,x,uδ

T ),Φδ′(Xδ′,x,uδ

T )− Φδ(Xδ′,x,uδ

T )〉| |Fδt ]

+ E[µ1|G(Xδ,x,uδ

T −Xδ′,x,uδ

T )|2|Fδt ]

≥ − |G| E[ |Xδ,x,uδ

T −Xδ′,x,uδ

T | |Φδ(Xδ′,x,uδ

T )− Φδ′(Xδ′,x,uδ

T )| |Fδt ]

+ E[µ1|G(Xδ,x,uδ

T −Xδ′,x,uδ

T )|2|Fδt ]

≥ − |G| K E[ |Xδ,x,uδ

T −Xδ′,x,uδ

T | |δ − δ′| |Fδt ]

+ E[µ1|G(Xδ,x,uδ

T −Xδ′,x,uδ

T )|2|Fδt ]

≥ (µ1|G|2 − |G| K ε1)E[ |Xδ,x,uδ

T −Xδ′,x,uδ

T |2 |Fδt ]−
|G| K
ε1

|δ − δ′|2.

Putting ε1 = µ1 |G|
K

, we get

E[〈GXT , Y T 〉|Fδt ] ≥ −
K2

µ1
|δ − δ′|2. (2.4.28)
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Since ∇xV

δ(t, x) is uniformly bounded in t, x (see Lemma 16) and U r = δ∇xV
δ(r,Xδ,x,uδ

r )−

δ′∇xV
δ′(r,Xδ′,x,uδ

r ), it follows that there exists a positive constant C̄ = C̄(T, |G|) such that :

E[
∫ T

s
|GU r|dr|Fδt ] ≤ |G| E[

∫ T

s
|δ∇xV

δ(r,Xδ,x,uδ

r )− δ′∇xV
δ′(r,Xδ′,t,x,uδ

r )| dr|Fδt ]

≤ |G| E[
∫ T

s
|δ∇xV

δ(r,Xδ,x,uδ

r )|+ |δ′∇xV
δ′(r,Xδ′,t,x,uδ

r )| dr|Fδt ]

≤ |G| E[
∫ T

s
|∇xV

δ(r,Xδ,x,uδ

r )|+ |∇xV
δ′(r,Xδ′,t,x,uδ

r )| dr|Fδt ]

≤ C̄. (2.4.29)

Since δ, δ′ ∈ (0, 1], then |δ − δ′| ≥ |δ − δ′|2. Therefore, by (2.4.28), (2.4.29) and (2.4.27) we

show that,

E[〈GXs, Y s〉|Fδt ] + (C̄ +K2 + K2

µ1
)|δ − δ′| ≥ E[β1

∫ T

s
|GXr|2dr|Fδt ]

+ E[
∫ T

s
β2(|GTY r|2 + |GTZr|2dr|Fδt ]

≥ C3 E[
∫ T

s
(|Xr|2 + |Y r|2 + |Zr|2)dr|Fδt ].

(2.4.30)

Using (2.4.26) and (2.4.30), it follows that there exists a constant C5(K, |G|, β1, β2),

|Y t|2 ≤ C5(|δ − δ′|+ 〈GX t, Y t〉). (2.4.31)

Since X t = 0 (the two processes start from the same point x), we deduce that : E[|Y t|2|Fδt ] ≤

C|δ − δ′|, P − a.s.

Lemma 18. Let assumption (B) be satisfied. Then, for any t ∈ [0, T ], x, x′ ∈ Rd and
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δ, δ′ ∈ (0, 1] there exists a constant C which does not depends from δ, δ′ such that :

E
(

sup
t≤s≤T

[|Xδ,x,uδ

s |2 + |Xδ′,x,uδ

s |2 + |Y δ,x,uδ

s |2 + |Y δ′,x,uδ

s |2] +
∫ T

t
|Zδ,x,uδ

r |2dr (2.4.32)

+
∫ T

t
|Zδ′,x,uδ

r |2dr +
∫ T

t
|U δ,x,uδ

r |2dr +
∫ T

t
|U δ′,x,uδ

r |2dr + 〈M δ,x,uδ〉T |Fδt

)
≤ C(1 + |x|2).

Proof. For l = b, f, σ we denote by Cl the bound of l. Itô’s formula gives for any s ∈ [t, T ],

|Xδ,x,uδ

s |2 = |Xδ,x,uδ

t |2 +
∫ s

t
2Xδ,x,uδ

r bδ(Xδ,x,uδ

r , Y δ,x,uδ

r , Zδ,x,uδ

r , uδr)dr

+
∫ s

t
2Xδ,x,uδ

r σδ(Xδ,x,uδ

r , Y δ,x,uδ

r , uδr)dW δ
r

+
∫ s

t
2Xδ,x,uδ

r δdBδ
r

+
∫ s

t

(
|σδ(Xδ,x,uδ

r , Y δ,x,uδ

r , uδr)|2 + δ2
)
dr.

We successively use Burkholder-Davis-Gundy’s and Young’s inequalities to get, for any ε1,

ε2 and ε3 > 0,

E[ sup
t≤s≤T

|Xδ,x,uδ

s |2|Fδt ] ≤ |x|2 + (2ε1 + ε2 + 2ε3) E[
∫ T

t
|Xδ,x,uδ

r |2dr|Fδt ]

+ 2
ε 1
C2
b + (T + 1

ε 2
) C2

σ + 2
ε 3
δ2

≤ |x|2 + (2ε1 + ε2 + 2ε3) T E[ sup
t≤s≤T

|Xδ,x,uδ

s |2dr|Fδt ]

+ 2
ε 1
C2
b + (T + 1

ε 2
) C2

σ + (2
ε 3

+ 1)δ2

Choosing 2ε1 + ε2 + 2ε3 = 1
2 T

, it follows that (since δ ≤ 1) there exists a constant C1 > 0

independent from δ such that :

E[ sup
t≤s≤T

|Xδ,x,uδ

s |2|Fδt ] ≤ C1(1 + |x|2). (2.4.33)
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Arguing as in the proof of (2.4.33), one can show that there exists a constant C2 > 0

independent from δ, δ′ such that :

E[ sup
t≤s≤T

|Xδ′,x,uδ

s |2|Fδt ] ≤ C2(1 + |x|2). (2.4.34)

In the other hand, Itô’s formula gives

|Y δ,x,uδ

s |2 +
∫ T

s
|Zδ,x,uδ

r |2dr +
∫ T

s
|U δ,x,uδ

r |2dr + 〈M δ,x,uδ〉T

= |Y δ,x,uδ

T |2 +
∫ s

t
2Y δ,x,uδ

r fδ(Xδ,x,uδ

r , Y δ,x,uδ

r , Zδ,x,uδ

r , uδr)dr

−
∫ T

s
2Y δ,x,uδ

r Zδ,x,uδ

r dW δ
r −

∫ s

t
2Y δ,x,uδ

r U δ,x,uδ

r dBδ
r −

∫ s

t
2Y δ,x,uδ

r dM δ,x,uδ

r .

Using Burkholder-Davis-Gundy’s and Young’s inequalities, we show that there exists a po-

sitive constant C∗2 such that :

E[ sup
t≤s≤T

|Y δ,x,uδ

s |2|Fδt ] + 1
2E[

∫ T

t
|Zδ,x,uδ

r |2dr|Fδt ] + 1
2E[

∫ T

t
|U δ,x,uδ

r |2dr|Fδt ] + 1
2 E[〈M δ,x,uδ〉T |Fδt ]

≤ (1/2 + 2(C∗2)2)E[
∫ T

t
| sup
t≤r≤T

Y δ,x,uδ

r |2dr|Fδt ] + C2
Φ + T C2

f .

Therefore Gronwall’s inequality yields

E[ sup
t≤s≤T

|Y δ,x,uδ

s |2|Fδt ] ≤ (C2
Φ + T C2

f ) exp[(1/2 + 2(C∗2)2)T ].

Thanks to the previous two estimates, we have

E[ sup
t≤s≤T

|Y δ,x,uδ

s |2|Fδt ] + 1
2 E[

∫ T

t
|Zδ,x,uδ

r |2dr|Fδt ] + 1
2 E[

∫ T

t
|U δ,x,uδ

r |2dr|Fδt ]

+ 1
2 E[〈M δ,x,uδ〉T |Fδt ] ≤ C4. (2.4.35)

where C4 := C2
Φ + T C2

f + (C2
Φ + T C2

f ) exp[(1/2 + 2(C∗2)2)T ].
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The same arguments allow to show that there exists a constant C5 which does not depends

from δ, δ′ such that :

E[ sup
t≤s≤T

|Y δ′,x,uδ

s |2|Fδt ] + E[
∫ T

t
|Zδ′,x,uδ

r |2dr|Fδt ] + E[
∫ T

t
|U δ′,x,uδ

r |2dr|Fδt ] + E[〈M δ′,x,uδ〉T |Fδt ]

≤ C5.

Lemma 19. Let assumption (B) be satisfied. Then, for any t ∈ [0, T ], there exists a constant

C such that

sup
n

E ( sup
t≤s≤T

[|Xδn
s |2 + |Xn

s |2 + |Y δn
s |2 + |Y n

s |2]|Fδnt ) ≤ C (1 + |x|2). (2.4.36)

Proof. For l = b, f, σ, φ we denote by Cl the bounds of l. Itô’s formula gives

|Xn
s |2 = |x|2 + 2

∫ s

t
Xn
r b(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r , u

δn
r ), uδnr )dr +

∫ s

t
|σ(Xn

r , Y
n
r , u

δn
r )|2dr

+
∫ s

t
(Xn

r σ(Xn
r , Y

n
r , u

δn
r )dW δn

r .

Using Burkholder-Davis-Gundy’s and Young’s inequalities, we get for any ε1, ε2 > 0,

E[ sup
t≤s≤T

|Xn
s |2|Fδnt ] ≤ |x|2 + 2 ε1E[

∫ T

t
|Xn

r |2dr|Fδnt ] + 2
ε1

T C2
b

+ C∗ε2 E[
∫ s

t
|Xn

r |2dr|Fδnt ] + (T + C∗

ε2
) C2

σ.

Choosing ε1 = 1/8 and ε2 = 1
4C∗ , one can find C̃1 which depends only from C∗, Cb, T, Cσ

such that :

sup
n

E[ sup
t≤s≤T

|Xn
s |2|Fδnt ] ≤ C̃1 (1 + |x|2). (2.4.37)
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Again, by Itô’s formula we have

|Y n
s |2 +

∫ T

s
|wnr σ(Xn

r , Y
n
r , u

δn
r )|2dr = |Y n

T |2 +
∫ T

s
Y n
r w

n
r σ(Xn

r , Y
n
r , u

δn
r )dW δn

r

+ 2
∫ T

s
Y n
r f(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r , u

δn
r ), uδnr )dr

≤ K2|Xn
T |2 +

∫ T

s
Y n
r w

n
r σ(Xn

r , Y
n
r , u

δn
r )dW δn

r

+ 2
∫ T

s
|Y n
r ||f(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r , u

δn
r ), uδnr )|dr.

We use Burkholder-Davis-Gundy’s and Young’s inequalities to get for any ε3, ε4 > 0,

E[ sup
t≤s≤T

|Y n
s |2|Fδnt ] + E[

∫ T

t
|wnr σ(Xn

r , Y
n
r , u

δn
r )|2dr|Fδnt ]

≤ C2
Φ + C∗ε3 E[

∫ T

t
|Y n
r |2dr|Fδnt ] + TC2

σC
∗C2

w

ε3

+ 2 ε4 E[
∫ T

s
|Y n
r |dr|Fδnt ] +

C2
f T

ε4
.

We successively choose ε3 = 1/(4C∗) and ε4 = 1/8 then we use Gronwall’s inequality to

show that there exists a constant C̃2 independent from δn such that :

sup
n

E[ sup
t≤s≤T

|Y n
s |2|Fδnt ] ≤ C̃2 (2.4.38)

We conclude the proof by using the estimates (2.4.33) and (2.4.35).

Remark 20. (i) As explained in the introduction, the uniform Lipschitz condition is not

sufficient to guarantee the existence of solutions and hence the existence of optimal controls

fails also. Nevertheless, there are results on the existence and uniqueness of solutions to

coupled FBSDEs under the uniform Lipschitz condition and supplementary assumptions on

the coefficients, see e.g. [59, 103, 136, 141].

(ii) When the coefficients are uniformly Lipschitz and σ is non degenerate, the existence

and uniqueness of solutions were established in [59] for equation (2.0.1). In this case, the
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existence of an optimal control was recently established in [22] when the coefficients σ and

b are independent from z, and σ is independent from the control u. The case where b de-

pends from z and σ is independent from z and u, the existence of an optimal control can be

performed as in [22]. In the case where σ depends upon (x, y, u), the problem of existence

of an optimal control seems difficult to obtain. Indeed, when the control enters the diffusion

coefficient σ, we lead to an FBSDE with a measurable diffusion matrix and, in this case, the

uniqueness of solution (even in the law sense) may fails. It is known from [92] that when the

diffusion coefficient is merely measurable, then even the uniqueness in law fails in general

for Itô’s forward SDEs in dimension strictly greater than 2, see [92] for more details.

(iii) The existence of an optimal control under the conditions used in [141] can be

obtained by using the method we developed in the present thesis.

(iv) However, the supplementary condition given in [103] consists to assuming the exis-

tence of a decoupling function. This condition is rather implicit and abstract, and hence can

not be easily exploited in the problem of control.

(iv) The problem of existence of an optimal control for a fully coupled FBSDE when

the coefficient σ depends from z and u remains open and is a challenge. In this case, the

existence of solutions follows from [136] and the Bellman dynamic programming principle

is given in [102]. In this case, Bellman dynamic programming principle leads to an HJB

equation coupled with a constraint given by an algebraic equation.
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In this chapter we studies as the first section of this chapter the existence of optimal

control (2.0.1)–(2.0.3) but, now the diffusion is non-degenerate, the conditions here are

deferent from the one of the degenerate case, because the existence and uniqueness re-

sults of the solution itself defers from the last section, also here we are not obligate to

transform coefficient of the hessian uniformly elliptic by adding a strictly positive number

((σδσ∗δ )
(
x, vδ(s, x)

)
+ δ2IRd) because the diffusion is already non-degenerate, this end will

change the form of the FBSDE, (2.4.7)

The chapter is organized as follows : In next section, we introduce some notations, the

controlled system, and the assumptions. In section 2, we present the cost functional and

the value function. This value function verified the Hamilton-Jacobi-Bellman equation. In

section 3, we give the main result and its proof. This section contains two subsections. The

first one is devoted to study the approximating control problem together with its associated

Hamilton-Jacobi-Bellman equation. In the second subsection, we prove our main result. In

the last section we present the convergence of the approximating problem zn so the existence

of an optimal control.

3.1 Lipshitz and non degenerate Hypothesis

There exists two constants K and λ > 0, such that the functions b, σ, f and Φ satisfy

the following assumptions (B) :
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— (B1)

1) For any u ∈ U, (x, y, z) and (x′, y′, z′) ∈ Rd × R× Rd

|σ(x, y)− σ(x′, y′)|2 ≤ K2(|x− x′|2 + |y − y′|2),

|Φ(x)− Φ(x′)| ≤ K|x− x′|,

|b(x, y, z, u)− b(x′, y′, z′, u)| ≤ K(|x− x′|+ |y − y′|+ |z − z′|),

|f(x, y, z, u)− f(x′, y′, z′, u)| ≤ K(|x− x′|+ |y − y′|+ |z − z′|).

2) The functions b, σ, f and Φ are bounded.

— (B2) For every (x, y, z) ∈ Rd × R × Rd the functions b(x, y, z, .) and f(x, y, z, .) are

continuous in u ∈ U.

— (B3) For every (t, x, y) ∈ [0, T ]× Rd × R,

∀ζ ∈ Rd 〈ζ, σ(t, x, y)ζ〉 ≥ λ|ζ|2,

When the control u is constant, one can show (by arguing as in [59]) that under assump-

tions (B1) and (B2), equation (2.0.1) has a unique solution (X t,x,u, Y t,x,u, Zt,x,u,M t,x,u) in

the space S2
ν (t, T ;Rd)× S2

ν (t, T ;R)×H2
ν(t, T ;Rd)×M2

ν(t, T ;Rd)

Now we set the main result of this section

3.1.1 The main result

Theorem 21. Assume that the assumptions (B) and (H) are satisfied, then there exists a

strict control which solves the problem (2.0.1)–(2.0.3).
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For the prove we proceed as the last section, the difference here is that the diffusion is

degenerate, and so we do not need to transform the HJB to strictly elliptic

3.2 Proof of the main results

As the last section we approximate our coefficients by a smooth one, first let write the

HJB corresponding to the approximating system

3.2.1 The approximating Hamilton-Jacobi-Bellman equation

Let δ ∈ (0, 1] be an arbitrarily fixed number. For (x, y, p, A, v) ∈ Rd × R× Rd × Sd × U,

we define the function Hδ by :

Hδ (x, y, p, A, v) = 1
2 (tr ((σδσ∗δ ) (x, y))A) + bδ (x, y, pσδ (x, y) , v) p (3.2.1)

+ fδ (x, y, pσδ (x, y) , v) ,

and consider the Hamilton-Jacobi-Bellman equation


∂

∂t
V δ (t, x) + inf

v∈U
Hδ

(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), v

)
= 0, (t, x) ∈ [0, T ]× Rd,

V δ (T, x) = Φδ(x), x ∈ Rd,
(3.2.2)

Since Hδ is smooth and (σδσ∗δ ) (x, y) is uniformly elliptic, then according to the regularity

results by Krylov [94] (Theorems 6.4.3 and 6.4.4 in [94]), the unique bounded continuous

viscosity solution V δ of the equation (3.2.2) is with regularity C1,2
b ([0, T ]×Rd). The regularity

of V δ and the compactness of the control state space U allow to find a measurable function
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vδ : [0, T ]× Rd 7−→ U such that, for all (t, x) ∈ [0, T ]× Rd,

Hδ
(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), vδ(t, x)

)
= inf

v∈U
Hδ

(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), v

)
.

Lemma 22. Assume that the hypothesis (B) is satisfied. Then :

Jδ(uδ) = V δ(t, x) = essinfu∈U
νδ

(t)J
δ(u),

Moreover uδs := vδ(s,Xδ
s ), s ∈ [0, T ], is an admissible control.

Proof. We fix now an arbitrary initial datum (t, x) ∈ [0, T ] × Rd and define the process

(Xδ
s , Y

δ
s , Z

δ
s )s∈[t,T ] by :


dXδ

s = bδ(Xδ
s , V

δ(s,Xδ
s ),∇xV

δ(s,Xδ
s )σδ(Xδ

s , V
δ(s,Xδ

s )), vδ(s,Xδ
s ))ds

+ σδ(Xδ
s , V

δ(s,Xδ
s ))dW δ

s , s ∈ [t, T ],
Xδ
t = x.

(3.2.3)

Since bδ(x, V δ(s, x),∇xV
δ(s, x)σδ(x, V δ(s, x)), vδ(s, x)) and σδ(x, V δ(s, x)) are bounded mea-

surable in (t, x) and σδ(x, V δ(s, x)) is Lipschitz in x and uniformly elliptic, then according

to [9] (Theorem 2.1 pp 56, see also [4]), equation (3.2.3) has a pathwise unique solution Xδ.

We define Y δ and Zδ by :

Y δ
s = V δ(s,Xδ

s ) and Zδ
s = ∇xV

δ(s,Xδ
s )σδ(Xδ

s , V
δ(s,Xδ

s )), s ∈ [t, T ]. (3.2.4)

Applying Itô’s formula to V δ(s,Xδ
s ), we obtain :

dXδ
s = bδ(Xδ

s , Y
δ
s , Z

δ
s , v

δ(s,Xδ
s ))ds+ σδ(Xδ

s , Y
δ
s )dW δ

s ,

dY δ
s = −fδ(Xδ

s , Y
δ
s , Z

δ
s , v

δ(s,Xδ
s ))ds+ Zδ

sdW
δ
s ,

Xδ
t = x, Y δ

T = Φδ(Xδ
T ), s ∈ [t, T ]

(3.2.5)
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Since fδ is uniformly Lipschitz in (y, z), then according to [119] the backward component

of equation (3.2.5) has a unique solution (Y δ, Zδ) in S2
ν (t, T ;R) × H2

ν(t, T ;Rd). There-

fore (Xδ, Y δ, Zδ) is the unique solution of FBSDE (3.2.5) in S2
ν (t, T ;Rd) × S2

ν (t, T ;R) ×

H2
ν(t, T ;Rd).

Let u ∈ Uνδ(t) be an admissible control. Let (Xδ,t,x,u, Y δ,t,x,u, Zδ,t,x,u) be the unique F-

adapted continuous solution of the following FBSDE :

dXδ,t,x,u
s = bδ

(
Xδ,t,x,u
s , Y δ,t,x,u

s , Zδ,t,x,u
s , us

)
ds+ σδ

(
Xδ,t,x,u
s , Y δ,t,x,u

s

)
dW δ

s , s ∈ [t, T ],
dY δ,t,x,u

s = −fδ(Xδ,t,x,u
s , Y δ,t,x,u

s , Zδ,t,x,u
s , us)ds+ Zδ,t,x,u

s dW δ
s + dM δ,t,x,u

s , s ∈ [t, T ],
Xδ,t,x,u
t = x, Y δ,t,x,u

T = Φδ(Xδ,t,x,u
T ),

M δ ∈M2
νδ(t, T ;Rd) is orthogonal to W δ.

(3.2.6)

We define the cost functional for the approximating control problem by :

Jδ(u) := Y δ,t,x,u
t , u ∈ Uνδ(t).

(Xδ, Y δ, Zδ) satisfies the FBSDE (3.2.6) for u = uδ, withM δ = 0. Hence, by the uniqueness of

equation (3.2.6), we have (Xδ, Y δ, Zδ) = (Xδ,t,x,uδ , Y δ,t,x,uδ , Zδ,t,x,uδ). In particular Y δ,t,x,uδ

t =

Y δ
t = V δ(t, x).

Proposition 3.2.1. Under the assumption (B), there exists a universal constant C only

depending on the Lipshitz constants of the functions σ, b, f and Φ such that for every t, t′ ∈

[0, T ] ; x, x′ ∈ Rd and δ, δ′ > 0 :

|V δ(t, x)− V δ′(t′, x′)| ≤ C(|δ − δ′|+ |t− t′| 12 + |x− x′|).

In particular :

|V δ(t, x)− V (t, x)| ≤ Cδ, for all (t, x) ∈ [0, T ]× Rd and for each δ > 0.
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and

|V δ(t, x)|+ |∇xV
δ(t, x)| ≤ C,

|V δ(t, x)− V δ(t′, x)| ≤ C|t− t′|1/2.
(3.2.7)

Proof. Let (t, x), (t′, x′) ∈ [0, T ]×Rd and δ, δ′ ∈ (0, 1] be fixed. The value function V δ′(t′, x′)

satisfies the same Hamilton-Jacobi-Bellman equation (3.2.2) with the Hamiltonian Hδ′ asso-

ciated to the coefficients fδ′ , bδ′ , σδ′ and Φδ′ . Hence, the same arguments of regularity allow

to find vδ′ : [0, T ]× Rd → U such that, for any (t, x) ∈ [0, T ]× Rd,

Hδ′
(
x, (V δ′ ,∇xV

δ′ ,∇xxV
δ′)(t, x), vδ′(t, x)

)
= inf

v∈U
Hδ′

(
x, (V δ′ ,∇xV

δ′ ,∇xxV
δ′)(t, x), v

)
.

We use Lemma 22, to show that uδ′ = vδ
′(t′, x′) is an admissible control.

Thanks to [9], let Xδ′,t′,x′,uδ
′
be the unique solution of the following forward SDE :

dXs = bδ′(Xs, V
δ′(s,Xs),∇xV

δ′(s,Xs)σδ′(Xδ′,t′,x′,uδ
′

s , V δ′(s,Xs))ds
+ σδ′(Xδ′,t′,x′,uδ

′

s , V δ′(s,Xs))dW δ
s , s ∈ [t′, T ],

Xt′ = x′, .

We extend this solution in the interval [0, T ] by putting Xδ′,t′,x′,uδ
r = x′, for r < t′.

We put

Y δ′,t′,x′,uδ
′

s := V δ′(s,Xδ′,t′,x′,uδ
′

s )

Zδ′,t′,x′,uδ
′

s := ∇xV
δ′(s,Xδ′,t′,x′,uδ

′

s )σδ′(Xδ′,t′,x′,uδ
′

s , V δ′(s,Xδ′,t′,x′,uδ
′

s )),

Itô’s formula applied to V δ′(s,Xδ,t′,x′,uδ
′

s ) shows that :

 dY δ′,t′,x′,uδ
′

s = −fδ′(Xδ′,t′,x′,uδ
′
, Y δ′,t′,x′,uδ

′
, Zδ′,t′,x′,uδ

′
, uδ

′)ds+ Zδ′,t′,x′,uδ
′

s dW δ
s ,

Y δ′,t′,x′,uδ
′

T = Φδ′(Xδ′,t′,x′,uδ
′

T ), s ∈ [t′, T ].
(3.2.8)
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Since fδ′ is Lipschitz, then the previous BSDE has a unique solution (Y δ′,t′,x′,uδ

′
, Zδ′,t′,x′,uδ

′
)

in S2
νδ(t′, T ;R)×H2

νδ(t′, T ;Rd).

The following lemmas show that the variable Zδ. This allows us to consider Zdelta as a

control.

Lemma 23. Assume that assumptions (B) is satisfied. Then there exists a non-negative

constant C̃ only depending on the Lipshitz constants of the coefficients, verified the following

estimation :

|V δ′(t, x)− V δ(t, x)| ≤ C̃|δ′ − δ|. (3.2.9)

The proof will be given later.

Since fδ, bδ, Φδ and σδ are bounded C∞ functions with bounded derivatives of every order

and satisfy Assumption (B) with the same constant K, we have the following lemma.

Lemma 24. Let Hδ be defined by formula (3.2.1). Then, the PDE
∂

∂t
V δ (t, x) +Hδ

(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), vδ(t, x)

)
= 0, (t, x) ∈ [0, T ]× Rd,

V δ (T, x) = Φδ(x), x ∈ Rd,

(3.2.10)

has a unique bounded solution V δ in C1,2
b ([0, T ]× Rd).

Moreover, there exists a constant C̄, only depending on λ and T , and two constants Γ̄

and κ̄, only depending on K, λ and T , such that

sup
(t,x)∈[0,T ]×Rd

|V δ(t, x)| ≤ C̄, (3.2.11)

sup
(t,x)∈[0,T ]×Rd

|∇xV
δ(t, x)| ≤ Γ̄, (3.2.12)

∀(t, t′) ∈ [0, T ]2, ∀x ∈ Rd, |V δ(t′, x)− V δ(t, x)| ≤ κ̄|t′ − t|1/2. (3.2.13)
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The proof will be given later.

We shall show that V δ converges uniformly to a bounded function V̄ , which is the unique

viscosity solution of the initial HJB equation (2.1.2).

We have,

|V δ′(t′, x′)− V δ(t, x)| ≤ |V δ′(t′, x′)− V δ(t′, x′)|+ |V δ(t′, x′)− V δ(t, x)|.

By (3.2.12) and (3.2.13), we have

|V δ(t′, x′)− V δ(t, x)| ≤ κ|t′ − t|1/2 + Γ|x′ − x|. (3.2.14)

Therefore, using (3.2.9) and modifying the constants if necessary we obtain

|V δ(t, x)− V δ′(t′, x′)| ≤ C(|δ − δ′|+ |t− t′| 12 + |x− x′|).

Using standard arguments in the BSDE, one can show that V δ is uniformly bounded in

(t, x, δ). Hence, V δ converges uniformly (as δ → 0) to a function in V̄ ∈ Cb([0, T ] × Rd).

Using the stability of viscosity solutions and the fact that the Hamiltonian Hδ converges

uniformly on compacts set to H, we get that V̄ is a viscosity solution of equation (2.1.2).

Thanks to the uniqueness of the solution of equation (2.1.2) with in the class of continuous

function with at most polynomial growth, we get that V̄ = V . This proves the convergence

of the approximating value function V δ′ to V , as δ′ → 0. And hence

|V δ(t, x)− V (t, x)| ≤ Cδ, for all δ ∈ (0, 1] and (t, x) ∈ [0, T ]× Rd.
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3.2.2 Convergence of the Approximating Control Problems

We will prove the convergence of the approximating control problem to the original

one. We adapt the idea of [41] to or situation. Put wns := ∇xV
δn(s,Xδn

s ) and Zδn
s :=

wns σ
(
Xδn
s , Y

δn
s

)
. Consider the sequence of approximating stochastic controlled systems (Xδn , Y δn , Zδn , uδn).

Since uδn and uδn are uniformly bounded, we see the couple (uδn , wn) as a relaxed control.

We show that the system (Xδn , Y δn , Zδn , uδn) has a subsequence which converges in law to

some controlled system. And, since we have assumption (H), we use the result of [63] to

prove that the limiting process is a strict control.

Theorem 25. Assume that the assumption (H) is satisfied. Let (t, x) ∈ [0, T ] × Rd and

(δn)n∈N be a sequence of positive real numbers which tends to 0. Then, there exists a reference

stochastic system ν̄ = (Ω̄, F̄ , P̄, F̄, W̄ ), a process (X̄, Ȳ , Z̄, M̄) ∈ S2
ν̄ (t, T ;Rd)× S2

ν̄ (t, T ;R)×

S2
ν̄ (t, T ;Rd)×M2

ν̄(t, T ;Rd), with M̄ orthogonal to W̄ , and an admissible control ū ∈ Uν̄(t),

such that :

1) There is a subsequence of (Xδn , Y δn)n∈N which converges in distribution to (X̄, Ȳ ),

2) (X̄, Ȳ , Z̄, M̄) is a solution of the following system
dX̄s = b(X̄s, Ȳs, Z̄s, ūs)ds+ σ(X̄s, Ȳs)dW̄s,

dȲs = −f(X̄s, Ȳs, Z̄s, ūs)ds+ Z̄sdW̄s + dM̄s, s ∈ [t, T ]

X̄t = x, ȲT = Φ(XT ),

(3.2.15)

3) For every (t, x) ∈ [0, T ]× Rd, it holds that

Ȳt = V (t, x) = essinfu∈Uν̄(t)J(t, x, u) ,

i.e. the admissible control ū ∈ Uν̄(t) is optimal for (3.2.15).

Proof. The idea consists to introduce an auxiliary sequence of processes (denoted by (Xn, Y n))
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which satisfied forward-system, for each n, and for which the existence of a relaxed holds

according to [63]. We then show that (Xn, Y n) has a subsequence which converges in law

to a couple (X̄, Ȳ ). using the convexity assumption (H), we prove that (X̄, Ȳ ) is associated

to a strict control that is optimal for the original control problem. We finally show that the

initial sequence (Xδn , Y δn)n∈N and the auxiliary one have the same limits, by proving an

estimation between the auxiliary and the appro solution.

For n ∈ N, we define the sequence of auxiliary processes (Xn
s , Y

n
s ) as the pathwise unique

solution to the following controlled forward system :
dXn

s = b(Xn
s , Y

n
s , w

n
s σ(Xn

s , Y
n
s ), uδns )ds+ σ(Xn

s , Y
n
s )dW δn

s ,

dY n
s = −f(Xn

s , Y
n
s , w

n
s σ(Xn

s , Y
n
s ), uδns )ds+ wns σ(Xn

s , Y
n
s )dW δn

s .

Xn
t = x, Y n

t = V δn(t, x), s ∈ [t, T ].
(3.2.16)

where uδns := vδn(s,Xδn
s ) and wns = ∇xV

δn(s,Xδn
s ).

Note that for every n, the process (Xδn
s , Y

δn
s ) is a weak solution to the following controlled

forward system :
dXδn

s = bδn(Xδn
s , Y

δn
s , wns σδn(Xδn

s , Y
δn
s ), uδns )ds+ σδn(Xδn

s , Y
δn
s )dW δn

s ,

dY δn
s = −fδn(Xδn

s , Y
δn
s , wns σδn(Xδn

s , Y
δn
s ), uδns )ds+ wns σδn(Xδn

s , Y
δn
s )dW δn

s .

Xδn
t = x, Y δn

t = V δn(t, x), s ∈ [t, T ].
(3.2.17)

From (3.2.4) we have, for t ≤ s ≤ T ,

Y δn
s = V δn(s,Xδn) and uδns = vδn(t,Xδn

s ).

Since (s, x) 7→ V δn(s, x) is of class C1,2 and satisfies equation (2.1.2), then using Itô’s formula
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we get for t ≤ s ≤ T

Y δn
s = Φδn(Xδn

T ) +
∫ T

s
fδn(Xδn

r , Y
δn
r , wnr σδn(Xδn

r , Y
δn
r ), uδnr )dr

−
∫ T

s
wnr σδn(Xδn

r , Y
δn
r )dW δn

r . (3.2.18)

If we put

χns :=
 Xn

s

Y n
s

 , rns := (wns , 0, uδns ) and Wn :=
 W δn

Bδn

 ,
then the system (3.2.16) becomes :

dχns = β(χns , rns )ds+ Σ(χns , rns )dWn
s , s ∈ [t, T ],

χnt =
 x

V δn(t, x)

 . (3.2.19)

Since wns = ∇xV
δn(s,Xδn

s ) is uniformly bounded (Proposition 3.2.1), we can interpret

(rns , s ∈ [t, T ]) as a control with values in the compact set A := U× B̄C(0)× [0, K].

The next step is to take n→ +∞, for this let’s consider the random measure :

qn(ω, ds, da) = δrns (ω)(da)ds, (s, a) ∈ [0, T ]× A, ω ∈ Ω.

we identify the control process rn with the measure qn, this end show us that the controls

rn is in the set of relaxed controls, looking consider rn as random variable with values

in the space V of all Borel measures qn on [0, T ] × U × B̄C(0) × [0, K], whose projection

qn(· × U × B̄C(0) × [0, K]) coincides with the Lebesgue measure, we need now to show a

convergence result given in :

Lemma 26. There exist a probability measure Q on C([0, T ];Rd×R)×V and a subsequence

of (Υφ(n), qφ(n)) of (Υn, qn), such that (Υφ(n), qφ(n)) (C([0,T ];Rd×R)×V,Q)−−−−−−−−−−−−→
L

(Υ, q) where, (Υ, q) is

the canonical process.
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Proof. by the contraction above our conditions guarantee that {(Σ(x, y, z, π, v), β(x, y, z, π, v)) , (x, y, z, π, v) ∈

Rd×R×A} are bounded and by the compactness of V with respect to the topology induced

by the weak convergence of measures, we get the tightness of the laws of (Υn, qn), n ≥ 1, on

C([0, T ];Rd×R)×V . and hence there exit a probability measure Q on C([0, T ];Rd×R)×V

and extract a subsequence that converges in law on the space C([0, T ];Rd×R)×V donated

with the measure Q to (Υ, q).

Since the coefficients of system (3.2.19) satisfy assumption (H), then, according to [63],

there exists a stochastic reference system ν̄ = (Ω̄, F̄ , P̄, F̄, W̄) enlarging (C([0, T ];Rd ×R)×

V ;Q) and an F̄-adapted process (χ, r̄) [r̄ with values in A] which satisfies
dχs = β(χs, r̄s)ds+ Σ(χs, r̄s)dW̄s, s ∈ [t, T ],

χt =
 x

V δn(t, x)

 . (3.2.20)

Moreover, χ has the same law under P̄ as under Q.

Replacing Σ and β by their definition and setting χ :=
 X̄

Ȳ

, W̄ :=
 W̄

B̄

 and

r̄ := (w̄, θ̄, ū), the system (3.2.20) can be rewritten as follows :
dX̄s = b(X̄s, Ȳs, Z̄s, ūs)ds+ σ(X̄s, Ȳs)dW̄s,

dYs = −f(X̄s, Ȳs, Z̄s, ūs)ds+ Z̄sdW̄s + θ̄sdB̄s, s ∈ [t, T ]
X̄t = x, Ȳt = V (t, x).

Assertion 1) is proved. To prove assertion 2), we need the Following lemma.

Lemma 27. For some constant L > 0 and for all n ∈ N,

E[sups∈[t,T ] |Xδn
s −Xn

s |2] ≤ Lδ2
n,

E[sups∈[t,T ] |Y δn
s − Y n

s |2] ≤ Lδ2
n.

(3.2.21)

Lemma 27 shows that if the sequence (Xn, Y n)n∈N converges in law, the same holds

true for (Xδn , Y δn)n∈N, and the limits have same law. Further we deduce from (3.2.21) and
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Proposition 3.2.1, that Ȳs = V (s, X̄s) for each s ∈ [t, T ] P̄-a.s. In particular, YT = Φ(XT )

P̄-a.s. Thus, if we set M̄s =
∫ s
t θ̄rdB̄r, then 〈M̄, W̄ 〉s =

∫ s
t θ̄rd〈B̄, W̄ 〉r = 0 and (X̄, Ȳ , Z̄, M̄)

satisfies (3.2.15). Assertion 2) is proved.

We shall prove assertion 3). We have already seen that Ȳs = V (s, X̄s) for all s ∈ [t, T ]

P̄-a.s. On the other hand, it is well known that, for the unique bounded viscosity solution V

of the Hamilton-Jacobi-Bellman equation (2.1.2),

V (t, x) = essinfu∈U
ν̄δ

(t)J(t, x, u), P̄-a.s.

(see, e.g., Li and Wei [102]). This proves assertion 3.

3.3 Appendices

3.3.1 convexity hypothesis

Lemma 28. 1) Let the assumption (H1) as follow :

(H1)


For all (x, y) ∈ Rd × R, the set

{((ΣΣ∗)(x, y, w, θ), β(x, y, w, u)|(u,w, θ) ∈ U× B̄C(0)× [0, K]} , is convex.

where, for all (x, y, w, θ, u) ∈ Rd × R× Rd × R× U, we have set

Σ(x, y, w, θ) =

 σ(x, y) 0

wσ(x, y) θ

 and β(x, y, w, u) =

 b(x, y, wσ(x, y), u)

−f(x, y, wσ(x, y), u)

 .

If θ = 0, then the assumption (H1) is equivalent to (H).

2) Let us fix (x, y) ∈ Rd × R. We will show that, under assumption (H1),

co{((ΣΣ∗)(x, y, w, 0), β(x, y, w, u))|(u,w) ∈ U × B̄C(0)}
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⊂ {((ΣΣ∗)(x, y, w, θ), β(x, y, w, u)|(u,w, θ) ∈ U× B̄C(0)× [0, K]}

where, for any set E, coE stands for the convex hull of E.

Proof. 1) The explicit calculus of (ΣΣ∗)(x, y, w, θ) gives

ΣΣ∗(x, y, w, θ) =
 σσ∗(x, y) σσ∗(x, y)w∗

wσσ∗(x, y) wσσ∗(x, y)w∗ + θ2



If θ = 0, we can see that the assumption (H1) is equivalent to (H).

2) We consider an arbitrarily chosen probability measure µ on the set U× B̄C(0)

Our goal is to find a triplet (w̄, θ̄, ū) ∈ Rd × [0, K]× U satisfies :

∫
U×B̄C(0)((ΣΣ∗)(x, y, w, 0), β(x, y, w)µ(du, dw)

=
(
(ΣΣ∗)(x, y, w̄, θ̄), β(x, y, w̄, θ̄, ū)

)
.

(3.3.1)

Let Φ(u,w) = ((σσ∗)(x, y), wσσ∗(x, y), b(x, y, wσ(x, y), u), f(x, y, wσ(x, y), u)). The assump-

tion (H) and by the continuity of Φ there exists (ū, w̄) in U× B̄C(0) such that

∫
U×B̄C(0)

Φ(u,w)µ(du, dw) = Φ(ū, w̄). (3.3.2)

The calculus of (ΣΣ∗)(x, y, w, 0) shows that, to obtain (3.3.1), it suffices to find θ̄ ∈ [0, K]

such that

α :=
∫
U×B̄C(0)

wσσ∗(x, y)w∗µ(du, dw)− w̄σσ∗(x, y)w̄∗ = θ̄2. (3.3.3)

Again by the calculus of (ΣΣ∗)(x, y, w, 0)

we have σσ∗(x, y, ū) =
∫
U×B̄C(0) σσ

∗(x, y)µ(du, dw), then we can rewrite α as follow

α =
∫
U×B̄C(0)

wσσ∗(x, y)w∗µ(du, dw)− w̄
∫
U×B̄C(0)

σσ∗(x, y)µ(du, dw)w̄∗



69
Therefore,

α =
∫
U×B̄C(0)

((w − w̄)σ(x, y))((w − w̄)σ(x, y))∗µ(du, dw) ≥ 0.

Then α is non-negative, we choose θ̄ =
√
α satisfying (3.3.3). Further let us rewrite (3.3.3)

as
∫
U×B̄C(0)

|wσ(x, y)|2µ(du, dw) = |w̄σ(x, y)|2 + θ̄2.

Since |σ(x, y)| is bounded and the support of µ is included in U× B̄C(0), it follow that θ̄ is

bounded, then there exists K > 0 such that θ̄ belongs to [0, K]

3.3.2 Stability of the solutions Hamilton-Jacobi-Bellman equation

Lemma 29. Assume that, the assumptions (B) are satisfied. Then there exists a non-

negative constant C̃ only depending on the Lipshitz constants of the coefficients, verified

the following estimation :

|V δ′(t, x)− V δ(t, x)| ≤ C̃|δ′ − δ|. (3.3.4)

Proof.

We start this proof by some notations :

Xδ,t,x,uδ

. = X., Y δ,t,x,uδ

. = Y., Zδ,t,x,uδ

. = Z.

And

Xδ′,t,x,uδ
′

. = X ′. , Y δ′,t,x,uδ
′

. = Y ′. , Zδ′,t,x,uδ
′

. = Z ′.

Applying Itô’s formula to the map |Y ′s −Ys|2 then using standard arguments of FBSDEs,

we obtain
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E(sups∈[t,T ] |Y

′
s − Ys|2) + E(

∫ T
t |Z

′
r − Zr|2dr)

≤ E(|Y ′T − YT |2)

+ 2E( sup
s∈[t,T ]

|
∫ T

s
< fδ(Xr, Yr, Zr, u

δ
r)− fδ′(X ′r, Y ′r , Z ′r, uδ

′

r ), Y ′r − Yr > dr|)

+ 2E( sup
s∈[t,T ]

|
∫ T

s
< Zr − Z ′r, Y

′

r − Yr > dW δ
r |)

Now the estimate

E(
∫ T

0 |Zr − Z ′r|2|Y
′
r − Yr|2) 1

2

≤ E( sup
s∈[t,T ]

|Y ′s − Ys|2 +
∫ T

0
|Zr − Z ′r|2dr) <∞,

by Burkholder-Davis-Gundy we deduce

∀s ∈ [0, T ], E(|
∫ T

s
< Zr − Z ′r, Y

′

r − Yr > dW δ
r |) = 0.

Then

E(sups∈[t,T ] |Y
′
s − Ys|2) + E(

∫ T
t |Z

′
r − Zr|2dr)

≤ 2E( sup
s∈[t,T ]

∫ T

s
|fδ(Xr, Yr, Zr, u

δ
r)− fδ′(X ′r, Y ′r , Z ′r, uδ

′

r )| |Y ′r − Yr|dr)

+ E(|Y ′T − YT |2)

The first part : by the Proposition 1.1.1 and the function σ is K-Lipshitz

E(|Y ′T − YT |2) ≤ E(|Φδ′(X
′
T )− Φδ(XT )|2)

≤ 2 E(|Φδ′(X
′
T )− Φδ(X ′T )|2) + 2 E(|Φδ(X ′T )− Φδ(XT )|2)

≤ 2 K2 |δ − δ′|2 + 2 K2 E(|X ′T −XT |2).
(3.3.5)
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The second part : by the Young inequality

E(sups∈[t,T ]
∫ T
s |fδ(Xr, Yr, Zr, u

δ
r)− fδ′(X ′r, Y ′r , Z ′r, uδ

′
r )||Y ′r − Yr|dr)

≤ ε1 E( sup
s∈[t,T ]

∫ T

s
|fδ(Xr, Yr, Zr, u

δ
r)− fδ′(X ′r, Y ′r , Z ′r, uδr)|2dr)

+ 1
ε1

E( sup
s∈[t,T ]

∫ T

s
|Y ′r − Yr|2dr)

Using the fact the function f is K-Lipshitz, bounded by bf and the proposition 1.1.1

E(sups∈[t,T ]
∫ T
s |fδ(Xr, Yr, Zr, u

δ
r)− fδ′(X ′r, Y ′r , Z ′r, uδ

′
r )||Y ′r − Yr|dr)

≤ 2 ε1 E( sup
s∈[t,T ]

∫ T

s
|fδ(Xr, Yr, Zr, u

δ
r)− fδ(X ′r, Y ′r , Z ′r, uδr)|2dr)

+ 2 ε1 E( sup
s∈[t,T ]

∫ T

s
|fδ(X ′r, Y ′r , Z ′r, uδr)− fδ′(X ′r, Y ′r , Z ′r, uδr)|2dr)

+ 2 ε1 E( sup
s∈[t,T ]

∫ T

s
|fδ′(X ′r, Y ′r , Z ′r, uδr)− fδ′(X ′r, Y ′r , Z ′r, uδ

′

r )|2dr)

+ 1
ε1

E( sup
s∈[t,T ]

∫ T

s
|Y ′r − Yr|2dr)

≤ 2 K2 ε1

(
E( sup

s∈[t,T ]

∫ T

s
|X ′r −Xr|2dr) + E( sup

s∈[t,T ]

∫ T

s
|Y ′r − Yr|2dr)

+ E( sup
s∈[t,T ]

∫ T

s
|Z ′r − Zr|2dr)

)
+ 2 K2 ε1(T − t)|δ − δ′|2

+ 1
ε1

E( sup
s∈[t,T ]

∫ T

s
|Y ′r − Yr|2dr)
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Then

E ( sups∈[t,T ]
∫ T
s |fδ(Xr, Yr, Zr, u

δ
r)− fδ′(X ′r, Y ′r , Z ′r, uδr)||Y

′
r − Yr|dr)

≤ 2 K2 ε1(T − t)|δ − δ′|2 + (2 K2 ε1 + 1
ε1

) E(
∫ T
t |Y

′
r − Yr|2dr)

+ 2 b2
f ε1 (T − t) + 2 K2 ε1 E(

∫ T
t |X

′
r −Xr|2dr) + 2 K2 ε1 E(

∫ T
t |Z

′
r − Zr|2dr).

(3.3.6)

Since

E(
∫ T

t
|Y ′r − Yr|2dr) ≤ E(

∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2ds),

E(
∫ T

t
|X ′r −Xr|2dr) ≤ (T − t)E( sup

s∈[t,T ]
|X ′s −Xs|2),

and

E(|X ′T −XT |2) ≤ E( sup
s∈[t,T ]

|X ′s −Xs|2).

Then, by the inequalities (3.3.6) and (3.3.5) we have the following estimation :

E(sups∈[t,T ] |Y
′
s − Ys|2) + E(

∫ T
t |Z

′
r − Zr|2dr)

≤ (4 K2 ε1(T − t) + 2 K2)|δ − δ′|2 + (2 K2 ε1 + 1
ε1

) E(
∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2ds)

+ (2 K2 ε1 (T − t) + 2 K2)E( sup
s∈[t,T ]

|X ′s −Xs|2) + 2 K2 ε1 E(
∫ T

t
|Z ′r − Zr|2dr)

+ 4 b2
f ε1 (T − t).

Then,
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E(sups∈[t,T ] |Y

′
s − Ys|2) + E(

∫ T
t |Z

′
r − Zr|2dr)

≤ E( sup
s∈[t,T ]

|Y ′s − Ys|2) + CzE(
∫ T

t
|Z ′r − Zr|2dr)

≤ C1 |δ − δ′|2 + C2 E(
∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2ds)

+ C3 E( sup
s∈[t,T ]

|X ′s −Xs|2) + Cf .

With

C1 = 4 K2 ε1(T − t) + 2 K2

C2 = 2 K2 ε1 + 1
ε1

C3 = 2 K2 ε1 (T − t) + 2 K2

Cz = 2 K2 ε1

Cf = 4 b2
f ε1 (T − t).

We choose ε1 small as follow :

ε1 ≤ inf{ 1
8K2 ,

2 K2 ε1(T − t) + K2

2 b2
f (T − t) |δ − δ′|2}

This implied

Cz ≤
1
4 ,

Cf ≤ C1 |δ − δ′|2.

Therefore, by modifying C1 we obtain :
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E( sup
s∈[t,T ]

|Y ′s − Ys|2) ≤ E( sup
s∈[t,T ]

|Y ′s − Ys|2) +

≤ C1 |δ − δ′|2 + C2 E(
∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2dr)

+ C3 E( sup
s∈[t,T ]

|X ′s −Xs|2).

We applied the Gronwall inequality we obtain

E( sup
s∈[t,T ]

|Y ′s − Ys|2) ≤ eC2(T−t)
(
C1 |δ − δ′|2 + C3 E( sup

s∈[t,T ]
|X ′s −Xs|2)

)
. (3.3.7)

Again by Itô’s formula applied to the function |X ′s −Xs|2 then

E( sup
s∈[t,T ]

|X ′s −Xs|2) ≤ E(|X ′t −Xt|2)

+ 2E( sup
s∈[t,T ]

|
∫ T

s
< bδ(Xr, Yr, Zr, u

δ
r)− bδ′(X ′r, Y ′r , Z ′r, uδ

′

r ), X ′r −Xr > dr|)

+ 2E( sup
s∈[t,T ]

|
∫ T

s
< σδ(Xr, Yr)− σδ′(X ′r, Y ′r ), X

′

r −Xr > dW δ
r |)

+ E( sup
s∈[t,T ]

∫ T

s
|σδ(Xr, Yr)− σδ′(X ′r, Y ′r )|2dr)

Since X ′t and Xt have the same initial value x in the initial time t then E(|X ′t − Xt|2) = 0

therefore

E( sup
s∈[t,T ]

|X ′s −Xs|2) ≤ 2E( sup
s∈[t,T ]

|
∫ T

s
< bδ(Xr, Yr, Zr, u

δ
r)− bδ′(X ′r, Y ′r , Z ′r, uδ

′

r ), X ′r −Xr > dr|)

+ 2E( sup
s∈[t,T ]

|
∫ T

s
< σδ(Xr, Yr)− σδ′(X ′r, Y ′r ), X

′

r −Xr > dW δ
r |)

+ E( sup
s∈[t,T ]

∫ T

s
|σδ(Xr, Yr)− σδ′(X ′r, Y ′r )|2dr).

The first part : by our assumptions and the Young inequality we have
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E(sups∈[t,T ] |

∫ T
s < bδ(Xr, Yr, Zr, u

δ
r)− bδ′(X ′r, Y ′r , Z ′r, uδ

′
r ), X ′r −Xr > dr|)

≤ ε2E( sup
s∈[t,T ]

|
∫ T

s
|bδ(Xr, Yr, Zr, u

δ
r)− bδ′(X ′r, Y ′r , Z ′r, uδ

′

r )|2dr)

+ 1
ε2
E( sup

s∈[t,T ]

∫ T

s
|X ′r −Xr|2dr)

≤ 2 ε2E( sup
s∈[t,T ]

|
∫ T

s
|bδ(Xr, Yr, Zr, u

δ
r)− bδ′(Xr, Yr, Zr, u

δ
r)|2dr)

+ 2 ε2E( sup
s∈[t,T ]

∫ T

s
|bδ′(Xr, Yr, Zr, u

δ
r)− bδ′(Xr, Yr, Z

′
r, u

δ
r)|2dr)

+ 2 ε2E( sup
s∈[t,T ]

∫ T

s
|bδ′(Xr, Yr, Z

′
r, u

δ
r)− bδ′(X ′r, Y ′r , Z ′r, uδ

′

r )|2dr)

+ 1
ε2
E( sup

s∈[t,T ]

∫ T

s
|X ′r −Xr|2dr)

≤ 2 K2ε2 (T − t)|δ − δ′|2 + ( 1
ε2

+ 2 K2ε2)E( sup
s∈[t,T ]

∫ T

s
|X ′r −Xr|2dr)

+ 2 b2
b ε2 (T − t) + 2 K2ε2E( sup

s∈[t,T ]

∫ T

s
|Y ′r − Yr|2dr).

the second part : by the Burkholder-Davis-Gundy inequality and Young inequality with the

constant C∗2
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E(sups∈[t,T ] |

∫ T
s < σδ(Xr, Yr)− σδ′(X ′r, Y ′r ), X

′
r −Xr > dW δ

r |)

≤ C∗2E( sup
s∈[t,T ]

∫ T

s
|σδ(Xr, Yr)− σδ′(X ′r, Y ′r )|2|X

′

r −Xr|2dr)
1
2

≤ C∗2
ε3

E(
∫ T

t
|X ′r −Xr|2dr) + C∗2ε3E(

∫ T

t
|σδ(Xr, Yr)− σδ′(X ′r, Y ′r )|2dr)

≤ C∗2
ε3

E(
∫ T

t
|X ′r −Xr|2dr) + 2C∗2ε3E(

∫ T

t
|σδ(Xr, Yr)− σδ(X ′r, Y ′r )|2dr)

+ 2C∗2ε3E(
∫ T

t
|σδ(X ′r, Y ′r )− σδ′(X ′r, Y ′r )|2dr)

≤ (C
∗
2
ε3

+ 2 K2C∗2ε3)E(
∫ T

t
|X ′r −Xr|2dr) + 2 K2 C∗2ε3E(

∫ T

t
|Yr − Y ′r |2dr)

+ 2C∗2K2ε3(T − t)|δ − δ′|2.

The Last part : by the σ assumptions we have

E(sups∈[t,T ]
∫ T
s |σδ(Xr, Yr)− σδ′(X ′r, Y ′r )|2dr)

≤ 2 E(
∫ T

t
|σδ(Xr, Yr)− σδ(X ′r, Y ′r )|2dr)

+ 2 E(
∫ T

t
|σδ(X ′r, Y ′r )− σδ′(X ′r, Y ′r )|2dr)

≤ 2 K2E(
∫ T

t
|Xr −X ′r|2dr) + 2 K2E(

∫ T

t
|Yr − Y ′r |2dr)

+ 2 K2 (T − t)|δ − δ′|2.

Then
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E( sup
s∈[t,T ]

|X ′s −Xs|2) ≤ (2 K2ε2 + 2 C∗2 ε3 + 2 K2)(T − t)|δ − δ′|2

+ ( 1
ε2

+ 2 K2ε2 + 2 K2C∗2ε3
C∗2
ε3

+ 2 K2)E(
∫ T

t
|X ′r −Xr|2dr)

+ (2 K2ε2 + 2 K2C∗2ε3 + 2 K2)E(
∫ T

t
|Y ′r − Yr|2dr).

We note

C4 = (2 K2ε2 + 2 C∗2 ε3 + 2 K2)(T − t),

C5 = 1
ε2

+ 2 K2ε2 + 2 K2C∗2ε3
C∗2
ε3

+ 2 K2,

C6 = 2 K2ε2 + 2 K2C∗2ε3 + 2 K2.

Cb = 4 b2
b ε2 (T − t).

Then we can rewrite the last estimation as follow :

E( sup
s∈[t,T ]

|X ′s −Xs|2) ≤ E( sup
s∈[t,T ]

|X ′s −Xs|2)

≤ C4 |δ − δ
′ |2 + C5 E(

∫ T

t
sup
s∈[t,r]

|X ′s −Xs|2ds)

+ Cb + C6 E(
∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2dr).

We choose ε2 small as follow :

ε2 ≤
2 K2ε2 + 2 C∗2 ε3 + 2 K2

4 b2
b

|δ − δ′ |2.
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We obtain Cb ≤ C4 |δ − δ

′|2. Therefore, by modifying C4 :

E( sup
s∈[t,T ]

|X ′s −Xs|2) ≤ E( sup
s∈[t,T ]

|X ′s −Xs|2)

≤ C4 |δ − δ
′|2 + C5 E(

∫ T

t
sup
s∈[t,r]

|X ′s −Xs|2ds)

+ C6 E(
∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2dr).

We applied the Gronwall inequality we obtain

E( sup
s∈[t,T ]

|X ′s −Xs|2) ≤ eC5(T−t)
(
C4 |δ − δ

′ |2 + C6 E(
∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2ds)
)
. (3.3.8)

We replace (3.3.8) in (3.3.7) we easily show the following estimation :

E( sup
s∈[t,T ]

|Y ′s − Ys|2) ≤ (C1e
C2(T−t) + C3C4e

(C2+C5)(T−t)) |δ − δ′|2

+ C3C6e
(C2+C5)(T−t) E(

∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2ds)

We note

C7 = C1e
C2(T−t) + C3C4 e

(C2+C5)(T−t)

C8 = C3C6 e
(C2+C5)(T−t)

Then

E( sup
s∈[t,T ]

|Y ′s − Ys|2) ≤ C7 |δ − δ′|2

+ C8 E(
∫ T

t
sup
s∈[t,r]

|Y ′s − Ys|2dr) .
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Finally from the Gronwall inequality we have

E( sup
s∈[t,T ]

|Y ′s − Ys|2) ≤ C7 e
C8(T−t) |δ − δ′|2

3.3.3 proprieties of the solutions Hamilton-Jacobi-Bellman equa-

tion

Lemma 30. Assume that fδ, bδ, Φδ and σδ are bounded C∞ functions with bounded deriva-

tives of every order and satisfy Assumption (B).

Then, setting the following system of PDEs :
∂

∂t
V δ (t, x) + H̄δ

(
x, (V δ,∇xV

δ,∇xxV
δ)(t, x), vδ(t, x)

)
= 0, (t, x) ∈ [0, T ]× Rd,

V δ (T, x) = Φδ(x), x ∈ Rd,

(3.3.9)

With the Hamiltonian

H̄δ (x, y, p, A, v) = 1
2 (tr ((σδσ∗δ ) (x, y))A) + bδ (x, y, pσδ (x, y) , v) p

+fδ (x, y, pσδ (x, y) , v) ,

for (x, y, p, A, v) ∈ Rd × R× Rd × Sd × U.

admits a unique bounded solution V δ ∈ C1,2
b ([0, T ]× Rd). It satisfies

∇xV
δ and ∇2

xxV
δ are bounded on Rd. (3.3.10)

In addition, there exists a constant C̄, only depending on λ and T , and two constants Γ̄

and κ̄, only depending on K, λ and T , such that
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sup
(t,x)∈[0,T ]×Rd

|V δ(t, x)| ≤ C̄, (3.3.11)

sup
(t,x)∈[0,T ]×Rd

|∇xV
δ(t, x)| ≤ Γ̄, (3.3.12)

∀(t, t′) ∈ [0, T ]2, ∀x ∈ Rd, |V δ(t′, x)− V δ(t, x)| ≤ κ̄|t′ − t|1/2. (3.3.13)

Proof. Since the Hamiltonian is smooth and (σδσ∗δ ) (x, y) is strictly elliptic, we can conclude

that the unique bounded continuous viscosity solution V δ of the above equation is smooth

with regularity C1,2
b ([0, T ]×Rd). For this we can apply the regularity results by Krylov [94]

(see the Theorems 6.4.3 and 6.4.4 in [94]). Then V δ satisfies (3.3.10).

Let us show by means of probabilistic tools that (3.3.11) holds. To this end, let us define

for every (t, x) ∈ [0, T ]× Rd :

B(t, x) = bδ(t, x, V δ(t, x),∇xV
δ(t, x)σ(t, x, V δ(t, x))),

Ξ(t, x) = σδ(t, x, V δ(t, x)).

For every t ∈ [0, T ], the SDE

X t,x,δ
s = x+

∫ s

t
B(r,X t,x,δ

r )dr +
∫ s

t
Ξ(r,X t,x,δ

r )dW δ
r ,

admits a weak solution. We then define ∀t ≤ s ≤ T ,

Y t,x,δ
s = V δ(s,X t,x,δ), Zt,x,δ = ∇xV

δ(s,X t,x,δ
s )σδ(s,X t,x,δ

s , Y t,x,δ
s ).
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Therefore, Itô’s formula to the function (s, x)→ V δ(s, x) with x is the processes (X t,x,δ

s )t≤s≤T

and system (3.3.9) show that ∀t ≤ s ≤ T

Y t,x,δ
s = Φδ(X t,x,δ

T ) +
∫ T

s
fδ(r,X t,x,δ

r , Y t,x,δ
r , Zt,x,δ

r , vδ)dr −
∫ T

s
Zt,x,δ
r dW δ

r

Hence, the process (X t,x,δ
s , Y t,x,δ

s , Zt,x,δ
s ) is a solution of the FBSDE associated to the coeffi-

cients bδ, fδ, Φδ, σδ and to the initial condition (t, x). Moreover, applying the Itô formula to

the function (s, x) → |x|2 with x is process (Y t,x,δ
s )t≤s≤T , applied the Young inequality and

by the boundedness of the data fδ and Φδ , we deduce that for every t ≤ s ≤ T and for every

x ∈ Rd :

|Y t,x,δ
s |2 +

∫ T

s
|Zt,x,δ

r |2dr

≤ |Y t,x,δ
T |2 +

∫ T

s
|fδ(X t,x,δ

r , Y t,x,δ
r , Zt,x,δ

r , vδ(t,X t,x,δ
r ))| |Y t,x,δ

r |dr

− 2
∫ T

s
〈Y t,x,δ

r , Zt,x,δ
r dW δ

r 〉,

≤ |Φδ(X t,x,δ
T )|2 + 1

ε

∫ T

s
|fδ(X t,x,δ

r , Y t,x,δ
r , Zt,x,δ

r , vδ(t,X t,x,δ
r ))|2dr +

∫ T

s
ε |Y t,x,δ

r |2dr

− 2
∫ T

s
〈Y t,x,δ

r , Zt,x,δ
r dW δ

r 〉,

≤ C2
Φ +

C2
f

ε
(T − s) + ε

∫ T

s
|Y t,x,δ
r |2dr

− 2
∫ T

s
〈Y t,x,δ

r , Zt,x,δ
r dW δ

r 〉.

Since



82

E(
∫ T

0
|Zt,x,δ

r |2|Y t,x,δ
r |2) 1

2 ≤ E( sup
s∈[t,T ]

|Y t,x,δ
s |2 +

∫ T

0
|Zt,x,δ

r |2dr) <∞,

by Burkholder-Davis-Gundy we deduce

∀s ∈ [0, T ], E(|
∫ T

s
〈Y t,x,δ

r , Zt,x,δ
r dW δ

r 〉) = 0

We choose ε = 1
4(T−t) , then

E( sup
s∈[t,T ]

|Y t,x,δ
s |2) ≤ 4 C2

Φ
3 +

16 C2
f (T − t)2

3

we deduce that there exists a constant C̄, only depending on Cf , CΦ and T , Such that

∀(t, x) ∈ [0, T ]× Rd, |V δ(t, x)| ≤ C̄. (3.3.14)

Then using Theorem 6.14 chapter VII of Ladyzenskaya et al. (1968), we can estimate the

supremum norm of |∇xV
δ(t, x)|2 on every compact of [0, T ]×Rd . Inded for every n ∈ N∗, we

can apply this theorem to the cylinders [0, T ]×{x ∈ Rd, |x| ≤ n} and [0, T ]×{x ∈ Rd, |x| ≤

n+ 1} . In particular, the quantity sup{t∈[0,T ],|x|≤n} |∇xV
δ(t, x)|2 is estimated in terms of C̄,

k, λ, Λ and d, the distance between {x ∈ Rd, |x| ≤ n} and {x ∈ Rd, |x| ≤ n+ 1} being equal

to 1. In particular, there exists a constant Γ̄, only depending on K, λ and T such that

∀(t, x) ∈ [0, T ]× Rd, |∇xV
δ(t, x)| ≤ Γ̄. (3.3.15)

Lastly, let us prove (3.3.13). Let 0 ≤ s ≤ r ≤ T . Then using (3.3.14) and (3.3.15), we show

that there exist κ̄ only depending on K, λ and T , such that

E|Y δ,s,x
r − Y δ,s,x

s |2 ≤ κ̄(r − s), E|Xδ,s,x
r −Xδ,s,x

s |2 ≤ κ̄(r − s).



83
Hence by modifying κ̄ if necessary, and using Y δ,s,x

r = V δ(r,Xδ,s,x
r )

E |V δ(s, x)− V δ(r, x)|2 ≤ 2[E|V δ(s, x)− Y δ,s,x
r |2 + E|Y δ,s,x

r − V δ(r, x)|2],

≤ 2 κ̄(r − s) + 2 E|Xδ,s,x
r − x|2,

≤ 2 κ̄(r − s) + 2 E|Xδ,s,x
r −Xδ,s,x

s |2,

≤ 4 κ̄(r − s).

This shows (3.3.13).

3.3.4 Convergence.

Lemma 31. For all n ∈ N, There exists a constant L > 0 such that

E[sups∈[t,T ] |Xδn
s −Xn

s |2] ≤ Lδ2
n,

E[sups∈[t,T ] |Y δn
s − Y n

s |2] ≤ Lδ2
n.

(3.3.16)

Proof. The sequence of processes (Xn
s , Y

n
s ) satisfied the following controlled forward system :

dXn
s = b(Xn

s , Y
n
s , w

n
s σ(Xn

s , Y
n
s )ds+ σ(Xn

s , Y
n
s )dW δn

s ,

dY n
s = −f(Xn

s , Y
n
s , w

n
s σ(Xn

s , Y
n
s ), uδns )ds+ wns σ(Xn

s , Y
n
s )dW δn

s .

Xn
t = x, Y n

t = V δn(t, x), s ∈ [t, T ].
(3.3.17)

with wns = ∇xV
δn(s,Xδn

s ), and the subsequence (Xδn
s , Y

δn
s ) satisfied the following controlled

forward system :


dXδn

s = bδn(Xδn
s , Y

δn
s , wns σδn(Xδn

s , Y
δn
s )ds+ σδn(Xδn

s , Y
δn
s )dW δn

s ,

dY δn
s = −fδn(Xδn

s , Y
δn
s , wns σδn(Xδn

s , Y
δn
s ), uδns )ds+ wns σδn(Xδn

s , Y
δn
s )dW δn

s .

Xδn
t = x, Y δn

t = V δn(t, x), s ∈ [t, T ].
(3.3.18)

with wns = ∇xV
δn(s,Xδn

s ).
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We applied the Itô’s formula to the function (t, x)→ |x|2, we obtain

|Xn
s −Xδn

s |2 = 2
∫ s

t
〈b (Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− bδn(Xδn
r , Y

δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr ), Xn

r −Xδn
r 〉dr

+ 2
∫ s

t
〈σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r ), Xn

r −Xδn
r 〉dW δn

r

+ 2
∫ s

t
|σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2 dr.

Then, by the Burkholder-Davis-Gundy inequality

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ 2E( sup
t≤s≤T

∫ s

t
|b (Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− bδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ))| |Xn

r −Xδn
r |dr)

+ 2E( sup
t≤s≤T

∫ s

t
|bδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− bδn(Xδn
r , Y

δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )| |Xn

r −Xδn
r |dr)

+ 2 C∗2E( sup
t≤s≤T

∫ s

t
|σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2

|Xn
r −Xδn

r |2dr)
1
2

+ 2E( sup
t≤s≤T

∫ s

t
|σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2 dr).
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We applied the Young inequalities then there exists ε1, ε2 and ε3,

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ 2ε1 E( sup
t≤s≤T

∫ s

t
|b (Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− bδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )|2dr)

+ 2ε2 E( sup
t≤s≤T

∫ s

t
|bδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− bδn(Xδn
r , Y

δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )|2dr)

+ 2
ε1

E( sup
t≤s≤T

∫ s

t
|Xn

r −Xδn
r |2dr) + 2

ε2
E( sup

t≤s≤T

∫ s

t
|Xn

r −Xδn
r |2dr

+ 2 ε3 C
∗
2E( sup

t≤s≤T

∫ s

t
|σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2dr)

+ 2C∗2
ε3

E( sup
t≤s≤T

∫ s

t
|Xn

r −Xδn
r |2dr)

+ 2 E( sup
t≤s≤T

∫ s

t
|σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2 dr).

Then

E(supt≤s≤T |Xn
s −Xδn

s |2) ≤ ( 2
ε1

+ 2
ε2

+ 2C∗2
ε3

)E(supt≤s≤T
∫ s
t |Xn

r −Xδn
r |2dr)

+ 2ε1 E(supt≤s≤T
∫ s
t |b (Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− bδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )|2dr)

+ 2ε2 E(supt≤s≤T
∫ s
t |bδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− bδn(Xδn
r , Y

δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )|2dr)

+ (2 ε3 C
∗
2 + 2)E(supt≤s≤T

∫ s
t |σ (Xn

r , Y
n
r )

− σδn(Xδn
r , Y

δn
r )|2dr)

(3.3.19)

Since the σδn is K-Lipshitz and by the Proposition 1.1.1.

|σ(Xn
r , Y

n
r )− σδn(Xδn

r , Y
δn
r )|2

≤ 2 |σ (Xn
r , Y

n
r )− σδn(Xn

r , Y
n
r )|2 + 2|σδn(Xn

r , Y
n
r )− σδn(Xn

r , Y
n
r )|2

≤ 2C2δ2
n + 2K2|Xn

r −Xδn
r |2 + 2K2|Y n

r − Y δn
r |2,
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the bδn is K-Lipshitz and the wnr is bounded then

|bδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )− bδn(Xδn

r , Y
δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )|2

≤ K2(|Xn
r −Xδn

r |2 + |Y n
r − Y δn

r |2 + |wnr |2|σ(Xn
r , Y

n
r )− σδn(Xδn

r , Y
δn
r )|2)

≤ K2 |Xn
r −Xδn

r |2 + K2 |Y n
r − Y δn

r |2 + 2K2C4δ2
n + 2K4C2 |Xn

r −Xδn
r |2

+ 2K4C2|Y n
r − Y δn

r |2

≤ 2K2C4δ2
n + (K2 + 2K4C2) |Xn

r −Xδn
r |2 + (K2 + 2K4C2) |Y n

r − Y δn
r |2,

and by the Proposition 1.1.1

|b (Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )− bδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )|2 ≤ K2δ2

n.

By the three last estimation the inequality(3.3.19) be

E(supt≤s≤T |Xn
s −Xδn

s |2) ≤ (2 K2ε1 + 4ε2K
2C4 + 2C2(2 ε3 C

∗
2 + 2))(T − t) δ2

n

+ E(
∫ T
t |Y n

r − Y δn
r |2dr)×

(2ε2(K2 + 2K4C2) + 2K2(2 ε3 C
∗
2 + 2))

+ E(
∫ T
t |Xn

r −Xδn
r |2dr)×

( 2
ε1

+ 2
ε2

+ 2C∗2
ε3

+ 2ε2(K2 + 2K4C2) + 2K2(2 ε3 C
∗
2 + 2)).

(3.3.20)
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Then

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ (2 K2ε1 + 4ε2K
2C4 + 2C2(2 ε3 C

∗
2 + 2))(T − t) δ2

n

+ E(
∫ T

t
|Y n
r − Y δn

r |2dr)×

(2ε2(K2 + 2K4C2) + 2K2(2 ε3 C
∗
2 + 2))

+ E(
∫ T

t
sup
t≤s≤r

|Xn
s −Xδn

s |2ds)×

( 2
ε1

+ 2
ε2

+ 2C∗2
ε3

+ 2ε2(K2 + 2K4C2) + 2K2(2 ε3 C
∗
2 + 2)).

We can rewrite the last estimation follow

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ C1 δ2
n+C2×E(

∫ T

t
|Y n
r −Y δn

r |2dr)+C3×E(
∫ T

t
sup
t≤s≤r

|Xn
s −Xδn

s |2ds),

with

C1 = (2 K2ε1 + 4ε2K
2C4 + 2C2(2 ε3 C

∗
2 + 2))(T − t)

C2 = (2ε2(K2 + 2K4C2) + 2K2(2 ε3 C
∗
2 + 2))

C3 = ( 2
ε1

+ 2
ε2

+ 2C∗2
ε3

+ 2ε2(K2 + 2K4C2) + 2K2(2 ε3 C
∗
2 + 2))

Applied the Gronwall inequality we have

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ eC3(T−t)( C1 δ2
n + C2 × E(

∫ T

t
|Y n
r − Y δn

r |2dr) ).

Since

E(
∫ T
t |Y n

r − Y δn
r |2dr) ≤ (T − t) E(supt≤s≤T |Y n

s − Y δn
s |2ds), Therefore,



88

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ eC3(T−t)( C1 δ2
n + C2 × (T − t) E( sup

t≤s≤T
|Y n
s − Y δn

s |2ds) ). (3.3.21)

Again by the Ito’s formula and Burkholder-Davis-Gundy we have,

E( sup
t≤s≤T

|Y n
s − Y δn

s |2) ≤ 2E( sup
t≤s≤T

∫ s

t
|f (Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− fδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )| |Y n

r − Y δn
r |dr)

+ 2E( sup
t≤s≤T

∫ s

t
|fδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− fδn(Xδn
r , Y

δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )| |Y n

r − Y δn
r |dr)

+ 2 C∗2E( sup
t≤s≤T

∫ s

t
|wnr |2|σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2

|Y n
r − Y δn

r |2dr)
1
2

+ 2E( sup
t≤s≤T

∫ s

t
|wnr |2|σ (Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2 dr).

By the fact wnr is bounded and applied the Young inequalities then there exists ε4, ε5 and
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ε6,

E( sup
t≤s≤T

|Y n
s − Y δn

s |2) ≤ 2ε4 E( sup
t≤s≤T

∫ s

t
|f(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− fδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )|2dr)

+ 2
ε4

E( sup
t≤s≤T

∫ s

t
|Y n
r − Y δn

r |dr)

+ 2ε5 E( sup
t≤s≤T

∫ s

t
|fδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− fδn(Xδn
r , Y

δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )|2dr)

+ 2
ε5

E( sup
t≤s≤T

∫ s

t
|Y n
r − Y δn

r |2dr)

+ (2 C2C∗2ε6 + 2C2) E( sup
t≤s≤T

∫ s

t
|σ (Xn

r , Y
n
r )

− σδn(Xδn
r , Y

δn
r )|2dr)

+ 2 C2C∗2
ε6

E( sup
t≤s≤T

∫ s

t
|Y n
r − Y δn

r |2dr).

Then

E(supt≤s≤T |Y n
s − Y δn

s |2) ≤ ( 2
ε4

+ 2
ε5

+ 2 C2C∗2
ε6

) E(supt≤s≤T
∫ s
t |Y n

r − Y δn
r |2dr)

+ 2ε4 E(supt≤s≤T
∫ s
t |f(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− fδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )|2dr)

+ 2ε5 E(supt≤s≤T
∫ s
t |fδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )

− fδn(Xδn
r , Y

δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )|2dr)

+ (2 C2C∗2ε6 + 2C2) E(supt≤s≤T
∫ s
t |σ (Xn

r , Y
n
r )

− σδn(Xδn
r , Y

δn
r )|2dr).

(3.3.22)

Since the σδn is K-Lipshitz and by the Proposition 1.1.1.
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|σ(Xn

r , Y
n
r )− σδn(Xδn

r , Y
δn
r )|2

≤ 2 |σ (Xn
r , Y

n
r )− σδn(Xn

r , Y
n
r )|2 + 2|σδn(Xn

r , Y
n
r )− σδn(Xn

r , Y
n
r )|2

≤ 2C2δ2
n + 2K2|Xn

r −Xδn
r |2 + 2K2|Y n

r − Y δn
r |2,

the fδn is K-Lipshitz and the wnr is bounded then

|fδn(Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )− fδn(Xδn

r , Y
δn
r , wδnr σδn(Xδn

r , Y
δn
r ), uδnr )|2

≤ K2(|Xn
r −Xδn

r |2 + |Y n
r − Y δn

r |2 + |wnr |2|σ(Xn
r , Y

n
r )− σδn(Xδn

r , Y
δn
r )|2)

≤ K2 |Xn
r −Xδn

r |2 + K2 |Y n
r − Y δn

r |2 + 2K2C4δ2
n + 2K4C2 |Xn

r −Xδn
r |2

+ 2K4C2|Y n
r − Y δn

r |2

≤ 2K2C4δ2
n + (K2 + 2K4C2) |Xn

r −Xδn
r |2 + (K2 + 2K4C2) |Y n

r − Y δn
r |2,

and by the Proposition 1.1.1

|f (Xn
r , Y

n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )− fδn(Xn

r , Y
n
r , w

n
r σ(Xn

r , Y
n
r ), uδnr )|2 ≤ K2δ2

n.
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By the three last estimation the inequality(3.3.22) be

E( sup
t≤s≤T

|Y n
s − Y δn

s |2) ≤ (2K2ε4 + 4K2C4ε5 + 4 C4C∗2ε6 + 4C4)(T − t) δ2
n

+ E(
∫ T

t
|Y n
r − Y δn

r |2dr)×

( 2
ε4

+ 2
ε5

+ 2 C2C∗2
ε6

+ 2(K2 + 2K4C2)ε5 + 2K2(2C2C∗2ε6 + 2C2))

+ E(
∫ T

t
|Xn

r −Xδn
r |2dr)×

(2K2(2C2C∗2ε6 + 2C2) + 2ε5(K2 + 4K2C2)

Then

E( sup
t≤s≤T

|Y n
s − Y δn

s |2) ≤ (2K2ε4 + 4K2C4ε5 + 4 C4C∗2ε6 + 4C4)(T − t) δ2
n

+ E(
∫ T

t
sup
t≤s≤r

|Y n
s − Y δn

s |2ds)×

( 2
ε4

+ 2
ε5

+ 2 C2C∗2
ε6

+ 2(K2 + 2K4C2)ε5 + 2K2(2C2C∗2ε6 + 2C2))

+ E(
∫ T

t
|Xn

r −Xδn
r |2dr)×

(2K2(2C2C∗2ε6 + 2C2) + 2ε5(K2 + 4K2C2).

We can rewrite the last estimate as follow

E( sup
t≤s≤T

|Y n
s −Y δn

s |2) ≤ C4 ×δ2
n+ C5 ×E(

∫ T

t
|Xn

r −Xδn
r |2dr)+ C6× E(

∫ T

t
sup
t≤s≤r

|Y n
s −Y δn

s |2ds),

with

C4 = (2K2ε4 + 4K2C4ε5 + 4 C4C∗2ε6 + 4C4)(T − t),

C5 = (2K2(2C2C∗2ε6 + 2C2) + 2ε5(K2 + 4K2C2),
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C6 = ( 2

ε4
+ 2

ε5
+ 2 C2C∗2

ε6
+ 2(K2 + 2K4C2)ε5 + 2K2(2C2C∗2ε6 + 2C2)).

Applied the Gronwall inequality we have

E( sup
t≤s≤T

|Y n
s − Y δn

s |2) ≤ eC6(T−t)( C4 × δ2
n + C5 × E(

∫ T

t
|Xn

r −Xδn
r |2dr) ). (3.3.23)

Since

E(
∫ T
t |Xn

r −Xδn
r |2dr) ≤ E(

∫ T
t supt≤s≤r |Xn

s −Xδn
s |2ds), therefore,

E( sup
t≤s≤T

|Y n
s − Y δn

s |2) ≤ eC6(T−t)( C4 × δ2
n + C5 × E(

∫ T

t
sup
t≤s≤r

|Xn
s −Xδn

s |2ds) ). (3.3.24)

We replace in (3.3.21), we obtain

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ eC3(T−t)( C1 δ2
n + C2 × (T − t) eC6(T−t)

×( C4 × δ2
n + C5 × E(

∫ T

t
sup
t≤s≤r

|Xn
s −Xδn

s |2ds) ) )

Then

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ C7 δ2
n + C8 × E(

∫ T

t
sup
t≤s≤r

|Xn
s −Xδn

s |2ds),

with

C7 = C1e
C3(T−t) + C2C4(T − t)× e(C3+C6)(T−t).

C8 = C2C5(T − t)× e(C3+C6)(T−t)

Finally, again by the Gronwall inequality we deduce

E( sup
t≤s≤T

|Xn
s −Xδn

s |2) ≤ C7 e
C8(T−t) δ2

n. (3.3.25)

Now, recall to the Y estimate (3.3.23), by the fact

E(
∫ T

t
|Xn

r −Xδn
r |2dr) ≤ (T − t) E( sup

t≤s≤T
|Xn

s −Xδn
s |2ds),
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and the estimation (3.3.25) we have :

E( sup
t≤s≤T

|Y n
s − Y δn

s |2) ≤ ( C4e
C6(T−t) + C5 C7 (T − t) e(C6+C8)(T−t) ) δ2

n. (3.3.26)
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In this chapter we study the existence and uniqueness of solutions to one dimensional

BSDEs with generator allowing a logarithmic growth (|y|| ln |y|| + |z|
√
| ln |z||) in the state

variables y and z. This is done with an Lp− integrable terminal value, for some p > 2. As

byproduct, we obtain the existence of viscosity solutions to PDEs with logarithmic nonli-

nearities.

4.1 Introduction

Let (Ω,F , (Ft)0≤t≤T , P ) be a probability space on which is defined a standard d-dimensional

Brownian motion W = (Wt)0≤t≤T whose natural filtration is (F0
t := σ{Bs, s ≤ t})0≤t≤T . Let

(Ft)0≤t≤T be the completed filtration of (F0
t )0≤t≤T with the P -null sets of F . Let f(t, ω, y, z)

be a real valued Ft–progressively measurable process defined on [0, T ]×Ω×R×Rd. Let ξ be

an FT–measurable R–valued random variable. The backward stochastic differential equations

(BSDEs) under consideration is :

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ] (4.1.1)

The previous equation will be denoted by eq(ξ, f). The data ξ and f are respectively called

the terminal condition and the coefficient or the generator of eq(ξ, f).

Due to the applications of BSDEs, many efforts have been made to relax the assumptions

on the driver f and/or on the terminal value. Few results are known for multidimensional

BSDEs with local assumptions on the generator, see for instance [7, 8, 15, 16, 15, 21, 39,
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46, 88]. Closer to our concern here, the one dimensional BSDEs have been more intensively

studied and the quasi-totality of works are based on a comparison theorem. The later allows

to prove the existence of solution when the generator is merely continuous, see for instance

[99, 100, 97, 87]. Roughly speaking, when the generator is at most of linear growth in the va-

riables y and z, the existence of solutions holds under a square integrable (or even integrable)

terminal datum, see for instance [99]. When the generator is of quadratic growth in the va-

riable z (QBSDE), the boundedness or at least the exponential integrability of the terminal

value in order to ensure the existence of solutions, see for instance [5, 13, 37, 66, 97, 100].

Note however that, recently, a large class of QBSDEs which have solutions under merely

square integrable terminal datum were given in [11, 12, 6].

In this section, we consider a one-dimensional BSDE with a continuous generator f which

is of logarithmic growth like (|y|| ln |y||+ |z|
√
| ln |z||). Neither the uniform continuity nor the

local monotony (hence nor the locally Lipschitz) condition will be required to the generator.

These kind of generators are between the linear growth and the quadratic one. In this case, the

square integrability of the terminal datum is not sufficient to ensure the existence of solutions

while the exponential integrability seems strong enough. In our situation, one should require

some p–integrability of the terminal datum ξ with p > 2. It should be noted that we do

not need the comparison theorem in our proofs. We derive the existence of solution by an

approach used in [12] and lately more developed in [5, 6]. This method allows us to deduce the

solvability of BSDE without barriers from the solvability of BSDEs with barriers. Stochastic
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optimal control and BSDE with logarithmic growth were studied in [13] We merely need the

following two assumptions to get the existence of solutions,

(H1) There exists a positive constant λ large enough such that E[|ξ|eλT+1] < +∞,

(H2) (i) f is continuous in (y, z) for almost all (t, w),

(ii) There exist a positive process ηt satisfying

E
[∫ T

0
ηe

λT+1
s ds

]
< +∞, (4.1.2)

and two positive constants c0 and K such that for every t, ω, y, z :

| f(t, ω, y, z) |≤ ηt +K|y|| ln |y||+ c0|z|
√
| ln(|z|)| := g(t, ω, y, z).

To establish the uniqueness, we use a localization procedure introduced in [7, 8] and

more developed in [16, 15]. However, in contrast to [16, 15], we do not impose the

well known condition yf(s, y, z) ≤ ηt +M |y|2 +K|y||z| on the generator. Therefore,

our generator is of super-linear growth in its two sides. In return, we assume that

the terminal data ξ is Lp− integrable, for some p > 2. The method we use allows to

establish the uniqueness as well as the stability of solutions by the same calculus. To

this end, we moreover need the following assumption

(H3) There exist v ∈ Lq′(Ω × [0, T ];R+)) (for some q′ > 0) and a real valued sequence

(AN)N>1 and constants M2 ∈ R+, r > 0 such that :

i) ∀N > 1, 1 < AN ≤ N r,
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ii) limN→∞AN =∞,

iii) For every N ∈ N, and every y, y′ z, z′ such that |y|, |y′|, |z|, |z′| ≤ N , we have

(
y − y′

)(
f(t, ω, y, z)− f(t, ω, y′, z′)

)
11{vt(ω)≤N} ≤ M2|y − y′|2 lnAN

+M2|y − y′||z − z′|
√

lnAN

+M2
lnAN
AN

.

The main objective of the first part of this section is to prove the existence of solutions

under assumptions (H1), (H2). In a first step, we establish the existence and uniqueness

of solutions to equation (4.1.1) under the three assumptions (H1), (H2) and (H3) then we

deduce the existence of solutions by assuming merely the two conditions (H1), (H2). Let

us give more details : We use a suitable localization procedure to establish the existence and

uniqueness of solutions. Since the functions g and −g satisfies (H1), (H2) and (H3), we

then deduce from the first step that eq (ξ+, g) and eq (−ξ−,−g) have unique solutions which

we will respectively denote by (Y g, Zg) and (Y −g, Z−g). Since Y −g ≤ Y g, we use them as

reflecting barriers. Using the result of [67], we show that the two barriers reflected BSDE

with parameters (ξ, f, Y −g, Y g) has a solution. We then deduce that eq (ξ, f) has a solution

(Y, Z) such that Y −g ≤ Y ≤ Y g by showing that the increasing processes, which forces the

solution to stay between the barriers, are null.

In the second part, we establish as application the existence of a continuous viscosity

solution to a semilinear PDE with logarithmic growth nonlinear term. For instance, the
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simple Markovian version of eq (ξ, f) is related to the semilinear PDE,

∂u

∂t
−∆u+ u log |u| = 0 on (0, ∞)× Rd,

u(0+) = ϕ > 0.
(4.1.3)

This kind of PDEs appears in physics (see e.g. [44, 56, 57, 33, 126, 133]) as well as in

the theory of continuous branching processes where it is related to the Neveu branching

mechanism, see e.g. [31, 68, 110]. The logarithmic nonlinearity u log |u| is interesting in its

own, since it is neither locally Lipschitz nor uniformly continuous.

The proofs of the following main results are given in last section of this chapter.

4.2 The main results

4.2.1 BSDEs with logarithmic growth

Theorem 32. Assume that (H1)–(H3) are satisfied. Then, equation (4.1.1) has a unique

solution in SeλT+1 ×M2.

Theorem 33. Assume that (H1) and (H2) are satisfied. Then, equation (4.1.1) has a least

one solution (Y, Z) which belongs to SeλT+1 ×M2.

In the following, we give a stability result for the solution of eq(f, ξ). Roughly speaking, if

fn converges to f in the metric defined by the family of semi-norms (ρN) and ξn converges to

ξ in Lp(Ω) for p > 2 then (Y n, Zn) converges to (Y, Z) in some Lq(Ω) for 1 < q < 2. Let (fn)

be a sequence of functions which are measurable for each n. Let (ξn) be a sequence of random

variables which are FT -measurable for each n and such that sup
n

E
(
|ξn|e

λT+1
)
< +∞. We

will assume that for each n, the BSDE eq(fn, ξn) has a (not necessarily unique) solution.
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Each solution of the BSDE eq(fn, ξn) will be denoted by (Y n, Zn). We consider the following

assumptions,

a) For every N , ρN(fn − f) −→ 0 as n −→∞,

b) E(|ξn − ξ|e
λT+1) −→ 0 as n→∞ ,

c) There exist a positive constant c0 and a positive process ηt such that

E
[∫ T

0
ηe

λT+1
s ds

]
< +∞,

and

sup
n
|fn(t, ω, y, z)| ≤ ηt +K|y|| ln |y||+ c0|z|

√
|| ln(|z|)||.

Theorem 34. Let (f, ξ) be as in Theorem 32. Assume that a), b), and c) are satisfied.

Then, for every q < 2 we have

lim
n→+∞

(
E sup

0≤t≤T
|Y n
t − Yt|q + E

∫ T

0
|Zn

s − Zs|qds
)

= 0.

4.3 Application to PDEs.

The Markovian version of BSDE (4.1.1) is defined by the following system of SDE-BSDE,

for 0 ≤ s ≤ T , 
Xs = x+

∫ s

t
b(Xr)dr +

∫ s

t
σ(Xr)dWr,

Ys = H(XT ) +
∫ T

s
f(Xr, Yr, Zr)dr −

∫ T

s
ZrdWr.

(4.3.1)

where b : Rk 7−→ Rk, σ : Rk 7−→ Rkd, H : Rk 7−→ R, and f : [0, T ] × Rk × R × Rd 7−→ R

are measurable functions.
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Let the PDE associated to the Markovian BSDE (4.3.1) is given by,

∂u

∂t
(t, x) = Lu(t, x) + f(x, u(t, x), σ(x)∇u(t, x)) 0 ≤ t ≤ T >,

u(T, x) = H(x),
(4.3.2)

where,

L =
∑
i, j

aij(x) ∂2

∂xi∂xj
+
∑
i

bi(x) ∂

∂xi
, and a(x) := 1

2(σσ∗)(x).

Consider the following assumptions :

(H4) σ, b are uniformly Lipschitz functions,

(H5) σ, b are continuous functions and a is uniformly elliptic,

(H6) σ, b are of linear growth,

(H7) H is continuous and satisfies E
([
H(XT )

]eλT+1)
<∞.

Theorem 35. Assume that (H1)-(H4) and (H7) are satisfied. Then, equation (4.3.2) has

a viscosity solution v such that v(t, x) = Y
(t,x)
t .

Remark 36. (i) The conclusion of Theorem 35 remains valid if we replace the Lipschitz

condition (H4) by the assumptions given in [9] or that of [18].

(ii) What happens about the conclusion of Theorem 35 when assumption (H4) is replaced

by : the martingale problem is well–posed for a := 1
2σσ

∗ and b ?

(iii) If a is uniformly elliptic, b and/or σ are discontinuous and the martingale problem

is well–posed for a and b as in [92] for instance, is it possible to get the existence of an

Lp-viscosity solution to equation (4.3.1) by arguing as in [14] ?
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4.4 Proofs

4.4.1 A priori estimations.

To prove Theorem 32 and Theorem 34, we need the following lemmas and the first one

is quite technical. We can assume that (|Yt|) is large enough.

Lemma 37. Let (y, z) ∈ R × Rd be such that y is large enough. Then, for every C1 > 0

there exists C2 > 0 such that,

C1 |y| |z|
√
| ln(|z|)| ≤ |z|

2

2 + C2 |y|2 ln(|y|). (4.4.1)

Proof. If |z| ≤ |y|, (4.4.1) is obvious. Assume now that |z| > |y|. The number a := |z|
|y| is

then strictly greater than 1. Since |y| is assumed to be large enough and |z| > |y|, then |z|

is also large enough, and it yields

C1 |y| |z|
√

ln(|z|) ≤ C1a |y|2
[√

ln(a) +
√

ln(|y|)
]
,

and

|z|2

2 + C2 ln(|y|) |y|2 = |y|2
[
a2

2 + C2 ln(|y|)
]
.

Obviously

C1a
√

ln(|y|) ≤ 1
2

[
a2

2 + 2C2
1 ln(|y|)

]
.

So that we have simply to prove that,

a2

4 + C1a
√

ln(a) + C2
1 ln(|y|) ≤ a2

2 + C2 ln(|y|).
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Let r be a constant such that r = max

{
z ∈ R, C1

√
ln(z) = z

4

}
.

If a ≥ r, then C1a
√

ln(a) ≤ a2

4 .

If a < r, then we have C1a
√

ln(a) ≤ C1r
√

ln(r) ≤ C
′

1 ≤ C
′

1 ln(|y|).

This proves inequality (4.4.1).

Lemma 38. Let (Y, Z) be a solution of the BSDE (4.1.1). Let λ ≥ 2K+1. Assume moreover

that (ξ, f) satisfies conditions (H1) and (H2). Then there exists a constant CT , such that :

E
(

sup
t∈[0,T ]

|Yt|e
λt+1

)
≤ CTE

(
|ξ|eλT+1 +

∫ T

0
ηe

λs+1
s ds

)
.

Proof. Let λ be a positive number large enough. Let u(t, x) := |x|e
λt+1 .We define sgn(x) :=

−1{x≤0} + 1{x>0}. We have,

ut = Ceλt ln(|x|) |x|e
λt+1 , ux = (eλt + 1) |x|e

λt

sgn(x) and uxx = (eλt + 1)eλt |x|e
λt−1 .

For k ≥ 0, let τk be the stopping time defined as follows :

τk := inf
{
t ≥ 0,

[ ∫ t

0
(eλs + 1)2 |Ys|2e

λs

|Zs|2 ds
]
∨ |Yt| ≥ k

}
.



104
By Itô’s formula, we have :

|Yt∧τk |
eλ(t∧τk)+1 = |YT∧τk |

eλ(T∧τk)+1 −
∫ T∧τk

t∧τk
λeλs ln(|Ys|) |Ys|e

λs+1 ds

− 1
2

∫ T∧τk

t∧τk
|Zs|2(eλs + 1)eλs |Ys|e

λs−1 ds

+
∫ T∧τk

t∧τk
(eλs + 1) |Ys|e

λs

sgn(Ys)f(s, Ys, Zs)ds

−
∫ T∧τk

t∧τk
(eλs + 1) |Ys|e

λs

sgn(Ys)ZsdWs,

≤ |YT∧τk |
eλ(T∧τk)+1 −

∫ T∧τk

t∧τk
λeλs ln(|Ys|) |Ys|e

λs+1 ds

− 1
2

∫ T∧τk

t∧τk
|Zs|2(eλs + 1)eλs |Ys|e

λs−1 ds

+
∫ T∧τk

t∧τk
(eλs + 1) |Ys|e

λs
(
ηs + K |Ys| ln ( |Ys| ) + c0|Zs|

√
| ln(|Zs|)|

)
ds

−
∫ T∧τk

t∧τk
(eλs + 1) |Ys|e

λs

sgn(Ys)ZsdWs.

By Young’s inequality it holds :

(eλs + 1) |Ys|e
λs

ηs ≤ |Ys|e
λs+1 + (eλs + 1)eλs+1ηe

λs+1
s .
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For |Ys| large enough and thanks to the last inequality we have :

|Yt∧τk |
eλ(t∧τk)+1

≤ |YT∧τk |
eλ(T∧τk)+1 −

∫ T∧τk

t∧τk
λeλs(ln |Ys|) |Ys|(e

λs+1) ds

− 1
2

∫ T∧τk

t∧τk
|Zs|2(eλs + 1)eλs |Ys|e

λs−1 ds

+
∫ T∧τk

t∧τk
|Ys|e

λs+1ds

+
∫ T∧τk

t∧τk
(eλs + 1)eλs+1ηeλs+1

s ds

+
∫ T∧τk

t∧τk
K(eλs + 1)|Ys|e

λs+1 ln(|Ys|)ds.

+
∫ T∧τk

t∧τk
c0(eλs + 1) |Ys|e

λs

|Zs|
√
| ln(|Zs|)|ds

−
∫ T∧τk

t∧τk
(eλs + 1) |Ys|e

λs

sgn(Ys)ZsdWs,

Note that for λ > 2K + 1, we have (λeλs −K(eλs + 1)− 1) > 0 and hence using Lemma 37,

we deduce, for λ large enough, that :

c0(eλs + 1) |Ys| |Zs|
√
| ln(|Zs|)| ≤ (eλs + 1)eλs |Zs|

2

2 (4.4.2)

+ (λeλs −K(eλs + 1)− 1) ln(|Ys|) |Ys|2 .

Hence,

|Yt∧τk |
eλ(t∧τk)+1 ≤ |YT∧τk |

eλ(T∧τk)+1 +
∫ T∧τk

t∧τk
(eλs + 1)eλs+1ηe

λs+1
s ds

−
∫ T∧τk

t∧τk
(eλs + 1) |Ys|e

λs

sgn(Ys)ZsdWs.

Taking expectation, we have

E(|Yt∧τk |
eλ(t∧τk)+1 ) ≤ E(|YT∧τk |

eλ(T∧τk)+1) + (eλT + 1)eλT +1E
∫ T

0
ηe

λs+1
s ds.
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Passing to the limits in k and using Fatou’s Lemma we get

E(|Yt|e
λt+1) ≤ E(|ξ|e

λT+1) + (eλT + 1)eλT +1E
∫ T

0
ηe

λs+1
s ds.

The proof is completed by using the Burkholder-Davis-Gundy inequality.

Lemma 39. Let (Y, Z) be a solution of BSDE (1.1). Assume that (H1) and (H2) are

satisfied. Then, there exists a positive constant C(T, c0, K) such that :

E
∫ T

0
|Zs|2 ds ≤ C(T, c0, K)E

[
|ξ|2 + sup

s∈[0,T ]
|Ys|e

λT+1 +
∫ T

0
|ηs|2 ds

]
.

Proof. Itô’s formula shows that :

|Yt|2 +
∫ T

t
|Zs|2 ds = |ξ|2 + 2

∫ T

t
Ysf (s, Ys, Zs) ds− 2

∫ T

t
YsZsdWs

≤ |ξ|2 + 2
∫ T

t
|Ys|

(
ηs+K |Ys| |ln (|Ys|)|+ c0 |Zs|

√
|ln (|Zs|)|

)
ds

− 2
∫ T

t
YsZsdWs.

Since for |Ys| large enough, we have for any ε > 0, |Ys|2 |ln (|Ys|)| ≤ |Ys|2+ε, we use Lemma

37 to show that there exists a positive constat K1 depending upon c0 and K such that :

1
2

∫ T

t
|Zs|2 ds ≤ |ξ|2 + T sup

s∈[0,T ]
|Ys|2 +

∫ T

t
|ηs|2 ds+ 2TK1 sup

s∈[0,T ]
|Ys|2+ε − 2

∫ T

t
YsZsdWs.

Since |Ys|2+ε ≥ |Ys|2 for |Ys| large enough, then there exists a positive constant K2 =

K2(T, c2, K) such that :

∫ T

t
|Zs|2 ds ≤ K2

(
|ξ|2 + sup

s∈[0,T ]
|Ys|2+ε +

∫ T

t
|ηs|2 ds+

∣∣∣ ∫ T

t
YsZsdWs

∣∣∣).
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If we put ε = eλT − 1, we get

E
∫ T

0
|Zs|2 dt ≤ K2E

[
|ξ|2 + sup

s∈[0,T ]
|Ys|e

λT +1 +
∫ T

0
|ηs|2 ds+ sup

t∈[0,T ]

∣∣∣∣∣
∫ T

t
YsZsdWs

∣∣∣∣∣
]
.

Thanks to the Burkhölder-Davis-Gundy inequality we have for any β > 0

E
[

sup
t∈[0,T ]

∣∣∣∣∣
∫ T

t
YsZsdWs

∣∣∣∣∣
]
≤ C̄E

(∫ T

0
|Ys|2 |Zs|2 dt

) 1
2


≤ C̄E

 sup
s∈[0,T ]

|Ys|
(∫ T

0
|Zs|2 ds

) 1
2


≤ C̄

2βE
(

sup
s∈[0,T ]

|Ys|2
)

+ C̄β

2 E
(∫ T

0
|Zs|2 ds

)
.

Choosing β small enough, we get the desired result.

Lemma 40. Let (H1), (H2)–(ii) be satisfied. Then,

E
∫ T

0
|f(s, Ys, Zs)|ᾱds ≤ K

[
1 + E

∫ T

0

(
η2
s + |Ys|2

)
ds+ E

∫ T

0
|Zs|2ds

]
.

where ᾱ = min(2, 2
α

) and K is a positive constant which depends from c0 and T .

Proof. Observe that assumption (H2) implies that there exist positives constants c1, c2 and

α with 1 < α < 2 and a process η̄ := η + c1 such that :

|f(t, ω, y, z)| ≤ η̄t + c1|y|α + c2|z|α. (4.4.3)

For simplicity, we assume that η̄ := η. We successively use inequality (4.4.3) and Assumption
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(H.3) to show that

E
∫ T

0
|f(s, Ys, Zs)|ᾱds

≤ E
∫ T

0
(ηs + c1|Y s|

α + c2|Zs|α)αds,

≤ 3(1 + cᾱ1 +cα2 )E
∫ T

0

(
(ηs)ᾱ + |Ys|αα + (|Zs|αα

)
ds,

≤ 3(1 + cᾱ1 +cα2 )E
∫ T

0
(
(
1 + ηs)ᾱ + (1 + |Ys|)αα + (1 + |Zs|)αα

)
ds,

≤ 6 (1 + cᾱ1 +cα2 )
(
3T + E

∫ T

0
(η2
s+|Y s|

2 + |Zs|2)ds
)
<∞.

Lemma 40 is proved.

Lemma 41. There exists a sequence of functions (fn) such that,

(a) For each n, fn is bounded and globally Lipschitz in (y, z) a.e. t and P -a.s.ω.

(b) sup
n
|fn(t, ω, y, z)| ≤ ηt + K |Y s|| ln (|Y s|)|+ c0|z|

√
| ln(|Zs|)|, P -a.s., a.e. t ∈ [0, T ].

(c) For every N , ρN(fn − f) −→ 0 as n −→∞.

Proof. Let αn : R2 −→ R+ be a sequence of smooth functions with compact support which

approximate the Dirac measure at 0 and which satisfy
∫
αn(u)du = 1. Let ψn from R2 to

R+ be a sequence of smooth functions such that 0 ≤ |ψn| ≤ 1, ψn(u) = 1 for |u| ≤ n and

ψn(u) = 0 for |u| ≥ n+1. We put, εq,n(t, y, z) =
∫
f(t, (y, z)−u)αq(u)duψn(y, z). For n ∈ N∗,

let q(n) be an integer such that q(n) ≥ n + nα. It is not difficult to see that the sequence

fn := εq(n),n satisfies all the assertions (a)-(c).

Arguing as in the proofs of Lemma 38, Lemma 39, Lemma 40, Lemma 41 and standard

arguments of BSDEs, one can prove the following estimates.
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Lemma 42. Let f and ξ be as in Theorem 32. Let (fn) be the sequence of functions associated

to f by Lemma 41. Denote by (Y fn , Zfn) the solution of equation (Efn). Then, there exit

constants K̄1, K̄2, K̄3 such that

a) sup
n

E
∫ T

0
|Zfn

s |2ds ≤ K̄1

b) sup
n

E
[

sup
0≤t≤T

(
|Y fn
t |e

λT+1
)]
≤ K̄2

c) sup
n

E
∫ T

0
|fn(s, Y fn

s , Zfn
s )|ᾱds ≤ K̄3

where ᾱ = min(2, 2
α

)

The following lemma (which established in [16]) is a direct consequence of Hölder’s and

Schwartz’s inequalities.

Lemma 43. For every β ∈]1, 2], A > 0, (y)i=1..d ⊂ R, (z)i=1..d,j=1..r ⊂ R we have,

A|y||z| − 1
2 |z|

2 + 2− β
2 |y|−2|yz|2 ≤ 1

β − 1A
2|y|2 − β − 1

4 |z|2.

4.4.2 Estimate between two solutions

Proposition 4.4.1. For every R ∈ N, β ∈]1,min
(
3− 2

ᾱ
, 2
)

[, δ < (β−1) min
(

1
4M2

2
,

3− 2
ᾱ
−β

2rM2
2β

)
and ε > 0, there exists N0 > R such that for all N > N0 and T ′ ≤ T :

lim sup
n,m→+∞

E sup
(T ′−δ)+≤t≤T ′

|Y fn
t − Y fm

t |β + E
∫ T ′

(T ′−δ)+

∣∣∣Zfn
s − Zfm

s

∣∣∣2(
|Y fn
s − Y fm

s |2 + νR
) 2−β

2
ds

≤ ε+ `

β − 1e
CN δ lim sup

n,m→+∞
E|Y fn

T ′ − Y
fm
T ′ |β.

where νR = sup {(AN)−1, N ≥ R}, CN = 2M2
2β

(β−1) lnAN and ` is a universal positive constant.

For N ∈ N?, we put

∆t :=
∣∣∣Y fn
t − Y fm

t

∣∣∣2 + (AN)−1 and Φ(s) := |Y fn
s |+ |Y fm

s |+ |Zfn
s |+ |Zfm

s | (4.4.4)
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Lemma 44. Let assumptions of Proposition 4.4.1 be satisfied and let κ := 3− 2

ᾱ
−β . Then,

for any C > 0 we have,

eCt∆
β
2
t + C

∫ T ′

t
eCs∆

β
2
s ds

≤ eCT
′∆

β
2
T ′ − β

∫ T ′

t
eCs∆

β
2−1
s 〈Y fn

s − Y fm
s ,

(
Zfn
s − Zfm

s

)
dWs〉

− β

2

∫ T ′

t
eCs∆

β
2−1
s

∣∣∣Zfn
s − Zfm

s

∣∣∣2 ds
+ β

(2− β)
2

∫ T ′

t
eCs∆

β
2−2
s

(
(Y fn

s − Y fm
s )(Zfn

s − Zfm
s )

)2
ds

+ J1 + J2 + J3,

where

J1 := βeCT
′ 1
Nκ

∫ T ′

t
∆

β−1
2

s Φκ(s)|fn(s, Y fn
s , Zfn

s )− fm(s, Y fm
s , Zfm

s |ds,

J2 := βeCT
′ [2N2 + ν1]

β−1
2

[ ∫ T ′

t
sup

|y|,|z|≤N
|fn(s, y, z)− f(s, y, z)|ds

+
∫ T ′

t
sup

|y|,|z|≤N
|fm(s, y, z)− f(s, y, z)|ds

]
.

J3 := βM2

∫ T ′

t
eCs∆

β
2−1
s

[
∆s lnAN + |Y fn

s − Y fm
s ||Zfn

s − Zfm
s |

√
lnAN

]
ds.

Proof. To simplify the computations, we assume (without loss of generality) that assump-

tion (H3)-(iii) holds without the multiplicative term 1{vt(ω)≤N}. Let C > 0. Itô’s formula

shows that,

eCt∆
β
2
t + C

∫ T ′

t
eCs∆

β
2
s ds

= eCT
′∆

β
2
T ′ + β

∫ T ′

t
eCs∆

β
2−1
s

(
Y fn
s − Y fm

s

)(
fn(s, Y fn

s , Zfn
s )− fm(s, Y fm

s , Zfm
s )

)
ds

− β
∫ T ′

t
eCs∆

β
2−1
s 〈Y fn

s − Y fm
s ,

(
Zfn
s − Zfm

s

)
dWs〉 −

β

2

∫ T ′

t
eCs∆

β
2−1
s

∣∣∣Zfn
s − Zfm

s

∣∣∣2 ds
− β(β2 − 1)

∫ T ′

t
eCs∆

β
2−2
s

(
(Y fn

s − Y fm
s )(Zfn

s − Zfm
s )

)2
ds.
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Using the fact that Φ(s) = |Y fn

s |+ |Y fm
s |+ |Zfn

s |+ |Zfm
s |, we get

eCt∆
β
2
t + C

∫ T ′

t
eCs∆

β
2
s ds

= eCT
′∆

β
2
T ′ − β

∫ T ′

t
eCs∆

β
2−1
s 〈Y fn

s − Y fm
s ,

(
Zfn
s − Zfm

s

)
dWs〉

− β

2

∫ T ′

t
eCs∆

β
2−1
s

∣∣∣Zfn
s − Zfm

s

∣∣∣2 ds
+ β

(2− β)
2

∫ T ′

t
eCs∆

β
2−2
s

(
(Y fn

s − Y fm
s )(Zfn

s − Zfm
s )

)2
ds

+ J́1 + J́2 + J́3 + J́4,

where

J́1 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn
s − Y fm

s

)(
fn(s, Y fn

s , Zfn
s )− fm(s, Y fm

s , Zfm
s )

)
11{Φ(s)>N}ds.

J́2 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn
s − Y fm

s

)(
fn(s, Y fn

s , Zfn
s )− f(s, Y fn

s , Zfn
s )
)
11{Φ(s)≤N}ds.

J́3 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn
s − Y fm

s

)(
f(s, Y fn

s , Zfn
s )− f(s, Y fm

s , Zfm
s )

)
11{Φ(s)≤N}ds.

J́4 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn
s − Y fm

s

)(
f(s, Y fm

s , Zfm
s )− fm(s, Y fm

s , Zfm
s )

)
11{Φ(s)≤N}ds.

We now proceed to estimate J́1, J́2, J́3, J́4. We use the fact that |Y fn
s − Y fm

s | ≤ ∆
1
2
s to

obtain

J́1 ≤ βeCT
′
∫ T ′

t
∆

β−1
2

s |fn(s, Y fn
s , Zfn

s )− fm(s, Y fm
s , Zfm

s |11{Φ(s)>N}ds,

≤ J1,

and

J́2 + J́4 ≤ J2.
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Using assumption (H3), we get

J́3 ≤ βM2

∫ T ′

t
eCs∆

β
2−1
s

[
|Y fn
s − Y fm

s |2 lnAN

+ |Y fn
s − Y fm

s ||Zfn
s − Zfm

s |
√

lnAN + lnAN
AN

]
11{Φ(s)<N}ds

≤ J3.

Lemma 44 is proved.

Lemma 45. Let assumptions of Proposition 4.4.1 be satisfied and let γ :=2M2
2 δβ

β−1 . Then,

there exists a universal constant ` such that,

E sup
(T ′−δ)+≤t≤T ′

|Y fn
t − Y fm

t |β + E
∫ T ′

(T ′−δ)+

∣∣∣Zfn
s − Zfm

s

∣∣∣2(
|Y fn
s − Y fm

s |2 + νR
) 2−β

2
ds

≤ `

β − 1e
CN δE|Y fn

T ′ − Y
fm
T ′ |β + `

β − 1
AγN

(AN)β2

+ 4`
β − 1βK

1
ᾱ
3 (4TK2 + TνR)

β−1
2 (8TK2 + 8K1)

κ
2

AγN
(AN)κr

+ `

β − 1e
CN δβ[2N2 + ν1]

β−1
2
[
ρN(fn − f) + ρN(fm − f)

]
.

Proof. We choose C := CN := 2M2
2β

β − 1 lnAN in Lemma 44. Using Lemma 43, Burkholder’s

inequality and Hölder’s inequality (since (β−1)
2 + κ

2 + 1
ᾱ

= 1), we show that there exists a
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universal constant ` > 0 such that for any δ > 0,

E sup
(T ′−δ)+≤t≤T ′

[
eCN t∆

β
2
t

]
+ E

∫ T ′

(T ′−δ)+
eCNs∆

β
2−1
s

∣∣∣Zfn
s − Zfm

s

∣∣∣2 ds
≤ `

β − 1e
CNT

′
{
E
[
∆

β
2
T ′

]
+ β

Nκ

[
E
∫ T

0
∆sds

]β−1
2
[
E
∫ T

0
Φ(s)2ds

]κ
2

×
[
E
∫ T

0
|fn(s, Y fn

s , Zfn
s )− fm(s, Y fm

s , Zfm
s |ᾱds

] 1
ᾱ

+ β[2N2 + ν1]
β−1

2 E
[ ∫ T

0
sup

|y|,|z|≤N
|fn(s, y, z)− f(s, y, z)|ds

+
∫ T

0
sup

|y|,|z|≤N
|fm(s, y, z)− f(s, y, z)|ds

]}
.

We use Lemma 41 and Lemma 42 to obtain for any N > R,

E sup
(T ′−δ)+≤t≤T ′

|Y fn
t − Y fm

t |β + E
∫ T ′

(T ′−δ)+

∣∣∣Zfn
s − Zfm

s

∣∣∣2(
|Y fn
s − Y fm

s |2 + νR
) 2−β

2
ds

≤ `

β − 1e
CN δ

{
E|Y fn

T ′ − Y
fm
T ′ |β + (AN)

−β
2

+ β

Nκ
(4TK2 + TνR)

β−1
2 (8TK2 + 8K1)

κ
2 (4K

1
ᾱ
3 )

+ β[2N2 + ν1]
β−1

2
[
ρN(fn − f) + ρN(fm − f)

]}

≤ `

β − 1e
CN δE|Y fn

T ′ − Y
fm
T ′ |β + `

β − 1
AγN

(AN)β2

+ 4`
β − 1βK

1
ᾱ
3 (4TK2 + TνR)

β−1
2 (8TK2 + 8K1)

κ
2

AγN
(AN)κr

+ `

β − 1e
CN δβ[2N2 + ν1]

β−1
2
[
ρN(fn − f) + ρN(fm − f)

]
.

Lemma 45 is proved.

Proof of Proposition 4.4.1 Taking δ < (β − 1) min
(

1
4M2

2
, κ

2rM2
2β

)
we derive

AγN

(AN)β2
−→N→∞ 0,
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and

AγN
(AN)κr

−→N→∞ 0.

To finish the proof of Proposition 4.4.1 we pass to the limits first on n and next on N using

assertion (c) of lemma 41.

Remark 46. To deal with the case which take account of the process vt appearing in as-

sumption (H3), it suffices to take Φ(s) := |Y 1
s | + |Y 2

s | + |Z1
s | + |Z2

s | + vs in the proof of

proposition 4.4.1.

4.4.3 Existence and uniqueness

Proof. of Theorem 32 Taking successively T ′ = T , T ′ = (T − δ)+, T ′ = (T − 2δ)+... in

Proposition 4.4.1, we show that for any β ∈
]
1, min(3− 2

ᾱ
, 2)

[

lim
n,m→+∞

E sup
0≤t≤T

|Y fn
t − Y fm

t |β + E
∫ T

0

∣∣∣Zfn
s − Zfm

s

∣∣∣2(
|Y fn
s − Y fm

s |2 + νR
) 2−β

2
ds

 = 0.

Using Schwartz’s inequality we have,

E
∫ T

0
|Zfn

s −Zfm
s |ds ≤

(
E
∫ T

0

∣∣∣Zfn
s − Zfm

s

∣∣∣2(
|Y fn
s − Y fm

s |2 + νR
) 2−β

2
ds

) 1
2
(
E
∫ T

0

(
|Y fn
s − Y fm

s |2 + νR
) 2−β

2 ds

) 1
2

.

Lemma 42 shows that

(
E
∫ T

0

(
|Y fn
s − Y fm

s |2 + νR
) 2−β

2 ds

) 1
2

<∞

It follows that :

lim
n,m→+∞

(
E sup

0≤t≤T
|Y fn
t − Y fm

t |β + E
∫ T

0
|Zfn

s − Zfm
s |ds

)
= 0
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Hence, there exists (Y, Z) satisfying

E sup
0≤t≤T

|Yt|β + E
∫ T

0
|Zs|ds <∞

and

lim
n→+∞

(
E sup

0≤t≤T
|Y fn
t − Yt|β + E

∫ T

0
|Zfn

s − Zs|ds
)

= 0

In particular, there exists a subsequence, which we still denote (Y fn , Zfn), such that

lim
n→+∞

(
|Y fn
t − Yt|+ |Zfn

t − Zt|
)

= 0 a.e. (t, ω).

We shall prove that
∫ T

0 [fn(s, Y fn
s , Zfn

s ) − f(s, Y f
s , Z

f
s )]ds tends in probability to 0 as n

tends to ∞. Triangular inequality gives

E
∫ T

0
|fn(s, Y fn

s , Zfn
s )− f(s, Y f

s , Z
f
s )|ds ≤ E

∫ T

0
|fn(s, Y fn

s , Zfn
s )− f(s, Y fn

s , Zfn
s )|ds

+ E
∫ T

0
|f(s, Y fn

s , Zfn
s )− f(s, Y f

s , Z
f
s )|ds

Since 11{|Y fns |+|Zfns |≥N} ≤ |
(|Y fn

s |+ |Zfn
s |)(2− 2

ᾱ
)

N (2− 2
ᾱ

)
11{|Y fns |+|Zfns |≥N}, it follows that :

E
∫ T

0
|fn(s, Y fn

s , Zfn
s )− f(s, Y fn

s , Zfn
s )|ds

≤ E
∫ T

0
|fn(s, Y fn

s , Zfn
s )− f(s, Y fn

s , Zfn
s )|11{|Y fns |+|Zfns |≤N}ds

+ E
∫ T

0
|fn(s, Y fn

s , Zfn
s )− f(s, Y fn

s , Zfn
s )|(|Y

fn
s |+ |Zfn

s |)(2− 2
ᾱ

)

N (2− 2
ᾱ

)
11{|Y fns |+|Zfns |≥N}ds

≤ ρN(fn − f) +
2K̄

1
ᾱ
3

[
TK̄2 + K̄1

]1− 1
ᾱ

N (2− 2
ᾱ

)
.

Passing to the limit first on n and next on N we get,

lim
n
E
∫ T

0
|fn(s, Y fn

s , Zfn
s )− f(s, Y fn

s , Zfn
s )|ds = 0.
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We use Lemma 42 and the Lebesgue dominated convergence theorem to show that,

lim
n
E
∫ T

0
|f(s, Y fn

s , Zfn
s )− f(s, Ys, Zs)|ds = 0.

The existence is proved.

Uniqueness. Let (Y, Z) and (Y ′, Z ′) be two solutions of equation eq(f, ξ). Arguing as pre-

viously, one can show that :

For every R > 2, β ∈]1,min
(
3− 2

ᾱ
, 2
)

[, δ < (β − 1) min
(

1
4M2

2
,

3− 2
ᾱ
−β

2rM2
2β

)
and ε > 0

there exists N0 > R such that for every N > N0 and every T ′ ≤ T

E sup
(T ′−δ)+≤t≤T ′

|Yt − Y
′

t |β + E
∫ T ′

(T ′−δ)+

∣∣∣Zs − Z ′s∣∣∣2
(|Ys − Y ′s |2 + νR)

2−β
2
ds

≤ ε+ `

β − 1e
CN δE|YT ′ − Y

′

T ′ |β.

We successively take T ′ = T , T ′ = (T ′ − δ)+, ... to complete the proof of uniqueness.

Proof. of Theorem 33 Clearly both the functions g (t, y, z) := ηt + K |y| |ln (|y|)| +

c0 |z|
√
|ln (|z|)| and −g satisfy assumptions (H2) and (H3). Hence, according to Theo-

rem 32, eq (ξ, g) (resp.eq (−ξ,−g)) has unique solution which belong to SeλT+1 ×M2. We

now consider the following reflected BSDE,

i) Yt = ξ +
∫ T
t f (s, Ys, Zs) ds+

∫ T
t dK

+
s −

∫ T
t dK

−
s −

∫ T
t ZsdBs,

ii) ∀t ≤ T, Y −gt ≤ Yt ≤ Y g
t ,

iii)
∫ T
0

(
Yt − Y −gt

)
dK+

s =
∫ T
0 (Y g

t − Yt) dK−s = 0 a.s.,
iv) K+, K− are continuous nondecreasing, and K+

0 = K−0 = 0,
v) dK+ ⊥ dK−.
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For every (t, w) ∈ [0, T ]× Ω, every y ∈

[
Y −gt (ω), Y g

t (ω)
]
and every z ∈ Rd we have

f (t, y, z) ≤ ηt +K |y| |ln (|y|)|+ c0 |z|
√
|ln (|z|)|

≤ ηt +K
(
1 + |y|2

)
+ c0(1 + |z|2)

≤
[
ηt +K + c0 +K

(
|Y −gt |2 + |Y g

t |2
)]

+ c0 |z|2 .

Therefore, according to Theorem 3.2 of [67], the previous reflected BSDE, has a solution

(Y, Z,K+, K−) such that (Y, Z) belongs to C ×L2. In order to show that (Y, Z) is a solution

to our non–reflected BSDE eq(ξ, f), it is enough to prove that dK+ = dK− = 0. Since

(Y g, Zg) is a solution to eq(ξ, g), then Tanaka’s formula shows that :

(Y g
t − Yt)+ = (Y g

0 − Y0)+ +
∫ t

0
1{Y gs >Ys}[f(s, Ys, Zs)− g(Y g

s , Z
g
s )]ds

+
∫ t

0
1{Y gs >Ys}(dK

+
s − dK−s ) +

∫ t

0
1{Y gs >Ys}(Z

g
s − Zs)dWs

+L0
t (Y g − Y )

where L0
t (Y g−Y ) denotes the local time at time t and level 0 of the semimartingale (Y g−Y ).

Identifying the terms of (Y g
t − Yt)+ with those of (Y g

t − Yt), we show that (Zs −

Zg
s )1{Y gs =Ys} = 0 for a.e. (s, ω). Since

∫ t
0 1{Y gs =Ys}dK

+
s = 0 and f(s, y, z) ≤ g(y, z), we deduce

that :

0 ≤ L0
t (Y g − Y ) +

∫ t

0
1{Y gs =Ys}[g(Y g

s , Z
g
s )− f(s, Ys, Zs)]ds

= −
∫ t

0
1{Y gs =Ys}dK

−
s ≤ 0

It follows that
∫ t

0 1{Y gs =Ys}dK
−
s = 0, which implies that dK− = 0. Arguing symmetrically,
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one can show that dK+ = 0. Since both Y g and Y −g belong to SeλT+1, so does for Y . Arguing

as the proof of Lemma (3.3), we can check that Z ∈M2.

Proof. of Theorem 34. Arguing as in the proof of Theorem 32, we show that for every

R > 2, β ∈]1,min
(
3− 2

ᾱ
, 2
)

[, δ < (β− 1) min
(

1
4M2

2
,

3− 2
ᾱ
−β

2rM2
2β

)
and ε > 0, there exists N0 > R

such that for every N > N0 and every T ′ ≤ T

lim sup
n→+∞

E sup
(T ′−δ′)+≤t≤T ′

|Y n
t − Yt|β + E

∫ T ′

(T ′−δ)+

|Zn
s − Zs|

2

(|Y n
s − Ys|2 + νR)

2−β
2
ds

≤ ε+ `

β − 1e
CN δ lim sup

n→+∞
E|Y n

T ′ − YT ′|β.

Taking successively T ′ = T , T ′ = (T ′− δ)+, ... , we get the convergence in the whole interval

[0, T ]. In particular, we have for every q < 2, limn→+∞ (|Y n − Y |q) = 0 and limn→+∞ (|Zn − Z|q) =

0 in measure P ×dt. Since (Y n) and (Zn) are square integrable, the proof is finished by using

an uniform integrability argument. Theorem 34 is proved.

4.4.4 Proof of Theorem 35

4.4.5 Continuity of the map (t, x) 7−→ Y
(t,x)

t

Proposition 4.4.2. Assume (H1)–(H4) and (H6) hold. Then, the map (t, x) 7−→ Y
(t,x)
t is

continuous.

Proof. Let (tn, xn)→ (t, x) such that tn ≤ t for each n. The proof goes symmetrically when

tn ≥ t. Since b and σ are Lipshitz and of linear growth, there exists a positive constant
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C ′ = C ′(x, T, k) such that for n large enough and for every k ∈ N

E
(

sup
0≤ s≤T

|X tn,xn
s |k + |X t,x

s |k
)
≤ C ′. (4.4.5)

and

E( sup
0≤ s≤T

|X tn,xn
s −X t,x

s |2) ≤ C ′
(
|tn − t|+ |xn − x|2

)
. (4.4.6)

In the other hand, since |Y tn,xn
tn − Y t,x

t | is deterministic, we have

|Y t,x
t − Y tn,xn

tn | ≤ E
(
|Y t,x
t − Y tn,xn

tn |
)

≤ E
(
|Y t,x
t − Y t,x

tn |
)

+ E
(
|Y t,x
tn − Y

tn,xn
tn |

)
,

:= In1 + In2 .

where

In1 := E
(
|Y t,x
t − Y t,x

tn |
)

and In2 := E
(
|Y t,x
tn − Y

tn,xn
tn |)

Using Lemma 38, Lemma 39 and Lemma 40, we get limn→∞I
n
1 = 0. We shall show that

limn→∞I
n
2 = 0. Since In2 ≤ E

(
sup0≤s≤T |Y tn,xn

s − Y t,x
s |

)
, we proceed as in the proofs of

Lemmas 44 and 45 to get,

E sup
(T ′−δ)+≤s≤T ′

|Y tn,xn
s − Y t,x

s |β + E
∫ T ′

(T ′−δ)+

|Ztn,xn
s − Zt,x

s |
2(

|Y tn,xn
s − Y t,x

s |2 + νR
) 2−β

2
ds

≤ `

β − 1e
CN δE|H

(
X tn,xn
T ′

)
−H

(
X t,x
T ′

)
|β + `

β − 1
AγN

(AN)β2

+ 2`
β − 1βK

1
ᾱ
3 (4T ′K2 + T ′`)

β−1
2 (8T ′K2 + 8K1)

κ
2

AγN
(AN)κr

+ 2`
β − 1e

CN δβ[2N2 + ν1]
β−1

2

[
E
∫ T ′

t
|f(s,X tn,xn

s , Y t,x
s , Zt,x

s )− f(s,X t,x
s , Y t,x

s , Zt,x
s )|ds

]
.
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Since f and H are continuous in the x–variable, we successively pass to the limit on n and

N to get

lim sup
n,N→+∞

E sup
(T ′−δ′)+≤t≤T ′

|Y tn,xn
t − Y t,x

t |β + E
∫ T ′

(T ′−δ)+

|Ztn,xn
s − Zt,x

s |
2(

|Y tn,xn
s − Y t,x

s |2 + νR
) 2−β

2
ds = 0.

Taking successively T ′ = T , T ′ = (T ′−δ)+, ... , we show that for every β ∈
]
1, min

(
3− 2

ᾱ
, 2
)[
,

lim
n→+∞

E sup
0≤s≤T

|Y tn,xn
s − Y t,x

s |β = 0.

Since β > 1, we then conclude the proof by using Holder’s inequality.

4.4.6 u(t, x) := Y
(t,x)

t is a viscosity solution to PDE (4.3.2)

We will follow the method of [97]. We then need the following touching lemma which

allows to avoid the comparison theorem. The proof of the touching lemma can be found for

instance in [97].

Lemma 47. Let (ξt)0≤t≤T be a continuous adapted process such that,

dξt = β(t)dt+ α(t)dWt,

where β and α are continuous adapted processes such that β and |α|2 are integrable. If ξt ≥ 0

a.s. for all t, then for all t,

1{ξt=0}α(t) = 0 a.s.,

1{ξt=0}β(t) ≥ 0 a.s..

We now prove Theorem 35. From Proposition 4.4.2, the map v(t, x) := Y t,x
t is continuous

in (t, x). It remains to prove that v(t, x) is a viscosity solution to PDE (4.3.2). To simplify the



121
notations, we denote (Xs, Ys, Zs) := (X t,x

s , Y t,x
s , Zt,x

s ). Since v(t, x) = Y t,x
t , then the Markov

property of X and the uniqueness of Y show that for every s ∈ [0, T ],

v(s,Xs) = Ys.

We show that v is a viscosity subsolution to PDE (4.3.2). Let φ ∈ C1,2 and (t, x) be a local

maximum of (v − φ) which we suppose global and equal to 0, that is :

φ(t, x) = v(t, x) and φ(t, x) ≥ v(t, x) for each (t, x).

It follows that

φ(s,Xs) ≥ Ys.

By Itô’s formula we have

dφ(s,Xs) =
(
∂φ

∂s
+ Lφ

)
(s,Xs)ds+ σ∇xφ(s,Xs)dWs,

and Y satisfies the equation

−dYs = f(s, Ys, Zs)ds− ZsdWs.

Since φ(s,Xs) ≥ Ys, then the touching property shows that for each s,

1{φ(s,Xs)=Ys}

[(
∂φ

∂t
+ Lφ

)
(s,Xs) + f(Ys)

]
≥ 0,

and

1{φ(s,Xs)=Ys}|σ∇xφ(s,Xs)− Zs| = 0 a.s..

Since for s = t we have φ(t,Xt) = Yt, then the second equation gives Zt = σ∇xφ(t,Xt) :=

σ∇xφ(t, x), and the first inequality gives the desired result.
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Remark 48. Application to Quadratic BSDEs. Let f(t, y, z) be continuous in (y, z)

and satisfies the quadratic growth : |f(t, y, z)| ≤ a + b|y| + 1
2 |z|

2 := h(t, y, z). Arguing as in

the proof of Theorem 33, the solvability of eq(ξ, f) is reduced to that of eq(ξ, h). Using an

exponential transformation, it is clear that eq(ξ, h) is equivalent to eq(eξ, a|y|+ b |y|| ln |y||).

Thanks to Theorem 32 , this last logarithmic BSDE admits a solution whenever eξ has finite

p-moment for some p > 0. This shows that we can deduce the solvability of Quadratic BSDEs

from that of logarithmic ones.



Chapitre 5

Singularly perturbed forward
backward stochastic differential
equations : application to the optimal
control of bilinear systems

5.1 Introduction

In this chapter we present some applications of FBSDEs and its bridge with the field of

stochastic optimal control, this end is one of the important field in Mathematics which has

been subject of large literature. We mention among of them [127], [71], and [20] it found

increasing applications in the domain of molecular dynamics [129], [79], [143] and financial

mathematics [36], [117], [58]. High-dimensionality is the common question of huge ensemble

of these applications, either the system is itself high dimensional like the case of molecular

dynamics, or it is produced form the space discretization of a time-space PDE in the absence

of the analytic solution, these systems have characteristic time scales, which lead us to the

possibility of eliminate the fast dynamic in such a way controlling the reduced system is

equivalent to control the hole system.

123
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The question of the existence of an optimal control in some appropriate sense has been

subject of many authors, but the in most cases there is no analytical technique to find the

explicit optimal control, in this chapter we focus on the numerical studies, which lead us

to find the optimal control and the value function as well, for the question of existence of

optimal control the reader is referred to [138, 70, 96, 71, 116, 130, 17] and [19].

Model order redaction MOR, is an important tools to beat the curse of dimensionality,

this end came form the fact that we do a space discretization of a time-space PDE, or it can

be form the system it self, like the case of molecular dynamics, MOR has been studied by

several authors see [77, 144, 129, 143]

This chapter is organized as follow, first we set up the problem, the next section is

concerned to the model redaction of our problem, some numerical studies are given in the

next section and the last one is concerned to a study the building model which is a LQ

stochastic optimal control.

5.1.1 Set-up and problem statement

We consider the linear-quadratic (LQ) stochastic control problem of the following form :

minimize the expected cost

J(u; t, x) = E
[∫ τ

t

(
q0(Xu

s ) + |us|2
)
ds+ q1(Xu

τ )
∣∣∣∣Xu

t = x
]

(5.1.1)

over all admissible controls u ∈ U and subject to

dXu
s = (a(Xu

s ) + b(Xu
s )us) ds+ σ(Xu

s )dWs , 0 6 t 6 s 6 τ . (5.1.2)
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Here τ <∞ is a bounded stopping time (specified below), and the set of admissible controls

U is chosen such that (5.1.2) has a unique strong solution. The denomination linear-quadratic

for (5.1.1)–(5.1.2) is due to the specific dependence of the system on the control variable u.

The state vector x ∈ Rn is assumed to be high-dimensional, which is why we seek a low-

dimensional approximation of (5.1.1)–(5.1.2).

Specifically, we consider the case that q0 and q1 are quadratic in x, a is linear and σ is

constant, and the control term is an affine function of x, i.e.,

b(x)u = (Nx+B)u

In this case the system is called bilinear (including linear systems as a special case), and the

aim is to replace (5.1.2) by a lower dimensional bilinear system

dX̄v
s = ĀX̄v

s ds+
(
N̄X̄v

s + B̄
)
vs ds+ C̄dws , 0 6 t 6 s 6 τ ,

with states x̄ ∈ Rns , ns � n and an associated reduced cost functional

J̄(v; x̄, t) = E
[∫ τ

t

(
q̄0(X̄v

s ) + |vs|2
)
ds+ q̄1(X̄v

τ )
∣∣∣∣ X̄v

t = x̄
]
,

that is solved in lieu of (5.1.1)–(5.1.2). Letting v∗ denote the minimizer of J̄ , we require

that v∗ is a good approximation of the minimizer u∗ of the original problem where ”good

approximation” is understood in the sense that

J(v∗; ·, t = 0) ≈ J(u∗; ·, t = 0) .

In the last equation, closeness must be suitably interpreted, e.g. uniformly on all compact

subsets of Rn × [0, T ) for some T < ∞. One situation in which the above approximation
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property holds is when u∗ ≈ v∗ uniformly in t and the cost is continuous in the control, but

it turns out that this requirement will be too strong in general and overly restrictive. We

will discuss alternative criteria in the course of this thesis.

5.2 Singularly perturbed bilinear control systems

We now specify the system dynamics (5.1.2) and the corresponding cost functional (5.1.1).

Let (x1, x2) ∈ Rns×Rnf with ns+nf = n denote a decomposition of the state vector x ∈ Rn

into relevant (slow) and irrelevant (fast) components. Further let W = (Wt)t≥0 denote Rm-

valued Brownian motion on a probability space (Ω,F , P ) that is endowed with the filtration

(Ft)t≥0 generated by W . For any initial condition x ∈ Rn and any A-valued admissible

control u ∈ U , with A ⊂ R, we consider the following system of Itô stochastic differential

equations

dXε
s = AXε

s ds+ (NXε
s +B)us ds+ CdWs , X

ε
t = x , (5.2.1)

that depends parametrically on a parameter ε > 0 via the coefficients

A = Aε ∈ Rn×n , N = N ε ∈ Rn×n , B = Bε ∈ Rn , and C = Cε ∈ Rn×m ,

where for brevity we also drop the dependence of the process on the control u, i.e. Xε
s = Xu,ε

s .

The stiffness matrix A in (5.2.1) is assumed to be of the form

A =


A11 ε−1/2A12

ε−1/2A21 ε−1A22

 ∈ R(ns+nf )×(ns+nf ) , (5.2.2)
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with n = ns + nf . Control and noise coefficients are given by

N =


N11 N12

ε−1/2N21 ε−1/2N22

 ∈ R(ns+nf )×(ns+nf ) (5.2.3)

and

B =
 B1

ε−1/2B2

 ∈ R(ns+nf )×1, C =
 C1

ε−1/2C2

 ∈ R(ns+nf )×m , (5.2.4)

where Nx+B ∈ range(C) for all x ∈ Rn ; often we will consider either the case m = 1 with

Ci = √ρBi, ρ > 0, or m = n, with C being a multiple of the identity when ε = 1. All block

matrices Aij, Nij, Bi and Cj are assumed to be order 1 and independent of ε.

The above ε-scaling of coefficients is natural for a system with ns slow and nf fast degrees

of freedom and arises, for example, as a result of a balancing transformation applied to a

large-scale system of equations ; see e.g. [78]. A is the linear system

dXε
s = (AXε

s +Bus) ds+ CdWs . (5.2.5)

Our goal is to control the stochastic dynamics (5.2.1)—or (5.2.5) as a special variant—so

that a given cost criterion is optimized. Specifically, given two symmetric positive semidefinite

matrices Q0, Q1 ∈ Rns×ns , we consider the quadratic cost functional

J(u; t, x) = E
[1
2

∫ τ

t
((Xε

1,s)>Q0X
ε
1,s + |us|2)ds+ 1

2(Xε
1,τ )>Q1X

ε
1,τ

]
, (5.2.6)

that we seek to minimize subject to the dynamics (5.2.1). Here the expectation is understood

over all realizations of (Xε
s )s∈[t,τ ] starting at Xε

t = x, and as a consequence J is a function

of the initial data (t, x). The stopping time is defined as the minimum of some time T <∞
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and the first exit time of a domain D = Ds × Rnf ⊂ Rns × Rnf where Ds is an open and

bounded set with smooth boundary. Specifically, we set τ = min{τD, T}, with

τD = inf{s ≥ t : Xε
s /∈ D} .

In other words, τ is the stopping time that is defined by the event that either s = T or Xε
s

leaves the set D = Ds × Rnf , whichever comes first. Note that the cost function does not

explicitly depend on the fast variables x2. We define the corresponding value function by

V ε(t, x) = inf
u∈U

J(u; t, x) . (5.2.7)

Remark 49. 1. As a consequence of the boundedness of Ds ⊂ Rns, we may assume that

all coefficients in our control problem are bounded or Lipschitz continuous, which makes

some of the proofs in this work more transparent.

2. All of the following considerations trivially carry over to the case N = 0 and a multi-

dimensional control variable, i.e., u ∈ Rk and B ∈ Rn×k.

5.2.1 From LQ control to uncoupled forward-backward stochastic

differential equations

We suppose that the matrix pair (A,C) satisfies the Kalman rank condition

rank(C|AC|A2C| . . . |An−1C) = n . (5.2.8)

A necessary—and in this case sufficient—condition for optimality of our optimal control

problem is that the value function (5.2.7) solves a semilinear parabolic partial differential
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equation of Hamilton-Jacobi-Bellman type (a.k.a. dynamic programming equation) [69]

− ∂V ε

∂t
= LεV ε + f(x, V ε, C>∇V ε) , V ε|E+ = q1 , (5.2.9)

where

q1(x) = 1
2x
>
1 Q1x1

and E+ is the terminal set of the augmented process (s,Xε
s ), precisely E+ = ([0, T )× ∂D)∪

({T} ×D). Here Lε is the infinitesimal generator of the control-free process,

Lε = 1
2CC

> : ∇2 + (Ax) · ∇ , (5.2.10)

and the nonlinearity f is independent of ε and given by

f(x, y, z) = 1
2x
>
1 Q0x1 −

1
2
∣∣∣ (x>N> +B>

) (
C>

)]
z
∣∣∣2 . (5.2.11)

Note that f is furthermore independent of y and that the Moore-Penrose pseudoinverse

(
C>

)]
= C(C>C)−1

is unambiguously defined since z = C>∇V ε and (Nx + B) ∈ range(C), which by noting

that
(
C>

)]
C> is the orthogonal projection onto range(C) implies that

∣∣∣(x>N> +B>)∇V ε
∣∣∣2 =

∣∣∣(x>N> +B>)
(
C>

)]
z
∣∣∣2 .

The specific semilinear form of the equation is a consequence of the control problem

being linear-quadratic. As a consequence, the dynamic programming equation (5.2.9) admits

a representation in form of an uncoupled forward backward stochastic differential equation
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(FBSDE). To appreciate this point, consider the control-free process Xε

s = Xε,u=0
s with

infinitesimal generator Lε and define an adapted process Y ε
s = Y ε,x,t

s by

Y ε
s = V ε(s,Xε

s ) .

(We abuse notation and denote both the controlled and the uncontrolled process by Xε
s .)

Then, by definition, Y ε
t = V ε(x, t). Moreover, by Itô’s formula and the dynamic programming

equation (5.2.9), the pair (Xε
s , Y

ε
s )s∈[t,τ ] can be shown to solve the system of equations

dXε
s = AXε

s ds+ C dWs , Xε
t = x

dY ε
s = −f(Xε

s , Y
ε
s , Z

ε
s)ds+ Zε

s dWs , Y ε
τ = q1(Xε

τ ) ,
(5.2.12)

with Zε
s = C>∇V ε(s,Xε

s ) being the control variable. Here, the second equation is only

meaningful if interpreted as a backward equation, since only in this case Zε
s is uniquely

defined.

The BSDE (5.2.12) is a quadratic backward stochastic differential equation, by [10] it has at

least one solution, and by [97] this solution is bounded by using the fact that the terminal

condition is bounded 1

Remark 50. Equation (5.2.12) is called an uncoupled FBSDE because the forward equation

for X̃ε
s is independent of Y ε

s or Zε
s . The fact that the FBSDE is uncoupled furnishes a well-

known duality relation between the value function of an LQ optimal control problem and the

cumulate generating function of the cost [43, 55] ; specifically, in the case that N = 0, B = C

and the pair (A,B) being completely controllable, it holds that

V ε(x, t) = − logE
[
exp

(
−
∫ τ

t
q0(Xε

s)ds− q1(Xε
τ )
)]
, (5.2.13)

1. The boundedness of the terminal condition came from the fact that x leave in the bounded domain D
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with

q0(x) = 1
2x
>
1 Q0x1 .

Here the expectation on the right hand side is taken over all realisations of the control-

free process Xε
s = Xε,u=0

s , starting at Xε
t = x. By the Feynman-Kac theorem, the function

ψε = exp(−V ε) solves the linear parabolic boundary value problem(
∂

∂t
+ Lε

)
ψε = q0(x)ψε , ψε|E+ = exp (−q1) . (5.2.14)

5.3 Model reduction

The idea now is to exploit the fact that (5.2.12) is uncoupled, which allows us to derive an

FBSDE for the slow variables X̄ε
s = Xε

1,s only, by standard singular perturbation methods.

The reduced FBSDE as ε→ 0 will then be of the form

dX̄s = ĀX̄s ds+ C̄ dWs , X̄t = x1

dȲs = −f̄(X̄s, Ȳs, Z̄s)ds+ Z̄s dWs , Ȳτ = q̄1(X̄τ ) ,
(5.3.1)

where the limiting form of the backward SDE follows from the corresponding properties of

the forward SDE. Specifically, assuming that the solution of the associated SDE

dξu = A22ξudu+ C2dWu , (5.3.2)

that is governing the fast dynamics as ε → 0, is ergodic with unique Gaussian invariant

measure π = N (0,Σ), where Σ = Σ> > 0 is the unique solution to the Lyapunov equation

A22Σ + ΣA>22 = −C2C
>
2 , (5.3.3)

we obtain that, asymptotically as ε→ 0,

Xε
2,s ∼ ξu/ε , s > 0 . (5.3.4)
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As a consequence, the limiting SDE governing the evolution of the slow process Xε

1,s— in

other words : the forward part of (5.3.1)—has the coefficients

Ā = A11 − A12A
−1
22 A21 , C̄ = C1 − A12A

−1
22 C2 , (5.3.5)

as following from standard homogenization arguments [121]. By a similar reasoning we find

that the driver of the limiting backward SDE reads

f̄(x1, y, z1) =
∫
Rnf

f((x1, x2), y, (z1, 0))π(dx2) , (5.3.6)

specifically,

f̄(x1, y, z1) = 1
2x
>
1 Q̄0x1 −

1
2
∣∣∣ (x>1 N̄> + B̄>

)
z1

∣∣∣2 +K0 , (5.3.7)

with

Q̄0 = Q0 , N̄ = C]
1N11 , B̄ = C]

1

(
B1 +N12Σ1/2

)
. (5.3.8)

The limiting backward SDE is equipped with a terminal condition q̄1 that is equals q1,

namely,

q̄1(x1) = 1
2x
>
1 Q1x1 . (5.3.9)

Interpretation as an optimal control problem

It is possible to interpret the reduced FBSDE again as the probabilistic version of a

dynamic programming equation. To this end, note that (5.2.8) implies that the matrix pair

(Ā, C̄) satisfies the Kalman rank condition

rank(C̄|AC̄|A2C̄| . . . |Ans−1C̄) = ns .
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As a consequence, the semilinear partial differential equation

− ∂V

∂t
= L̄V + f̄(x1, V, C̄

>∇V ) , V |E+
s

= q̄1 , (5.3.10)

with E+
s = ([0, T )× ∂Ds) ∪ ({T} ×Ds) and

L̄ = 1
2C̄C̄

> : ∇2 + (Āx1) · ∇ (5.3.11)

has a classical solution V ∈ C1,2([0, T )×D)∩C0,1(E+
s ). Letting Ȳs := V (s, X̄s), 0 6 t 6 s 6 τ ,

with initial data X̄t = x1 and Z̄s = C̄>∇V (s, X̄s), the limiting FBSDE (5.3.1) can be readily

seen to be equivalent to (5.3.10). The latter is the dynamic programming equation of the

following LQ optimal control problem : minimize the cost functional

J̄(v; t, x1) = E
[1
2

∫ τ

t
(X̄>s Q̄0X̄s + |vs|2)ds+ 1

2X̄
>
τ Q̄1X̄τ

]
, (5.3.12)

subject to

dX̄s = ĀX̄sds+
(
M̄X̄s + D̄

)
vs ds+ C̄dws , X̄t = x1 , (5.3.13)

where (ws)s≥0 denotes standard Brownian motion in Rns and we have introduced the new

control coefficients M̄ = C̄N̄ and D̄ = C̄B̄.

5.3.1 Convergence of the control value

Before we state our main result and discuss its implications for the model reduction of

linear and bilinear systems, we recall that basic assumptions that we impose on the system

dynamics. Specifically, we say that the dynamics (5.2.1) and the corresponding cost functional

(5.2.6) satisfy Condition U if the following holds :
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1. (A,C) is controllable, and the range of b(x) = Nx+B is a subspace of range(C).

2. We suppose that one of the following conditions hold true

— B=C, or

— C−1 exist and have the form

C =


C1 0

0 ε−1/2C2

 (5.3.14)

3. The matrix A22 is Hurwitz (i.e., its spectrum lies entirely in the open left complex

half-plane) and the matrix pair (A22, C2) is controllable.

4. The driver of the FBSDE (5.2.12) is continuous and quadratically growing in Z.

5. The terminal condition in (5.2.12) is bounded ; for simplicity we set Q1 = 0 in (5.2.6).

Remark 51. for assumption (2) we can explicitly compute the limiting coefficients, we can

relax this condition by finding a larger class of couple (B,C), which hold the convergence of

the original system to the limiting one and where we can explicitly compute the limiting PDE

which is subject of future work.

Assumption 3 implies that the fast subsystem (5.3.2) has a unique Gaussian invariant

measure π = N (0,Σ) with full topological support, i.e., we have Σ = Σ> > 0. According to

[28, Prop. 3.1], existence and uniqueness of (5.2.12) is guaranteed by Assumptions 4 and 5

and the controllability of (A,C) and the range condition, which imply that the transition

probability densities of the (controlled or uncontrolled) forward process Xε
s are smooth and

strictly positive. As a consequence of the complete controllability of the original system,

the reduced system (5.3.13) is completely controllable too, which guarantees existence and
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uniqueness of a classical solution of the limiting dynamic programming equation (5.3.10) ;

see, e.g., [120].

Uniform convergence of the value function V ε → V is now entailed by the strong conver-

gence of the solution to the corresponding FBSDE as is expressed by the following Theorem.

Theorem 52. Let the assumptions of Condition U hold. Further let V ε be the classical

solution of the dynamic programming equation (5.2.9) and V be the solution of (5.3.10).

Then

V ε → V ,

uniformly on all compact subsets of [0, T ]×D.

The proof of the Theorem is given in the last section. For the reader’s convenience, we

present a formal derivation of the limit equation in the next subsection.

5.3.2 Formal derivation of the limiting FBSDE

Our derivation of the limit FBSDE follows standard homogenization arguments (see

[74, 91, 121]), taking advantage of the fact that the FBSDE is uncoupled. To this end we

consider the following linear evolution equation

(
∂

∂t
− Lε

)
φε = 0 , φε(x1, x2, 0) = g(x1) (5.3.15)

for a function φε : D̄s × Rnf × [0, T ] where

Lε = 1
ε
L0 + 1√

ε
L1 + L2 , (5.3.16)
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with

L0 = 1
2C2C

>
2 : ∇2

x2 + (A22x2) · ∇x2 (5.3.17a)

L1 = 1
2C1C

>
2 : ∇2

x2x1 + 1
2C2C

>
1 : ∇2

x1x2 + (A12x2) · ∇x1 + (A21x1) · ∇x2 (5.3.17b)

L2 = 1
2C1C

>
1 : ∇2

x1 + (A11x1) · ∇x1 (5.3.17c)

is the generator associated with the control-free forward process Xε
s in (5.2.12). We follow

the standard procedure of [121] and consider the perturbative expansion

φε = φ0 +
√
εφ1 + εφ2 + . . .

that we insert into the Kolmogorov equation (5.3.15). Equating different powers of ε we find

a hierarchy of equations, the first three of which read

L0φ0 = 0 , L0φ1 = −L1φ0 , L0φ2 = ∂φ0

∂t
− L1φ1 − L2φ0 . (5.3.18)

Assumption 3 on page 134 implies that L0 has a one-dimensional nullspace that is spanned

by functions that are constant in x2, and thus the first of the three equations implies that

φ0 is independent of x1. Hence the second equation—the cell problem—reads

L0φ1 = −(A12x2) · ∇φ0(x1, t) . (5.3.19)

The last equation has a solution by the Fredholm alternative, since the right hand side

averages to zero under the invariant measure π of the fast dynamics that is generated by the

operator L0, in other words, the right hand side of the linear equation is orthogonal to the
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nullspace of L∗0 spanned by the density of π. 2 The form of the equation suggests the general

ansatz

φ1 = ψ(x2) · ∇φ0(x1, t) +R(x1, t)

where the function R plays no role in what follows, so we set it equal to zero. Since L0ψ =

−(A12x2)>, the function ψ must be of the form ψ = Qx2 with a matrix Q ∈ Rns×nf . Hence

Q = −A12A
−1
22 .

Now, solvability of the last of the three equations requires again that the right hand side

averages to zero under π, i.e.

∫
Rnf

(
∂φ

∂t
+ L1

[(
A12A

−1
22 x2

)
· ∇φ

]
− L2φ

)
π(dx2) , (5.3.20)

which formally yields the limiting equation for φ = φ0(x1, t). Since π is a Gaussian mea-

sure with mean 0 and covariance Σ given by (5.3.3), the integral (5.3.20) can be explicitly

computed : (
∂

∂t
− L̄

)
φ , φ(x1, 0) = g(x1) , (5.3.21)

where L̄ is given by (5.3.11) and the initial condition φ(·, 0) = g is a consequence of the fact

that the initial condition in (5.3.15) is independent of ε. By the controllability of the pair

(Ā, C̄), the limiting equation (5.3.21) has a unique classical solution and uniform convergence

φε → φ is guaranteed by standard results, e.g., [121, Thm. 20.1].

2. Here L∗
0 is the formal L2 adjoint of the operator L0, defined on a suitable dense subspace of L2.



138
Since the backward part of (5.2.12) is independent of ε, the final form of the homogenized

FBSDE (5.3.1) is found by averaging over x2, with the unique solution of the corresponding

backward SDE satisfying Z2,s = 0 as the averaged backward process is independent of x2.

5.3.3 Zero viscosity limit

We consider the linear case N = 0 and consider the situation

C = δB , δ = δ(ε) > 0 .

Now we suppose that our equation (5.2.5) is given with small noise as :

dXε
t = AεXε

t + δ(ε)BεdWt, X
ε
0 = x. (5.3.22)

where A is given by (5.2.2).

In this section we focus on the convergence of our system (5.3.22) when the both pa-

rameters : the homogenization parameter ε and the noise one δ goes to zero, we suppose

that δ(ε) −→ 0 as ε −→ 0, and then the question is to study limε−→0X
1,ε, we prove a large

deviation principle. The convergence will be in the weak sense as given in [61], we suppose

that ε go to zero faster then δ, means that limε↓0
ε
δ

= 0, this is a special case when we do

homogenization first and then we send the noise to zero.

In order to prove a large deviation principle upper bound we prove an analogue result which

is the Laplace principle given in this :

Definition 53. Let {Xε, ε > 0} be a family of random variables taking values in the space

S and let I be a rate function on S. We say that {Xε, ε > 0} satisfies the Laplace principle
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with rate function I if for every bounded and continuous function h : S → R

lim
ε↓0
−ε lnE

[
exp

{
−h(Xε)

ε

}]
= inf

x∈S
[I(x) + h(x)] .

For a Polish space S, we have by Varadhans Lemma [132] and its converse Brycs lemma

[60] equivalent between LDP the Laplace principle, then proving that X1,ε hold a Laplace

principle with the rate function I is equivalent to prove a Large Deviation Principle LDP

with the same rate function.

With the same Girsanov representation, Theorem 8.6.6 [113] our uncontrolled stochastic

process can represent by a controlled one X̄1,ε solution of :

dX̄ε
t = AεX̄ε

t +Bεuεt + δ(ε)BεdWt, X̄
ε
0 = x, (5.3.23)

where the control process uε ∈ Uad, is supposed such that

sup
ε>0

E
∫ 1

0
‖uεt‖

2 dt <∞

In order to study the limit in the weak sense as defined in [61] we defined for a Polish

space S, let P(S) be the space of probability measures on S. Let ∆ = ∆(ε) ↓ 0 as ε ↓ 0.

Let A,B,Γ be Borel sets of D,Rnf , [0, 1] respectively. Let uε ∈ Uad and let X̄ε
s be the

solution of the controlled dynamic. We associate with X̄ε and uε a family of occupation

measures Pε,∆ defined by

Pε,∆(A×B × Γ) =
∫

Γ

[
1
∆

∫ t+∆

t
1A(uεs)1B

(
X̄ε
s

ε
mod 1

)
ds

]
dt, (5.3.24)



140
and an extension for s > 1 by putting uεs = 0. Now we set a result on the convergence of the

pair {(X̄ε,Pε,∆), ε > 0} in the weak sense as defined in [61]

Theorem 54. Given x0 ∈ Rd, consider any family {uε, ε > 0} of controls in Uad satisfying

sup
ε>0

E
∫ 1

0
‖uεt‖

2 dt <∞,

and that : ∫
Xε
sπx1(x2)dx2 = 0,

then the family {(X̄ε,Pε,∆), ε > 0} is tight, given any subsequence of {(X̄ε,Pε,∆), ε > 0},

there exists a subsequence that converges in distribution with limit (X̄,P).

5.4 Numerical studies

In this section we presents numerical results for linear and bilinear control systems and

discuss the numerical discretization of uncoupled FBSDE associated with LQ stochastic

control problems, discretization of stochastic dynamics were subject of many authors we

mansion [35, 109, 27, 95]. We begin with the latter.

5.4.1 Numerical FBSDE discretization

The fact that the (5.2.12) or (5.3.1) are decoupled entails that they can be discredited

by an explicit time-stepping algorithm. Here we utilize a variant of the least-squares Monte

Carlo algorithm proposed in [26]. The convergence of numerical schemes for FBSDE with

quadratic nonlinearities in the driver has been analysed in [131].
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The least-squares Monte Carlo scheme is based on the Euler discretization of (5.2.12) :

X̂n+1 = X̂n + ∆tAX̂n +
√

∆tCξn+1

Ŷn+1 = Ŷn −∆tf(X̂n, Ŷn, Ẑn) +
√

∆tẐn · ξn+1

(5.4.1)

where (X̂n, Ŷn) denotes the numerical discretization of the joint process (Xε
s, Y

ε
s ), where we

set Xε
s = Xε

τD
for s ∈ (τD, T ] when τD < T , and (ξk)k≥1 is an i.i.d. sequence of normalized

Gaussian random variables. Now let

Fn = σ
({
Ŵk : 0 6 k 6 n

})

be the σ-algebra generated by the discrete Brownian motion Ŵn :=
√

∆t∑i6n ξi. By defini-

tion the joint process (Xε
s, Y

ε
s ) is adapted to the filtration generated by (Wu)06u6s, therefore

Ŷn = E
[
Ŷn|F

]
= E

[
Ŷn+1 + ∆tf(X̂n, Ŷn, Ẑn)|Fn

]
, (5.4.2)

where we have used that Ẑn is independent of ξn+1. In order to compute Ŷn from Ŷn+1 we use

the identification of Zε
s with C>∇V ε(s,Xε

s) and replace (5.4.2) by the backward iteration

Ŷn = E
[
Ŷn+1 + ∆tf(X̂n, Ŷn+1, C

>Ŷn+1)|Fn
]
, (5.4.3)

which makes the overall scheme explicit in X̂n and Ŷn.

Least-squares solution of the backward SDE

In order to evaluate the conditional expectation Ŷn = E[·|Fn] we recall that a conditional

expectation can be characterised as the solution to the following quadratic minimization

problem :

E
[
S|Fn

]
= argmin

Y ∈L2,Fn-measurable
E[|Y − S|2] .
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Given N independent realizations X̂(i)

n , i = 1, . . . , N of the forward process X̂n, this suggests

the approximation scheme

Ŷn ≈ argmin
Y=Y (X̂n)

1
N

N∑
i=1

∣∣∣∣Y − Ŷ (i)
n+1 −∆tf

(
X̂(i)
n , Ŷ

(i)
n+1, C

>Ŷ
(i)
n+1

)∣∣∣∣2 , (5.4.4)

where Ŷ (i) is defined by Ŷ (i) = Y
(
X̂(i)

)
with terminal values

Ŷ
(i)
M = q1

(
X

(i)
M

)
τ = M∆t .

(Note thatM = MD is random.) For simplicity, we assume in what follows that the terminal

value is zero, i.e., we set q1 = 0. (Recall that the existence and uniqueness result from [97]

requires q1 to be bounded.) To represent Ŷn as a function Y (X̂n) we use the ansatz

Y (X̂n) =
K∑
k=1

αk(n)ϕk(X̂n) , (5.4.5)

with coefficients α1(·), . . . , αK(·) ∈ R and suitable basis functions ϕ1, . . . , ϕK : Rn → R

(e.g. Gaussians). Note that the coefficients αk are the unknowns in the least-squares problem

(5.4.4) and thus are independent of the realization. Now the least-squares problem that has

to be solved in the n-th step of the backward iteration is of the form

α̂(n) = argmin
α∈RK

‖Anα− bn‖2 , (5.4.6)

with coefficients

An =
(
ϕk

(
X̂(i)
n

))
i=1,...,N ;k=1,...,K

(5.4.7)

and data

bn =
(
Ŷ

(i)
n+1 −∆tf

(
X̂(i)
n , Ŷ

(i)
n+1, C

>Ŷ
(i)
n+1

))
i=1,...,N

. (5.4.8)
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Assuming that the coefficient matrix An ∈ RN×K , K 6 N defined by (5.4.7) has maximum

rank K, then the solution to the least-squares problem (5.4.6) is given by

α̂(n) =
(
A>nAn

)−1
A>n bn . (5.4.9)

The thus defined scheme is strongly convergent of order 1/2 as ∆t→ 0 and N,K →∞ as

has been analysed by [26]. Controlling the approximation quality for finite values ∆t, N,K,

however, requires a careful adjustment of the simulation parameters and appropriate basis

functions, especially with regard to the condition number of the matrix An

5.4.2 Numerical solution of a FBSDEs

In this section we present some numerical analysis methods to solve decoupled and fully

coupled FBSDEs, high friction example is studied.

5.4.3 Scheme for fully FBSDEs

Consider the fully coupled FBSDE (1.1.4), because of the strong coupling between the

forward and the backward equations the scheme introduced by [142] cannot be implemented

directly by compute first the solution of the forward and then inject it in the backward, an
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iterative discretization of a FBSDE is given by (see [27])

un,0i = 0,
Xn,m

0 := x,

Xn,m
i+1 := Xn,m

i + b(ti, Xn,m
i , un,m−1

i (Xn,m
i ))h+ b(ti, Xn,m

i , un,m−1
i (Xn,m

i )) M Wi+1

Y n,m
n := g(Xn,m

n ),
Z̄n,m
i := 1

h
Eti(Y

n,m
i+1 M Wi+1),

Y n,m
i := Eti(Y

n,m
i+1 + f(ti, Xn,m

i , Y n,m
i+1 , Z̄

n,m
i )h),

un,mi (Xn,m
i ) := Y n,m

i .

(5.4.10)

The gain of this scheme is that Y n,m
i depend only on Xn,m

i and note to the other solution

of the forward in the previous iterations. One of the important question in this stage is

how to implement the above algorithm in a Matlab code, and the most important question

is to compute the conditional expectation which appear in computing the solution of the

backward SDE Y and Z, to this end we used the simulation based least squares regression

estimator (see [75]), here we want to mention on our special chose of the basis as the Gaussian

density defined as follows : We simulate in addition to the required number of iterations for

the forward process an extra m iterations and the basis is defined as the Gaussian density

with mean the extra iterations, by this way the dimension do not effect so much the speed

of the algorithm

Remark 55. 1. Note like the case of the grid basis which grow up exponentially with the

dimension of the system, and this can not be computed by even a supercomputers, in

our technic that results in (Figure :5.1) the dimension do not effect a lot, and this give

results when working in high dimension problems.

2. We got the result given in (Figure :5.1) with 1000 realizations, but we plotted only 10

of them. The point behind taking a good number of realisations is to avoid the stiffness
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Figure 5.1 – Plot of 10 realizations of a solution of a Forward and Backward equation

of a matrix in the algorithm.

3. (Figure :5.1) is for two dimensions, we plot only the first component of the FBSDE,

the program take around 140s, if the dimension of the system increase to for example

10, the time will be around 290s (the dimension increase on 5 times the first but the

time is only the double.

5.5 Building Model :Los Angeles University Hospital

5.5.1 Homogenization of Quadratic Stochastic optimal Control via

multiscaling a FBSDE

Now we present a special case of (5.2.1), is the Linear Quadratic Stochastic Optimal

Control (LQSOC, in short) given by a fast and slow variables, our goal is to reduce the

dimension of the system, the idea is to do homogenization of the system by using the links



146
between forward backward stochastic differential equations (FBSDE) and SOC via HJB-

equation, and hence we study a perturbed FBSDE which give us the limiting equation of

the perturbed solution of the HJB-Equation which represent our SOC. An application in

building model is given with numerical results, this last confirm our theoretical analysis of

the SOC.

Introduction and Notations

Let ε > 0, and consider the following probability space (Ω,F , P,W ), W is an Rm-value

Brownian mention, endowed with a filtration F satisfying the usual assumptions (i.e. F is

right-continuous and F0 contains all P -null sets in F).

For any initial condition x ∈ Rn and any Rm-value admissible control uε ∈ Uad, we consider

the following controlled stochastic linear and bilinear differential equation respectively :

dXε
t = (AεXε

t +Bεuεt)dt+BεdWt, X
ε
0 = x, (5.5.1)

The matrices Aε and Bε are given below

Our goal is to control the stochastic dynamic (5.5.1) by optimize a given functional

but only when our dynamic live in a bounded set, which is the case in a large number of

applications, for this, let consider a bounded set D ∈ Rn and define the stopping time :

τ = inf{t ≥ 0, Xt /∈ D}, (5.5.2)

the initial condition x ∈ D, and the objective is to minimize over the controls uε the quadratic
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functional :

J(u(.), x) = 1
2E[

∫ τ

0
(Xε

t
TQ0X

ε
t + |uεt|2)dt+Xε

τ
TQ1X

ε
τ ]. (5.5.3)

V ε(x) = infu(.)J(u(.), x) where :

Aε =


A11

ns

ε−
1
2A12

nf

ε−
1
2A21 ε−1A22


n

Bε =
 B1

ε−1/2B2

 (5.5.4)

The matrices A11 and A22 are square matrices, in the applications later, we will consider slow

and fast dynamics, this where came from the notations ns, nf which refers to the dimension

of the slow and the fast variables respectively.

The notion of Ergodicity is an important propriety in the homogenization technic, which

is ensured by Kalmann condition (5.2.8).

Now we set The Girsanov theorem, which is an important tools in our approach :

Theorem 56. [113] Let Y (t) be an itô process with value in Rn of the form :

dYt = a(t, w)dt+ dBt, t ≤ T

with initial value Y0 = 0 , where T is a given constant and B is Brownian motion with value

in Rn,
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set :

Mt = exp(−
∫ t

0
a(s, w)dBs −

1
2

∫ t

0
a(s, w)2ds), (5.5.5)

Assume that a(s, .) satisfies Novikovs condition :

EP [exp(1
2

∫ T

0
a(s, w)2ds)],

Then Y (t) is an n-dimensional Brownian motion w.r.t. the probability law Q, for t = T.,

where Q is the probability measure defined by :

dQ(w) = MT (w)dP (w)

The transformation P −→ Q called the Girsanov transformation of measures.

Limiting equation for the linear optimal control

Let now study the SOC (5.5.1), (5.5.3), and consider dBt = utdt + dWt, by Girsanov

Theorem 56 B is a standard Wiener process under probability measure Q where :

dQ

dP
= exp(−

∫ τ

0
utdWt −

1
2

∫ τ

0
|ut|2dt), (5.5.6)

and the equation (5.5.1) write as :

dXε
t = AεXε

t +BεdBt, X
ε
0 = x, (5.5.7)

let denote E the expectation under the probability Q , by the duality relation ([43], [55])

V ε(x) = −logE[exp(−
∫ τ

0
Xε
t
TQ0X

ε
tdt+Xε

τ
TQ1X

ε
τ )] (5.5.8)
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In order to take the limit as ε goes to zero, we suppose that the fast variable is Ergodic, and

note by πx1(x2) for a fixed x1 ∈ Rns the density probability w.r.t the Lebesgue measure of the

invariant measure corresponding to the fast variable, using the reduced dynamics technique

see ([74], [91], [121]) taking ε to zero, the system (5.5.8), (5.5.7) converge to :

dXt = AXt +BdBt, X0 = x1, (5.5.9)

− logE[exp(−
∫ τ

0
Xt

TQ0Xtdt+Xt
TQ1Xt)], (5.5.10)

where :

A = A11 − A12A
−1
22 A21, B = B1 −B2A

−1
22 A21, (5.5.11)

and for i = 1, 2

Qi = Q11
i −Q12

i A
−1
22 A21 − AT21A

−T
22 Q

21
i + AT21A

−T
22 Q

22
i A

−1
22 A21,

For the convergence see the last section. Hence by the inverse Girsenov Theorem 3 apply on

(5.5.7),(5.5.8) , the system (5.5.10), (5.5.9) can be writen as :

dX1
t = (AX1

t +But)dt+BdW 1
t , X

1
0 = x1, (5.5.12)

and the quadratic functional :

J(u(.), x1) = 1
2E[

∫ τ

0
(X1

t
T
Q0X

1
t + |ut|2)dt+X1

τ
T
Q1X

1
τ ]. (5.5.13)

3. here we mean inverse by using the opposite way that used to transform of system (5.5.1), (5.5.3
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System (5.5.12),(5.5.13) called the reduced dynamics of our original dynamics (5.5.1), (5.5.3),

(reduced in the sense that controlling the hole system is equivalent to control the reduced

dimensional one.

In order to solve the system (5.5.12),(5.5.13), we introduce the Ricatti equation :

dP (t) = P (t)BBT
P (t)− AP (t)− P (t)AT −Q0, P (τ) = Q1 (5.5.14)

the equation (5.5.14) has a unique solution 4, then the optimal control of the system (5.5.12),(5.5.13)

can given as an feedback control by :

u∗t = −BT
P (t)X∗ (5.5.15)

and therefore the optimal solution X∗ is the solution of the following SDE :

dX∗t = (AX∗t −BB
T
P (t)X∗)dt+BdWt, X

∗
0 = x1. (5.5.16)

To solve equation (5.5.14) and (5.5.16) we use numerical analysis, (for (5.5.16) we use Euler

Maruyama method), which is given in section 5.4

5.5.2 Numerical studies of the SOC

In this section we presents numerical results on the linear and bilinear SOC, first we show

by numerical results that controlling the reduced linear SOC is equivalent to control the hole

system, the applications are on the build model.

4. for more details on the existence and uniqueness of the Ricatti equation we refer to [1]
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A two dimension example

Consider the following SOC in 2 dimensions :

dXε
t = (AεXε

t +Bεuεt)dt+
√
σBεdWt, X

ε
0 = X0, (5.5.17)

here σ = 0.002, ε = 0.01

J(u(.), x) = 1
2E[

∫ τ

0
(Xε

t
TQ0X

ε
t + |uεt|2)dt+Xε

T
TQ1X

ε
T ]. (5.5.18)

V ε(x) = infu(.) J(u(.), x) where :

Aε =
 −2 −ε−1

ε−1 −2ε−2

 ,Bε =
 0.1

2
ε

 and Q1 =
 1

0

 and

X0 =
 1
−A21/A22

 ,

we will show the convergence of our high dimensional stochastic optimal control to a low

dimension one in such a way controlling the limiting one is equivalent to control the original

(full) dynamic, this is well illustrated in (Figure :5.2), where the blue line which represent

the solution of the full dynamics is totally hidden by the read line representing the solution

of the limiting equation.

The Building Model

Now let’s use our limiting problem (5.5.12), (5.5.13) to show by a numerical study of the

problem that controlling the reduced 4 dimensions problem is equivalent to control the hole
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Figure 5.2 – Two dimension example of reducing dimension

48 dimensions, this by considering the Building Model example.

For the Building Model we study the build of Los Angeles hospital University, the 48 di-

mensions came from that we have 8 floors, each with 3 degrees of freedom, rotation and

displacement in the plan, hence we have the 24 dimensions equation :

Mq̈(t) + Cq̇(t) +Kq(t) = vu, (5.5.19)

where q is the position and u is the control, M is the positive definite mass matrix, C

and K denote the symmetric positive definite friction and stiffness matrices. Therefore by

consider the traditional space by putting x = (q, q̇) we get the following ODE :

dx(t)/dt = Ax(t) +Bu(t) (5.5.20)

with 48 dimensions,

the out-put Y define by

Y = Cx, (5.5.21)
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Figure 5.3 – Comparison between the limit and the full system

where the matrices A,B and C are in R48×48,R48×1 and R1×48 resp., the data are given in

[144], (for more details on the relation between (5.5.19) and (5.5.20), see [77])

The idea is to show that controlling a reduced 4 dimensions problem of our 48 dimensions is

enough to control the hole problem and then the natural question that came is, which part

of the system play the role of the reduced dimension, for this we use the balancing result of

[77], and then we study the homogenization of a stochastic system by adding a noise to our

ODE (5.5.20) and then, the result given in the previous section.

Figure 5.3 show that the trajectory of the out put of the reduced problem are very close to

that of the hole problem.

Now we focus on the analytical results to prove the convergence of the solution of the
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Figure 5.4 – Limiting out-put with different value of sigma

PDE corresponding to the hole problem (full dimension) to a reduced one, after writing

our problem as a multiscale problem. The idea of the prove is the use the homogenization

of FBSDE, for this end, we present first the bridge between stochastic optimal control and

FBSDE, this connection is useful looking to the flexibility of applying homogenization of a

FBSDEs, after that we present two approaches for the convergence of the hole system to the

reduced one.
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5.6 Proofs and technical lemmas

5.6.1 Convergence of the value function

The idea of the proof of Theorem 52 closely follows the work [38], with the main differences

being (a) that we consider slow-fast systems exhibiting three time scales, in particular the

slow equation contains singular O(ε−1/2) terms, and (b) that the coefficients of the fast

dynamics are not periodic, with the fast process being asymptotically Gaussian as ε → 0 ;

in particular the nf -dimensional fast process lives on the unbounded domain Rnf .

Theorem 52 rests on the following Lemma that is similar to a result in [29].

Lemma 57. Suppose that the assumptions of Condition U on page 134 hold and define

h : [0, T ] × Rns × Rnf → R to be a function of the class C1,2,2
b . Further assume that h is

centered with respect to the invariant measure π of the fast process. Then for every t ∈ [0, T ]

and initial conditions (Xε
1,u, X

ε
2,u) = (x1, x2) ∈ Rns × Rnf , 0 6 u < t, we have

lim
ε→0

E
[(∫ v

u
h(s,Xε

1,s, X
ε
2,s)ds

)2
]

= 0 , 0 6 u < v 6 t . (5.6.1)

Proof. We remind the reader of the definition (5.3.17) of the differential operators L0, L1

and L2, and consider the Poisson equation

L0ψ = −h (5.6.2)

on the domain Rnf . (The variables x1 ∈ Rns and t ∈ [0, T ] are considered as parameters.)

Since h is centered with respect to π, equation (5.6.2) has a solution by the Fredholm

alternative. By Assumption 3 L0 is a hypoelliptic operator in x2 and thus by [123, Thm. 2],

the Poisson equation (5.6.2) has a unique solution that is smooth and bounded. Applying
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Itô’s formula to ψ and introducing the shorthand δψ(u, v) = ψ(v,Xε

1,v, X
ε
2,v) − ψ(u, x1, x2)

yields

δψ(u, v) =
∫ v

u
(∂tψ + L2ψ)(s,Xε

1,s, X
ε
2,s)ds+ 1√

ε

∫ v

u
L1ψ(s,Xε

1,s, X
ε
2,s)ds

+ 1
ε

∫ v

u
L0ψ(s,Xε

1,s, X
ε
2,s)ds+M1(u, v) + 1√

ε
M2(u, v) ,

(5.6.3)

where M1 and M2 are square integrable martingales with respect to the natural filtration

generated by the Brownian motion Ws. By the properties of the solution to (5.6.2) the first

three integrals on the right hand side are uniformly bounded in u and v, and thus

∫ v

u
h(s,Xε

1,s, X
ε
2,s)ds =− εδψ(u, v) + ε

∫ v

u
(∂tψ + L2ψ)(s,Xε

1,s, X
ε
2,s)ds

+
√
ε
∫ v

u
L1ψ(s,Xε

1,s, X
ε
2,s)ds+ εM1(u, v) +

√
εM2(u, v) .

By the Itô isometry and the boundedness of the derivatives ∇x1ψ and ∇x2ψ, the martin-

gale term can be bounded by

E
[
(Mi(u, v))2

]
6 Ci(v − u) , 0 < Ci <∞ .

Hence

E
[(∫ v

u
h(s,Xε

1,s, X
ε
2,s)ds

)2
]
6 Cε ,

with a generic constant 0 < C <∞ that is independent of u, v and ε.

Lemma 58 (Upper bound). Suppose that the Conditions U from page 134 hold true. Then

|V ε(t, x)− V (t, x1)| ≤ C
√
ε ,

with x = (x1, x2) ∈ D = Ds×Rnf , where V ε is the solution of the original dynamic program-

ming equation (5.2.9) and V is the solution of the limiting dynamic programming equation
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(5.3.10). The constant and C depends on x and t, but is finite on every compact subset of

D × [0, T ].

Proof. The idea of the proof is to apply Itô’s formula to |yεs|2, where yεs = Y ε
s − V (s,Xε

1,s)

satisfies the backward SDE

dyεs = −Gε(s,Xε
1,s, X

ε
2,s, y

ε
s, z

ε
s)ds+ zεs · dWs (5.6.4)

where

zεs = Zε
s −

(
C̄>∇V (s,Xε

1,s), 0
)>

(∇V = ∇x1V )

and

Gε(t, x1, x2, y, z) = G1(t, x1, x2, y, z) +Gε
2(t, x1, x2, y, z) ,

with

G1 = f(t, x, y + V (t, x1), z + (C̄>∇V (t, x1), 0))− f̄(t, x1, V (t, x1), C̄>∇V (t, x1))

Gε
2 =

(
(A11 − A)x1 + 1

ε
A12x2

)
· ∇V (t, x1) + 1

2(C1C
>
1 − C̄C̄>)∇2V (t, x1) .

We set Xε
s = Xε

τD
for s ∈ (τD, T ] when τD < T . Then, by construction, G1(t, x, 0, 0),

x = (x1, x2) ∈ Ds × Rnf is centered with respect to π and bounded (since the running cost

is independent of x2), therefore Lemma 57 implies that

sup
t∈[0,T ]

E

(∫ T

t
G1(s,Xε

1,s, X
ε
2,s, 0, 0)ds

)2
 6 C1ε , (5.6.5)

The second contribution to the driver can be recast as Gε
2 = (L − L̄)V , with L2 and L̄ as
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given by (5.2.10) and (5.3.11) and thus, as ε→ 0,

sup
t∈[0,T ]

E

(∫ T

t
Gε

2(s,Xε
1,s, X

ε
2,s, 0, 0)ds

)2
 6 C2ε (5.6.6)

by the functional central limit theorem for diffusions with Lipschitz coefficients [74] ; cf. also

Sec. 5.3.2. As a consequence of (5.6.5) and (5.6.6), we have Gε → 0 in L2, which, since

E[|yεT |2] 6 C3ε, implies strong convergence of the solution of the corresponding backward

SDE in L2.

Specifically, since ∇V is bounded D̄s, Itô’s formula applied to |yεs|2, yields after an appli-

cation of Gronwall’s Lemma :

E
[

sup
t≤s≤T

|yεs|2 +
∫ T

t
|zεs|2 ds

]
6`DE

(∫ T

t
Gε(s,Xε

1,s, X
ε
2,s, 0, 0)ds

)2
+ `DE[|yεT |2]

where the Lipschitz constant `D is independent of ε and finite for every compact subset

D̄s ⊂ Rns by the boundedness of ∇V (since V is a classical solution and Ds in bounded).

Hence E[|yεs|2] ≤ C3ε uniformly for s ∈ [t, T ], and by setting s = t, we obtain

|Y ε
t | = |V ε(t, x)− V (t, x1)| ≤ C

√
ε

for a constant C ∈ (0,∞).

This proves Theorem 52.

Remark 59. The condition of the periodicity of the coefficient w.r.t. the fast variable in [73]

is to ensure the ergodicity of the fast variable that can holds in our case without periodicity

by using the kalman rank condition (5.2.8)
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 عربي

خهفٍت, بالإضافت انً اٌ يعايم -هزِ الأطشوحت حهخى بذساصت وجىد انخحكى الأيثم نُظاو يعادلاث حفاضهٍت عشىائٍت يباششة

 خهفٍت توجىد حم وحٍذ نهعادن تكذا و دساص الاَخشاس ًٌكٍ أٌ ٌخغٍش )أي نٍش بانضشوسة يىحذ بٍضاوي انشكم( وحطبٍقاحها

.راث بعذ واحذ  . 

خهفٍت ، ثى ، حخطشق الاطشوحت -شكز أطشوحت عهً انُظشٌت انعايت نهًعادلاث انخفاضهٍت انعشىائٍت يباششةفً بادئ الأيش، ح

 انً يضأنت وجىد انخحكى الأيثم.

انخهفٍت , كزا و دساصت انخحكى -وأخٍشا، َضهظ انضىء عهً انذساصاث انعذدٌت نهًعادلاث انخفاضهٍت انعشىائٍت انًباششة      

انخطٍت و انغٍش انخطٍت، وقذ حًج دساصت انخطبٍقاث عهى ًَارج يٍ انًباًَ، واخذث حانت يضخشفى   الأيثم فً انحالاث

 جايعت نىس اَجهىس كًثال حً

Français 

             Cette thèse  établit l'existence d'un contrôle optimal pour un système modélisé par une 

équation différentielle stochastique progressive-rétrograde (EDSPR) couplée, dans les cas, 

dégénéré et non- dégénéré. On montre l’existence et l’unicité pour des équations rétrogrades 

avec une condition logarithmique. 

Dans une première partie, on présent la théorie générale des équations différentielle 

stochastiques progressive-rétrogrades, et on étudie la question d'existence d'un contrôle 

optimal. 

Enfin, des études numériques portent sur les équations différentielles stochastiques 

progressive-rétrograde (EDSPR) couplées avec une homogénéisation des problèmes de 

control optimal stochastique dans le cas linéaire  et non-linéaire. Des applications sur le 

modelé des bâtiments ont été étudiées, particulièrement le cas de l’hôpital universitaire de 

Los-Anglos a présenté. 

English 

           The purpose of the present dissertation is to study existence of an optimal control 

whose dynamical system is driven by a coupled forward-backward stochastic differential 

equation. The thesis studied the case of possibly degenerate diffusion coefficient. An 

existence and uniqueness results on a one dimensional BSDE with logarithmic condition is 

also studied. 

            An application in high dimensional stochastic differential equations is given in the last 

chapter of the thesis with numerical results; a real case of the Los Angeles University hospital 

is studied. A numerical analysis of fully coupled FBSDEs is also presented. 

Deutsch 

         Das Ziel dieser Arbeit ist die Untersuchung der Existenz einer optimalen  

Steuerung eines durch gekoppelte stochastische Vorwärts-/Rückwärtsdifferentialgleichungen 

gegebenen Systems. Dabei wird insbesondere der Fall degenerierter Diffusionskoeffizienten 

untersucht. 

           Eine Anwendung hochdimensionaler stochastischer Differentialgleichungen und 

numerische Ergebnisse werden anhand des Beispiels eines Universitätsklinikums von Los 

Angeles im letzten Kapitel der Arbeit vorgestellt. 

                    Zusätzlich wird eine numerische Analyse der vollständig gekoppelten Vorwärts-

Rückwärtsdifferentialgleichungen präsentiert. 
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